prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Imports: standard library import os import sys import argparse import datetime import tempfile import multiprocessing as mp from time import time from typing import Dict, List, Type, Tuple, Union, Callable from itertools import product # Imports: third party import h5py import numpy as np import pytest import neurokit2 as nk # Imports: first party import tensormap from definitions.edw import EDW_FILES from ml4c3.arguments import parse_args from ingest.icu.writers import Writer from definitions.globals import TENSOR_EXT from tensormap.TensorMap import TensorMap, Interpretation, get_local_timestamps from tensormap.icu_signals import get_tmap as GET_SIGNAL_TMAP from ingest.icu.data_objects import ( Event, Procedure, Medication, StaticData, Measurement, ICUDataObject, BedmasterAlarm, BedmasterSignal, ) from tensormap.icu_list_signals import get_tmap as GET_LIST_TMAP # pylint: disable=redefined-outer-name, unused-argument, missing-class-docstring def pytest_configure(): def tff(tm, hd5): return hd5[f"/{tm.name}"][:] pytest.TFF = tff pytest.N_TENSORS = 50 pytest.CONTINUOUS_TMAPS = [ TensorMap( f"{n}d_cont", shape=tuple(range(2, n + 2)), interpretation=Interpretation.CONTINUOUS, tensor_from_file=tff, ) for n in range(1, 6) ] pytest.CATEGORICAL_TMAPS = [ TensorMap( f"{n}d_cat", shape=tuple(range(2, n + 2)), interpretation=Interpretation.CATEGORICAL, channel_map={f"c_{i}": i for i in range(n + 1)}, tensor_from_file=tff, ) for n in range(1, 6) ] pytest.TMAPS_UP_TO_4D = pytest.CONTINUOUS_TMAPS[:-1] + pytest.CATEGORICAL_TMAPS[:-1] pytest.TMAPS_5D = pytest.CONTINUOUS_TMAPS[-1:] + pytest.CATEGORICAL_TMAPS[-1:] pytest.MULTIMODAL_UP_TO_4D = [ list(x) for x in product(pytest.CONTINUOUS_TMAPS[:-1], pytest.CATEGORICAL_TMAPS[:-1]) ] pytest.SEGMENT_IN = TensorMap( "2d_for_segment_in", shape=(32, 32, 1), interpretation=Interpretation.CONTINUOUS, metrics=["mse"], tensor_from_file=tff, ) pytest.SEGMENT_OUT = TensorMap( "2d_for_segment_out", shape=(32, 32, 2), interpretation=Interpretation.CATEGORICAL, channel_map={"yes": 0, "no": 1}, tensor_from_file=tff, ) pytest.MOCK_TMAPS = { tmap.name: tmap for tmap in pytest.CONTINUOUS_TMAPS + pytest.CATEGORICAL_TMAPS } pytest.example_mrn = "123" pytest.example_visit_id = "345" pytest.run_id = "1234567" pytest.run_id_par = "12345678" pytest.datadir = os.path.join(os.path.dirname(__file__), "icu_ingest", "data") # CrossRef pytest.cross_ref_file = os.path.join(pytest.datadir, "xref_file.csv") pytest.cross_ref_file_tens = os.path.join(pytest.datadir, "xref_file_tensorize.csv") # BedMaster pytest.bedmaster_dir = os.path.join(pytest.datadir, "bedmaster") pytest.mat_file = os.path.join(pytest.bedmaster_dir, "bedmaster_file-123_5_v4.mat") pytest.bedmaster_matching = os.path.join(pytest.datadir, "bedmaster_matching_files") # EDW pytest.edw_dir = os.path.join(pytest.datadir, "edw") pytest.edw_patient_dir = os.path.join( pytest.edw_dir, pytest.example_mrn, pytest.example_visit_id, ) pytest.adt_path = os.path.join(pytest.edw_dir, "adt.csv") # Alarms pytest.alarms_dir = os.path.join(pytest.datadir, "bedmaster_alarms") pytest_configure() class Utils: @staticmethod def build_hd5s( path: str, tensor_maps: List[TensorMap], n=5, ) -> Dict[Tuple[str, TensorMap], np.ndarray]: """ Builds hd5s at path given TensorMaps. Only works for Continuous and Categorical TensorMaps. """ out = {} for i in range(n): hd5_path = os.path.join(path, f"{i}{TENSOR_EXT}") with h5py.File(hd5_path, "w") as hd5: for tm in tensor_maps: if tm.is_continuous: value = np.full(tm.shape, fill_value=i, dtype=np.float32) elif tm.is_categorical: value = np.zeros(tm.shape, dtype=np.float32) value[..., i % tm.shape[-1]] = 1 else: raise NotImplementedError( "Cannot automatically build hd5 from interpretation" f' "{tm.interpretation}"', ) hd5.create_dataset(f"/{tm.name}", data=value) out[(hd5_path, tm)] = value return out @pytest.fixture(scope="session") def utils() -> Type[Utils]: return Utils # The purpose of this fixture is to always use the fake testing TMaps. # The function which retrieves tmaps is update_tmaps from TensorMap.py; # However, that function is usually imported directly, i.e. # # from ml4c3.TensorMap import update_tmaps # # This import creates a new object with the same name in the importing file, # and now needs to be mocked too, e.g. # # mock ml4c3.arguments.update_tmaps --> mock_update_tmaps # # https://stackoverflow.com/a/45466846 @pytest.fixture(autouse=True) def use_testing_tmaps(monkeypatch): def mock_update_tmaps(tmap_name: str, tmaps: Dict[str, TensorMap]): return pytest.MOCK_TMAPS monkeypatch.setattr(tensormap.TensorMap, "update_tmaps", mock_update_tmaps) baseline_default_arguments = [ "--input_tensors", "3d_cont", "--output_tensors", "1d_cat", "--conv_x", "3", "--conv_y", "3", "--conv_z", "3", "--pool_x", "1", "--pool_y", "1", "--pool_z", "1", "--num_workers", "1", "--epochs", "2", "--batch_size", "2", "--dense_layers", "4", "--conv_blocks", "4", "--conv_block_size", "3", "--optimizer", "adam", "--activation_layer", "relu", "--learning_rate", "0.001", ] @pytest.fixture(scope="function") def default_arguments(tmpdir_factory, utils: Utils) -> argparse.Namespace: temp_dir = tmpdir_factory.mktemp("data") utils.build_hd5s(temp_dir, pytest.MOCK_TMAPS.values(), n=pytest.N_TENSORS) hd5_dir = str(temp_dir) sys.argv = [ ".", "train", "--tensors", hd5_dir, "--output_folder", hd5_dir, ] sys.argv.extend(baseline_default_arguments) args = parse_args() return args @pytest.fixture(scope="function") def default_arguments_infer(tmpdir_factory, utils: Utils) -> argparse.Namespace: temp_dir = tmpdir_factory.mktemp("data") utils.build_hd5s(temp_dir, pytest.MOCK_TMAPS.values(), n=pytest.N_TENSORS) hd5_dir = str(temp_dir) sys.argv = [ ".", "infer", "--tensors", hd5_dir, "--output_folder", hd5_dir, ] sys.argv.extend(baseline_default_arguments) args = parse_args() return args @pytest.fixture(scope="function") def default_arguments_explore(tmpdir_factory, utils: Utils) -> argparse.Namespace: temp_dir = tmpdir_factory.mktemp("data") utils.build_hd5s(temp_dir, pytest.MOCK_TMAPS.values(), n=pytest.N_TENSORS) hd5_dir = str(temp_dir) sys.argv = [ ".", "explore", "--tensors", hd5_dir, "--output_folder", hd5_dir, ] args = parse_args() return args def pytest_exception_interact(node, call, report): for child in mp.active_children(): child.terminate() @pytest.fixture(scope="function") def matfile() -> h5py.File: with h5py.File(pytest.mat_file, "r") as mat_file: yield mat_file @pytest.fixture(scope="function") def empty_matfile() -> h5py.File: with tempfile.NamedTemporaryFile(delete=False) as _file: with h5py.File(_file.name, "w") as mat_file: mat_file.create_group("vs") mat_file.create_group("wv") yield _file try: os.remove(_file.name) except OSError: pass @pytest.fixture(scope="module") def temp_file(): with tempfile.NamedTemporaryFile(delete=False) as _file: yield _file @pytest.fixture(scope="function") def temp_dir(): with tempfile.TemporaryDirectory() as _tmp_dir: yield _tmp_dir @pytest.fixture(scope="session") def test_scale_units() -> Dict[str, Dict[str, Union[int, float, str]]]: # fmt: off return { "CUFF": {"scaling_factor": 1, "units": "mmHg"}, "HR": {"scaling_factor": 0.5, "units": "Bpm"}, "I": {"scaling_factor": 0.0243, "units": "mV"}, "II": {"scaling_factor": 0.0243, "units": "mV"}, "V": {"scaling_factor": 0.0243, "units": "mV"}, "SPO2": {"scaling_factor": 0.039, "units": "%"}, "RR": {"scaling_factor": 0.078, "units": "UNKNOWN"}, "VNT_PRES": {"scaling_factor": 1, "units": "UNKNOWN"}, "VNT_FLOW": {"scaling_factor": 1, "units": "UNKNOWN"}, "CO2": {"scaling_factor": 1, "units": "UNKNOWN"}, } # fmt: on class FakeSignal: """ Mock signal objects for use in testing. """ def __init__(self): self.today = datetime.date.today() @staticmethod def get_bedmaster_signal() -> BedmasterSignal: starting_time = int(time()) sample_freq = 60 duration_sec = 10 n_points = duration_sec * sample_freq m_signal = BedmasterSignal( name="Some_signal", source="waveform", channel="ch10", value=np.array(np.random.randint(40, 100, n_points)), time=np.arange(starting_time, starting_time + duration_sec, 0.25), units="mmHg", sample_freq=np.array( [(sample_freq, 0), (120, n_points / 10)], dtype="float,int", ), scale_factor=np.random.randint(0, 5), time_corr_arr=np.packbits(np.random.randint(0, 2, 100).astype(np.bool)), samples_per_ts=np.array([15] * int(duration_sec / 0.25)), ) return m_signal @staticmethod def get_static_data() -> StaticData: static_data = StaticData( department_id=np.array([1234, 12341]), department_nm=np.array(["BLAKE1", "BLAKE2"]).astype("S"), room_bed=np.array(["123 - 222", "456 - 333"]).astype("S"), move_time=np.array(["2021-05-15 06:47:00", "2021-05-25 06:47:00"]).astype( "S", ), weight=np.random.randint(50, 100), height=np.random.randint(150, 210) / 100, admin_type="testing", admin_date="1995-08-06 00:00:00.0000000", birth_date="1920-05-06 00:00:00.0000000", race=str(np.random.choice(["Asian", "Native American", "Black"])), sex=str(np.random.choice(["male", "female"])), end_date="2020-07-10 12:00:00.0000000", end_stay_type=str(np.random.choice(["discharge", "death"])), local_time=["UTC-4:00"], medical_hist=np.array( ["ID: 245324; NAME: Diabetes; COMMENTS: typeI; DATE: UNKNOWN"], ).astype("S"), surgical_hist=np.array( ["ID: 241324; NAME: VASECTOMY; COMMENTS: Sucessfully; DATE: UNKNOWN"], ).astype("S"), tobacco_hist="STATUS: Yes - Quit; COMMENT: 10 years ago", alcohol_hist="STATUS: Yes; COMMENT: a little", admin_diag="aortic valve repair.", ) return static_data @staticmethod def get_measurement() -> Measurement: starting_time = int(time()) measurement = Measurement( name="Some_Measurment", source=str( np.random.choice( [ EDW_FILES["lab_file"]["source"], EDW_FILES["vitals_file"]["source"], ], ), ), value=np.array(np.random.randint(40, 100, 100)), time=np.array(list(range(starting_time, starting_time + 100))), units=str(np.random.choice(["mmHg", "bpm", "%"])), data_type=str(np.random.choice(["categorical", "numerical"])), metadata={"Some_Metadata": np.array(np.random.randint(0, 1, 100))}, ) return measurement @staticmethod def get_medication() -> Medication: starting_time = int(time()) medication = Medication( name="Some_medication_in_g/ml", dose=np.array(np.random.randint(0, 2, 10)), units=str(np.random.choice(["g/ml", "mg", "pills"])), start_date=np.array(list(range(starting_time, starting_time + 100, 10))), action=np.random.choice(["Given", "New bag", "Rate Change"], 10).astype( "S", ), route=str(np.random.choice(["Oral", "Nasal", "Otic"])), wt_based_dose=bool(np.random.randint(0, 2)), ) return medication @staticmethod def get_procedure() -> Procedure: starting_time = int(time()) procedure = Procedure( name="Some_procedure", source=EDW_FILES["other_procedures_file"]["source"], start_date=np.array(list(range(starting_time, starting_time + 100, 5))), end_date=np.array( list(range(starting_time + 10000, starting_time + 10100, 5)), ), ) return procedure @staticmethod def get_demo() -> StaticData: return FakeSignal.get_static_data() @staticmethod def get_measurements() -> Dict[str, Measurement]: starting_time = int(time()) measurements_dic = { "creatinine": EDW_FILES["lab_file"]["source"], "ph_arterial": EDW_FILES["lab_file"]["source"], "pulse": EDW_FILES["vitals_file"]["source"], "r_phs_ob_bp_systolic_outgoing": EDW_FILES["vitals_file"]["source"], } measurements = { measurement_name: Measurement( name=measurement_name, source=f"{measurements_dic[measurement_name]}", value=np.array(np.random.randint(40, 100, 100)), time=np.array(list(range(starting_time, starting_time + 100))), units=str(np.random.choice(["mmHg", "bpm", "%"])), data_type=str(np.random.choice(["categorical", "numerical"])), ) for measurement_name in measurements_dic } sys = np.random.randint(40, 100, 250) dias = np.random.randint(80, 160, 250) measurements["blood_pressure"] = Measurement( name="blood_pressure", source=EDW_FILES["vitals_file"]["source"], value=np.array( [f"{sys[i]}/{dias[i]}" for i in range(0, len(sys))], dtype="S", ), time=np.array(list(range(starting_time - 50000, starting_time, 200))), units="", data_type="categorical", ) return measurements @staticmethod def get_procedures() -> Dict[str, Procedure]: starting_time = int(time()) start_times = np.array(list(range(starting_time, starting_time + 1000, 100))) end_times = np.array( list(range(starting_time + 100, starting_time + 1100, 100)), ) procedures_dic = { "colonoscopy": EDW_FILES["surgery_file"]["source"], "hemodialysis": EDW_FILES["other_procedures_file"]["source"], "transfuse_red_blood_cells": EDW_FILES["transfusions_file"]["source"], } procedures = { procedure_name: Procedure( name=procedure_name, source=f"{procedures_dic[procedure_name]}", start_date=start_times, end_date=end_times, ) for procedure_name in procedures_dic } return procedures @staticmethod def get_medications() -> Dict[str, Medication]: starting_time = int(time()) meds_list = [ "aspirin_325_mg_tablet", "cefazolin_2_gram|50_ml_in_dextrose_iso-osmotic_intravenous_piggyback", "lactated_ringers_iv_bolus", "norepinephrine_infusion_syringe_in_swfi_80_mcg|ml_cmpd_central_mgh", "sodium_chloride_0.9_%_intravenous_solution", "aspirin_500_mg_tablet", ] medications = { med: Medication( name=med, dose=np.array(np.random.randint(0, 2, 10)), units=str(np.random.choice(["g/ml", "mg", "pills"])), start_date=np.array( list(range(starting_time, starting_time + 100, 10)), ), action=
np.random.choice(["Given", "New bag", "Rate Change"], 10)
numpy.random.choice
import trimesh import math as m import numpy as np import glob import os import scipy def change_coordinates(coords, p_from='C', p_to='S'): if p_from == p_to: return coords elif p_from == 'S' and p_to == 'C': beta = coords[..., 0] alpha = coords[..., 1] r = 1. out = np.empty(beta.shape + (3,)) ct = np.cos(beta) cp = np.cos(alpha) st = np.sin(beta) sp = np.sin(alpha) out[..., 0] = r * st * cp # x out[..., 1] = r * st * sp # y out[..., 2] = r * ct # z return out elif p_from == 'C' and p_to == 'S': x = coords[..., 0] y = coords[..., 1] z = coords[..., 2] out = np.empty(x.shape + (2,)) out[..., 0] = np.arccos(z) # beta out[..., 1] = np.arctan2(y, x) # alpha return out else: raise ValueError('Unknown conversion:' + str(p_from) + ' to ' + str(p_to)) def make_sgrid_(b): theta = np.linspace(0, m.pi, num=b) phi = np.linspace(0, 2*m.pi, num=b) theta_m, phi_m = np.meshgrid(theta, phi) sgrid = change_coordinates(np.c_[theta_m[..., None], phi_m[..., None]], p_from='S', p_to='C') sgrid = sgrid.reshape((-1, 3)) print(sgrid.shape) return sgrid def render_model(mesh, sgrid): # Cast rays # triangle_indices = mesh.ray.intersects_first(ray_origins=sgrid, ray_directions=-sgrid) s_or = np.zeros(sgrid.shape) index_tri, index_ray, loc = mesh.ray.intersects_id( ray_origins=-sgrid, ray_directions=sgrid, multiple_hits=False, return_locations=True) loc = loc.reshape((-1, 3)) # fix bug if loc is empty final_loc = np.zeros((sgrid.shape[0],3)) final_loc[index_ray] = loc return final_loc def cart2sph(coords): x = coords[..., 0] y = coords[..., 1] z = coords[..., 2] r = np.sqrt(np.power(x,2) + np.power(y,2) + np.power(z,2)) xy = np.sqrt(np.power(x,2) + np.power(y,2)) print(x.shape) print(r.shape) out = np.empty(x.shape + (3,)) out[..., 0] = np.arctan2(xy,z) out[..., 1] = np.arctan2(y, x) + m.pi # out[..., 0] = np.arccos(z) # beta # out[..., 1] = np.arctan2(y, x) # alpha out[..., 2] = np.sqrt(np.power(x,2) + np.power(y,2) + np.power(z,2)) # print(out) return out def radial_poly(rho, m, n): if n == 0 and m == 0: return np.ones(rho.shape) if n == 1 and m == 1: return rho if n == 2 and m == 0: return 2.0 * np.power(rho,2) - 1 if n == 2 and m == 2: return np.power(rho,2) if n == 3 and m == 1: return 3.0* np.power(rho, 3) - 2.0 * rho if n == 3 and m == 3: return np.power(rho,3) if n == 4 and m == 0: return 6.0 * np.power(rho,4) - 6.0 * np.power(rho,2) + 1 if n == 4 and m == 2: return 4.0* np.power(rho, 4) - 3.0 * np.power(rho,2) if n == 4 and m == 4: return np.power(rho,4) if n == 5 and m == 1: return 10.0*
np.power(rho, 5)
numpy.power
import numpy as np import random from rl_main.main_constants import MAX_EPISODES class Policy_Iteration: def __init__(self, env, gamma): self.env = env # discount rate self.gamma = gamma self.max_iteration = MAX_EPISODES self.n_states = self.env.get_n_states() self.n_actions = self.env.get_n_actions() self.terminal_states = self.env.get_terminal_states() self.goal_states = self.env.get_goal_states() self.state_values =
np.zeros([self.n_states], dtype=float)
numpy.zeros
import logging from astropy import units as u from astropy.coordinates import Angle import numpy as np from scipy.interpolate import interp1d try: from spectral_cube import SpectralCube except ModuleNotFoundError: # Error handling pass import os.path directory = os.path.dirname(__file__) track_dict = { "3kf":"3kF_lbvRBD.dat", "3kpc_far":"3kF_lbvRBD.dat", "3kn":"3kN_lbvRBD.dat", "3kpc_near":"3kN_lbvRBD.dat", "aqr":"AqR_lbvRBD.dat", "aquila_rift":"AqR_lbvRBD.dat", "aqs":"AqS_lbvRBD.dat", "aquila_spur":"AqS_lbvRBD.dat", "cnn":"CnN_lbvRBD.dat", "connecting_near":"CnN_lbvRBD.dat", "cnx":"CnX_lbvRBD.dat", "connecting_extension":"CnX_lbvRBD.dat", "crn":"CrN_lbvRBD.dat", "carina_near":"CrN_lbvRBD.dat", "crf":"CrF_lbvRBD.dat", "carina_far":"CrF_lbvRBD.dat", "ctn":"CtN_lbvRBD.dat", "centaurus_near":"CtN_lbvRBD.dat", "ctf":"CtF_lbvRBD.dat", "centaurus_far":"CtF_lbvRBD.dat", "loc":"Loc_lbvRBD.dat", "local":"Loc_lbvRBD.dat", "los":"LoS_lbvRBD.dat", "local_spur":"LoS_lbvRBD.dat", "nor":"Nor_lbvRBD.dat", "norma":"Nor_lbvRBD.dat", "osc":"OSC_lbvRBD.dat", "outer_centaurus":"OSC_lbvRBD.dat", "outer_scutum":"OSC_lbvRBD.dat", "outer_scutum_centaurus":"OSC_lbvRBD.dat", "outer":"Out_lbvRBD.dat", "out":"Out_lbvRBD.dat", "per":"Per_lbvRBD.dat", "perseus":"Per_lbvRBD.dat", "scn":"ScN_lbvRBD.dat", "scutum_near":"ScN_lbvRBD.dat", "scf":"ScF_lbvRBD.dat", "scutum_far":"ScF_lbvRBD.dat", "sgn":"SgN_lbvRBD.dat", "sagittarius_near":"SgN_lbvRBD.dat", "sgf":"SgF_lbvRBD.dat", "sagittarius_far":"SgF_lbvRBD.dat" } def get_lbv_track(filename = None, reid_track = None, **kwargs): """ returns (longitude, latitude, velocity, radius, beta, distance) for spiral arm tracks Parameters ---------- filename:'str', optional, must be keyword Filename of custom LBV track to be read in reid_track:'str', optional, must be keyword Spiral Arm track from Reid et al. (2016) to read in Options are not case sensitive: 3kpc Arm: Far: "3kf", "3kpc_far" Near: "3kn", "3kpc_near" Aquila Rift: "AqR", "Aquila_Rift" Aquila Spur: "AqS", "Aquila_Spur" Connecting Arm: Near: "CnN", "Connecting_Near" Extension: "CnX", "Connecting_Extension" Carina Arm: Near: "CrN", "Carina_Near" Far: "CrF", "Carina_Far" Centaurus Arm: Near: "CtN", "Centaurus_Near" Far: "CtF", "Centaurus_Far" Local Arm: "Loc", "Local" Spur?: "LoS", "Local_Spur" Norma Arm: "Nor", "Norma" Outer Scutum Centaurus Arm: "OSC", "Outer_Scutum", "Outer_Centaurus", "Outer_Scutum_Centaurus" Outer Arm: "Outer", "Out" Perseus Arm: "Per", "Perseus" Scutum Arm: Near: "ScN", "Scutum_Near" Far: "ScF", "Scutum_Far" Sagittarius Arm: Near: "SgN", "Sagittarius_Near" Far: "SgF", "Sagittarius_Far" kwargs: optional keywords passed to np.genfromtxt """ # Check for Reid Track Match: if reid_track is not None: try: filename = os.path.join(directory, "data", "Reid16_SpiralArms", track_dict[reid_track.lower()]) except KeyError: raise KeyError("Reid et al. (2016) Spiral Arm track for {} was not found!".format(reid_track)) else: logging.warning("Not using provided data files - expecting columns to be ordered as lbv_RBD.") # Try reading in data: if not "comments" in kwargs: # Default comments flag in Reid lbv_RBD Tracks kwargs["comments"] = "!" track = np.genfromtxt(filename, **kwargs) # Check shape if track.shape[1] != 6: logging.warning("Track file did not have expected number of columns - adding in columns of 0s") new_track = np.zeros((track.shape[0], 6)) for column in range(track.shape[1]): new_track[:,column] = track[:,column] track = new_track return track def get_spiral_slice(survey, track = None, filename = None, brange = None, lrange = None, interpolate = True, wrap_at_180 = False, vel_width = None, return_track = False): """ Returns SkySurvey object isolated to velocity ranges corresponding to specified spiral arm Parameters ---------- survey: 'whampy.skySurvey' input skySurvey track: 'np.ndarray', 'str', optional, must be keyword if 'numpy array', lbv_RBD track data if 'str', name of spiral arm from Reid et al. (2016) filename: 'str', optional, must be keyword filename of track file to read in using whampy.lbvTracks.get_lbv_track brange: 'list', 'u.Quantity' min,max latitude to restrict data to Default of +/- 40 deg lrange: 'list', 'u.Quantity' min,max longitude to restrict data to Default of full track extent interpolate: 'bool', optional, must be keyword if True, interpolates velocity to coordinate of pointings if False, ... do nothing ... for now Future: slices have velocities set by track wrap_at_180: `bool`, optional, must be keyword if True, wraps longitude angles at 180d use if mapping accross Galactic Center vel_width: `number`, `u.Quantity`, optional, must be keyword velocity width to isolate in km/s return_track: `bool`, optional, must be keyword if True, will also return the spiral arm track as the second element of a tuple """ # Check Track Data if track is not None: if not track.__class__ is np.ndarray: track = get_lbv_track(reid_track = track) else: if track.shape[1] < 2: raise TypeError("track should have at least two columns (l,v) or up to 6 (lbvRBD).") elif filename is None: raise SyntaxError("No track or track filename provided!") else: track = get_lbv_track(filename = filename) if wrap_at_180: wrap_at = "180d" else: wrap_at = "360d" # Check velocity width if vel_width is None: logging.warning("No Velocity width specified, using default of 16 km/s.") vel_width = 16*u.km/u.s elif not isinstance(vel_width, u.Quantity): vel_width *= u.km/u.s logging.warning("No units specified for vel_width, assuming km/s.") #Extract Needed track informattion if track.shape[1] == 2: lon_track = track[:,0] * u.deg lon_track = Angle(lon_track).wrap_at(wrap_at) vel_track = track[:,1] * u.km/u.s else: # Reid et al. (2016) format lon_track = track[:,0] * u.deg lon_track = Angle(lon_track).wrap_at(wrap_at) vel_track = track[:,2] * u.km/u.s # Set Default latitude range if brange is None: brange = [-40,40]*u.deg elif isinstance(brange, u.Quantity): brange = brange.to(u.deg) else: brange = brange * u.deg logging.warning("No units specified for latitude range, assuming Degrees!") # Set Longitude Range if lrange is None: lrange = [
np.min(lon_track.value)
numpy.min
####################### #<NAME> #Orbit Propagator Ver2 #UTAT Space Systems #Orbit Propagator Project (ADCS) #Dec 28th, 2020 #Version 2.1: Jan 9, 2020 ####################### from scipy.integrate import solve_ivp import numpy as np import matplotlib.pyplot as plt from convert_to_vectors2 import vectors #Define constants########################## radius=6378.0 mu=6.67408*(10**-20)*5.972*(10**24) #G*m ########################################### #Define inputs############################# eccentricity=0.7 semi_maj_axis=9000 inclination=0 raan=0 periapsis=3.49 t0=0 time_step=5 time_interval=20000 ########################################### def magnitude(a,b,c): r=(a)**2+(b)**2+(c)**2 r=
np.sqrt(r)
numpy.sqrt
import math import numpy as np import pandas as pd from scipy import integrate import numpy as np from scipy.special import kl_div from scipy.stats import ks_2samp, wasserstein_distance import torch from scipy.stats import ks_2samp, wasserstein_distance, ttest_ind ### sys relative to root dir import sys from os.path import dirname, realpath sys.path.append(dirname(dirname(dirname(realpath(__file__))))) ### absolute imports wrt root from codes.utilities.custom_logging import ezLogging def calc_feature_distances(refiners, validation_data, device): ''' TODO...get the source from the room Find the best refiner and discriminator from the list of refiners and discriminators using the feature distances. Parameters: refiners (list(torch.nn)): list of refiners validation_data (simganData): SimGAN dataset Returns: ''' #N_samples = 100 all_real = validation_data.real_raw.squeeze()#[:N_samples] all_simulated = validation_data.simulated_raw#[:N_samples] simulated_tensor = torch.tensor(all_simulated, dtype=torch.float, device=device) # Calculate kl_div and wasserstein distance for features fe = FeatureExtractor() real_features = fe.get_features(all_real) feature_scores = {} for id_R, R in enumerate(refiners): refined_tensor = R(simulated_tensor.clone()) refined = refined_tensor.detach().numpy().squeeze() refined_features = fe.get_features(refined) # Normalize features mins = np.expand_dims(np.min(np.concatenate([real_features, refined_features], axis=1), axis=1), axis=1) maxs = np.expand_dims(np.max(np.concatenate([real_features, refined_features], axis=1), axis=1), axis=1) normalized_real_features = (real_features - mins) / (maxs - mins) normalized_refined_features = (refined_features - mins) / (maxs - mins) kl_div, wasserstein_dist, ks_stat, pval = get_sampled_distribution_relation_scores(normalized_real_features.T, normalized_refined_features.T, bin=True) feature_scores[id_R] = {'kl_div': kl_div, 'wasserstein_dist': wasserstein_dist, 'ks_stat': ks_stat, 'sampled_pval': pval} mins = np.expand_dims(np.min(np.concatenate([real_features, real_features], axis=1), axis=1), axis=1) maxs = np.expand_dims(np.max(np.concatenate([real_features, real_features], axis=1), axis=1), axis=1) normalized_real_features = (real_features - mins) / (maxs - mins) feature_scores = pd.DataFrame.from_dict(feature_scores, orient='index') return feature_scores def calc_t_tests(refiners, validation_data, device): ''' Find the best refiner and discriminator from the list of refiners and discriminators using Welsh's t-tests. Parameters: refiners (list(torch.nn)): list of refiners validation_data (simganData): SimGAN dataset Returns: ''' all_real = validation_data.real_raw.squeeze() all_simulated = validation_data.simulated_raw simulated_tensor = torch.tensor(all_simulated, dtype=torch.float, device=device) # Calculate kl_div and wasserstein distance for features fe = FeatureExtractor() real_features = fe.get_features(all_real) feature_scores = {} for id_R, R in enumerate(refiners): refined_tensor = R(simulated_tensor.clone()) refined = refined_tensor.detach().numpy().squeeze() refined_features = fe.get_features(refined) # Normalize features mins = np.expand_dims(np.min(np.concatenate([real_features, refined_features], axis=1), axis=1), axis=1) maxs = np.expand_dims(np.max(np.concatenate([real_features, refined_features], axis=1), axis=1), axis=1) normalized_real_features = (real_features - mins) / (maxs - mins) normalized_refined_features = (refined_features - mins) / (maxs - mins) condensed_wave_p_val = get_wave_t_test(normalized_real_features.T, normalized_refined_features.T) auc_p_val = get_auc_t_test(normalized_real_features.T, normalized_refined_features.T) kl_div, wasserstein_dist, ks_stat, pval = get_condensed_wave_dist(normalized_real_features.T, normalized_refined_features.T) avg_feat_p_val = get_multi_feature_average_t_test(normalized_real_features.T, normalized_refined_features.T) num_significant_feat = get_num_significant(normalized_real_features.T, normalized_refined_features.T, alpha=0.05) feature_scores[id_R] = {'condensed_kl_div': kl_div, 'condensed_wasserstein_dist': wasserstein_dist, 'condensed_ks_stat': ks_stat,\ 'condensed_ks_pval': pval, 'auc_pval': auc_p_val, 'condensed_wave_pval': condensed_wave_p_val, \ 'num_sig': num_significant_feat, 'avg_feat_pval': avg_feat_p_val} mins = np.expand_dims(np.min(np.concatenate([real_features, real_features], axis=1), axis=1), axis=1) maxs = np.expand_dims(np.max(np.concatenate([real_features, real_features], axis=1), axis=1), axis=1) normalized_real_features = (real_features - mins) / (maxs - mins) feature_scores = pd.DataFrame.from_dict(feature_scores, orient='index') return feature_scores def estimated_trials(n, m): ''' For two unequally sized distributions, we want to randomly select a batch of m samples from both distributions and compare them. We want to continue sampling and comparing until we are confident that all n samples from the larger distributions have been sampled at least once. This problem is an extension of the coupon collector problem https://en.wikipedia.org/wiki/Coupon_collector%27s_problem Specifically, we are looking into a Batched coupon collector problem Unfortunately this solution is mathematically impossible due to the size of n https://math.stackexchange.com/questions/3278200/iteratively-replacing-3-chocolates-in-a-box-of-10/3278285#3278285 So we are running a simplified version by splitting the dataset into batches of samples, where we use n/m as the number of samples and assume m is 1. This means we are instead comparing across batches instead of samples, meaning we will be confident that each batch will be sampled at least once. This function returns the expected number of times we need to sample the distributions in order to see all n/m batches if we continue sampling batches of size m. Parameters: n (int): size of larger distribution m (int): batch size Returns: expected_trials (int): number of trials needed to sample everything once ''' num_batches = n//m euler_mascheroni = 0.5772156649 expected_trials = num_batches * np.log(num_batches) + euler_mascheroni * num_batches + 0.5 return int(expected_trials) def divide_pad_distributions(dist1, dist2, batch_size): ''' Divide the distributions to be evenly divisible by the batch size and pad the distributions to fit the correct size. To pad the batches that are too small, we simply select random samples from the overall distribution. Parameters: dist1 (ndarray): NxD numpy array dist2 (ndarray): MxD numpy array batch_size (int): given batch size of distribution Returns: padded_dist1 (ndarray), padded_dist2 (ndarray): two numpy arrays, each with batches of samples of size batch_size ''' split_dist1 = np.array_split(dist1, math.ceil(len(dist1)/batch_size)) split_dist2 = np.array_split(dist2, math.ceil(len(dist2)/batch_size)) for i, batch in enumerate(split_dist1): if len(batch) != batch_size: random_samples = dist1[np.random.randint(dist1.shape[0], size=(batch_size - len(split_dist1[i]))), :] split_dist1[i] = np.vstack((split_dist1[i], random_samples)) for j, batch in enumerate(split_dist2): if len(batch) != batch_size: random_samples = dist2[np.random.randint(dist2.shape[0], size=(batch_size - len(split_dist2[j]))), :] split_dist2[j] = np.vstack((split_dist2[j], random_samples)) return split_dist1, split_dist2 def get_full_kl_div(dist1, dist2, batch_size, bin = True, clip_negatives=True, clip_lower_bound=0.0001): ''' Calculate the kl divergence between the 2 distributions based on matching each batch with each other Parameters: dist1 (ndarray): NxD numpy array dist2 (ndarray): MxD numpy array batch_size (int): given batch size of distribution clip_negatives (boolean): indicates whether we should clip the lower end of the disributions, can be useful to prevent infinite kl divergence clip_lower_bound (float): the lower bound to clip values at Returns: mean_kl_div (ndarray), median_kl_dv (ndarray): two numpy arrays, each with shape (D,), of the kl divergences ''' if clip_negatives: # Clip values to positive to give reasonable values dist1 = np.clip(dist1, clip_lower_bound, dist1.max()) dist2 = np.clip(dist2, clip_lower_bound, dist2.max()) # Shuffle arrays np.random.shuffle(dist1) np.random.shuffle(dist2) dist1, dist2 = divide_pad_distributions(dist1, dist2, batch_size) #print("Number of combinations: ", len(dist1) * len(dist2)) log_counter = 0 kl_divs = None for real_batch in dist1: dist1_sample = real_batch np.random.shuffle(dist1_sample) for sim_batch in dist2: dist2_sample = sim_batch np.random.shuffle(dist2_sample) axis = 1 if bin else 0 if kl_divs is not None: kl_divs = np.vstack((kl_divs, kl_div(dist1_sample, dist2_sample).sum(axis=axis))) else: kl_divs = kl_div(dist1_sample, dist2_sample).sum(axis=axis) #print("Combo: ", log_counter) log_counter += 1 return np.mean(kl_divs), np.median(kl_divs) def get_sampled_kl_div(dist1, dist2, batch_size, bin = True, clip_negatives=True, clip_lower_bound=0.0001): ''' Calculate the kl divergence between the 2 distributions based on random sampling Parameters: dist1 (ndarray): NxD numpy array dist2 (ndarray): MxD numpy array batch_size (int): given batch size of distribution clip_negatives (boolean): indicates whether we should clip the lower end of the disributions, can be useful to prevent infinite kl divergence clip_lower_bound (float): the lower bound to clip values at Returns: mean_kl_div (ndarray), median_kl_dv (ndarray): two numpy arrays, each with shape (D,), of the kl divergences ''' larger_dist_size = max(len(dist1), len(dist2)) num_trials = estimated_trials(larger_dist_size, batch_size) #print("Number of trials: ", num_trials) if clip_negatives: # Clip values to positive to give reasonable values dist1 = np.clip(dist1, clip_lower_bound, dist1.max()) dist2 = np.clip(dist2, clip_lower_bound, dist2.max()) # Shuffle arrays np.random.shuffle(dist1) np.random.shuffle(dist2) dist1, dist2 = divide_pad_distributions(dist1, dist2, batch_size) kl_divs = None for i in range(num_trials): #print("Trial started: ", i) dist1_sample = dist1[np.random.randint(len(dist1))] dist2_sample = dist2[np.random.randint(len(dist2))] np.random.shuffle(dist1_sample) np.random.shuffle(dist2_sample) axis = 1 if bin else 0 if kl_divs is not None: kl_divs = np.vstack((kl_divs, kl_div(dist1_sample, dist2_sample).sum(axis=axis))) else: kl_divs = kl_div(dist1_sample, dist2_sample).sum(axis=axis) return np.mean(kl_divs), np.median(kl_divs) def get_average_kl_div(dist1, dist2, bin=True, clip_negatives=True, clip_lower_bound=0.0001): ''' Calculate the kl divergence between the 2 distributions Parameters: dist1 (ndarray): NxD numpy array dist2 (ndarray): NxD numpy array clip_negatives (boolean): indicates whether we should clip the lower end of the disributions, can be useful to prevent infinite kl divergence clip_lower_bound (float): the lower bound to clip values at Returns: mean_kl_div (ndarray), median_kl_dv (ndarray): two numpy arrays, each with shape (D,), of the kl divergences ''' if clip_negatives: # Clip values to positive to give reasonable values dist1 = np.clip(dist1, clip_lower_bound, dist1.max()) dist2 = np.clip(dist2, clip_lower_bound, dist2.max()) # Shuffle arrays np.random.shuffle(dist1) np.random.shuffle(dist2) axis = 1 if bin else 0 kl_divs = kl_div(dist1, dist2).sum(axis=axis) return np.mean(kl_divs), np.median(kl_divs) def get_full_wasserstein(dist1, dist2, batch_size, bin=True): ''' Estimate the average wasserstein distance between the 2 distributions based on matching each batch with each other Parameters: dist1 (ndarray): NxD numpy array dist2 (ndarray): MxD numpy array batch_size (int): given batch size of distribution Returns: mean_wasserstein_dist (ndarray), median_wasserstein_dist (ndarray): two numpy arrays, each with shape (D,), of the average wasserstein divergences ''' # Shuffle arrays np.random.shuffle(dist1) np.random.shuffle(dist2) dist1, dist2 = divide_pad_distributions(dist1, dist2, batch_size) #print("Number of combinations: ", len(dist1) * len(dist2)) log_counter = 0 wassersteins = list() for real_batch in dist1: dist1_sample = real_batch np.random.shuffle(dist1_sample) for sim_batch in dist2: dist2_sample = sim_batch np.random.shuffle(dist2_sample) if bin: for j in range(len(dist1_sample[0])): wassersteins.append(wasserstein_distance(dist1_sample[:, j], dist2_sample[:, j])) else: for j in range(batch_size): # compute 1d wasserstein between 2 random signals wassersteins.append(wasserstein_distance(dist1_sample[j].squeeze(), dist2_sample[j].squeeze())) #print("Combo: ", log_counter) log_counter += 1 return np.mean(np.array(wassersteins)), np.median(np.array(wassersteins)) def get_sampled_wasserstein(dist1, dist2, batch_size, bin=True): ''' Estimate the average wasserstein distance between the 2 distributions based on random sampling Parameters: dist1 (ndarray): NxD numpy array dist2 (ndarray): MxD numpy array batch_size (int): given batch size of distribution Returns: mean_wasserstein_dist (ndarray), median_wasserstein_dist (ndarray): two numpy arrays, each with shape (D,), of the average wasserstein divergences ''' larger_dist_size = max(len(dist1), len(dist2)) num_trials = estimated_trials(larger_dist_size, batch_size) #print("Number of trials: ", num_trials) # Shuffle arrays np.random.shuffle(dist1) np.random.shuffle(dist2) dist1, dist2 = divide_pad_distributions(dist1, dist2, batch_size) wassersteins = list() for i in range(num_trials): #print("Trial started: ", i) dist1_sample = dist1[np.random.randint(len(dist1))] dist2_sample = dist2[np.random.randint(len(dist2))] np.random.shuffle(dist1_sample) np.random.shuffle(dist2_sample) if bin: for j in range(len(dist1_sample[0])): wassersteins.append(wasserstein_distance(dist1_sample[:, j], dist2_sample[:, j])) else: for j in range(batch_size): # compute 1d wasserstein between 2 random signals wassersteins.append(wasserstein_distance(dist1_sample[j].squeeze(), dist2_sample[j].squeeze())) return np.mean(np.array(wassersteins)), np.median(np.array(wassersteins)) def estimate_average_wasserstein(dist1, dist2, bin=True): ''' Estimate the average wasserstein distance between the 2 distributions Parameters: dist1 (ndarray): NxD numpy array dist2 (ndarray): NxD numpy array num_rounds (int): number of samples to draw and find avg. wasserstein difference between Returns: mean_wasserstein_dist (ndarray), median_wasserstein_dist (ndarray): two numpy arrays, each with shape (D,), of the average wasserstein divergences ''' wassersteins = list() if bin: for j in range(len(dist1[0])): wassersteins.append(wasserstein_distance(dist1[:, j], dist2[:, j])) else: for j in range(len(dist1)): # compute 1d wasserstein between 2 random signals wassersteins.append(wasserstein_distance(dist1[j].squeeze(), dist2[j].squeeze())) return np.mean(wassersteins), np.median(wassersteins) def get_full_ks_stat(dist1, dist2, batch_size, use_median=False, bin=True): ''' Estimate the average ks-stat between the 2 distributions based on matching each batch with each other Parameters: dist1 (ndarray): NxD numpy array dist2 (ndarray): MxD numpy array batch_size (int): given batch size of distribution Returns: mean_ks_stat (ndarray), mean_pvalue (ndarray): two numpy arrays, each with shape (D,), of the mean ks stats/pvalue ''' # Shuffle arrays np.random.shuffle(dist1) np.random.shuffle(dist2) dist1, dist2 = divide_pad_distributions(dist1, dist2, batch_size) #print("Number of combinations: ", len(dist1) * len(dist2)) log_counter = 0 ks_stats = list() for real_batch in dist1: dist1_sample = real_batch np.random.shuffle(dist1_sample) for sim_batch in dist2: dist2_sample = sim_batch
np.random.shuffle(dist2_sample)
numpy.random.shuffle
# -*- coding: utf-8 -*- # Copyright 2017, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. # pylint: disable=invalid-name,missing-docstring from test.python.common import QiskitTestCase import json import unittest import numpy as np from numpy.linalg import norm import qiskit import qiskit._compiler from qiskit import ClassicalRegister from qiskit import QuantumCircuit from qiskit import QuantumJob from qiskit import QuantumRegister from qiskit.backends.local.qasm_simulator_cpp import (QasmSimulatorCpp, cx_error_matrix, x90_error_matrix) class TestLocalQasmSimulatorCpp(QiskitTestCase): """ Test job_processor module. """ def setUp(self): self.seed = 88 self.qasm_filename = self._get_resource_path('qasm/example.qasm') with open(self.qasm_filename, 'r') as qasm_file: self.qasm_text = qasm_file.read() self.qasm_ast = qiskit.qasm.Qasm(data=self.qasm_text).parse() self.qasm_be = qiskit.unroll.CircuitBackend(['u1', 'u2', 'u3', 'id', 'cx']) self.qasm_circ = qiskit.unroll.Unroller(self.qasm_ast, self.qasm_be).execute() qr = QuantumRegister(2, 'q') cr = ClassicalRegister(2, 'c') qc = QuantumCircuit(qr, cr) qc.h(qr[0]) qc.measure(qr[0], cr[0]) self.qc = qc # create qobj compiled_circuit1 = qiskit._compiler.compile_circuit(self.qc, format='json') compiled_circuit2 = qiskit._compiler.compile_circuit(self.qasm_circ, format='json') self.qobj = {'id': 'test_qobj', 'config': { 'max_credits': 3, 'shots': 2000, 'backend_name': 'local_qasm_simulator_cpp', 'seed': 1111 }, 'circuits': [ { 'name': 'test_circuit1', 'compiled_circuit': compiled_circuit1, 'basis_gates': 'u1,u2,u3,cx,id', 'layout': None, }, { 'name': 'test_circuit2', 'compiled_circuit': compiled_circuit2, 'basis_gates': 'u1,u2,u3,cx,id', 'layout': None, } ]} # Simulator backend try: self.backend = QasmSimulatorCpp() except FileNotFoundError as fnferr: raise unittest.SkipTest( 'cannot find {} in path'.format(fnferr)) self.q_job = QuantumJob(self.qobj, backend=self.backend, preformatted=True) def test_x90_coherent_error_matrix(self): X90 = np.array([[1, -1j], [-1j, 1]]) / np.sqrt(2) U = x90_error_matrix(0., 0.).dot(X90) target = X90 self.assertAlmostEqual(norm(U - target), 0.0, places=10, msg="identity error matrix") U = x90_error_matrix(np.pi / 2., 0.).dot(X90) target = -1j * np.array([[0, 1], [1, 0]]) self.assertAlmostEqual(norm(U - target), 0.0, places=10) U = x90_error_matrix(0., np.pi / 2.).dot(X90) target = np.array([[1., -1], [1, 1.]]) / np.sqrt(2.) self.assertAlmostEqual(norm(U - target), 0.0, places=10) U = x90_error_matrix(np.pi / 2, np.pi / 2.).dot(X90) target = np.array([[0., -1], [1, 0.]]) self.assertAlmostEqual(norm(U - target), 0.0, places=10) U = x90_error_matrix(0.02, -0.03) self.assertAlmostEqual(norm(U.dot(U.conj().T) - np.eye(2)), 0.0, places=10, msg="Test error matrix is unitary") def test_cx_coherent_error_matrix(self): CX = np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]) U = cx_error_matrix(0., 0.).dot(CX) target = CX self.assertAlmostEqual(norm(U - target), 0.0, places=10, msg="identity error matrix") U = cx_error_matrix(np.pi / 2., 0.).dot(CX) target = np.array([[1, 0, 1j, 0], [0, -1j, 0, 1], [1j, 0, 1, 0], [0, 1, 0, -1j]]) / np.sqrt(2) self.assertAlmostEqual(norm(U - target), 0.0, places=10) U = cx_error_matrix(0.03, -0.04) self.assertAlmostEqual(norm(U.dot(U.conj().T) - np.eye(4)), 0.0, places=10, msg="Test error matrix is unitary") def test_run_qobj(self): result = self.backend.run(self.q_job).result() shots = self.qobj['config']['shots'] threshold = 0.04 * shots counts = result.get_counts('test_circuit2') target = {'100 100': shots / 8, '011 011': shots / 8, '101 101': shots / 8, '111 111': shots / 8, '000 000': shots / 8, '010 010': shots / 8, '110 110': shots / 8, '001 001': shots / 8} self.assertDictAlmostEqual(counts, target, threshold) def test_qobj_measure_opt(self): filename = self._get_resource_path('qobj/cpp_measure_opt.json') with open(filename, 'r') as file: q_job = QuantumJob(json.load(file), backend=self.backend, preformatted=True) result = self.backend.run(q_job).result() shots = q_job.qobj['config']['shots'] expected_data = { 'measure (opt)': { 'deterministic': True, 'counts': {'00': shots}, 'statevector': np.array([1, 0, 0, 0])}, 'x0 measure (opt)': { 'deterministic': True, 'counts': {'01': shots}, 'statevector': np.array([0, 1, 0, 0])}, 'x1 measure (opt)': { 'deterministic': True, 'counts': {'10': shots}, 'statevector': np.array([0, 0, 1, 0])}, 'x0 x1 measure (opt)': { 'deterministic': True, 'counts': {'11': shots}, 'statevector': np.array([0, 0, 0, 1])}, 'y0 measure (opt)': { 'deterministic': True, 'counts': {'01': shots}, 'statevector': np.array([0, 1j, 0, 0])}, 'y1 measure (opt)': { 'deterministic': True, 'counts': {'10': shots}, 'statevector': np.array([0, 0, 1j, 0])}, 'y0 y1 measure (opt)': { 'deterministic': True, 'counts': {'11': shots}, 'statevector': np.array([0, 0, 0, -1j])}, 'h0 measure (opt)': { 'deterministic': False, 'counts': {'00': shots / 2, '01': shots / 2}, 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2), 0, 0])}, 'h1 measure (opt)': { 'deterministic': False, 'counts': {'00': shots / 2, '10': shots / 2}, 'statevector': np.array([1 / np.sqrt(2), 0, 1 / np.sqrt(2), 0])}, 'h0 h1 measure (opt)': { 'deterministic': False, 'counts': {'00': shots / 4, '01': shots / 4, '10': shots / 4, '11': shots / 4}, 'statevector': np.array([0.5, 0.5, 0.5, 0.5])}, 'bell measure (opt)': { 'deterministic': False, 'counts': {'00': shots / 2, '11': shots / 2}, 'statevector': np.array([1 / np.sqrt(2), 0, 0, 1 / np.sqrt(2)])} } for name in expected_data: # Check counts: counts = result.get_counts(name) expected_counts = expected_data[name]['counts'] if expected_data[name].get('deterministic', False): self.assertEqual(counts, expected_counts, msg=name + ' counts') else: threshold = 0.04 * shots self.assertDictAlmostEqual(counts, expected_counts, threshold, msg=name + 'counts') # Check snapshot snapshots = result.get_snapshots(name) self.assertEqual(set(snapshots), {'0'}, msg=name + ' snapshot keys') self.assertEqual(len(snapshots['0']), 3, msg=name + ' snapshot length') state = snapshots['0']['statevector'][0] expected_state = expected_data[name]['statevector'] fidelity = np.abs(expected_state.dot(state.conj())) ** 2 self.assertAlmostEqual(fidelity, 1.0, places=10, msg=name + ' snapshot fidelity') rho = snapshots['0']['density_matrix'] self.assertAlmostEqual(np.trace(rho), 1) prob = snapshots['0']['probabilities'] self.assertAlmostEqual(np.sum(prob), 1) def test_qobj_measure_opt_flag(self): filename = self._get_resource_path('qobj/cpp_measure_opt_flag.json') with open(filename, 'r') as file: q_job = QuantumJob(json.load(file), backend=self.backend, preformatted=True) result = self.backend.run(q_job).result() shots = q_job.qobj['config']['shots'] sampled_measurements = { 'measure (sampled)': True, 'trivial (sampled)': True, 'reset1 (shots)': False, 'reset2 (shots)': False, 'reset3 (shots)': False, 'gate1 (shots)': False, 'gate2 (shots)': False, 'gate3 (shots)': False, 'gate4 (shots)': False } for name in sampled_measurements: snapshots = result.get_snapshots(name) # Check snapshot keys self.assertEqual(set(snapshots), {'0'}, msg=name + ' snapshot keys') # Check number of snapshots # there should be 1 for measurement sampling optimization # and there should be >1 for each shot beign simulated. num_snapshots = len(snapshots['0'].get('statevector', [])) if sampled_measurements[name] is True: self.assertEqual(num_snapshots, 1, msg=name + ' snapshot length') else: self.assertEqual(num_snapshots, shots, msg=name + ' snapshot length') def test_qobj_reset(self): filename = self._get_resource_path('qobj/cpp_reset.json') with open(filename, 'r') as file: q_job = QuantumJob(json.load(file), backend=self.backend, preformatted=True) result = self.backend.run(q_job).result() expected_data = { 'reset': {'statevector': np.array([1, 0])}, 'x reset': {'statevector': np.array([1, 0])}, 'y reset': {'statevector': np.array([1, 0])}, 'h reset': {'statevector': np.array([1, 0])} } for name in expected_data: # Check snapshot is |0> state snapshots = result.get_snapshots(name) self.assertEqual(set(snapshots), {'0'}, msg=name + ' snapshot keys') self.assertEqual(len(snapshots['0']), 1, msg=name + ' snapshot length') state = snapshots['0']['statevector'][0] expected_state = expected_data[name]['statevector'] fidelity = np.abs(expected_state.dot(state.conj())) ** 2 self.assertAlmostEqual(fidelity, 1.0, places=10, msg=name + ' snapshot fidelity') def test_qobj_save_load(self): filename = self._get_resource_path('qobj/cpp_save_load.json') with open(filename, 'r') as file: q_job = QuantumJob(json.load(file), backend=self.backend, preformatted=True) result = self.backend.run(q_job).result() snapshots = result.get_snapshots('save_command') self.assertEqual(set(snapshots), {'0', '1', '10', '11'}, msg='snapshot keys') state0 = snapshots['0']['statevector'][0] state10 = snapshots['10']['statevector'][0] state1 = snapshots['1']['statevector'][0] state11 = snapshots['11']['statevector'][0] expected_state0 = np.array([1, 0]) expected_state10 = np.array([1 / np.sqrt(2), 1 / np.sqrt(2)]) fidelity0 = np.abs(expected_state0.dot(state0.conj())) ** 2 fidelity1 = np.abs(expected_state0.dot(state1.conj())) ** 2 fidelity10 = np.abs(expected_state10.dot(state10.conj())) ** 2 fidelity11 = np.abs(expected_state10.dot(state11.conj())) ** 2 self.assertAlmostEqual(fidelity0, 1.0, places=10, msg='snapshot 0') self.assertAlmostEqual(fidelity10, 1.0, places=10, msg='snapshot 0') self.assertAlmostEqual(fidelity1, 1.0, places=10, msg='snapshot 0') self.assertAlmostEqual(fidelity11, 1.0, places=10, msg='snapshot 0') def test_qobj_single_qubit_gates(self): filename = self._get_resource_path('qobj/cpp_single_qubit_gates.json') with open(filename, 'r') as file: q_job = QuantumJob(json.load(file), backend=self.backend, preformatted=True) result = self.backend.run(q_job).result() expected_data = { 'snapshot': { 'statevector': np.array([1, 0])}, 'id(U)': { 'statevector': np.array([1, 0])}, 'id(u3)': { 'statevector': np.array([1, 0])}, 'id(u1)': { 'statevector': np.array([1, 0])}, 'id(direct)': { 'statevector': np.array([1, 0])}, 'x(U)': { 'statevector': np.array([0, 1])}, 'x(u3)': { 'statevector': np.array([0, 1])}, 'x(direct)': { 'statevector': np.array([0, 1])}, 'y(U)': { 'statevector': np.array([0, 1j])}, 'y(u3)': { 'statevector': np.array([0, 1j])}, 'y(direct)': { 'statevector': np.array([0, 1j])}, 'h(U)': { 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2)])}, 'h(u3)': { 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2)])}, 'h(u2)': { 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2)])}, 'h(direct)': { 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2)])}, 'h(direct) z(U)': { 'statevector': np.array([1 / np.sqrt(2), -1 / np.sqrt(2)])}, 'h(direct) z(u3)': { 'statevector': np.array([1 / np.sqrt(2), -1 / np.sqrt(2)])}, 'h(direct) z(u1)': { 'statevector': np.array([1 / np.sqrt(2), -1 / np.sqrt(2)])}, 'h(direct) z(direct)': { 'statevector': np.array([1 / np.sqrt(2), -1 / np.sqrt(2)])}, 'h(direct) s(U)': { 'statevector': np.array([1 / np.sqrt(2), 1j / np.sqrt(2)])}, 'h(direct) s(u3)': { 'statevector': np.array([1 / np.sqrt(2), 1j / np.sqrt(2)])}, 'h(direct) s(u1)': { 'statevector': np.array([1 / np.sqrt(2), 1j / np.sqrt(2)])}, 'h(direct) s(direct)': { 'statevector': np.array([1 / np.sqrt(2), 1j / np.sqrt(2)])}, 'h(direct) sdg(U)': { 'statevector': np.array([1 / np.sqrt(2), -1j / np.sqrt(2)])}, 'h(direct) sdg(u3)': { 'statevector': np.array([1 / np.sqrt(2), -1j / np.sqrt(2)])}, 'h(direct) sdg(u1)': { 'statevector': np.array([1 / np.sqrt(2), -1j / np.sqrt(2)])}, 'h(direct) sdg(direct)': { 'statevector': np.array([1 / np.sqrt(2), -1j / np.sqrt(2)])}, 'h(direct) t(U)': { 'statevector': np.array([1 / np.sqrt(2), 0.5 + 0.5j])}, 'h(direct) t(u3)': { 'statevector': np.array([1 / np.sqrt(2), 0.5 + 0.5j])}, 'h(direct) t(u1)': { 'statevector': np.array([1 / np.sqrt(2), 0.5 + 0.5j])}, 'h(direct) t(direct)': { 'statevector': np.array([1 / np.sqrt(2), 0.5 + 0.5j])}, 'h(direct) tdg(U)': { 'statevector': np.array([1 / np.sqrt(2), 0.5 - 0.5j])}, 'h(direct) tdg(u3)': { 'statevector': np.array([1 / np.sqrt(2), 0.5 - 0.5j])}, 'h(direct) tdg(u1)': { 'statevector': np.array([1 / np.sqrt(2), 0.5 - 0.5j])}, 'h(direct) tdg(direct)': { 'statevector': np.array([1 / np.sqrt(2), 0.5 - 0.5j])} } for name in expected_data: # Check snapshot snapshots = result.get_snapshots(name) self.assertEqual(set(snapshots), {'0'}, msg=name + ' snapshot keys') self.assertEqual(len(snapshots['0']), 1, msg=name + ' snapshot length') state = snapshots['0']['statevector'][0] expected_state = expected_data[name]['statevector'] inner_product = expected_state.dot(state.conj()) self.assertAlmostEqual(inner_product, 1.0, places=10, msg=name + ' snapshot fidelity') def test_qobj_two_qubit_gates(self): filename = self._get_resource_path('qobj/cpp_two_qubit_gates.json') with open(filename, 'r') as file: q_job = QuantumJob(json.load(file), backend=self.backend, preformatted=True) result = self.backend.run(q_job).result() expected_data = { 'h0 CX01': { 'statevector': np.array([1 / np.sqrt(2), 0, 0, 1 / np.sqrt(2)])}, 'h0 CX10': { 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2), 0, 0])}, 'h1 CX01': { 'statevector': np.array([1 / np.sqrt(2), 0, 1 / np.sqrt(2), 0])}, 'h1 CX10': { 'statevector': np.array([1 / np.sqrt(2), 0, 0, 1 / np.sqrt(2)])}, 'h0 cx01': { 'statevector': np.array([1 / np.sqrt(2), 0, 0, 1 / np.sqrt(2)])}, 'h0 cx10': { 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2), 0, 0])}, 'h1 cx01': { 'statevector': np.array([1 / np.sqrt(2), 0, 1 / np.sqrt(2), 0])}, 'h1 cx10': { 'statevector': np.array([1 / np.sqrt(2), 0, 0, 1 / np.sqrt(2)])}, 'h0 cz01': { 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2), 0, 0])}, 'h0 cz10': { 'statevector': np.array([1 / np.sqrt(2), 1 / np.sqrt(2), 0, 0])}, 'h1 cz01': { 'statevector': np.array([1 / np.sqrt(2), 0, 1 / np.sqrt(2), 0])}, 'h1 cz10': { 'statevector': np.array([1 / np.sqrt(2), 0, 1 / np.sqrt(2), 0])}, 'h0 h1 cz01': {'statevector': np.array([0.5, 0.5, 0.5, -0.5])}, 'h0 h1 cz10': {'statevector': np.array([0.5, 0.5, 0.5, -0.5])}, 'h0 rzz01': { 'statevector': np.array([1 / np.sqrt(2), 1j / np.sqrt(2), 0, 0])}, 'h0 rzz10': { 'statevector': np.array([1 / np.sqrt(2), 1j / np.sqrt(2), 0, 0])}, 'h1 rzz01': { 'statevector': np.array([1 / np.sqrt(2), 0, 1j / np.sqrt(2), 0])}, 'h1 rzz10': { 'statevector': np.array([1 / np.sqrt(2), 0, 1j / np.sqrt(2), 0])}, 'h0 h1 rzz01': {'statevector': np.array([0.5, 0.5j, 0.5j, 0.5])}, 'h0 h1 rzz10': {'statevector': np.array([0.5, 0.5j, 0.5j, 0.5])} } for name in expected_data: # Check snapshot snapshots = result.get_snapshots(name) self.assertEqual(set(snapshots), {'0'}, msg=name + ' snapshot keys') self.assertEqual(len(snapshots['0']), 1, msg=name + ' snapshot length') state = snapshots['0']['statevector'][0] expected_state = expected_data[name]['statevector'] fidelity = np.abs(expected_state.dot(state.conj())) ** 2 self.assertAlmostEqual(fidelity, 1.0, places=10, msg=name + ' snapshot fidelity') def test_conditionals(self): filename = self._get_resource_path('qobj/cpp_conditionals.json') with open(filename, 'r') as file: q_job = QuantumJob(json.load(file), backend=self.backend, preformatted=True) result = self.backend.run(q_job).result() expected_data = { 'single creg (c0=0)': { 'statevector': np.array([1, 0, 0, 0])}, 'single creg (c0=1)': { 'statevector': np.array([0, 0, 0, 1])}, 'two creg (c1=0)': { 'statevector':
np.array([1, 0, 0, 0])
numpy.array
# -------------------------------------------------------- # Flow-Guided Feature Aggregation # Copyright (c) 2017 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- """ given a imagenet vid imdb, compute mAP """ import numpy as np import os import cPickle import cv2 import math as mh import json from scipy.optimize import linear_sum_assignment from collections import Counter from bbox.bbox_transform import bbox_overlaps from utils.image import xmlread import pdb def get_vid_det_np(video): # video[cls][img] = N x 5 array [x1, y1, x2, y2, score] cur_video_result = [] for cls_idx, per_cls_boxes in enumerate(video): for id, per_img_boxes in enumerate(per_cls_boxes): for box in per_img_boxes: det_l = box[0] det_t = box[1] det_w = box[2] - box[0] + 1 det_h = box[3] - box[1] + 1 score = box[4] det_array = np.array([id, -1, det_l, det_t, det_w, det_h, score, cls_idx+1, -1, -1, -1]) cur_video_result.append(det_array) return np.vstack(cur_video_result) def parse_vid_gt(filename, frame_seg_id, class_to_index): tree = xmlread(filename) cur_frame_result = [] for obj in tree.findall('object'): obj_dict = dict() bbox = obj.find('bndbox') obj_dict['label'] = class_to_index[obj.find('name').text] obj_dict['bbox'] = [float(bbox.find('xmin').text), float(bbox.find('ymin').text), float(bbox.find('xmax').text), float(bbox.find('ymax').text)] gt_l = obj_dict['bbox'][0] gt_t = obj_dict['bbox'][1] gt_w = obj_dict['bbox'][2] - obj_dict['bbox'][0] + 1 gt_h = obj_dict['bbox'][3] - obj_dict['bbox'][1] + 1 obj_dict['track_id'] = int(obj.find('trackid').text) gt_array = np.array([frame_seg_id, obj_dict['track_id'], gt_l, gt_t, gt_w, gt_h, 1, obj_dict['label'], -1, -1, -1]) cur_frame_result.append(gt_array) return cur_frame_result def get_stability_err(gt, det): gt_x = (gt[0] + gt[2]) / 2. gt_y = (gt[1] + gt[3]) / 2. det_x = (det[0] + det[2]) / 2. det_y = (det[1] + det[3]) / 2. gt_w = gt[2] - gt[0] + 1 gt_h = gt[3] - gt[1] + 1 det_w = det[2] - det[0] + 1 det_h = det[3] - det[1] + 1 return (det_x - gt_x) * 1. / gt_w, (det_y - gt_y) * 1. / gt_h, \ (1. * det_w / det_h) / (1. * gt_w / gt_h)-1,\ np.sqrt(1. * det_w * det_h) / np.sqrt(1. * gt_w * gt_h)-1 def count_continue_seq(seq): if len(seq) == 1: return 0 n = len(seq) - 1 frag = [seq[i] != seq[i - 1] for i in xrange(1, len(seq))] return
np.sum(frag)
numpy.sum
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "<NAME>" at 12:29, 20/04/2020 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieu1995 % #-------------------------------------------------------------------------------------------------------% from numpy.random import seed, permutation from numpy import dot, ones from opfunu.cec.cec2010.utils import * def F1(solution=None, name="Shifted Elliptic Function", shift_data_file="f01_o.txt"): problem_size = len(solution) check_problem_size(problem_size) shift_data = load_shift_data__(shift_data_file)[:problem_size] z = solution - shift_data return f2_elliptic__(z) def F2(solution=None, name="Shifted Rastrigin’s Function", shift_data_file="f02_o.txt"): problem_size = len(solution) check_problem_size(problem_size) shift_data = load_shift_data__(shift_data_file)[:problem_size] z = solution - shift_data return f3_rastrigin__(z) def F3(solution=None, name="Shifted Ackley’s Function", shift_data_file="f03_o.txt"): problem_size = len(solution) check_problem_size(problem_size) shift_data = load_shift_data__(shift_data_file)[:problem_size] z = solution - shift_data return f4_ackley__(z) def F4(solution=None, name="Single-group Shifted and m-rotated Elliptic Function", shift_data_file="f04_op.txt", matrix_data_file="f04_m.txt", m_group=50): problem_size = len(solution) check_problem_size(problem_size) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1,:].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data idx1 = permu_data[:m_group] idx2 = permu_data[m_group:] z_rot_elliptic = dot(z[idx1], matrix[:m_group, :m_group]) z_elliptic = z[idx2] return f2_elliptic__(z_rot_elliptic) * 10**6 + f2_elliptic__(z_elliptic) def F5(solution=None, name="Single-group Shifted and m-rotated Rastrigin’s Function", shift_data_file="f05_op.txt", matrix_data_file="f05_m.txt", m_group=50): problem_size = len(solution) check_problem_size(problem_size) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data idx1 = permu_data[:m_group] idx2 = permu_data[m_group:] z_rot_rastrigin = dot(z[idx1], matrix[:m_group, :m_group]) z_rastrigin = z[idx2] return f3_rastrigin__(z_rot_rastrigin) * 10 ** 6 + f3_rastrigin__(z_rastrigin) def F6(solution=None, name="Single-group Shifted and m-rotated Ackley’s Function", shift_data_file="f06_op.txt", matrix_data_file="f06_m.txt", m_group=50): problem_size = len(solution) check_problem_size(problem_size) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data idx1 = permu_data[:m_group] idx2 = permu_data[m_group:] z_rot_ackley = dot(z[idx1], matrix[:m_group, :m_group]) z_ackley = z[idx2] return f4_ackley__(z_rot_ackley) * 10 ** 6 + f4_ackley__(z_ackley) def F7(solution=None, name="Single-group Shifted m-dimensional Schwefel’s Problem 1.2", shift_data_file="f07_op.txt", m_group=50): problem_size = len(solution) check_problem_size(problem_size) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data idx1 = permu_data[:m_group] idx2 = permu_data[m_group:] z_schwefel = z[idx1] z_shpere = z[idx2] return f5_schwefel__(z_schwefel) * 10 ** 6 + f1_sphere__(z_shpere) def F8(solution=None, name=" Single-group Shifted m-dimensional Rosenbrock’s Function", shift_data_file="f08_op.txt", m_group=50): problem_size = len(solution) check_problem_size(problem_size) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data idx1 = permu_data[:m_group] idx2 = permu_data[m_group:] z_rosenbrock = z[idx1] z_sphere = z[idx2] return f6_rosenbrock__(z_rosenbrock) * 10 ** 6 + f1_sphere__(z_sphere) def F9(solution=None, name="D/2m-group Shifted and m-rotated Elliptic Function", shift_data_file="f09_op.txt", matrix_data_file="f09_m.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / (2 * m_group)) check_problem_size(problem_size) check_m_group("F9", problem_size, 2*m_group) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i*m_group:(i+1)*m_group] z1 = dot(z[idx1], matrix[:len(idx1), :len(idx1)]) result += f2_elliptic__(z1) idx2 = permu_data[int(problem_size/2):problem_size] z2 = z[idx2] result += f2_elliptic__(z2) return result def F10(solution=None, name="D/2m-group Shifted and m-rotated Rastrigin’s Function", shift_data_file="f10_op.txt", matrix_data_file="f10_m.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / (2 * m_group)) check_problem_size(problem_size) check_m_group("F10", problem_size, 2*m_group) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i * m_group:(i + 1) * m_group] z1 = dot(z[idx1], matrix[:len(idx1), :len(idx1)]) result += f3_rastrigin__(z1) idx2 = permu_data[int(problem_size / 2):problem_size] z2 = z[idx2] result += f3_rastrigin__(z2) return result def F11(solution=None, name="D/2m-group Shifted and m-rotated Ackley’s Function", shift_data_file="f11_op.txt", matrix_data_file="f11_m.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / (2 * m_group)) check_problem_size(problem_size) check_m_group("F11", problem_size, 2*m_group) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i * m_group:(i + 1) * m_group] z1 = dot(z[idx1], matrix[:len(idx1), :len(idx1)]) result += f4_ackley__(z1) idx2 = permu_data[int(problem_size / 2):problem_size] z2 = z[idx2] result += f4_ackley__(z2) return result def F12(solution=None, name="D/2m-group Shifted m-dimensional Schwefel’s Problem 1.2", shift_data_file="f12_op.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / (2 * m_group)) check_problem_size(problem_size) check_m_group("F12", problem_size, 2*m_group) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i * m_group:(i + 1) * m_group] result += f5_schwefel__(z[idx1]) idx2 = permu_data[int(problem_size / 2):problem_size] result += f1_sphere__(z[idx2]) return result def F13(solution=None, name="D/2m-group Shifted m-dimensional Rosenbrock’s Function", shift_data_file="f13_op.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / (2 * m_group)) check_problem_size(problem_size) check_m_group("F13", problem_size, 2*m_group) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i * m_group:(i + 1) * m_group] result += f6_rosenbrock__(z[idx1]) idx2 = permu_data[int(problem_size / 2):problem_size] result += f1_sphere__(z[idx2]) return result def F14(solution=None, name="D/2m-group Shifted and m-rotated Elliptic Function", shift_data_file="f14_op.txt", matrix_data_file="f14_m.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / m_group) check_problem_size(problem_size) check_m_group("F14", problem_size, m_group) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i * m_group:(i + 1) * m_group] result += f2_elliptic__(dot(z[idx1], matrix)) return result def F15(solution=None, name="D/2m-group Shifted and m-rotated Rastrigin’s Function", shift_data_file="f15_op.txt", matrix_data_file="f15_m.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / m_group) check_problem_size(problem_size) check_m_group("F15", problem_size, m_group) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i * m_group:(i + 1) * m_group] result += f3_rastrigin__(dot(z[idx1], matrix)) return result def F16(solution=None, name="D/2m-group Shifted and m-rotated Ackley’s Function", shift_data_file="f16_op.txt", matrix_data_file="f16_m.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / m_group) check_problem_size(problem_size) check_m_group("F16", problem_size, m_group) matrix = load_matrix_data__(matrix_data_file) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i * m_group:(i + 1) * m_group] result += f4_ackley__(dot(z[idx1], matrix)) return result def F17(solution=None, name="D/2m-group Shifted m-dimensional Schwefel’s Problem 1.2", shift_data_file="f17_op.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / m_group) check_problem_size(problem_size) check_m_group("F17", problem_size, m_group) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data = permutation(problem_size) z = solution - shift_data result = 0.0 for i in range(0, epoch): idx1 = permu_data[i * m_group:(i + 1) * m_group] result += f5_schwefel__(z[idx1]) return result def F18(solution=None, name="D/2m-group Shifted m-dimensional Rosenbrock’s Function", shift_data_file="f18_op.txt", m_group=50): problem_size = len(solution) epoch = int(problem_size / m_group) check_problem_size(problem_size) check_m_group("F18", problem_size, m_group) op_data = load_matrix_data__(shift_data_file) if problem_size == 1000: shift_data = op_data[:1, :].reshape(-1) permu_data = (op_data[1:, :].reshape(-1) - ones(problem_size)).astype(int) else: seed(0) shift_data = op_data[:1, :].reshape(-1)[:problem_size] permu_data =
permutation(problem_size)
numpy.random.permutation
import unittest from hypothesis import given import numpy as np import scipy from meta_analysis import Maps from globals_test import random_permitted_case_3D, random_permitted_case_1D, empty_maps, random_maps, gray_mask, template, atlas, affine, fmri_img class ToArrayTestCase(unittest.TestCase): def setUp(self): self.array2D = np.random.rand(2, 2) self.array4D = np.random.rand(3, 3, 3, 1) self.array4D_2 = np.random.rand(3, 3, 3, 2) self.array3D = np.random.rand(3, 3, 3) def test_array_2D(self): maps = Maps(self.array2D, Ni=2, Nj=1, Nk=1) self.assertTrue(np.array_equal(maps.to_array(), self.array2D.reshape((2, 1, 1, 2)))) def test_array_2D_one(self): maps = Maps(self.array2D, Ni=2, Nj=1, Nk=1) self.assertTrue(np.array_equal(maps.to_array(0), self.array2D.reshape((2, 1, 1, 2))[:, :, :, 0])) self.assertTrue(np.array_equal(maps.to_array(1), self.array2D.reshape((2, 1, 1, 2))[:, :, :, 1])) def test_array_3D(self): maps = Maps(self.array3D) self.assertTrue(np.array_equal(maps.to_array(), self.array3D)) def test_array_4D(self): maps = Maps(self.array4D) self.assertTrue(np.array_equal(maps.to_array(), self.array4D[:, :, :, 0])) def test_array_4D_one(self): maps = Maps(self.array4D) self.assertTrue(np.array_equal(maps.to_array(0), self.array4D[:, :, :, 0])) def test_array_4D_2_all(self): maps = Maps(self.array4D_2) self.assertTrue(np.array_equal(maps.to_array(), self.array4D_2)) def test_array_4D_2_one(self): maps = Maps(self.array4D_2) self.assertTrue(np.array_equal(maps.to_array(0), self.array4D_2[:, :, :, 0])) class ToImgTestCase(unittest.TestCase): def setUp(self): self.array2D = np.random.rand(2, 2) self.array4D = np.random.rand(3, 3, 3, 1) self.array4D_2 = np.random.rand(3, 3, 3, 2) self.array3D = np.random.rand(3, 3, 3) self.affine =
np.eye(4)
numpy.eye
#!/usr/bin/python # -*- coding: utf-8 -*- # # This file is part of pyunicorn. # Copyright (C) 2008--2019 <NAME> and pyunicorn authors # URL: <http://www.pik-potsdam.de/members/donges/software> # License: BSD (3-clause) # # Please acknowledge and cite the use of this software and its authors # when results are used in publications or published elsewhere. # # You can use the following reference: # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # and <NAME>, "Unified functional network and nonlinear time series analysis # for complex systems science: The pyunicorn package" """ Provides classes for analyzing spatially embedded complex networks, handling multivariate data and generating time series surrogates. Written by <NAME>. CMSI Method Reference: [Pompe2011]_ """ # array object and fast numerics import numpy # # Define class CouplingAnalysisPurePython # class CouplingAnalysisPurePython: """ Contains methods to calculate coupling matrices from large arrays of scalar time series. Comprises linear and information theoretic measures, lagged and directed (causal) couplings. """ # # Definitions of internal methods # def __init__(self, dataarray, only_tri=False, silence_level=0): """ Initialize an instance of CouplingAnalysisPurePython. Possible choices for only_tri: - "True" will calculate only the upper triangle of the coupling matrix, excluding the diagonal, assuming symmetry (not for directed measures) - "False" will calculate the whole matrix (asymmetry somes from different integration ranges) :type dataarray: 4D, 3D or 2D Numpy array [time, index, index] or [time, index] :arg dataarray: The time series array with time in first dimension :arg bool only_tri: Symmetric/asymmetric assumption on coupling matrix. :arg int silence_level: The inverse level of verbosity of the object. """ # only_tri will calculate the upper triangle excluding the diagonal # only. This assumes stationarity on the time series self.only_tri = only_tri # Set silence level self.silence_level = silence_level # Flatten observable anomaly array along lon/lat dimension to allow # for more convinient indexing and transpose the whole array as this # is faster in loops if numpy.ndim(dataarray) == 4: (self.total_time, n_lev, n_lat, n_lon) = dataarray.shape self.N = n_lev * n_lat * n_lon self.dataarray = numpy.\ fastCopyAndTranspose(dataarray.reshape(-1, self.N)) if numpy.ndim(dataarray) == 3: (self.total_time, n_lat, n_lon) = dataarray.shape self.N = n_lat * n_lon self.dataarray = numpy.\ fastCopyAndTranspose(dataarray.reshape(-1, self.N)) elif numpy.ndim(dataarray) == 2: (self.total_time, self.N) = dataarray.shape self.dataarray = numpy.fastCopyAndTranspose(dataarray) else: print("irregular array shape...") self.dataarray = numpy.fastCopyAndTranspose(dataarray) # factorials below 10 in a list for permutation patterns self.factorial = \ numpy.array([1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]) self.patternized = False self.has_fft = False self.originalFFT = None # lag_mode dict self.lag_modi = {"all": 0, "sum": 1, "max": 2} def __str__(self): """ Return a string representation of the CouplingAnalysisPurePython object. """ shape = self.dataarray.shape return 'CouplingAnalysisPurePython: %i variables, %i timesteps.' % ( shape[0], shape[1]) # # Define methods to calculate correlation strength and lags # # # Routines for calculating Cross Correlation # def cross_correlation(self, tau_max=0, lag_mode='all'): """ Returns the normalized cross correlation from all pairs of nodes from a range of time lags. The calculation ranges are shown below:: (-------------------------total_time--------------------------) (---tau_max---)(---------corr_range------------)(---tau_max---) CC is calculated about corr_range and with the other time series shifted by tau Possible choices for lag_mode: - "all" will return the full function for all lags, possible large memory need if only_tri is True, only the upper triangle contains the values, the lower one is zeros - "sum" will return the sum over positive and negative lags seperatly, each inclunding tau=0 corrmat[0] is the positive sum, corrmat[1] the negative sum - "max" will return only the maximum coupling (in corrmat[0]) and its lag (in corrmat[1]) :arg int tau_max: maximum lag in both directions, including last lag :arg str lag_mode: the output mode :rtype: 3D numpy array (float) [index, index, index] :return: correlation matrix with different lag_mode choices """ # Normalize anomaly time series to zero mean and unit variance for all # lags, array contains normalizations for all lags corr_range = self.total_time - 2*tau_max normalized_array = numpy.empty((2*tau_max + 1, self.N, corr_range), dtype="float32") for t in range(2*tau_max + 1): # Remove mean value from time series at each vertex (grid point) normalized_array[t] = self.dataarray[:, t:t+corr_range] - \ self.dataarray[:, t:t+corr_range].\ mean(axis=1).reshape(self.N, 1) # Normalize the variance of anomalies to one normalized_array[t] /= normalized_array[t].\ std(axis=1).reshape(self.N, 1) # Correct for grid points with zero variance in their time series normalized_array[t][numpy.isnan(normalized_array[t])] = 0 return self._calculate_cc(normalized_array, corr_range=corr_range, tau_max=tau_max, lag_mode=lag_mode) def shuffled_surrogate_for_cc(self, fourier=False, tau_max=1, lag_mode='all'): """ Returns a correlation matrix calculated with an independently shuffled surrogate of the dataarray of length corr_range for all taus. :arg int corr_range: length of sample :arg int tau_max: maximum lag in both directions, including last lag :arg str lag_mode: output mode :rtype: 3D numpy array (float) [index, index, index] :return: correlation matrix with different lag_mode choices """ corr_range = self.total_time - 2*tau_max # Shuffle a copy of dataarray separatly for each node array = numpy.copy(self.dataarray) if fourier: array = self.correlatedNoiseSurrogates(array) else: for i in range(self.N): numpy.random.shuffle(array[i]) sample_array = numpy.zeros((1, self.N, corr_range), dtype="float32") sample_array[0] = array[:, :corr_range] sample_array[0] -= sample_array[0].mean(axis=1).reshape(self.N, 1) sample_array[0] /= sample_array[0].std(axis=1).reshape(self.N, 1) sample_array[0, numpy.isnan(sample_array[0])] = 0 res = self._calculate_cc(sample_array, corr_range=corr_range, tau_max=0, lag_mode='all') if lag_mode == 'all': corrmat = numpy.repeat(res, 2*tau_max + 1, axis=0) elif lag_mode == 'sum': corrmat = numpy.array([abs(res[0]), abs(res[0])]) * (tau_max+1.) elif lag_mode == 'max': corrmat = numpy.array([abs(res[0]), numpy.random.randint(-tau_max, tau_max+1, (self.N, self.N))]) return corrmat def time_surrogate_for_cc(self, sample_range=100, tau_max=1, lag_mode='all'): """ Returns a joint shuffled surrogate of the full dataarray of length sample_range for all taus. Used for time evolution analysis. First one initializes the CouplingAnalysis class with the full dataarray and then this function is called for every single surrogate. :arg int sample_range: length of sample :arg int tau_max: maximum lag in both directions, including last lag :arg str lag_mode: output mode :rtype: 3D numpy array (float) [index, index, index] :return: correlation matrix with different lag_mode choices """ perm = numpy.random.permutation( range(tau_max, self.total_time - tau_max))[:sample_range] sample_array = numpy.empty((2*tau_max + 1, self.N, sample_range), dtype="float32") for t in range(2 * tau_max + 1): tau = t - tau_max sample_array[t] = self.dataarray[:, perm + tau] sample_array[t] -= sample_array[t].mean(axis=1).reshape(self.N, 1) sample_array[t] /= sample_array[t].std(axis=1).reshape(self.N, 1) sample_array[t][numpy.isnan(sample_array[t])] = 0 return self._calculate_cc(sample_array, corr_range=sample_range, tau_max=tau_max, lag_mode=lag_mode) def _calculate_cc(self, array, corr_range, tau_max, lag_mode): """ Returns the CC matrix. :arg int tau_max: maximum lag in both directions, including last lag :arg str lag_mode: output mode :rtype: 3D numpy array (float) [index, index, index] :return: correlation matrix with different lag_mode choices ## lag_mode dict mode = self.lag_modi[lag_mode] """ # lag_mode dict mode = self.lag_modi[lag_mode] only_tri = int(self.only_tri) if lag_mode == 'all': corrmat = numpy.zeros((2*tau_max + 1, self.N, self.N), dtype='float32') elif lag_mode == 'sum': corrmat = numpy.zeros((2, self.N, self.N), dtype='float32') elif lag_mode == 'max': corrmat = numpy.zeros((2, self.N, self.N), dtype='float32') # loop over all node pairs, NOT symmetric due to time shifts! for i in range(self.N-only_tri): for j in range((i+1)*only_tri, self.N): if mode == 2: maxcross = 0.0 argmax = 0 # loop over taus INCLUDING the last tau value for t in range(2*tau_max+1): # here the actual cross correlation is calculated crossij = (array[tau_max, i, :] * array[t, j, :]).mean() # fill in values in matrix depending on lag_mode if mode == 0: corrmat[t, i, j] = crossij elif mode == 1: if t <= tau_max: corrmat[1, i, j] += numpy.abs(crossij) if t >= tau_max: corrmat[0, i, j] += numpy.abs(crossij) elif mode == 2: # calculate max and argmax by comparing to previous # value and storing max if numpy.abs(crossij) > maxcross: maxcross = numpy.abs(crossij) argmax = t if mode == 2: corrmat[0, i, j] = maxcross corrmat[1, i, j] = argmax - tau_max if self.only_tri: if lag_mode == 'all': corrmat = corrmat + corrmat.transpose(0, 2, 1)[::-1] elif lag_mode == 'sum': corrmat[0] += corrmat[1].transpose() corrmat[1] = corrmat[0].transpose() elif lag_mode == 'max': corrmat[0] += corrmat[0].transpose() corrmat[1] -= corrmat[1].transpose() return corrmat # # Routines for calculating Mutual Information with adaptive bins # def mutual_information(self, bins=16, tau_max=0, lag_mode='all'): """ Returns the normalized mutual information from all pairs of nodes from a range of time lags. MI = H_x + H_y - H_xy Uses adaptive bins, where each marginal bin contains the same number of samples. Then the marginal entropies have equal probable distributions H_x = H_y = log(bins) The calculation ranges are shown below:: (-------------------------total_time--------------------------) (---tau_max---)(---------corr_range------------)(---tau_max---) MI is calculated about corr_range and with the other time series shifted by tau Possible choices for lag_mode: - "all" will return the full function for all lags, possible large memory need if only_tri is True, only the upper triangle contains the values, the lower one is zeros - "sum" will return the sum over positive and negative lags seperatly, each inclunding tau=0 corrmat[0] is the positive sum, corrmat[1] the negative sum - "max" will return only the maximum coupling (in corrmat[0]) and its lag (in corrmat[1]) :arg int bins: number of bins for estimating MI :arg int tau_max: maximum lag in both directions, including last lag :arg str lag_mode: output mode :rtype: 3D numpy array (float) [index, index, index] :return: correlation matrix with different lag_mode choices """ if bins < 255: dtype = 'uint8' else: dtype = 'int16' # Normalize anomaly time series to zero mean and unit variance for all # lags, array contains normalizations for all lags corr_range = self.total_time - 2*tau_max # get the bin quantile steps bin_edge = numpy.ceil(corr_range/float(bins)) symbolic_array = numpy.empty((2*tau_max + 1, self.N, corr_range), dtype=dtype) for t in range(2*tau_max + 1): array = self.dataarray[:, t:t+corr_range] # get the lower edges of the bins for every time series edges = numpy.sort(array, axis=1)[:, ::bin_edge] bins = edges.shape[1] # This gives the symbolic time series symbolic_array[t] = \ (array.reshape(self.N, corr_range, 1) >= edges.reshape(self.N, 1, bins)).sum(axis=2) - 1 return self._calculate_mi(symbolic_array, corr_range=corr_range, bins=bins, tau_max=tau_max, lag_mode=lag_mode) def mutual_information_edges(self, bins=16, tau=0, lag_mode='all'): """ Returns the normalized mutual information from all pairs of nodes from a range of time lags. MI = H_x + H_y - H_xy Uses adaptive bins, where each marginal bin contains the same number of samples. Then the marginal entropies have equal probable distributions H_x = H_y = log(bins) The calculation ranges are shown below:: (-------------------------total_time--------------------------) (---tau_max---)(---------corr_range------------)(---tau_max---) MI is calculated about corr_range and with the other time series shifted by tau Possible choices for lag_mode: - "all" will return the full function for all lags, possible large memory need if only_tri is True, only the upper triangle contains the values, the lower one is zeros - "sum" will return the sum over positive and negative lags seperatly, each inclunding tau=0 corrmat[0] is the positive sum, corrmat[1] the negative sum - "max" will return only the maximum coupling (in corrmat[0]) and its lag (in corrmat[1]) :arg int bins: number of bins for estimating MI :arg int tau_max: maximum lag in both directions, including last lag :arg str lag_mode: output mode :rtype: 2D numpy array (float) [index, index] :return: bin edges for zero lag """ # get the bin quantile steps bin_edge = numpy.ceil(self.total_time/float(bins)) array = self.dataarray[:, :] array[:-tau, 1] = array[tau, 1] # get the lower edges of the bins for every time series edges = numpy.sort(array, axis=1)[:, ::bin_edge] bins = edges.shape[1] return edges def shuffled_surrogate_for_mi(self, fourier=False, bins=16, tau_max=0, lag_mode='all'): """ Returns a shuffled surrogate of normalized mutual information from all pairs of nodes from a range of time lags. :arg int bins: number of bins for estimating MI :arg int tau_max: maximum lag in both directions, including last lag :arg str lag_mode: output mode :rtype: 3D numpy array (float) [index, index, index] :return: correlation matrix with different lag_mode choices """ if bins < 255: dtype = 'uint8' else: dtype = 'int16' # Normalize anomaly time series to zero mean and unit variance for all # lags, array contains normalizations for all lags corr_range = self.total_time - 2*tau_max # Shuffle a copy of dataarray seperatly for each node array = numpy.copy(self.dataarray) if fourier: array = self.correlatedNoiseSurrogates(array) else: for i in range(self.N): numpy.random.shuffle(array[i]) # get the bin quantile steps bin_edge = numpy.ceil(corr_range/float(bins)) symbolic_array = numpy.empty((1, self.N, corr_range), dtype=dtype) array = array[:, :corr_range] # get the lower edges of the bins for every time series edges = numpy.sort(array, axis=1)[:, ::bin_edge] bins = edges.shape[1] # This gives the symbolic time series symbolic_array[0] = \ (array.reshape(self.N, corr_range, 1) >= edges.reshape(self.N, 1, bins)).sum(axis=2) - 1 res = self._calculate_mi(symbolic_array, corr_range=corr_range, bins=bins, tau_max=0, lag_mode='all') if lag_mode == 'all': corrmat =
numpy.repeat(res, 2*tau_max + 1, axis=0)
numpy.repeat
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import random from typing import Any from .utils import BasicBrain class PERD3QNAgent(BasicBrain): """ Prioritized Experience Replay Dueling Double Deep Q Network Parameters: ----------- input_dim : int, default 153 The input dimension output_dim : int, default 8 The output dimension exploration : int, default 1000 The number of epochs to explore the environment before learning soft_update_freq : int, default 200 The frequency at which to align the target and eval nets train_freq : int, default 20 The frequency at which to train the agent learning_rate : float, default 1e-3 Learning rate batch_size : int The number of training samples to work through before the model's internal parameters are updated. gamma : float, default 0.98 Discount factor. How far out should rewards in the future influence the policy? capacity : int, default 10_000 Capacity of replay buffer load_model : str, default False Path to an existing model training : bool, default True, Whether to continue training or not """ def __init__(self, input_dim=153, output_dim=8, exploration=1000, soft_update_freq=200, train_freq=20, learning_rate=1e-3, batch_size=64, capacity=10000, gamma=0.99, load_model=False, training=True): super().__init__(input_dim, output_dim, "PERD3QN") self.target_net = DuelingDDQN(input_dim, output_dim) self.eval_net = DuelingDDQN(input_dim, output_dim) self.eval_net.load_state_dict(self.target_net.state_dict()) self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=learning_rate) self.buffer = PrioritizedReplayBuffer(capacity) self.loss_fn = nn.MSELoss() self.exploration = exploration self.soft_update_freq = soft_update_freq self.train_freq = train_freq self.batch_size = batch_size self.gamma = gamma self.n_epi = 0 self.epsilon = 0.9 self.epsilon_min = 0.05 self.decay = 0.99 self.training = training if not self.training: self.epsilon = 0 if load_model: self.eval_net.load_state_dict(torch.load(load_model)) self.eval_net.eval() if self.training: self.target_net.load_state_dict(torch.load(load_model)) self.target_net.eval() self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=learning_rate) def get_action(self, state, n_epi): if self.training: if n_epi > self.n_epi: if self.epsilon > self.epsilon_min: self.epsilon = self.epsilon * self.decay self.n_epi = n_epi action = self.eval_net.act(torch.FloatTensor(np.expand_dims(state, 0)), self.epsilon) return action def memorize(self, obs, action, reward, next_obs, done): self.buffer.store(obs, action, reward, next_obs, done) def train(self): observation, action, reward, next_observation, done, indices, weights = self.buffer.sample(self.batch_size) observation = torch.FloatTensor(observation) action = torch.LongTensor(action) reward = torch.FloatTensor(reward) next_observation = torch.FloatTensor(next_observation) done = torch.FloatTensor(done) q_values = self.eval_net.forward(observation) next_q_values = self.target_net.forward(next_observation) next_q_value = next_q_values.max(1)[0].detach() q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) expected_q_value = reward + self.gamma * (1 - done) * next_q_value loss = self.loss_fn(q_value, expected_q_value) priorities = torch.abs(next_q_value - q_value).detach().numpy() self.buffer.update_priorities(indices, priorities) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def learn(self, age, dead, action, state, reward, state_prime, done, n_epi): self.memorize(state, action, reward, state_prime, done) if n_epi > self.exploration: if age % self.train_freq == 0 or dead: self.train() if n_epi % self.soft_update_freq == 0: self.target_net.load_state_dict(self.eval_net.state_dict()) def apply_gaussian_noise(self): with torch.no_grad(): self.target_net.fc.weight.add_(torch.randn(self.target_net.fc.weight.size())) self.target_net.load_state_dict(self.eval_net.state_dict()) class PrioritizedReplayBuffer(object): def __init__(self, capacity, alpha=.6, beta=.4, beta_increment=1000): self.capacity = capacity self.alpha = alpha self.beta = beta self.beta_increment = beta_increment self.pos = 0 self.memory = [] self.priorities = np.zeros([self.capacity], dtype=np.float32) def store(self, observation, action, reward, next_observation, done): observation = np.expand_dims(observation, 0) next_observation = np.expand_dims(next_observation, 0) max_prior = np.max(self.priorities) if self.memory else 1.0 if len(self.memory) < self.capacity: self.memory.append([observation, action, reward, next_observation, done]) else: self.memory[self.pos] = [observation, action, reward, next_observation, done] self.priorities[self.pos] = max_prior self.pos += 1 self.pos = self.pos % self.capacity def sample(self, batch_size): if len(self.memory) < self.capacity: probs = self.priorities[: len(self.memory)] else: probs = self.priorities probs = probs ** self.alpha probs = probs / np.sum(probs) indices = np.random.choice(len(self.memory), batch_size, p=probs) samples = [self.memory[idx] for idx in indices] weights = (len(self.memory) * probs[indices]) ** (- self.beta) if self.beta < 1: self.beta += self.beta_increment weights = weights / np.max(weights) weights = np.array(weights, dtype=np.float32) observation, action, reward, next_observation, done = zip(* samples) return np.concatenate(observation, 0), action, reward,
np.concatenate(next_observation, 0)
numpy.concatenate
import torch import numpy as np import torch.nn.functional as F from torch_geometric.data import Data, DataLoader import matplotlib.pyplot as plt from utilities import * from nn_conv import NNConv_old from timeit import default_timer class KernelNN(torch.nn.Module): def __init__(self, width, ker_width, depth, ker_in, in_width=1, out_width=1): super(KernelNN, self).__init__() self.depth = depth self.fc1 = torch.nn.Linear(in_width, width) kernel = DenseNet([ker_in, ker_width, ker_width, width**2], torch.nn.ReLU) self.conv1 = NNConv_old(width, width, kernel, aggr='mean') self.fc2 = torch.nn.Linear(width, 1) def forward(self, data): x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr x = self.fc1(x) for k in range(self.depth): x = F.relu(self.conv1(x, edge_index, edge_attr)) x = self.fc2(x) return x TRAIN_PATH = 'data/piececonst_r241_N1024_smooth1.mat' TEST_PATH = 'data/piececonst_r241_N1024_smooth2.mat' r = 4 s = int(((241 - 1)/r) + 1) n = s**2 m = 100 k = 1 radius_train = 0.1 radius_test = 0.1 print('resolution', s) ntrain = 100 ntest = 40 batch_size = 1 batch_size2 = 2 width = 64 ker_width = 1024 depth = 6 edge_features = 6 node_features = 6 epochs = 200 learning_rate = 0.0001 scheduler_step = 50 scheduler_gamma = 0.8 path = 'UAI1_r'+str(s)+'_n'+ str(ntrain) path_model = 'model/'+path+'' path_train_err = 'results/'+path+'train.txt' path_test_err = 'results/'+path+'test.txt' path_image = 'image/'+path+'' path_train_err = 'results/'+path+'train' path_test_err16 = 'results/'+path+'test16' path_test_err31 = 'results/'+path+'test31' path_test_err61 = 'results/'+path+'test61' path_image_train = 'image/'+path+'train' path_image_test16 = 'image/'+path+'test16' path_image_test31 = 'image/'+path+'test31' path_image_test61 = 'image/'+path+'test61' t1 = default_timer() reader = MatReader(TRAIN_PATH) train_a = reader.read_field('coeff')[:ntrain,::r,::r].reshape(ntrain,-1) train_a_smooth = reader.read_field('Kcoeff')[:ntrain,::r,::r].reshape(ntrain,-1) train_a_gradx = reader.read_field('Kcoeff_x')[:ntrain,::r,::r].reshape(ntrain,-1) train_a_grady = reader.read_field('Kcoeff_y')[:ntrain,::r,::r].reshape(ntrain,-1) train_u = reader.read_field('sol')[:ntrain,::r,::r].reshape(ntrain,-1) train_u64 = reader.read_field('sol')[:ntrain,::r,::r].reshape(ntrain,-1) reader.load_file(TEST_PATH) test_a = reader.read_field('coeff')[:ntest,::4,::4].reshape(ntest,-1) test_a_smooth = reader.read_field('Kcoeff')[:ntest,::4,::4].reshape(ntest,-1) test_a_gradx = reader.read_field('Kcoeff_x')[:ntest,::4,::4].reshape(ntest,-1) test_a_grady = reader.read_field('Kcoeff_y')[:ntest,::4,::4].reshape(ntest,-1) test_u = reader.read_field('sol')[:ntest,::4,::4].reshape(ntest,-1) a_normalizer = GaussianNormalizer(train_a) train_a = a_normalizer.encode(train_a) test_a = a_normalizer.encode(test_a) as_normalizer = GaussianNormalizer(train_a_smooth) train_a_smooth = as_normalizer.encode(train_a_smooth) test_a_smooth = as_normalizer.encode(test_a_smooth) agx_normalizer = GaussianNormalizer(train_a_gradx) train_a_gradx = agx_normalizer.encode(train_a_gradx) test_a_gradx = agx_normalizer.encode(test_a_gradx) agy_normalizer = GaussianNormalizer(train_a_grady) train_a_grady = agy_normalizer.encode(train_a_grady) test_a_grady = agy_normalizer.encode(test_a_grady) test_a = test_a.reshape(ntest,61,61) test_a_smooth = test_a_smooth.reshape(ntest,61,61) test_a_gradx = test_a_gradx.reshape(ntest,61,61) test_a_grady = test_a_grady.reshape(ntest,61,61) test_u = test_u.reshape(ntest,61,61) test_a16 =test_a[:ntest,::4,::4].reshape(ntest,-1) test_a_smooth16 = test_a_smooth[:ntest,::4,::4].reshape(ntest,-1) test_a_gradx16 = test_a_gradx[:ntest,::4,::4].reshape(ntest,-1) test_a_grady16 = test_a_grady[:ntest,::4,::4].reshape(ntest,-1) test_u16 = test_u[:ntest,::4,::4].reshape(ntest,-1) test_a31 =test_a[:ntest,::2,::2].reshape(ntest,-1) test_a_smooth31 = test_a_smooth[:ntest,::2,::2].reshape(ntest,-1) test_a_gradx31 = test_a_gradx[:ntest,::2,::2].reshape(ntest,-1) test_a_grady31 = test_a_grady[:ntest,::2,::2].reshape(ntest,-1) test_u31 = test_u[:ntest,::2,::2].reshape(ntest,-1) test_a =test_a.reshape(ntest,-1) test_a_smooth = test_a_smooth.reshape(ntest,-1) test_a_gradx = test_a_gradx.reshape(ntest,-1) test_a_grady = test_a_grady.reshape(ntest,-1) test_u = test_u.reshape(ntest,-1) u_normalizer = GaussianNormalizer(train_u) train_u = u_normalizer.encode(train_u) # test_u = y_normalizer.encode(test_u) meshgenerator = SquareMeshGenerator([[0,1],[0,1]],[s,s]) edge_index = meshgenerator.ball_connectivity(radius_train) grid = meshgenerator.get_grid() # meshgenerator.get_boundary() # edge_index_boundary = meshgenerator.boundary_connectivity2d(stride = stride) data_train = [] for j in range(ntrain): edge_attr = meshgenerator.attributes(theta=train_a[j,:]) # edge_attr_boundary = meshgenerator.attributes_boundary(theta=train_u[j,:]) data_train.append(Data(x=torch.cat([grid, train_a[j,:].reshape(-1, 1), train_a_smooth[j,:].reshape(-1, 1), train_a_gradx[j,:].reshape(-1, 1), train_a_grady[j,:].reshape(-1, 1) ], dim=1), y=train_u[j,:], coeff=train_a[j,:], edge_index=edge_index, edge_attr=edge_attr, # edge_index_boundary=edge_index_boundary, edge_attr_boundary= edge_attr_boundary )) print('train grid', grid.shape, 'edge_index', edge_index.shape, 'edge_attr', edge_attr.shape) meshgenerator = SquareMeshGenerator([[0,1],[0,1]],[16,16]) edge_index = meshgenerator.ball_connectivity(radius_test) grid = meshgenerator.get_grid() # meshgenerator.get_boundary() # edge_index_boundary = meshgenerator.boundary_connectivity2d(stride = stride) data_test16 = [] for j in range(ntest): edge_attr = meshgenerator.attributes(theta=test_a16[j,:]) # edge_attr_boundary = meshgenerator.attributes_boundary(theta=test_a[j, :]) data_test16.append(Data(x=torch.cat([grid, test_a16[j,:].reshape(-1, 1), test_a_smooth16[j,:].reshape(-1, 1), test_a_gradx16[j,:].reshape(-1, 1), test_a_grady16[j,:].reshape(-1, 1) ], dim=1), y=test_u16[j, :], coeff=test_a16[j,:], edge_index=edge_index, edge_attr=edge_attr, # edge_index_boundary=edge_index_boundary, edge_attr_boundary=edge_attr_boundary )) print('16 grid', grid.shape, 'edge_index', edge_index.shape, 'edge_attr', edge_attr.shape) # print('edge_index_boundary', edge_index_boundary.shape, 'edge_attr', edge_attr_boundary.shape) meshgenerator = SquareMeshGenerator([[0,1],[0,1]],[31,31]) edge_index = meshgenerator.ball_connectivity(radius_test) grid = meshgenerator.get_grid() # meshgenerator.get_boundary() # edge_index_boundary = meshgenerator.boundary_connectivity2d(stride = stride) data_test31 = [] for j in range(ntest): edge_attr = meshgenerator.attributes(theta=test_a31[j,:]) # edge_attr_boundary = meshgenerator.attributes_boundary(theta=test_a[j, :]) data_test31.append(Data(x=torch.cat([grid, test_a31[j,:].reshape(-1, 1), test_a_smooth31[j,:].reshape(-1, 1), test_a_gradx31[j,:].reshape(-1, 1), test_a_grady31[j,:].reshape(-1, 1) ], dim=1), y=test_u31[j, :], coeff=test_a31[j,:], edge_index=edge_index, edge_attr=edge_attr, # edge_index_boundary=edge_index_boundary, edge_attr_boundary=edge_attr_boundary )) print('31 grid', grid.shape, 'edge_index', edge_index.shape, 'edge_attr', edge_attr.shape) # print('edge_index_boundary', edge_index_boundary.shape, 'edge_attr', edge_attr_boundary.shape) meshgenerator = SquareMeshGenerator([[0,1],[0,1]],[61,61]) edge_index = meshgenerator.ball_connectivity(radius_test) grid = meshgenerator.get_grid() # meshgenerator.get_boundary() # edge_index_boundary = meshgenerator.boundary_connectivity2d(stride = stride) data_test61 = [] for j in range(ntest): edge_attr = meshgenerator.attributes(theta=test_a[j,:]) # edge_attr_boundary = meshgenerator.attributes_boundary(theta=test_a[j, :]) data_test61.append(Data(x=torch.cat([grid, test_a[j,:].reshape(-1, 1), test_a_smooth[j,:].reshape(-1, 1), test_a_gradx[j,:].reshape(-1, 1), test_a_grady[j,:].reshape(-1, 1) ], dim=1), y=test_u[j, :], coeff=test_a[j,:], edge_index=edge_index, edge_attr=edge_attr, # edge_index_boundary=edge_index_boundary, edge_attr_boundary=edge_attr_boundary )) print('61 grid', grid.shape, 'edge_index', edge_index.shape, 'edge_attr', edge_attr.shape) # print('edge_index_boundary', edge_index_boundary.shape, 'edge_attr', edge_attr_boundary.shape) train_loader = DataLoader(data_train, batch_size=batch_size, shuffle=True) test_loader16 = DataLoader(data_test16, batch_size=batch_size2, shuffle=False) test_loader31 = DataLoader(data_test31, batch_size=batch_size2, shuffle=False) test_loader61 = DataLoader(data_test61, batch_size=batch_size2, shuffle=False) ################################################################################################## ### training ################################################################################################## t2 = default_timer() print('preprocessing finished, time used:', t2-t1) device = torch.device('cuda') model = KernelNN(width,ker_width,depth,edge_features,node_features).cuda() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=5e-4) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=scheduler_step, gamma=scheduler_gamma) myloss = LpLoss(size_average=False) u_normalizer.cuda() model.train() ttrain = np.zeros((epochs, )) ttest16 = np.zeros((epochs,)) ttest31 = np.zeros((epochs,)) ttest61 = np.zeros((epochs,)) for ep in range(epochs): t1 = default_timer() train_mse = 0.0 train_l2 = 0.0 for batch in train_loader: batch = batch.to(device) optimizer.zero_grad() out = model(batch) mse = F.mse_loss(out.view(-1, 1), batch.y.view(-1,1)) # mse.backward() loss = torch.norm(out.view(-1) - batch.y.view(-1),1) loss.backward() l2 = myloss(u_normalizer.decode(out.view(batch_size,-1)), u_normalizer.decode(batch.y.view(batch_size, -1))) # l2.backward() optimizer.step() train_mse += mse.item() train_l2 += l2.item() scheduler.step() t2 = default_timer() model.eval() ttrain[ep] = train_l2/(ntrain * k) print(ep, ' time:', t2-t1, ' train_mse:', train_mse/len(train_loader)) t1 = default_timer() u_normalizer.cpu() model = model.cpu() test_l2_16 = 0.0 test_l2_31 = 0.0 test_l2_61 = 0.0 with torch.no_grad(): for batch in test_loader16: out = model(batch) test_l2_16 += myloss(u_normalizer.decode(out.view(batch_size2,-1)), batch.y.view(batch_size2, -1)) for batch in test_loader31: out = model(batch) test_l2_31 += myloss(u_normalizer.decode(out.view(batch_size2, -1)), batch.y.view(batch_size2, -1)) for batch in test_loader61: out = model(batch) test_l2_61 += myloss(u_normalizer.decode(out.view(batch_size2, -1)), batch.y.view(batch_size2, -1)) ttest16[ep] = test_l2_16 / ntest ttest31[ep] = test_l2_31 / ntest ttest61[ep] = test_l2_61 / ntest t2 = default_timer() print(' time:', t2-t1, ' train_mse:', train_mse/len(train_loader), ' test16:', test_l2_16/ntest, ' test31:', test_l2_31/ntest, ' test61:', test_l2_61/ntest) np.savetxt(path_train_err + '.txt', ttrain) np.savetxt(path_test_err16 + '.txt', ttest16) np.savetxt(path_test_err31 + '.txt', ttest31) np.savetxt(path_test_err61 + '.txt', ttest61) torch.save(model, path_model) ################################################################################################## ### Ploting ################################################################################################## resolution = s data = train_loader.dataset[0] coeff = data.coeff.numpy().reshape((resolution, resolution)) truth = u_normalizer.decode(data.y.reshape(1,-1)).numpy().reshape((resolution, resolution)) approx = u_normalizer.decode(model(data).reshape(1,-1)).detach().numpy().reshape((resolution, resolution)) _min = np.min(np.min(truth)) _max = np.max(np.max(truth)) plt.figure() plt.subplot(1, 3, 1) plt.imshow(truth, vmin = _min, vmax=_max) plt.xticks([], []) plt.yticks([], []) plt.colorbar(fraction=0.046, pad=0.04) plt.title('Ground Truth') plt.subplot(1, 3, 2) plt.imshow(approx, vmin = _min, vmax=_max) plt.xticks([], []) plt.yticks([], []) plt.colorbar(fraction=0.046, pad=0.04) plt.title('Approximation') plt.subplot(1, 3, 3) plt.imshow((approx - truth) ** 2) plt.xticks([], []) plt.yticks([], []) plt.colorbar(fraction=0.046, pad=0.04) plt.title('Error') plt.subplots_adjust(wspace=0.5, hspace=0.5) plt.savefig(path_image_train + '.png') resolution = 16 data = test_loader16.dataset[0] coeff = data.coeff.numpy().reshape((resolution, resolution)) truth = data.y.numpy().reshape((resolution, resolution)) approx = u_normalizer.decode(model(data).reshape(1,-1)).detach().numpy().reshape((resolution, resolution)) _min = np.min(np.min(truth)) _max = np.max(np.max(truth)) plt.figure() plt.subplot(1, 3, 1) plt.imshow(truth, vmin = _min, vmax=_max) plt.xticks([], []) plt.yticks([], []) plt.colorbar(fraction=0.046, pad=0.04) plt.title('Ground Truth') plt.subplot(1, 3, 2) plt.imshow(approx, vmin = _min, vmax=_max) plt.xticks([], []) plt.yticks([], []) plt.colorbar(fraction=0.046, pad=0.04) plt.title('Approximation') plt.subplot(1, 3, 3) plt.imshow((approx - truth) ** 2) plt.xticks([], []) plt.yticks([], []) plt.colorbar(fraction=0.046, pad=0.04) plt.title('Error') plt.subplots_adjust(wspace=0.5, hspace=0.5) plt.savefig(path_image_test16 + '.png') resolution = 31 data = test_loader31.dataset[0] coeff = data.coeff.numpy().reshape((resolution, resolution)) truth = data.y.numpy().reshape((resolution, resolution)) approx = u_normalizer.decode(model(data).reshape(1,-1)).detach().numpy().reshape((resolution, resolution)) _min = np.min(
np.min(truth)
numpy.min
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module for node definition in grid. """ from copy import deepcopy import uuid import numpy as np from catplot.grid_components import extract_plane import catplot.descriptors as dc class GridNode(object): """ Abstract base class for other node. Parameters: ----------- coordinate: array_like, shape (n, ) The location of node in grid canvas. color: str, optional, default is "#000000" Facecolor of node. size: scalar, optional size in points^2, default is 400. style: MarkerStyle, optional, default is 'o'. alpha: scalar, optional, default is 1 The alpha blending value, between 0 (transparent) and 1 (opaque) line_width: scalar or array_like, optional, default is 0. edgecolor: str, optional, default is the color of face. zorder: float, set the zorder for the artist, default is 0. labeled: bool, if add a unique id to the node, default is True. """ # NOTE: The grid may contains a huge number of nodes, # so we define __slots__ for saving memery. #__slots__ = {"coordinate", "color", "size", "style", "alpha", # "line_width", "line_style", "edgecolor", "zorder"} def __init__(self, coordinate, **kwargs): self.coordinate =
np.array(coordinate)
numpy.array
import numpy as np import jax.numpy as jnp import tensorflow as tf import torch import pytest import tsensor as ts @pytest.mark.parametrize( "value,expected", [ # Numpy (
np.random.randint(1, 10, size=(10, 2, 5))
numpy.random.randint
# utility.py import numpy as np import pandas as pd import scipy.stats as stats from scipy.stats import chi2 from sklearn.preprocessing import LabelEncoder from sklearn.base import BaseEstimator, TransformerMixin class DataFrameImputer(BaseEstimator, TransformerMixin): def __init__(self): """Impute missing values Columns of dtype object are imputed with the most frequent value in the column Columns of other types are imputed with the mean of column """ pass def fit(self, X, y=None): self.fill = pd.Series([X[c].value_counts(). index[0] if X[c].dtype ==
np.dtype('O')
numpy.dtype
""" Class for DLA Surveys """ from __future__ import print_function, absolute_import, division, unicode_literals import numpy as np import os import imp, glob import pdb import warnings try: from urllib2 import urlopen # Python 2.7 except ImportError: from urllib.request import urlopen from pkg_resources import resource_filename from astropy.table import Column, Table, vstack from astropy import units as u from astropy.stats import poisson_conf_interval as aspci from astropy import constants as const from astropy.cosmology import core as acc from astropy.coordinates import SkyCoord, match_coordinates_sky from linetools import utils as ltu from pyigm.surveys.igmsurvey import IGMSurvey from pyigm.surveys import utils as pyisu from pyigm import utils as pyigmu pyigm_path = imp.find_module('pyigm')[1] lz_boot_file = resource_filename('pyigm', 'data/DLA/dla_lz_boot.fits.gz') # Class for DLA Survey class DLASurvey(IGMSurvey): """An DLA Survey class Attributes: """ @classmethod def load_HST16(cls, sample='stat'): """ HST Survey by Neeleman+16 <NAME>. et al. 2016, ApJ, 818, 113 Parameters ---------- sample : str, optional Returns ------- dla_survey """ # Read DLAs dat_file = resource_filename('pyigm', '/data/DLA/HST/HSTDLA.dat') dlas = Table.read(dat_file, format='ascii') # Read Quasars #qsos = Table.read(pyigm_path + '/all_qso_table.txt', format='ascii') # Read Sightlines srvy_file = resource_filename('pyigm', '/data/DLA/HST/hstpath.dat') survey = Table.read(srvy_file, format='ascii') # Add info to DLA table ras, decs, zems, scoords = [], [], [], [] for dla in dlas: mt = np.where(survey['QSO'] == dla['NAME'])[0] if len(mt) == 0: pdb.set_trace() raise ValueError("Uh oh") else: mt = mt[0] # Generate RA/DEC row = survey[mt] scoords.append('{:02d}:{:02d}:{:f} {:s}{:02d}:{:02d}:{:f}'.format( row['RAh'], row['RAm'], row['RAs'], row['DE-'], row['DEd'], row['DEm'], row['DEs'])) #ras.append(coord.ra.value) #decs.append(coord.dec.value) # zem zems.append(row['ZEM']) #dlas['RA'] = ras #dlas['DEC'] = decs dlas['QSO_ZEM'] = zems # Instantiate coords = SkyCoord(scoords, unit=(u.hourangle, u.deg)) dla_survey = cls.from_sfits(dlas, coords) dla_survey.ref = 'Neeleman+16' # Fiddle a bit survey.rename_column('STTMIN', 'Z_START') survey.rename_column('STTMAX', 'Z_END') stat = survey['Z_END'] > 0 stat_survey = survey[stat] # Restrict to statistical sightlines if sample == 'stat': stat_survey = stat_survey[stat_survey['F_STT'] == 1] ras, decs, zems = [], [], [] for row in stat_survey: coord = ltu.radec_to_coord('J{:02d}{:02d}{:f}{:s}{:02d}{:02d}{:f}'.format( row['RAh'], row['RAm'], row['RAs'], row['DE-'], row['DEd'], row['DEm'], row['DEs'])) ras.append(coord.ra.value) decs.append(coord.dec.value) stat_survey['RA'] = ras stat_survey['DEC'] = decs stat_survey['FLG_BAL'] = 0 # Sightlines dla_survey.sightlines = stat_survey # Stat? if sample in ['all', 'all_sys']: return dla_survey mask = dla_stat(dla_survey, stat_survey) if sample == 'stat': dla_survey.mask = mask & (dlas['STAT_FLG'] == 1) else: dla_survey.mask = ~mask # Return return dla_survey @classmethod def load_H100(cls, grab_spectra=False, build_abs_sys=True, isys_path=None): """ Sample of unbiased HIRES DLAs compiled and analyzed by Neeleman+13 <NAME> al. 2013, ApJ, 769, 54 Parameters ---------- build_abs_sys : bool, optional Build AbsSystem objects (~10s) Required for a fair bit of other things, e.g. kin isys_path : str, optional Read system files from this path grab_spectra : bool, optional Grab 1D spectra? (141Mb) deprecated.. Use igmspec Return ------ dla_survey : DLASurvey """ # Pull from Internet (as necessary) summ_fil = resource_filename('pyigm', "/data/DLA/H100/H100_DLA.fits") print('H100: Loading summary file {:s}'.format(summ_fil)) # Ions ions_fil = resource_filename('pyigm', "/data/DLA/H100/H100_DLA_ions.json") print('H100: Loading ions file {:s}'.format(ions_fil)) # Transitions trans_fil = resource_filename('pyigm', "/data/DLA/H100/H100_DLA_clms.tar.gz") # System files sys_files = resource_filename('pyigm', "/data/DLA/H100/H100_DLA_sys.tar.gz") print('H100: Loading systems. This takes ~10s') dla_survey = pyisu.load_sys_files(sys_files, 'DLA', build_abs_sys=build_abs_sys) # Reset flag_NHI (which has been wrong) for key in dla_survey._dict.keys(): dla_survey._dict[key]['flag_NHI'] = 1 # Fill ion Tables if build_abs_sys: print("Filling the _ionN tables...") dla_survey.fill_ions(use_components=True) dla_survey.ref = 'Neeleman+13' if not build_abs_sys: print("Not loading up all the other data. Use build_abs_sys=True for that!") return dla_survey # Metallicities tbl2_file = resource_filename('pyigm', "/data/DLA/H100/H100_table2.dat") tbl2 = Table.read(tbl2_file, format='cds') # Parse for matching names = dla_survey._data['Name'] qsonames = [] zabs = [] for name in names: prs = name.split('_') qsonames.append(prs[0]) try: zabs.append(float(prs[-1][1:])) except ValueError: pdb.set_trace() qsonames = np.array(qsonames) zabs =
np.array(zabs)
numpy.array
# -*- coding: utf-8 -*- ''' Extended Kalman filter REFERENCE: [1]. <NAME>, "Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches," John Wiley and Sons, Inc., 2006. ''' from __future__ import division, absolute_import, print_function __all__ = ['EKFilterAN', 'EKFilterNAN'] import numpy as np import scipy.linalg as lg from functools import partial from .base import FilterBase from tracklib.math import num_diff, num_diff_hessian class EKFilterAN(FilterBase): ''' Additive extended Kalman filter, see[1] system model: x_k = f_k-1(x_k-1, u_k-1) + L_k-1*w_k-1 z_k = h_k(x_k) + M_k*v_k E(w_k*w_j') = Q_k*δ_kj E(v_k*v_j') = R_k*δ_kj w_k, v_k, x_0 are uncorrelated to each other ''' def __init__(self, f, L, h, M, Q, R, xdim, zdim, fjac=None, hjac=None, fhes=None, hhes=None, order=1, it=0): super().__init__() self._f = lambda x, u: f(x, u) self._L = L.copy() self._h = lambda x: h(x) self._M = M.copy() self._Q = Q.copy() self._R = R.copy() self._xdim = xdim self._zdim = zdim if fjac is None: def fjac(x, u): F = num_diff(x, partial(self._f, u=u), self._xdim) return F self._fjac = fjac if hjac is None: def hjac(x): H = num_diff(x, partial(self._h), self._zdim) return H self._hjac = hjac if fhes is None: def fhes(x, u): FH = num_diff_hessian(x, partial(self._f, u=u), self._xdim) return FH self._fhes = fhes if hhes is None: def hhes(x): HH = num_diff_hessian(x, self._h, self._zdim) return HH self._hhes = hhes if order == 1 or order == 2: self._order = order else: raise ValueError('order must be 1 or 2') self._it = it def __str__(self): msg = '%s-order additive noise extended Kalman filter' % ('First' if self._order == 1 else 'Second') return msg def init(self, state, cov): self._state = state.copy() self._cov = cov.copy() self._init = True def reset(self, state, cov): self._state = state.copy() self._cov = cov.copy() def predict(self, u=None, **kwargs): if self._init == False: raise RuntimeError('filter must be initialized with init() before use') if len(kwargs) > 0: if 'L' in kwargs: self._L[:] = kwargs['L'] if 'Q' in kwargs: self._Q[:] = kwargs['Q'] post_state, post_cov = self.state, self._cov F = self._fjac(post_state, u) Q_tilde = self._L @ self._Q @ self._L.T self._state = self._f(post_state, u) self._cov = F @ post_cov @ F.T + Q_tilde self._cov = (self._cov + self._cov.T) / 2 if self._order == 2: FH = self._fhes(post_state, u) quad = np.array([np.trace(FH[:, :, i] @ post_cov) for i in range(self._xdim)], dtype=float) self._state += quad / 2 return self._state, self._cov def correct(self, z, **kwargs): if self._init == False: raise RuntimeError('filter must be initialized with init() before use') if len(kwargs) > 0: if 'M' in kwargs: self._M[:] = kwargs['M'] if 'R' in kwargs: self._R[:] = kwargs['R'] prior_state, prior_cov = self._state, self._cov H = self._hjac(prior_state) z_pred = self._h(prior_state) if self._order == 2: HH = self._hhes(prior_state) quad = np.array([np.trace(HH[:, :, i] @ prior_cov) for i in range(self._zdim)], dtype=float) z_pred += quad / 2 innov = z - z_pred R_tilde = self._M @ self._R @ self._M.T S = H @ prior_cov @ H.T + R_tilde S = (S + S.T) / 2 K = prior_cov @ H.T @ lg.inv(S) self._state = prior_state + K @ innov self._cov = prior_cov - K @ S @ K.T self._cov = (self._cov + self._cov.T) / 2 for _ in range(self._it): H = self._hjac(self._state) z_pred = self._h(self._state) + H @ (prior_state - self._state) if self._order == 2: HH = self._hhes(self._state) quad = np.array([np.trace(HH[:, :, i] @ self._cov) for i in range(self._zdim)], dtype=float) z_pred += quad / 2 innov = z - z_pred R_tilde = self._M @ self._R @ self._M.T S = H @ prior_cov @ H.T + R_tilde S = (S + S.T) / 2 K = prior_cov @ H.T @ lg.inv(S) self._state = prior_state + K @ innov self._cov = prior_cov - K @ S @ K.T self._cov = (self._cov + self._cov.T) / 2 return self._state, self._cov def correct_JPDA(self, zs, probs, **kwargs): if self._init == False: raise RuntimeError('filter must be initialized with init() before use') z_len = len(zs) Ms = kwargs['M'] if 'M' in kwargs else [self._M] * z_len Rs = kwargs['R'] if 'R' in kwargs else [self._R] * z_len prior_state, prior_cov = self._state, self._cov H = self._hjac(prior_state) z_pred = self._h(prior_state) if self._order == 2: HH = self._hhes(prior_state) quad = np.array([np.trace(HH[:, :, i] @ prior_cov) for i in range(self._zdim)], dtype=float) z_pred += quad / 2 state_item = 0 cov_item1 = cov_item2 = 0 for i in range(z_len): S = H @ prior_cov @ H.T + Ms[i] @ Rs[i] @ Ms[i].T S = (S + S.T) / 2 K = prior_cov @ H.T @ lg.inv(S) innov = zs[i] - z_pred incre = np.dot(K, innov) state_item += probs[i] * incre cov_item1 += probs[i] * (prior_cov - K @ S @ K.T) cov_item2 += probs[i] * np.outer(incre, incre) self._state = prior_state + state_item self._cov = (1 - np.sum(probs)) * prior_cov + cov_item1 + (cov_item2 - np.outer(state_item, state_item)) self._cov = (self._cov + self._cov.T) / 2 for _ in range(self._it): H = self._hjac(self._state) z_pred = self._h(self._state) + H @ (prior_state - self._state) if self._order == 2: HH = self._hhes(self._state) quad = np.array([np.trace(HH[:, :, i] @ self._cov) for i in range(self._zdim)], dtype=float) z_pred += quad / 2 state_item = 0 cov_item1 = cov_item2 = 0 for i in range(z_len): S = H @ prior_cov @ H.T + Ms[i] @ Rs[i] @ Ms[i].T S = (S + S.T) / 2 K = prior_cov @ H.T @ lg.inv(S) innov = zs[i] - z_pred incre = np.dot(K, innov) state_item += probs[i] * incre cov_item1 += probs[i] * (prior_cov - K @ S @ K.T) cov_item2 += probs[i] * np.outer(incre, incre) self._state = prior_state + state_item self._cov = (1 -
np.sum(probs)
numpy.sum
import numpy as np import random from abc import abstractmethod, ABC from scipy import signal class Task(ABC): """ Task class. This allows to select various types of tasks while sharing the same base structure. Author: <NAME> """ def __init__(self): self.time_v = None self.state_indices = {'p': 0, 'q': 1, 'r': 2, 'V': 3, 'alpha': 4, 'beta': 5, 'phi': 6, 'theta': 7, 'psi': 8, 'h': 9, 'x': 10, 'y': 11} self.obs_indices = None self.track_signals = None self.track_indices = [] self.signals = {} self.agent_catalog = self.get_agent_catalog() return def organize_indices(self, signals, obs_indices): track_signals = np.zeros(self.time_v.shape[0]) track_indices = [] for state in signals: if signals[state].shape[0] != self.time_v.shape[0]: signals[state] = np.append(signals[state], signals[state][-1]) track_signals = np.vstack([track_signals, signals[state]]) track_indices.append(int(self.state_indices[state])) track_signals = track_signals[1:] obs_indices = track_indices + obs_indices return track_signals, track_indices, obs_indices def choose_task(self, evaluation, failure, FDD): if failure[0] is not 'normal': if evaluation: if FDD: task_fun = self.get_task_eval_FDD else: task_fun = self.get_task_eval_fail else: task_fun = self.get_task_tr_fail else: if evaluation: task_fun = self.get_task_eval else: task_fun = self.get_task_tr return task_fun, evaluation, FDD @abstractmethod def get_agent_catalog(self): catalog = {'normal': None, 'elev_range': None, 'aileron_eff': None, 'rudder_stuck': None, 'horz_tail': None, 'vert_tail': None, 'icing': None, 'cg_shift': None} return catalog @abstractmethod def get_task_tr(self): self.time_v: np.ndarray = np.arange(0, 20, 0.01) pass @abstractmethod def get_task_eval(self): self.time_v: np.ndarray = np.arange(0, 80, 0.01) pass @abstractmethod def get_task_tr_fail(self): pass @abstractmethod def get_task_eval_fail(self): self.time_v: np.ndarray = np.arange(0, 70, 0.01) pass @abstractmethod def get_task_eval_FDD(self): self.time_v: np.ndarray = np.arange(0, 120, 0.01) pass @abstractmethod def return_signals(self): pass class BodyRateTask(Task): def get_agent_catalog(self): catalog = super(BodyRateTask, self).get_agent_catalog() catalog['normal'] = 'body_rates_RG2SG4' return catalog def get_task_tr(self): super(BodyRateTask, self).get_task_tr() self.signals['p'] = np.hstack([np.zeros(int(2.5 * self.time_v.shape[0] / self.time_v[-1].round())), 5 * np.sin(self.time_v[:int(self.time_v.shape[0] * 3 / 4)] * 0.2 * np.pi * 2), # 5 * np.sin(time_v[:int(time_v.shape[0] / 4)] * 3.5 * np.pi * 0.2), # -5 * np.ones(int(2.5 * time_v.shape[0] / time_v[-1].round())), # 5 * np.ones(int(2.5 * time_v.shape[0] / time_v[-1].round())), # np.zeros(int(2.5 * time_v.shape[0] / time_v[-1].round())), ]) self.signals['q'] = np.hstack([5 * np.sin(self.time_v[:int(self.time_v.shape[0] * 3 / 4)] * 0.2 * np.pi * 2), # 5 * np.sin(time_v[:int(time_v.shape[0] / 4)] * 3.5 * np.pi * 0.2), # -5 * np.ones(int(2.5 * time_v.shape[0] / time_v[-1].round())), # 5 * np.ones(int(2.5 * time_v.shape[0] / time_v[-1].round())), np.zeros(int(2.5 * self.time_v.shape[0] / self.time_v[-1].round())), ]) return self.return_signals() def get_task_eval(self): super(BodyRateTask, self).get_task_eval() self.signals['p'] = np.hstack([np.zeros(int(2.5 * self.time_v.shape[0] / self.time_v[-1].round())), 5 * np.sin(self.time_v[:int(self.time_v.shape[0] * 3 / 4)] * 0.2 * np.pi * 2), # 5 * np.sin(time_v[:int(time_v.shape[0] / 4)] * 3.5 * np.pi * 0.2), # -5 * np.ones(int(2.5 * time_v.shape[0] / time_v[-1].round())), # 5 * np.ones(int(2.5 * time_v.shape[0] / time_v[-1].round())), # np.zeros(int(2.5 * time_v.shape[0] / time_v[-1].round())), ]) self.signals['q'] = np.hstack([5 * np.sin(self.time_v[:int(self.time_v.shape[0] * 3 / 4)] * 0.2 * np.pi * 2), # 5 * np.sin(time_v[:int(time_v.shape[0] / 4)] * 3.5 * np.pi * 0.2), # -5 * np.ones(int(2.5 * time_v.shape[0] / time_v[-1].round())), # 5 * np.ones(int(2.5 * time_v.shape[0] / time_v[-1].round())), np.zeros(int(2.5 * self.time_v.shape[0] / self.time_v[-1].round())), ]) return self.return_signals() def get_task_tr_fail(self): raise NotImplementedError def get_task_eval_fail(self): raise NotImplementedError def get_task_eval_FDD(self): raise NotImplementedError def return_signals(self): self.signals['beta'] = np.zeros(int(self.time_v.shape[0])) self.obs_indices = [self.state_indices['r']] self.track_signals, self.track_indices, self.obs_indices = self.organize_indices(self.signals, self.obs_indices) return self.track_signals, self.track_indices, self.obs_indices, self.time_v, 'body_rates' couple = ['PZ5QGW', 'GT0PLE'] # couple = ['XQ2G4Q', 'GT0PLE'] # couple = ['PZ5QGW', '9VZ5VE'] class AttitudeTask(Task): def get_agent_catalog(self): catalog = super(AttitudeTask, self).get_agent_catalog() catalog['normal'] = '3attitude_step_' + couple[1] catalog['elev_range'] = '3attitude_step_Q4N8GV_de' catalog['aileron_eff'] = '3attitude_step_E919SW_da' catalog['rudder_stuck'] = '3attitude_step_HNAKCC_dr' catalog['horz_tail'] = '3attitude_step_R0EV0U_ht' catalog['vert_tail'] = '3attitude_step_2KGDYQ_vt' catalog['icing'] = '3attitude_step_9MUWUB_ice' catalog['cg_shift'] = '3attitude_step_5K6QFG_cg' return catalog def get_task_tr(self, init_alt=2000): super(AttitudeTask, self).get_task_tr() angle_theta = random.choice([20, 15, -20, -15]) time_v = self.time_v self.signals['theta'] = np.hstack( [angle_theta * np.sin(time_v[:np.argwhere(time_v == 1.5)[0, 0]] * 0.16 * np.pi * 2), angle_theta * np.ones(int(3.5 * time_v.shape[0] / time_v[-1].round())), angle_theta * np.cos(time_v[:np.argwhere(time_v == 0.5)[0, 0]] * 0.33 * np.pi * 2), angle_theta / 2 * np.ones(int(4. * time_v.shape[0] / time_v[-1].round())), angle_theta / 2 * np.cos(time_v[:np.argwhere(time_v == 0.5)[0, 0]] * 0.47 * np.pi * 2), -angle_theta * np.sin(time_v[:np.argwhere(time_v == 1.5)[0, 0]] * 0.17 * np.pi * 2), -angle_theta * np.ones(int(3.5 * time_v.shape[0] / time_v[-1].round())), -angle_theta * np.cos(time_v[:np.argwhere(time_v == 0.5)[0, 0]] * 0.33 * np.pi * 2), -angle_theta / 2 * np.ones(int(4.5 * time_v.shape[0] / time_v[-1].round())), ]) angle_phi = random.choice([45, 35, 25, -45, -35, -25]) self.signals['phi'] = np.hstack([np.zeros(int(2 * time_v.shape[0] / time_v[-1].round())), angle_phi * np.sin(time_v[:np.argwhere(time_v == 1)[0, 0]] * 0.25 * np.pi * 2), angle_phi * np.ones(int(4 * time_v.shape[0] / time_v[-1].round())), angle_phi * np.cos(time_v[:np.argwhere(time_v == 1)[0, 0]] * 0.25 * np.pi * 2), np.zeros(int(2 * time_v.shape[0] / time_v[-1].round())), np.zeros(int(2 * time_v.shape[0] / time_v[-1].round())), -angle_phi * np.sin( time_v[:np.argwhere(time_v == 1)[0, 0]] * 0.25 * np.pi * 2), -angle_phi * np.ones(int(4 * time_v.shape[0] / time_v[-1].round())), -angle_phi * np.cos( time_v[:np.argwhere(time_v == 1)[0, 0]] * 0.25 * np.pi * 2), np.zeros(int(2 * time_v.shape[0] / time_v[-1].round())), ]) return self.return_signals() def get_task_eval(self, init_alt=2000): super(AttitudeTask, self).get_task_eval() time_v = self.time_v self.signals['theta'] = np.hstack([20 * np.sin(time_v[:np.argwhere(time_v == 5.0)[0, 0]] * 0.05 * np.pi * 2), 20 * np.ones(int(8 * time_v.shape[0] / time_v[-1].round())), 20 * np.cos(time_v[:np.argwhere(time_v == 2.0)[0, 0]] * 0.08 * np.pi * 2), 10 * np.ones(int(15 * time_v.shape[0] / time_v[-1].round())), 10 * np.cos(time_v[:np.argwhere(time_v == 2.0)[0, 0]] * 0.12 * np.pi * 2), 0 * np.ones(int(25 * time_v.shape[0] / time_v[-1].round())), -15 * np.sin(time_v[:np.argwhere(time_v == 2)[0, 0]] * 0.13 * np.pi * 2), -15 * np.ones(int(12 * time_v.shape[0] / time_v[-1].round())), -15 * np.cos(time_v[:np.argwhere(time_v == 4)[0, 0]] * 0.06 * np.pi * 2), 0 * np.ones(int(5 * time_v.shape[0] / time_v[-1].round())), ]) sign = 1 self.signals['phi'] = np.hstack([0 * np.ones(int(5 * time_v.shape[0] / time_v[-1].round())), sign * 45 * np.sin( time_v[:np.argwhere(time_v == 2.0)[0, 0]] * 0.13 * np.pi * 2), sign * 45 * np.ones(int(9 * time_v.shape[0] / time_v[-1].round())), sign * 45 * np.cos(time_v[:np.argwhere(time_v == 2)[0, 0]] * 0.12 * np.pi * 2), 0 * np.ones(int(4 * time_v.shape[0] / time_v[-1].round())), -sign * 30 * np.sin( time_v[:np.argwhere(time_v == 2)[0, 0]] * 0.13 * np.pi * 2), -sign * 30 * np.ones(int(4 * time_v.shape[0] / time_v[-1].round())), -sign * 30 * np.cos( time_v[:np.argwhere(time_v == 2.0)[0, 0]] * 0.12 * np.pi * 2), 0 * np.ones(int(5 * time_v.shape[0] / time_v[-1].round())), sign * 70 * np.sin( time_v[:np.argwhere(time_v == 5.5)[0, 0]] * 0.05 * np.pi * 2), sign * 70 * np.ones(int(8 * time_v.shape[0] / time_v[-1].round())), sign * 70 * np.cos( time_v[:
np.argwhere(time_v == 5.5)
numpy.argwhere
import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np # Set random seed for reproducibility np.random.seed(1000) width = 15 height = 5 y_final = width - 1 x_final = height - 1 y_wells = [0, 1, 3, 5, 5, 7, 9, 11, 12, 14] x_wells = [3, 1, 2, 0, 4, 1, 3, 2, 4, 1] gamma = 0.9 nb_max_epochs = 100000 tolerance = 1e-5 nb_actions = 4 # Initial tunnel rewards standard_reward = -0.1 tunnel_rewards = np.ones(shape=(height, width)) * standard_reward for x_well, y_well in zip(x_wells, y_wells): tunnel_rewards[x_well, y_well] = -5.0 tunnel_rewards[x_final, y_final] = 5.0 policy = np.random.randint(0, nb_actions, size=(height, width)).astype(np.uint8) tunnel_values = np.zeros(shape=(height, width)) def show_values(t): fig, ax = plt.subplots(figsize=(15, 6)) ax.matshow(tunnel_values, cmap=cm.Pastel1) ax.set_xlabel('y') ax.set_ylabel('x') ax.set_xticks(np.arange(width)) ax.set_yticks(np.arange(height)) ax.set_title('Values (t={})'.format(t)) for i in range(height): for j in range(width): if i == x_final and j == y_final: msg = 'E' elif (i, j) in zip(x_wells, y_wells): msg = r'$\otimes$' else: msg = '{:.1f}'.format(tunnel_values[i, j]) ax.text(x=j, y=i, s=msg, va='center', ha='center') plt.show() def show_policy(t): fig, ax = plt.subplots(figsize=(15, 6)) ax.matshow(np.zeros_like(tunnel_values), cmap=cm.Pastel1) ax.set_xlabel('y') ax.set_ylabel('x') ax.set_xticks(np.arange(width)) ax.set_yticks(np.arange(height)) ax.set_title('Policy (t={})'.format(t)) for i in range(height): for j in range(width): action = policy[i, j] if i == x_final and j == y_final: msg = 'E' elif (i, j) in zip(x_wells, y_wells): msg = r'$\otimes$' else: if action == 0: msg = r'$\uparrow$' elif action == 1: msg = r'$\rightarrow$' elif action == 2: msg = r'$\downarrow$' else: msg = r'$\leftarrow$' ax.text(x=j, y=i, s=msg, va='center', ha='center') plt.show() def is_final(x, y): if (x, y) in zip(x_wells, y_wells) or (x, y) == (x_final, y_final): return True return False def value_evaluation(): old_tunnel_values = tunnel_values.copy() for i in range(height): for j in range(width): rewards = np.zeros(shape=(nb_actions,)) old_values = np.zeros(shape=(nb_actions,)) for k in range(nb_actions): if k == 0: if i == 0: x = 0 else: x = i - 1 y = j elif k == 1: if j == width - 1: y = width - 1 else: y = j + 1 x = i elif k == 2: if i == height - 1: x = height - 1 else: x = i + 1 y = j else: if j == 0: y = 0 else: y = j - 1 x = i rewards[k] = tunnel_rewards[x, y] old_values[k] = old_tunnel_values[x, y] new_values =
np.zeros(shape=(nb_actions,))
numpy.zeros
import numpy as np import pandas as pd from matplotlib import pyplot as plt # %% load data, prepare common variables data = pd.read_csv("datasets/NDBC_buoy_46025.csv", sep=",")[["Hs", "T"]] x, dx = np.linspace([0.1, 0.1], [30, 12], num=100, retstep=True) # %% # vc2 from virocon import GlobalHierarchicalModel from virocon.predefined import get_OMAE2020_Hs_Tz dist_descriptions, fit_descriptions, semantics = get_OMAE2020_Hs_Tz() ghm = GlobalHierarchicalModel(dist_descriptions) ghm.fit(data, fit_descriptions=fit_descriptions) # %% from virocon.plotting import plot_2D_isodensity plot_2D_isodensity(ghm, data, semantics=semantics) # %% my_f = ghm.pdf(x) my_f_expweib = ghm.distributions[0].pdf(x[:, 0]) my_expweib_params = ( ghm.distributions[0].alpha, ghm.distributions[0].beta, ghm.distributions[0].delta, ) my_ln = ghm.distributions[1] my_givens = my_ln.conditioning_values my_f_ln = [] for given in my_givens: my_f_ln.append(my_ln.pdf(x[:, 1], given)) my_f_ln = np.stack(my_f_ln, axis=1) my_mus = np.array([par["mu"] for par in my_ln.parameters_per_interval]) my_sigmas = np.array([par["sigma"] for par in my_ln.parameters_per_interval]) my_intervals = my_ln.data_intervals # %% viroconcom import sys sys.path.append("../viroconcom") from viroconcom.fitting import Fit sample_hs = data["Hs"] sample_tz = data["T"] # Define the structure of the probabilistic model that will be fitted to the # dataset. dist_description_hs = { "name": "Weibull_Exp", "dependency": (None, None, None, None), "width_of_intervals": 0.5, } dist_description_tz = { "name": "Lognormal_SigmaMu", "dependency": (0, None, 0), # Shape, Location, Scale "functions": ("asymdecrease3", None, "lnsquare2"), # Shape, Location, Scale "min_datapoints_for_fit": 50, } # Fit the model to the data. fit = Fit((sample_hs, sample_tz), (dist_description_hs, dist_description_tz)) # %% dist0 = fit.mul_var_dist.distributions[0] mul_var_dist = fit.mul_var_dist ref_f = mul_var_dist.pdf(x.T) ref_f_expweib = mul_var_dist.distributions[0].pdf(x[:, 0]) ref_expweib = mul_var_dist.distributions[0] ref_expweib_params = ( ref_expweib.scale(None), ref_expweib.shape(None), ref_expweib.shape2(None), ) ref_ln = mul_var_dist.distributions[1] ref_f_ln = [] ref_givens = fit.multiple_fit_inspection_data[1].scale_at assert all(ref_givens == my_givens) for given in ref_givens: y = np.stack([np.full_like(x[:, 1], given), x[:, 1]]) ref_f_ln.append(ref_ln.pdf(x[:, 1], y, (0, None, 0, None))) ref_f_ln = np.stack(ref_f_ln, axis=1) ref_mus = np.array(fit.multiple_fit_inspection_data[1].scale_value) ref_sigmas = np.array(fit.multiple_fit_inspection_data[1].shape_value) ref_intervals = fit.multiple_fit_inspection_data[1].scale_samples # %% save reference data # reference_data = {"ref_expweib_params" : ref_expweib_params, # "ref_f_expweib" : ref_f_expweib, # "ref_givens" : ref_givens, # "ref_mus" : ref_mus, # "ref_sigmas" : ref_sigmas, # "ref_f_ln" : ref_f_ln # } # for i, ref_interval in enumerate(ref_intervals): # reference_data[f"ref_interval{i}"] = ref_interval # np.savez_compressed("reference_data_OMAE2020", **reference_data) # %% plt.close("all") plt.plot(my_f, label="my_f") plt.plot(ref_f, label="ref_f") plt.legend() plt.figure() plt.plot(x[:, 0], my_f_expweib, label="my_exp_weibull0") plt.plot(x[:, 0], ref_f_expweib, label="ref_exp_weibull0") plt.legend() fig, axes = plt.subplots(3, 4, sharex=True, sharey=True,) givens = fit.multiple_fit_inspection_data[1].scale_at for i in range(len(ref_givens)): ax = axes.flatten()[i] ax.plot(x[:, 1], my_f_ln[:, i], label="my_exp_weibull1") ax.plot(x[:, 1], ref_f_ln[:, i], label="ref_exp_weibull1") ax.hist(fit.multiple_fit_inspection_data[1].scale_samples[i], density=True) ax.set_title(f"V = {ref_givens[i]}") ax.legend() # %% z = np.linspace(data.Hs.min(), data.Hs.max()) my_mu_x = my_ln.conditioning_values my_mu_dep = my_ln.conditional_parameters["mu"] plt.figure() plt.plot(z, my_mu_dep(z), label="my_mu_func") plt.scatter(my_mu_x, my_mus, label="my_mu") ref_mu_x = fit.multiple_fit_inspection_data[1].scale_at ref_mu_function_param = mul_var_dist.distributions[1].scale plt.plot(z, np.log(ref_mu_function_param(z)), label="ref_mu_func") plt.scatter(ref_mu_x, np.log(ref_mus), label="ref_mu") plt.legend() plt.figure() my_sigma_x = my_ln.conditioning_values my_sigma_dep = my_ln.conditional_parameters["sigma"] plt.plot(z, my_sigma_dep(z), label="my_sigma_func") plt.scatter(my_sigma_x, my_sigmas, label="my_sigma") ref_sigma_x = fit.multiple_fit_inspection_data[1].shape_at ref_sigma_function_param = mul_var_dist.distributions[1].shape plt.plot(z, ref_sigma_function_param(z), label="ref_sigma_func") plt.scatter(ref_sigma_x, ref_sigmas, label="ref_sigma") plt.legend() # %% np.testing.assert_almost_equal(my_f, ref_f) np.testing.assert_almost_equal(my_expweib_params, ref_expweib_params)
np.testing.assert_almost_equal(my_f_expweib, ref_f_expweib)
numpy.testing.assert_almost_equal
import torch import torch.nn as nn from mmcv.cnn import normal_init import numpy as np import cv2 import math #import torch.nn.functional as F from mmdet.core import multi_apply, multiclass_nms, distance2bbox, force_fp32 from ..builder import build_loss from ..registry import HEADS from ..utils import bias_init_with_prob, Scale, ConvModule INF = 1e8 @HEADS.register_module class MatrixCenterHead(nn.Module): def __init__(self, num_classes, # init 80 in_channels, feat_channels=256, stacked_convs=1, strides=(4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 64, 64, 64), regress_ranges=((-1, 48), (48, 96), (96, 192), (192, 384), (384, INF)), flags = [[0, 0, 0, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1, 0, 0, 0]], index_map = {0:0, 1:1, 2:2, 5:3, 6:4, 7:5, 8:6, 10:7, 11:8, 12:9, 13:10, 14:11, 16:12, 17:13, 18:14, 19:15, 22:16, 23:17, 24:18}, # use i * 5 + j to get the featmap loss_hm = dict( type="CenterFocalLoss" ), # 这里实现 CenterFocalLoss loss_wh = dict( type="L1Loss", loss_weight=0.1 ), loss_offset = dict( type="L1Loss", loss_weight=1.0 ), conv_cfg=None, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)): super(MatrixCenterHead, self).__init__() self.num_classes = num_classes # self.cls_out_channels = num_classes - 1 self.cls_out_channels = num_classes self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides self.regress_ranges = regress_ranges self.featmap_sizes = None self.loss_hm = build_loss(loss_hm) self.loss_wh = build_loss(loss_wh) self.loss_offset = build_loss(loss_offset) self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self.flags = flags self.index_map = index_map self._init_layers() def _init_layers(self): self.cls_convs = nn.ModuleList() self.wh_convs = nn.ModuleList() self.offset_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.wh_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.offset_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.center_hm = nn.Conv2d(self.feat_channels, self.cls_out_channels, 3, padding=1, bias=True) self.center_wh = nn.Conv2d(self.feat_channels, 2, 3, padding=1, bias=True) self.center_offset = nn.Conv2d(self.feat_channels, 2, 3, padding=1, bias=True) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) #self.scales = nn.ModuleList([Scale(1.0) for _ in 19]) def init_weights(self): # for m in self.cls_convs: # normal_init(m.conv, std=0.01) # for m in self.wh_convs: # normal_init(m.conv, std=0.01) # for m in self.offset_convs: # normal_init(m.conv, std=0.01) #bias_hm = bias_init_with_prob(0.01) # 这里的初始化? #normal_init(self.center_hm, std=0.01, bias=bias_hm) self.center_hm.bias.data.fill_(-2.19) nn.init.constant_(self.center_wh.bias, 0) nn.init.constant_(self.center_offset.bias, 0) # normal_init(self.center_hm, std=0.01) # normal_init(self.center_wh, std=0.01) # normal_init(self.center_offset, std=0.01) def forward(self, feats): return multi_apply(self.forward_single, feats, self.scales) def forward_single(self, x, scale): cls_feat = x wh_feat = x offset_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) cls_score = self.center_hm(cls_feat) for wh_layer in self.wh_convs: wh_feat = wh_layer(wh_feat) wh_pred = self.center_wh(wh_feat) for offset_layer in self.offset_convs: offset_feat = offset_layer(offset_feat) offset_pred = self.center_offset(offset_feat) return cls_score, wh_pred, offset_pred @force_fp32(apply_to=('cls_scores', 'wh_preds', 'offset_preds')) def loss(self, cls_scores, wh_preds, offset_preds, gt_bboxes, gt_labels, img_metas, cfg, gt_bboxes_ignore=None): assert len(cls_scores) == len(wh_preds) == len(offset_preds) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] self.featmap_sizes = featmap_sizes all_level_points = self.get_points(featmap_sizes, offset_preds[0].dtype, offset_preds[0].device) #print(img_metas) #self.c = img_metas['c'] #self.s = img_metas['s'] self.tensor_dtype = offset_preds[0].dtype self.tensor_device = offset_preds[0].device heatmaps, wh_targets, offset_targets = self.center_target(gt_bboxes, gt_labels, img_metas, all_level_points) # 所有层的concat的, 每张图对应一个 num_imgs = cls_scores[0].size(0) # batch_size #print(num_imgs) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] # cls_scores(num_levels, batch_size, 80, h, w) => (num_levels, batch_size * w * h, 80) flatten_wh_preds = [ wh_pred.permute(0, 2, 3, 1).reshape(-1, 2) # batchsize, h, w, 2 => batchsize, h, w, 2 for wh_pred in wh_preds ] flatten_offset_preds = [ offset_pred.permute(0, 2, 3, 1).reshape(-1, 2) for offset_pred in offset_preds ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_wh_preds = torch.cat(flatten_wh_preds) flatten_offset_preds = torch.cat(flatten_offset_preds) # targets flatten_heatmaps = torch.cat(heatmaps) flatten_wh_targets = torch.cat(wh_targets) # torch.Size([all_level_points, 2]) flatten_offset_targets = torch.cat(offset_targets) # repeat points to align with bbox_preds # flatten_points = torch.cat( # [points.repeat(num_imgs, 1) for points in all_level_points]) # pos_inds = flatten_labels.nonzero().reshape(-1) #print(flatten_wh_targets.shape) #print(flatten_wh_targets.nonzero()) center_inds = flatten_wh_targets[...,0].nonzero().reshape(-1) #print(center_inds) num_center = len(center_inds) #print(num_center) # what about use the centerness * labels to indict an object # loss_cls = self.loss_cls( # flatten_cls_scores, flatten_labels, # labels gt is small area # avg_factor=num_pos + num_imgs) # avoid num_pos is 0 flatten_cls_scores = torch.clamp(flatten_cls_scores.sigmoid_(), min=1e-4, max=1-1e-4) loss_hm = self.loss_hm(flatten_cls_scores, flatten_heatmaps) pos_wh_targets = flatten_wh_targets[center_inds] #print(pos_wh_targets.shape) pos_wh_preds = flatten_wh_preds[center_inds] pos_offset_preds = flatten_offset_preds[center_inds] pos_offset_targets = flatten_offset_targets[center_inds] if num_center > 0: # TODO: use the iou loss # center_points = flatten_points[center_inds] # center_decoded_bbox_preds = wh_offset2bbox(center_points, pos_wh_preds, pos_offset_preds) # center_decoded_bbox_targets = wh_offset2bbox(center_points, pos_wh_targets, pos_offset_targets) loss_wh = self.loss_wh(pos_wh_preds, pos_wh_targets, avg_factor=num_center + num_imgs) #loss_wh = F.l1_loss(pos_wh_preds, pos_wh_targets, reduction='sum') / (num_center + num_imgs) #loss_wh = 0.1 * loss_wh loss_offset = self.loss_offset(pos_offset_preds, pos_offset_targets, avg_factor=num_center + num_imgs) else: loss_wh = pos_wh_preds.sum() loss_offset = pos_offset_preds.sum() return dict( loss_hm = loss_hm, loss_wh = loss_wh, loss_offset = loss_offset) def get_points(self, featmap_sizes, dtype, device): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. dtype (torch.dtype): Type of points. device (torch.device): Device of points. Returns: tuple: points of each image. """ mlvl_points = [] for i in range(len(featmap_sizes)): mlvl_points.append( self.get_points_single(featmap_sizes[i], self.strides[i], dtype, device)) return mlvl_points def get_points_single(self, featmap_size, stride, dtype, device): h, w = featmap_size x_range = torch.arange( 0, w * stride, stride, dtype=dtype, device=device) # 以一定间隔取x的值 y_range = torch.arange( 0, h * stride, stride, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) # 得到featmap的所有点 points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 return points def center_target(self, gt_bboxes_list, gt_labels_list, img_metas, all_level_points): #assert len(self.featmap_sizes) == len(self.regress_ranges) assert len(self.featmap_sizes) == len(self.strides) # get heatmaps and targets of each image # heatmaps in heatmaps_list: [num_points, 80] # wh_targets: [num_points, 2] => [batch_size, num_points, 2] heatmaps_list, wh_targets_list, offset_targets_list = multi_apply( self.center_target_single, gt_bboxes_list, gt_labels_list, img_metas ) # split to per img, per level num_points = [center.size(0) for center in all_level_points] # 每一层多少个点 all_level_points [[12414, 2], []] heatmaps_list = [heatmaps.split(num_points, 0) for heatmaps in heatmaps_list] wh_targets_list = [wh_targets.split(num_points, 0) for wh_targets in wh_targets_list] offset_targets_list = [offset_targets.split(num_points, 0) for offset_targets in offset_targets_list] # concat per level image, 同一层的concat # [(batch_size,featmap_size[1]), ...) concat_lvl_heatmaps = [] concat_lvl_wh_targets = [] concat_lvl_offset_targets = [] num_levels = len(self.featmap_sizes) for i in range(num_levels): concat_lvl_heatmaps.append( torch.cat([heatmaps[i] for heatmaps in heatmaps_list])) # (num_levels, batch_size * w * h, 80) concat_lvl_wh_targets.append( torch.cat( [wh_targets[i] for wh_targets in wh_targets_list])) concat_lvl_offset_targets.append( torch.cat( [offset_targets[i] for offset_targets in offset_targets_list])) return concat_lvl_heatmaps, concat_lvl_wh_targets, concat_lvl_offset_targets def center_target_single(self, gt_bboxes, gt_labels, img_meta): """ single image gt_bboxes:torch.Size([6, 4]) gt_labels:torch.Size([6]) tensor([34, 34, 34, 34, 34, 34], device='cuda:0') featmap_sizes:(list[tuple]): Multi-level feature map sizes. regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),(512, INF)) """ # transform the gt_bboxes, gt_labels to numpy gt_bboxes = gt_bboxes.data.cpu().numpy() gt_labels = gt_labels.data.cpu().numpy() #print(gt_bboxes, gt_labels) num_objs = gt_labels.shape[0] #print(num_objs) # heatmaps [level1, level2, level3, level4, level5] num_levels = len(self.featmap_sizes) heatmaps_targets = [] wh_targets = [] offset_targets = [] # get the target shape for each image for i in range(num_levels): # 一共有19层 h, w = self.featmap_sizes[i] hm = np.zeros((self.cls_out_channels, h, w), dtype=np.float32) heatmaps_targets.append(hm) wh = np.zeros((h, w, 2), dtype=np.float32) wh_targets.append(wh) offset = np.zeros((h, w, 2), dtype=np.float32) offset_targets.append(offset) for k in range(num_objs): bbox = gt_bboxes[k] cls_id = gt_labels[k] if img_meta['flipped']: bbox[[0, 2]] = img_meta['width'] - bbox[[2, 0]] - 1 # condition: in the regress_ranges origin_h, origin_w = bbox[3] - bbox[1], bbox[2] - bbox[0] # 根据h, w在哪一层将output设置为当前层的 index_i = 0 index_j = 0 for i in range(5): min_regress_distance, max_regress_distance = self.regress_ranges[i] if (origin_w > min_regress_distance) and (origin_w <= max_regress_distance): index_i = i break for j in range(5): min_regress_distance, max_regress_distance = self.regress_ranges[j] if (origin_h > min_regress_distance) and (origin_h <= max_regress_distance): index_j = j break if self.flags[i][j] == 1: continue index_level = self.index_map[index_i * 5 + index_j] output_h, output_w = self.featmap_sizes[index_level] #print(output_h, output_w) hm = heatmaps_targets[index_level] wh = wh_targets[index_level] offset = offset_targets[index_level] # c, s is passed by meta trans_output = get_affine_transform(img_meta['c'], img_meta['s'], 0, [output_w, output_h]) bbox[:2] = affine_transform(bbox[:2], trans_output) bbox[2:] = affine_transform(bbox[2:], trans_output) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1) #x1, x2 bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] #print(h, w) # 转换到当层 if h > 0 and w > 0: radius = gaussian_radius((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array( [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) #print(ct) ct_int = ct.astype(np.int32) hm[cls_id, ct_int[1], ct_int[0]] = 1 #if (ct_int[1] - 1) > 0: # hm[cls_id, ct_int[1] - 1, ct_int[0]] = 0.5 #if (ct_int[0] - 1) > 0: # hm[cls_id, ct_int[1], ct_int[0] - 1] = 0.5 #if (ct_int[1] + 1) < output_h: # hm[cls_id, ct_int[1] + 1, ct_int[0]] = 0.5 #if (ct_int[0] + 1) < output_w: # hm[cls_id, ct_int[1], ct_int[0] + 1] = 0.5 draw_umich_gaussian(hm[cls_id], ct_int, radius) h, w = 1. * h, 1. * w offset_count = ct - ct_int # h, w # ct_int即表明在featmap的位置 ct_int[1] * output_w + ct_int[0] # TODO:如果当前位置有物体的中心,现在是直接覆盖 # 这里设置监督信号,第1位表示w,第2位表示h # 这里对featmap进行缩放? # wh[ct_int[1], ct_int[0], 0] = w / output_w# output_h, output_w <= y, x # wh[ct_int[1], ct_int[0], 1] = h / output_h # offset[ct_int[1], ct_int[0], 0] = offset_count[0] / output_w # offset[ct_int[1], ct_int[0], 0] = offset_count[1] / output_h wh[ct_int[1], ct_int[0], 0] = w wh[ct_int[1], ct_int[0], 1] = h offset[ct_int[1], ct_int[0], 0] = offset_count[0] offset[ct_int[1], ct_int[0], 0] = offset_count[1] heatmaps_targets[index_level] = hm wh_targets[index_level] = wh offset_targets[index_level] = offset flatten_heatmaps_targets = [ hm.transpose(1, 2, 0).reshape(-1, self.cls_out_channels) for hm in heatmaps_targets ] #for i in range(len(flatten_heatmaps_targets)): # print(flatten_heatmaps_targets[i].shape) heatmaps_targets = np.concatenate(flatten_heatmaps_targets, axis=0) #print(heatmaps_targets.shape) # (13343, 80) #print(heatmaps_targets) flatten_wh_targets = [ wh.reshape(-1, 2) for wh in wh_targets ] wh_targets = np.concatenate(flatten_wh_targets) flatten_offset_targets = [ offset.reshape(-1, 2) for offset in offset_targets ] offset_targets = np.concatenate(flatten_offset_targets) # transform the heatmaps_targets, wh_targets, offset_targets into tensor heatmaps_targets = torch.from_numpy(np.stack(heatmaps_targets)) heatmaps_targets = torch.tensor(heatmaps_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) wh_targets = torch.from_numpy(np.stack(wh_targets)) wh_targets = torch.tensor(wh_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) offset_targets = torch.from_numpy(np.stack(offset_targets)) offset_targets = torch.tensor(offset_targets.detach(), dtype=self.tensor_dtype, device=self.tensor_device) return heatmaps_targets, wh_targets, offset_targets # test use @force_fp32(apply_to=('cls_scores', 'wh_preds', 'offset_preds')) def get_bboxes(self, cls_scores, wh_preds, offset_preds, img_metas, cfg): assert len(cls_scores) == len(wh_preds) == len(offset_preds) # cls_scores => [num_levels] => [batch featmap] => [batch, 80, h, w] # wh_preds => [num_levels] => [featmap] => [2, h, w] # offset_preds => [num_levels] => [featmap] => [2, h, w] num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] result_list = [] #print(cls_scores[0].shape) # torch.Size([1, 80, 84, 56]) #print(img_metas) for img_id in range(len(img_metas)): # 每个batch中id cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] # =>[num_levels] => [80, h, w] wh_pred_list = [ wh_preds[i][img_id].detach() for i in range(num_levels) ] offset_pred_list = [ offset_preds[i][img_id].detach() for i in range(num_levels) ] #img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] c = img_metas[img_id]['c'] s = img_metas[img_id]['s'] det_bboxes = self.get_bboxes_single(cls_score_list, wh_pred_list, offset_pred_list, featmap_sizes, c, s, scale_factor, cfg) # 对每一张图像进行解调 result_list.append(det_bboxes) return result_list # [batch_size] def get_bboxes_single(self, cls_scores, wh_preds, offset_preds, featmap_sizes, c, s, scale_factor, cfg): assert len(cls_scores) == len(wh_preds) == len(offset_preds) == len(featmap_sizes) detections = [] for cls_score, wh_pred, offset_pred, featmap_size in zip( cls_scores, wh_preds, offset_preds, featmap_sizes): # 取出每一层的点 assert cls_score.size()[-2:] == wh_pred.size()[-2:] == offset_pred.size()[-2:] == featmap_size output_h, output_w = featmap_size #实际上得到了每一层的hm, wh, offset hm = torch.clamp(cls_score.sigmoid_(), min=1e-4, max=1-1e-4).unsqueeze(0) # 增加一个纬度 #wh_pred[0, :, :] = wh_pred[0, :, :] * output_w #wh_pred[1, :, :] = wh_pred[1, :, :] * output_h # 2, output_h, output_w wh = wh_pred.unsqueeze(0) # 这里需要乘以featuremap的尺度 #offset_pred[0, : ,:] = offset_pred[0, : ,:] * output_w #offset_pred[1, : ,:] = offset_pred[1, : ,:] * output_h reg = offset_pred.unsqueeze(0) dets = ctdet_decode(hm, wh, reg=reg, K=40) dets = post_process(dets, c, s, output_h, output_w, scale=scale_factor, num_classes=self.num_classes) detections.append(dets) results = merge_outputs(detections, self.num_classes) # 单张图的结果 return results #num_classes = 80 def gaussian_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3 ** 2 - 4 * a3 * c3) r3 = (b3 + sq3) / 2 return min(r1, r2, r3) def gaussian_small_radius(det_size, min_overlap=0.7): height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1 ** 2 - 4 * a1 * c1) r1 = (b1 - sq1) / (2 * a1) a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2 ** 2 - 4 * a2 * c2) r2 = (b2 - sq2) / (2 * a2) a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 =
np.sqrt(b3 ** 2 - 4 * a3 * c3)
numpy.sqrt
import tensorflow as tf import numpy as np from copy import copy from .base import Model tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) class KerasTFModel(Model): def __init__(self, model, x_dim: int, u_dim: int, p_dim=0, tvp_dim=0, standardScaler=None): if not standardScaler is None: raise NotImplementedError("This feature isn't supported yet !") #if not isinstance(model, (tf.keras.Model)): # raise ValueError("The provided model isn't a Keras Model object !") if len(model.input_shape) != 2: raise NotImplementedError("Recurrent neural network are not supported atm.") if model.output_shape[-1] != x_dim: raise ValueError("Your Keras model do not provide a suitable output dim ! \n It must get the same dim as the state dim.") if model.input_shape[-1] != sum((x_dim, u_dim, p_dim, tvp_dim)): raise ValueError("Your Keras model do not provide a suitable input dim ! \n It must get the same dim as the sum of all input vars (x, u, p, tvp).") super(KerasTFModel, self).__init__(x_dim, u_dim, p_dim, tvp_dim) self.model = model self.test = None def __getstate__(self): result_dict = copy(self.__dict__) result_dict["model"] = None return result_dict def __setstate__(self, d): self.__dict__ = d def _gather_input(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): output_np = np.concatenate([x, u], axis=1) if not tvp is None: output_np = np.concatenate([output_np, tvp], axis=1) if not p is None: #TODO check this part output_np = np.concatenate([output_np, np.array([[p,]*x.shape[0]])], axis=1) return output_np def forward(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_net = self._gather_input(x, u, p=p, tvp=tvp) return self.model.predict(input_net) def jacobian(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_net = self._gather_input(x, u, p=p, tvp=tvp) input_tf = tf.constant(input_net) with tf.GradientTape(persistent=False) as tx: tx.watch(input_tf) output_tf = self.model(input_tf) jacobian_tf = tx.jacobian(output_tf, input_tf) jacobian_np = jacobian_tf.numpy()[:,:,:,:-self.p_dim- self.tvp_dim] jacobian_np = jacobian_np.reshape(x.shape[0]*self.x_dim, (self.x_dim+self.u_dim)*x.shape[0]) reshape_indexer = sum([ list(np.arange(x.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(x.shape[0]) ], list()) + \ sum([ list( x.shape[1]+np.arange(u.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(x.shape[0]) ], list()) jacobian_np = np.take(jacobian_np, reshape_indexer, axis=1) return jacobian_np @tf.function def _hessian_compute(self, input_tf): hessian_mask = tf.reshape(tf.eye(tf.shape(input_tf)[0]*self.model.output_shape[-1],tf.shape(input_tf)[0]*self.model.output_shape[-1]), (tf.shape(input_tf)[0]*self.model.output_shape[-1],tf.shape(input_tf)[0],self.model.output_shape[-1])) hessian_mask = tf.cast(hessian_mask, tf.float64) output_tf = self.model(input_tf) output_tf = tf.cast(output_tf, tf.float64) result = tf.map_fn(lambda mask : tf.hessians(output_tf*mask, input_tf)[0] , hessian_mask, dtype=tf.float32) return result def hessian(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): input_np = self._gather_input(x, u, p=p, tvp=tvp) input_tf = tf.constant(input_np, dtype=tf.float32) #if self.test is None: # self.test = self._hessian_compute.get_concrete_function(input_tf=tf.TensorSpec([input_tf.shape[0], input_tf.shape[1]], tf.float64), output_shape=int(self.model.output_shape[-1])) #hessian_np = self.test(input_tf, int(self.model.output_shape[-1])).numpy() hessian_np = self._hessian_compute(input_tf).numpy() hessian_np = hessian_np[:,:,:-self.p_dim - self.tvp_dim, :, :-self.p_dim - self.tvp_dim] # TODO a better implem could be by spliting input BEFORE performing the hessian computation ! hessian_np = hessian_np.reshape(x.shape[0], x.shape[1], (input_np.shape[1]-self.p_dim - self.tvp_dim)*input_np.shape[0],( input_np.shape[1]-self.p_dim - self.tvp_dim)*input_np.shape[0]) reshape_indexer = sum([ list(np.arange(x.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(x.shape[0]) ], list()) + \ sum([ list( x.shape[1]+np.arange(u.shape[1])+i*(x.shape[1]+u.shape[1])) for i in range(x.shape[0]) ], list()) hessian_np = np.take(hessian_np, reshape_indexer, axis=2) hessian_np = np.take(hessian_np, reshape_indexer, axis=3) return hessian_np @tf.function def rolling_input(input_tf, x_dim, u_dim, rolling_window=2, H=2, forward=True): # TODO do not take into account p and tvp x = input_tf[:,0:x_dim] u = input_tf[:,x_dim:x_dim+u_dim] if forward: x_rolling = tf.stack([ tf.reshape(x[i:i+rolling_window, :],(-1,)) for i in range(H)], axis=0) u_rolling = tf.stack([ tf.reshape(u[i:i+rolling_window, :],(-1,)) for i in range(H)], axis=0) else: x_rolling = tf.stack([ tf.reshape( tf.reverse( x[i:i+rolling_window, :] , [0]),(-1,)) for i in range(H)], axis=0) u_rolling = tf.stack([ tf.reshape( tf.reverse( u[i:i+rolling_window, :] , [0]),(-1,)) for i in range(H)], axis=0) return tf.concat([x_rolling,u_rolling],axis=1) class KerasTFModelRollingInput(Model): def __init__(self, model, x_dim: int, u_dim: int, p_dim=0, tvp_dim=0, rolling_window=2, forward_rolling=True, standardScaler=None): if not standardScaler is None: raise NotImplementedError("This feature isn't supported yet !") # TODO make checking according to rolling_window #if not isinstance(model, (tf.keras.Model)): # raise ValueError("The provided model isn't a Keras Model object !") #if len(model.input_shape) != 2: # raise NotImplementedError("Recurrent neural network are not supported atm.") if model.output_shape[-1] != x_dim: raise ValueError("Your Keras model do not provide a suitable output dim ! \n It must get the same dim as the state dim.") #if model.input_shape[-1] != sum((x_dim, u_dim, p_dim, tvp_dim)): # raise ValueError("Your Keras model do not provide a suitable input dim ! \n It must get the same dim as the sum of all input vars (x, u, p, tvp).") if not isinstance(rolling_window, int) or rolling_window<1: raise ValueError("Your rolling windows need to be an integer gretter than 1.") super(KerasTFModelRollingInput, self).__init__(x_dim, u_dim, p_dim, tvp_dim) self.model = model self.rolling_window = rolling_window self.forward_rolling = forward_rolling self.prev_x, self.prev_u, self.prev_tvp = None, None, None self.jacobian_proj = None def __getstate__(self): result_dict = copy(self.__dict__) result_dict["prev_x"] = None result_dict["prev_u"] = None result_dict["model"] = None result_dict["prev_tvp"] = None return result_dict def __setstate__(self, d): self.__dict__ = d def set_prev_data(self, x_prev: np.ndarray, u_prev: np.ndarray, tvp_prev=None): assert x_prev.shape == (self.rolling_window-1, self.x_dim), f"Your x prev tensor must have the following shape {(self.rolling_window-1, self.x_dim)} (received : {x_prev.shape})" assert u_prev.shape == (self.rolling_window-1, self.u_dim), f"Your u prev tensor must have the following shape {(self.rolling_window-1, self.u_dim)} (received : {u_prev.shape})" self.prev_x = x_prev self.prev_u = u_prev if not tvp_prev is None: assert tvp_prev.shape == (self.rolling_window-1, self.tvp_dim), f"Your tvp prev tensor must have the following shape {(self.rolling_window-1, self.tvp_dim)} (received : {tvp_prev.shape})" self.prev_tvp = tvp_prev def _gather_input(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): assert (not self.prev_x is None) and (not self.prev_u is None), "You must give history window with set_prev_data before calling any inferance function." x_extended = np.concatenate([self.prev_x, x], axis=0) u_extended = np.concatenate([self.prev_u, u], axis=0) output_np = np.concatenate([x_extended, u_extended], axis=1) if not tvp is None: tvp_extended = np.concatenate([self.prev_tvp, tvp], axis=0) output_np = np.concatenate([output_np, tvp_extended], axis=1) if not p is None: output_np = np.concatenate([output_np, np.array([[p,]*x.shape[0]])], axis=1) return output_np def _gather_input_V2(self, x: np.ndarray, u: np.ndarray, p=None, tvp=None): assert (not self.prev_x is None) and (not self.prev_u is None), "You must give history window with set_prev_data before calling any inferance function." x_extended = np.concatenate([self.prev_x, x], axis=0) u_extended = np.concatenate([self.prev_u, u], axis=0) if self.forward_rolling: x_rolling = np.stack([ x_extended[i:i+self.rolling_window, :].reshape(-1) for i in range(x.shape[0])], axis=0) u_rolling = np.stack([ u_extended[i:i+self.rolling_window, :].reshape(-1) for i in range(x.shape[0])], axis=0) if not tvp is None: assert (not self.prev_tvp is None), "You must give history window with set_prev_data before calling any inferance function." tvp_extended = np.concatenate([self.prev_tvp, tvp], axis=0) tvp_rolling = np.stack([ tvp_extended[i:i+self.rolling_window, :].reshape(-1) for i in range(x.shape[0])], axis=0) else: x_rolling = np.stack([ (x_extended[i:i+self.rolling_window, :])[::-1,:].reshape(-1) for i in range(x.shape[0])], axis=0) u_rolling = np.stack([ (u_extended[i:i+self.rolling_window, :])[::-1,:].reshape(-1) for i in range(x.shape[0])], axis=0) if not tvp is None: assert (not self.prev_tvp is None), "You must give history window with set_prev_data before calling any inferance function." tvp_extended = np.concatenate([self.prev_tvp, tvp], axis=0) tvp_rolling = np.stack([ (tvp_extended[i:i+self.rolling_window, :])[::-1,:].reshape(-1) for i in range(x.shape[0])], axis=0) output_np =
np.concatenate([x_rolling, u_rolling], axis=1)
numpy.concatenate
from pynwb import NWBFile from pynwb.behavior import BehavioralEvents from nwb_conversion_tools.converter import NWBConverter from pathlib import Path from datetime import datetime from scipy.io import loadmat import pandas as pd import numpy as np import uuid class Bpod2NWB(NWBConverter): def __init__(self, nwbfile=None, metadata=None, source_paths=None): """ Reads behavioral data from bpod files and adds it to nwbfile. Parameters ---------- nwbfile: pynwb.NWBFile metadata: dict source_paths: dict """ super().__init__(nwbfile=nwbfile, metadata=metadata, source_paths=source_paths) # Opens -.mat file and loads data file_behavior_bpod = Path(self.source_paths['file_behavior_bpod']['path']) self.fdata = loadmat(file_behavior_bpod, struct_as_record=False, squeeze_me=True) def create_nwbfile(self, metadata_nwbfile): """ Overriding method to get session_start_time form bpod files. """ nwbfile_args = dict(identifier=str(uuid.uuid4()),) nwbfile_args.update(**metadata_nwbfile) session_start_time = self.get_session_start_time() nwbfile_args.update(**session_start_time) self.nwbfile = NWBFile(**nwbfile_args) def get_session_start_time(self): """ Gets session_start_time from bpod file. Returns ------- dict """ file_behavior_bpod = Path(self.source_paths['file_behavior_bpod']['path']) # Opens -.mat file and extracts data fdata = loadmat(file_behavior_bpod, struct_as_record=False, squeeze_me=True) session_start_date = fdata['SessionData'].Info.SessionDate session_start_time = fdata['SessionData'].Info.SessionStartTime_UTC date_time_string = session_start_date + ' ' + session_start_time date_time_obj = datetime.strptime(date_time_string, '%d-%b-%Y %H:%M:%S') return {'session_start_time': date_time_obj} def add_behavioral_events(self): """ Adds behavioral events from bpod file to nwbfile. """ # Summarized trials data fdata = self.fdata n_trials = fdata['SessionData'].nTrials trials_start_times = fdata['SessionData'].TrialStartTimestamp # Sweep trials to get behavioral events tup_ts = np.array([]) port_1_in_ts =
np.array([])
numpy.array
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of pelicun. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # pelicun. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> """ This subpackage performs system tests on the control module of pelicun. """ import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import truncnorm as tnorm from copy import deepcopy import os, sys, inspect current_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0,os.path.dirname(parent_dir)) from pelicun.control import * from pelicun.uq import mvn_orthotope_density as mvn_od from pelicun.tests.test_pelicun import prob_allclose, prob_approx # ----------------------------------------------------------------------------- # FEMA_P58_Assessment # ----------------------------------------------------------------------------- def test_FEMA_P58_Assessment_central_tendencies(): """ Perform a loss assessment with customized inputs that reduce the dispersion of calculation parameters to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values())[0] assert RV_EDP.theta[0] == pytest.approx(0.5 * g) assert RV_EDP.theta[1] == pytest.approx(0.5 * g * 1e-6, abs=1e-7) assert RV_EDP._distribution == 'lognormal' # QNT assert A._QNT_dict is None #RV_QNT = A._RV_dict['QNT'] #assert RV_QNT is None # FRG RV_FRG = list(A._FF_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_FRG]).T assert_allclose(thetas, np.array([0.444, 0.6, 0.984]) * g, rtol=0.01) assert_allclose(betas, np.array([0.3, 0.4, 0.5]), rtol=0.01) rho = RV_FRG[0].RV_set.Rho() assert_allclose(rho, np.ones((3, 3)), rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_FRG]) # RED RV_RED = list(A._DV_RED_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_RED]).T assert_allclose(mus, np.ones(2), rtol=0.01) assert_allclose(sigmas, np.array([1e-4, 1e-4]), rtol=0.01) rho = RV_RED[0].RV_set.Rho() assert_allclose(rho, np.array([[1, 0], [0, 1]]), rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_RED]) assert_allclose (RV_RED[0].truncation_limits, [0., 2.], rtol=0.01) assert_allclose (RV_RED[1].truncation_limits, [0., 4.], rtol=0.01) # INJ RV_INJ = list(A._DV_INJ_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_INJ]).T assert_allclose(mus, np.ones(4), rtol=0.01) assert_allclose(sigmas, np.ones(4) * 1e-4, rtol=0.01) rho = RV_INJ[0].RV_set.Rho() rho_target = np.zeros((4, 4)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_INJ]) assert_allclose(RV_INJ[0].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[1].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[2].truncation_limits, [0., 10.], rtol=0.01) assert_allclose(RV_INJ[3].truncation_limits, [0., 10.], rtol=0.01) # REP RV_REP = list(A._DV_REP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_REP]).T assert_allclose(thetas, np.ones(6), rtol=0.01) assert_allclose(betas, np.ones(6) * 1e-4, rtol=0.01) rho = RV_REP[0].RV_set.Rho() rho_target = np.zeros((6, 6)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_REP]) # ------------------------------------------------------------------------ A.define_loss_model() # QNT (deterministic) QNT = A._FG_dict['T0001.001']._performance_groups[0]._quantity assert QNT == pytest.approx(50., rel=0.01) A.calculate_damage() # ------------------------------------------------ check damage calculation # TIME T_check = A._TIME.describe().T.loc[['hour','month','weekday?'],:] assert_allclose(T_check['mean'], np.array([11.5, 5.5, 5. / 7.]), rtol=0.05) assert_allclose(T_check['min'], np.array([0., 0., 0.]), rtol=0.01) assert_allclose(T_check['max'], np.array([23., 11., 1.]), rtol=0.01) assert_allclose(T_check['50%'], np.array([12., 5., 1.]), atol=1.0) assert_allclose(T_check['count'], np.array([10000., 10000., 10000.]), rtol=0.01) # POP P_CDF = A._POP.describe(np.arange(1, 27) / 27.).iloc[:, 0].values[4:] vals, counts = np.unique(P_CDF, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]), rtol=0.01) assert_allclose(counts, np.array([14, 2, 7, 5]), atol=1) # COL COL_check = A._COL.describe().T assert COL_check['mean'].values[0] == pytest.approx(0.5, rel=0.05) assert len(A._ID_dict['non-collapse']) == pytest.approx(5000, rel=0.05) assert len(A._ID_dict['collapse']) == pytest.approx(5000, rel=0.05) # DMG DMG_check = A._DMG.describe().T assert_allclose(DMG_check['mean'], np.array([17.074, 17.074, 7.9361]), rtol=0.1, atol=1.0) assert_allclose(DMG_check['min'], np.zeros(3), rtol=0.01) assert_allclose(DMG_check['max'], np.ones(3) * 50.0157, rtol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # RED DV_RED = A._DV_dict['red_tag'].describe().T assert_allclose(DV_RED['mean'], np.array([0.341344, 0.1586555]), rtol=0.1) # INJ - collapse DV_INJ_C = deepcopy(A._COL[['INJ-0', 'INJ-1']]) DV_INJ_C.dropna(inplace=True) NC_count = DV_INJ_C.describe().T['count'][0] assert_allclose(NC_count, np.ones(2) * 5000, rtol=0.05) # lvl 1 vals, counts = np.unique(DV_INJ_C.iloc[:, 0].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.1, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # lvl 2 vals, counts = np.unique(DV_INJ_C.iloc[:, 1].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.9, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # INJ - non-collapse DV_INJ_NC = deepcopy(A._DV_dict['injuries']) DV_INJ_NC[0].dropna(inplace=True) assert_allclose(DV_INJ_NC[0].describe().T['count'], np.ones(2) * 5000, rtol=0.05) # lvl 1 DS2 I_CDF = DV_INJ_NC[0].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 1 DS3 I_CDF = DV_INJ_NC[0].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 2 DS2 I_CDF = DV_INJ_NC[1].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl2 DS3 I_CDF = DV_INJ_NC[1].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # REP assert len(A._ID_dict['non-collapse']) == len(A._ID_dict['repairable']) assert len(A._ID_dict['irreparable']) == 0 # cost DV_COST = A._DV_dict['rec_cost'] # DS1 C_CDF = DV_COST.iloc[:, 0] C_CDF = np.around(C_CDF / 10., decimals=0) * 10. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 2500], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 C_CDF = DV_COST.iloc[:, 1] C_CDF = np.around(C_CDF / 100., decimals=0) * 100. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 25000], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 C_CDF = DV_COST.iloc[:, 2] C_CDF = np.around(C_CDF / 1000., decimals=0) * 1000. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 250000], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # time DV_TIME = A._DV_dict['rec_time'] # DS1 T_CDF = DV_TIME.iloc[:, 0] T_CDF = np.around(T_CDF, decimals=1) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 2.5], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 T_CDF = DV_TIME.iloc[:, 1] T_CDF = np.around(T_CDF, decimals=0) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 25], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 T_CDF = DV_TIME.iloc[:, 2] T_CDF = np.around(T_CDF / 10., decimals=0) * 10. vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 250], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T assert_allclose(S[('event time', 'month')], A._TIME['month'] + 1) assert_allclose(S[('event time', 'weekday?')], A._TIME['weekday?']) assert_allclose(S[('event time', 'hour')], A._TIME['hour']) assert_allclose(S[('inhabitants', '')], A._POP.iloc[:, 0]) assert SD.loc[('collapses', 'collapsed'), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('collapses', 'mode'), 'mean'] == 0. assert SD.loc[('collapses', 'mode'), 'count'] == pytest.approx(5000, rel=0.05) assert SD.loc[('red tagged', ''), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('red tagged', ''), 'count'] == pytest.approx(5000, rel=0.05) for col in ['irreparable', 'cost impractical', 'time impractical']: assert SD.loc[('reconstruction', col), 'mean'] == 0. assert SD.loc[('reconstruction', col), 'count'] == pytest.approx(5000, rel=0.05) RC = deepcopy(S.loc[:, ('reconstruction', 'cost')]) RC_CDF = np.around(RC / 1000., decimals=0) * 1000. vals, counts = np.unique(RC_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.]) * 1000.) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) RT = deepcopy(S.loc[:, ('reconstruction', 'time-parallel')]) RT_CDF = np.around(RT, decimals=0) vals, counts = np.unique(RT_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.])) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) assert_allclose(S.loc[:, ('reconstruction', 'time-parallel')], S.loc[:, ('reconstruction', 'time-sequential')]) CAS = deepcopy(S.loc[:, ('injuries', 'sev1')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.075, 0.15, 0.25, 0.3, 0.5, 1.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2, 2.5, 7, 5]) / 56., atol=0.01, rtol=0.1) CAS = deepcopy(S.loc[:, ('injuries', 'sev2')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.025, 0.05, 0.1, 2.25, 4.5, 9.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2.5, 2, 7, 5]) / 56., atol=0.01, rtol=0.1) def test_FEMA_P58_Assessment_EDP_uncertainty_basic(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_2.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_2.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T assert_allclose(thetas, [9.80665, 12.59198, 0.074081, 0.044932], rtol=0.02) assert_allclose(betas, [0.25, 0.25, 0.3, 0.4], rtol=0.02) rho = RV_EDP[0].RV_set.Rho() rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] assert_allclose(rho, rho_target, atol=0.05) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer( [0.3, 0.4], [0.3, 0.4]), upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[ 0] DMG_2_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[ 0] DMG_1_PFA = mvn_od(np.log([0.074081, 9.80665]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] DMG_2_PFA = mvn_od(np.log([0.074081, 12.59198]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert DMG_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert DMG_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert DMG_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 and 1022 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]),
np.array([[1, 0.7], [0.7, 1]])
numpy.array
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 ######################################################################################################################## # Copyright © 2019 The George Washington University. # All Rights Reserved. # # Contributors: <NAME> <<EMAIL>> # # Licensed under the BSD-3-Clause License (the "License"). # You may not use this file except in compliance with the License. # You may obtain a copy of the License at: https://opensource.org/licenses/BSD-3-Clause # # BSD-3-Clause License: # # Redistribution and use in source and binary forms, with or without modification, are permitted provided # that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the # following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or # promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ######################################################################################################################## """ Helper functions for post-processing. """ import os import numpy from clawpack import pyclaw def get_min_value(solution, field=0): """ Get the minimum value in a field in a solution. """ min_val = 1e38 for state in solution.states: min_temp = state.q[field, :, :].min() if min_temp < min_val: min_val = min_temp return min_val def get_max_value(solution, field=0): """ Get the maximum value in a field in a solution. """ max_val = 0. for state in solution.states: max_temp = state.q[field, :, :].max() if max_temp > max_val: max_val = max_temp return max_val def get_max_AMR_level(solution): """ Get the max AMR level in a solution object. """ max_level = 1 for state in solution.states: p = state.patch if p.level > max_level: max_level = p.level return max_level def plot_at_axes(solution, ax, field=0, border=False, min_level=2, max_level=None, vmin=None, vmax=None, threshold=1e-4, cmap="viridis"): """Plot solution. Plot a field in the q array of a solution object. Args: solution [in]: pyClaw solution object. ax [inout]: matplotlib axes object. field [in]: target field to be plot: 0 - depth; 1 - hu conservative field; 2 - hv conservative field; 3 - eta (elevation + depth) border [in]: a boolean indicating whether to plot grid patch borders. min_levle [in]: the minimum level of AMR grid to be plotted. max_levle [in]: the maximum level of AMR grid to be plotted. vmin [in]: value of the minimum value of the colorbar. vmax [in]: value of the maximum value of the colorbar. threshold [in]: values below this threshold will be clipped off. cmap [in]: pyplot colorbar theme. Return: pyplot image object/handler, or None. """ if vmin is None: vmin = get_min_value(solution, field) if vmax is None: vmax = get_max_value(solution, field) for state in solution.states: p = state.patch if p.level < min_level: continue if max_level is not None and max_level < p.level: continue x, dx = numpy.linspace(p.lower_global[0], p.upper_global[0], p.num_cells_global[0]+1, retstep=True) y, dy = numpy.linspace(p.lower_global[1], p.upper_global[1], p.num_cells_global[1]+1, retstep=True) assert numpy.abs(dx-p.delta[0]) < 1e-6, "{} {}".format(dx, p.delta[0]) assert numpy.abs(dy-p.delta[1]) < 1e-6, "{} {}".format(dy, p.delta[1]) im = ax.pcolormesh( x, y,
numpy.ma.masked_less(state.q[field, :, :], threshold)
numpy.ma.masked_less
# File :ConPolyProcess.py # Author :WJ # Function : # Time :2021/01/22 # Version : # Amend : import matplotlib.pyplot as plt import numpy as np import math import time def maxPoints(points): # write your code here # 神坑,还有一个点的情况,哎 if len(points) == 1: return 1 # 任意两个点练成一条直线,判断是否再这条直线上 # 获取两个点 max = 0 a = 0 a_max = 0 b_max = 0 MAX = [] A = [] B = [] for i in range(len(points)): for j in range(len(points)): if i != j: pointcount = 0 # 拿到两个点,获得矢量 # 排除一种x2-x1 = 0 的情况 b = points[j, 0] - points[i, 0] if b == 0: # 遍历找到都在这条直线上的点 for t in range(len(points)): if points[t, 0] == points[i, 0]: pointcount = pointcount + 1 else: # 根据公式 a= (y2-y1)/(x2-x1) a = (points[j, 1] - points[i, 1]) / b b = -a * points[i, 0] + points[i, 1] # 遍历其他点是否再这条直线上 pointcount = 1 for k in range(len(points)): if (points[k, 0] != points[i, 0]): if abs(points[k, 1] - (a * (points[k, 0] - points[i, 0]) + points[i, 1])) / math.sqrt( 1 + a * a) < 1: pointcount = pointcount + 1 if max < pointcount: max = pointcount a_max = a b_max = b MAX.append(max) A.append(a_max) B.append(b_max) return MAX[np.argmax(MAX)], A[np.argmax(MAX)], B[np.argmax(MAX)] def delete_linepoints(data1, a, b, distance=1): K = [] for k in range(len(data1)): if abs(data1[k, 1] - (a * data1[k, 0] + b)) / math.sqrt(1 + a * a) < distance: K.append(k) K.sort(reverse=True) line = data1[K, :] x01 =
np.argmin(line[:, 0])
numpy.argmin
# -*- coding: utf-8 -*- """ Fast Linear Attitude Estimator ============================== The Fast Linear Attitude Estimator (FLAE) obtains the attitude quaternion with an eigenvalue-based solution as proposed by [Wu]_. A symbolic solution to the corresponding characteristic polynomial is also derived for a higher computation speed. One-Dimensional Fusion ---------------------- We assume that we have a single observable (can be measured) frame. The sensor outputs can be rotated with a :math:`3\\times 3` `Direction Cosine Matrix <../dcm.html>`_ :math:`\\mathbf{C}` using: .. math:: \\mathbf{D}^b = \\mathbf{CD}^r where :math:`\\mathbf{D}^b=\\begin{bmatrix}D_x^b & D_y^b & D_z^b\\end{bmatrix}^T` is the observation vector in body frame and :math:`\\mathbf{D}^r=\\begin{bmatrix}D_x^r & D_y^r & D_z^r\\end{bmatrix}^T` is the observation vector in reference frame. To put it in terms of a quaternion, we define the loss function :math:`\\mathbf{f}_D(\\mathbf{q})` as: .. math:: \\mathbf{f}_D(\\mathbf{q}) \\triangleq \\mathbf{CD}^r - \\mathbf{D}^b where the quaternion :math:`\\mathbf{q}` is defined as: .. math:: \\begin{array}{rcl} \\mathbf{q}&=&\\begin{pmatrix}q_w & q_x & q_y & q_z\\end{pmatrix}^T \\\\ &=& \\begin{pmatrix}\\cos\\frac{\\theta}{2} & n_x\\sin\\frac{\\theta}{2} & n_y\\sin\\frac{\\theta}{2} & n_z\\sin\\frac{\\theta}{2}\\end{pmatrix}^T \\end{array} The purpose is to *minimize the loss function*. We start by expanding :math:`\\mathbf{f}_D(\\mathbf{q})`: .. math:: \\begin{array}{rcl} \\mathbf{f}_D(\\mathbf{q}) &=& \\mathbf{CD}^r - \\mathbf{D}^b \\\\ &=& \\mathbf{P}_D\\mathbf{q} - \\mathbf{D}^b \\\\ &=& (D_x^r\\mathbf{P}_1 + D_y^r\\mathbf{P}_2 + D_z^r\\mathbf{P}_3)\\mathbf{q} - \\mathbf{D}^b \\\\ &=& D_x^r\\mathbf{C}_1 + D_y^r\\mathbf{C}_2 + D_z^r\\mathbf{C}_3 - \\mathbf{D}^b \\end{array} where :math:`\\mathbf{C}_1`, :math:`\\mathbf{C}_2` and :math:`\\mathbf{C}_3` are the columns of :math:`\\mathbf{C}` represented as: .. math:: \\begin{array}{rcl} \\mathbf{C}_1 &=& \\mathbf{P}_1\\mathbf{q} = \\begin{bmatrix}q_w^2+q_x^2-q_y^2-q_z^2 \\\\ 2(q_xq_y + q_wq_z) \\\\ 2(q_xq_z - q_wq_y) \\end{bmatrix} \\\\ && \\\\ \\mathbf{C}_2 &=& \\mathbf{P}_2\\mathbf{q} = \\begin{bmatrix}2(q_xq_y - q_wq_z) \\\\ q_w^2-q_x^2+q_y^2-q_z^2 \\\\2(q_wq_x + q_yq_z) \\end{bmatrix} \\\\ && \\\\ \\mathbf{C}_3 &=& \\mathbf{P}_3\\mathbf{q} = \\begin{bmatrix}2(q_xq_z + q_wq_y) \\\\ 2(q_yq_z - q_wq_x) \\\\ q_w^2-q_x^2-q_y^2+q_z^2 \\end{bmatrix} \\end{array} When :math:`\\mathbf{q}` is optimal, it satisfies: .. math:: \\mathbf{q} = \\mathbf{P}_D^\\dagger \\mathbf{D}^b where :math:`\\mathbf{P}_D^\\dagger` is the `pseudo-inverse <https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse>`_ of :math:`\\mathbf{P}_D` *if and only if* it has full rank. .. note:: A matrix is said to have **full rank** if its `rank <https://en.wikipedia.org/wiki/Rank_(linear_algebra)>`_ is equal to the largest possible for a matrix of the same dimensions, which is the lesser of the number of rows and columns. The analytical form of any pseudo-inverse is normally difficult to obtain, but thanks to the orthogonality of :math:`\\mathbf{P}_D` we get: .. math:: \\mathbf{P}_D^\\dagger = \\mathbf{P}_D^T = D_x^r\\mathbf{P}_1^T + D_y^r\\mathbf{P}_2^T + D_z^r\\mathbf{P}_3^T The orientation :math:`\\mathbf{q}` is obtained from: .. math:: \\mathbf{P}_D^\\dagger\\mathbf{D}^b - \\mathbf{q} = \\mathbf{Gq} Solving :math:`\\mathbf{Gq}=0` (*if and only if* :math:`\\mathrm{det}(\\mathbf{G})=0`) using elementary row transformations we obtain the wanted orthonormal quaternion. N-Dimensional Fusion -------------------- We assume having :math:`n` observation equations, such that the error residual vector is given by augmenting :math:`\\mathbf{f}_D(\\mathbf{q})` as: .. math:: \\mathbf{f}_{\\Sigma D}(\\mathbf{q}) = \\begin{bmatrix} \\sqrt{a_1}(\\mathbf{P}_{D_1}\\mathbf{q}-D_1^b) \\\\ \\sqrt{a_2}(\\mathbf{P}_{D_2}\\mathbf{q}-D_2^b) \\\\ \\vdots \\\\ \\sqrt{a_n}(\\mathbf{P}_{D_n}\\mathbf{q}-D_n^b) \\end{bmatrix} When :math:`\\mathbf{f}_{\\Sigma D}(\\mathbf{q})=0`, the equation satisfies: .. math:: \\begin{array}{rcl} \\mathbf{P}_{\\Sigma D}\\mathbf{q} &=& \\mathbf{D}_\\Sigma^b \\\\ \\begin{bmatrix} \\sqrt{a_1}\\mathbf{P}_{D_1} \\\\ \\sqrt{a_2}\\mathbf{P}_{D_2} \\\\ \\vdots \\\\ \\sqrt{a_n}\\mathbf{P}_{D_n} \\end{bmatrix}\\mathbf{q} &=& \\begin{bmatrix} \\sqrt{a_1}\\mathbf{D}_1^b \\\\ \\sqrt{a_2}\\mathbf{D}_2^b \\\\ \\vdots \\\\ \\sqrt{a_n}\\mathbf{D}_n^b \\end{bmatrix} \\end{array} Intuitively, we would solve it with :math:`\mathbf{q}=\\mathbf{P}_{\\Sigma D}^\\dagger\\mathbf{D}_\\Sigma^b`, but the pseudo-inverse of :math:`\\mathbf{P}_{\\Sigma D}` is very difficult to compute. However, it is possible to transform the equation by the pseudo-inverse matrices of :math:`\\mathbf{q}` and :math:`\\mathbf{D}_\\Sigma^b`: .. math:: \\mathbf{q}^\\dagger = (\\mathbf{D}_\\Sigma^b)^\\dagger \\mathbf{P}_{\\Sigma D} :math:`\\mathbf{P}_{\\Sigma D}` can be further expanded into: .. math:: \\mathbf{P}_{\\Sigma D} = \\mathbf{U}_{D_x}\\mathbf{P}_1 + \\mathbf{U}_{D_y}\\mathbf{P}_2 + \\mathbf{U}_{D_z}\\mathbf{P}_3 where :math:`\\mathbf{P}_1`, :math:`\\mathbf{P}_2` and :math:`\\mathbf{P}_3` are :math:`3\\times 4` matrices, and :math:`\\mathbf{U}_{D_x}`, :math:`\\mathbf{U}_{D_y}` and :math:`\\mathbf{U}_{D_z}` are :math:`3n\\times 3` matrices. Hence, .. math:: (\\mathbf{D}_\\Sigma^b)^\\dagger\\mathbf{P}_{\\Sigma D} = (\\mathbf{D}_\\Sigma^b)^\\dagger\\mathbf{U}_{D_x}\\mathbf{P}_1 + (\\mathbf{D}_\\Sigma^b)^\\dagger\\mathbf{U}_{D_y}\\mathbf{P}_2 + (\\mathbf{D}_\\Sigma^b)^\\dagger\\mathbf{U}_{D_z}\\mathbf{P}_3 The fusion equation finally arrives to: .. math:: \\mathbf{H}_x\\mathbf{P}_1 + \\mathbf{H}_y\\mathbf{P}_2 + \\mathbf{H}_z\\mathbf{P}_3 - \\mathbf{q}^\\dagger = \\mathbf{0}_{1\\times 4} where :math:`\\mathbf{H}_x`, :math:`\\mathbf{H}_y` and :math:`\\mathbf{H}_z` are :math:`1\\times 3` matrices .. math:: \\begin{array}{rcl} \\mathbf{H}_x &= (\\mathbf{D}_\\Sigma^b)^\\dagger\\mathbf{U}_{D_x} =& \\begin{bmatrix} \\sum_{i=1}^n a_iD_{x,i}^rD_{x,i}^b & \\sum_{i=1}^n a_iD_{x,i}^rD_{y,i}^b & \\sum_{i=1}^n a_iD_{x,i}^rD_{z,i}^b & \\end{bmatrix} \\\\ && \\\\ \\mathbf{H}_y &= (\\mathbf{D}_\\Sigma^b)^\\dagger\\mathbf{U}_{D_y} =& \\begin{bmatrix} \\sum_{i=1}^n a_iD_{y,i}^rD_{x,i}^b & \\sum_{i=1}^n a_iD_{y,i}^rD_{y,i}^b & \\sum_{i=1}^n a_iD_{y,i}^rD_{z,i}^b & \\end{bmatrix} \\\\ && \\\\ \\mathbf{H}_z &= (\\mathbf{D}_\\Sigma^b)^\\dagger\\mathbf{U}_{D_z} =& \\begin{bmatrix} \\sum_{i=1}^n a_iD_{z,i}^rD_{x,i}^b & \\sum_{i=1}^n a_iD_{z,i}^rD_{y,i}^b & \\sum_{i=1}^n a_iD_{z,i}^rD_{z,i}^b & \\end{bmatrix} \\end{array} Refactoring the equation with a transpose operation, we obtain: .. math:: \\begin{array}{rcl} \\mathbf{P}_1^T\\mathbf{H}_x^T + \\mathbf{P}_2^T\\mathbf{H}_y^T + \\mathbf{P}_3^T\\mathbf{H}_z^T - \\mathbf{q} &=& \\mathbf{0} \\\\ (\\mathbf{W} - \\mathbf{I})\\mathbf{q} &=& \\mathbf{0} \\end{array} where the elements of :math:`\\mathbf{W}` are given by: .. math:: \\mathbf{W} = \\begin{bmatrix} H_{x1} + H_{y2} + H_{z3} & -H_{y3} + H_{z2} & -H_{z1} + H_{x3} & -H_{x2} + H_{y1} \\\\ -H_{y3} + H_{z2} & H_{x1} - H_{y2} - H_{z3} & H_{x2} + H_{y1} & H_{x3} + H_{z1} \\\\ -H_{z1} + H_{x3} & H_{x2} + H_{y1} & H_{y2} - H_{x1} - H_{z3} & H_{y3} + H_{z2} \\\\ -H_{x2} + H_{y1} & H_{x3} + H_{z1} & H_{y3} + H_{x2} & H_{z3} - H_{y2} - H_{x1} \\end{bmatrix} Eigenvector solution -------------------- The simplest solution is to find the eigenvector corresponding to the largest eigenvalue of :math:`\\mathbf{W}`, as used by `Davenport's <davenport.html>`_ q-method. This has the advantage of returning a normalized and valid quaternion, which is used to represent the attitude. This method's main disadvantage is :math:`(\\mathbf{W}-\\mathbf{I})` suffering from rank-deficient problems in the sensor outputs, besides its computational cost. Characteristic Polynomial ------------------------- The fusion equation can be transformed by adding a small quaternion error :math:`\\epsilon \\mathbf{q}` .. math:: \\mathbf{Wq} = (1+\\epsilon)\\mathbf{q} recognizing that :math:`1+\\epsilon` is an eigenvalue of :math:`\\mathbf{W}` the problem is now shifted to find the eigenvalue that is closest to 1. Analytically the calculation of the eigenvalue of :math:`\\mathbf{W}` builds first its characteristic polynomial as: .. math:: \\begin{array}{rcl} f(\\lambda) &=& \\mathrm{det}(\\mathbf{W}-\\lambda\\mathbf{I}_{4\\times 4}) \\\\ &=& \\lambda^4 + \\tau_1\\lambda^2 + \\tau_2\\lambda + \\tau_3 \\end{array} where the coefficients are obtained from: .. math:: \\begin{array}{rcl} \\tau_1 &=& -2\\big(H_{x1}^2 + H_{x2}^2 + H_{x3}^2 + H_{y1}^2 + H_{y2}^2 + H_{y3}^2 + H_{z1}^2 + H_{z2}^2 + H_{z3}^2\\big) \\\\ && \\\\ \\tau_2 &=& 8\\big(H_{x3}H_{y2}H_{z1} - H_{x2}H_{y3}H_{z1} - H_{x3}H_{y1}H_{z2} + H_{x1}H_{y3}H_{z2} + H_{x2}H_{y1}H_{z3} - H_{x1}H_{y2}H_{z3}\\big) \\\\ && \\\\ \\tau_3 &=& \\mathrm{det}(\\mathbf{W}) \\end{array} Once :math:`\\lambda` is defined, the eigenvector can be obtained using elementary row operations (Gaussian elimination). There are two main methods to compute the optimal :math:`\\lambda`: **1. Iterative Newton-Raphson method** This 4th-order characteristic polynomial :math:`f(\\lambda)` can be solved with the `Newton-Raphson's method <https://en.wikipedia.org/wiki/Newton%27s_method>`_ and the aid of its derivative, which is found to be: .. math:: f'(\\lambda) = 4\\lambda^3 + 2\\tau_1\\lambda + \\tau_2 The initial value for the root finding process can be set to 1, because :math:`\\lambda` is very close to it. So, every iteration at :math:`n` updates :math:`\\lambda` as: .. math:: \\lambda_{n+1} \\gets \\lambda_n - \\frac{f\\big(\\lambda_n\\big)}{f'\\big(\\lambda_n\\big)} = \\lambda_n - \\frac{\\lambda_n^4 + \\tau_1\\lambda_n^2 + \\tau_2\\lambda_n + \\tau_3}{4\\lambda_n^3 + 2\\tau_1\\lambda_n + \\tau_2} The value of :math:`\\lambda` is commonly found after a couple iterations, but the accuracy is not linear with the iteration steps and will not always achieve good results. **2. Symbolic method** A more precise solution involves a symbolic approach, where four solutions to the characteristic polynomial are obtained as follows: .. math:: \\begin{array}{rcl} \\lambda_1 &=& \\alpha \\Big(T_2 - \\sqrt{k_1 - k_2}\\Big) \\\\ && \\\\ \\lambda_2 &=& \\alpha \\Big(T_2 + \\sqrt{k_1 - k_2}\\Big) \\\\ && \\\\ \\lambda_3 &=& -\\alpha \\Big(T_2 + \\sqrt{k_1 + k_2}\\Big) \\\\ && \\\\ \\lambda_4 &=& -\\alpha \\Big(T_2 - \\sqrt{k_1 + k_2}\\Big) \\\\ \\end{array} with the helper variables: .. math:: \\begin{array}{rcl} \\alpha &=& \\frac{1}{2\\sqrt{6}} \\\\ && \\\\ k_1 &=& -T_2^2-12\\tau_1 \\\\ && \\\\ k_2 &=& \\frac{12\\sqrt{6}\\tau_2}{T_2} \\\\ && \\\\ T_0 &=& 2\\tau_1^3 + 27\\tau_2^2 - 72\\tau_1\\tau_3 \\\\ && \\\\ T_1 &=& \\Big(T_0 + \\sqrt{-4(t_1^2+12\\tau_3)^3 + T_0^2}\\Big)^{\\frac{1}{3}} \\\\ && \\\\ T_2 &=& \\sqrt{-4\\tau_1 + \\frac{2^{\\frac{4}{3}}(\\tau_1^2+12\\tau_3)}{T_1} + 2^{\\frac{2}{3}}T_1} \\end{array} Then chose the :math:`\\lambda`, which is closest to 1. This way solving for :math:`\\lambda` is truly shortened. Optimal Quaternion ------------------ Having :math:`\\mathbf{N}=\\mathbf{W}-\\lambda\\mathbf{I}_{4\\times 4}`, the matrix can be transformed via row operations to: .. math:: \\mathbf{N} \\to \\mathbf{N}' = \\begin{bmatrix} 1 & 0 & 0 & \\chi \\\\ 0 & 1 & 0 & \\rho \\\\ 0 & 0 & 1 & \\upsilon \\\\ 0 & 0 & 0 & \\zeta \\end{bmatrix} where :math:`\\zeta` is usually a very small number. To ensure that :math:`(\\mathbf{W}-\\lambda\\mathbf{I}_{4\\times 4})=\\mathbf{q}=\\mathbf{0}` has non-zero and unique solution, :math:`\\zeta` is chosen to be 0. Hence: .. math:: \\mathbf{N}' = \\begin{bmatrix} 1 & 0 & 0 & \\chi \\\\ 0 & 1 & 0 & \\rho \\\\ 0 & 0 & 1 & \\upsilon \\\\ 0 & 0 & 0 & 0 \\end{bmatrix} Letting :math:`q_w=-1`, the solution to the optimal quaternion is obtained with: .. math:: \\mathbf{q} = \\begin{pmatrix}q_w\\\\q_x\\\\q_y\\\\q_z\\end{pmatrix} = \\begin{pmatrix}-1\\\\\\chi\\\\\\rho\\\\\\upsilon\\end{pmatrix} Finally, the quaternion is normalized to be able to be used as a versor: .. math:: \\mathbf{q} = \\frac{1}{\\|\\mathbf{q}\\|} \\mathbf{q} The decisive element of QUEST is its matrix :math:`\\mathbf{K}`, whereas for FLAE :math:`\\mathbf{W}` plays the same essential role. Both algorithms spend most of its computation obtaining said matrices. FLAE has the same accuracy as other similar estimators (QUEST, SVD, etc.), but with the advantage of being up to 47% faster than the fastest among them. Another advantage is the symbolic formulation of the characteristic polynomial, which does not contain any adjoint matrices, leading to a simpler (therefore faster) calculation of the eigenvalues. FLAE advocates for the symbolic method to calculate the eigenvalue. However, the Newton iteration can be also used to achieve a similar performance to that of QUEST. References ---------- .. [Wu] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, et al. Fast Linear Quaternion Attitude Estimator Using Vector Observations. IEEE Transactions on Automation Science and Engineering, Institute of Electrical and Electronics Engineers, 2018. (https://hal.inria.fr/hal-01513263) """ import warnings import numpy as np from ..common.mathfuncs import * warnings.filterwarnings('error') # Reference Observations in Munich, Germany from ..utils.wmm import WMM MAG = WMM(latitude=MUNICH_LATITUDE, longitude=MUNICH_LONGITUDE, height=MUNICH_HEIGHT).magnetic_elements def _assert_iterables(item, item_name: str = 'iterable'): if not isinstance(item, (list, tuple, np.ndarray)): raise TypeError(f"{item_name} must be given as an array. Got {type(item)}") def _assert_valid_method(method : str, valid_methods : list) -> None: if method not in valid_methods: joint_methods = "', '".join(valid_methods[:-1]) + "' or '" + valid_methods[-1] raise ValueError(f"Given method '{method}' is not valid. Try '{joint_methods}'") class FLAE: """Fast Linear Attitude Estimator Parameters ---------- acc : numpy.ndarray, default: None N-by-3 array with measurements of acceleration in in m/s^2 mag : numpy.ndarray, default: None N-by-3 array with measurements of magnetic field in mT method : str, default: ``'symbolic'`` Method used to estimate the attitude. Options are: ``'symbolic'``, ``'eig'``, and ``'newton'``. weights : np.ndarray, default: [0.5, 0.5] Weights used for each sensor. They must add up to 1. magnetic_dip : float Geomagnetic Inclination angle at local position, in degrees. Defaults to magnetic dip of Munich, Germany. Raises ------ ValueError When estimation method is invalid. Examples -------- >>> orientation = FLAE() >>> accelerometer = np.array([-0.2853546, 9.657394, 2.0018768]) >>> magnetometer = np.array([12.32605, -28.825378, -26.586914]) >>> orientation.estimate(acc=accelerometer, mag=magnetometer) array([-0.45447247, -0.69524546, 0.55014011, -0.08622285]) You can set a different estimation method passing its name to parameter ``method``. >>> orientation.estimate(acc=accelerometer, mag=magnetometer, method='newton') array([ 0.42455176, 0.68971918, -0.58315259, -0.06305803]) Or estimate all quaternions at once by giving the data to the constructor. All estimated quaternions are stored in attribute ``Q``. >>> orientation = FLAE(acc=acc_data, mag=mag_Data, method='eig') >>> orientation.Q.shape (1000, 4) """ def __init__(self, acc: np.ndarray = None, mag: np.ndarray = None, method: str = 'symbolic', **kw): self.acc = acc self.mag = mag self.method = method # Reference measurements mdip = kw.get('magnetic_dip') # Magnetic dip, in degrees mag_ref = np.array([MAG['X'], MAG['Y'], MAG['Z']]) if mdip is None else np.array([cosd(mdip), 0., -sind(mdip)]) mag_ref /= np.linalg.norm(mag_ref) acc_ref = np.array([0.0, 0.0, 1.0]) self.ref = np.vstack((acc_ref, mag_ref)) # Weights of sensors self.a = kw.get('weights', np.array([0.5, 0.5])) self.a /= np.sum(self.a) if self.acc is not None and self.mag is not None: self.Q = self._compute_all() def _compute_all(self) -> np.ndarray: """ Estimate the quaternions given all data in class Data. Class Data must have, at least, `acc` and `mag` attributes. Returns ------- Q : numpy.ndarray M-by-4 Array with all estimated quaternions, where M is the number of samples. """ if self.acc.shape != self.mag.shape: raise ValueError("acc and mag are not the same size") if self.acc.ndim < 2: return self.estimate(self.acc, self.mag) num_samples = len(self.acc) Q = np.zeros((num_samples, 4)) for t in range(num_samples): Q[t] = self.estimate(self.acc[t], self.mag[t], method=self.method) return Q def _P1Hx(self, Hx: np.ndarray) -> np.ndarray: return np.array([ [ Hx[0], 0.0, -Hx[2], Hx[1]], [ 0.0, Hx[0], Hx[1], Hx[2]], [-Hx[2], Hx[1], -Hx[0], 0.0], [ Hx[1], Hx[2], 0.0, -Hx[0]]]) def _P2Hy(self, Hy: np.ndarray) -> np.ndarray: return np.array([ [ Hy[1], Hy[2], 0.0, -Hy[0]], [ Hy[2], -Hy[1], Hy[0], 0.0], [ 0.0, Hy[0], Hy[1], Hy[2]], [-Hy[0], 0.0, Hy[2], -Hy[1]]]) def _P3Hz(self, Hz: np.ndarray) -> np.ndarray: return np.array([ [ Hz[2], -Hz[1], Hz[0], 0.0], [-Hz[1], -Hz[2], 0.0, Hz[0]], [ Hz[0], 0.0, -Hz[2], Hz[1]], [ 0.0, Hz[0], Hz[1], Hz[2]]]) def estimate(self, acc: np.ndarray, mag: np.ndarray, method: str = 'symbolic') -> np.ndarray: """ Estimate a quaternion with the given measurements and weights. Parameters ---------- acc : numpy.ndarray Sample of tri-axial Accelerometer. mag : numpy.ndarray Sample of tri-axial Magnetometer. method : str, default: 'symbolic' Method used to estimate the attitude. Options are: 'symbolic', 'eig' and 'newton'. Returns ------- q : numpy.ndarray Estimated orienation as quaternion. Examples -------- >>> accelerometer = np.array([-0.2853546, 9.657394, 2.0018768]) >>> magnetometer = np.array([12.32605, -28.825378, -26.586914]) >>> orientation = FLAE() >>> orientation.estimate(acc=accelerometer, mag=magnetometer) array([-0.45447247, -0.69524546, 0.55014011, -0.08622285]) >>> orientation.estimate(acc=accelerometer, mag=magnetometer, method='eig') array([ 0.42455176, 0.68971918, -0.58315259, -0.06305803]) >>> orientation.estimate(acc=accelerometer, mag=magnetometer, method='newton') array([ 0.42455176, 0.68971918, -0.58315259, -0.06305803]) """ _assert_valid_method(method, ['symbolic', 'eig', 'newton']) _assert_iterables(acc, 'Gravitational acceleration vector') _assert_iterables(mag, 'Geomagnetic field vector') if acc.size != 3: raise ValueError(f"Accelerometer sample must be a (3,) array. Got array of shape {acc.shape}") if mag.size != 3: raise ValueError(f"Magnetometer sample must be a (3,) array. Got array of shape {mag.shape}") Db = np.r_[[acc/
np.linalg.norm(acc)
numpy.linalg.norm
""" Tests for tools Author: <NAME> License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd from scipy.linalg import solve_discrete_lyapunov from statsmodels.tsa.statespace import tools from statsmodels.tsa.api import acovf # from .results import results_sarimax from numpy.testing import ( assert_allclose, assert_equal, assert_array_equal, assert_almost_equal, assert_raises ) class TestCompanionMatrix(object): cases = [ (2, np.array([[0,1],[0,0]])), ([1,-1,-2], np.array([[1,1], [2,0]])), ([1,-1,-2,-3], np.array([[1,1,0], [2,0,1], [3,0,0]])), ([1,-np.array([[1,2],[3,4]]),-np.array([[5,6],[7,8]])], np.array([[1,2,5,6], [3,4,7,8], [1,0,0,0], [0,1,0,0]]).T) ] def test_cases(self): for polynomial, result in self.cases: assert_equal(tools.companion_matrix(polynomial), result) class TestDiff(object): x = np.arange(10) cases = [ # diff = 1 ([1,2,3], 1, None, 1, [1, 1]), # diff = 2 (x, 2, None, 1, [0]*8), # diff = 1, seasonal_diff=1, k_seasons=4 (x, 1, 1, 4, [0]*5), (x**2, 1, 1, 4, [8]*5), (x**3, 1, 1, 4, [60, 84, 108, 132, 156]), # diff = 1, seasonal_diff=2, k_seasons=2 (x, 1, 2, 2, [0]*5), (x**2, 1, 2, 2, [0]*5), (x**3, 1, 2, 2, [24]*5), (x**4, 1, 2, 2, [240, 336, 432, 528, 624]), ] def test_cases(self): # Basic cases for series, diff, seasonal_diff, k_seasons, result in self.cases: # Test numpy array x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) # Test as Pandas Series series = pd.Series(series) # Rewrite to test as n-dimensional array series = np.c_[series, series] result = np.c_[result, result] # Test Numpy array x = tools.diff(series, diff, seasonal_diff, k_seasons)
assert_almost_equal(x, result)
numpy.testing.assert_almost_equal
import os import glob import random import torch import imageio import errno import numpy as np import tifffile as tiff import torch.nn as nn import matplotlib.pyplot as plt from torch.utils import data from sklearn.metrics import confusion_matrix # ============================================= class CustomDataset(torch.utils.data.Dataset): def __init__(self, imgs_folder, labels_folder, augmentation): # 1. Initialize file paths or a list of file names. self.imgs_folder = imgs_folder self.labels_folder = labels_folder self.data_augmentation = augmentation # self.transform = transforms def __getitem__(self, index): # 1. Read one data from file (e.g. using num py.fromfile, PIL.Image.open). # 2. Preprocess the data (e.g. torchvision.Transform). # 3. Return a data pair (e.g. image and label). all_images = glob.glob(os.path.join(self.imgs_folder, '*.npy')) all_labels = glob.glob(os.path.join(self.labels_folder, '*.npy')) # sort all in the same order all_labels.sort() all_images.sort() # # label = Image.open(all_labels[index]) # label = tiff.imread(all_labels[index]) label = np.load(all_labels[index]) label = np.array(label, dtype='float32') # image = tiff.imread(all_images[index]) image = np.load(all_images[index]) image = np.array(image, dtype='float32') # labelname = all_labels[index] path_label, labelname = os.path.split(labelname) labelname, labelext = os.path.splitext(labelname) # c_amount = len(np.shape(label)) # # # Reshaping everyting to make sure the order: channel x height x width if c_amount == 3: d1, d2, d3 = np.shape(label) if d1 != min(d1, d2, d3): label = np.reshape(label, (d3, d1, d2)) # elif c_amount == 2: h, w = np.shape(label) label = np.reshape(label, (1, h, w)) # d1, d2, d3 = np.shape(image) # if d1 != min(d1, d2, d3): # image = np.reshape(image, (d3, d1, d2)) # if self.data_augmentation == 'full': # augmentation: augmentation = random.uniform(0, 1) # if augmentation < 0.25: # c, h, w = np.shape(image) # for channel in range(c): # image[channel, :, :] = np.flip(image[channel, :, :], axis=0).copy() image[channel, :, :] = np.flip(image[channel, :, :], axis=1).copy() # label = np.flip(label, axis=1).copy() label = np.flip(label, axis=2).copy() elif augmentation < 0.5: # mean = 0.0 sigma = 0.15 noise =
np.random.normal(mean, sigma, image.shape)
numpy.random.normal
import os.path import numpy as np from lyapunov_reachability.speculation_tabular.base import QBase import cplex from cplex.exceptions import CplexSolverError class LyapunovQAgent(QBase): def __init__( self, env, confidence, nb_states, nb_actions, initial_policy, terminal_states, seed=None, strict_done=True, safe_init=False, baseline_dir=None, baseline_step=None, save_dir='../../spec-tb-lyapunov'): self.operative_q = np.ones((nb_states, nb_actions)) self.operative_q[terminal_states] = 0. self.time_q =
np.zeros((nb_states, nb_actions))
numpy.zeros
import pickle import os import sys import numpy as np import torch.utils.data as torch_data class ScannetDataset(torch_data.Dataset): def __init__(self, root=None, npoints=10240, split='train', with_dropout=False, with_norm=False, with_rgb=False, sample_rate=None): super().__init__() print(' ---- load data from', root) self.npoints = npoints self.with_dropout = with_dropout self.indices = [0, 1, 2] if with_norm: self.indices += [3, 4, 5] if with_rgb: self.indices += [6, 7, 8] print('load scannet dataset <{}> with npoint {}, indices: {}.'.format(split, npoints, self.indices)) data_filename = os.path.join(root, 'scannet_%s_rgb21c_pointid.pickle' % (split)) with open(data_filename, 'rb') as fp: self.scene_points_list = pickle.load(fp) self.semantic_labels_list = pickle.load(fp) scene_points_id = pickle.load(fp) num_point_all = pickle.load(fp) if split == 'train': labelweights = np.zeros(21) for seg in self.semantic_labels_list: tmp,_ = np.histogram(seg,range(22)) labelweights += tmp labelweights = labelweights.astype(np.float32) labelweights = labelweights/np.sum(labelweights) # self.labelweights = 1/np.log(1.2+labelweights) self.labelweights = np.power(np.amax(labelweights[1:]) / labelweights, 1 / 3.0) elif split == 'eval' or split == 'test': self.labelweights = np.ones(21) else: raise ValueError('split must be train or eval.') if sample_rate is not None: num_point = npoints sample_prob = num_point_all / np.sum(num_point_all) num_iter = int(np.sum(num_point_all) * sample_rate / num_point) room_idxs = [] for index in range(len(self.scene_points_list)): repeat_times = round(sample_prob[index] * num_iter) repeat_times = int(max(repeat_times, 1)) room_idxs.extend([index] * repeat_times) self.room_idxs = np.array(room_idxs) np.random.seed(123) np.random.shuffle(self.room_idxs) else: self.room_idxs = np.arange(len(self.scene_points_list)) print("Totally {} samples in {} set.".format(len(self.room_idxs), split)) def __getitem__(self, index): index = self.room_idxs[index] data_set = self.scene_points_list[index] point_set = data_set[:, :3] semantic_seg = self.semantic_labels_list[index].astype(np.int32) coordmax = np.max(point_set, axis=0) coordmin = np.min(point_set, axis=0) smpmin = np.maximum(coordmax-[2, 2, 3.0], coordmin) smpmin[2] = coordmin[2] smpsz = np.minimum(coordmax-smpmin,[2,2,3.0]) smpsz[2] = coordmax[2]-coordmin[2] isvalid = False # randomly choose a point as center point and sample <n_points> points in the box area of center-point for i in range(10): curcenter = point_set[np.random.choice(len(semantic_seg),1)[0],:] curmin = curcenter - [1, 1, 1.5] curmax = curcenter + [1, 1, 1.5] curmin[2] = coordmin[2] curmax[2] = coordmax[2] curchoice = np.sum((point_set >= (curmin - 0.2)) * (point_set <= (curmax + 0.2)), axis=1) == 3 cur_point_set = point_set[curchoice, :] cur_data_set = data_set[curchoice, :] cur_semantic_seg = semantic_seg[curchoice] if len(cur_semantic_seg) == 0: continue mask = np.sum((cur_point_set >= (curmin - 0.01)) * (cur_point_set <= (curmax + 0.01)), axis=1) == 3 vidx = np.ceil((cur_point_set[mask, :] - curmin) / (curmax - curmin) * [31.0, 31.0, 62.0]) vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 + vidx[:, 2]) isvalid = np.sum(cur_semantic_seg > 0) / len(cur_semantic_seg) >= 0.7 and len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02 if isvalid: break choice = np.random.choice(len(cur_semantic_seg), self.npoints, replace=True) semantic_seg = cur_semantic_seg[choice] mask = mask[choice] sample_weight = self.labelweights[semantic_seg] sample_weight *= mask selected_points = cur_data_set[choice, :] # np * 6, xyz + rgb point_set = np.zeros((self.npoints, 9)) # xyz, norm_xyz, rgb point_set[:, :3] = selected_points[:, :3] # xyz for i in range(3): # normalized_xyz point_set[:, 3 + i] = (selected_points[:, i] - coordmin[i]) / (coordmax[i] - coordmin[i]) point_set[:, 6:] = selected_points[:, 3:] / 255.0 # rgb if self.with_dropout: dropout_ratio = np.random.random() * 0.875 # 0 ~ 0.875 drop_idx = np.where(np.random.random((self.npoints)) <= dropout_ratio)[0] point_set[drop_idx, :] = point_set[0, :] semantic_seg[drop_idx] = semantic_seg[0] sample_weight[drop_idx] *= 0 point_set = point_set[:, self.indices] return point_set, semantic_seg, sample_weight def __len__(self): return len(self.room_idxs) # return len(self.scene_points_list) class ScannetDatasetWholeScene(torch_data.IterableDataset): def __init__(self, root=None, npoints=10240, split='train', with_norm=True, with_rgb=True): super().__init__() print(' ---- load data from', root) self.npoints = npoints self.indices = [0, 1, 2] if with_norm: self.indices += [3, 4, 5] if with_rgb: self.indices += [6, 7, 8] print('load scannet <whole scene> dataset <{}> with npoint {}, indices: {}.'.format(split, npoints, self.indices)) self.temp_data = [] self.temp_index = 0 self.now_index = 0 data_filename = os.path.join(root, 'scannet_%s_rgb21c_pointid.pickle' % (split)) with open(data_filename, 'rb') as fp: self.scene_points_list = pickle.load(fp) self.semantic_labels_list = pickle.load(fp) if split == 'train': labelweights = np.zeros(21) for seg in self.semantic_labels_list: tmp,_ = np.histogram(seg,range(22)) labelweights += tmp labelweights = labelweights.astype(np.float32) labelweights = labelweights/np.sum(labelweights) # self.labelweights = 1 / np.log(1.2 + labelweights) self.labelweights = np.power(np.amax(labelweights[1:]) / labelweights, 1 / 3.0) elif split == 'eval' or split == 'test': self.labelweights = np.ones(21) def get_data(self): idx = self.temp_index self.temp_index += 1 return self.temp_data[idx] def reset(self): self.temp_data = [] self.temp_index = 0 self.now_index = 0 def __iter__(self): self.reset() return self def __next__(self): if self.now_index >= len(self.scene_points_list) and self.temp_index >= len(self.temp_data): raise StopIteration() if self.temp_index < len(self.temp_data): return self.get_data() index = self.now_index self.now_index += 1 self.temp_data = [] self.temp_index = 0 data_set_ini = self.scene_points_list[index] point_set_ini = data_set_ini[:,:3] semantic_seg_ini = self.semantic_labels_list[index].astype(np.int32) coordmax = np.max(point_set_ini,axis=0) coordmin = np.min(point_set_ini,axis=0) nsubvolume_x = np.ceil((coordmax[0]-coordmin[0])/2).astype(np.int32) nsubvolume_y = np.ceil((coordmax[1]-coordmin[1])/2).astype(np.int32) point_sets = list() semantic_segs = list() sample_weights = list() isvalid = False for i in range(nsubvolume_x): for j in range(nsubvolume_y): curmin = coordmin+[i*2,j*2,0] curmax = coordmin+[(i+1)*2,(j+1)*2,coordmax[2]-coordmin[2]] curchoice = np.sum((point_set_ini>=(curmin-0.2))*(point_set_ini<=(curmax+0.2)),axis=1)==3 cur_point_set = point_set_ini[curchoice,:] cur_data_set = data_set_ini[curchoice,:] cur_semantic_seg = semantic_seg_ini[curchoice] if len(cur_semantic_seg)==0: continue mask = np.sum((cur_point_set >= (curmin - 0.001)) * (cur_point_set <= (curmax + 0.001)), axis=1) == 3 choice = np.random.choice(len(cur_semantic_seg), self.npoints, replace=len(cur_semantic_seg) < self.npoints) semantic_seg = cur_semantic_seg[choice] # N mask = mask[choice] if sum(mask) / float(len(mask)) < 0.01: continue sample_weight = self.labelweights[semantic_seg] sample_weight *= mask # N selected_points = cur_data_set[choice, :] # Nx6 point_set =
np.zeros([self.npoints, 9])
numpy.zeros
from __future__ import division, with_statement from scipy.constants import pi import scipy.constants as cons import numpy as np import scipy.optimize as optimize import matplotlib.pyplot as plt import scipy.linalg as LA # print at line 396 __author__ = 'sbt' # -*- coding: utf-8 -*- """ Contains the ModeAnalysis class, which can simulate the positions of ions in a crystal of desired size. The class contains methods for the generation of a crystal, relaxation to a minimum potential energy state, and determination of axial and (eventually) planar modes of motion by methods derived by Wang, Keith, and Freericks in 2013. Translated from MATLAB code written by <NAME> by <NAME>. Standardized and slightly revised by <NAME>. Be careful. Sometimes when using the exact same parameters this code will make different crystals with the same potential energy. That is, crystal are degenerate when reflecting over the axes. """ class ModeAnalysis: """ Simulates a 2-dimensional ion crystal, determining an equilibrium plane configuration given Penning trap parameters, and then calculates the eigenvectors and eigenmodes. For reference the following ion number correspond the closed shells: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 7 19 37 61 91 127 169 217 271 331 397 469 547 631... """ #Establish fundamental physical constants as class variables q = 1.602176565E-19 amu = 1.66057e-27 # m_Be = 9.012182 * amu k_e = 8.9875517873681764E9 # electrostatic constant k_e = 1 / (4.0 pi epsilon_0) def __init__(self, N=19, XR=1, Vtrap=(0.0, -1750.0, -1970.0), Ctrap=1.0, omega_z = 1.58e6, ionmass=None, B=4.4588, frot=180., Vwall=1., wall_order=2, quiet=True, precision_solving=True, method = 'bfgs'): """ :param N: integer, number of ions :param shells: integer, number of shells to instantiate the plasma with :param Vtrap: array of 3 elements, defines the [end, middle, center] voltages on the trap electrodes. :param Ctrap: float, constant coefficient on trap potentials :param B: float, defines strength of axial magnetic field. :param frot: float, frequency of rotation :param Vwall: float, strength of wall potential in volts :param wall_order: integer, defines the order of the rotating wall potential :param mult: float, mutliplicative factor for simplifying numerical calculations :param quiet: will print some things if False :param precision_solving: Determines if perturbations will be made to the crystal to find a low energy state with a number of attempts based on the number of ions. Disable for speed, but recommended. """ self.method = method self.ionmass = ionmass self.m_Be = self.ionmass * self.amu self.quiet = quiet self.precision_solving = precision_solving # Initialize basic variables such as physical constants self.Nion = N # self.shells = shells # self.Nion = 1 + 6 * np.sum(range(1, shells + 1)) # if no input masses, assume all ions are beryllium self.m = self.m_Be * np.ones(self.Nion) # mass order is irrelevant and don't assume it will be fixed # FUTURE: heavier (than Be) ions will be added to outer shells # for array of ion positions first half is x, last is y self.u0 = np.empty(2 * self.Nion) # initial lattice self.u = np.empty(2 * self.Nion) # equilibrium positions # trap definitions self.B = B self.wcyc = self.q * B / self.m_Be # Beryllium cyclotron frequency # axial trap coefficients; see Teale's final paper self.C = Ctrap * np.array([[0.0756, 0.5157, 0.4087], [-0.0001, -0.005, 0.005], [1.9197e3, 3.7467e3, -5.6663e3], [0.6738e7, -5.3148e7, 4.641e7]]) # wall order if wall_order == 2: self.Cw3 = 0 if wall_order == 3: self.Cw2 = 0 self.Cw3 = self.q * Vwall * 3e4 self.relec = 0.01 # rotating wall electrode distance in meters self.Vtrap = np.array(Vtrap) # [Vend, Vmid, Vcenter] for trap electrodes self.Coeff = np.dot(self.C, self.Vtrap) # Determine the 0th, first, second, and fourth order # potentials at trap center #self.wz = 4.9951e6 # old trapping frequency #self.wz = np.sqrt(2 * self.q * self.Coeff[2] / self.m_Be) # Compute axial frequency # print('axial freq=',self.wz/(2e6*np.pi),'MHz') self.omega_z = omega_z self.wz = self.omega_z self.wrot = 2 * pi * frot * 1e3 # Rotation frequency in units of angular fre quency # Not used vvv #self.wmag = 0.5 * (self.wcyc - np.sqrt(self.wcyc ** 2 - 2 * self.wz ** 2)) self.wmag=0 # a hack for now self.V0 = (0.5 * self.m_Be * self.wz ** 2) / self.q # Find quadratic voltage at trap center #self.Cw = 0.045 * Vwall / 1000 # old trap self.XR=XR self.Cw = self.XR*Vwall * 1612 / self.V0 # dimensionless coefficient in front self.delta = self.Cw # of rotating wall terms in potential self.dimensionless() # Make system dimensionless self.beta = (self.wr*self.wc - self.wr ** 2) -1/2 self.axialEvals = [] # Axial eigenvalues self.axialEvects = [] # Axial eigenvectors self.planarEvals = [] # Planar eigenvalues self.planarEvects = [] # Planar Eigenvectors self.axialEvalsE = [] # Axial eigenvalues in experimental units self.planarEvalsE = [] # Planar eigenvalues in experimental units self.p0 = 0 # dimensionless potential energy of equilibrium crystal self.r = [] self.rsep = [] self.dx = [] self.dy = [] self.hasrun = False def dimensionless(self): """Calculate characteristic quantities and convert to a dimensionless system """ # characteristic length self.l0 = ((self.k_e * self.q ** 2) / (.5 * self.m_Be * self.wz ** 2)) ** (1 / 3) self.t0 = 1 / self.wz # characteristic time self.v0 = self.l0 / self.t0 # characteristic velocity self.E0 = 0.5*self.m_Be*(self.wz**2)*self.l0**2 # characteristic energy self.wr = self.wrot / self.wz # dimensionless rotation self.wc = self.wcyc / self.wz # dimensionless cyclotron self.md = np.ones(self.Nion)#self.m / self.m_Be # dimensionless mass def expUnits(self): """Convert dimensionless outputs to experimental units""" self.u0E = self.l0 * self.u0 # Seed lattice self.uE = self.l0 * self.u # Equilibrium positions self.axialEvalsE_raw = self.wz * self.axialEvals_raw self.axialEvalsE = self.wz * self.axialEvals self.planarEvalsE = self.wz * self.planarEvals # eigenvectors are dimensionless anyway def run(self): """ Generates a crystal from the generate_crystal method (by the find_scalled_lattice_guess method, adjusts it into an eqilibirium position by find_eq_pos method) and then computes the eigenvalues and eigenvectors of the axial modes by calc_axial_modes. Sorts the eigenvalues and eigenvectors and stores them in self.Evals, self.Evects. Stores the radial separations as well. """ # print('this is the local mode_analysis.') if self.wmag > self.wrot: print("Warning: Rotation frequency", self.wrot/(2*pi), " is below magnetron frequency of", float(self.wrot/(2*pi))) return 0 self.generate_crystal() print(np.shape(self.u)) self.axialEvals_raw, self.axialEvals, self.axialEvects = self.calc_axial_modes(self.u) self.planarEvals, self.planarEvects, self.V = self.calc_planar_modes(self.u) self.expUnits() # make variables of outputs in experimental units self.axial_hessian = -self.calc_axial_hessian(self.u) self.planar_hessian= -self.V/2 self.axial_Mmat = np.diag(self.md) self.planar_Mmat = np.diag(np.tile(self.md,2)) self.hasrun = True def generate_crystal(self): """ The run method already is a "start-to-finish" implementation of crystal generation and eigenmode determination, so this simply contains the comopnents which generate a crystal. :return: Returns a crystal's position vector while also saving it to the class. """ # This check hasn't been working properly, and so wmag has been set to # 0 for the time being (July 2015, SBT) if self.wmag > self.wrot: print("Warning: Rotation frequency", self.wrot/(2*pi), " is below magnetron frequency of", float(self.wrot/(2*pi))) return 0 #Generate a lattice in dimensionless units self.u0 = self.find_scaled_lattice_guess(mins=1, res=50) # self.u0 = self.generate_2D_hex_lattice(2) # if masses are not all beryllium, force heavier ions to be boundary # ions, and lighter ions to be near center # ADD self.addDefects() #Solve for the equilibrium position self.u = self.find_eq_pos(self.u0,self.method) # Will attempt to nudge the crystal to a slightly lower energy state via some # random perturbation. # Only changes the positions if the perturbed potential energy was reduced. #Will perturb less for bigger crystals, as it takes longer depending on how many ions #there are. if self.precision_solving is True: if self.quiet is False: print("Perturbing crystal...") if self.Nion <= 62: for attempt in np.linspace(.05, .5, 50): self.u = self.perturb_position(self.u, attempt) if 62 < self.Nion <= 126: for attempt in np.linspace(.05, .5, 25): self.u = self.perturb_position(self.u, attempt) if 127 <= self.Nion <= 200: for attempt in np.linspace(.05, .5, 10): self.u = self.perturb_position(self.u, attempt) if 201 <= self.Nion: for attempt in np.linspace(.05, .3, 5): self.u = self.perturb_position(self.u, attempt) if self.quiet is False: pass #print("Perturbing complete") self.r, self.dx, self.dy, self.rsep = self.find_radial_separation(self.u) self.p0 = self.pot_energy(self.u) return self.u def generate_lattice(self): """Generate lattice for an arbitrary number of ions (self.Nion) :return: a flattened xy position vector defining the 2d hexagonal lattice """ # number of closed shells S = int((np.sqrt(9 - 12 * (1 - self.Nion)) - 3) / 6) u0 = self.generate_2D_hex_lattice(S) N0 = int(u0.size / 2) x0 = u0[0:N0] y0 = u0[N0:] Nadd = self.Nion - N0 # Number of ions left to add self.Nion = N0 pair = self.add_hex_shell(S + 1) # generate next complete shell xadd = pair[0::2] yadd = pair[1::2] for i in range(Nadd): # reset number of ions to do this calculation self.Nion += 1 # make masses all one (add defects later) self.md = np.ones(self.Nion) V = [] # list to store potential energies from calculation # for each ion left to add, calculate potential energy if that # ion is added for j in range(len(xadd)): V.append(self.pot_energy(np.hstack((x0, xadd[j], y0, yadd[j])))) ind = np.argmin(V) # ion added with lowest increase in potential # permanently add to existing crystal x0 = np.append(x0, xadd[ind]) y0 = np.append(y0, yadd[ind]) # remove ion from list to add xadd = np.delete(xadd, ind) yadd = np.delete(yadd, ind) # Restore mass array self.md = self.m / self.m_Be # dimensionless mass return np.hstack((x0, y0)) def pot_energy(self, pos_array): """ Computes the potential energy of the ion crystal, taking into consideration: Coulomb repulsion qv x B forces Trapping potential and some other things (#todo to be fully analyzed; june 10 2015) :param pos_array: The position vector of the crystal to be analyzed. :return: The scalar potential energy of the crystal configuration. """ # Frequency of rotation, mass and the number of ions in the array # the x positions are the first N elements of the position array x = pos_array[0:self.Nion] # The y positions are the last N elements of the position array y = pos_array[self.Nion:] # dx flattens the array into a row vector dx = x.reshape((x.size, 1)) - x dy = y.reshape((y.size, 1)) - y # rsep is the distances between rsep = np.sqrt(dx ** 2 + dy ** 2) with np.errstate(divide='ignore'): Vc = np.where(rsep != 0., 1 / rsep, 0) """ #Deprecated version below which takes into account anharmonic effects, to be used later V = 0.5 * (-m * wr ** 2 - q * self.Coeff[2] + q * B * wr) * np.sum((x ** 2 + y ** 2)) \ - q * self.Coeff[3] * np.sum((x ** 2 + y ** 2) ** 2) \ + np.sum(self.Cw2 * (x ** 2 - y ** 2)) \ + np.sum(self.Cw3 * (x ** 3 - 3 * x * y ** 2)) \ + 0.5 * k_e * q ** 2 * np.sum(Vc) """ V = -np.sum((self.md * self.wr ** 2 + 0.5 * self.md - self.wr * self.wc) * (x ** 2 + y ** 2)) \ + np.sum(self.md * self.Cw * (x ** 2 - y ** 2)) + 0.5 * np.sum(Vc) return V def force_penning(self, pos_array): """ Computes the net forces acting on each ion in the crystal; used as the jacobian by find_eq_pos to minimize the potential energy of a crystal configuration. :param pos_array: crystal to find forces of. :return: a vector of size 2N describing the x forces and y forces. """ x = pos_array[0:self.Nion] y = pos_array[self.Nion:] dx = x.reshape((x.size, 1)) - x dy = y.reshape((y.size, 1)) - y rsep = np.sqrt(dx ** 2 + dy ** 2) # Calculate coulomb force on each ion with np.errstate(divide='ignore'): Fc = np.where(rsep != 0., rsep ** (-2), 0) with np.errstate(divide='ignore', invalid='ignore'): fx = np.where(rsep != 0., np.float64((dx / rsep) * Fc), 0) fy = np.where(rsep != 0., np.float64((dy / rsep) * Fc), 0) # total force on each ion """ Deprecated version below which uses anharmonic trap potentials Ftrapx = (-m * wr ** 2 - q * self.Coeff[2] + q * B * wr + 2 * self.Cw2) * x \ - 4 * q * self.Coeff[3] * (x ** 3 + x * y ** 2) + 3 * self.Cw3 * (x ** 2 - y ** 2) Ftrapy = (-m * wr ** 2 - q * self.Coeff[2] + q * B * wr - 2 * self.Cw2) * y \ - 4 * q * self.Coeff[3] * (y ** 3 + y * x ** 2) - 6 * self.Cw3 * x * y # Ftrap = (m*w**2 + q*self.V0 - 2*q*self.Vw - q*self.B* w) * pos_array """ Ftrapx = -2 * self.md * (self.wr ** 2 - self.wr * self.wc + 0.5 - self.Cw) * x Ftrapy = -2 * self.md * (self.wr ** 2 - self.wr * self.wc + 0.5 + self.Cw) * y Fx = -np.sum(fx, axis=1) + Ftrapx Fy = -np.sum(fy, axis=1) + Ftrapy return np.array([Fx, Fy]).flatten() def hessian_penning(self, pos_array): """Calculate Hessian of potential""" x = pos_array[0:self.Nion] y = pos_array[self.Nion:] dx = x.reshape((x.size, 1)) - x dy = y.reshape((y.size, 1)) - y rsep = np.sqrt(dx ** 2 + dy ** 2) with np.errstate(divide='ignore'): rsep5 = np.where(rsep != 0., rsep ** (-5), 0) dxsq = dx ** 2 dysq = dy ** 2 # X derivatives, Y derivatives for alpha != beta Hxx = np.mat((rsep ** 2 - 3 * dxsq) * rsep5) Hyy = np.mat((rsep ** 2 - 3 * dysq) * rsep5) # Above, for alpha == beta # np.diag usa diagnoal value to form a matrix Hxx += np.mat(np.diag(-2 * self.md * (self.wr ** 2 - self.wr * self.wc + .5 - self.Cw) - np.sum((rsep ** 2 - 3 * dxsq) * rsep5, axis=0))) Hyy += np.mat(np.diag(-2 * self.md * (self.wr ** 2 - self.wr * self.wc + .5 + self.Cw) - np.sum((rsep ** 2 - 3 * dysq) * rsep5, axis=0))) # print(self.V0) # print('Cw=',self.Cw) # print('wr=',self.wr) # print('wc=',self.wc) # print('wz=',self.wz) # Mixed derivatives Hxy = np.mat(-3 * dx * dy * rsep5) Hxy += np.mat(np.diag(3 * np.sum(dx * dy * rsep5, axis=0))) H = np.bmat([[Hxx, Hxy], [Hxy, Hyy]]) H = np.asarray(H) return H def find_scaled_lattice_guess(self, mins, res): """ Will generate a 2d hexagonal lattice based on the shells intialiization parameter. Guesses initial minimum separation of mins and then increases spacing until a local minimum of potential energy is found. This doesn't seem to do anything. Needs a fixin' - AK :param mins: the minimum separation to begin with. :param res: the resizing parameter added onto the minimum spacing. :return: the lattice with roughly minimized potential energy (via spacing alone). """ # Make a 2d lattice; u represents the position uthen = self.generate_lattice() uthen = uthen * mins # Figure out the lattice's initial potential energy pthen = self.pot_energy(uthen) # Iterate through the range of minimum spacing in steps of res/resolution for scale in np.linspace(mins, 10, res): # Quickly make a 2d hex lattice; perhaps with some stochastic procedure? uguess = uthen * scale # Figure out the potential energy of that newly generated lattice # print(uguess) pnow = self.pot_energy(uguess) # And if the program got a lattice that was less favorably distributed, conclude # that we had a pretty good guess and return the lattice. if pnow >= pthen: # print("find_scaled_lattice: Minimum found") # print "initial scale guess: " + str(scale) # self.scale = scale # print(scale) return uthen # If not, then we got a better guess, so store the energy score and current arrangement # and try again for as long as we have mins and resolution to iterate through. uthen = uguess pthen = pnow # If you're this far it means we've given up # self.scale = scale # print "find_scaled_lattice: no minimum found, returning last guess" return uthen def find_eq_pos(self, u0, method="bfgs"): """ Runs optimization code to tweak the position vector defining the crystal to a minimum potential energy configuration. :param u0: The position vector which defines the crystal. :return: The equilibrium position vector. """ newton_tolerance = 1e-34 bfgs_tolerance = 1e-34 if method == "newton": out = optimize.minimize(self.pot_energy, u0, method='Newton-CG', jac=self.force_penning, hess=self.hessian_penning, options={'xtol': newton_tolerance, 'disp': not self.quiet}) if method == 'bfgs': out = optimize.minimize(self.pot_energy, u0, method='BFGS', jac=self.force_penning, options={'gtol': bfgs_tolerance, 'disp': False}) # not self.quiet}) if (method != 'bfgs') & (method != 'newton'): print('method, '+method+', not recognized') exit() return out.x def calc_axial_hessian(self, pos_array): """ Calculate the axial hessian matrix for a crystal defined by pos_array. THIS MAY NEED TO BE EDITED FOR NONHOMOGENOUS MASSES :param pos_array: Position vector which defines the crystal to be analyzed. :return: Array of eigenvalues, Array of eigenvectors """ x = pos_array[0:self.Nion] y = pos_array[self.Nion:] dx = x.reshape((x.size, 1)) - x dy = y.reshape((y.size, 1)) - y rsep = np.sqrt(dx ** 2 + dy ** 2) with np.errstate(divide='ignore'): rsep3 = np.where(rsep != 0., rsep ** (-3), 0) K = np.diag((-1 + 0.5 * np.sum(rsep3, axis=0))) K -= 0.5 * rsep3 return K def calc_axial_modes(self, pos_array): """ Calculate the modes of axial vibration for a crystal defined by pos_array. THIS MAY NEED TO BE EDITED FOR NONHOMOGENOUS MASSES :param pos_array: Position vector which defines the crystal to be analyzed. :return: Array of eigenvalues, Array of eigenvectors """ x = pos_array[0:self.Nion] y = pos_array[self.Nion:] dx = x.reshape((x.size, 1)) - x dy = y.reshape((y.size, 1)) - y rsep = np.sqrt(dx ** 2 + dy ** 2) with np.errstate(divide='ignore'): rsep3 = np.where(rsep != 0., rsep ** (-3), 0) K = np.diag((-1 + 0.5 * np.sum(rsep3, axis=0))) K -= 0.5 * rsep3 # Make first order system by making space twice as large Zn = np.zeros((self.Nion, self.Nion)) eyeN = np.identity(self.Nion) Mmat = np.diag(self.md) Minv = np.linalg.inv(Mmat) firstOrder = np.bmat([[Zn, eyeN], [np.dot(Minv,K), Zn]]) Eval, Evect = np.linalg.eig(firstOrder) Eval_raw = Eval # Convert 2N imaginary eigenvalues to N real eigenfrequencies ind = np.argsort(np.absolute(np.imag(Eval))) # print('ind=',ind) Eval = np.imag(Eval[ind]) Eval = Eval[Eval >= 0] # toss the negative eigenvalues Evect = Evect[:, ind] # sort eigenvectors accordingly # Normalize by energy of mode for i in range(2*self.Nion): pos_part = Evect[:self.Nion, i] vel_part = Evect[self.Nion:, i] norm = vel_part.H*Mmat*vel_part - pos_part.H*K*pos_part with np.errstate(divide='ignore',invalid='ignore'): Evect[:, i] = np.where(np.sqrt(norm) != 0., Evect[:, i]/np.sqrt(norm), 0) #Evect[:, i] = Evect[:, i]/np.sqrt(norm) Evect = np.asarray(Evect) return Eval_raw, Eval, Evect def calc_planar_modes(self, pos_array): """Calculate Planar Mode Eigenvalues and Eigenvectors THIS MAY NEED TO BE EDITED FOR NONHOMOGENOUS MASSES :param pos_array: Position vector which defines the crystal to be analyzed. :return: Array of eigenvalues, Array of eigenvectors """ V = -self.hessian_penning(pos_array) # -Hessian Zn = np.zeros((self.Nion, self.Nion)) #Nion, number of ions Z2n = np.zeros((2 * self.Nion, 2 * self.Nion)) offdiag = (2 * self.wr - self.wc) * np.identity(self.Nion) # np.identity: unitary matrix A = np.bmat([[Zn, offdiag], [-offdiag, Zn]]) Mmat = np.diag(np.concatenate((self.md,self.md))) #md =1 Minv = np.linalg.inv(Mmat) firstOrder = np.bmat([[Z2n, np.identity(2 * self.Nion)], [np.dot(Minv,V/2), A]]) #mp.dps = 25 #firstOrder = mp.matrix(firstOrder) #Eval, Evect = mp.eig(firstOrder) Eval, Evect = np.linalg.eig(firstOrder) # currently giving too many zero modes (increase numerical precision?) # make eigenvalues real. ind = np.argsort(np.absolute(np.imag(Eval))) Eval = np.imag(Eval[ind]) Eval = Eval[Eval >= 0] # toss the negative eigenvalues Evect = Evect[:, ind] # sort eigenvectors accordingly # Normalize by energy of mode for i in range(4*self.Nion): pos_part = Evect[:2*self.Nion, i] vel_part = Evect[2*self.Nion:, i] norm = vel_part.H*Mmat*vel_part - pos_part.H*(V/2)*pos_part with np.errstate(divide='ignore'): Evect[:, i] = np.where(np.sqrt(norm) != 0., Evect[:, i]/np.sqrt(norm), 0) #Evect[:, i] = Evect[:, i]/np.sqrt(norm) # if there are extra zeros, chop them Eval = Eval[(Eval.size - 2 * self.Nion):] return Eval, Evect, V def show_crystal(self, pos_vect): """ Makes a pretty plot of the crystal with a given position vector. :param pos_vect: The crystal position vector to be seen. """ plt.plot(pos_vect[0:self.Nion], pos_vect[self.Nion:], '.') plt.xlabel('x position [um]') plt.ylabel('y position [um]') # plt.axes().set_aspect('equal') plt.show() def show_crystal_modes(self, pos_vect, Evects, modes): """ For a given crystal, plots the crystal with colors based on the eigenvectors. :param pos_vect: the position vector of the current crystal :param Evects: the eigenvectors to be shown :param modes: the number of modes you wish to see """ plt.figure(1) # print(np.shape(pos_vect[0:self.Nion])) # print(np.shape(Evects[:, 0])) for i in range(modes): plt.subplot(modes, 1, i + 1, aspect='equal') plt.scatter(1e6 * pos_vect[0:self.Nion], 1e6 * pos_vect[self.Nion:], c=Evects[:self.Nion, -i-1], vmin=-.01, vmax=0.01, cmap='viridis') plt.xlabel('x position [um]') plt.ylabel('y position [um]') #plt.axis([-200, 200, -200, 200]) plt.tight_layout() def show_low_freq_mode(self): """ Gets the lowest frequency modes and eigenvectors, then plots them, printing the lowest frequency mode. """ num_modes = np.size(self.Evals) low_mode_freq = self.Evals[-1] low_mode_vect = self.Evects[-1] plt.scatter(1e6 * self.u[0:self.Nion], 1e6 * self.u[self.Nion:], c=low_mode_vect, vmin=-.25, vmax=0.25, cmap='RdGy') plt.axes().set_aspect('equal') plt.xlabel('x position [um]', fontsize=12) plt.ylabel('y position [um]', fontsize=12) plt.axis([-300, 300, -300, 300]) print(num_modes) print("Lowest frequency mode at {0:0.1f} kHz".format(float(np.real(low_mode_freq)))) return 0 def perturb_position(self, pos_vect, strength=.1): """ Slightly displaces each ion by a random proportion (determined by 'strength' parameter) and then solves for a new equilibrium position. If the new configuration has a lower global potential energy, it is returned. If the new configuration has a higher potential energy, it is discarded and the previous configuration is returned. :param u: The input coordinate vector of each x,y position of each ion. :return: Either the previous position vector, or a new position vector. """ # print("U before:", self.pot_energy(u)) unudge = self.find_eq_pos([coord * abs(np.random.normal(1, strength)) for coord in pos_vect]) if self.pot_energy(unudge) < self.pot_energy(pos_vect): # print("Nudge successful") # print("U After:", self.pot_energy(unudge)) return unudge else: # print("Nudge failed!") return pos_vect def show_axial_Evals(self, experimentalunits=False, flatlines=False): """ Plots the axial eigenvalues vs mode number. :param experimentalunits: :return: """ if self.axialEvals is []: print("Warning-- no axial eigenvalues found. Cannot show axial eigenvalues") return False if flatlines is True: fig = plt.figure(figsize=(8, 5)) fig = plt.axes(frameon=True) # fig= plt.axes.get_yaxis().set_visible(False) fig.set_yticklabels([]) if experimentalunits is False: fig = plt.xlabel("Eigenfrequency (Units of $\omega_z$)") fig = plt.xlim(min(self.axialEvals) * .99, max(self.axialEvals * 1.01)) for x in self.axialEvals: fig = plt.plot([x, x], [0, 1], color='black', ) if experimentalunits is True: fig = plt.xlabel("Eigenfrequency (2 \pi* Hz)") fig = plt.xlim(min(self.axialEvalsE) * .99, max(self.axialEvalsE) * 1.01) for x in self.axialEvalsE: fig = plt.plot([x, x], [0, 1], color='black') fig = plt.ylim([0, 1]) # fig= plt.axes.yaxis.set_visible(False) fig = plt.title("Axial Eigenvalues for %d Ions, $f_{rot}=$%.1f kHz, and $V_{wall}$= %.1f V " % (self.Nion, self.wrot / (2 * pi * 1e3), self.Cw * self.V0 / 1612)) plt.show() return True fig = plt.figure() xvals = np.array(range(self.Nion)) xvals += 1 if experimentalunits is False: fig = plt.plot(xvals, sorted(self.axialEvals), "o") fig = plt.ylim((.97 * min(self.axialEvals), 1.01 * max(self.axialEvals))) fig = plt.ylabel("Eigenfrequency (Units of $\omega_z$)") fig = plt.plot([-1, self.Nion + 1], [1, 1], color="black", linestyle="--") else: fig = plt.plot(xvals, sorted(self.axialEvalsE), "o") fig = plt.ylim(.95 * min(self.axialEvalsE), 1.05 * max(self.axialEvalsE)) fig = plt.ylabel("Eigenfrequency (Hz)") fig = plt.plot([-1, self.Nion + 1], [max(self.axialEvalsE), max(self.axialEvalsE)], color="black", linestyle="--") fig = plt.xlabel("Mode Number") fig = plt.title("Axial Eigenvalues for %d Ions, $f_{rot}=$%.1f kHz, and $V_{wall}$= %.1f V " % (self.Nion, self.wrot / (2 * pi * 1e3), self.Cw * self.V0 / 1612)) fig = plt.xlim((0, self.Nion + 1)) fig = plt.grid(True) fig = plt.show() return True def get_x_and_y(self, pos_vect): """ Hand it a position vector and it will return the x and y vectors :param pos_vect: :return: [x,y] arrays """ return [pos_vect[:self.Nion], pos_vect[self.Nion:]] def is_plane_stable(self): """ Checks to see if any of the axial eigenvalues in the current configuration of the crystal are equal to zero. If so, this indicates that the one-plane configuration is unstable and a 1-2 plane transistion is possible. :return: Boolean: True if no 1-2 plane transistion mode exists, false if it does (Answers: "is the plane stable?") """ if self.hasrun is False: self.run() for x in self.axialEvals: if x == 0.0: return False return True def rotate_crystal(self, pos_vect, theta, Nion=None): """ Given a position vector defining a crystal, rotates it by the angle theta counter-clockwise. :param pos_vect: Array of length 2*Nion defining the crystal to be rotated. :param theta: Theta defining the angle to rotate the crystal around. :param Nion: Number of ions in the crystal (can be optionally defined, but will default to the number of ions in the class) :return: The returned position vector of the new crystal """ if Nion is None: Nion = self.Nion x = pos_vect[:Nion] y = pos_vect[Nion:] xmod = x *
np.cos(theta)
numpy.cos
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,1,0,0,0,0,1])
numpy.array
from collections import defaultdict import pytest import numpy as np from numpy.testing import assert_equal, assert_almost_equal from skimage.draw import line from skan import csr from skan._testdata import ( tinycycle, tinyline, skeleton0, skeleton1, skeleton2, skeleton3d, topograph1d, skeleton4 ) def _old_branch_statistics( skeleton_image, *, spacing=1, value_is_height=False ): skel = csr.Skeleton( skeleton_image, spacing=spacing, value_is_height=value_is_height ) summary = csr.summarize(skel, value_is_height=value_is_height) columns = ['node-id-src', 'node-id-dst', 'branch-distance', 'branch-type'] return summary[columns].to_numpy() def test_tiny_cycle(): g, idxs = csr.skeleton_to_csgraph(tinycycle) expected_indptr = [0, 2, 4, 6, 8] expected_indices = [1, 2, 0, 3, 0, 3, 1, 2] expected_data =
np.sqrt(2)
numpy.sqrt
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** # -*- coding: utf-8 -*- import numpy as np import pandas as pd import sdc import unittest from itertools import product from sdc.str_arr_ext import StringArray from sdc.str_ext import std_str_to_unicode, unicode_to_std_str from sdc.tests.test_base import TestCase from sdc.tests.test_utils import skip_numba_jit from sdc.functions import numpy_like from sdc.functions import sort class TestArrays(TestCase): def test_astype_to_num(self): def ref_impl(a, t): return a.astype(t) def sdc_impl(a, t): return numpy_like.astype(a, t) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan]] cases_type = [np.float64, np.int64, 'float64', 'int64'] for case in cases: a = np.array(case) for type_ in cases_type: with self.subTest(data=case, type=type_): np.testing.assert_array_equal(sdc_func(a, type_), ref_impl(a, type_)) def test_astype_to_float(self): def ref_impl(a): return a.astype('float64') def sdc_impl(a): return numpy_like.astype(a, 'float64') sdc_func = self.jit(sdc_impl) cases = [[2, 3, 0], [4., 5.6, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_to_int(self): def ref_impl(a): return a.astype(np.int64) def sdc_impl(a): return numpy_like.astype(a, np.int64) sdc_func = self.jit(sdc_impl) cases = [[2, 3, 0], [4., 5.6, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_int_to_str(self): def ref_impl(a): return a.astype(str) def sdc_impl(a): return numpy_like.astype(a, str) sdc_func = self.jit(sdc_impl) a = np.array([2, 3, 0]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Numba converts float to string with incorrect precision') def test_astype_float_to_str(self): def ref_impl(a): return a.astype(str) def sdc_impl(a): return numpy_like.astype(a, str) sdc_func = self.jit(sdc_impl) a = np.array([4., 5.6, np.nan]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_num_to_str(self): def ref_impl(a): return a.astype('str') def sdc_impl(a): return numpy_like.astype(a, 'str') sdc_func = self.jit(sdc_impl) a = np.array([5, 2, 0, 333, -4]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Needs Numba astype impl support converting unicode_type to other type') def test_astype_str_to_num(self): def ref_impl(a, t): return a.astype(t) def sdc_impl(a, t): return numpy_like.astype(a, t) sdc_func = self.jit(sdc_impl) cases = [['a', 'cc', 'd'], ['3.3', '5', '.4'], ['¡Y', 'tú quién ', 'te crees']] cases_type = [np.float64, np.int64] for case in cases: a = np.array(case) for type_ in cases_type: with self.subTest(data=case, type=type_): np.testing.assert_array_equal(sdc_func(a, type_), ref_impl(a, type_)) def test_isnan(self): def ref_impl(a): return np.isnan(a) def sdc_impl(a): return numpy_like.isnan(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Needs provide String Array boxing') def test_isnan_str(self): def ref_impl(a): return np.isnan(a) def sdc_impl(a): return numpy_like.isnan(a) sdc_func = self.jit(sdc_impl) cases = [['a', 'cc', np.nan], ['se', None, 'vvv']] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_notnan(self): def ref_impl(a): return np.invert(np.isnan(a)) def sdc_impl(a): return numpy_like.notnan(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_copy(self): from sdc.str_arr_ext import StringArray def ref_impl(a): return np.copy(a) @self.jit def sdc_func(a): _a = StringArray(a) if as_str_arr == True else a # noqa return numpy_like.copy(_a) cases = { 'int': [5, 2, 0, 333, -4], 'float': [3.3, 5.4, np.nan, 7.9, np.nan], 'bool': [True, False, True], 'str': ['a', 'vv', 'o12oo'] } for dtype, data in cases.items(): a = data if dtype == 'str' else np.asarray(data) as_str_arr = True if dtype == 'str' else False with self.subTest(case=data): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_copy_int(self): def ref_impl(): a = np.array([5, 2, 0, 333, -4]) return np.copy(a) def sdc_impl(): a = np.array([5, 2, 0, 333, -4]) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) def test_copy_bool(self): def ref_impl(): a = np.array([True, False, True]) return np.copy(a) def sdc_impl(): a = np.array([True, False, True]) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) @unittest.skip("Numba doesn't have string array") def test_copy_str(self): def ref_impl(): a = np.array(['a', 'vv', 'o12oo']) return np.copy(a) def sdc_impl(): a = np.array(['a', 'vv', 'o12oo']) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) def test_argmin(self): def ref_impl(a): return np.argmin(a) def sdc_impl(a): return numpy_like.argmin(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_argmax(self): def ref_impl(a): return np.argmax(a) def sdc_impl(a): return numpy_like.argmax(a) sdc_func = self.jit(sdc_impl) cases = [[np.nan, np.nan, np.inf, np.nan], [5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_nanargmin(self): def ref_impl(a): return np.nanargmin(a) def sdc_impl(a): return numpy_like.nanargmin(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_nanargmax(self): def ref_impl(a): return np.nanargmax(a) def sdc_impl(a): return numpy_like.nanargmax(a) sdc_func = self.jit(sdc_impl) cases = [[np.nan, np.nan, np.inf, np.nan], [5, 2, -9, 333, -4], [3.3, 5.4, np.nan, 7.9]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_sort(self): np.random.seed(0) def ref_impl(a): return np.sort(a) def sdc_impl(a): sort.parallel_sort(a) return a sdc_func = self.jit(sdc_impl) float_array = np.random.ranf(10**2) int_arryay = np.random.randint(0, 127, 10**2) float_cases = ['float32', 'float64'] for case in float_cases: array0 = float_array.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) int_cases = ['int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'] for case in int_cases: array0 = int_arryay.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) def test_stable_sort(self): np.random.seed(0) def ref_impl(a): return np.sort(a) def sdc_impl(a): sort.parallel_stable_sort(a) return a sdc_func = self.jit(sdc_impl) float_array = np.random.ranf(10**2) int_arryay = np.random.randint(0, 127, 10**2) float_cases = ['float32', 'float64'] for case in float_cases: array0 = float_array.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) int_cases = ['int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'] for case in int_cases: array0 = int_arryay.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) def _test_fillna_numeric(self, pyfunc, cfunc, inplace): data_to_test = [ [True, False, False, True, True], [5, 2, 0, 333, -4], [3.3, 5.4, 7.9], [3.3, 5.4, np.nan, 7.9, np.nan], ] values_to_test = [ None, np.nan, 2.1, 2 ] for data, value in product(data_to_test, values_to_test): a1 = np.asarray(data) a2 = pd.Series(np.copy(a1)) if inplace else pd.Series(a1) with self.subTest(data=data, value=value): result = cfunc(a1, value) result_ref = pyfunc(a2, value) if inplace: result, result_ref = a1, a2 np.testing.assert_array_equal(result, result_ref) def test_fillna_numeric_inplace_false(self): def ref_impl(S, value): if value is None: return S.values.copy() else: return S.fillna(value=value, inplace=False).values def sdc_impl(a, value): return numpy_like.fillna(a, inplace=False, value=value) sdc_func = self.jit(sdc_impl) self._test_fillna_numeric(ref_impl, sdc_func, inplace=False) def test_fillna_numeric_inplace_true(self): def ref_impl(S, value): if value is None: return None else: S.fillna(value=value, inplace=True) return None def sdc_impl(a, value): return numpy_like.fillna(a, inplace=True, value=value) sdc_func = self.jit(sdc_impl) self._test_fillna_numeric(ref_impl, sdc_func, inplace=True) def test_fillna_str_inplace_false(self): def ref_impl(S, value): if value is None: return S.values.copy() else: return S.fillna(value=value, inplace=False).values def sdc_impl(S, value): str_arr = S.values return numpy_like.fillna(str_arr, inplace=False, value=value) sdc_func = self.jit(sdc_impl) data_to_test = [ ['a', 'b', 'c', 'd'], ['a', 'b', None, 'c', None, 'd'], ] values_to_test = [ None, '', 'asd' ] for data, value in product(data_to_test, values_to_test): S = pd.Series(data) with self.subTest(data=data, value=value): result = sdc_func(S, value) result_ref = ref_impl(S, value) # FIXME: str_arr unifies None with np.nan and StringArray boxing always return np.nan # to avoid mismatch in results for fill value == None use custom comparing func def is_same_unify_nones(a, b): return a == b or ((a is None or np.isnan(a)) and (b is None or np.isnan(b))) cmp_result = np.asarray( list(map(is_same_unify_nones, result, result_ref)) ) self.assertEqual(np.all(cmp_result), True) class TestArrayReductions(TestCase): def check_reduction_basic(self, pyfunc, alt_pyfunc, all_nans=True, comparator=None): if not comparator: comparator = np.testing.assert_array_equal alt_cfunc = self.jit(alt_pyfunc) def cases(): yield np.array([5, 2, 0, 333, -4]) yield np.array([3.3, 5.4, np.nan, 7.9, np.nan]) yield np.float64([1.0, 2.0, 0.0, -0.0, 1.0, -1.5]) yield np.float64([-0.0, -1.5]) yield np.float64([-1.5, 2.5, 'inf']) yield np.float64([-1.5, 2.5, '-inf']) yield np.float64([-1.5, 2.5, 'inf', '-inf']) yield np.float64(['nan', -1.5, 2.5, 'nan', 3.0]) yield np.float64(['nan', -1.5, 2.5, 'nan', 'inf', '-inf', 3.0]) if all_nans: # Only NaNs yield np.float64(['nan', 'nan']) for case in cases(): with self.subTest(data=case): comparator(alt_cfunc(case), pyfunc(case)) def test_nanmean(self): def ref_impl(a): return np.nanmean(a) def sdc_impl(a): return numpy_like.nanmean(a) self.check_reduction_basic(ref_impl, sdc_impl) def test_nanmin(self): def ref_impl(a): return np.nanmin(a) def sdc_impl(a): return numpy_like.nanmin(a) self.check_reduction_basic(ref_impl, sdc_impl) def test_nanmax(self): def ref_impl(a): return np.nanmax(a) def sdc_impl(a): return numpy_like.nanmax(a) self.check_reduction_basic(ref_impl, sdc_impl) def test_nanprod(self): def ref_impl(a): return np.nanprod(a) def sdc_impl(a): return numpy_like.nanprod(a) self.check_reduction_basic(ref_impl, sdc_impl) def test_nansum(self): def ref_impl(a): return np.nansum(a) def sdc_impl(a): return numpy_like.nansum(a) self.check_reduction_basic(ref_impl, sdc_impl) def test_nanvar(self): def ref_impl(a): return
np.nanvar(a)
numpy.nanvar
import numpy as np from .base import IndependenceTest from ._utils import _CheckInputs class RV(IndependenceTest): r""" Class for calculating the RV test statistic and p-value. RV is the multivariate generalization of the squared Pearson correlation coefficient [#1RV]_. The RV coefficient can be thought to be closely related to principal component analysis (PCA), canonical correlation analysis (CCA), multivariate regression, and statistical classification [#1RV]_. See Also -------- CCA : CCA test statistic and p-value. Notes ----- The statistic can be derived as follows [#1RV]_ [#2RV]_: Let :math:`x` and :math:`y` be :math:`(n, p)` samples of random variables :math:`X` and :math:`Y`. We can center :math:`x` and :math:`y` and then calculate the sample covariance matrix :math:`\hat{\Sigma}_{xy} = x^T y` and the variance matrices for :math:`x` and :math:`y` are defined similarly. Then, the RV test statistic is found by calculating .. math:: \mathrm{RV}_n (x, y) = \frac{\mathrm{tr} \left( \hat{\Sigma}_{xy} \hat{\Sigma}_{yx} \right)} {\mathrm{tr} \left( \hat{\Sigma}_{xx}^2 \right) \mathrm{tr} \left( \hat{\Sigma}_{yy}^2 \right)} where :math:`\mathrm{tr} (\cdot)` is the trace operator. References ---------- .. [#1RV] <NAME>., & <NAME>. (1976). A unifying tool for linear multivariate statistical methods: the RV‐coefficient. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 25(3), 257-265. .. [#2RV] <NAME>. (1973). Le traitement des variables vectorielles. *Biometrics*, 751-760. """ def __init__(self): IndependenceTest.__init__(self) def _statistic(self, x, y): r""" Helper function that calculates the RV test statistic. Parameters ---------- x, y : ndarray Input data matrices. `x` and `y` must have the same number of samples and dimensions. That is, the shapes must be `(n, p)` where `n` is the number of samples and `p` is the number of dimensions. Returns ------- stat : float The computed RV statistic. """ centx = x - np.mean(x, axis=0) centy = y - np.mean(y, axis=0) # calculate covariance and variances for inputs covar = centx.T @ centy varx = centx.T @ centx vary = centy.T @ centy covar = np.trace(covar @ covar.T) stat = np.divide( covar, np.sqrt(
np.trace(varx @ varx)
numpy.trace
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,-1,0,-1,0,0,0,0,1])
numpy.array
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from core.config import cfg from datasets import json_dataset import modeling.FPN as fpn import roi_data.fast_rcnn import utils.blob as blob_utils from ops.collect_and_distribute_fpn_rpn_proposals \ import CollectAndDistributeFpnRpnProposalsOp class CollectAndDistributeFpnRpnProposalsIntoPANOp(CollectAndDistributeFpnRpnProposalsOp): def __init__(self, train): assert cfg.PAN.PAN_ON, "CollectAndDistributeFpnRpnProposalsIntoPANOp was called when PAN_ON = False" self._train = train def distribute(self, rois, label_blobs, outputs, train): """To understand the output blob order see return value of roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False) """ # Put all rois into rois without distribute outputs[0].reshape(rois.shape) outputs[0].data[...] = rois # Distribute rois into different level according to map method if not cfg.PAN.AdaptivePooling_ON: lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL lvls = fpn.map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max) # Create new roi blobs for each FPN level # (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying # to generalize to support this particular case.) rois_idx_order = np.empty((0, )) for output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)): idx_lvl = np.where(lvls == lvl)[0] blob_roi_level = rois[idx_lvl, :] outputs[output_idx + 1].reshape(blob_roi_level.shape) outputs[output_idx + 1].data[...] = blob_roi_level rois_idx_order =
np.concatenate((rois_idx_order, idx_lvl))
numpy.concatenate
import numpy as np import os,sys # import torch import glob from cv2 import imread from tqdm import tqdm TAG_FLOAT = 202021.25 def EPE(input_flow, target_flow): # return torch.norm(target_flow-input_flow,p=2,dim=1).mean() return np.linalg.norm(target_flow-input_flow, ord=2, axis=1).mean() def flow_read(file): f = open(file,'rb') flo_number = np.fromfile(f, np.float32, count=1) assert flo_number[0] == TAG_FLOAT, 'Flow number %r incorrect. Invalid .flo file' % flo_number w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) data = np.fromfile(f, np.float32, count=2*w[0]*h[0]) # Reshape data into 3D array (columns, rows, bands) flow = np.resize(data, (int(h), int(w), 2)) f.close() return flow def im2patch(im, pch_size, stride=1): import numpy as np import sys ''' Transform image to patches. Input: im: 3 x H x W or 1 X H x W image, numpy format pch_size: (int, int) tuple or integer stride: (int, int) tuple or integer ''' if isinstance(pch_size, tuple): pch_H, pch_W = pch_size elif isinstance(pch_size, int): pch_H = pch_W = pch_size else: sys.exit('The input of pch_size must be a integer or a int tuple!') if isinstance(stride, tuple): stride_H, stride_W = stride elif isinstance(stride, int): stride_H = stride_W = stride else: sys.exit('The input of stride must be a integer or a int tuple!') C, H, W = im.shape num_H = len(range(0, H-pch_H+1, stride_H)) num_W = len(range(0, W-pch_W+1, stride_W)) num_pch = num_H * num_W pch = np.zeros((C, pch_H*pch_W, num_pch), dtype=im.dtype) kk = 0 for ii in range(pch_H): for jj in range(pch_W): temp = im[:, ii:H-pch_H+ii+1:stride_H, jj:W-pch_W+jj+1:stride_W] pch[:, kk, :] = temp.reshape((C, num_pch)) kk += 1 return pch.reshape((C, pch_H, pch_W, num_pch)) def noise_estimate(im, pch_size=8): ''' Implement of noise level estimation of the following paper: <NAME> , <NAME> , <NAME> . An Efficient Statistical Method for Image Noise Level Estimation[C]// 2015 IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society, 2015. Input: im: the noise image, H x W x 3 or H x W numpy tensor, range [0,1] pch_size: patch_size Output: noise_level: the estimated noise level ''' import numpy as np if im.ndim == 3: # print(im.shape) im = im.transpose((2, 0, 1)) # print(im.shape) else: print("see dim=1") im = np.expand_dims(im, axis=0) # image to patch pch = im2patch(im, pch_size, 3) # C x pch_size x pch_size x num_pch tensor num_pch = pch.shape[3] pch = pch.reshape((-1, num_pch)) # d x num_pch matrix d = pch.shape[0] mu = pch.mean(axis=1, keepdims=True) # d x 1 X = pch - mu sigma_X = np.matmul(X, X.transpose()) / num_pch sig_value, _ = np.linalg.eigh(sigma_X) sig_value.sort() for ii in range(-1, -d-1, -1): tau = np.mean(sig_value[:ii]) if np.sum(sig_value[:ii]>tau) == np.sum(sig_value[:ii] < tau): return np.sqrt(tau) all_tt_flo = glob.glob('./pwc-net/intensity/99/*.flo') all_gt_flo = glob.glob('../data_all_nikon_half/*.flo') all_tt_flo.sort() all_gt_flo.sort() # all_tt_flo = all_tt_flo[:400] # all_gt_flo = all_gt_flo[:400] assert(len(all_gt_flo)==len(all_tt_flo)) epelist = [] noiselist = [] for i in tqdm(range(len(all_gt_flo))): assert(os.path.basename(all_gt_flo[i]) == os.path.basename(all_tt_flo[i])) flow_tt = flow_read(all_tt_flo[i]) flow_gt = flow_read(all_gt_flo[i]) flow_tt = flow_tt / (np.abs(flow_tt).max()) flow_gt = flow_gt / (np.abs(flow_gt).max()) epe = EPE(flow_tt,flow_gt) epelist.append(epe) noisy_image_str = '../data_all_nikon_half/%s_img1.jpg'%os.path.basename(all_gt_flo[i])[0:10] noisy_image = imread(noisy_image_str) noise_level = noise_estimate(noisy_image) noiselist.append(noise_level) combinelist = [] for i in range(len(epelist)): combinelist.append((noiselist[i],epelist[i])) combinelist.sort() list1 = [] for i in range(int(len(combinelist)/6*1)): list1.append(combinelist[i][1]) print(np.mean(list1)) list2 = [] for i in range(int(len(combinelist)/6*2)): list2.append(combinelist[i][1]) print(
np.mean(list2)
numpy.mean
"""A set of useful functions for use in optimisation problems.""" import numpy as np import scipy.io def progress_bar(value, max_value, width=15): """Print progress bar. Print a progress bar (utilising the carriage return function). Parameters ---------- value : :obj:`float` or :obj:`int` Number representing the current progress of process. max_value : :obj:`float` or :obj:`int` Maximum possible value in process. width : :obj:`int`, optional Number of characters in the progress bar. Default is 15. """ progress = round(value/max_value*width) remaining = width - progress print('\rOptimisation Progress: ' + "+"*progress + "-"*remaining, end="") def evaluate(algorithm, runs=5, filepath=None, description=None): """Evaluate optimiser performance. Evaluate the performance of an optimiser class. Because of the random search nature of optimiser classes, sevveral evaulation runs are performed and results are averaged. Parameters ---------- algorithms : :class:`pracopt.optimiser.Optimiser` The optimiser algorithm class to run. runs : :obj:`int`, optional. The number of runs to use when evaluating optimiser. filepath : :obj:`str`, Optional File path to save results to (as .mat file). If None, file is not saved. description : :obj:`str`, optional. Description string to save with results. Returns ------- results : :class:`numpy.array` Result array. Each row consists of [optimiser step, average time, average value]. I.e. the results are averaged across "runs" by objective function step. """ max_evals = algorithm._max_evaluations f_data =
np.zeros((max_evals, runs))
numpy.zeros
''' File contains functions used when training the NNs ''' import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout from tensorflow.keras.optimizers import Adam import os import pathlib class UniformScaler: ''' Class for a simple uniform scaler. Linearly transforms X such that all samples in X are in the range [0,1]. ''' min_val = 0 diff = 1 def fit(self, X): ''' Fit the parameters of the transformer based on the training data. Args: X (array) : The training data. Must have shape (nsamps, nfeatures). ''' # Check shape of X. if len(X.shape) != 2: raise ValueError("X does not have the correct shape. Must have shape (nsamps, nfeatures)") # Calculate min. value and largest diff. of all samples of X along the # 0th axis. Both min_val and diff can be vectors if required. self.min_val = np.min(X, axis=0) self.diff = np.max(X, axis=0) - np.min(X, axis=0) def transform(self, X): ''' Transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the transformed data. ''' x = np.subtract(X, self.min_val) return np.true_divide(x, self.diff) def inverse_transform(self, X): ''' Inverse transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the inverse transformed data. ''' x = np.multiply(X, self.diff) return np.add(x, self.min_val) class LogScaler: ''' Class for a log scaler. Linearly transforms logX such that all samples in logX are in the range [0,1]. ''' min_val = 0 diff = 1 def fit(self, X): ''' Fit the parameters of the transformer based on the training data. Args: X (array) : The training data. Must have shape (nsamps, nfeatures). ''' # Check shape of X. if len(X.shape) != 2: raise ValueError("X does not have the correct shape. Must have shape (nsamps, nfeatures)") # Make sure there are no negative values or zeros. if np.any(X<=0.): raise ValueError("X contains negative values or zeros.") X = np.log(X) # Calculate min. value and largest diff. of all samples of X along the # 0th axis. Both min_val and diff can be vectors if required. self.min_val = np.min(X, axis=0) self.diff = np.max(X, axis=0) - np.min(X, axis=0) def transform(self, X): ''' Transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the transformed data. ''' X = np.log(X) x = np.subtract(X, self.min_val) return np.true_divide(x, self.diff) def inverse_transform(self, X): ''' Inverse transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the inverse transformed data. ''' x = np.multiply(X, self.diff) return np.exp(np.add(x, self.min_val)) class StandardScaler: ''' Replacement for sklearn StandardScaler(). Rescales X such that it has zero mean and unit variance. ''' mean = 0 scale = 1 def fit(self, X): ''' Fit the parameters of the transformer based on the training data. Args: X (array) : The training data. Must have shape (nsamps, nfeatures). ''' # Check shape of X. if len(X.shape) != 2: raise ValueError("X does not have the correct shape. Must have shape (nsamps, nfeatures).") # Calculate the mean and strandard deviation of X along the 0th axis. # Can be vectors if needed. self.mean = np.mean(X, axis=0) self.scale = np.std(X, axis=0) def transform(self, X): ''' Transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the transformed data. ''' x = np.subtract(X, self.mean) return np.true_divide(x, self.scale) def inverse_transform(self, X): ''' Inverse transform the data. Args: X (array) : The data to be transformed. Returns: Array containing the inverse transformed data. ''' x = np.multiply(X, self.scale) return np.add(x, self.mean) class Resampler: ''' Class for re-sampling the parameter space covered by a suite of simulations. The new samples can then be used to generate training data for the base model componenet emulators. .. note:: See the `Generating training samples for the base model componenets <../example_notebooks/resample_example.ipynb>`_ example. Args: simulation_samples (array) : The samples in the parameter space from the simulation suite. Default is None. parameter_ranges (array) : Ranges that define the extent of the parameter space. Should have shape (n, 2), where the first column is the minimum value for the n parameters, and the second column is the maximum. Default is None. use_latent_space (bool): If True the origonal simulation samples will be transfromed into an uncorrelated latent space for re-sampling. Default is False. ''' def __init__(self, simulation_samples=None, parameter_ranges=None, use_latent_space=False): # Make sure the user has passed either simulation_samples or parameter_ranges. if (simulation_samples is None) and (parameter_ranges is None): raise ValueError("Please provide either simulation samples or parameter ranges.") elif (parameter_ranges is None) and (use_latent_space is False): self.min = np.min(simulation_samples, axis=0) self.max = np.max(simulation_samples, axis=0) self.diff = self.max - self.min self.use_latent_space = use_latent_space elif (parameter_ranges is None) and (use_latent_space is True): self.L = np.linalg.cholesky(np.cov(simulation_samples, rowvar=False)) self.use_latent_space = use_latent_space self.mean = np.mean(simulation_samples, axis=0) latent_samples = np.matmul(np.linalg.inv(self.L), (simulation_samples-self.mean).T).T self.min = latent_samples.min(axis=0) self.max = latent_samples.max(axis=0) self.diff = self.max - self.min elif parameter_ranges is not None: self.min = parameter_ranges[:,0] self.max = parameter_ranges[:,1] self.diff = self.max - self.min self.use_latent_space = use_latent_space def new_samples(self, nsamps, LH=True, buffer=None): ''' Generate new samples from the region covered by the simulations. Args: nsamps (int) : The number of new samples to generate. LH (bool) : If True will use latin-hypercube sampling. Default is True. Returns: Array containing the new samples. Has shape (nsamps, d). ''' if buffer is not None: self.min = self.min*(1-buffer) self.max = self.max*(1+buffer) self.diff = self.max - self.min if (LH is False) and (self.use_latent_space is False): return np.random.uniform(self.min, self.max, size=(nsamps,self.min.shape[0])) # How many dimensions in the sample space. d = self.min.shape[0] # Define the bin edges. low_edge = np.arange(0, nsamps)/nsamps high_edge = np.arange(1, nsamps+1)/nsamps # Generate the samples. latent_samples =
np.random.uniform(low_edge, high_edge, (d, nsamps))
numpy.random.uniform
import numpy as np import batch_norm as bn import relu as relu import loss_functions.functions as fn import sigmoid as sigmoid import categorical_converter2 as cc import mnist def convert_y(s): if s==b'Iris-setosa': return int(1) elif s==b'Iris-versicolor': return int(2) else: return int(3) def y_to_classification_form(y,n_classes): """ THIS WILL WORK, but the best solurtion is is implemented y_count=len(y) return_y=np.zeros(y_count*n_classes).reshape(y_count,n_classes) for ix,item in enumerate(y): return_y[ix,int(item)-1]=1. return return_y """ return np.eye(n_classes)[y] def fit(x_train,x_test,y_train,y_test): """temp for testing, load data from locafolder """ #data=np.loadtxt("/home/manjunath/iris/iris.csv", comments=None, delimiter=',', usecols=(0,1,2,3,4), converters={4: convert_y }) h=(10,10,10) step_size=0.001 tolerence=0.001 iteration_max=1000 iteration=0 #Regularisation param, added to gradients reg=0.01 K=np.unique(y_train).shape[0] #x=np.loadtxt("/home/manjunath/iris/iris.csv", comments=None, delimiter=',', converters=None, usecols=(0,1,2,3)) """ train_mean=np.mean(x_train,axis=0) x_train=x_train-train_mean #std_x = np.sqrt(np.sum(np.square(x_train - train_mean),axis=0)/x_train.shape[1]) std_x=np.std(x_train,axis=0) x_train=x_train/std_x x_test=x_test - train_mean x_test=x_test/std_x """ y_train=y_to_classification_form(y_train,K) y_test=y_to_classification_form(y_test,K) n_samples,n_features=x_train.shape gamma2=np.random.randn(h[0]).reshape(1,h[0]) beta2=np.random.randn(h[0]).reshape(1,h[0]) gamma3=np.random.randn(h[1]).reshape(1,h[1]) beta3=np.random.randn(h[1]).reshape(1,h[1]) eps=0.001 w1=(np.random.randn(n_features*h[0]).reshape(n_features,h[0]))/np.sqrt(2/(n_features+h[0])) w2=(np.random.randn(h[0]*h[1]).reshape(h[0],h[1]))/np.sqrt(2/(h[0]+h[1])) w3=(np.random.randn(h[1]*h[2]).reshape(h[1],h[2]))/np.sqrt(2/(h[1]+h[2])) dw1_priv=np.zeros(w1.shape) dw2_priv=np.zeros(w2.shape) dw3_priv=np.zeros(w3.shape) #w3=(np.random.randn(h[1]*K).reshape(h[1],K)*0.5)/np.sqrt(2/h[1]+K) #Basically no significance, added bias for completion b1 = np.zeros((1,h[0])) b2 = np.zeros((1,h[1])) b3 = np.zeros((1,K)) while iteration<iteration_max : #Calculate scores scores_layer1=np.dot(x_train,w1)+b1 # 125x4,4x10 = 125x10 #print("iteration",iteration, "first layer",np.any(np.isnan(scores_layer1))) #Do not use sigmoid, you will be stuck in long mess of nans and inf and overflows and div by zeros #x2=1/1+np.exp(-scores_layer1) # 150 x 4 #Use reLU #x2=np.maximum(0,scores_layer1) bn_x2,bn_cache2=bn.batch_norm_forword(scores_layer1,gamma2,beta2) #125x10 #print("iteration",iteration, "first layer BN",np.any(np.isnan(bn_x2))) #x2=relu.relu_forword(bn_x2.T) x2=relu.relu_forword(bn_x2) #125x10 #print("iteration",iteration, "first layer relu",np.any(np.isnan(x2))) score_layer2=np.dot(x2,w2)+b2 #125x10,10x10=125x10 #print("iteration",iteration, "second layer",np.any(np.isnan(score_layer2))) bn_x3,bn_cache3=bn.batch_norm_forword(score_layer2,gamma3,beta3) #125x10 x3=relu.relu_forword(bn_x3) #125x10 final_scores=np.dot(x3,w3)+b3 # 125x10,10x3=125x3 #Again, use softmax or sigmoid loss for classification, MSE or distance is for regression only probs=fn.softmax(final_scores) #125x3 dscores=fn.cross_enropy_grad_singleclass(probs,y_train) # 125x3 #There is possibility of only 1 class for data, so use below, else the implementation will be bit complex #print(x3.shape) dw3=np.dot(x3.T,dscores) # 10x125,125x3=10x3 dx3=np.dot(w3,dscores.T) # 10x3,3x125=10x125 #dhid2=dx3.T #dhid2[x3<=0]=0 dhid2=relu.relu_backword(dx3.T,x3) #125x10 #print("dhid2",dhid2.shape) bn_dhid2,dgamma3,dbeta3=bn.batch_norm_backword(dhid2,bn_cache3) #125x10 #dprod = (x2 * (1- x2)) * dx2.T # this is wrong, find out why, we mostly need to multiply with upstream gradient dw2=np.dot(x2.T,bn_dhid2) # 10x125,125x10=10x10 dx2=np.dot(w2,dhid2.T) #10x10,10x125=10x125 #dhid1=dx2.T #dhid1[x2<=0]=0 dhid1=relu.relu_backword(dx2.T,x2) #125x10 bn_dx2,dgamma2,dbeta2=bn.batch_norm_backword(dhid1,bn_cache2) #125x10 #print(dprod.shape) dw1 = np.dot( x_train.T,bn_dx2) # 125x4,12510=4x10 db1=np.sum(b1,axis=0,keepdims=True) db2=
np.sum(b2,axis=0,keepdims=True)
numpy.sum
import numpy as np from gtsam import SfmTrack from gtsfm.common.image import Image import gtsfm.utils.images as image_utils def test_get_average_point_color(): """ Ensure 3d point color is computed as mean of RGB per 2d measurement.""" # random point; 2d measurements below are dummy locations (not actual projection) triangulated_pt = np.array([1, 2, 1]) track_3d = SfmTrack(triangulated_pt) # in camera 0 track_3d.add_measurement(idx=0, m=np.array([130, 80])) # in camera 1 track_3d.add_measurement(idx=1, m=np.array([10, 60])) img0 = np.zeros((100, 200, 3), dtype=np.uint8) img0[80, 130] =
np.array([40, 50, 60])
numpy.array
""" Unit tests for Group. """ from __future__ import print_function import itertools import unittest from six import assertRaisesRegex, iteritems from six.moves import range import numpy as np try: from parameterized import parameterized except ImportError: from openmdao.utils.assert_utils import SkipParameterized as parameterized import openmdao.api as om from openmdao.test_suite.components.sellar import SellarDis2 from openmdao.utils.assert_utils import assert_rel_error, assert_warning from openmdao.utils.logger_utils import TestLogger from openmdao.error_checking.check_config import _check_hanging_inputs class SimpleGroup(om.Group): def __init__(self): super(SimpleGroup, self).__init__() self.add_subsystem('comp1', om.IndepVarComp('x', 5.0)) self.add_subsystem('comp2', om.ExecComp('b=2*a')) self.connect('comp1.x', 'comp2.a') class BranchGroup(om.Group): def __init__(self): super(BranchGroup, self).__init__() b1 = self.add_subsystem('Branch1', om.Group()) g1 = b1.add_subsystem('G1', om.Group()) g2 = g1.add_subsystem('G2', om.Group()) g2.add_subsystem('comp1', om.ExecComp('b=2.0*a', a=3.0, b=6.0)) b2 = self.add_subsystem('Branch2', om.Group()) g3 = b2.add_subsystem('G3', om.Group()) g3.add_subsystem('comp2', om.ExecComp('b=3.0*a', a=4.0, b=12.0)) class SetOrderGroup(om.Group): def setup(self): self.add_subsystem('C1', om.ExecComp('y=2.0*x')) self.add_subsystem('C2', om.ExecComp('y=2.0*x')) self.add_subsystem('C3', om.ExecComp('y=2.0*x')) self.set_order(['C1', 'C3', 'C2']) self.connect('C1.y', 'C3.x') self.connect('C3.y', 'C2.x') class ReportOrderComp(om.ExplicitComponent): def __init__(self, order_list): super(ReportOrderComp, self).__init__() self._order_list = order_list def setup(self): self.add_input('x', 0.0) self.add_output('y', 0.0) def compute(self, inputs, outputs): self._order_list.append(self.pathname) class TestGroup(unittest.TestCase): def test_add_subsystem_class(self): p = om.Problem() try: p.model.add_subsystem('comp', om.IndepVarComp) except TypeError as err: self.assertEqual(str(err), "Group: Subsystem 'comp' should be an instance, " "but a IndepVarComp class object was found.") else: self.fail('Exception expected.') def test_same_sys_name(self): """Test error checking for the case where we add two subsystems with the same name.""" p = om.Problem() p.model.add_subsystem('comp1', om.IndepVarComp('x', 5.0)) p.model.add_subsystem('comp2', om.ExecComp('b=2*a')) try: p.model.add_subsystem('comp2', om.ExecComp('b=2*a')) except Exception as err: self.assertEqual(str(err), "Group: Subsystem name 'comp2' is already used.") else: self.fail('Exception expected.') def test_deprecated_runonce(self): p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x', 5.0)) p.model.add_subsystem('comp', om.ExecComp('b=2*a')) msg = "NonLinearRunOnce is deprecated. Use NonlinearRunOnce instead." with assert_warning(DeprecationWarning, msg): p.model.nonlinear_solver = om.NonLinearRunOnce() def test_group_simple(self): import openmdao.api as om p = om.Problem() p.model.add_subsystem('comp1', om.ExecComp('b=2.0*a', a=3.0, b=6.0)) p.setup() self.assertEqual(p['comp1.a'], 3.0) self.assertEqual(p['comp1.b'], 6.0) def test_group_add(self): model = om.Group() ecomp = om.ExecComp('b=2.0*a', a=3.0, b=6.0) msg = "The 'add' method provides backwards compatibility with OpenMDAO <= 1.x ; " \ "use 'add_subsystem' instead." with assert_warning(DeprecationWarning, msg): comp1 = model.add('comp1', ecomp) self.assertTrue(ecomp is comp1) def test_group_simple_promoted(self): import openmdao.api as om p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('a', 3.0), promotes_outputs=['a']) p.model.add_subsystem('comp1', om.ExecComp('b=2.0*a'), promotes_inputs=['a']) p.setup() p.run_model() self.assertEqual(p['a'], 3.0) self.assertEqual(p['comp1.b'], 6.0) def test_inner_connect_w_extern_promote(self): p = om.Problem() g = p.model.add_subsystem('g', om.Group(), promotes_inputs=['c0.x']) g.add_subsystem('ivc', om.IndepVarComp('x', 2.)) g.add_subsystem('c0', om.ExecComp('y = 2*x')) g.connect('ivc.x', 'c0.x') p.setup() p.final_setup() from openmdao.error_checking.check_config import _get_promoted_connected_ins ins = _get_promoted_connected_ins(p.model) self.assertEqual(len(ins), 1) inp, tup = list(ins.items())[0] in_proms, mans = tup self.assertEqual(inp, 'g.c0.x') self.assertEqual(in_proms, ['g']) self.assertEqual(mans, [('c0.x', 'g')]) def test_inner_connect_w_2extern_promotes(self): p = om.Problem() g0 = p.model.add_subsystem('g0', om.Group(), promotes_inputs=['c0.x']) g = g0.add_subsystem('g', om.Group(), promotes_inputs=['c0.x']) g.add_subsystem('ivc', om.IndepVarComp('x', 2.)) g.add_subsystem('c0', om.ExecComp('y = 2*x')) g.connect('ivc.x', 'c0.x') p.setup() p.final_setup() from openmdao.error_checking.check_config import _get_promoted_connected_ins ins = _get_promoted_connected_ins(p.model) self.assertEqual(len(ins), 1) inp, tup = list(ins.items())[0] in_proms, mans = tup self.assertEqual(inp, 'g0.g.c0.x') self.assertEqual(list(sorted(in_proms)), ['g0', 'g0.g']) self.assertEqual(mans, [('c0.x', 'g0.g')]) def test_group_rename_connect(self): import openmdao.api as om p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('aa', 3.0), promotes=['aa']) p.model.add_subsystem('comp1', om.ExecComp('b=2.0*aa'), promotes_inputs=['aa']) # here we alias 'a' to 'aa' so that it will be automatically # connected to the independent variable 'aa'. p.model.add_subsystem('comp2', om.ExecComp('b=3.0*a'), promotes_inputs=[('a', 'aa')]) p.setup() p.run_model() self.assertEqual(p['comp1.b'], 6.0) self.assertEqual(p['comp2.b'], 9.0) def test_double_promote_conns(self): p = om.Problem() gouter = p.model.add_subsystem('gouter', om.Group()) gouter.add_subsystem('couter', om.ExecComp('xx = a * 3.'), promotes_outputs=['xx']) g = gouter.add_subsystem('g', om.Group(), promotes_inputs=[('x', 'xx')]) g.add_subsystem('ivc', om.IndepVarComp('x', 2.), promotes_outputs=['x']) g.add_subsystem('c0', om.ExecComp('y = 2*x'), promotes_inputs=['x']) with self.assertRaises(RuntimeError) as cm: p.setup() self.assertEqual(str(cm.exception), "Group (gouter): The following inputs have multiple connections: gouter.g.c0.x from ['gouter.couter.xx', 'gouter.g.ivc.x']") def test_double_promote_one_conn(self): p = om.Problem() gouter = p.model.add_subsystem('gouter', om.Group()) gouter.add_subsystem('couter', om.ExecComp('xx = a * 3.')) g = gouter.add_subsystem('g', om.Group(), promotes_inputs=[('x', 'xx')]) g.add_subsystem('ivc', om.IndepVarComp('x', 2.), promotes_outputs=['x']) g.add_subsystem('c0', om.ExecComp('y = 2*x'), promotes_inputs=['x']) p.setup() self.assertEqual(p.model._conn_global_abs_in2out['gouter.g.c0.x'], 'gouter.g.ivc.x') def test_check_unconn_inputs_w_promote_rename(self): p = om.Problem() gouter = p.model.add_subsystem('gouter', om.Group()) gouter.add_subsystem('couter', om.ExecComp('xx = a * 3.')) g = gouter.add_subsystem('g', om.Group(), promotes_inputs=['xx']) g.add_subsystem('ivc', om.IndepVarComp('x', 2.), promotes_outputs=['x']) g.add_subsystem('c0', om.ExecComp('y = 2*x'), promotes_inputs=[('x', 'xx')]) p.setup() logger = TestLogger() _check_hanging_inputs(p, logger) for w in logger.get('warning'): if 'The following inputs are not connected:' in w: if "gouter.couter.a" in w and "gouter.xx: ['gouter.g.c0.x']" in w: break else: self.fail("Expected warning not found.") self.assertEqual(p.model._conn_global_abs_in2out, {}) def test_subsys_attributes(self): p = om.Problem() class MyGroup(om.Group): def setup(self): # two subsystems added during setup self.add_subsystem('comp1', om.ExecComp('b=2.0*a', a=3.0, b=6.0)) self.add_subsystem('comp2', om.ExecComp('b=3.0*a', a=4.0, b=12.0)) # subsystems become attributes my_group = p.model.add_subsystem('gg', MyGroup()) self.assertTrue(p.model.gg is my_group) # after calling setup(), MyGroup's subsystems are also attributes p.setup() self.assertTrue(hasattr(p.model.gg, 'comp1')) self.assertTrue(hasattr(p.model.gg, 'comp2')) # calling setup() again doesn't break anything p.setup() self.assertTrue(p.model.gg is my_group) self.assertTrue(hasattr(p.model.gg, 'comp1')) self.assertTrue(hasattr(p.model.gg, 'comp2')) # name cannot start with an underscore with self.assertRaises(Exception) as err: p.model.add_subsystem('_bad_name', om.Group()) self.assertEqual(str(err.exception), "Group (<model>): '_bad_name' is not a valid sub-system name.") # 'name', 'pathname', 'comm' and 'options' are reserved names for reserved in ['name', 'pathname', 'comm', 'options']: with self.assertRaises(Exception) as err: p.model.add_subsystem(reserved, om.Group()) self.assertEqual(str(err.exception), "Group (<model>): Can't add subsystem '%s' because an attribute with that name already exits." % reserved) def test_group_nested(self): import openmdao.api as om p = om.Problem() p.model.add_subsystem('G1', om.Group()) p.model.G1.add_subsystem('comp1', om.ExecComp('b=2.0*a', a=3.0, b=6.0)) p.model.G1.add_subsystem('comp2', om.ExecComp('b=3.0*a', a=4.0, b=12.0)) p.setup() self.assertEqual(p['G1.comp1.a'], 3.0) self.assertEqual(p['G1.comp1.b'], 6.0) self.assertEqual(p['G1.comp2.a'], 4.0) self.assertEqual(p['G1.comp2.b'], 12.0) def test_group_getsystem_top(self): import openmdao.api as om from openmdao.core.tests.test_group import BranchGroup p = om.Problem(model=BranchGroup()) p.setup() c1 = p.model.Branch1.G1.G2.comp1 self.assertEqual(c1.pathname, 'Branch1.G1.G2.comp1') c2 = p.model.Branch2.G3.comp2 self.assertEqual(c2.pathname, 'Branch2.G3.comp2') def test_group_nested_promoted1(self): import openmdao.api as om # promotes from bottom level up 1 p = om.Problem() g1 = p.model.add_subsystem('G1', om.Group()) g1.add_subsystem('comp1', om.ExecComp('b=2.0*a', a=3.0, b=6.0), promotes_inputs=['a'], promotes_outputs=['b']) g1.add_subsystem('comp2', om.ExecComp('b=3.0*a', a=4.0, b=12.0), promotes_inputs=['a']) p.setup() # output G1.comp1.b is promoted self.assertEqual(p['G1.b'], 6.0) # output G1.comp2.b is not promoted self.assertEqual(p['G1.comp2.b'], 12.0) # use unpromoted names for the following 2 promoted inputs self.assertEqual(p['G1.comp1.a'], 3.0) self.assertEqual(p['G1.comp2.a'], 4.0) def test_group_nested_promoted2(self): import openmdao.api as om # promotes up from G1 level p = om.Problem() g1 = om.Group() g1.add_subsystem('comp1', om.ExecComp('b=2.0*a', a=3.0, b=6.0)) g1.add_subsystem('comp2', om.ExecComp('b=3.0*a', a=4.0, b=12.0)) # use glob pattern 'comp?.a' to promote both comp1.a and comp2.a # use glob pattern 'comp?.b' to promote both comp1.b and comp2.b p.model.add_subsystem('G1', g1, promotes_inputs=['comp?.a'], promotes_outputs=['comp?.b']) p.setup() # output G1.comp1.b is promoted self.assertEqual(p['comp1.b'], 6.0) # output G1.comp2.b is promoted self.assertEqual(p['comp2.b'], 12.0) # access both promoted inputs using unpromoted names. self.assertEqual(p['G1.comp1.a'], 3.0) self.assertEqual(p['G1.comp2.a'], 4.0) def test_group_promotes(self): """Promoting a single variable.""" p = om.Problem() p.model.add_subsystem('comp1', om.IndepVarComp([('a', 2.0), ('x', 5.0)]), promotes_outputs=['x']) p.model.add_subsystem('comp2', om.ExecComp('y=2*x'), promotes_inputs=['x']) p.setup() p.set_solver_print(level=0) p.run_model() self.assertEqual(p['comp1.a'], 2) self.assertEqual(p['x'], 5) self.assertEqual(p['comp2.y'], 10) def test_group_renames(self): p = om.Problem() p.model.add_subsystem('comp1', om.IndepVarComp('x', 5.0), promotes_outputs=[('x', 'foo')]) p.model.add_subsystem('comp2', om.ExecComp('y=2*foo'), promotes_inputs=['foo']) p.setup() p.set_solver_print(level=0) p.run_model() self.assertEqual(p['foo'], 5) self.assertEqual(p['comp2.y'], 10) def test_group_renames_errors_single_string(self): p = om.Problem() with self.assertRaises(Exception) as err: p.model.add_subsystem('comp1', om.IndepVarComp('x', 5.0), promotes_outputs='x') self.assertEqual(str(err.exception), "Group: promotes must be an iterator of strings and/or tuples.") def test_group_renames_errors_not_found(self): p = om.Problem() p.model.add_subsystem('comp1', om.IndepVarComp('x', 5.0), promotes_outputs=[('xx', 'foo')]) p.model.add_subsystem('comp2', om.ExecComp('y=2*foo'), promotes_inputs=['foo']) with self.assertRaises(Exception) as err: p.setup() self.assertEqual(str(err.exception), "IndepVarComp (comp1): 'promotes_outputs' failed to find any matches for " "the following names or patterns: ['xx'].") def test_group_renames_errors_bad_tuple(self): p = om.Problem() p.model.add_subsystem('comp1', om.IndepVarComp('x', 5.0), promotes_outputs=[('x', 'foo', 'bar')]) p.model.add_subsystem('comp2', om.ExecComp('y=2*foo'), promotes_inputs=['foo']) with self.assertRaises(Exception) as err: p.setup() self.assertEqual(str(err.exception), "when adding subsystem 'comp1', entry '('x', 'foo', 'bar')' " "is not a string or tuple of size 2") def test_group_promotes_multiple(self): """Promoting multiple variables.""" p = om.Problem() p.model.add_subsystem('comp1', om.IndepVarComp([('a', 2.0), ('x', 5.0)]), promotes_outputs=['a', 'x']) p.model.add_subsystem('comp2', om.ExecComp('y=2*x'), promotes_inputs=['x']) p.setup() p.set_solver_print(level=0) p.run_model() self.assertEqual(p['a'], 2) self.assertEqual(p['x'], 5) self.assertEqual(p['comp2.y'], 10) def test_group_promotes_all(self): """Promoting all variables with asterisk.""" p = om.Problem() p.model.add_subsystem('comp1', om.IndepVarComp([('a', 2.0), ('x', 5.0)]), promotes_outputs=['*']) p.model.add_subsystem('comp2', om.ExecComp('y=2*x'), promotes_inputs=['x']) p.setup() p.set_solver_print(level=0) p.run_model() self.assertEqual(p['a'], 2) self.assertEqual(p['x'], 5) self.assertEqual(p['comp2.y'], 10) def test_group_promotes2(self): class Sellar(om.Group): def setup(self): dv = self.add_subsystem('des_vars', om.IndepVarComp(), promotes=['*']) dv.add_output('x', 1.0) dv.add_output('z', np.array([5.0, 2.0])) self.add_subsystem('d1', SellarDis2(), promotes_inputs=['y1'], promotes_outputs=['foo']) self.add_subsystem('d2', SellarDis2()) p = om.Problem() p.model = Sellar() with self.assertRaises(Exception) as err: p.setup() self.assertEqual(str(err.exception), "SellarDis2 (d1): 'promotes_outputs' failed to find any matches for " "the following names or patterns: ['foo'].") def test_group_nested_conn(self): """Example of adding subsystems and issuing connections with nested groups.""" g1 = om.Group() c1_1 = g1.add_subsystem('comp1', om.IndepVarComp('x', 5.0)) c1_2 = g1.add_subsystem('comp2', om.ExecComp('b=2*a')) g1.connect('comp1.x', 'comp2.a') g2 = om.Group() c2_1 = g2.add_subsystem('comp1', om.ExecComp('b=2*a')) c2_2 = g2.add_subsystem('comp2', om.ExecComp('b=2*a')) g2.connect('comp1.b', 'comp2.a') model = om.Group() model.add_subsystem('group1', g1) model.add_subsystem('group2', g2) model.connect('group1.comp2.b', 'group2.comp1.a') p = om.Problem(model=model) p.setup() c1_1 = p.model.group1.comp1 c1_2 = p.model.group1.comp2 c2_1 = p.model.group2.comp1 c2_2 = p.model.group2.comp2 self.assertEqual(c1_1.name, 'comp1') self.assertEqual(c1_2.name, 'comp2') self.assertEqual(c2_1.name, 'comp1') self.assertEqual(c2_2.name, 'comp2') c1_1 = p.model.group1.comp1 c1_2 = p.model.group1.comp2 c2_1 = p.model.group2.comp1 c2_2 = p.model.group2.comp2 self.assertEqual(c1_1.name, 'comp1') self.assertEqual(c1_2.name, 'comp2') self.assertEqual(c2_1.name, 'comp1') self.assertEqual(c2_2.name, 'comp2') s = p.model._get_subsystem('') self.assertEqual(s, None) p.set_solver_print(level=0) p.run_model() self.assertEqual(p['group1.comp1.x'], 5.0) self.assertEqual(p['group1.comp2.b'], 10.0) self.assertEqual(p['group2.comp1.b'], 20.0) self.assertEqual(p['group2.comp2.b'], 40.0) def test_reused_output_promoted_names(self): prob = om.Problem() prob.model.add_subsystem('px1', om.IndepVarComp('x1', 100.0)) G1 = prob.model.add_subsystem('G1', om.Group()) G1.add_subsystem("C1", om.ExecComp("y=2.0*x"), promotes=['y']) G1.add_subsystem("C2", om.ExecComp("y=2.0*x"), promotes=['y']) msg = r"Output name 'y' refers to multiple outputs: \['G1.C1.y', 'G1.C2.y'\]." with assertRaisesRegex(self, Exception, msg): prob.setup() def test_basic_connect_units(self): import numpy as np import openmdao.api as om p = om.Problem() indep_comp = om.IndepVarComp() indep_comp.add_output('x', np.ones(5), units='ft') exec_comp = om.ExecComp('y=sum(x)', x={'value': np.zeros(5), 'units': 'inch'}, y={'units': 'inch'}) p.model.add_subsystem('indep', indep_comp) p.model.add_subsystem('comp1', exec_comp) p.model.connect('indep.x', 'comp1.x') p.setup() p.run_model() assert_rel_error(self, p['indep.x'], np.ones(5)) assert_rel_error(self, p['comp1.x'], np.ones(5)*12.) assert_rel_error(self, p['comp1.y'], 60.) def test_connect_1_to_many(self): import numpy as np import openmdao.api as om p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x', np.ones(5))) p.model.add_subsystem('C1', om.ExecComp('y=sum(x)*2.0', x=np.zeros(5))) p.model.add_subsystem('C2', om.ExecComp('y=sum(x)*4.0', x=np.zeros(5))) p.model.add_subsystem('C3', om.ExecComp('y=sum(x)*6.0', x=np.zeros(5))) p.model.connect('indep.x', ['C1.x', 'C2.x', 'C3.x']) p.setup() p.run_model() assert_rel_error(self, p['C1.y'], 10.) assert_rel_error(self, p['C2.y'], 20.) assert_rel_error(self, p['C3.y'], 30.) def test_double_src_indices(self): class MyComp1(om.ExplicitComponent): def setup(self): self.add_input('x', np.ones(3), src_indices=[0, 1, 2]) self.add_output('y', 1.0) def compute(self, inputs, outputs): outputs['y'] = np.sum(inputs['x'])*2.0 p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x', np.ones(5))) p.model.add_subsystem('C1', MyComp1()) p.model.connect('indep.x', 'C1.x', src_indices=[1, 0, 2]) with self.assertRaises(Exception) as context: p.setup() self.assertEqual(str(context.exception), "Group (<model>): src_indices has been defined in both " "connect('indep.x', 'C1.x') and add_input('C1.x', ...).") def test_connect_src_indices(self): import numpy as np import openmdao.api as om p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x', np.ones(5))) p.model.add_subsystem('C1', om.ExecComp('y=sum(x)*2.0', x=np.zeros(3))) p.model.add_subsystem('C2', om.ExecComp('y=sum(x)*4.0', x=np.zeros(2))) # connect C1.x to the first 3 entries of indep.x p.model.connect('indep.x', 'C1.x', src_indices=[0, 1, 2]) # connect C2.x to the last 2 entries of indep.x # use -2 (same as 3 in this case) to show that negative indices work. p.model.connect('indep.x', 'C2.x', src_indices=[-2, 4]) p.setup() p.run_model() assert_rel_error(self, p['C1.x'], np.ones(3)) assert_rel_error(self, p['C1.y'], 6.) assert_rel_error(self, p['C2.x'], np.ones(2)) assert_rel_error(self, p['C2.y'], 8.) def test_connect_src_indices_noflat(self): import numpy as np import openmdao.api as om p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x', np.arange(12).reshape((4, 3)))) p.model.add_subsystem('C1', om.ExecComp('y=sum(x)*2.0', x=np.zeros((2, 2)))) # connect C1.x to entries (0,0), (-1,1), (2,1), (1,1) of indep.x p.model.connect('indep.x', 'C1.x', src_indices=[[(0, 0), (-1, 1)], [(2, 1), (1, 1)]], flat_src_indices=False) p.setup() p.run_model() assert_rel_error(self, p['C1.x'], np.array([[0., 10.], [7., 4.]])) assert_rel_error(self, p['C1.y'], 42.) def test_promote_not_found1(self): p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x', np.ones(5)), promotes_outputs=['x']) p.model.add_subsystem('C1', om.ExecComp('y=x'), promotes_inputs=['x']) p.model.add_subsystem('C2', om.ExecComp('y=x'), promotes_outputs=['x*']) with self.assertRaises(Exception) as context: p.setup() self.assertEqual(str(context.exception), "ExecComp (C2): 'promotes_outputs' failed to find any matches for " "the following names or patterns: ['x*'].") def test_promote_not_found2(self): p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x', np.ones(5)), promotes_outputs=['x']) p.model.add_subsystem('C1', om.ExecComp('y=x'), promotes_inputs=['x']) p.model.add_subsystem('C2', om.ExecComp('y=x'), promotes_inputs=['xx']) with self.assertRaises(Exception) as context: p.setup() self.assertEqual(str(context.exception), "ExecComp (C2): 'promotes_inputs' failed to find any matches for " "the following names or patterns: ['xx'].") def test_promote_not_found3(self): p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x', np.ones(5)), promotes_outputs=['x']) p.model.add_subsystem('C1', om.ExecComp('y=x'), promotes=['x']) p.model.add_subsystem('C2', om.ExecComp('y=x'), promotes=['xx']) with self.assertRaises(Exception) as context: p.setup() self.assertEqual(str(context.exception), "ExecComp (C2): 'promotes' failed to find any matches for " "the following names or patterns: ['xx'].") def test_missing_promote_var(self): p = om.Problem() indep_var_comp = om.IndepVarComp('z', val=2.) p.model.add_subsystem('indep_vars', indep_var_comp, promotes=['*']) p.model.add_subsystem('d1', om.ExecComp("y1=z+bar"), promotes_inputs=['z', 'foo']) with self.assertRaises(Exception) as context: p.setup() self.assertEqual(str(context.exception), "ExecComp (d1): 'promotes_inputs' failed to find any matches for " "the following names or patterns: ['foo'].") def test_missing_promote_var2(self): p = om.Problem() indep_var_comp = om.IndepVarComp('z', val=2.) p.model.add_subsystem('indep_vars', indep_var_comp, promotes=['*']) p.model.add_subsystem('d1', om.ExecComp("y1=z+bar"), promotes_outputs=['y1', 'blammo', ('bar', 'blah')]) with self.assertRaises(Exception) as context: p.setup() self.assertEqual(str(context.exception), "ExecComp (d1): 'promotes_outputs' failed to find any matches for " "the following names or patterns: ['bar', 'blammo'].") def test_promote_src_indices(self): import numpy as np import openmdao.api as om class MyComp1(om.ExplicitComponent): def setup(self): # this input will connect to entries 0, 1, and 2 of its source self.add_input('x', np.ones(3), src_indices=[0, 1, 2]) self.add_output('y', 1.0) def compute(self, inputs, outputs): outputs['y'] = np.sum(inputs['x'])*2.0 class MyComp2(om.ExplicitComponent): def setup(self): # this input will connect to entries 3 and 4 of its source self.add_input('x', np.ones(2), src_indices=[3, 4]) self.add_output('y', 1.0) def compute(self, inputs, outputs): outputs['y'] = np.sum(inputs['x'])*4.0 p = om.Problem() # by promoting the following output and inputs to 'x', they will # be automatically connected p.model.add_subsystem('indep', om.IndepVarComp('x', np.ones(5)), promotes_outputs=['x']) p.model.add_subsystem('C1', MyComp1(), promotes_inputs=['x']) p.model.add_subsystem('C2', MyComp2(), promotes_inputs=['x']) p.setup() p.run_model() assert_rel_error(self, p['C1.x'], np.ones(3)) assert_rel_error(self, p['C1.y'], 6.) assert_rel_error(self, p['C2.x'], np.ones(2)) assert_rel_error(self, p['C2.y'], 8.) def test_promote_src_indices_nonflat(self): import numpy as np import openmdao.api as om class MyComp(om.ExplicitComponent): def setup(self): # We want to pull the following 4 values out of the source: # [(0,0), (3,1), (2,1), (1,1)]. # Because our input is also non-flat we arrange the # source index tuples into an array having the same shape # as our input. If we didn't set flat_src_indices to False, # we could specify src_indices as a 1D array of indices into # the flattened source. self.add_input('x', np.ones((2, 2)), src_indices=[[(0, 0), (3, 1)], [(2, 1), (1, 1)]], flat_src_indices=False) self.add_output('y', 1.0) def compute(self, inputs, outputs): outputs['y'] = np.sum(inputs['x']) p = om.Problem() # by promoting the following output and inputs to 'x', they will # be automatically connected p.model.add_subsystem('indep', om.IndepVarComp('x', np.arange(12).reshape((4, 3))), promotes_outputs=['x']) p.model.add_subsystem('C1', MyComp(), promotes_inputs=['x']) p.setup() p.run_model() assert_rel_error(self, p['C1.x'], np.array([[0., 10.], [7., 4.]])) assert_rel_error(self, p['C1.y'], 21.) def test_promote_src_indices_nonflat_to_scalars(self): class MyComp(om.ExplicitComponent): def setup(self): self.add_input('x', 1.0, src_indices=[(3, 1)], shape=(1,)) self.add_output('y', 1.0) def compute(self, inputs, outputs): outputs['y'] = inputs['x']*2.0 p = om.Problem() p.model.add_subsystem('indep', om.IndepVarComp('x',
np.arange(12)
numpy.arange
# -*- coding: utf-8 -*- """GEModelClass Solves an Aiygari model """ ############## # 1. imports # ############## import time import numpy as np from numba import njit, prange # consav from consav import ModelClass, jit # baseline model class and jit from consav import linear_interp # linear interpolation from consav.grids import equilogspace # grids from consav.markov import log_rouwenhorst # markov processes from consav.misc import elapsed ############ # 2. model # ############ class GEModelClass(ModelClass): ######### # setup # ######### def settings(self): """ fundamental settings """ # for safe type inference self.not_floats = ['Ne','Na','max_iter_solve','max_iter_simulate','path_T'] def setup(self): """ set baseline parameters """ par = self.par # a. steady state values par.r_ss = np.nan par.w_ss = np.nan par.K_ss = np.nan par.Y_ss = np.nan par.C_ss = np.nan par.kd_ss = np.nan par.ks_ss = np.nan # b. preferences par.sigma = 1.0 # CRRA coefficient par.beta = 0.982 # discount factor # c. production par.Z = 1.0 # technology level in steady state par.Z_sigma = 0.01 # shock par.Z_rho = 0.90 # persistence par.alpha = 0.11 # Cobb-Douglas coefficient par.delta = 0.025 # depreciation rate # d. income parameters par.rho = 0.966 # AR(1) parameter par.sigma_e = 0.10 # std. of persistent shock par.Ne = 7 # number of states # e. grids par.a_max = 200.0 # maximum point in grid for a par.Na = 500 # number of grid points # f. misc. par.path_T = 500 # length of path par.max_iter_solve = 5000 # maximum number of iterations when solving par.max_iter_simulate = 5000 # maximum number of iterations when simulating par.solve_tol = 1e-10 # tolerance when solving par.simulate_tol = 1e-10 # tolerance when simulating def allocate(self): """ allocate model, i.e. create grids and allocate solution and simluation arrays """ par = self.par sol = self.sol sim = self.sim # a. grids par.a_grid = np.zeros(par.Na) par.e_grid = np.zeros(par.Ne) par.e_trans = np.zeros((par.Ne,par.Ne)) par.e_ergodic = np.zeros(par.Ne) par.e_trans_cumsum = np.zeros((par.Ne,par.Ne)) par.e_ergodic_cumsum = np.zeros(par.Ne) self.create_grids() # b. solution sol_shape = (par.Ne,par.Na) sol.a = np.zeros(sol_shape) sol.m = np.zeros(sol_shape) sol.c = np.zeros(sol_shape) sol.Va = np.zeros(sol_shape) sol.i = np.zeros(sol_shape,dtype=np.int_) sol.w = np.zeros(sol_shape) # path path_sol_shape = (par.path_T,par.Ne,par.Na) sol.path_a = np.zeros(path_sol_shape) sol.path_m = np.zeros(path_sol_shape) sol.path_c = np.zeros(path_sol_shape) sol.path_Va = np.zeros(path_sol_shape) sol.path_i = np.zeros(path_sol_shape,dtype=np.int_) sol.path_w = np.zeros(path_sol_shape) # c. simulation sim_shape = sol_shape sim.D = np.zeros(sim_shape) # path path_sim_shape = path_sol_shape sim.path_D = np.zeros(path_sim_shape) sim.path_K = np.zeros(par.path_T) sim.path_C = np.zeros(par.path_T) sim.path_Klag = np.zeros(par.path_T) # jacobians jac_shape = (par.path_T,par.path_T) sol.jac_K = np.zeros(jac_shape) sol.jac_C = np.zeros(jac_shape) sol.jac_curlyK_r = np.zeros(jac_shape) sol.jac_curlyK_w = np.zeros(jac_shape) sol.jac_C_r = np.zeros(jac_shape) sol.jac_C_w = np.zeros(jac_shape) sol.jac_r_K = np.zeros(jac_shape) sol.jac_w_K = np.zeros(jac_shape) sol.jac_r_Z = np.zeros(jac_shape) sol.jac_w_Z = np.zeros(jac_shape) sol.H_K = np.zeros(jac_shape) sol.H_Z =
np.zeros(jac_shape)
numpy.zeros
# -*- coding: utf-8 -*- """Functions to work with ASTER L1B satellite data. """ import datetime import logging import os from collections import namedtuple import gdal import numpy as np from scipy import interpolate from skimage.measure import block_reduce from typhon.math import multiple_logical __all__ = [ "ASTERimage", "lapserate_modis", "lapserate_moist_adiabate", "cloudtopheight_IR", ] logger = logging.getLogger(__name__) CONFIDENTLY_CLOUDY = 5 PROBABLY_CLOUDY = 4 PROBABLY_CLEAR = 3 CONFIDENTLY_CLEAR = 2 class ASTERimage: """ASTER L1B image object.""" subsensors = { "VNIR": ("1", "2", "3N", "3B"), "SWIR": ("4", "5", "6", "7", "8", "9"), "TIR": ("10", "11", "12", "13", "14"), } # list of ASTER channels channels = [c for sc in subsensors.values() for c in sc] # dictionary with keys=channels and values=subsensors channel2sensor = {c: s for s, sc in subsensors.items() for c in sc} wavelength_range = { # VNIR "1": (0.52, 0.60), "2": (0.63, 0.69), "3N": (0.78, 0.86), "3B": (0.78, 0.86), # SWIR "4": (1.600, 1.700), "5": (2.145, 2.185), "6": (2.185, 2.225), "7": (2.235, 2.285), "8": (2.295, 2.365), "9": (2.360, 2.430), # TIR "10": (8.125, 8.475), "11": (8.475, 8.825), "12": (8.925, 9.275), "13": (10.25, 10.95), "14": (10.95, 11.65) } def __init__(self, filename): """Initialize ASTER image object. Parameters: filename (str): Path to ASTER L1B HDF file. """ self.filename = filename self.meta = self.get_metadata() SolarDirection = namedtuple( "SolarDirection", ["azimuth", "elevation"] ) # SolarDirection = (0< az <360, -90< el <90) self.solardirection = SolarDirection( *self._convert_metastr(self.meta["SOLARDIRECTION"], dtype=tuple) ) self.sunzenith = 90 - self.solardirection.elevation self.datetime = datetime.datetime.strptime( self.meta["CALENDARDATE"] + self.meta["TIMEOFDAY"][:13], "%Y-%m-%d%H:%M:%S.%f0", ) SceneCenter = namedtuple("SceneCenter", ["latitude", "longitude"]) self.scenecenter = SceneCenter( *self._convert_metastr(self.meta["SCENECENTER"], dtype=tuple) ) CornerCoordinates = namedtuple( "CornerCoordinates", ["LOWERLEFT", "LOWERRIGHT", "UPPERRIGHT", "UPPERLEFT"] ) self.cornercoordinates = CornerCoordinates( self._convert_metastr(self.meta["LOWERLEFT"], dtype=tuple), self._convert_metastr(self.meta["LOWERRIGHT"], dtype=tuple), self._convert_metastr(self.meta["UPPERRIGHT"], dtype=tuple), self._convert_metastr(self.meta["UPPERLEFT"], dtype=tuple), ) @property def basename(self): """Filename without path.""" return os.path.basename(self.filename) @staticmethod def _convert_metastr(metastr, dtype=None): """Convert metadata data type.""" if dtype is None: dtype = str if issubclass(dtype, tuple): return tuple(float(f.strip()) for f in metastr.split(",")) else: return dtype(metastr) def get_metadata(self): """Read full ASTER metadata information.""" return gdal.Open(self.filename).GetMetadata() def read_digitalnumbers(self, channel): """Read ASTER L1B raw digital numbers. Parameters: channel (str): ASTER channel number. '1', '2', '3N', '3B', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14'. Returns: ndarray: Digital numbers. Shape according to data resolution of the respective channel. """ if channel in ("1", "2", "3N"): if self.meta["ASTEROBSERVATIONMODE.1"] == "VNIR1, ON": subsensor = "VNIR" else: raise ValueError("VNIR nadir observation mode OFF") elif channel == "3B": if self.meta["ASTEROBSERVATIONMODE.2"] == "VNIR2, ON": subsensor = "VNIR" else: raise ValueError("VNIR back observation mode OFF") elif channel in ("4", "5", "6", "7", "8", "9"): if self.meta["ASTEROBSERVATIONMODE.3"] == "SWIR, ON": subsensor = "SWIR" else: raise ValueError("SWIR observation mode OFF") elif channel in ("10", "11", "12", "13", "14"): if self.meta["ASTEROBSERVATIONMODE.4"] == "TIR, ON": subsensor = "TIR" else: raise ValueError("TIR observation mode OFF") else: raise ValueError("The chosen channel is not supported.") data_path = ( f"HDF4_EOS:EOS_SWATH:{self.filename}:{subsensor}_Swath:" f"ImageData{channel}" ) swath = gdal.Open(data_path) data = swath.ReadAsArray().astype("float") data[data == 0] = np.nan # Set edge pixels to NaN. return data def get_radiance(self, channel): """Get ASTER radiance values. Read digital numbers from ASTER L1B file and convert them to spectral radiance values in [W m-2 sr-1 um-1] at TOA by means of unit conversion coefficients ucc [W m-2 sr-1 um-1] and the gain settings at the sensor. See also: :func:`read_digitalnumbers`: Reads the raw digital numbers from ASTER L1B HDF4 files. Parameters: channel (str): ASTER channel number. '1', '2', '3N', '3B', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14'. Returns: ndarray: Radiance values at TOA. Shape according to data resolution of the respective channel. References: <NAME>, <NAME>., & <NAME>. (2002). Aster user handbook version 2, p.25 [Computer software manual]. Retrieved 2017-05-25, from https://asterweb.jpl.nasa.gov/content/03 data/04 Documents/ aster user guide v2.pdf. """ dn = self.read_digitalnumbers(channel) # Unit conversion coefficients ucc [W m-2 sr-1 um-1] for different gain # settings, high, normal, low1, and low2. ucc = { "1": (0.676, 1.688, 2.25, np.nan), "2": (0.708, 1.415, 1.89, np.nan), "3N": (0.423, 0.862, 1.15, np.nan), "3B": (0.423, 0.862, 1.15, np.nan), "4": (0.1087, 0.2174, 0.290, 0.290), "5": (0.0348, 0.0696, 0.0925, 0.409), "6": (0.0313, 0.0625, 0.0830, 0.390), "7": (0.0299, 0.0597, 0.0795, 0.332), "8": (0.0209, 0.0417, 0.0556, 0.245), "9": (0.0159, 0.0318, 0.0424, 0.265), "10": 6.882e-3, "11": 6.780e-3, "12": 6.590e-3, "13": 5.693e-3, "14": 5.225e-3, } if channel in ["1", "2", "3N", "3B", "4", "5", "6", "7", "8", "8", "9"]: meta = self.get_metadata() gain = meta[f"GAIN.{channel[0]}"].split(",")[1].strip() if gain == "LO1": gain = "LOW" # both refer to column 3 in ucc table. radiance = (dn - 1) * ucc[channel][["HGH", "NOR", "LOW", "LO2"].index(gain)] elif channel in ["10", "11", "12", "13", "14"]: radiance = (dn - 1) * ucc[channel] else: raise ValueError('Invalid channel "{channel}".') return radiance def get_reflectance(self, channel): """Get ASTER L1B reflectance values at TOA. Spectral radiance values are converted to reflectance values for ASTER's near-infrared and short-wave channels (1-9). See also: :func:`get_radiance`: Reads the raw digital numbers from ASTER L1B HDF4 files and converts them to radiance values at TOA. Parameters: channel (str): ASTER channel number. '1', '2', '3N', '3B', '4', '5', '6', '7', '8', '9'. Returns: ndarray: Reflectance values at TOA. Shape according to data resolution of the respective channel. References: <NAME>.; <NAME>.; <NAME> (2001). Effects of assumed solar spectral irradiance on intercomparisons of earth-observing sensors. In Sensors, Systems, and Next-Generation Satellites; Proceedings of SPIE; December 2001; <NAME>., <NAME>., <NAME>.; Vol. 4540, pp. 260–269. http://www.pancroma.com/downloads/ASTER%20Temperature%20and%20Reflectance.pdf http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html """ # Mean solar exo-atmospheric irradiances [W m-2 um-1] at TOA according # to Thome et al. 2001. E_sun = ( 1848, 1549, 1114, 1114, 225.4, 86.63, 81.85, 74.85, 66.49, 59.85, np.nan, np.nan, np.nan, np.nan, np.nan, ) doy = self.datetime.timetuple().tm_yday # day of the year (doy) distance = ( 0.016790956760352183 * np.sin(-0.017024566555637135 * doy + 4.735251041365579) + 0.9999651354429786 ) # acc. to Landsat Handbook return ( np.pi * self.get_radiance(channel) * distance ** 2 / E_sun[self.channels.index(channel)] / np.cos(np.deg2rad(self.sunzenith)) ) def get_brightnesstemperature(self, channel): """Get ASTER L1B reflectances values at TOA. Spectral radiance values are converted to brightness temperature values in [K] for ASTER's thermal channels (10-14). See also: :func:`get_radiance`: Reads the raw digital numbers from ASTER L1B HDF4 files and converts them to radiance values at TOA. Parameters: channel (str): ASTER channel number. '10', '11', '12', '13', '14'. Returns: ndarray: Brightness temperature values in [K] at TOA. Shape according to data resolution of the respective channel. References: http://www.pancroma.com/downloads/ASTER%20Temperature%20and%20Reflectan ce.pdf http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html """ K1 = { "10": 3040.136402, # Constant K1 [W m-2 um-1]. "11": 2482.375199, "12": 1935.060183, "13": 866.468575, "14": 641.326517, } K2 = { "10": 1735.337945, # Constant K2 [K]. "11": 1666.398761, "12": 1585.420044, "13": 1350.069147, "14": 1271.221673, } return K2[channel] / np.log((K1[channel] / self.get_radiance(channel)) + 1) def retrieve_cloudmask( self, output_binary=True, include_thermal_test=True, include_channel_r5=True ): """ASTER cloud mask. Four thresholding test based on visual bands distringuish between the dark ocean surface and bright clouds. An additional test corrects uncertain labeled pixels during broken cloud conditions and pixels with sun glint. A detailed description can be found in Werner et al., 2016. See also: :func:`get_reflectance`: Get reflectance values from ASTER's near-infrared and short-wave channels. :func:`get_brightnesstemperature`: Get brightness temperature values from ASTER's thermal channels. :func:multiple_logical`: Apply logical function to multiple arguments. Parameters: output_binary (bool): Switch between binary and full cloud mask flags. binary: 0 - clear (flag 2 & flag 3) 1 - cloudy (flag 4 & flag 5) full: 2 - confidently clear 3 - probably clear 4 - probably cloudy 5 - confidently cloudy include_thermal_test (bool): Switch for including test 5, which uses the thermal channel 14 at 11mu with 90m pixel resolution. The reduced resolution can introduce artificial straight cloud boundaries. include_channel_r5 (bool): Switch for including channel 5 in the thresholding tests. The SWIR sensor, including channel 5, suffered from temperature problems after May 2007. Per default, later recorded images are set to a value that has no influence on the thresholding tests. Returns: ndarray[float]: Cloud mask. References: <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., and <NAME>.: Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS, Atmos. Meas. Techannel., 9, 5869-5894, https://doi.org/10.5194/amt-9-5869-2016, 2016. """ # Read visual near infrared (VNIR) channels at 15m resolution. r1 = self.get_reflectance(channel="1") r2 = self.get_reflectance(channel="2") r3N = self.get_reflectance(channel="3N") # Read short-wave infrared (SWIR) channels at 30m resolution and match # VNIR resolution. r5 = self.get_reflectance(channel="5") if self.datetime > datetime.datetime(2007, 5, 1) or not include_channel_r5: # The SWIR sensor suffered from temperature problems after May # 2007. Images later on are set to a dummy value "1", which won't # influence the following thresholding tests. Swath edge NaN pixels # stay NaN. r5[~np.isnan(r5)] = 1 r5 = np.repeat(np.repeat(r5, 2, axis=0), 2, axis=1) # Read thermal (TIR) channel at 90m resolution and match VNIR # resolution. bt14 = self.get_brightnesstemperature(channel="14") bt14 = np.repeat(np.repeat(bt14, 6, axis=0), 6, axis=1) # Ratios for clear-cloudy-tests. r3N2 = r3N / r2 r12 = r1 / r2 ### TEST 1-4 ### # Set cloud mask to default "confidently clear". clmask = np.ones(r1.shape, dtype=np.float) * 2 with np.warnings.catch_warnings(): np.warnings.filterwarnings("ignore", r"invalid value encountered") # Set "probably clear" pixels. clmask[ multiple_logical( r3N > 0.03, r5 > 0.01, 0.7 < r3N2, r3N2 < 1.75, r12 < 1.45, func=np.logical_and, ) ] = PROBABLY_CLEAR # Set "probably cloudy" pixels. clmask[ multiple_logical( r3N > 0.03, r5 > 0.015, 0.75 < r3N2, r3N2 < 1.75, r12 < 1.35, func=np.logical_and, ) ] = PROBABLY_CLOUDY # Set "confidently cloudy" pixels clmask[ multiple_logical( r3N > 0.065, r5 > 0.02, 0.8 < r3N2, r3N2 < 1.75, r12 < 1.2, func=np.logical_and, ) ] = CONFIDENTLY_CLOUDY # Combine swath edge pixels. clmask[ multiple_logical( np.isnan(r1), np.isnan(r2), np.isnan(r3N), np.isnan(r5), func=np.logical_or, ) ] = np.nan if include_thermal_test: ### TEST 5 ### # Uncertain warm ocean pixels, higher than the 5th percentile of # brightness temperature values from all "confidently clear" # labeled pixels, are overwritten with "confidently clear". # Check for available "confidently clear" pixels. nc = np.sum(clmask == 2) / np.sum(~np.isnan(clmask)) if nc > 0.03: bt14_p05 = np.nanpercentile(bt14[clmask == 2], 5) else: # If less than 3% of pixels are "confidently clear", test 5 # cannot be applied according to Werner et al., 2016. However, # a sensitivity study showed that combining "probably clear" # and "confidently clear" pixels in such cases leads to # plausible results and we derive a threshold correspondingly. bt14_p05 = np.nanpercentile( bt14[np.logical_or(clmask == 2, clmask == 3)], 5 ) with np.warnings.catch_warnings(): np.warnings.filterwarnings("ignore", r"invalid value encountered") # Pixels with brightness temperature values above the 5th # percentile of clear ocean pixels are overwritten with # "confidently clear". clmask[np.logical_and(bt14 > bt14_p05, ~np.isnan(clmask))] = 2 # Combine swath edge pixels. clmask[np.logical_or(np.isnan(clmask), np.isnan(bt14))] = np.nan if output_binary: clmask[np.logical_or(clmask == 2, clmask == 3)] = 0 # clear clmask[np.logical_or(clmask == 4, clmask == 5)] = 1 # cloudy return clmask def read_coordinates(self, channel="1"): """Read reduced latitude and longitude grid. Extract geolocation table containing latitude and longitude values at 11 x 11 lattice points. Latitudes are provided in geocentric coordinates and are maped to geodetic values. Parameters: channel (str): ASTER channel number. '1', '2', '3N', '3B', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14'. Returns: ndarray, ndarray: latitude, longitude """ sdsidx = {"VNIR": (0, 1), "SWIR": (6, 7), "TIR": (14, 15)} latstr = ":".join( ( "HDF4_SDS", "UNKNOWN", f"{self.filename}", f"{sdsidx[self.channel2sensor[channel]][0]}", ) ) lat = gdal.Open(latstr) lat = geocentric2geodetic(lat.ReadAsArray().astype("float")) lonstr = ":".join( ( "HDF4_SDS", "UNKNOWN", f"{self.filename}", f"{sdsidx[self.channel2sensor[channel]][1]}", ) ) lon = gdal.Open(lonstr) lon = lon.ReadAsArray().astype("float") return lat, lon def get_latlon_grid(self, channel="1"): """Create latitude-longitude-grid for specified channel data. A latitude-logitude grid is created from geolocation information from 11 x 11 boxes corresponding to the image data. The resolution and dimension of the image and latitude-logitude grid depend on the specified channel. Parameters: channel (str): ASTER channel number. '1', '2', '3N', '3B', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14'. Returns: ndarray[tuple]: Latitude longitude grid. References: <NAME>, <NAME>., & <NAME>. (2002). Aster user handbook version 2, p.25 [Computer software manual]. Retrieved 2017-05-25, from https://asterweb.jpl.nasa.gov/content/03 data/04 Documents/ aster user guide v2.pdf. """ ImageDimension = namedtuple("ImageDimension", ["lon", "lat"]) imagedimension = ImageDimension( *self._convert_metastr(self.meta[f"IMAGEDATAINFORMATION{channel}"], tuple)[ :2 ] ) lat, lon = self.read_coordinates(channel=channel) latidx = np.arange(11) * imagedimension.lat / 10 lonidx = np.arange(11) * imagedimension.lon / 10 # Function for interpolation to full domain grid. flat = interpolate.interp2d(lonidx, latidx, lat, kind="linear") flon = interpolate.interp2d(lonidx, latidx, lon, kind="linear") # Grid matching shifted corner coordinates (see above). latgrid = np.arange(0, int(imagedimension.lat) + 1, 1) longrid = np.arange(0, int(imagedimension.lon) + 1, 1) # Apply lat-lon-function to grid and cut off last row and column to get # the non-shifted grid. lats = flat(longrid, latgrid)[:-1, :-1] lons = flon(longrid, latgrid)[:-1, :-1] return lats, lons def get_lapserate(self): """Estimate lapse rate from MODIS climatology using :func:`lapserate`.""" return lapserate_modis(self.datetime.month, self.scenecenter[0]) def get_cloudtopheight(self): """Estimate the cloud top height according to Baum et al., 2012 using :func: `cloudtopheight_IR`.""" bt = self.get_brightnesstemperature("14") cloudmask = self.retrieve_cloudmask() latitude = self.scenecenter.latitude month = self.datetime.month return cloudtopheight_IR(bt, cloudmask, latitude, month, method="modis") def dt_estimate_scanlines(self, sensor="vnir"): """Estimate the date time per scanline. Based on the approximate recording time for one ASTER image a date time array is constructed along the flight direction and depending on the sensor resolution. Parameters: sensor (str): ASTER sensor ("vnir", "swir", or "tir"). Returns: (ndarray[datetime]): date time information per scanline. """ dtdelta = datetime.timedelta(seconds=8, milliseconds=849) scanlines = {"vnir": 4200, "swir": 2100, "tir": 700} return np.linspace(-0.5, 0.5, scanlines[sensor]) * dtdelta + self.datetime def sensor_angles(self, channel="1"): """Calculate sensor zenith and azimuth angles. Angles are derived for each pixel depending on the channel and the corresponding ASTER subsensor ("VNIR", "SWIR", "TIR"), as well as on the subsensor geometry and settings. Note: All angular values are given in degree. Parameters: channel (str): ASTER channel number. '1', '2', '3N', '3B', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14'. Returns: ndarray, ndarray: sensor zenith, sensor azimuth angles in degree. References: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> & <NAME> (2015) Observation of submarine sand waves using ASTER stereo sun glitter imagery, International Journal of Remote Sensing, 36:22, 5576-5592, DOI: 10.1080/01431161.2015.1101652 Algorithm Theoretical Basis Document for ASTER Level-1 Data Processing (Ver. 3.0).1996. """ if channel != "3B": sensor = self.channel2sensor[channel] else: sensor = "VNIRB" # Angular data from ASTER metadata data. S = float(self.meta["MAPORIENTATIONANGLE"]) FOV = {"VNIR": 6.09, "VNIRB": 5.19, "SWIR": 4.9, "TIR": 4.9} P = { "VNIR": float(self.meta["POINTINGANGLE.1"]), "VNIRB": float(self.meta["POINTINGANGLE.1"]), "SWIR": float(self.meta["POINTINGANGLE.2"]), "TIR": float(self.meta["POINTINGANGLE.3"]), } # cut overlap area of backward pointing telescope if channel != "3B": field = self.read_digitalnumbers(channel) elif channel == "3B" and self.meta["FLYINGDIRECTION"] == "DE": field = self.read_digitalnumbers(channel)[400:] elif channel == "3B" and self.meta["FLYINGDIRECTION"] == "AE": field = self.read_digitalnumbers(channel)[:400] # design n field sidx = np.arange(np.shape(field)[1]) mid0 = sidx[np.isfinite(field[5, :])][[0, -1]].mean() mid1 = sidx[np.isfinite(field[-5, :])][[0, -1]].mean() f = interpolate.interp1d( np.array([5, np.shape(field)[0] - 5]), np.array([mid0, mid1]), kind="linear", fill_value="extrapolate", ) mids = f(np.arange(np.shape(field)[0])) # costructing an n-array indexing the pixels symmetric to the center of the # swath. If pointing angle is zero, the sensor zenith angle is zero in the # swath center. n = sidx - mids[:, np.newaxis] # left and right side of nadir are defined such that the sign follows the # roll angle sign, which is negative on the right and positive on the left # side of the sensor in flying direction (!), NOT in projected image. The # sides therefore depend on the ascending / decending mode defined in the # meta data. flyingdir = self.meta["FLYINGDIRECTION"] if flyingdir is "DE": n *= -1 swath_widths = np.sum(np.isfinite(field), axis=1) # average swath width, but exluding possible NaN-scanlines at beginning and # end of the image. swath_width = np.mean(swath_widths[swath_widths > 4200]) n_angles = n * FOV[sensor] / swath_width + P[sensor] azimuth = np.full_like(field, np.nan) if channel != "3B": zenith = abs(n_angles) if flyingdir is "DE": azimuth[n_angles > 0] = 90 + S azimuth[n_angles <= 0] = 270 + S else: azimuth[n_angles < 0] = 90 + S azimuth[n_angles >= 0] = 270 + S else: h = 705000 # in km above the equator zenith = np.rad2deg( np.arctan( np.sqrt( (h * np.tan(np.deg2rad(P[sensor])) + 15 * n) ** 2 + (h * np.tan(np.deg2rad(27.6)) / np.cos(np.deg2rad(P[sensor]))) ** 2 ) / h ) ) x = np.rad2deg(np.arctan(0.6 / np.tan(np.deg2rad(n_angles)))) if flyingdir is "DE": azimuth[n_angles > 0] = np.array(90 - x + S)[n_angles > 0] azimuth[n_angles <= 0] = np.array(270 - x + S)[n_angles <= 0] else: azimuth[n_angles < 0] = np.array(90 - x + S)[n_angles < 0] azimuth[n_angles >= 0] = np.array(270 - x + S)[n_angles >= 0] zenith[np.isnan(field)] = np.nan azimuth[np.isnan(field)] = np.nan return zenith, azimuth def reflection_angles(self): """Calculate the reflected sun angle, theta_r, of specular reflection of sunlight into an instrument sensor. Returns: (ndarray): 2d field of size `cloudmask` of reflection angles in [°] for eachannel pixel. References: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> & <NAME> (2015) Observation of submarine sand waves using ASTER stereo sun glitter imagery, International Journal of Remote Sensing, 36:22, 5576-5592, DOI: 10.1080/01431161.2015.1101652 """ sun_azimuth = ( self.solardirection.azimuth + 180 ) # +180° corresponds to "anti-/reflected" sun sun_zenith = ( 90 - self.solardirection.elevation ) # sun zenith = 90 - sun elevation sensor_zenith, sensor_azimuth = self.sensor_angles() return np.degrees( np.arccos( np.cos(np.deg2rad(sensor_zenith)) * np.cos(np.deg2rad(sun_zenith)) + np.sin(np.deg2rad(sensor_zenith)) * np.sin(np.deg2rad(sun_zenith)) * np.cos(np.deg2rad(sensor_azimuth) - np.deg2rad(sun_azimuth)) ) ) def lapserate_modis(month, latitude): """Estimate of the apparent lapse rate in [K/km]. Typical lapse rates are assumed for each month and depending on the location on Earth, i.e. southern hemisphere, tropics, or northern hemisphere. For a specific case the lapse rate is estimated by a 4th order polynomial and polynomial coefficients given in the look-up table. This approach is based on the MODIS cloud top height retrieval and applies to data recorded at 11 microns. According to Baum et al., 2012, the predicted lapse rates are restricted to a maximum and minimum of 10 and 2 K/km, respectively. Parameters: month (int): Month of the year. latitude (float): Latitude of center coordinate. Returns: float: Lapse rate estimate. References: Baum, B.A., <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, 2012: MODIS Cloud-Top Property Refinements for Collection 6. J. Appl. Meteor. Climatol., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1 """ lapserate_lut = { "month": np.arange(1, 13), "SH_transition": np.array( [-3.8, -21.5, -2.8, -23.4, -12.3, -7.0, -10.5, -7.8, -8.6, -7.0, -9.2, -3.7] ), "NH_transition": np.array( [22.1, 12.8, 10.7, 29.4, 14.9, 16.8, 15.0, 19.5, 17.4, 27.0, 22.0, 19.0] ), "a0": np.array( [ (2.9769801, 2.9426577, 1.9009563), # Jan (3.3483239, 2.6499606, 2.4878736), # Feb (2.4060296, 2.3652047, 3.1251275), # Mar (2.6522387, 2.5433158, 13.3931707), # Apr (1.9578263, 2.4994028, 1.6432070), # May (2.7659754, 2.7641496, -5.2366360), # Jun (2.1106812, 3.1202043, -4.7396481), # Jul (3.0982174, 3.4331195, -1.4424843), # Aug (3.0760552, 3.4539390, -3.7140186), # Sep (3.6377215, 3.6013337, 8.2237401), # Oct (3.3206165, 3.1947419, -0.4502047), # Nov (3.0526633, 3.1276377, 9.3930897), ] ), # Dec "a1": np.array( [ (-0.0515871, -0.0510674, 0.0236905), (0.1372575, -0.0105152, -0.0076514), (0.0372002, 0.0141129, -0.1214572), (0.0325729, -0.0046876, -1.2206948), (-0.2112029, -0.0364706, 0.1151207), (-0.1186501, -0.0728625, 1.0105575), (-0.3073666, -0.1002375, 0.9625734), (-0.1629588, -0.1021766, 0.4769307), (-0.2043463, -0.1158262, 0.6720954), (-0.0857784, -0.0775800, -0.5127533), (-0.1411094, -0.1045316, 0.2629680), (-0.1121522, -0.0707628, -0.8836682), ] ), "a2": np.array( [ (0.0027409, 0.0052420, 0.0086504), (0.0133259, 0.0042896, 0.0079444), (0.0096473, 0.0059242, 0.0146488), (0.0100893, 0.0059325, 0.0560381), (-0.0057944, 0.0082002, 0.0033131), (0.0011627, 0.0088878, -0.0355440), (-0.0090862, 0.0064054, -0.0355847), (-0.0020384, 0.0010499, -0.0139027), (-0.0053970, 0.0015450, -0.0210550), (0.0024313, 0.0041940, 0.0205285), (-0.0026068, 0.0049986, -0.0018419), (-0.0009913, 0.0055533, 0.0460453), ] ), "a3": np.array( [ (0.0001136, 0.0001097, -0.0002167), (0.0003043, 0.0000720, -0.0001774), (0.0002334, -0.0000159, -0.0003188), (0.0002601, 0.0000144, -0.0009874), (-0.0001050, 0.0000844, -0.0001458), (0.0000937, 0.0001768, 0.0005188), (-0.0000890, 0.0002620, 0.0005522), (0.0000286, 0.0001616, 0.0001759), (-0.0000541, 0.00017117, 0.0002974), (0.0001495, 0.0000941, -0.0003016), (0.0000058, 0.0001911, -0.0000369), (0.0000180, 0.0001550, -0.0008450), ] ), "a4": np.array( [ (0.00000113, -0.00000372, 0.00000151), (0.00000219, -0.0000067, 0.00000115), (0.00000165, -0.00000266, 0.00000210), (0.00000199, -0.00000346, 0.00000598), (-0.00000074, -0.00000769, 0.00000129), (0.00000101, -0.00001168, -0.00000262), (0.00000004, -0.00001079, -0.00000300), (0.00000060, 0.00000510, -0.00000080), (-0.00000002, 0.00000248, -0.00000150), (0.00000171, -0.0000041, 0.00000158), (0.00000042, -0.00000506, 0.00000048), (0.00000027, -0.00000571, 0.00000518), ] ), } ind_month = month - 1 if latitude < lapserate_lut["SH_transition"][ind_month]: region_flag = 0 # Southern hemisphere elif ( latitude >= lapserate_lut["SH_transition"][ind_month] and latitude <= lapserate_lut["NH_transition"][ind_month] ): region_flag = 1 # Tropics elif latitude > lapserate_lut["NH_transition"][ind_month]: region_flag = 2 # Northern hemisphere else: raise ValueError("Latitude of center coordinate cannot be read.") lapserate = ( lapserate_lut["a0"][ind_month][region_flag] + lapserate_lut["a1"][ind_month][region_flag] * latitude + lapserate_lut["a2"][ind_month][region_flag] * latitude ** 2 + lapserate_lut["a3"][ind_month][region_flag] * latitude ** 3 + lapserate_lut["a4"][ind_month][region_flag] * latitude ** 4 ) return lapserate def lapserate_moist_adiabate(): """Moist adiabatic lapse rate in [K/km]. """ return 6.5 def cloudtopheight_IR(bt, cloudmask, latitude, month, method="modis"): """Cloud Top Height (CTH) from 11 micron channel. Brightness temperatures (bt) are converted to CTHs using the IR window approach: (bt_clear - bt_cloudy) / lapse_rate. See also: :func:`skimage.measure.block_reduce` Down-sample image by applying function to local blocks. :func:`lapserate_moist_adiabate` Constant value 6.5 [K/km] :func:`lapserate_modis` Estimate of the apparent lapse rate in [K/km] depending on month and latitude acc. to Baum et al., 2012. Parameters: bt (ndarray): brightness temperatures form 11 micron channel. cloudmask (ndarray): binary cloud mask. month (int): month of the year. latitude (ndarray): latitudes in [°], positive North, negative South. method (str): approach used to derive CTH: 'modis' see Baum et al., 2012, 'simple' uses the moist adiabatic lapse rate. Returns: ndarray: cloud top height. References: <NAME>., <NAME>, <NAME>, <NAME>, <NAME>, S.A. Ackerman, <NAME>, and <NAME>, 2012: MODIS Cloud-Top Property Refinements for Collection 6. J. Appl. Meteor. Climatol., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1 """ # Lapse rate if method == "simple": lapserate = lapserate_moist_adiabate() elif method == "modis": lapserate = lapserate_modis(month, latitude) else: raise ValueError("Method is not supported.") resolution_ratio = np.shape(cloudmask)[0] //
np.shape(bt)
numpy.shape
# Copyright 2022 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entanglement tests""" import pytest import numpy as np from thewalrus.quantum import entanglement_entropy, log_negativity from thewalrus.random import random_interferometer from thewalrus.symplectic import ( interferometer, passive_transformation, two_mode_squeezing, xxpp_to_xpxp, ) def random_cov(num_modes=200, pure=False, nonclassical=True): r"""Creates a random covariance matrix for testing. Args: num_modes (int): number of modes pure (bool): Gaussian state is pure nonclassical (bool): Gaussian state is nonclassical Returns: (array): a covariance matrix """ M = num_modes O = interferometer(random_interferometer(M)) eta = 1 if pure else 0.123 r = 1.234 if nonclassical: # squeezed inputs cov_in = np.diag(np.concatenate([np.exp(2 * r) * np.ones(M), np.exp(-2 * r) * np.ones(M)])) elif not nonclassical and pure: # vacuum inputs cov_in = np.eye(2 * M) elif not nonclassical and not pure: # squashed inputs cov_in = np.diag(np.concatenate([np.exp(2 * r) * np.ones(M), np.ones(M)])) cov_out = O @ cov_in @ O.T _, cov = passive_transformation( np.zeros([len(cov_out)]), cov_out, np.sqrt(eta) * np.identity(len(cov_out) // 2) ) return cov def test_entanglement_entropy_bipartition(): """Tests if both substates of a bipartition will yield the same entanglement entropy""" M = 200 cov = random_cov(num_modes=M, pure=True, nonclassical=True) modes_A = 111 # make a list that contains all modes but 111: modes_B = list(range(M)) modes_B.pop(111) E_A = entanglement_entropy(cov, modes_A=modes_A) E_B = entanglement_entropy(cov, modes_A=modes_B) assert np.isclose(E_A, E_B) def test_log_negativity_bipartition(): """Tests if both substates of a bipartition will yield the same log negativity""" M = 200 cov = random_cov(num_modes=M, pure=False, nonclassical=True) modes_A = 111 # make a list that contains all modes but 111: modes_B = list(range(M)) modes_B.pop(111) E_A = log_negativity(cov, modes_A=modes_A) E_B = log_negativity(cov, modes_A=modes_B) assert np.isclose(E_A, E_B) def test_entanglement_entropy_classical(): """Tests if a classical state will return entanglement entropy zero""" cov = random_cov(pure=True, nonclassical=False) E = entanglement_entropy(cov, modes_A=[10, 20, 30, 40]) assert np.isclose(E, 0) def test_log_negativity_classical(): """Tests if a classical state will return log negativity zero""" cov = random_cov(pure=False, nonclassical=False) E = log_negativity(cov, modes_A=[10, 20, 30, 40]) assert np.isclose(E, 0) def test_entanglement_entropy_split(): """Tests the equivalence of the two alternative inputs ``modes_A`` and ``split``""" cov = random_cov(pure=True, nonclassical=True) split = 123 E_0 = entanglement_entropy(cov, split=split) E_1 = entanglement_entropy(cov, modes_A=range(split)) assert np.isclose(E_0, E_1) def test_log_negativity_split(): """Tests the equivalence of the two alternative inputs ``modes_A`` and ``split``""" cov = random_cov(pure=False, nonclassical=True) split = 123 E_0 = log_negativity(cov, split=split) E_1 = log_negativity(cov, modes_A=range(split)) assert np.isclose(E_0, E_1) @pytest.mark.parametrize("hbar", [0.5, 1.0, 2.0, 1.7]) @pytest.mark.parametrize("r", [0.1, 0.5, 1.0, 1.3]) @pytest.mark.parametrize("etaA", [0.1, 0.5, 1.0]) @pytest.mark.parametrize("etaB", [0.1, 0.5, 1.0]) def test_log_negativity_two_modes(r, etaA, etaB, hbar): """Tests the log_negativity for two modes states following Eq. 13 of https://arxiv.org/pdf/quant-ph/0506124.pdf""" cov = (hbar / 2) * two_mode_squeezing(2 * r, 0) _, cov_lossy = passive_transformation(np.zeros([4]), cov, np.diag([etaA, etaB]), hbar=hbar) cov_xpxp = xxpp_to_xpxp(cov_lossy) / (hbar / 2) alpha = cov_xpxp[:2, :2] gamma = cov_xpxp[2:, :2] beta = cov_xpxp[2:, 2:] invariant = np.linalg.det(alpha) + np.linalg.det(beta) - 2 * np.linalg.det(gamma) detcov = np.linalg.det(cov_xpxp) expected = -np.log(np.sqrt((invariant - np.sqrt(invariant**2 - 4 * detcov)) / 2)) obtained = log_negativity(cov_lossy, modes_A=[0], hbar=hbar) assert np.allclose(expected, obtained) @pytest.mark.parametrize("hbar", [0.5, 1.0, 2.0, 1.7]) @pytest.mark.parametrize("r", [0.1, 0.5, 1.0, 1.3]) def test_entanglement_entropy_two_modes(r, hbar): """Tests the log_negativity for two modes states following Eq. 1 of https://journals.aps.org/pra/pdf/10.1103/PhysRevA.63.022305""" cov = (hbar / 2) * two_mode_squeezing(2 * r, 0) expected = (np.cosh(r) ** 2) * np.log(
np.cosh(r)
numpy.cosh
import matplotlib.pyplot as plt import numpy as np from MLG import imagepath, paperpath, path from imageio import imread import matplotlib.cbook as cbook from MLG.utils import color_own from matplotlib import rc __all__ = ['dark','Image_Window','Image_precision','Image_Illustration','Image_Illustration_Multi','Image_compare_micro','Image_astroshift', 'create_all_Image'] def dark(onof = 0): if onof is 'on': plt.style.use('dark_background') elif onof is 'off': plt.style.use('default') elif onof == True: plt.style.use('dark_background') else: plt.style.use('default') def Image_Window(string = 'resolve_Window', pres = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) else: black = color_own([0.,0.,0.,1]) c1 = color_own([0,1,1,1]) c2 = color_own([1,0,0,1]) c3 = color_own([1,1,0.2,1]) c4 = color_own([0.4,0.4,0.4,1]) c_star = [c1,c2,c3,c4] c_grid1 = color_own([0,int(dark),1,1]) c_grid2 = color_own([0.5,1,0,1]) star= np.array([[0, 0],[0.1,0.9],[-1,-1.1],[-0.5,0.1]]) fig = plt.figure(figsize = [12,12]) x_width = 0.059 y_width = 0.177 #------------------------------------------------------------ # axis plt.xticks( fontsize = 25) plt.yticks( fontsize = 25) plt.grid(True) plt.axis('equal') plt.axis([-1.5,1.5,-1.4,1.6]) plt.ylabel('Across-scan direction (AC) [arcsec]', fontsize = 30) plt.xlabel('Along-scan direction (AL) [arcsec]', fontsize = 30) #------------------------------------------------------------ #------------------------------------------------------------ #Grid Major Star for i in range(-6,7): plt.plot([-6*x_width,6*x_width], [i*y_width,i*y_width], c = c_grid1,linewidth = 3) plt.plot([i*x_width,i*x_width], [-6*y_width,6*y_width], c = c_grid1, linewidth = 3) plt.text(0,1.4,"Along-scan direction\n $12\,\mathrm{pix} \\times 0.059 \mathrm{''/pix} = 0.708\mathrm{''}$",fontsize = 25, verticalalignment = 'center', horizontalalignment = 'center', rotation = 0) plt.text(0.7,0,"Across-scan direction\n $12\,\mathrm{pix} \\times 0.177 \mathrm{''/pix} = 2.124\mathrm{''}$",fontsize = 25, verticalalignment = 'center', horizontalalignment = 'center', rotation = 90) plt.arrow(0,6*y_width+2*x_width, -6*x_width+0.02,0,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(0,6*y_width+2*x_width, 6*x_width-0.02,0,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(8*x_width,0,0, -6*y_width+0.02,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(8*x_width,0,0, 6*y_width-0.02,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.scatter(star[:1,0], star[:1,1], marker=(5, 1),c = c_star[:1], s = [3000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_1.png', format = 'png') #------------------------------------------------------------ #------------------------------------------------------------ #Grid Minor Star plt.scatter(star[1:3,0], star[1:3,1], marker=(5, 1),c = c_star[1:3], s = [2000,2000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_2.png', format = 'png') for i in range(-5,8): plt.plot([-15*x_width,-6*x_width], [i*y_width,i*y_width], c = c_grid2,linewidth = 3, zorder = -1) for i in range(-15,-5): plt.plot([i*x_width,i*x_width], [-5*y_width,7*y_width], c = c_grid2, linewidth = 3, zorder = -1) plt.scatter(star[3:,0], star[3:,1], marker=(5, 1),c = c_star[3:], s = [2000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_3.png', format = 'png') #------------------------------------------------------------ fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_precision(string = 'Sig_vs_Gmag', Gaia_precision = path+'InputTable/resolution_Gaia.png', pres = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) color1 = color_own([0.85,0,0,1]) color2 = color_own([0,0,1,1]) color3 = color_own([0,1,1,1]) color4 = color_own([0.5,1,0,1]) color5 = color_own([1,1,0,1]) else: black = color_own([0.,0.,0.,1]) color1 = color_own([0.85,0,0,1]) color2 = color_own([0,0,1,1]) color3 = color_own([0,1,1,1]) color4 = color_own([0,1,0,1]) color5 = color_own([1,1,0,1]) fig = plt.figure(figsize = [12,10]) Gmag = np.arange(4,22,0.01) datafile = cbook.get_sample_data(Gaia_precision) img = imread(datafile) z = 10 ** (0.4 * (np.maximum(Gmag, 14) - 15)) #(14-np.minimum(Gmag, 14)) z2 = 10 ** (0.4 * (np.maximum(Gmag, 12) - 15)) sig_pi = (-1.631 + 680.766 * z2 + 32.732 * z2**2)**0.5/1000 sig_fov2 =(-1.631 + 680.766 * z + 32.732 * z**2)**0.5/1000 *7.75 +0.1 sig_fov3 = sig_fov2 / np.sqrt(9) plt.plot([0,1],[-5,-5], c = color1, linewidth = 3, label = 'formal precision from Gaia DR2 (per CCD)' ) plt.plot([0,1],[-5,-5], c = color2, linewidth = 3, label = 'actual precision from Gaia DR2 (per CCD)' ) plt.yticks([np.log10(i) for i in [20,10, 5,2,1, 0.5,0.2,0.1, 0.05,0.02, 0.01]],[20,10, 5,2,1, 0.5,0.2,0.1, 0.05,0.02,0.01], fontsize = 25) plt.xticks( fontsize = 25) plt.ylabel('Standard deviation of AL field angle [mas]', fontsize = 30) plt.xlabel('G magnitude', fontsize = 30) plt.imshow(img, zorder=0, extent=[5, 21.04, np.log10(0.0195),np.log10(10)]) plt.axis('auto') plt.xlim([4,22]) plt.ylim([np.log10(0.005),np.log10(40)]) if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_1.png', format = 'png') plt.plot(Gmag,np.log10(sig_pi), '--',c = color3, dashes =(5,5), linewidth = 3, label= 'predicted end-of-mission parallax error') if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_2.png', format = 'png') plt.plot(Gmag,np.log10(sig_fov2), ':' , c = color4, linewidth = 5, label= 'used Standard deviation (per CCD)' ) if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_3.png', format = 'png') plt.plot(Gmag,np.log10(sig_fov3) ,c = color5,linewidth = 7, label= 'used Standard deviation for 9 CCD observations' ) plt.plot([5, 21.04, 21.04,5,5], [np.log10(0.0195),np.log10(0.0195),np.log10(10),np.log10(10),np.log10(0.0195)], linewidth = 2, color = [0.5,0.5,0.5,1], zorder = 0.1) plt.axis('auto') plt.xlim([4,22]) plt.ylim([np.log10(0.005),np.log10(40)]) plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration(string = 'Illustration'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) color1 = color_own([0,1,1,1]) color2 = color_own([1,0.5,0,1]) color3 = color_own([0.5,1,0,1]) color4 = color_own([1,0,1,1]) color5 = color_own([0,1,1,1]) color6 = color_own([0,1,1,1]) else: black = color_own([0.,0.,0.,1]) color1 = color_own([0,0,1,1]) color2 = color_own([1,0.5,0,1]) color3 = color_own([0,1,0,1]) color4 = color_own([1,0,1,1]) color5 = color_own([0,1,1,1]) color6 = color_own([0,1,1,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) x2 = np.linspace(3,7,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d = np.sqrt((x1-x2)**2 + (y1-y2)**2) TE = 1.5 X2 = x2 + (x2-x1) * TE/(d**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 fig = plt.figure(figsize= (12,8)) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') for i in range(len(t)): xm1 =np.array([-1,1]) * np.cos(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1]) * np.sin(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1]) * np.cos(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1]) * np.sin(scandir[i]) + Y2[t[i]] dsc = ((dx2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dy2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dSC = ((dX2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dY2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] ttX2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X2[t[i]],X2[t[i]]]) ttY2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y2[t[i]],Y2[t[i]]]) ttx2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],x2[t[i]],x2[t[i]]]) tty2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],y2[t[i]],y2[t[i]]]) if i % 2 == 0: plt.arrow(ttx2[2],tty2[2], 0.0001*(ttx2[2]-ttx2[1]),0.0001*(tty2[2]-tty2[1]),color= color1, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx2[1],tty2[1], 0.0001*(ttx2[1]-ttx2[2]),0.0001*(tty2[1]-tty2[2]),color= color1, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[2],ttY2[2], 0.0001*(ttX2[2]-ttX2[1]),0.0001*(ttY2[2]-ttY2[1]),color= color2, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[1],ttY2[1], 0.0001*(ttX2[1]-ttX2[2]),0.0001*(ttY2[1]-ttY2[2]),color= color2, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) plt.plot(ttx2[0:2],tty2[0:2],color = black, linestyle= ':') plt.plot(ttX2[0:2],ttY2[0:2],color = black, linestyle= ':') plt.plot(ttx2[1:3],tty2[1:3],color = color1,linewidth = 3 , linestyle= '--',dashes=(10, 10)) plt.plot(ttX2[1:3],ttY2[1:3],color = color2, linewidth = 3,linestyle= '-') plt.plot(ttx2[2:],tty2[2:],color = black, linestyle= ':') plt.plot(ttX2[2:],ttY2[2:],color = black, linestyle= ':') if i% 2 == 0: plt.plot(xm2,ym2, color = black, linewidth = 3,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 3,zorder = 1) else: plt.plot(xm2,ym2, color = 'grey', linewidth = 2, zorder = -1) plt.plot(xm1,ym1, color = 'grey', linewidth = 2, zorder = -1) #if i ==0 : plt.plot(x1,y1, color = color3, linewidth = 3) plt.plot(x2,y2, color = color1, linestyle= '--',dashes=(10, 5), linewidth = 3, zorder = -1) plt.plot(X2,Y2, color = color2, linewidth = 3) plt.xlim([-0.5,14]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.text(2,1.5,'Lens',color = color3, fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') plt.text(4,7.5,'Star 1',color = color2,fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration2 (string = 'Illustration'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) else: black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi #Position_lens x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) #unlensed Position_source x2 = np.linspace(5,9,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d = np.sqrt((x1-x2)**2 + (y1-y2)**2) TE = 2 X2 = x2 + (x2-x1) * TE/(d**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 fig = plt.figure(figsize= (12,8)) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') #--------------------------------------------------------------- #axis plt.xlim([-0.5,14]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.text(2,1.5,'Lens',color = grey, fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') #--------------------------------------------------------------- # Motion source plt.plot(x1,y1, color = grey, linewidth = 7) fig.savefig(imagepath + string + '_1.png', format = 'png') plt.text(4,7.5,'Source',color = blue,fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') plt.plot(x2,y2, color = cyan, linestyle= '--',dashes=(10, 5), linewidth = 3, zorder = -1) fig.savefig(imagepath + string + '_2.png', format = 'png') plt.plot(X2,Y2, color = blue, linewidth = 3) for i in range(len(t)): plt.plot([x2[t[i]],X2[t[i]]],[y2[t[i]],Y2[t[i]]],':',color = black) fig.savefig(imagepath + string + '_3.png', format = 'png') delta = 0.05 for i in range(len(t)): xm1 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) *
np.sin(scandir[i])
numpy.sin
# Copyright: (c) 2021, <NAME> from __global__ import * import numpy as np import pycuda.driver as cuda from pycuda.compiler import SourceModule import lib from lib import cufft import time import logging import os import scipy from enum import Enum log = logging.getLogger(LOG_NAME+'.'+__name__) # log.setLevel(logging.INFO) # Defaults for symbol overlap test SYMBOL_CHECK_OVERLAP_OFFSET = 20 SYMBOL_CHECK_ERROR_THRESHOLD = 1000 SYMBOL_CHECK_MATCH_NUM_ERRORS_ALLOWED = 10 # only used for the nrz-s decoder. Used for BPSK at the moment, since we there use nrz-s to resolve the ambiguity. Ideally we should look at the phase and demodulate directly SYMBOL_MISMATCHVAL = 0 # 0 or -1. 0 is better for softCombiner # STORE_BITS_IN_FILE defined in __global__.py BITS_FNAME = '../data/bits_file' class Operations(Enum): CENTRES_ABS = 0; CENTRES_REAL = 1; CENTRES_IMAG = 2; class Demodulator: ## GPU performance specific numThreads = 64 # for fft and other elementwise ops numThreadsS = 1024 # has to be 32**2 for the scan sum kernel batchSize = 1 # Not implemented yet, but usefull for batch fft processing at some stage # other GPU based parameters num_streams = 3 # For big IFFT kernel 3 is the magic number managed_memory_available = False # At the moment not used, but nice to check kernelFilePath = 'cuda_kernels.cu' num_SMs = None def __initInstanceVariables(self): """ initialize instance variables """ ## list of buffers and fft plans (used in __del__ to free all) self.GPU_buffers = [] self.GPU_fftPlans = [] ## Demodulation self.sigOverlap = 2**8 self.sigOverlapWin = int(self.sigOverlap/2) # Window over which to find centres self.windowWidth = 3 # must be odd. self.windowWidthOffset = int(self.windowWidth/2) # floor(windowWidth/2) on each side self.clippedPeakIPure = [] # Indices of the clipped peaks self.clippedPeakI = [] # Indices of clipped peaks with window around # constant stuff self.bitLUT = None # Provided by protocol self.symbolLUT = None # Provided by protocol self.poswinP = [] # stores bits across calls -- filled in the demodulator def __init__(self,conf,protocol,radioName): # log.setLevel(logging.DEBUG) self.__initInstanceVariables() # initialize instance variables and arrays global BITS_FNAME BITS_FNAME = f'{BITS_FNAME}_{radioName}' self.protocol = protocol self.confRadio = conf['Radios']['Rx'][radioName] self.confGPU = conf['GPU'][self.confRadio['CUDA_settings']] self.radioName = radioName # find signal size, self.sigLen = 2**self.confGPU['blockSize'] self.sigOverlap = 2**self.confGPU['overlap'] self.sigOverlapWin = int(self.sigOverlap/2) self.clippedPeakSpan = self.confGPU['clippedPeakSpan'] # number of symbols to disqualify around a peak self.peakThresholdScale = self.confGPU['peakThresholdScale'] # thresholding factor for peak clipping self.disablePeakThresholding = self.confRadio.get('disablePeakThresholding',False) # for symbol overlap check self.overlapOffset = self.confGPU.get('symbol_check_overlap_offset',SYMBOL_CHECK_OVERLAP_OFFSET) self.symbol_check_error_threshold = self.confGPU.get('symbol_check_error_threshold',SYMBOL_CHECK_ERROR_THRESHOLD) self.symbol_check_match_threshold = self.overlapOffset - self.confGPU.get('symbol_check_match_num_errors_allowed',SYMBOL_CHECK_MATCH_NUM_ERRORS_ALLOWED) log.info(f'[{self.radioName}]: symbol_check_overlap_offset {self.overlapOffset}, symbol_check_error_threshold {self.symbol_check_error_threshold}, symbol_check_match_threshold {self.symbol_check_match_threshold}') self.spsym = spsym = self.confRadio['samplesPerSym'] # samples per symbol self.spsymMin = int(spsym/2) # minimum allowed samples pr. symbol self.baudRate = self.confRadio['baud'] self.sampleRate = self.baudRate * self.spsym try: self.voteWeight = self.confRadio['voteWeight'] # weight of voting for this channel except KeyError: self.voteWeight = 1 log.info('[{}]: vote weight set to {}'.format(self.radioName,self.voteWeight)) self.Nfft = int(self.sigLen) # this is the convolution block length # Window over which to find centres self.windowWidth = self.confGPU['bitWindowWidth'] # must be odd. self.windowWidthOffset = int(self.windowWidth/2) # floor(windowWidth/2) on each side # code search offset. 0 includes all masks 1 excludes the only 0 and only 1 masks (tends to give better results) self.CODE_SEARCH_MASK_OFFSET = 0 # If exists and true, then sum all masks prior to Doppler search. Better when not looking for a specific signature try: self.SUM_ALL_MASKS_PYTHON = protocol.SUM_ALL_MASKS_PYTHON except: self.SUM_ALL_MASKS_PYTHON = False log.info(f'[{self.radioName}]: Sum masks prior to Doppler search {self.SUM_ALL_MASKS_PYTHON}') # compute the indexes where to search the carrier based on rangerate and sample rate self.num_dopplers = self.confRadio['doppCarrierSteps'] self.centreFreqOffset = self.confRadio['frequencyOffset_Hz'] # when the IF is offtuned Fc = self.confRadio['frequency_Hz'] - self.centreFreqOffset log.warning(f"Fc {self.confRadio['frequency_Hz']}, IF {Fc}") self.doppOffset = self.centreFreqOffset/self.baudRate/self.spsym self.doppOffsetIdx = np.int32(self.doppOffset * self.Nfft) # offset for STX mode if self.doppOffsetIdx < 0: self.doppOffsetIdx += self.Nfft rangeRateMax = conf['Radios']['rangeRateMax'] doppMax = rangeRateMax * Fc/scipy.constants.speed_of_light doppMaxNorm = doppMax/self.sampleRate doppIdxMin = self.doppOffset - doppMaxNorm doppIdxMax = self.doppOffset + doppMaxNorm # channel to measure noise # noiseOfftuneHz = self.confRadio.get('noise_measure_offset_Hz',-self.centreFreqOffset) noiseOfftuneHz = self.confRadio.get('noise_measure_offset_Hz',False) if noiseOfftuneHz: noiseOfftuneIdx = noiseOfftuneHz/self.baudRate/self.spsym self.doppIdxNorm = np.concatenate((np.array([noiseOfftuneIdx]),np.linspace(doppIdxMin,doppIdxMax,self.num_dopplers))) else: self.doppIdxNorm = np.linspace(doppIdxMin,doppIdxMax,self.num_dopplers) # the fraction of the bw that contains the carrier self.doppIdxArrayLen = len(self.doppIdxNorm) # so we have the correct array length self.doppIdxArrayOffset = self.doppIdxArrayLen - self.num_dopplers # self.doppIdxNorm = np.linspace(0,0.5,self.num_dopplers) self.doppHzLUT = self.doppIdxNorm * self.spsym * self.baudRate # scaled by spsym (for compatibility) # Normalize the proposed doppler offsets self.doppCyperSymNorm = np.round(self.doppIdxNorm*self.Nfft).astype(np.int32) self.doppCyperSymNorm[self.doppCyperSymNorm < 0] += self.Nfft # negative frequencies are at the right half of the spectrum log.info('[{}]: Fc {:.0f} Doppler scanning range {:.0f} to {:.0f} Hz of Fc, resolution {:.2f} Hz'.format(self.radioName,Fc,self.doppHzLUT[0],self.doppHzLUT[-1],(doppIdxMax-doppIdxMin)/self.num_dopplers*spsym*self.baudRate)) # GPU parameters self.numThreads = self.confGPU['CUDA']['numThreads'] # for fft and other elementwise ops self.numThreadsS = self.confGPU['CUDA']['numThreadsS'] # has to be 32**2 for the scan sum kernel self.batchSize = self.confGPU['CUDA']['batchSize'] # Batch size for fft processing of inverse FFT's of cross correlations self.num_streams = self.confGPU['CUDA']['streams'] # For big IFFT kernel 3 is the magic number cuda.init() device = cuda.Device(self.confGPU['CUDA']['device']) self.getDeviceAttributes(device) # get relevant device attributes self.ctx = device.make_context() log.info('[{}]: Initializing Cuda on {}'.format(self.radioName,device.name())) self.warp_size = device.get_attribute(cuda.device_attribute.WARP_SIZE) # Not yet used, but maybe for future self.managed_memory_available = device.get_attribute(cuda.device_attribute.MANAGED_MEMORY) # GPU grid Shapes if self.Nfft/self.numThreadsS != np.round(self.Nfft/self.numThreadsS): raise ValueError('[{}]: the size of the input signal has to be divisible by {}'.format( self.radioName,self.numThreadsS)) # generate masks TODO: masks need to be integrated based on protocol and radio try: self.num_masks, masks = protocol.get_filter(self.Nfft,self.spsym,self.confGPU['xcorrMaskSize']) self.__uploadMaskToGPU(masks) if self.num_masks > 32: # warning for too many masks log.warning('[{}]: more than 32 masks is not supported at this time'.format(self.radioName)) log.info('[{}]: mask len {} totalling {} masks'.format(self.radioName,self.confGPU['xcorrMaskSize'],self.num_masks)) except Exception: log.error('[{}]: Exception occured in protocol {} while preparing filters'.format( self.radioName,protocol.name)) raise try: self.bitLUT, self.symbolLUT = protocol.get_symbolLUT2(self.confGPU['xcorrMaskSize']) except Exception: log.error('[{}]: Exception occured in protocol {} while preparing symbol lookup table'.format( self.radioName,protocol.name)) raise # load kernels from file self.CudaKernels = SourceModule(self.__loadKernelsFromFile()) # allocate GPU buffers self.__initializeSharedBuffers() # load and prepare CUDA kernels self.__initializeKernels() # upload doppler shift indices to GPU cuda.memcpy_htod(self.GPU_bufDoppIdx,self.doppCyperSymNorm) # if we want to do local storing of bits for debugging if STORE_BITS_IN_FILE is True: log.warning('----- Storing demodulated bits in file. Can lead to performance issues for long passes! -----') import tables self.all_bits = np.empty(0,dtype=DATATYPE) self.frames = np.empty(0,np.int32) self.all_trust = np.empty(0,TRUSTTYPE) self.sum_match = np.empty((0,self.num_dopplers),np.float32) self.code_rate = np.empty(0,np.float32) self.code_phase = np.empty(0,np.float32) self.masks = masks # Xcorr output is stored in HDF5 self.xcorrFile = tables.open_file(BITS_FNAME+'.h5',mode='w') self.xcorrResS = np.zeros((self.num_masks,self.Nfft),dtype=np.complex64) self.xcorrResS = np.expand_dims(self.xcorrResS,0) self.xcorrOut = self.xcorrFile.create_earray(self.xcorrFile.root,'xcorrOut',obj=self.xcorrResS) log.info('[{}]: Initialization done'.format(self.radioName)) def __uploadMaskToGPU(self,masks): """ This method uploads the set of filters that the protocol provides to the GPU """ # do some type and shape checking if masks.shape != (self.num_masks,self.Nfft): raise ValueError("Masks provided by protocol {} expected to be of dimensions {}, got dimensions {}".format(self.protocol.name, (self.num_masks,self.Nfft), masks.shape)) if not isinstance(masks[0,0],np.complex64): raise TypeError("Datatype of masks {}, expected {}".format(type(masks[0,0]),np.complex64)) # allocate buffers self.GPU_bufBitsMask = cuda.mem_alloc(masks.nbytes) self.GPU_buffers.append(self.GPU_bufBitsMask) # ensure it gets freed at the end cuda.memcpy_htod(self.GPU_bufBitsMask,masks) def getDeviceAttributes(self,dev): self.CUDA_WARP_SIZE = dev.get_attribute(cuda.device_attribute.WARP_SIZE) self.CUDA_NUM_THREADS_PER_SMX = lib.ConvertSMVer2Cores(*dev.compute_capability()) self.CUDA_NUM_SMX = dev.get_attribute(cuda.device_attribute.MULTIPROCESSOR_COUNT) self.CUDA_NUM_THREADS = self.CUDA_NUM_SMX * self.CUDA_NUM_THREADS_PER_SMX self.CUDA_NUM_WARPS = int(self.CUDA_NUM_THREADS/self.CUDA_WARP_SIZE) def __initializeDemodIfftPlan(self): """ This is one batch of FFT's for the demodulation. Just needs to be as large as the number of masks """ fftBatch = self.num_masks self.fftPlanDemod = cufft.cufftPlan1d(self.Nfft,cufft.CUFFT_C2C,fftBatch) self.GPU_fftPlans.append(self.fftPlanDemod) def __initializeSNRFftPlan(self): """ This plan is used for computing the SNR """ self.fftPlan = cufft.cufftPlan1d(self.Nfft,cufft.CUFFT_C2C,1) self.GPU_fftPlans.append(self.fftPlan) def __initializeDopplerIfftPlan(self): """ Initialize the FFT plan(s) for the inverse fft(s) after convolution. These consume a lot of time Can run batched or non-batched. Depending on the GPU and CUDA/driver version one may be faster than the other """ fftBatch = self.doppIdxArrayLen*self.num_masks if self.confGPU['CUDA']['batchSize'] == 0: self.FFTNoBatches = 1 else: noBatches = self.confGPU['CUDA']['batchSize'] self.FFTNoBatches = int(fftBatch/noBatches) if self.FFTNoBatches != fftBatch/noBatches: log.error("FFT batch size has to be an integer divider of xcorrNumMasks * doppCarrierSteps") raise Exception("FFT batch size has to be an integer divider of xcorrNumMasks * doppCarrierSteps") FFTBatchSize = fftBatch/self.FFTNoBatches assert FFTBatchSize % 1 == 0, 'Invalid FFT batch size of %f FFT batch size has to be integer. Select a different number of batches' %(FFTBatchSize) self.FFTBatchSize = int(FFTBatchSize) log.debug('FFT batch size %d\t %d batches'%(self.FFTBatchSize,self.FFTNoBatches)) if self.FFTNoBatches == 1: # We only need one transform self.fftPlanDopplers = cufft.cufftPlan1d(self.Nfft,cufft.CUFFT_C2C,fftBatch) self.GPU_fftPlans.append(self.fftPlanDopplers) self.buffAddr = [int(self.GPU_bufXcorr)] else: # more than one batch needed self.fftLoops = int(np.ceil(self.num_masks*self.doppIdxArrayLen/self.num_streams/self.FFTBatchSize)) # We have to set up streams, input addresses and such self.streams, self.fftPlanDopplers = [], [] for i in range(self.num_streams): self.streams.append(cuda.Stream()) self.fftPlanDopplers.append(cufft.cufftPlan1d(self.Nfft,cufft.CUFFT_C2C,self.FFTBatchSize)) cufft.cufftSetStream(self.fftPlanDopplers[i],int(self.streams[i].handle)) self.GPU_fftPlans.extend(self.fftPlanDopplers) # input addresses to the batch batchOffset = np.complex64().nbytes*self.Nfft*self.FFTBatchSize self.buffAddr = [] for i in range(self.FFTNoBatches): self.buffAddr.append(int(int(self.GPU_bufXcorr) + i*batchOffset)) def __initializeKernels(self): """ Initialize the cuda kernels and the block and grid dimensions """ # FFT plans: self.__initializeDopplerIfftPlan() # for Doppler Ifft self.__initializeDemodIfftPlan() # for demod self.__initializeSNRFftPlan() # for findSNR # GPU kernels kernel = self.CudaKernels ## kernels for initialization self.GPU_multInputVectorWithMasks = kernel.get_function('multInputVectorWithMasks').prepare('PPP') self.GPU_complexConj = kernel.get_function('complexConj').prepare('P') self.GPU_scaleComplexByScalar = kernel.get_function('scaleComplexByScalar').prepare('Pf') self.GPU_setComplexArrayToZeros = kernel.get_function('setComplexArrayToZeros').prepare('P') ## kernels for doppler search self.GPU_filterMasks = kernel.get_function('multInputVectorWithShiftedMasksDopp').prepare('PPPPii') # for multInputVectorWithShiftedMasks self.numBlocks = self.Nfft/self.numThreads self.bShapeVecMasks = (int(self.numThreads),1,1) self.gShapeVecMasks = (int(self.numBlocks),1) assert self.bShapeVecMasks[0]*self.gShapeVecMasks[0]==self.Nfft,'Dimension mismatch' self.GPU_absSumDoppler = kernel.get_function('blockAbsSumAtomic').prepare('PPi') # for the absSumKernel to sum the rows together self.bShapeAbsSum = (128,1,1) # 128 and 2 in next line is just picked TODO: should be config val self.gShapeAbsSum = (2,int(self.doppIdxArrayLen)) # tweak these assert self.Nfft % self.bShapeAbsSum[0]*self.gShapeAbsSum[0] == 0,'Nfft has to be dividable by block and grid dimensions' self.GPU_estDoppler = kernel.get_function('findDopplerEst').prepare('PPPii') # for the small kernel that finds the doppler self.bShapeDopp = (self.num_masks,1,1) self.gShapeDopp = (1,1) self.GPU_setArrayToZeros = kernel.get_function('setArrayToZeros').prepare('P') # for the set to zero kernel for the sum self.bShapeZero = (int(self.num_masks),1,1) self.gShapeZero = (int(self.doppIdxArrayLen),1) ## for demodulation self.bShapeVecMasks2 = (int(256),1,1) ## 256 is just picked, TODO: should be config val self.gShapeVecMasks2 = (int(self.Nfft/self.bShapeVecMasks2[0]),1) self.complexShiftMulMasks = kernel.get_function('multInputVectorWithShiftedMask').prepare('PPPi') self.complexHeterodyne = kernel.get_function('complexHeterodyne').prepare('PPfffi') self.findcentres = kernel.get_function('findCentres').prepare('PPPPffii') self.bShapeCentres = (256,1,1) ## 256 is just picked, TODO: should be config val def __loadKernelsFromFile(self): currentPath = os.path.realpath(__file__).strip(os.path.basename(__file__)) log.debug('loading CUDA kernels from file ' + currentPath) kernel_header_str = """ #define WARP_SIZE {WARP_SIZE}// %(warp_size)i #define LOG_WARP_SIZE {LOG_WARP_SIZE} // saves us a log2 computation here #define NUM_WARPS {NUM_WARPS} #define FULL_MASK 0xffffffff // For shfl instructions #define SUM_ALL_MASKS {SUM_ALL_MASKS} #define NUM_MASKS {NUM_MASKS} #define WINDOW_WIDTH {WINDOW_WIDTH} // Number of samples around the centre to take into account #define WINDOW_LEFT_OFFSET WINDOW_WIDTH/2 #define CODE_SEARCH_MASK_OFFSET {CODE_SEARCH_MASK_OFFSET} // used in sumXCorrBuffMasks 0: all masks are used, 1: exclude the 0 and 1 masks (first and last (old CPU setting)) """.format( NUM_MASKS = self.num_masks, WINDOW_WIDTH=self.windowWidth, WARP_SIZE = self.CUDA_WARP_SIZE, LOG_WARP_SIZE = int(np.log2(self.CUDA_WARP_SIZE)), NUM_WARPS = np.min((self.CUDA_NUM_WARPS,32)), SUM_ALL_MASKS = int(self.SUM_ALL_MASKS_PYTHON), # bool has to be casted to int. Else C does not process it properly CODE_SEARCH_MASK_OFFSET = self.CODE_SEARCH_MASK_OFFSET, ) # print(kernel_header_str) if len(currentPath) > 0 : self.kernelFilePath = '/' + currentPath + '/' + self.kernelFilePath with open(self.kernelFilePath,'r') as f: kernelCode = f.read() kernelCode = kernel_header_str + kernelCode log.info(f'code search offset: {self.CODE_SEARCH_MASK_OFFSET}') return kernelCode def __initializeSharedBuffers(self): ## The last dimension is the flat one in memory # 3D array: len(doppCyperSym) x num_masks x Nfft self.GPU_bufXcorr = cuda.mem_alloc(np.complex64().nbytes*self.Nfft*self.doppIdxArrayLen*self.num_masks) self.GPU_buffers.append(self.GPU_bufXcorr) # 2D array: len(doppCyperSym) x num_masks self.GPU_bufDoppSum = cuda.mem_alloc(np.float32().nbytes*self.doppIdxArrayLen*self.num_masks) self.GPU_buffers.append(self.GPU_bufDoppSum) # stores the result [mean, sdev] self.GPU_bufDoppResult = cuda.mem_alloc(np.float32().nbytes*2) self.GPU_buffers.append(self.GPU_bufDoppResult) # buffer for the doppler shift indices. This can be omitted once the GPU computes them self.GPU_bufDoppIdx = cuda.mem_alloc(np.int32().nbytes*self.doppIdxArrayLen) self.GPU_buffers.append(self.GPU_bufDoppIdx) # for testing the find dopp self.GPU_bufFindDoppTmp = cuda.mem_alloc(np.float32().nbytes*self.num_masks) self.GPU_buffers.append(self.GPU_bufFindDoppTmp) # to keep the signal self.GPU_bufSignalTime_cpu_handle = cuda.pagelocked_empty((self.Nfft,), np.complex64, mem_flags=cuda.host_alloc_flags.DEVICEMAP) self.GPU_bufSignalTime = np.intp(self.GPU_bufSignalTime_cpu_handle.base.get_device_pointer()) self.GPU_bufSignalFreq_cpu_handle = cuda.pagelocked_empty((self.Nfft,), np.complex64, mem_flags=cuda.host_alloc_flags.DEVICEMAP) self.GPU_bufSignalFreq = np.intp(self.GPU_bufSignalFreq_cpu_handle.base.get_device_pointer()) # self.SNRDataSpecBuf = np.empty(self.Nfft,dtype=np.complex64) # to store the spectrum for computing the SNR # self.GPU_bufSignalFreq = cuda.mem_alloc(np.complex64().nbytes*self.Nfft) # self.GPU_buffers.append(self.GPU_bufSignalFreq) # demodulation buffers to find the centres and locations self.GPU_symbols = cuda.mem_alloc(np.int32().nbytes*int(self.Nfft/self.spsymMin)) self.GPU_buffers.append(self.GPU_symbols) self.GPU_centres = cuda.mem_alloc(np.int32().nbytes*int(self.Nfft/self.spsymMin)) self.GPU_buffers.append(self.GPU_centres) self.GPU_magnitude = cuda.mem_alloc(TRUSTTYPE().nbytes*int(self.Nfft/self.spsymMin)) self.GPU_buffers.append(self.GPU_magnitude) # arrays local for each stream self._init_CodeRateAndPhaseBuffers() def _init_CodeRateAndPhaseBuffers(self): """ This method initializes all CodeRateAndPhaseBuffers that are needed for the findCodeRateAndPhaseGPU routine """ # Grid and blocks MAX_BLOCK_X = 1024 # current limit (32 warps of 32 threads = 1024 which is max block size x) numThreads = int(np.min((self.CUDA_WARP_SIZE * self.CUDA_NUM_WARPS, MAX_BLOCK_X))) # TODO: check with atomic operation to allow more than 32 warps self.block_codeMax = (numThreads,1,1) self.grid_codeMax = (1,1) # we only want one grid at the moment. Maybe 2 later, but need to implement atomic operation in the algorithm first! self.block_codeXCorrSum = (int(self.CUDA_NUM_THREADS/self.CUDA_NUM_SMX),1,1) # 1 block pr self.grid_codeXCorrSum = (int(self.CUDA_NUM_SMX*4),1) # Make some more grids than SMX's, so there is plenty to do for the GPU while it is waiting for data ## buffers self.GPU_bufCodeAndPhase = cuda.mem_alloc(int(self.Nfft*np.float32().nbytes)) # output of sum is real, In place R2C fft uses Nfft/2*complex64 bytes which is same length as Nfft*float32 self.GPU_bufCodeAndPhaseOut = cuda.mem_alloc(int(self.Nfft*np.complex64().nbytes)) # for arrays of len >= 2**20, the in-place R2C transform does not seem to work self.GPU_buffers.append(self.GPU_bufCodeAndPhase) self.GPU_bufCodeAndPhaseResult = cuda.mem_alloc(np.float32().nbytes*3) # holds [index of max (offset complensated), argument of max (normalized), value of max] self.GPU_buffers.append(self.GPU_bufCodeAndPhaseResult) ## fft Plan self.fftPlan_codeRate_R2C = cufft.cufftPlan1d(self.Nfft,cufft.CUFFT_R2C,1) # R2C, 1 batch self.GPU_fftPlans.append(self.fftPlan_codeRate_R2C) ## CUDA kernels self.GPU_sumXCorrBuffMasks = self.CudaKernels.get_function('sumXCorrBuffMasks').prepare('PPi') self.GPU_findCodeRateAndPhase = self.CudaKernels.get_function('findCodeRateAndPhase').prepare('PPii') ## constants self.symsTolLow = 0.9*self.spsym # Ignore low symbol rates. avoids locking onto harmonics self.symsTolHigh = 1.1*self.spsym # Ignore high symbol rates (avoids false results due to slow noise and DC) self.codeRateAndPhaseOffsetLow = int(self.Nfft/self.symsTolLow) self.codeRateAndPhaseOffsetHigh = int(self.Nfft/self.symsTolHigh) ## numpy buffers self.__CodeRateAndPhaseResult = np.empty(3,dtype=np.float32) # holds [index of max (offset complensated), argument of max (normalized), value of max] def __del__(self): # free all buffers for buf in self.GPU_buffers: buf.free() # destroy all fft plans for plan in self.GPU_fftPlans: cufft.cufftDestroy(plan) try: self.ctx.pop() except AttributeError: pass if STORE_BITS_IN_FILE is True: self.xcorrFile.close() def uploadAndFindUHF(self,samples): """ Performs: thresholding -- remove large spikes of interference uploadToGPU -- store data on GPU and perform FFT findUHF -- find the UHF modulated carrier """ self.__thresholdInput(samples) self.uploadToGPU(samples) return self.__findUHF(samples) def uploadToGPU(self,samples): """ Upload samples to GPU and perform FFT Data is in pinned memory and transfered directly """ # load samples on to GPU and FFT # cuda.memcpy_htod(self.GPU_bufSignalTime,samples.astype(np.complex64)) # self.GPU_bufSignalTime_cpu_handle[:self.Nfft] = samples.astype(np.complex64) cufft.cufftExecC2C(self.fftPlan, int(self.GPU_bufSignalTime), int(self.GPU_bufSignalFreq), cufft.CUFFT_FORWARD) def thresholdInput(self,samples): """ calls thresholding function to reduce large spikes """ self.__thresholdInput(samples) def __findUHF(self,samples): """ Search for modulated carrier within a frequency range in the samples. Returns doppler estimate """ self.GPU_setArrayToZeros.prepared_call(self.gShapeZero,self.bShapeZero, self.GPU_bufDoppSum) self.GPU_filterMasks.prepared_call(self.gShapeVecMasks,self.bShapeVecMasks, self.GPU_bufXcorr,self.GPU_bufSignalFreq,self.GPU_bufBitsMask,self.GPU_bufDoppIdx, np.int32(self.Nfft),np.int32(self.doppIdxArrayLen)) if self.FFTNoBatches == 1: cufft.cufftExecC2C(self.fftPlanDopplers,int(self.GPU_bufXcorr),int(self.GPU_bufXcorr),cufft.CUFFT_INVERSE) else: # It is at the moment faster to call single fft loops than batched fft loops (don't ask me why). This can however be changed in the config filte. Therefore all these loops for j in range(self.fftLoops): for i in range(self.num_streams): if j*self.num_streams + i < self.FFTNoBatches: buffAddr = self.buffAddr[j*self.num_streams+i] # compute the address in the large buffer cufft.cufftExecC2C(self.fftPlanDopplers[i],buffAddr,buffAddr,cufft.CUFFT_INVERSE) self.GPU_absSumDoppler.prepared_call(self.gShapeAbsSum,self.bShapeAbsSum, self.GPU_bufDoppSum,self.GPU_bufXcorr,np.int32(self.Nfft)) if STORE_BITS_IN_FILE: tstore = time.time() tmpArr = np.empty((self.doppIdxArrayLen,self.num_masks),dtype=np.float32) cuda.memcpy_dtoh(tmpArr,self.GPU_bufDoppSum) self.sum_match = np.vstack([self.sum_match,np.sum(tmpArr,axis=1)]) sumBest = np.argmax(np.sum(tmpArr,axis=1)) log.debug(f'demodulator store in file 1 (save array) time {time.time()-tstore} s') self.GPU_estDoppler.prepared_call(self.gShapeDopp,self.bShapeDopp, self.GPU_bufDoppResult,self.GPU_bufFindDoppTmp,self.GPU_bufDoppSum,np.int32(self.num_dopplers),
np.int32(self.doppIdxArrayOffset)
numpy.int32
r""" ===== Swirl ===== Image swirling is a non-linear image deformation that creates a whirlpool effect. Image warping ````````````` When applying a geometric transformation on an image, we typically make use of a reverse mapping, i.e., for each pixel in the output image, we compute its corresponding position in the input. The reason is that, if we were to do it the other way around (map each input pixel to its new output position), some pixels in the output may be left empty. On the other hand, each output coordinate has exactly one corresponding location in (or outside) the input image, and even if that position is non-integer, we may use interpolation to compute the corresponding image value. Performing a reverse mapping ```````````````````````````` To perform a geometric warp in ``skimage``, you simply need to provide the reverse mapping to the ``skimage.transform.warp`` function. E.g., consider the case where we would like to shift an image 50 pixels to the left. The reverse mapping for such a shift would be:: def shift_left(xy): xy[:, 0] += 50 return xy The corresponding call to warp is:: from skimage.transform import warp warp(image, shift_left) The swirl transformation ```````````````````````` Consider the coordinate :math:`(x, y)` in the output image. The reverse mapping for the swirl transformation first computes, relative to a center :math:`(x_0, y_0)`, its polar coordinates, .. math:: \theta = \arctan(y/x) \rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}, and then transforms them according to .. math:: r = \ln(2) \, \mathtt{radius} / 5 \phi = \mathtt{rotation} s = \mathtt{strength} \theta' = \phi + s \, e^{-\rho / r + \theta} where ``strength`` is a parameter for the amount of swirl, ``radius`` indicates the swirl extent in pixels, and ``rotation`` adds a rotation angle. The transformation of ``radius`` into :math:`r` is to ensure that the transformation decays to :math:`\approx 1/1000^{\mathsf{th}}` within the specified radius. """ from __future__ import division from matplotlib.widgets import Slider import matplotlib.pyplot as plt import numpy as np from scipy import ndimage from skimage import io, transform def _swirl_mapping(xy, center, rotation, strength, radius): """Compute the coordinate mapping for a swirl transformation. """ x, y = xy.T x0, y0 = center rho = np.sqrt((x - x0)**2 + (y - y0)**2) # Ensure that the transformation decays to approximately 1/1000-th # within the specified radius. radius = radius / 5 * np.log(2) theta = rotation + strength * \ np.exp(-rho / radius) + \ np.arctan2(y - y0, x - x0) xy[..., 0] = x0 + rho *
np.cos(theta)
numpy.cos
# -*- coding: utf-8 -*- import os import sys import time import h5py import numpy as np import matplotlib.pyplot as plt from scipy.spatial import distance from tqdm import tqdm from anomalyModelBase import AnomalyModelBase from common import utils, logger class AnomalyModelBalancedDistribution(AnomalyModelBase): """Anomaly model formed by a Balanced Distribution of feature vectors Reference: https://www.mdpi.com/2076-3417/9/4/757 """ def __init__(self, initial_normal_features=1000, threshold_learning=300, threshold_classification=5, pruning_parameter=0.3): AnomalyModelBase.__init__(self) self.NAME += "/%i/%i/%.2f" % (initial_normal_features, threshold_learning, pruning_parameter) assert 0 < pruning_parameter < 1, "Pruning parameter out of range (0 < η < 1)" self.initial_normal_features = initial_normal_features # See reference algorithm variable N self.threshold_learning = threshold_learning # See reference algorithm variable α self.threshold_classification = threshold_classification # See reference algorithm variable β self.pruning_parameter = pruning_parameter # See reference algorithm variable η self.balanced_distribution = None # Array containing all the "normal" samples self._mean = None # Mean self._covI = None # Inverse of covariance matrix def classify(self, patch, threshold_classification=None): """The anomaly measure is defined as the Mahalanobis distance between a feature sample and the Balanced Distribution. """ if threshold_classification is None: threshold_classification = self.threshold_classification if self._mean is None or self._covI is None: self._calculate_mean_and_covariance() return self.__mahalanobis_distance__(patch) > threshold_classification def _calculate_mean_and_covariance(self): """Calculate mean and inverse of covariance of the "normal" distribution""" assert not self.balanced_distribution is None and len(self.balanced_distribution) > 0, \ "Can't calculate mean or covariance of nothing!" self._mean = np.mean(self.balanced_distribution["features"], axis=0, dtype=np.float64) # Mean cov = np.cov(self.balanced_distribution["features"], rowvar=False) # Covariance matrix try: self._covI =
np.linalg.pinv(cov)
numpy.linalg.pinv
# Loading libraries import os import numpy as np import cv2 from PIL import Image import logging import tensorflow as tf # Function to greyscale, blur and change the receptive threshold of image def preprocess(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (3, 3), 6) threshold_img = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2) return threshold_img def main_outline(contour): biggest = np.array([]) max_area = 0 for i in contour: area = cv2.contourArea(i) if area > 50: peri = cv2.arcLength(i, True) approx = cv2.approxPolyDP(i, 0.02 * peri, True) if area > max_area and len(approx) == 4: biggest = approx max_area = area return biggest, max_area def reframe(points): points = points.reshape((4, 2)) points_new = np.zeros((4, 1, 2), dtype=np.int32) add = points.sum(1) points_new[0] = points[np.argmin(add)] points_new[3] = points[np.argmax(add)] diff = np.diff(points, axis=1) points_new[1] = points[np.argmin(diff)] points_new[2] = points[np.argmax(diff)] return points_new def splitcells(img): rows = np.vsplit(img, 9) boxes = [] for r in rows: cols = np.hsplit(r, 9) for box in cols: boxes.append(box) return boxes def CropCell(cells): Cells_croped = [] for image in cells: img =
np.array(image)
numpy.array
# coding=utf-8 """ .. moduleauthor:: <NAME> <<EMAIL>> """ from warnings import warn from copy import deepcopy import numpy as np from pypint.solvers.states.i_solver_state import IStepState, ISolverState, IStaticStateIterator from pypint.solutions.iterative_solution import IterativeSolution from pypint.solutions.data_storage.trajectory_solution_data import TrajectorySolutionData from pypint.utilities import assert_condition, class_name from pypint.utilities.logging import LOG class MlSdcStepState(IStepState): def __init__(self, **kwargs): super(MlSdcStepState, self).__init__(**kwargs) self._fas_correction = None self._coarse_correction = 0.0 self._intermediate = IStepState() def has_fas_correction(self): return self._fas_correction is not None @property def intermediate(self): return self._intermediate @property def coarse_correction(self): return self._coarse_correction @coarse_correction.setter def coarse_correction(self, coarse_correction): self._coarse_correction = coarse_correction @property def fas_correction(self): return self._fas_correction @fas_correction.setter def fas_correction(self, fas_correction): if not isinstance(fas_correction, np.ndarray): # LOG.debug("FAS Correction not given as Array. Converting it to one.") fas_correction = np.array([fas_correction]) self._fas_correction = fas_correction class MlSdcLevelState(IStaticStateIterator): def __init__(self, **kwargs): kwargs['solution_class'] = TrajectorySolutionData kwargs['element_type'] = MlSdcStepState super(MlSdcLevelState, self).__init__(**kwargs) self._initial = MlSdcStepState() self._integral = 0.0 @property def initial(self): """Accessor for the initial value of this time step """ return self._initial @initial.setter def initial(self, initial): self._initial = initial @property def integral(self): return self._integral @integral.setter def integral(self, integral): self._integral = integral @property def time_points(self): """Read-only accessor for the list of time points of this time step """ return np.array([step.time_point for step in self], dtype=float) @property def values(self): return np.append([self.initial.value.copy()], [step.value.copy() for step in self], axis=0) @property def rhs(self): if self.initial.rhs_evaluated and np.all([step.rhs_evaluated for step in self]): return np.append([self.initial.rhs], [step.rhs for step in self], axis=0) else: return None @values.setter def values(self, values): assert_condition(values.shape[0] == (len(self) + 1), ValueError, "Number of values does not match number of nodes: %d != %d" % (values.shape[0], (len(self) + 1)), checking_obj=self) for _step in range(0, len(self)): self[_step].value = values[_step + 1].copy() @property def fas_correction(self): _fas = np.empty(len(self) + 1, dtype=np.object) _fas_shape = () for step_i in range(0, len(self)): if self[step_i].has_fas_correction(): _fas_shape = self[step_i].fas_correction.shape _fas[step_i + 1] = self[step_i].fas_correction.copy() if len(_fas_shape) > 0: _fas[0] = np.zeros(_fas_shape) return _fas else: return None @fas_correction.setter def fas_correction(self, fas_correction): assert_condition(fas_correction.shape[0] == (len(self) + 1), ValueError, "Number of FAS Corrections does not match number of nodes: %d != %d" % (fas_correction.shape[0], (len(self) + 1)), checking_obj=self) for _step in range(0, len(self)): self[_step].fas_correction = fas_correction[_step + 1] - fas_correction[_step] @property def coarse_corrections(self): return np.append([np.zeros(self[0].coarse_correction.shape)], [step.coarse_correction for step in self], axis=0) @coarse_corrections.setter def coarse_corrections(self, coarse_correction): assert_condition(coarse_correction.shape[0] == (len(self) + 1), ValueError, "Number of Coarse Corrections does not match number of nodes: %d != %d" % (coarse_correction.shape[0], (len(self) + 1)), checking_obj=self) for _step in range(0, len(self)): self[_step].coarse_correction = coarse_correction[_step + 1] @property def current_time_point(self): """Accessor for the current step's time point Returns ------- current_time_point : :py:class:`float` or :py:class:`None` :py:class:`None` is returned if :py:attr:`.current_step` is :py:class:`None` """ return self.current_step.time_point if self.current_step is not None else None @property def previous_time_point(self): """Accessor for the previous step's time point Returns ------- previous_time_point : :py:class:`float` or :py:class:`None` :py:class:`None` is returned if :py:attr:`.previous_step` is :py:class:`None` """ return self.previous_step.time_point if self.previous is not None else None @property def next_time_point(self): """Accessor for the next step's time point Returns ------- next_time_point : :py:class:`float` or :py:class:`None` :py:class:`None` is returned if :py:attr:`.next_step` is :py:class:`None` """ return self.next.time_point if self.next_step is not None else None @property def current_step(self): """Proxy for :py:attr:`.current` """ return self.current @property def current_step_index(self): """Proxy for :py:attr:`.current_index` """ return self.current_index @property def previous_step(self): """Accessor for the previous step Returns ------- previous step : :py:class:`.IStepState` or :py:class:`None` :py:class:`None` is returned if :py:attr:`.previous_index` is :py:class:`None` """ return self.previous if self.previous_index is not None else self.initial @property def previous_step_index(self): """Proxy for :py:attr:`.previous_index` """ return self.previous_index @property def next_step(self): """Proxy for :py:attr:`.next` """ return self.next @property def next_step_index(self): """Proxy for :py:attr:`.next_index` """ return self.next_index @property def final_step(self): """Proxy for :py:attr:`.last` """ return self.last @property def final_step_index(self): """Proxy for :py:attr:`.last_index` """ return self.last_index class MlSdcIterationState(IStaticStateIterator): def __init__(self, **kwargs): kwargs['solution_class'] = TrajectorySolutionData kwargs['element_type'] = MlSdcLevelState if 'num_states' in kwargs: warn("Levels must be initialized separately.") del kwargs['num_states'] super(MlSdcIterationState, self).__init__(**kwargs) self._initial = None def add_finer_level(self, num_nodes): self._states.append(self._element_type(num_states=num_nodes)) self._current_index = len(self) - 1 def add_coarser_level(self, num_nodes): self._states.insert(0, self._element_type(num_states=num_nodes)) self._current_index = len(self) - 1 def proceed(self): raise RuntimeError("'proceed' is not defined in the context of different levels.") def finalize(self): assert_condition(not self.finalized, RuntimeError, message="This {} is already done.".format(class_name(self)), checking_obj=self) self._solution = self.finest_level.solution self._current_index = 0 self._finalized = True def step_up(self): """Get to next finer level """ if self.next_index: # LOG.debug("Stepping up to level %d" % (self._current_index + 1)) self._current_index += 1 else: raise StopIteration("There is no finer level available.") def step_down(self): if not self.on_base_level: # LOG.debug("Stepping down to level %d" % (self._current_index - 1)) self._current_index -= 1 for _step in self.current_level: _step.intermediate.value = _step.value.copy() if _step.rhs_evaluated: _step.intermediate.rhs = _step.rhs.copy() else: raise StopIteration("There is no finer level available.") @property def time_points(self): """Read-only accessor for the list of time points of this time step """ return
np.array([step.time_point for step in self], dtype=float)
numpy.array
#This script takes daily.csv (daily Covid Tracking Project testing data) and turns it # into StateTestingTimeSeries.csv a statewise populated series #run it again with an updated daily.csv to update to latest information #<NAME> import sys import time import numpy as np import pandas as pd import datetime sys.path.append('..') import lib CCHTS = lib.loadCCHTimeSeries()#used to get state population data CC = lib.loadUSCountiesCov()#only used to get date information DST = lib.loadDailyStateTesting() #get date data DAYBEFORE = '2020-01-20' DAYBEFORE = np.datetime64(DAYBEFORE) CCdates = CC['date'] CCdates = np.array(CCdates, dtype=np.datetime64) CCdateRange = np.arange(DAYBEFORE, CCdates[-1]+np.timedelta64(1,'D'), dtype='datetime64[D]') CCHTS_startDate = np.datetime64(((CCHTS.columns).to_numpy()[10])[-10:]) CCHTS_endDate = np.datetime64(((CCHTS.columns).to_numpy()[-1])[-10:]) CCHTSdateRange = np.arange(CCHTS_startDate, CCHTS_endDate+np.timedelta64(1,'D'), dtype='datetime64[D]') dst_dates = DST['date'].to_numpy() dst_dates = np.array([ pd.to_datetime(str(date), format='%Y%m%d') for date in dst_dates], dtype='datetime64[D]') DST_startDate = np.datetime64(dst_dates[-1]) DST_endDate = np.datetime64(dst_dates[0]) DSTdateRange = np.arange(DST_startDate, DST_endDate, dtype='datetime64[D]') DSTstates = DST['state'].to_numpy() DSTstatesExp = [] for stateCode in DSTstates: DSTstatesExp.append(lib.stateDict[stateCode]) DSTstatesExp = np.array(DSTstatesExp) #create date range thats the same as our cases/deaths data tDateRange = np.arange(DAYBEFORE, CCdates[-1]+np.timedelta64(1,'D'), dtype='datetime64[D]') #check dates totals CC and CCHTS should be == if CCHTS is as up to date as CC print('CC date range: ',len(CCdateRange),'\tCCHTS date range: ',len(CCHTSdateRange),'\tDST date range: ',len(DSTdateRange)) #retrieve neccessary itterables from DST dst_dates was created above dst_states = DST['state'].to_numpy() dst_tests = DST['totalTestResults'].to_numpy() dst_pos = DST['positive'].to_numpy() dst_neg = DST['negative'].to_numpy() #retrieve neccessary itterables from CCHTS countyPop = CCHTS['population'].to_numpy() countyState = CCHTS['state'] #create list of 51 states+dc postal codes states = np.array(list(lib.stateDict.keys())) removeStatesMask = ~np.isin(states,np.array(['AS','GU','MP','PR','VI','UM','FM','MH','PW','AA','AE','AP','CM','PZ','NB','PH','PC'])) states = states[removeStatesMask] #get full state names statesExp = np.array([lib.stateDict[stateCode] for stateCode in states]) #create zero filled holder matrix for daily state testing tStateDay = np.zeros((len(states), len(tDateRange)), dtype=np.intc) pStateDay = np.zeros((len(states), len(tDateRange)), dtype=np.intc) nStateDay = np.zeros((len(states), len(tDateRange)), dtype=np.intc) #create zero filled holder for cummulative state population statePop = np.zeros((len(states)), dtype=np.intc) #create indeces for traversing xStateDays statesIndex = np.arange(len(states), dtype=np.intc) datesIndex = np.arange(len(tDateRange), dtype=np.intc) start = time.time() for (s, state) in zip(statesIndex, states): stateMask = dst_states==state state_tests = dst_tests[stateMask] state_pos = dst_pos[stateMask] state_neg = dst_neg[stateMask] state_dates = dst_dates[stateMask] stateMask = countyState==statesExp[s] statePop[s] += np.sum(countyPop[stateMask]) for (d, date) in zip(datesIndex, tDateRange): dateMap = state_dates==date sTestsTemp = state_tests[dateMap] sPosTemp = state_pos[dateMap] sNegTemp = state_neg[dateMap] numT = np.sum(sTestsTemp) if sTestsTemp.size != 0 else np.intc(0) numP = np.sum(sPosTemp) if sPosTemp.size != 0 else np.intc(0) numN = np.sum(sNegTemp) if sNegTemp.size != 0 else np.intc(0) prevT = tStateDay[s, d-np.intc(1)] if d != np.intc(0) else np.intc(0) prevP = pStateDay[s, d-np.intc(1)] if d != np.intc(0) else np.intc(0) prevN = nStateDay[s, d-np.intc(1)] if d != np.intc(0) else
np.intc(0)
numpy.intc
import numpy as np import matplotlib.pyplot as plt import scipy.fftpack from scipy.io import wavfile import sys import wave from pydub import AudioSegment numberofharmonics=8 midivalue=48 fundamental=220 amplitude=30000 #Too high will cause clipping! fundamental_playback=fundamental #Changing this will alter the frequency of the sample wave. Set to 'fundamental' as default amplitude_cutoff=.02 #any amplitude that is lower than cutoff*max_amplitude is filtered out harmonic_cutoff=10 #any harmonic within cutoff hertz of another is skipped frequencies_below_harmonic=0 #0 is no, 1 is yes sound = AudioSegment.from_wav("audio.wav") sound = sound.set_channels(1) sound.export("audio_mono.wav", format="wav") spf = wave.open("audio_mono.wav", "r") #Extract Raw Audio from Wav File #signal = spf.readframes(-1) #signal = np.fromstring(signal, "Int16") #plt.figure(1) #plt.title("Signal Wave...") #plt.plot(signal) #plt.show() fs, data = scipy.io.wavfile.read('audio_mono.wav') # Number of samplepoints N = len(data) if (N % 2) == 0: N=N else: N=N-1 # sample spacing T = 1.0 / fs x = np.linspace(0.0, T*N, N) y = data yf = scipy.fftpack.fft(y) xf = np.linspace(0.0, 1.0/(2.0*T), N/2) #fig, ax = plt.subplots() #ax.plot(xf, 2.0/N * np.abs(yf[:N//2])) #plt.show() dat =2.0/N * np.abs(yf[:N//2]) datsort=2.0/N * np.abs(yf[:N//2]) datsort.sort() harm = np.empty(datsort.shape, dtype=np.longdouble) harmonics = np.empty(numberofharmonics, dtype=np.longdouble) n=0 while(n<N/2): itemindex = np.where(dat==datsort[-(1+n)]) harm[n]=xf[itemindex] n=n+1 n=0 co=0 TrueFundamental1=min(harm, key=lambda x:abs(x-fundamental)) while(n<numberofharmonics): io=co while((io!=-1 and co<N/2-1)): if(harmonic_cutoff<abs(harm[co]-harm[io-1])): io=io-1 else: co=co+1 io=co if(harm[co]==0): co=co+1 io=co if(harm[co]<TrueFundamental1 and frequencies_below_harmonic==0): co=co+1 io=co harmonics[n]=harm[co] n=n+1 co=co+1 harmonics.sort() amplitudes =
np.empty(numberofharmonics, dtype=np.longdouble)
numpy.empty
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Unit tests for the Strawberry Fields decompositions module""" import pytest pytestmark = pytest.mark.frontend import networkx as nx import numpy as np import scipy as sp from scipy.linalg import qr, block_diag from strawberryfields import decompositions as dec from strawberryfields.utils import random_interferometer as haar_measure N_SAMPLES = 10 # fix the seed to make the test deterministic np.random.seed(42) def omega(n): """Returns the symplectic matrix for n modes""" idm = np.identity(n) O = np.concatenate( ( np.concatenate((0 * idm, idm), axis=1), np.concatenate((-idm, 0 * idm), axis=1), ), axis=0, ) return O class TestTakagi: """Takagi decomposition tests""" def test_square_validation(self): """Test that the takagi decomposition raises exception if not square""" A = np.random.random([4, 5]) + 1j * np.random.random([4, 5]) with pytest.raises(ValueError, match="matrix must be square"): dec.takagi(A) def test_symmetric_validation(self): """Test that the takagi decomposition raises exception if not symmetric""" A = np.random.random([5, 5]) + 1j * np.random.random([5, 5]) with pytest.raises(ValueError, match="matrix is not symmetric"): dec.takagi(A) def test_random_symm(self, tol): """Verify that the Takagi decomposition, applied to a random symmetric matrix, produced a decomposition that can be used to reconstruct the matrix.""" A = np.random.random([6, 6]) + 1j * np.random.random([6, 6]) A += A.T rl, U = dec.takagi(A) res = U @ np.diag(rl) @ U.T assert np.allclose(res, A, atol=tol, rtol=0) def test_real_degenerate(self): """Verify that the Takagi decomposition returns a matrix that is unitary and results in a correct decomposition when input a real but highly degenerate matrix. This test uses the adjacency matrix of a balanced tree graph.""" g = nx.balanced_tree(2, 4) a = nx.to_numpy_array(g) rl, U = dec.takagi(a) assert np.allclose(U @ U.conj().T, np.eye(len(a))) assert np.allclose(U @ np.diag(rl) @ U.T, a) def test_zeros(self): """Verify that the Takagi decomposition returns a zero vector and identity matrix when input a matrix of zeros""" dim = 4 a = np.zeros((dim, dim)) rl, U = dec.takagi(a) assert np.allclose(rl, np.zeros(dim)) assert np.allclose(U, np.eye(dim)) class TestGraphEmbed: """graph_embed tests""" def test_square_validation(self): """Test that the graph_embed decomposition raises exception if not square""" A = np.random.random([4, 5]) + 1j * np.random.random([4, 5]) with pytest.raises(ValueError, match="matrix is not square"): dec.graph_embed(A) def test_symmetric_validation(self): """Test that the graph_embed decomposition raises exception if not symmetric""" A = np.random.random([5, 5]) + 1j * np.random.random([5, 5]) with pytest.raises(ValueError, match="matrix is not symmetric"): dec.graph_embed(A) def test_max_mean_photon_deprecated(self, tol): """This test verifies that the maximum amount of squeezing used to encode the graph is indeed capped by the parameter max_mean_photon""" max_mean_photon = 2 A = np.random.random([6, 6]) + 1j * np.random.random([6, 6]) A += A.T sc, _ = dec.graph_embed_deprecated(A, max_mean_photon=max_mean_photon) res_mean_photon = np.sinh(np.max(np.abs(sc))) ** 2 assert np.allclose(res_mean_photon, max_mean_photon, atol=tol, rtol=0) def test_make_traceless_deprecated(self, monkeypatch, tol): """Test that A is properly made traceless""" A = np.random.random([6, 6]) + 1j * np.random.random([6, 6]) A += A.T assert not np.allclose(np.trace(A), 0, atol=tol, rtol=0) with monkeypatch.context() as m: # monkeypatch the takagi function to simply return A, # so that we can inspect it and make sure it is now traceless m.setattr(dec, "takagi", lambda A, tol: (np.ones([6]), A)) _, A_out = dec.graph_embed_deprecated(A, make_traceless=True) assert np.allclose(np.trace(A_out), 0, atol=tol, rtol=0) def test_mean_photon(self, tol): """Test that the mean photon number is correct in graph_embed""" num_modes = 6 A = np.random.random([num_modes, num_modes]) + 1j * np.random.random([num_modes, num_modes]) A += A.T n_mean = 10.0 / num_modes sc, _ = dec.graph_embed(A, mean_photon_per_mode=n_mean) n_mean_calc = np.mean(np.sinh(sc) ** 2) assert np.allclose(n_mean, n_mean_calc, atol=tol, rtol=0) class TestBipartiteGraphEmbed: """graph_embed tests""" def test_square_validation(self): """Test that the graph_embed decomposition raises exception if not square""" A = np.random.random([4, 5]) + 1j * np.random.random([4, 5]) with pytest.raises(ValueError, match="matrix is not square"): dec.bipartite_graph_embed(A) @pytest.mark.parametrize("make_symmetric", [True, False]) def test_mean_photon(self, tol, make_symmetric): """Test that the mean photon number is correct in graph_embed""" num_modes = 6 A = np.random.random([num_modes, num_modes]) + 1j * np.random.random([num_modes, num_modes]) if make_symmetric: A += A.T n_mean = 1.0 sc, _, _ = dec.bipartite_graph_embed(A, mean_photon_per_mode=n_mean) n_mean_calc = np.sum(np.sinh(sc) ** 2) / (num_modes) assert np.allclose(n_mean, n_mean_calc, atol=tol, rtol=0) @pytest.mark.parametrize("make_symmetric", [True, False]) def test_correct_graph(self, tol, make_symmetric): """Test that the graph is embeded correctly""" num_modes = 3 A = np.random.random([num_modes, num_modes]) + 1j * np.random.random([num_modes, num_modes]) U, l, V = np.linalg.svd(A) new_l = np.array([np.tanh(np.arcsinh(np.sqrt(i))) for i in range(1, num_modes + 1)]) n_mean = 0.5 * (num_modes + 1) if make_symmetric: At = U @ np.diag(new_l) @ U.T else: At = U @ np.diag(new_l) @ V.T sqf, Uf, Vf = dec.bipartite_graph_embed(At, mean_photon_per_mode=n_mean) assert np.allclose(np.tanh(-np.flip(sqf)), new_l) assert np.allclose(Uf @ np.diag(np.tanh(-sqf)) @ Vf.T, At) class TestRectangularDecomposition: """Tests for linear interferometer rectangular decomposition""" def test_unitary_validation(self): """Test that an exception is raised if not unitary""" A = np.random.random([5, 5]) + 1j * np.random.random([5, 5]) with pytest.raises(ValueError, match="matrix is not unitary"): dec.rectangular(A) @pytest.mark.parametrize( "U", [ pytest.param(np.identity(20), id="identity20"), pytest.param(np.identity(20)[::-1], id="antiidentity20"), pytest.param(haar_measure(20), id="random20"), ], ) def test_rectangular(self, U, tol): """This test checks the function :func:`dec.rectangular` for various unitary matrices. A given unitary (identity or random draw from Haar measure) is decomposed using the function :func:`dec.rectangular` and the resulting beamsplitters are multiplied together. Test passes if the product matches the given unitary. """ nmax, mmax = U.shape assert nmax == mmax tilist, diags, tlist = dec.rectangular(U) qrec = np.identity(nmax) for i in tilist: qrec = dec.T(*i) @ qrec qrec = np.diag(diags) @ qrec for i in reversed(tlist): qrec = dec.Ti(*i) @ qrec assert np.allclose(U, qrec, atol=tol, rtol=0) def test_random_unitary_phase_end(self, tol): """This test checks the rectangular decomposition with phases at the end. A random unitary is drawn from the Haar measure, then is decomposed using Eq. 5 of the rectangular decomposition procedure of Clements et al, i.e., moving all the phases to the end of the interferometer. The resulting beamsplitters are multiplied together. Test passes if the product matches the drawn unitary. """ n = 20 U = haar_measure(n) tlist, diags, _ = dec.rectangular_phase_end(U) qrec = np.identity(n) for i in tlist: qrec = dec.T(*i) @ qrec qrec = np.diag(diags) @ qrec assert np.allclose(U, qrec, atol=tol, rtol=0) @pytest.mark.parametrize( "U", [ pytest.param(np.identity(20), id="identity20"), pytest.param(np.identity(20)[::-1], id="antiidentity20"), pytest.param(haar_measure(20), id="random20"), ], ) def test_rectangular_MZ(self, U, tol): """This test checks the function :func:`dec.rectangular_MZ` for various unitary matrices. A given unitary (identity or random draw from Haar measure) is decomposed using the function :func:`dec.rectangular_MZ` and the resulting beamsplitters are multiplied together. Test passes if the product matches the given unitary. """ nmax, mmax = U.shape assert nmax == mmax tilist, diags, tlist = dec.rectangular_MZ(U) qrec = np.identity(nmax) for i in tilist: qrec = dec.mach_zehnder(*i) @ qrec qrec = np.diag(diags) @ qrec for i in reversed(tlist): qrec = dec.mach_zehnder_inv(*i) @ qrec assert np.allclose(U, qrec, atol=tol, rtol=0) class TestRectangularSymmetricDecomposition: """Tests for linear interferometer decomposition into rectangular grid of phase-shifters and pairs of symmetric beamsplitters""" def test_unitary_validation(self): """Test that an exception is raised if not unitary""" A = np.random.random([5, 5]) + 1j * np.random.random([5, 5]) with pytest.raises(ValueError, match="matrix is not unitary"): dec.rectangular_symmetric(A) @pytest.mark.parametrize( "U", [ pytest.param(np.identity(2), id="identity2"), pytest.param(np.identity(2)[::-1], id="antiidentity2"), pytest.param(haar_measure(2), id="random2"), pytest.param(np.identity(4), id="identity4"), pytest.param(np.identity(3)[::-1], id="antiidentity4"), pytest.param(haar_measure(4), id="random4"), pytest.param(np.identity(8), id="identity8"), pytest.param(np.identity(8)[::-1], id="antiidentity8"), pytest.param(haar_measure(8), id="random8"), pytest.param(np.identity(20), id="identity20"), pytest.param(np.identity(20)[::-1], id="antiidentity20"), pytest.param(haar_measure(20), id="random20"), ], ) def test_decomposition(self, U, tol): """This test checks the function :func:`dec.rectangular_symmetric` for various unitary matrices. A given unitary (identity or random draw from Haar measure) is decomposed using the function :func:`dec.rectangular_symmetric` and the resulting beamsplitters are multiplied together. Test passes if the product matches the given unitary. """ nmax, mmax = U.shape assert nmax == mmax tlist, diags, _ = dec.rectangular_symmetric(U) qrec = np.identity(nmax) for i in tlist: assert i[2] >= 0 and i[2] < 2 * np.pi # internal phase assert i[3] >= 0 and i[3] < 2 * np.pi # external phase qrec = dec.mach_zehnder(*i) @ qrec qrec = np.diag(diags) @ qrec assert np.allclose(U, qrec, atol=tol, rtol=0) class TestTriangularDecomposition: """Tests for linear interferometer triangular decomposition""" def test_unitary_validation(self): """Test that an exception is raised if not unitary""" A = np.random.random([5, 5]) + 1j * np.random.random([5, 5]) with pytest.raises(ValueError, match="matrix is not unitary"): dec.triangular(A) def test_identity(self, tol): """This test checks the rectangular decomposition for an identity unitary. An identity unitary is decomposed via the rectangular decomposition of Clements et al. and the resulting beamsplitters are multiplied together. Test passes if the product matches identity. """ # TODO: this test currently uses the T and Ti functions used to compute # Clements as the comparison. Probably should be changed. n = 20 U = np.identity(n) tlist, diags, _ = dec.triangular(U) qrec = np.diag(diags) for i in tlist: qrec = dec.Ti(*i) @ qrec assert np.allclose(U, qrec, atol=tol, rtol=0) def test_random_unitary(self, tol): """This test checks the rectangular decomposition for a random unitary. A random unitary is drawn from the Haar measure, then is decomposed via the rectangular decomposition of Clements et al., and the resulting beamsplitters are multiplied together. Test passes if the product matches the drawn unitary. """ # TODO: this test currently uses the T and Ti functions used to compute # Clements as the comparison. Probably should be changed. n = 20 U = haar_measure(n) tlist, diags, _ = dec.triangular(U) qrec = np.diag(diags) for i in tlist: qrec = dec.Ti(*i) @ qrec assert np.allclose(U, qrec, atol=tol, rtol=0) def _rectangular_compact_recompose(phases): r"""Calculates the unitary of a rectangular compact interferometer, using the phases provided in phases dict. Args: phases (dict): where the keywords: * ``m``: the length of the matrix * ``phi_ins``: parameters for the phase-shifters * ``sigmas``: parameters for the sMZI * ``deltas``: parameters for the sMZI * ``phi_edges``: parameters for the edge phase shifters * ``phi_outs``: parameters for the phase-shifters Returns: array : unitary matrix of the interferometer """ m = phases["m"] U = np.eye(m, dtype=np.complex128) for j in range(0, m - 1, 2): phi = phases["phi_ins"][j] U = dec.P(j, phi, m) @ U for layer in range(m): if (layer + m + 1) % 2 == 0: phi_bottom = phases["phi_edges"][m - 1, layer] U = dec.P(m - 1, phi_bottom, m) @ U for mode in range(layer % 2, m - 1, 2): delta = phases["deltas"][mode, layer] sigma = phases["sigmas"][mode, layer] U = dec.M(mode, sigma, delta, m) @ U for j, phi_j in phases["phi_outs"].items(): U = dec.P(j, phi_j, m) @ U return U class TestRectangularCompactDecomposition: """Tests for linear interferometer decomposition into rectangular grid of phase-shifters and pairs of symmetric beamsplitters""" def test_unitary_validation(self): """Test that an exception is raised if not unitary""" A = np.random.random([5, 5]) + 1j * np.random.random([5, 5]) with pytest.raises(ValueError, match="The input matrix is not unitary"): dec.rectangular_compact(A) @pytest.mark.parametrize( "U", [ pytest.param(np.identity(2), id="identity2"), pytest.param(np.identity(2)[::-1], id="antiidentity2"), pytest.param(haar_measure(2), id="random2"), pytest.param(np.identity(4), id="identity4"), pytest.param(np.identity(4)[::-1], id="antiidentity4"), pytest.param(haar_measure(4), id="random4"), pytest.param(np.identity(8), id="identity8"), pytest.param(np.identity(8)[::-1], id="antiidentity8"), pytest.param(haar_measure(8), id="random8"), pytest.param(np.identity(20), id="identity20"), pytest.param(np.identity(20)[::-1], id="antiidentity20"), pytest.param(haar_measure(20), id="random20"), pytest.param(np.identity(7), id="identity7"), pytest.param(np.identity(7)[::-1], id="antiidentity7"), pytest.param(haar_measure(7), id="random7"), ], ) def test_decomposition(self, U, tol): """This test checks the function :func:`dec.rectangular_symmetric` for various unitary matrices. A given unitary (identity or random draw from Haar measure) is decomposed using the function :func:`dec.rectangular_symmetric` and the resulting beamsplitters are multiplied together. Test passes if the product matches the given unitary. """ nmax, mmax = U.shape assert nmax == mmax phases = dec.rectangular_compact(U) Uout = _rectangular_compact_recompose(phases) assert np.allclose(U, Uout, atol=tol, rtol=0) def _triangular_compact_recompose(phases): r"""Calculates the unitary of a triangular compact interferometer, using the phases provided in phases dict. Args: phases (dict): where the keywords: * ``m``: the length of the matrix * ``phi_ins``: parameter of the phase-shifter at the beginning of the mode * ``sigmas``: parameter of the sMZI :math:`\frac{(\theta_1+\theta_2)}{2}`, where `\theta_{1,2}` are the values of the two internal phase-shifts of sMZI * ``deltas``: parameter of the sMZI :math:`\frac{(\theta_1-\theta_2)}{2}`, where `\theta_{1,2}` are the values of the two internal phase-shifts of sMZI * ``zetas``: parameter of the phase-shifter at the end of the mode Returns: U (array) : unitary matrix of the interferometer """ m = phases["m"] U = np.identity(m, dtype=np.complex128) for j in range(m - 1): phi_j = phases["phi_ins"][j] U = dec.P(j + 1, phi_j, m) @ U for k in range(j + 1): n = j - k delta = phases["deltas"][n, k] sigma = phases["sigmas"][n, k] U = dec.M(n, sigma, delta, m) @ U for j in range(m): zeta = phases["zetas"][j] U = dec.P(j, zeta, m) @ U return U class TestTriangularCompactDecomposition: """Tests for linear interferometer decomposition into rectangular grid of phase-shifters and pairs of symmetric beamsplitters""" def test_unitary_validation(self): """Test that an exception is raised if not unitary""" A = np.random.random([5, 5]) + 1j * np.random.random([5, 5]) with pytest.raises(ValueError, match="The input matrix is not unitary"): dec.triangular_compact(A) @pytest.mark.parametrize( "U", [ pytest.param(np.identity(2), id="identity2"), pytest.param(np.identity(2)[::-1], id="antiidentity2"), pytest.param(haar_measure(2), id="random2"), pytest.param(np.identity(4), id="identity4"), pytest.param(
np.identity(4)
numpy.identity
''' Module with a class to create a generator for low-frequency images. ''' # System imports import time # Standard imports import numpy as np import matplotlib.pyplot as plt import itertools class LowFreqGenerator(object): ''' A class to create a generator of low-frequency images. ''' def __init__(self, batch_size=128, N=4, im_size=64, discounting=1, constant_components=False): ''' Constructor ''' self.N = N self.im_size = im_size self.batch_size = batch_size # array with discretized Fourier eigenfunctions self._base = np.zeros(shape=(im_size, im_size, 2 * N + 1, 2 * N + 1), dtype=np.complex64) # Create Fourier coefficients if constant_components: self._fourier_components = get_constant_fourier_components(N) else: self._fourier_components = get_normal_fourier_components(N, discounting) # array with discretized Fourier eigenfunctions premultiplied with Fourier coefficients self._base_multiplied = np.zeros(shape=(im_size, im_size, 2 * N + 1, 2 * N + 1), dtype=np.complex64) self._set_base() def set_fourier_components(self, fourier_components): assert fourier_components.shape[0] == fourier_components.shape[1], "Not square matrix for Fourier components" assert fourier_components.shape[0] == 2 * self.N + 1, "Not adequate number of components" self._fourier_components = fourier_components self._set_base() def _set_base(self): """ Precompute the base arrays, with discretized Fourier eigenfunctions. """ im_size = self.im_size N = self.N self._base = np.zeros(shape=(2 * N + 1, 2 * N + 1, im_size, im_size), dtype=np.complex64) _fourier_components_reshaped = np.reshape(self._fourier_components, newshape=(2 * N + 1, 2 * N + 1, 1, 1)) for m in range(-N, N + 1): for n in range(-N, N + 1): for k in range(im_size): for l in range(im_size): self._base[m, n, k, l] = np.exp(2 * m * 1j * np.pi * (k / im_size) \ + 2 * n * 1j * np.pi * (l / im_size)) self._base_multiplied = self._base * _fourier_components_reshaped def get_shift_multipliers(self): """Get 3darray with batch of matrices with Fourier coefficients for translation. """ N = self.N # Create random shifts shifts = np.random.uniform(size=(self.batch_size, 2)) # shift_multipliers = np.ones(shape=(self.batch_size, 2 * N + 1, 2 * N + 1), dtype=np.complex64) # This part of the code is probably quite slow for batch in range(self.batch_size): for m in range(-N, N + 1): for n in range(-N, N + 1): shift_x = shifts[batch, 0] shift_y = shifts[batch, 1] shift_multipliers[batch, m, n] = \ np.exp(- 2 * m * np.pi * (1j) * shift_x - 2 * n * np.pi * (1j) * shift_y) return shift_multipliers, shifts def get_regular_multipliers(self): """Get 3darray with batch of matrices with Fourier coefficients for translation not random. """ N = self.N # Create random shifts shifts = np.linspace(0,1, self.batch_size) product_shifts = np.array(list(itertools.product(shifts,shifts))) # Generate the squared number of shifted images shift_multipliers = np.ones(shape=(self.batch_size**2, 2 * N + 1, 2 * N + 1), dtype=np.complex64) # This part of the code is probably quite slow for combination in range(len(product_shifts)): for m in range(-N, N + 1): for n in range(-N, N + 1): shift_x = product_shifts[combination,0] shift_y = product_shifts[combination,1] shift_multipliers[combination, m, n] = \ np.exp(- 2 * m * np.pi * (1j) * shift_x - 2 * n * np.pi * (1j) * shift_y) return shift_multipliers, product_shifts def generate(self): while True: shift_multipliers, _ = self.get_shift_multipliers() result = np.tensordot(shift_multipliers, self._base_multiplied, axes=((1, 2), (0, 1))) reshaped = result.real.reshape([-1, self.im_size ** 2]) normalized = reshaped / np.amax(np.abs(reshaped)) yield (normalized, normalized) def generate_shifts(self): while True: shift_multipliers, shifts = self.get_shift_multipliers() result = np.tensordot(shift_multipliers, self._base_multiplied, axes=((1, 2), (0, 1))) reshaped = result.real.reshape([-1, self.im_size ** 2]) normalized = reshaped / np.amax(np.abs(reshaped)) yield (normalized, shifts) def generate_regular_shifts(self): while True: shift_multipliers, shifts = self.get_regular_multipliers() result = np.tensordot(shift_multipliers, self._base_multiplied, axes=((1, 2), (0, 1))) reshaped = result.real.reshape([-1, self.im_size ** 2]) normalized = reshaped / np.amax(np.abs(reshaped)) yield (normalized, shifts) def get_normal_fourier_components(N, discounting=1): _fourier_components = np.random.normal(size=(2 * N + 1, 2 * N + 1)) \ + 1j *
np.random.normal(size=(2 * N + 1, 2 * N + 1))
numpy.random.normal
import random import numpy as np import matplotlib.pyplot as plt from copy import deepcopy # gaussian & polynomial kernel SVM class SVM_Kernel: def __init__(self, dataset, dataset_target, kernel=None): # dataet parameters self.dataset = deepcopy(dataset) self.dataset_target = self.__process_dataset_target(deepcopy(dataset_target)) self.kernel = kernel # gaussian kernel parameters self.weight = None self.wrt_range = [0, 1] self.wrt_seed = 2 self.lama = np.array(self.dataset) self.sigma = None # polynomial kernal parameters self.degree = 2 self.bias = 0 # store misclassification dataset self.misclassification = [[], []] def __process_dataset_target(self, dataset_target): for index in range(len(dataset_target)): if dataset_target[index] == 0: dataset_target[index] = -1 else: continue return dataset_target ## generate random weight w0,w1,w2,w3..... def generate_weight(self, num_attr, seed=2): random.seed(seed) wt_array = [] for i in range(num_attr): wt_array.append(random.uniform(self.wrt_range[0], self.wrt_range[1])) return np.array(wt_array) # generate gaussian features def __gaussian_feature_make(self, dataset, lama, sigma, round_limit=5): feature = [] for val in dataset: feature.append([round(self.__gaussian_kernel(val, sig, sigma), round_limit) for sig in lama]) feature[-1].insert(0, 1) return feature # gaussian_kernel func def __gaussian_kernel(self, x_ipt, lama_single, sigma): prob = np.exp(-(np.linalg.norm(abs(x_ipt - lama_single))) ** 2 / (2 * sigma ** 2)) return prob ## polynomial_kernel func def __poly_kernel(self, x_ipt, lama_single, degree=2, bias=0): poly_val = (np.dot(x_ipt, lama_single) + bias) ** degree return poly_val ## generate poly features def __poly_feature_make(self, dt_train, lama, degree=2, bias=0): feature = [] for val in dt_train: feature.append([self.__poly_kernel(val, sig, degree, bias) for sig in lama]) feature[-1].insert(0, 1) return feature # train SVM model def train(self, C=1, sigma=0.5, degree=2, bias=0, stp=1, epoch_limit=1000, stp_limit=1e-300, stp_show=True, plot=False): epoch = 0 hinge_loss_all = 0 reg_val = 1 / C self.sigma = sigma epoch_plt = [] hinge_loss_plt = [] if self.kernel == 'gaussian': features = self.__gaussian_feature_make(self.dataset, self.lama, self.sigma, round_limit=5) self.weight = self.generate_weight(len(features[0]), self.wrt_seed) elif self.kernel == 'polynomial': features = self.__poly_feature_make(self.dataset, self.lama, self.degree, self.bias) self.weight = self.generate_weight(len(features[0]), self.wrt_seed) else: raise NotImplementedError('Kernel cannot be empty...') return -1 while epoch <= epoch_limit: hinge_loss = [] epoch_plt.append(epoch) hinge_loss_last = hinge_loss_all for index in range(len(features)): r = np.dot(features[index], self.weight) * self.dataset_target[index] if r >= 1: hinge_loss.append(0) self.weight = self.weight - stp * reg_val * self.weight else: hinge_loss.append(1 - r) self.weight = self.weight + stp * ( self.dataset_target[index] * np.array(features[index]) - reg_val * self.weight) hinge_loss_all = sum(hinge_loss) hinge_loss_plt.append(hinge_loss_all) if abs(hinge_loss_last - hinge_loss_all) <= 0.1: stp = stp * 0.1 if stp <= stp_limit: break epoch += 1 if stp_show: print('epoch:', epoch, ',hinge_loss:', round(hinge_loss_all, 5), ',step: ', stp) if plot: # plot hinge loss plt.plot(epoch_plt, hinge_loss_plt) plt.title('hinge loss vs epochs') plt.xlabel('epochs') plt.ylabel('hingle loss') plt.grid() plt.show() # test SVM model def score(self, dataset, dataset_target): dataset_target = self.__process_dataset_target(deepcopy(dataset_target)) if self.kernel is 'gaussian': features = self.__gaussian_feature_make(dataset, self.lama, self.sigma, round_limit=5) elif self.kernel is 'polynomial': features = self.__poly_feature_make(dataset, self.lama, self.degree, self.bias) error = 0 for index in range(len(features)): r = np.dot(features[index], self.weight) * dataset_target[index] if r >= 0: continue else: self.misclassification[0].append(dataset[index]) self.misclassification[1].append(dataset_target[index]) error += 1 error_rate = error / len(features) return (1 - error_rate) # classify newdataset def classify_ensemble(self, single_data): dataset = [deepcopy(single_data)] if self.kernel is 'gaussian': features = self.__gaussian_feature_make(dataset, self.lama, self.sigma, round_limit=5) elif self.kernel is 'polynomial': features = self.__poly_feature_make(dataset, self.lama, self.degree, self.bias) r = np.dot(features[0], self.weight) return 1 if r >= 0 else 0 # linear SVM class SVM_Linear: def __init__(self, dataset, dataset_target): # dataet parameters self.dataset = self.__process_dataset(deepcopy(dataset)) self.dataset_target = self.__process_dataset_target(deepcopy(dataset_target)) self.kernel = 'linear' # weight parameters self.wrt_range = [0, 1] self.wrt_seed = 2 self.weight = self.__generate_weight(len(self.dataset[0]), self.wrt_seed) # store misclassification dataset self.misclassification = [[], []] def __process_dataset(self, dataset): for index in range(len(dataset)): dataset[index].append(1) return dataset def __process_dataset_target(self, dataset_target): for index in range(len(dataset_target)): if dataset_target[index] == 0: dataset_target[index] = -1 else: continue return dataset_target # generate random weight w0,w1,w2,w3..... def __generate_weight(self, num_attr, seed=2): random.seed(seed) wt_array = [] for i in range(num_attr): wt_array.append(random.uniform(self.wrt_range[0], self.wrt_range[1])) return np.array(wt_array) # train SVM model def train(self, C=1, stp=1, epoch_limit=1000, stp_limit=1e-100, stp_show=True, plot=False): epoch = 0 hinge_loss_all = 0 reg_val = 1 / C epoch_plt = [] hinge_loss_plt = [] while epoch <= epoch_limit: hinge_loss = [] epoch_plt.append(epoch) hinge_loss_last = hinge_loss_all for index in range(len(self.dataset)): r = np.dot(self.dataset[index], self.weight) * self.dataset_target[index] if r >= 1: hinge_loss.append(0) self.weight = self.weight - stp * reg_val * self.weight else: hinge_loss.append(1 - r) self.weight = self.weight + stp * ( self.dataset_target[index] * np.array(self.dataset[index]) - reg_val * self.weight) hinge_loss_all = sum(hinge_loss) hinge_loss_plt.append(hinge_loss_all) if abs(hinge_loss_last - hinge_loss_all) <= 0.1: stp = stp * 0.1 if stp <= stp_limit: break epoch += 1 if stp_show: print('epoch:', epoch, ',hinge_loss:', round(hinge_loss_all, 5), ',step: ', stp) if plot: # plot hinge loss plt.plot(epoch_plt, hinge_loss_plt) plt.title('hinge loss vs epochs') plt.xlabel('epochs') plt.ylabel('hingle loss') plt.grid() plt.show() # test SVM model def score(self, dataset, dataset_target): dataset_target = self.__process_dataset_target(deepcopy(dataset_target)) dataset = self.__process_dataset(deepcopy(dataset)) error = 0 for index in range(len(dataset)): r = np.dot(dataset[index], self.weight) * dataset_target[index] if r >= 0: continue else: self.misclassification[0].append(dataset[index]) self.misclassification[1].append(dataset_target[index]) error += 1 error_rate = error / len(dataset) return (1 - error_rate) # classify newdataset def classify(self, single_data): dataset = [deepcopy(single_data)] processed_dataset = self.__process_dataset(dataset) r =
np.dot(processed_dataset, self.weight)
numpy.dot
""" @author: <NAME> (University of Sydney) ------------------------------------------------------------------------- AMICAL: Aperture Masking Interferometry Calibration and Analysis Library ------------------------------------------------------------------------- Matched filter pipeline method. All AMI related function, the most important are: - make_mf: compute splodge positions for a given mask, - tri_pix: compute unique closing triangle for a given splodge. -------------------------------------------------------------------- """ import os from pathlib import Path import numpy as np from matplotlib import pyplot as plt from munch import munchify as dict2class from termcolor import cprint from amical.dpfit import leastsqFit from amical.get_infos_obs import get_mask from amical.get_infos_obs import get_pixel_size from amical.get_infos_obs import get_wavelength from amical.mf_pipeline.idl_function import array_coords from amical.mf_pipeline.idl_function import dist from amical.tools import gauss_2d_asym from amical.tools import linear from amical.tools import norm_max from amical.tools import plot_circle def _plot_mask_coord(xy_coords, maskname, instrument): if instrument == "NIRISS": marker = "H" D = 6.5 else: D = 8.0 marker = "o" fig = plt.figure(figsize=(6, 5.5)) plt.title(f"{instrument} - mask {maskname}", fontsize=14) for i in range(xy_coords.shape[0]): plt.scatter( xy_coords[i][0], xy_coords[i][1], s=1e2, c="None", edgecolors="navy", marker=marker, ) plt.text(xy_coords[i][0] + 0.1, xy_coords[i][1] + 0.1, i) plt.xlabel("Aperture x-coordinate [m]", fontsize=12) plt.ylabel("Aperture y-coordinate [m]", fontsize=12) plt.axis([-D / 2.0, D / 2.0, -D / 2.0, D / 2.0]) plt.tight_layout() return fig def _compute_uv_coord( xy_coords, index_mask, filt, pixelSize, npix, round_uv_to_pixel=False ): """Compute the expected u-v coordinated on the detector. If `round_uv_to_pixel` is True, the closest integer position is used.""" n_baselines = index_mask.n_baselines bl2h_ix = index_mask.bl2h_ix u_real =
np.zeros(n_baselines)
numpy.zeros
from numpy.testing import assert_equal import numpy as np import skvideo.io import skvideo.datasets import sys if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest def _vreader(backend): reader = skvideo.io.vreader(skvideo.datasets.bigbuckbunny(), backend=backend) T = 0 M = 0 N = 0 C = 0 accumulation = 0 for frame in reader: M, N, C = frame.shape accumulation += np.sum(frame) T += 1 # check the dimensions of the video assert_equal(T, 132) assert_equal(M, 720) assert_equal(N, 1280) assert_equal(C, 3) # check the numbers assert_equal(109.28332841215979, accumulation / (T * M * N * C)) @unittest.skipIf(not skvideo._HAS_FFMPEG, "FFmpeg required for this test.") def test_vreader_ffmpeg(): _vreader("ffmpeg") @unittest.skipIf(not skvideo._HAS_AVCONV, "LibAV required for this test.") def test_vreader_libav_version12(): try: if
np.int(skvideo._LIBAV_MAJOR_VERSION)
numpy.int
# Copyright 2017 The TensorFlow Lattice Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Collection of test datasets.""" import math # Dependency imports import numpy as np from tensorflow.python.estimator.inputs import numpy_io _NUM_EXAMPLES = 10000 _BATCH_SIZE = 100 _NUM_EPOCHS = 1 class TestData(object): """A test dataset class.""" def __init__(self, num_examples=_NUM_EXAMPLES, batch_size=_BATCH_SIZE, num_epochs=_NUM_EPOCHS): self.num_examples = num_examples self.batch_size = batch_size self.num_epochs = num_epochs # Collection of transformations that generates the label, y. def _f(self, x): return np.power(x, 3) + 0.1 * np.sin(x * math.pi * 8) def _g(self, x0, x1): return self._f(x0) + 0.3 * (1.0 - np.square(x1)) def _h(self, x0, x1): radius2 = (x0 * x0 + x1 * x1) max_radius2 = 0.25 return radius2 < max_radius2 def _i(self, x0, x1, x2): return self._g(x0, x1) + np.choose(x2.astype(int) + 1, [11., 7., 13.]) def oned_input_fn(self): """Returns an input function for one dimensional learning task. column 'x' is a feature column, and column 'y' is a label column. The transformation is deterministic, where y = _f(x). Returns: Function, that has signature of ()->({'x': data}, `target`) FutureWork: Make this use keypoints_initialization from quantiles. """ x = np.random.uniform(-1.0, 1.0, size=self.num_examples) y = self._f(x) return numpy_io.numpy_input_fn( x={'x': x}, y=y, batch_size=self.batch_size, num_epochs=self.num_epochs, shuffle=False) def oned_zero_weight_input_fn(self): """Returns an input function for one dimensional learning task. column 'x' is a feature column, column 'zero' is a numerical column that contains zero values and column 'y' is a label column. The transformation is deterministic, where y = _f(x). Returns: Function, that has signature of ()->({'x': data, 'zero': zeros}, `target`) """ x = np.random.uniform(-1.0, 1.0, size=self.num_examples) zeros = np.zeros(shape=(self.num_examples)) y = self._f(x) return numpy_io.numpy_input_fn( x={ 'x': x, 'zero': zeros }, y=y, batch_size=self.batch_size, num_epochs=self.num_epochs, shuffle=False) def twod_input_fn(self): """Returns an input function for two dimensional learning task. column 'x0' and 'x1' are feature columns, and column 'y' is a label column. The transformation is deterministic, where y = _g(x0, x1). Returns: Function, that has signature of ()->({'x0': data, 'x1': data}, `target`) """ x0 = np.random.uniform(-1.0, 1.0, size=self.num_examples) x1 = np.random.uniform(-1.0, 1.0, size=self.num_examples) y = self._g(x0, x1) return numpy_io.numpy_input_fn( x={'x0': x0, 'x1': x1}, y=y, batch_size=self.batch_size, num_epochs=self.num_epochs, shuffle=False) def twod_classificer_input_fn(self): """Returns an input function for two dimensional classification task. column 'x0' and 'x1' are feature columns, and column 'y' is a label column. The transformation is deterministic, where y = _h(x0, x1). Returns: Function, that has signature of ()->({'x0': data, 'x1': data}, `target`) """ x0 = np.random.uniform(-1.0, 1.0, size=self.num_examples) x1 = np.random.uniform(-1.0, 1.0, size=self.num_examples) y = np.vectorize(self._h)(x0, x1) return numpy_io.numpy_input_fn( x={'x0': x0, 'x1': x1}, y=y, batch_size=self.batch_size, num_epochs=self.num_epochs, shuffle=False) def threed_input_fn(self, full_data, num_epochs=None): """Returns an input function for three-dimensional learning task. 'x0' and 'x1' are numeric, and 'x2' is categorical with values {-1, 0, 1}. The transformation is deterministic and decomposable on the inputs, that is y = _i(x0, x1, x2) = _i_0(x0)+_i_1(x1)+_i_2(x2). Args: full_data: if set to true the whole data is returned in one batch. num_epochs: number of epochs to go over the data. Takes default used in construction if not set. Returns: Function, that has signature of ()->({'x0': data, 'x1': data, 'x2': data}, `target`) """ x0 = np.random.uniform(-1.0, 1.0, size=self.num_examples) x1 =
np.random.uniform(-1.0, 1.0, size=self.num_examples)
numpy.random.uniform
# SPDX-License-Identifier: Apache-2.0 import numpy as np import cv2 as cv from PIL import Image import cityscapes_labels def get_palette(): # get train id to color mappings from file trainId2colors = {label.trainId: label.color for label in cityscapes_labels.labels} # prepare and return palette palette = [0] * 256 * 3 for trainId in trainId2colors: colors = trainId2colors[trainId] if trainId == 255: colors = (0, 0, 0) for i in range(3): palette[trainId * 3 + i] = colors[i] return palette def colorize(labels): # generate colorized image from output labels and color palette result_img = Image.fromarray(labels).convert('P') result_img.putpalette(get_palette()) return np.array(result_img.convert('RGB')) def postprocess(labels,img_shape,result_shape): ''' Postprocessing function for DUC input : output labels from the network as numpy array, input image shape, desired output image shape output : confidence score, segmented image, blended image, raw segmentation labels ''' ds_rate = 8 label_num = 19 cell_width = 2 img_height,img_width = img_shape result_height,result_width = result_shape # re-arrange output test_width = int((int(img_width) / ds_rate) * ds_rate) test_height = int((int(img_height) / ds_rate) * ds_rate) feat_width = int(test_width / ds_rate) feat_height = int(test_height / ds_rate) labels = labels.reshape((label_num, 4, 4, feat_height, feat_width)) labels = np.transpose(labels, (0, 3, 1, 4, 2)) labels = labels.reshape((label_num, int(test_height / cell_width), int(test_width / cell_width))) labels = labels[:, :int(img_height / cell_width),:int(img_width / cell_width)] labels = np.transpose(labels, [1, 2, 0]) labels = cv.resize(labels, (result_width, result_height), interpolation=cv.INTER_LINEAR) labels = np.transpose(labels, [2, 0, 1]) # get softmax output softmax = labels # get classification labels results =
np.argmax(labels, axis=0)
numpy.argmax
from abc import ABCMeta import awkward import numpy as np from nnalgs.base.LMDBCreator import BaseLMDBCreator from nnalgs.utils.Math import combine_mean_std class DecayModeLMDBCreator(BaseLMDBCreator, metaclass=ABCMeta): """ Class for decay mode classification LMDB database creators """ def __init__(self, sel_vars, data, n_steps, dtype, log_vars, atan_vars, **kwargs): """ :param sel_vars: a list of the variables for selection (e.g. TauJet variables) :param data: a dict of all the inputs and outputs variables for each input branch :param n_steps: a dict of the maximum time steps to be stored for each input branch :param dtype: a dict of NumPy dtype to be stored for each input branch :param trans: boolean, do pre-processing or not :param kwargs: common arguments for base class """ self.sel_vars = sel_vars self.data = data self.n_steps = n_steps self.dtype = dtype self.log_vars = log_vars self.atan_vars = atan_vars super().__init__(**kwargs) def _loop_create_chunk(self, chunk): entry_start, entry_stop = chunk # do selection (train, test split based on mc event number, 2020/03/24 -> full set training) self._logger.debug(f" - Chunk here is: {entry_start} ~ {entry_stop}") df_sel = self._root_tree.pandas.df(self.sel_vars, entrystart=entry_start, entrystop=entry_stop) # 2020/03/24 -> nothing removed_indices = self._get_removed_indices(df=df_sel) counter_here = self._counter # loop over each branch: Label, PFOs, Track, ... for name, vars in self.data.items(): self._logger.debug(f" - Branch here is: {name}") # Overall counter! Till the end! self._counter = counter_here df = self._root_tree.pandas.df(vars, entrystart=entry_start, entrystop=entry_stop, flatten=False) # apply selection based on indices df.drop(removed_indices, inplace=True) df.reset_index(drop=True, inplace=True) # Label shape is easy to deal with if name == "Label" or name == "Weight": assert len(vars) == 1 arr = np.asarray(df, dtype=self.dtype[name]) arr = arr.reshape(len(arr)) # Some variables added for testing purpose elif name == "Inspector": arr = np.zeros((len(df), len(self.data[name])), dtype=self.dtype[name]) for i, var in enumerate(self.data[name]): arr[:, i] = np.asarray(df[var], dtype=self.dtype[name]) # In this case, all others are 3-D sequences else: # get array longest = max([len(a) for a in df[vars[0]]]) # take the first variable as reference list_here = list() for rec in df.to_records(): # index = rec[0] list_vars = [rec[i + 1] for i in range(len(vars))] vars_data = np.asarray(list_vars, dtype=self.dtype[name]).transpose() len_seq = vars_data.shape[0] # zero padding of sequence (to save everything in one NumPy array) vars_data = np.pad(vars_data, ((0, longest - len_seq), (0, 0)), 'constant') list_here.append(vars_data) arr = np.asarray(list_here, dtype=self.dtype[name]) for index, var in enumerate(vars): arr[:, :, index] = self._preprocessing_decaymode(var, arr[:, :, index]) # NOTE: should we save as much as possible and then having room to tune the seq max_len? if self.n_steps[name] < longest: arr = arr[:, :self.n_steps[name], :] if self.n_steps[name] > longest: self._logger.warning( f"required number of objects {self.n_steps[name]} is more than the actual " f"maximum number of objects {longest}, will NOT fill with zeros!!!" ) # if still want this feature, uncomment the line below arr = np.pad(arr, ((0, 0), (0, self.n_steps[name] - longest), (0, 0))) # do some testing here if you want self._logger.debug(arr[:3]) self._logger.debug(arr.shape) # write the cache into database # like this {"NeutralPFO-019961013": array([1,2,3, ..., batch_size])} for i in range(arr.shape[0]): if name != "Label" and name != "Weight" and arr[i].shape != (self.n_steps[name], len(vars)): self._logger.warning("{}-{:09d} has unexpected shape {}! This might cause crash at training time!".format(name, self._counter, arr[i].shape)) key = "{}-{:09d}".format(name, self._counter) self._cache[key] = arr[i].copy(order='C') # C if i % 1000 == 0: self._write_cache() self._logger.debug(f" - Cache --> counter={self._counter}, i={i} is written") self._counter += 1 def _loop_preproc_chunk(self, chunk): """ The pre-processing strategy is evaluated on full samples. No selection is required (yet not implemented) """ entry_start, entry_stop = chunk for name, fts in self.data.items(): # Skip Label ... if name == "Label" or name == "Weight": continue # loop over fts -> features of each branch for ft in fts: # in this case, i.e. multi-obj in a tau, uproot will return a JaggedArray via awkward package array: awkward.JaggedArray = self._root_tree.array(ft, entrystart=entry_start, entrystop=entry_stop) # now point array to the flatten NumPy array array: np.ndarray = array.flatten() # check log and ATan transformation ft, array = self._atan_tans(ft, array) # Maybe don't need to use the same dtype (-_-) array.flatten().dtype = self.dtype[name] # <- np.float32 ... # approximation of mean and std, for the scale and offset in pre-processing size_here, mean_here, std_here = entry_stop - entry_start, array.mean(), array.std() # If it is not the first chunk if ft in self._preproc and set(self._preproc[ft].keys()) == {"size", "mean", "std"}: l_n = [self._preproc[ft]["size"], size_here] l_mean = [self._preproc[ft]["mean"], mean_here] l_std = [self._preproc[ft]["std"], std_here] # a useful function which can combine a list of samples size_here, mean_here, std_here = combine_mean_std(l_n, l_mean, l_std) self._preproc[ft] = dict(size=size_here, mean=mean_here, std=std_here) self._logger.debug(self._preproc, "\n") def _save_to_json(self): for name, fts in self.data.items(): if name == "Label" or name == "Weight": continue d_fts = {'name': name, 'variables': []} for ft, stat in self._preproc.items(): if name in ft: # prior knowledge -> self._preproc is consistent with self._variables if ft.endswith(".phi"): self._preproc[ft]["mean"], self._preproc[ft]["std"] = 0.0, 0.5 * 3.1415926 elif ft.endswith(".eta"): self._preproc[ft]["mean"], self._preproc[ft]["std"] = 0.0, 0.5 * 2.5000000 elif ft.endswith(".dphi") or ft.endswith(".deta"): self._preproc[ft]["mean"] = 0.0 elif ft.endswith(".dphiECal") or ft.endswith(".detaECal"): self._preproc[ft]["mean"] = 0.0 elif "rnn_" in ft and ft.endswith("Score"): self._preproc[ft]["mean"], self._preproc[ft]["std"] = 0.0, 0.5 # no prior knowledge else: pass d_fts['variables'].append( dict(name=ft.split('.')[-1], offset=float(-1 * stat["mean"]), scale=float(0.5 / stat["std"]))) self._variables.append(d_fts) outputs = [ { 'name': 'classes', 'labels': ['c_1p0n', 'c_1p1n', 'c_1pXn', 'c_3p0n', 'c_3pXn'] } ] final_dict = { 'input_sequences': self._variables, 'inputs': [], 'outputs': outputs } # Saving self._write_json(final_dict) def _get_removed_indices(self, df): """ The performance is not as bad as i looks like... :param df: pandas.DataFrame :return: list of indices For cross validation, one can change the remainer = 0, 1, 2, 3, 5 (5-fold) """ if self.mode == 'Train': removed_indices = df[(df["TauJets.truthDecayMode"] > 4) | (df["TauJets.mcEventNumber"] % 5 == 0) | (df["TauJets.mcEventNumber"] % 5 == 1)].index # 3/5 of all elif self.mode == 'Validation': removed_indices = df[(df["TauJets.truthDecayMode"] > 4) | (df["TauJets.mcEventNumber"] % 5 != 0)].index # 1/5 of all elif self.mode == 'Test': removed_indices = df[(df["TauJets.truthDecayMode"] > 4) | (df["TauJets.mcEventNumber"] % 5 != 1)].index # 1/5 of all, for plotting in Loki else: raise ValueError(f"Cannot set type as {self.mode}") return removed_indices def _preprocessing_decaymode(self, ft, arr): """ Pre-process array at creation time :param ft: feature name :param arr: numpy.ndarray :return: pre-processed numpy.ndarray """ preproc = self._read_json() # NOTE: arrays here are padded with zeros (!) masked = np.ma.masked_equal(arr, 0) # Naming is consistent with those in self._preproc ft, masked = self._atan_tans(ft, masked) offset, scale = preproc[ft]["mean"], 0.5 / preproc[ft]["std"] masked = np.multiply(np.subtract(masked, offset), scale) return masked.filled(0) def _atan_tans(self, ft, arr): """check log and atan transformation""" if ft in self.log_vars.keys(): arr = np.log10(
np.maximum(arr, self.log_vars[ft])
numpy.maximum
# -*- coding: utf-8 -*- u"""SILAS execution template. :copyright: Copyright (c) 2020 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern import pkio from pykern import pkjson from pykern.pkcollections import PKDict from pykern.pkdebug import pkdp, pkdc, pkdlog from scipy import constants from sirepo import simulation_db from sirepo.template import template_common import csv import h5py import math import numpy as np import re import sirepo.sim_data _SIM_DATA, SIM_TYPE, _SCHEMA = sirepo.sim_data.template_globals() _CRYSTAL_CSV_FILE = 'crystal.csv' _SUMMARY_CSV_FILE = 'wavefront.csv' _INITIAL_LASER_FILE = 'initial-laser.npy' _FINAL_LASER_FILE = 'final-laser.npy' def background_percent_complete(report, run_dir, is_running): data = simulation_db.read_json(run_dir.join(template_common.INPUT_BASE_NAME)) res = PKDict( percentComplete=0, frameCount=0, ) if report == 'animation': line = template_common.read_last_csv_line(run_dir.join(_SUMMARY_CSV_FILE)) m = re.search(r'^(\d+)', line) if m and int(m.group(1)) > 0: res.frameCount = int((int(m.group(1)) + 1) / 2) res.wavefrontsFrameCount = _counts_for_beamline(res.frameCount, data.models.beamline)[0] total_count = _total_frame_count(data) res.percentComplete = res.frameCount * 100 / total_count return res assert report == 'crystalAnimation' count = 0 path = run_dir.join(_CRYSTAL_CSV_FILE) if path.exists(): with pkio.open_text(str(path)) as f: for line in f: count += 1 # first two lines are axis points if count > 2: plot_count = int((count - 2) / 2) res.frameCount = plot_count res.percentComplete = plot_count * 100 / (1 + data.models.crystalSettings.steps / data.models.crystalSettings.plotInterval) return res def post_execution_processing(success_exit=True, run_dir=None, **kwargs): if success_exit: return None return _parse_silas_log(run_dir) def get_data_file(run_dir, model, frame, options=None, **kwargs): if model in ('laserPulseAnimation', 'laserPulse2Animation'): return _INITIAL_LASER_FILE if model in ('laserPulse3Animation', 'laserPulse4Animation'): return _FINAL_LASER_FILE if model == 'wavefrontSummaryAnimation': return _SUMMARY_CSV_FILE if 'wavefrontAnimation' in model: sim_in = simulation_db.read_json(run_dir.join(template_common.INPUT_BASE_NAME)) return _wavefront_filename_for_index( sim_in, sim_in.models[model].id, frame, ) if 'plotAnimation' in model: return _CRYSTAL_CSV_FILE if model == 'crystal3dAnimation': return 'intensity.npy' raise AssertionError('unknown model={}'.format(model)) def python_source_for_model(data, model): if model in ('crystal3dAnimation', 'plotAnimation', 'plot2Animation'): data.report = 'crystalAnimation' else: data.report = 'animation' return _generate_parameters_file(data) def sim_frame(frame_args): filename = _wavefront_filename_for_index( frame_args.sim_in, frame_args.id, frame_args.frameIndex, ) with h5py.File(filename, 'r') as f: wfr = f['wfr'] points = np.array(wfr) return PKDict( title='S={}m (E={} eV)'.format( _format_float(wfr.attrs['pos']), frame_args.sim_in.models.gaussianBeam.photonEnergy, ), subtitle='', x_range=[wfr.attrs['xStart'], wfr.attrs['xFin'], len(points[0])], x_label='Horizontal Position [m]', y_range=[wfr.attrs['yStart'], wfr.attrs['yFin'], len(points)], y_label='Vertical Position [m]', z_matrix=points.tolist(), summaryData=_summary_data(frame_args), ) def sim_frame_crystal3dAnimation(frame_args): intensity = np.load('intensity.npy') return PKDict( title=' ', indices=np.load('indices.npy').flatten().tolist(), vertices=np.load('vertices.npy').flatten().tolist(), intensity=intensity.tolist(), intensity_range=[
np.min(intensity)
numpy.min
import numpy as np import scipy.interpolate from netCDF4 import Dataset import pdb class Data3d: """basic data element that contains a 3D (plevs/lat/lon) data field""" def __init__(self,array3d=[],lon=[],lat=[],plevs=[],time=[],minv=-9e9): """Data3d(array[time,plevs,lat,lon], lon, lat, plevs, time,minv): 3D data field object time is optional. Values less than minv are masked.""" # if called w/ no parameters if np.size(array3d) == 0: self.data=[];self.lon=[] self.lat=[];self.time=[] self.plevs=[] return if len(np.shape(array3d)) == 2: array3d=np.reshape(array3d,(1,1,len(lat),len(lon))) if len(np.shape(array3d)) == 3: if len(time) > 0 and len(plevs) == 0: array3d=np.reshape(array3d,(len(time),1,len(lat),len(lon))) if len(time) == 0 and len(plevs) > 0: array3d=np.reshape(array3d,(1,len(plevs),len(lat),len(lon))) if len(time) == 0 and len(plevs) == 0: array3d=np.reshape(array3d,(1,1,len(lat),len(lon))) if len(np.shape(array3d)) != 4: raise TypeError("requires 3D or 4D input data") s1=np.shape(array3d) if len(plevs) > 0 and len(plevs) != s1[1]: raise TypeError("pressure mis-match") if len(lat) != s1[2]: raise TypeError("longitude mis-match") if len(lon) != s1[3]: raise TypeError("latitude mis-match") # reverse latitudes if descending if lat[0] > lat[1]: s1=np.shape(array3d) for num in range(s1[0]): for num2 in range(s1[1]): x1=np.ma.copy(array3d[num,num2,]) x1=np.flipud(x1) array3d[num,num2,]=x1 lat=np.flipud(lat) # convert -180-180 to 0-360 longitudes if min(lon) < -50: x1=len(lon)/2 lon=np.concatenate( (lon[x1:],lon[0:x1]+360) ) array3d=np.ma.concatenate( (array3d[:,:,:,x1:],array3d[:,:,:,0:x1]), axis=3 ) array3d=np.ma.array(array3d) # mask bad values np.ma.masked_where(array3d < minv,array3d,copy=False) np.ma.masked_where(np.isnan(array3d),array3d,copy=False) self.data=array3d self.lat=np.array(lat) self.lon=np.array(lon) self.plevs=np.array(plevs) self.time=np.array(time) return def copy(self): """produce a copy of the Data3d structure""" newdata=Data3d(np.ma.copy(self.data),np.copy(self.lon),np.copy(self.lat),np.copy(self.plevs),np.copy(self.time)) return newdata def append(self,newdata): """appends time slice(s) to the 3D time series""" if np.size(self.data) == 0: self.data=newdata.data self.lon=newdata.lon self.lat=newdata.lat self.plevs=newdata.plevs self.time=newdata.time return z1=np.append(self.data,newdata.data,axis=0) self.data=z1 z2=np.append(self.time,newdata.time) self.time=z2 return def zonal_average(self): """zonal average of data""" # NOT WORKING xxx return np.ma.average(self.data,axis=3) def global_averageOLD(self,latrange=(-90,90),minv=-9e9): """x1.global_average( latrange=(minlat, maxlat), minv=minv ) average over latitude range""" lat=self.lat ind=(lat >= min(latrange)) & (lat <= max(latrange)) lat=lat[ind] d1=self.data[:,:,ind,] coslat = np.cos(lat*3.14159/180.) c1=coslat.reshape(len(coslat),1) wgt=np.zeros( (len(lat),len(self.lon)) )+c1 ga=np.ma.zeros( (max(1,len(self.time)),max(1,len(self.plevs))) ) for num in range(max(1,len(self.time))): for pnum in range(max(1,len(self.plevs))): d2=d1[num,pnum,] ind2=np.ma.where(d2 <= minv) wgt1=wgt;wgt1[ind2]=0 # ga[num,pnum]=np.ma.average(self.data[num,pnum,ind,:],weights=wgt) ga[num,pnum]=np.ma.average(d2,weights=wgt1) if min(np.shape(ga)) == 1: ga=np.copy(ga.flatten()) return ga def global_average(self,latrange=(-90,90)): """x1.global_average( latrange=(minlat, maxlat) ) average over latitude range""" coslat = np.cos(self.lat*3.14159/180.) ind=(self.lat >= min(latrange)) & (self.lat <= max(latrange)) x1=np.ma.average(self.data,axis=3)*coslat.reshape(1,1,len(coslat)) return np.squeeze(np.ma.sum(x1[:,:,ind],axis=2)/np.ma.sum(coslat[ind])) def anomaly(self,timerange=(-9e9,9e9),minv=-9e9): """x1.anomaly(timerange=(mintime,maxtime)) calculate anomaly relative to a particular time span """ d1=np.ma.copy(self.data) ind=np.where((self.time >= min(timerange)) & (self.time <= max(timerange)))[0] indx=np.arange(len(self.time)) % 12 for ii in range(12): xx=np.where(ii == indx)[0] # index into data yy=np.where(ii == indx[ind])[0] # index into reference period d1[xx,]=d1[xx,]-np.ma.average(d1[ind[yy],],axis=0) ga=Data3d(d1,self.lon,self.lat,self.plevs,time=self.time) return ga def interpolate(self,newlon,newlat,newplevs=[]): """interpolate(newlon, newlat, newplevs)""" newdata=np.zeros( (max(1,len(self.time)),max(1,len(self.plevs)),len(newlat),len(newlon)) ) if len(newplevs) == 0: newplevs = self.plevs for num in range(max(1,len(self.time))): for num2 in range(max(1,len(self.plevs))): spl = scipy.interpolate.RectBivariateSpline(self.lat,self.lon, self.data[num,num2,]) #,kx=1,ky=1) n1 = spl(newlat,newlon) newdata[num,num2,]=n1 if len(newplevs) + len(self.plevs) == 0: return Data3d(newdata,newlon,newlat,self.plevs,self.time) if len(newplevs) == len(self.plevs): if max(newplevs-self.plevs) == 0: return Data3d(newdata,newlon,newlat,self.plevs,self.time) newdata2=np.zeros( (len(self.time),len(newplevs),len(newlat),len(newlon)) ) newp=map(np.log,newplevs) oldp=map(np.log,self.plevs) if np.all(np.diff(oldp) > 0): # test if plevs are increasing for num in range(len(newlon)): for num2 in range(len(newlat)): for num3 in range(len(self.time)): newdata2[num3,:,num2,num]=np.interp(newp,oldp,newdata[num3,:,num2,num]) else: for num in range(len(newlon)): # loop for decreasing plevs for num2 in range(len(newlat)): for num3 in range(len(self.time)): newdata2[num3,:,num2,num]=np.interp(newp,np.flipud(oldp),np.flipud(newdata[num3,:,num2,num])) return Data3d(newdata2,newlon,newlat,newplevs,self.time) def timeclip(self,r): """r is a 2-element list; this routine clips the data set so that the new time falls into the range r (note: r could actualy be a bigger array; in that case, it uses the min and max of r to do the limit)""" ind=np.where((np.min(r) <= self.time) & (self.time <= np.max(r)))[0] # if copy == False: # self.time=self.time[ind] # self.data=self.data[ind,] # return new3d=self.copy() new3d.time=self.time[ind] new3d.data=self.data[ind,] return new3d class TimeSeries: """basic data element that contains a 2D string of data (time, pressure) and a time variable""" def __init__(self,array3d=[],time=[],plevs=[],minv=-9e9): """TimeSeries(array[time], time, plevs, minv): time series object time is optional, filled in increasing integers if omitted. Values less than minv are masked.""" # if called w/ no parameters if np.size(array3d) == 0: self.data=[];self.time=[];self.plevs=[] return if len(np.shape(array3d)) > 2: raise TypeError("requires 1D or 2D input data") if len(time) == 0: time=np.arange(np.shape(array3d)[0]) if len(plevs) == 0: plevs=[0] if len(np.shape(array3d)) > 1: plevs=np.arange(np.shape(array3d)[1]) if np.shape(array3d)[0] != len(time): raise TypeError("time array mismatch") array3d=np.ma.array(array3d) # mask bad values array3d=np.ma.masked_where(array3d < minv,array3d) array3d=np.ma.masked_where(np.isnan(array3d),array3d) self.data=array3d self.time=np.array(time) self.plevs=np.array(plevs) return def copy(self): """produce a copy of the Data3d structure""" newdata=TimeSeries(np.ma.copy(self.data),np.ma.copy(self.time)) return newdata def append(self,newdata): """appends time slice(s) to the 3D time series""" if np.size(self.data) == 0: self.data=newdata.data self.time=newdata.time return if len(np.shape(self.data)) > 1: if np.shape(self.data)[1] != np.shape(self.data): raise TypeError("shape error") z1=np.append(self.data,newdata.data,axis=0) self.data=z1 z2=np.append(self.time,newdata.time) self.time=z2 return def anomaly(self,timerange=(-9e9,9e9),minv=-9e9): """x1.anomaly(timerange=(mintime,maxtime)) calculate anomaly relative to a particular time span """ d1=np.ma.copy(self.data) time=np.copy(self.time) ind=np.where((time >= min(timerange)) & (time <= max(timerange)))[0] indx=np.arange(len(time)) % 12 if len(np.shape(self.data)) > 1: # lp2 is the number of plevs lp2=np.shape(self.data)[1] else: lp2=1 for ii in range(12): for jj in range(lp2): xx=np.where(ii == indx)[0] # index into data yy=
np.where(ii == indx[ind])
numpy.where
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]), 'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]), 'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]), 'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]), 'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]), 'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]), 'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]), 'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]), 'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]), 'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]), 'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]), 'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]), 'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&75': np.array([0.0, 0.47562425924289314]), 'versicolor&2&76': np.array([0.0, 0.4854368956593117]), 'versicolor&2&77': np.array([0.0, -0.7348263896003956]), 'versicolor&2&78': np.array([0.0, -0.7920887571493729]), 'versicolor&2&79': np.array([0.0, -0.507614207038711]), 'versicolor&2&80': np.array([0.0, 0.4854368956593117]), 'versicolor&2&81': np.array([0.0, -0.3982542883933272]), 'versicolor&2&82': np.array([0.0, -0.08633733326458487]), 'versicolor&2&83': np.array([0.0, 0.4039238345412103]), 'versicolor&2&84': np.array([0.0, -0.38897705551367706]), 'versicolor&2&85': np.array([0.0, -0.06915310813754129]), 'versicolor&2&86': np.array([0.0, 0.41580041887839214]), 'versicolor&2&87': np.array([0.0, -0.7348263896003956]), 'versicolor&2&88': np.array([0.0, -0.7348263896003956]), 'versicolor&2&89': np.array([0.0, -0.7920887571493729]), 'versicolor&2&90': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&91': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&92': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&93': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&94': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&95': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&96': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&97': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&98': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&99': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&100': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&101': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&102': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&103': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&104': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&105': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&106': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&107': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&108': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&109': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&110': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&111': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&112': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&113': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&114': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&115': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&116': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&117': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&118': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&119': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&120': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&121': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&122': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&123': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&124': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&125': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&126': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&127': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&128': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&129': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&130': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&131': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&132': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&133': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&134': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&135': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&136': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&137': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&138': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&139': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&140': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&141': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&142': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&143': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&144': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&145': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&146': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&147': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&148': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&149': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&150': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&151': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&152': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&153': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&154': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&155': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&156': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&157': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&158': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&159': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&160': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&161': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&162': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&163': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&164': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&165': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&166': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&167': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&168': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&169': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&170': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&171': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&172': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&173': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&174': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&175': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&176': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&177': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&178': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&179': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&180': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&181': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&182': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&183': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&184': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&185': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&186': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&187': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&188': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&189': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&190': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&191': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&192': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&193': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&194': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&195': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&196': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&197': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&198': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&199': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&200': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&201': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&202': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&203': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&204': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&205': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&206': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&207': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&208': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&209': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&210': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&211': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&212': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&213': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&214': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&215': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&216': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&217': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&218': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&219': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&220': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&221': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&222': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&223': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&224': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&225': np.array([-0.5775629083348267, 0.7118687782288384]), 'versicolor&2&226': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&227': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&228': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&229': np.array([-0.25603689955471853, -0.451727980232351]), 'versicolor&2&230': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&231': np.array([-0.1269405801024398, -0.34161216844748166]), 'versicolor&2&232': np.array([-0.33176333807327857, 0.09538228407203546]), 'versicolor&2&233': np.array([-0.564696311454556, 0.6421194512020755]), 'versicolor&2&234': np.array([-0.12669523681593967, -0.32786313310034665]), 'versicolor&2&235': np.array([-0.35960845047491363, 0.1335988694092619]), 'versicolor&2&236': np.array([-0.589572650064144, 0.6697478899606418]), 'versicolor&2&237': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&238': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&239': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&240': np.array([0.05667262840030629, 0.4335746514880877]), 'versicolor&2&241': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&242': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&243': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&244': np.array([0.3463149754241171, -0.5568366400939154]), 'versicolor&2&245': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&246': np.array([0.4022739113634462, -0.4700171786183992]), 'versicolor&2&247': np.array([0.5046771347249378, -0.33609610934748635]), 'versicolor&2&248': np.array([0.1370187510624256, 0.30303755274337163]), 'versicolor&2&249': np.array([0.41683021879255133, -0.4812793747667524]), 'versicolor&2&250': np.array([0.5150371666265885, -0.33852139184639396]), 'versicolor&2&251': np.array([0.10611499646955676, 0.33589829339460586]), 'versicolor&2&252': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&253': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&254': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&255': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&256': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&257': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&258': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&259': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&260': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&261': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&262': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&263': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&264': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&265': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&266': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&267': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&268': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&269': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&270': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&271': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&275': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&276': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&277': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&278': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&279': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&280': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&281': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&285': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&286': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&290': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&291': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&292': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&293': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&294': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&295': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&296': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&300': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&301': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&305': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&306': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&307': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&308': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&309': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&310': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&311': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'virginica&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&2': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&3': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&6': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&7': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&9': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&10': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&12': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&13': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&14': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&17': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&18': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&21': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&22': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&24': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&25': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&27': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&28': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&29': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&32': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&33': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&36': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&37': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&39': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&40': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&42': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&43': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&44': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&45': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&46': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&47': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&48': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&49': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&50': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&51': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&52': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&53': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&54': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&55': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&56': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&57': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&58': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&59': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&62': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&63': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&66': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&67': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&69': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&70': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&72': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&73': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&74': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&0&75': np.array([0.0, -0.95124502153736]), 'virginica&0&76': np.array([0.0, -0.9708703761803881]), 'virginica&0&77': np.array([0.0, -0.5659706098422994]), 'virginica&0&78': np.array([0.0, -0.3962828716108186]), 'virginica&0&79': np.array([0.0, 0.2538069363248767]), 'virginica&0&80': np.array([0.0, -0.9708703761803881]), 'virginica&0&81': np.array([0.0, -0.5659706098422994]), 'virginica&0&82': np.array([0.0, -0.3962828716108186]), 'virginica&0&83': np.array([0.0, -0.8943993997517804]), 'virginica&0&84': np.array([0.0, -0.5659706098422994]), 'virginica&0&85': np.array([0.0, -0.3962828716108186]), 'virginica&0&86': np.array([0.0, -0.9166476163222441]), 'virginica&0&87': np.array([0.0, -0.3962828716108186]), 'virginica&0&88': np.array([0.0, -0.5466925844560601]), 'virginica&0&89': np.array([0.0, -0.38529908946531777]), 'virginica&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&92': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&93': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&96': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&97': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&99': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&100': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&102': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&103': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&104': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&107': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&108': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&111': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&112': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&114': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&115': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&117': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&118': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&119': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&120': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&121': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&122': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&123': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&124': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&125': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&126': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&127': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&128': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&129': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&130': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&131': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&132': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&133': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&134': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&137': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&138': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&141': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&142': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&144': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&145': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&147': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&148': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&149': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&152': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&153': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&156': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&157': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&159': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&160': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&162': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&163': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&164': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&167': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&168': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&171': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&172': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&174': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&175': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&177': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&178': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&179': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&180': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&181': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&182': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&183': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&184': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&185': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&186': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&187': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&188': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&189': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&190': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&191': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&192': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&193': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&194': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&197': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&198': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&201': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&202': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&204': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&205': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&207': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&208': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&209': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&212': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&213': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&216': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&217': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&219': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&220': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&222': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&223': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&224': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&225': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&226': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&227': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&228': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&229': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&230': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&231': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&232': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&233': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&234': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&235': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&236': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&237': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&238': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&239': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'virginica&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&242': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&243': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'virginica&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&246': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&247': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'virginica&0&249': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&250': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'virginica&0&252': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&253': np.array([-0.544626974647221, -0.24972982107967573]), 'virginica&0&254': np.array([-0.6426355680762406, -0.20016519137103667]), 'virginica&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&257': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&258': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&261': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&262': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&264': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&265': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&267': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&268': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&269': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&270': np.array([-0.04201361383207032, -0.9372571358382161]), 'virginica&0&271': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&272': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&273': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&274': np.array([-0.4167677904879879, 0.22207334821665425]), 'virginica&0&275': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&276': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&277': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&278': np.array([-0.07857689135903215, -0.8696882596532965]), 'virginica&0&279': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&280': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&281': np.array([-0.05160969201296555, -0.9000166344885441]), 'virginica&0&282': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&283': np.array([-0.0766197045034485, -0.5080325256323984]), 'virginica&0&284': np.array([-0.32767091750230254, -0.19689316772421933]), 'virginica&0&285': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&286': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&287': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&288': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&289': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&290': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&291': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&292': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&293': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&294': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&295': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&296': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&297': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&298': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&299': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&302': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&303': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&306': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&307': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&309': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&310': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&312': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&313': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&314': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&2': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&3': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&6': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&7': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&9': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&10': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&12': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&13': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&14': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&17': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&18': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&21': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&22': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&24': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&25': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&27': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&28': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&29': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&32': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&33': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&36': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&37': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&39': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&40': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&42': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&43': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&44': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&45': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&46': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&47': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&48': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&49': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&50': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&51': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&52': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&53': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&54': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&55': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&56': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&57': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&58': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&59': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'virginica&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&62': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&63': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'virginica&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&66': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&67': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'virginica&1&69': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&70': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'virginica&1&72': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&73': np.array([0.28313251310829024, -0.10978015869508362]), 'virginica&1&74': np.array([0.20013484983664692, -0.3483612449300506]), 'virginica&1&75': np.array([0.0, 0.4756207622944677]), 'virginica&1&76': np.array([0.0, 0.4854334805210761]), 'virginica&1&77': np.array([0.0, -0.16885577975809632]), 'virginica&1&78': np.array([0.0, -0.39580588553855395]), 'virginica&1&79': np.array([0.0, 0.2538072707138344]), 'virginica&1&80': np.array([0.0, 0.4854334805210761]), 'virginica&1&81': np.array([0.0, -0.16885577975809632]), 'virginica&1&82': np.array([0.0, -0.39580588553855395]), 'virginica&1&83': np.array([0.0, 0.4904755652105692]), 'virginica&1&84': np.array([0.0, -0.16885577975809632]), 'virginica&1&85': np.array([0.0, -0.39580588553855395]), 'virginica&1&86': np.array([0.0, 0.5008471974438506]), 'virginica&1&87': np.array([0.0, -0.39580588553855395]), 'virginica&1&88': np.array([0.0, -0.14423919730424817]), 'virginica&1&89': np.array([0.0, -0.3847817540585927]), 'virginica&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&92': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&93': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&96': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&97': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&99': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&100': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&102': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&103': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&104': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&107': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&108': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&111': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&112': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&114': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&115': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&117': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&118': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&119': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&120': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&121': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&122': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&123': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&124': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&125': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&126': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&127': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&128': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&129': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&130': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&131': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&132': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&133': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&134': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'virginica&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&137': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&138': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'virginica&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&141': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&142': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'virginica&1&144': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&145': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'virginica&1&147': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&148': np.array([0.7419884013108898, -0.4595742931114029]), 'virginica&1&149': np.array([0.6092194175719845, -0.5086479426935605]), 'virginica&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&152': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&153': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&156': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&157': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&159': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&160': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&162': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&163': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&164': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&167': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&168': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&171': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&172': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&174': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&175': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&177': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&178': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&179': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&180': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&181': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&182': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&183': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&184': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&185': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&186': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&187': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&188': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&189': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&190': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&191': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&192': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&193': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&194': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'virginica&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&197': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&198': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'virginica&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&201': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&202': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'virginica&1&204': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&205': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'virginica&1&207': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&208': np.array([0.7419884013108898, -0.4595742931114029]), 'virginica&1&209': np.array([0.6092194175719845, -0.5086479426935605]), 'virginica&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&212': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&213': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&216': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&217': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&219': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&220': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&222': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&223': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&224': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&225': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&226': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&227': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&228': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&229': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&230': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&231': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&232': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&233': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&234': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&235': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&236': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&237': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&238': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&239': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'virginica&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'virginica&1&242': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&243': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'virginica&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'virginica&1&246': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&247': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'virginica&1&249': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&250': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'virginica&1&252': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&253': np.array([0.581569928198426, -0.46134543884925855]), 'virginica&1&254': np.array([0.42361197252581306, -0.5068181610814407]), 'virginica&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&257': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&258': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&261': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&262': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&264': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&265': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&267': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&268': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&269': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&270': np.array([-0.6288817118959938, 0.6849987400957501]), 'virginica&1&271': np.array([-0.6491819158994796, 0.7060292771859485]), 'virginica&1&272': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&273': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&274': np.array([-0.3507937472799825, 0.22709708691079003]), 'virginica&1&275': np.array([-0.6491819158994796, 0.7060292771859485]), 'virginica&1&276': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&277': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&278': np.array([-0.6219129029345898, 0.6860569455333333]), 'virginica&1&279': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&280': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&281': np.array([-0.6423063482710314, 0.7078274136226649]), 'virginica&1&282': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&283': np.array([-0.38798262782075055, 0.05152547330256509]), 'virginica&1&284': np.array([-0.23804537254556749, -0.24790919248823104]), 'virginica&1&285': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&286': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&287': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&288': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&289': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&290': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&291': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&292': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&293': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&294': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&295': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&296': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&297': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&298': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&299': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'virginica&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&302': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&303': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'virginica&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&306': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&307': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'virginica&1&309': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&310': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'virginica&1&312': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&313': np.array([0.28313251310829024, -0.10978015869508362]), 'virginica&1&314': np.array([0.20013484983664692, -0.3483612449300506]), 'virginica&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&2': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&3': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&6': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&7': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&9': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&10': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&12':
np.array([0.2953784217387408, 0.6750352694420284])
numpy.array
#! /usr/bin/python3 -u # Copyright © 2017 <NAME> <<EMAIL>> # This work is free. You can redistribute it and/or modify it under the # terms of the Do What The Fuck You Want To Public License, Version 2, # as published by Sam Hocevar. See the COPYING file for more details. """ ... Usage: slam.py [-v|-vv] [-f|] <PICKEL_FILE> slam.py [-v|-vv] [-f|] <PICKEL_FILE> -p <FIGURE_DIR> Arguments: <PICKEL_FILE> Pickle file containing processed data. <FIGURE_DIR> Directory for saved figures. Options: -p <FIGURE_DIR> Directory where to save figures. -f Force overwrite. -v Verbose mode. -vv Very Verbose mode. -h, --help """ from docopt import docopt import matplotlib.pyplot as plt import numpy as np import pandas as pd import math import copy import os import shutil import warnings import pickle # RanSaC parameters D_RANSAC = 20 # Degree range S_RANSAC = 8 # Nb of samples X_RANSAC = 0.4 # Distance to wall in m N_RANSAC = 40 # Max trials C_RANSAC = 0.6 # Consensus = C *len(data) C_RANSAC_MIN = 50 # 50 # Minimum consensus # Landmark validation parameters D_VALIDATION = 4 # Distance max between 2 observations of a landmarks in m N_VALIDATION = 2 # Nb of observation of a landmark need before data adjustment # EKF parameters TIME_WINDOW = 3 # Time window size in s TIME_STEP = 3 # Sliding window step in s ODOMETRY_NOISE = 5 # noise on the odometry process RANGE_LIDAR_NOISE = 0.1 # distances noise on the LiDAR BEARING_LIDAR_NOISE = 1 * math.pi/180 # angle noise on the LiDAR # Figure parameters PLOT_RED = 'tomato' PLOT_BLUE = 'cornflowerblue' PLOT_GREEN = 'forestgreen' PLOT_ORANGE = 'darkorange' PLOT_YELLOW = 'gold' PLOT_LIGHT_GREY = 'gainsboro' PLOT_COLORS = [PLOT_RED, PLOT_ORANGE, PLOT_YELLOW, 'navy'] * 10 PLOT_AXIS = [-12, 12, -12, 12] PLOT_DRONE_HISTORY = 10 # seconds IS_VERBOSE_MODE = docopt(__doc__)['-v'] >= 1 IS_HARD_VERBOSE_MODE = docopt(__doc__)['-v'] >= 2 IS_PLOTTING_MODE = docopt(__doc__)['-p'] is not None FILE = docopt(__doc__)['<PICKEL_FILE>'] IS_OVERWRITE_MODE = docopt(__doc__)['-f'] >= 1 if IS_PLOTTING_MODE: FIGURE_DIR = docopt(__doc__)['-p'] # Ignore the warnings related to polyfit warnings.filterwarnings('ignore') def main(): # If in plotting mode, assure that the directory to save figure exist if IS_PLOTTING_MODE: if os.path.isdir(FIGURE_DIR): if not IS_OVERWRITE_MODE: i = input("Figure directory already exist. Erase ?[y/n] ") if IS_OVERWRITE_MODE or i == "y": shutil.rmtree(FIGURE_DIR) else: print("Exit") exit() os.mkdir(FIGURE_DIR) os.mkdir(os.path.join(FIGURE_DIR, "pdf")) os.mkdir(os.path.join(FIGURE_DIR, "png")) os.mkdir(os.path.join(FIGURE_DIR, "data")) data = pd.read_pickle(FILE) correctedData, X = SLAM(data) if IS_PLOTTING_MODE: s = FIGURE_DIR + "/data/{}" dataFile = open(s.format("origData.pickle"), "wb") correctedDataFile = open(s.format("correctedData.pickle"), "wb") pickle.dump(data, dataFile) pickle.dump(correctedData, correctedDataFile) def SLAM(origData): """ Apply a SLAM algorithm on LiDAR data. It recognize walls as landmarks using the RANSAC algorithm. Then landmarks are associated with a nearest-neighbor approach. The SLAM problem is solved by an EKF procedure. origData is a DataFrame object from the pandas module corresponding to post-precessed data acquired by the drone. """ correctedData = pd.DataFrame(columns=origData.columns) timeIdx = 0 offset = np.array([0.0, 0.0, 0.0]) # Initialization of SLAM relevant matrix X, P, R, Jxr, Jz = initSlamMatrix() while timeIdx < origData.iloc[-1].time - TIME_WINDOW: # Reducing the data to the current time window curData = origData.copy() curData = curData[(curData.time > timeIdx) & (curData.time < timeIdx + TIME_WINDOW)] timeIdx += TIME_STEP # Correction curData = dataCorrection(curData, offset) # Saving data for figures if IS_PLOTTING_MODE: previousCurData = curData.copy() # Saving for plot previousX = copy.deepcopy(X) # Consensus law if C_RANSAC*len(curData) >= C_RANSAC_MIN: Consensus = len(curData) * C_RANSAC else: Consensus = C_RANSAC_MIN # Detecting landmarks using the RanSaC algorithm localLandmarks, trial = RanSaC(curData.copy(), D_RANSAC, S_RANSAC, X_RANSAC, Consensus, N_RANSAC) # Distinguishing which landmarks are observed for the first time localLandmarks = [makeLandmark(m) for m in localLandmarks] newLandmarkds, reobservedLandmark = \ lmAssociation(X, localLandmarks) # Updating drone position using EKF methodology # STEP 1: update state using odometry data if len(curData) > 0: P, X, Jxr, Jz = updateFromOdometry(curData, X, P, Jxr, Jz) # STEP 2: update state using re-observed landmarks if len(reobservedLandmark) > 0: X, P, offset = updateFromReobservedLandmarks(reobservedLandmark, P, X, R) curData = dataCorrection(curData, offset) # STEP 3: add new landmarks to the state if len(newLandmarkds) > 0: P, X = addNewLandmarks(newLandmarkds, X, P, Jxr, Jz, R) for i in curData.index: correctedData.loc[i] = curData.loc[i] if IS_VERBOSE_MODE: s = "\nTime window {:2.1f}s-{:2.1f}s: {} Data." section = s.format(timeIdx, timeIdx+TIME_WINDOW, len(curData)) if len(newLandmarkds) + len(reobservedLandmark) > 0: print(section) for m in newLandmarkds: s = "\tNew wall index {:d}." print(s.format(m['index'])) for m in reobservedLandmark: s = "\tWall {:d} re-observed {:d} times." print(s.format(m['index'], X.lmOccurrence[m['index']])) if len(reobservedLandmark) > 0: s = "\tSLAM offset:\n" s += "\t\tx: {:.3f} m\n" s += "\t\ty: {:.3f} m\n" s += "\t\tyaw: {:.3f} rad\n" print(s.format(*offset)) elif IS_HARD_VERBOSE_MODE and trial == 0: print(section, "\nNot enough data.") elif IS_HARD_VERBOSE_MODE and trial == N_RANSAC: print(section, "\nNo consensus.") if IS_PLOTTING_MODE: if len(curData) > 0: plotStep1(correctedData, previousCurData, previousX, timeIdx, localLandmarks) # Re-observation if len(reobservedLandmark) > 0: plotStep2(correctedData, curData, previousCurData, X, previousX, timeIdx) # New landmarks #if len(newLandmarkds) > 0: if len(curData) > 0: plotStep3(correctedData, previousCurData, curData, X, timeIdx) if IS_VERBOSE_MODE: print("-"*40, "\nSummary:\nFound {} walls".format(X.lmLength)) for m in range(X.lmLength): s = "\tWall {:d} observed {:d} times" print(s.format(m, X.lmOccurrence[m])) print("Distances:") for m in range(X.lmLength): for i in range(m+1, X.lmLength): s = "\tFrom wall {:d} to {:d}: {:5.2f} m." print(s.format(m, i, distPointToPoint(X.getLm(m), X.getLm(i)))) if IS_PLOTTING_MODE: plt.clf() plt.scatter(origData.lidarX, origData.lidarY, color=PLOT_LIGHT_GREY, marker='.', s=3, label='Raw data') plt.scatter(correctedData.lidarX, correctedData.lidarY, marker='.', color=PLOT_BLUE, label='Corrected data', s=3) for idx in range(X.lmLength): plotLandmark(X, idx) if X.lmLength == 2: plotDistance(X.getLm(0), X.getLm(1)) elif X.lmLength == 4: plotDistance(X.getLm(0), X.getLm(2), textRatio=0.15) plotDistance(X.getLm(1), X.getLm(3), textRatio=0.8) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.legend() plt.axis(PLOT_AXIS) plt.savefig("{}/png/Final.png".format(FIGURE_DIR), bbox_inches='tight') plt.savefig("{}/pdf/Final.pdf".format(FIGURE_DIR), bbox_inches='tight') return correctedData, X def plotDroneMarker(row, color='black'): angleOffset = row.yaw * 180/math.pi - 45 plt.scatter(row.droneX, row.droneY, color=color, facecolor=color, s=100, marker=(3, 0, angleOffset), zorder=3) def plotStep1(correctedData, previousCurData, previousX, time, localLandmarks): plt.clf() # Drone trajectory correctedData = \ correctedData[time - correctedData.time < PLOT_DRONE_HISTORY] correctedData = correctedData.loc[:previousCurData.iloc[0].name][:-1] correctedData = pd.concat([correctedData, previousCurData]) plt.plot(correctedData.droneX, correctedData.droneY, color=PLOT_LIGHT_GREY, zorder=1) plt.plot(previousCurData.droneX, previousCurData.droneY, color='gray', zorder=2) plotDroneMarker(previousCurData.iloc[-1]) # Corrected points plt.scatter(previousCurData.lidarX, previousCurData.lidarY, color=PLOT_BLUE, s=1) # Landmarks for idx in range(previousX.lmLength): plotLandmark(previousX, idx) # Ransac landmarks for m in localLandmarks: plotLandmark(*m['param'], mkr='--', color='darkmagenta') # Figure properties plt.xlabel('x [m]') plt.ylabel('y [m]') plt.axis(PLOT_AXIS) s = "{}/png/{}-01.png" plt.savefig(s.format(FIGURE_DIR, time), bbox_inches='tight') s = "{}/pdf/{}-01.pdf" plt.savefig(s.format(FIGURE_DIR, time), bbox_inches='tight') def plotStep2(correctedData, curData, previousCurData, X, previousX, time): plt.clf() # Drone trajectory history = \ correctedData[time - correctedData.time < PLOT_DRONE_HISTORY] plt.plot(history.droneX, history.droneY, color=PLOT_LIGHT_GREY, zorder=1) plt.plot(previousCurData.droneX, previousCurData.droneY, color=PLOT_RED, zorder=2) plotDroneMarker(previousCurData.iloc[-1], color=PLOT_RED) plt.plot(curData.droneX, curData.droneY, color=PLOT_GREEN, zorder=2) plotDroneMarker(curData.iloc[-1], color=PLOT_GREEN) # Before and after point correction plt.scatter(previousCurData.lidarX, previousCurData.lidarY, color=PLOT_RED, s=2) plt.scatter(curData.lidarX, curData.lidarY, color=PLOT_GREEN, s=2) # Landmarks # Old for idx in range(previousX.lmLength): plotLandmark(previousX, idx, color=PLOT_RED) # Updated for idx in range(X.lmLength): plotLandmark(X, idx, color=PLOT_GREEN) # Figure properties plt.xlabel('x [m]') plt.ylabel('y [m]') plt.axis(PLOT_AXIS) s = "{}/png/{}-02.png" plt.savefig(s.format(FIGURE_DIR, time), bbox_inches='tight') s = "{}/pdf/{}-02.pdf" plt.savefig(s.format(FIGURE_DIR, time), bbox_inches='tight') def plotStep3(correctedData, previousCurData, curData, X, time): plt.clf() # Drone trajectory correctedData = \ correctedData[time - correctedData.time < PLOT_DRONE_HISTORY] correctedData = correctedData.loc[:previousCurData.iloc[0].name][:-1] correctedData = pd.concat([correctedData, previousCurData]) plt.plot(correctedData.droneX, correctedData.droneY, color=PLOT_LIGHT_GREY, zorder=1) plt.plot(previousCurData.droneX, previousCurData.droneY, color='gray', zorder=2) plotDroneMarker(previousCurData.iloc[-1]) # Corrected points plt.scatter(curData.lidarX, curData.lidarY, color=PLOT_BLUE, s=1) # Landmarks for idx in range(X.lmLength): plotLandmark(X, idx) # Figure properties plt.xlabel('x [m]') plt.ylabel('y [m]') plt.axis(PLOT_AXIS) s = "{}/png/{}-03.png" plt.savefig(s.format(FIGURE_DIR, time), bbox_inches='tight') s = "{}/pdf/{}-03.pdf" plt.savefig(s.format(FIGURE_DIR, time), bbox_inches='tight') def plotLandmark(p1, p2, color=False, mkr='-', label=''): """ param = [p1, p2] or [X, idx]. """ if type(p1).__name__ == StateMatrix.__name__: label = "Wall {:d}: {:d} times".format(p2, p1.lmOccurrence[p2]) if not color: color = PLOT_COLORS[p2] coordLm = p1.getLm(p2) p1, p2 = lmPointToParam(*coordLm) else: if not color: color = 'purple' coordLm = lmParamToPoint(p1, p2) l1, l2 = getLineCircleIntersection([p1, p2], coordLm, 2) plt.plot(l1, l2, mkr, color=color, label=label) plt.scatter(l1, l2, color=color, marker='x', s=50) plt.scatter(*coordLm, color=color, marker='o', s=100) def plotDistance(p1, p2, textRatio=0.5): d = distPointToPoint(p1, p2) text = "{:.2f} m".format(d) textPos = [(p1[0] - p2[0])*textRatio, (p1[1] - p2[1])*textRatio] textPos = [p1[0] - (p1[0] - p2[0])*textRatio - (p1[1] - p2[1])*0.08, p1[1] - (p1[1] - p2[1])*textRatio + (p1[0] - p2[0])*0.08] plt.annotate('', xy=p1, xytext=p2, arrowprops={'arrowstyle': '<->'}) plt.annotate(text, xy=p1, xytext=textPos) def getLineCircleIntersection(line, center, R): """ Return the intersection of a line and circle. line is a vector (a, c) such as the line equation is y = ax + c. center is the coordinate of the center of the circle. R is the radius of the circle. """ a, c = line xl, yl = center A = a**2 + 1 B = 2*a*(c - yl) - 2*xl C = xl**2 + (c - yl)**2 - R**2 Delta = B**2 - 4*A*C x1 = (-B + math.sqrt(Delta)) / (2*A) x2 = (-B - math.sqrt(Delta)) / (2*A) y1 = a*x1 + c y2 = a*x2 + c return [x1, x2], [y1, y2] def dataCorrection(data, offset): """ Add a position offset to relevant column of data. data is a DataFrame object from the pandas module. offset is list of offset such as [x_offset, y_offset, yaw_offset]. """ data['droneX'] = data['droneX'].map(lambda x: x-offset[0]) data['droneY'] = data['droneY'].map(lambda x: x-offset[1]) data['yaw'] = data['yaw'].map(lambda x: x-offset[2]) data['lidarX'] = data['lidarX'].map(lambda x: x-offset[0]) data['lidarY'] = data['lidarY'].map(lambda x: x-offset[1]) return data def initSlamMatrix(): """ Return intial value of all SLAM relevant matrices. Return: X as a StateMatrix object. P as a CovarianceMatrix object. Jxr as the prediction model jacobian with respect to position. Jz as the prediction model jacobian with respect to landmarks observations. """ # State Matrix X = StateMatrix() # Covariance matrix P = CovarianceMatrix() # Modified prediction model jacobian Jxr = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) # Modified prediction model jacobian Jz = np.zeros([2, 2]) # LiDAR Noise V = np.identity(2) R = V @ np.identity(2) * [RANGE_LIDAR_NOISE, BEARING_LIDAR_NOISE] @ V.T return X, P, R, Jxr, Jz def updateFromOdometry(data, X, P, Jxr, Jz): """ 1st step: update state from odometry data. Return the modified X, P and prediction model jacobian matrices. data is a DataFrame object from the pandas module. X is a StateMatrix object. P is a CovarianceMatrix object. Jxr is the prediction model jacobian with respect to position. Jz is the prediction model jacobian with respect to landmarks observations. """ dx = data.iloc[0].droneX - data.iloc[-1].droneX dy = data.iloc[0].droneY - data.iloc[-1].droneY dt = data.iloc[0].yaw - data.iloc[-1].yaw # State matrix X.X[0] += dx X.X[1] += dy X.X[2] += dt # Prediction model jacobian A = np.identity(3) A[0, 2] = -dy A[1, 2] = dx # Process noise matrix W = np.identity(3) * [dx, dy, dt] Q = np.ones([3, 3]) * ODOMETRY_NOISE**2 # Covariance on the robot position P.Prr = A @ P.Prr @ A.T + W @ Q @ W.T # Cross-correlations covariance for i in range(int((len(P.P)-3)/2)): Pri = P.getE(i) E = A @ Pri D = E.T P.setD(i, D) P.setE(i, E) # Modified prediction model jacobian with respect to position Jxr[0, 2] = -dy Jxr[1, 2] = dx # Modified prediction model jacobian with respect to landmarks observations Jz[0, 0] = math.cos(X.X[2] + dt) Jz[1, 0] = math.sin(X.X[2] + dt) Jz[0, 1] = -math.sin(X.X[2] + dt) * dt Jz[1, 1] = math.cos(X.X[2] + dt) * dt return P, X, Jxr, Jz def updateFromReobservedLandmarks(reobservedLandmark, P, X, R): """ 2nd step: update state from re-observed landmarks. Return the modified X matrix and the offset to apply on measurments. reobservedLandmark is a list of re-observe landmarks define by the landmark association process. X is a StateMatrix object. P is a CovarianceMatrix object. R is the LiDAR noise. """ for landmark in reobservedLandmark: # Landmark index idx = 3+landmark['index']*2 # Compute the Jacobian of the measurement model r = distPointToLine(X.X[:2], landmark['point']) H11 = (X.X[0] - landmark['point'][0]) / r H12 = (X.X[1] - landmark['point'][1]) / r H21 = (landmark['point'][1] - X.X[1]) / (r**2) H22 = (landmark['point'][0] - X.X[0]) / (r**2) H = np.zeros([2, len(X.X)]) H[:2, :3] = [[H11, H12, 0], [H21, H22, -1]] H[:, idx:idx+2] = [[-H11, -H12], [-H21, -H22]] # Compute innovation covariance d = distPointToPoint(X.X[0:2], landmark['point']) V = np.identity(2) R = np.identity(2) * [RANGE_LIDAR_NOISE*d, BEARING_LIDAR_NOISE] S = H @ P.P @ H.T + V @ R @ V.T # Compute Kalman gain K = P.P @ H.T @ np.linalg.inv(S) # Compute range and bearing of the observed landmark and its previous z = np.array(getRelativePos(X.X[:3], X.getLm(landmark['index']))) h = np.array(getRelativePos(X.X[:3], landmark['point'])) # Update X state corr = K @ (z-h) X.X += corr # TODO make sure we don't need this # This instruction is not in 'SLAM for dummies' but according to EKF # algorithm it should be. Anyway it doesn't work. # I = np.identity(3) # P.Prr = (I - K[:3, :3] @ H[:3, :3]) @ P.Prr # TODO the offset is overwritten by last landmark offset = corr[:3] return X, P, offset def addNewLandmarks(newLandmarkds, X, P, Jxr, Jz, R): """ 3rd step: Adding new landmarks to state and covariance matrices. Return the modified X and P matrices. newLandmarks is a list of new landmarks define by the landmark association process. X is a StateMatrix object. P is a CovarianceMatrix object. Jxr is the prediction model jacobian with respect to position. Jz is the prediction model jacobian with respect to landmarks observations. R is the LiDAR noise. """ for m in newLandmarkds: # State matrix X.addLandmark(m['point']) P.addLandmark() # Landmark covariance C = Jxr @ P.Prr @ Jxr.T d = distPointToPoint(X.X[0:2], m['point']) R = np.identity(2) * [RANGE_LIDAR_NOISE*d, BEARING_LIDAR_NOISE] C += Jz @ R @ Jz.T P.setC(m['index'], C) # Robot-Landmark covariance E = P.Prr @ Jxr.T D = E.T P.setD(m['index'], D) P.setE(m['index'], E) # Landmark-Landmark covariance for i in range(m['index']): Pri = P.getD(i) F = Jxr @ Pri.T G = F.T P.setF(m['index'], i, F) P.setG(m['index'], i, G) return P, X def getRelativePos(dr, lm): """ Return polar coordinate of a landmark relative to the drone. dr is a the pose of the drone such as dr = [x, y, yaw]. lm is the cartesian coordinate of the landmark. """ r = np.linalg.norm([lm[0]-dr[0], lm[1]-dr[1]]) theta = math.atan2((lm[1]-dr[1]), (lm[0]-dr[0]))-dr[2] return [r, theta] class StateMatrix(object): """ Represent a matrix containing the drone pose and landmarks position. Getter and setter functions are set up for easier access. """ def __init__(self): self.X = np.array([0.0, 0.0, 0.0]) self.lmOccurrence = [] def addLandmark(self, point): """ Add new landmark.""" self.X = np.concatenate((self.X, point), axis=0) self.lmOccurrence += [1] def getLm(self, i): """" Getter: landmark point (2x1). """ index = 3+i*2 return self.X[index:index+2] def setLm(self, i, value): """" Setter: landmark point (2x1). """ index = 3+i*2 self.X[index:index+2] = value @property def lmLength(self): """ Number of landmarks. """ return len(self.lmOccurrence) class CovarianceMatrix(object): """ Represent a matrix containing all relevant covariance matrix: - Covariance on the robot position - Landmark covariance - Robot - landmark covariance - Landmark - robot covariance - Landmark - landmark covariance Getter and setter functions are set up for easier access. """ def __init__(self): self.P = np.identity(3) @property def Prr(self): """ Covariance on the robot position. """ return self.P[:3, :3] @Prr.setter def Prr(self, value): """Setter: Covariance on the robot position. """ self.P[:3, :3] = value def addLandmark(self): """ Add rows and columns for new landmarks.""" z = np.zeros((2, len(self.P)+2), dtype=self.P.dtype) # add two rows self.P =
np.concatenate((self.P, z[:, :-2]), axis=0)
numpy.concatenate
# # The MIT License (MIT) # # This file is part of pairwiseMKL # # Copyright (c) 2018 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np import math from scipy import stats from pairwisemkl.learner.kron_decomp import kron_decomp_centralization_operator def response_kernel_features(Y): """ Task: to compute feature vector for each label value Input: Y Matrix with the original labels Output: Psi_y Matrix storing features as row vectors References: [1] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics, 34, pages i509–i518. 2018. """ # Labels in the vector form y = Y.ravel(order = 'C') # Generate probability density function of the labels min_y = min(y) max_y = max(y) n_interv = 50 step = float(max_y-min_y)/n_interv x_interv = np.arange(math.floor((min_y)*10)/10-(n_interv+1)*step, math.ceil((max_y)*10)/10+(n_interv+1)*step, step) # Intervals: [x_interv[0],x_interv[1]), [x_interv[1],x_interv[2]), ... x = [(a+b)/2 for a,b in zip(x_interv[::1], x_interv[1::1])] kde = stats.gaussian_kde(y) x_kde = kde(x) # plt.plot(x,x_kde) # plt.xlim([min(x),max(x)]) # plt.show() # Matrix storing features as row vectors (one feature vector per label) Psi_y = np.empty([len(y), n_interv*2]); Psi_y[:] = np.NAN for i in range(len(y)): id_i = np.where(x >= y[i])[0][0] Psi_y[i,] = x_kde[id_i-n_interv:id_i+n_interv] Psi_y[i,] = Psi_y[i,]/np.linalg.norm(Psi_y[i,]) # Ky = Sum_q(Psi_y[:,q] Psi_y[:,q]^T) return Psi_y def compute_a_regression(Ka_list, Kb_list, Y): """ Task: to compute vector 'a' needed for optimizing pairwise kernel weights (equation 16 of the paper describing pairwiseMKL method) Input: Ka_list List of drug (view A in general) kernel matrices Kb_list List of cell line (view B in general) kernel matrices Y Matrix with the original labels Output: a Vector storing Frobenius inner products between each centered input pairwise kernel and the response kernel """ # To compute the factors of the pairwise kernel centering operator Q = kron_decomp_centralization_operator(Ka_list[0].shape[0], Kb_list[0].shape[0]) # Total number of pairwise kernels p = len(Ka_list)*len(Kb_list) ids_kernels = np.arange(p) Ka_ids, Kb_ids = np.unravel_index(ids_kernels, (len(Ka_list),len(Kb_list)), order = 'C') # Replace missing values in the label matrix with row means if np.isnan(Y).any() == True: nan_ids = np.where(np.isnan(Y)) row_mean = np.nanmean(Y, axis=1) Y[nan_ids] = np.take(row_mean,nan_ids[0]) # If all the values in a row are missing, use global mean if np.isnan(Y).any() == True: nan_ids_remaining = np.where(np.isnan(Y)) global_mean = np.nanmean(Y.ravel(order = 'C')) Y[nan_ids_remaining] = global_mean # Compute feature vectors for each label value Psi_y = response_kernel_features(Y) a = np.zeros([1,p]) n_y = Psi_y.shape[0] # Response kernel Ky # K = np.zeros([n_y,n_y]) # q = 0 # while q < Psi_y.shape[1]: # v_q = Psi_y[:,q].reshape(n_y,1) # K = K + np.dot(v_q , v_q.T) # q = q + 1 # Calculate elements of the vector 'a' for i_pairwise_k in range(p): i = Ka_ids[i_pairwise_k] j = Kb_ids[i_pairwise_k] Ka_1 = np.dot(
np.dot(Q[0][0],Ka_list[i])
numpy.dot
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from rich.progress import track import time import os PI = np.pi class TestFunctions2D: def __init__(self, function_name, x_min, x_max, y_min, y_max, global_minimum): self.name = function_name self.search_domain = {'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max} self.search_range = {'x_range': x_max - x_min, 'y_range': y_max - y_min} self.global_minimum = global_minimum def __call__(self, *args): return 0 @staticmethod def derivative(*args): return 0 @staticmethod def Hessian_Matrix(*args): return 0 def save(self, trajectory): folder_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) figure_save_path = os.path.join('./data/exp/', 'frame_' + folder_name) os.mkdir(figure_save_path) x = np.arange(self.search_domain['x_min'], self.search_domain['x_max'], self.search_range['x_range'] / 1000.) y = np.arange(self.search_domain['y_min'], self.search_domain['y_max'], self.search_range['y_range'] / 1000.) X, Y = np.meshgrid(x, y) Z = self.__call__([X, Y]) plt.figure(figsize=(10, 10)) CS = plt.contour(X, Y, Z, 40, alpha=0.7, cmap=mpl.cm.jet) for global_min_i in self.global_minimum: plt.scatter(global_min_i[0], global_min_i[1], c='r', marker='o') plt.clabel(CS, inline=True, fontsize=10) # plt.show() for i in track(range(len(trajectory)), description="Generating Frame and saving in " + figure_save_path): if trajectory is not None: point_i = trajectory[i] if i > 0: plt.plot([point_i[0], point_i[0]], [point_i[1], point_i[1]], c='r', alpha=0.8, linestyle='-.') plt.scatter(point_i[0], point_i[1], s=100, c='b', alpha=0.8, marker='x') plt.xticks(()) plt.yticks(()) plt.savefig(os.path.join(figure_save_path, str(i) + '.jpg')) class AckleyFunction(TestFunctions2D): def __init__(self): super().__init__('Ackley Function', -5, 5, -5, 5, [[0, 0]]) def __call__(self, x_k): x, y = x_k return -20 * np.exp(-0.2 * np.sqrt(0.5 * (x ** 2 + y ** 2))) - np.exp( 0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) + np.e + 20 @staticmethod def derivative(x_k): x, y = x_k part_1 = (2 * np.sqrt(2) * np.exp(-(np.sqrt(2 * (x ** 2 + y ** 2))) / 10)) / (np.sqrt(x ** 2 + y ** 2)) part_2 = PI * np.exp(np.cos(2 * PI * x) / 2 + np.cos(2 * PI * y) / 2) partial_x = part_1 * x + part_2 * np.sin(2 * PI * x) partial_y = part_1 * y + part_2 * np.sin(2 * PI * y) return np.array([partial_x, partial_y]) @staticmethod def Hessian_Matrix(x_k): pass class SphereFunction(TestFunctions2D): def __init__(self): super().__init__('Sphere Function', -2, 2, -2, 2, [[0, 0]]) def __call__(self, x_k): x, y = x_k return x ** 2 + y ** 2 @staticmethod def derivative(x_k): x, y = x_k partial_x = 2 * x partial_y = 2 * y return np.array([partial_x, partial_y]) @staticmethod def Hessian_Matrix(x_k): x, y = x_k partial_xx = 2 partial_xy = 0 partial_yx = 0 partial_yy = 2 return np.array([[partial_xx, partial_xy], [partial_yx, partial_yy]]) class RosenbrockFunction(TestFunctions2D): def __init__(self): super().__init__('Sphere Function', -2, 2, -1, 3, [[1, 1]]) def __call__(self, x_k): x, y = x_k return 100 * (y - x ** 2) ** 2 + (1 - x) ** 2 @staticmethod def derivative(x_k): x, y = x_k partial_x = -400 * x * y + 400 * x ** 3 + 2 * x - 2 partial_y = -200 * x ** 2 + 200 * y return np.array([partial_x, partial_y]) @staticmethod def Hessian_Matrix(x_k): x, y = x_k partial_xx = -400 * y + 1200 * x ** 2 + 2 partial_xy = -400 * x partial_yx = -400 * x partial_yy = 200 return np.array([[partial_xx, partial_xy], [partial_yx, partial_yy]]) class BealeFunction(TestFunctions2D): def __init__(self): super().__init__('Beale Function', -4.5, 4.5, -4.5, 4.5, [[3, 0.5]]) def __call__(self, x_k): x, y = x_k return (1.5 - x + x * y) ** 2 + (2.25 - x + x * y ** 2) ** 2 + (2.625 - x + x * y ** 3) ** 2 @staticmethod def derivative(x_k): x, y = x_k partial_x = 0.25 * (y - 1) * ( 8 * x * y ** 5 + 8 * x * y ** 4 + 16 * x * y ** 3 - 8 * x * y - 24 * x + 21 * y ** 2 + 39 * y + 51) partial_y = 0.25 * x * ( 24 * x * y ** 5 + 16 * x * y ** 3 - 24 * x * y ** 2 - 8 * x * y - 8 * x + 63 * y ** 2 + 36 * y + 12) return np.array([partial_x, partial_y]) @staticmethod def Hessian_Matrix(x_k): x, y = x_k partial_xx = 0.25 * (y - 1) * (8 * y ** 5 + 8 * y ** 4 + 16 * y ** 3 - 8 * y - 24) partial_xy = 12 * x * y ** 5 + 8 * x * y ** 2 - 12 * x * y ** 2 - 4 * x + 63 * y ** 2 / 4 + 9 * y + 3 partial_yx = 12 * x * y ** 5 + 8 * x * y ** 3 - 12 * x * y ** 2 - 4 * x + 63 * y ** 2 / 4 + 9 * y + 3 partial_yy = x * (60 * x * y ** 4 + 24 * x * y ** 2 - 24 * x * y - 4 * x + 63 * y + 18) / 2. return np.array([[partial_xx, partial_xy], [partial_yx, partial_yy]]) class GoldsteinPriceFunction(TestFunctions2D): def __init__(self): super().__init__('Goldstein Price Function', -2, 2, -2, 2, [[0, -1]]) def __call__(self, x_k): x, y = x_k return (1 + (x + y + 1) ** 2 * (19 - 14 * x + 3 * x ** 2 - 14 * y + 6 * x * y + 3 * y ** 2)) * ( 30 + (2 * x - 3 * y) ** 2 * (18 - 32 * x + 12 * x ** 2 + 48 * y - 36 * x * y + 27 * y ** 2)) def derivative(self, x_k): x, y = x_k partial_x = 1152 * x ** 7 - 2016 * x ** 6 * y - 5376 * x ** 6 - 3888 * x ** 5 * y ** 2 + 8064 * x ** 5 * y + 5712 * x ** 5 + 6120 * x ** 4 * y ** 3 + \ 12960 * x ** 4 * y ** 2 - 840 * x ** 4 * y + 6720 * x ** 4 + 5220 * x ** 3 * y ** 4 - 16320 * x ** 3 * y ** 3 - 21480 * x ** 3 * y ** 2 - \ 30720 * x ** 3 * y - 9816 * x ** 3 - 5508 * x ** 2 * y ** 5 - 10440 * x ** 2 * y ** 4 + 3720 * x ** 2 * y ** 3 + 29520 * x ** 2 * y ** 2 + \ 17352 * x ** 2 * y - 3216 * x ** 2 - 2916 * x * y ** 6 + 7344 * x * y ** 5 + 17460 * x * y ** 4 + 10080 * x * y ** 3 + 15552 * x * y ** 2 + \ 14688 * x * y + 2520 * x + 972 * y ** 7 + 1944 * y ** 6 - 1188 * y ** 5 - 11880 * y ** 4 - 23616 * y ** 3 - 19296 * y ** 2 - 4680 * y + 720 partial_y = - 288 * x ** 7 - 1296 * x ** 6 * y + 1344 * x ** 6 + 3672 * x ** 5 * y ** 2 + 5184 * x ** 5 * y - 168 * x ** 5 + 5220 * x ** 4 * y ** 3 - \ 12240 * x ** 4 * y ** 2 - 10740 * x ** 4 * y - 7680 * x ** 4 - 9180 * x ** 3 * y ** 4 - 13920 * x ** 3 * y ** 3 + 3720 * x ** 3 * y ** 2 + 19680 * x ** 3 * y + \ 5784 * x ** 3 - 8748 * x ** 2 * y ** 5 + 18360 * x ** 2 * y ** 4 + 34920 * x ** 2 * y ** 3 + 15120 * x ** 2 * y ** 2 + 15552 * x ** 2 * y + 7344 * x ** 2 + \ 6804 * x * y ** 6 + 11664 * x * y ** 5 - 5940 * x * y ** 4 - 47520 * x * y ** 3 - 70848 * x * y ** 2 - 38592 * x * y - 4680 * x + 5832 * y ** 7 - \ 45368 * y ** 6 - 26568 * y ** 5 + 9720 * y ** 4 + 57384 * y ** 3 + 36864 * y ** 2 + 6120 * y + 720 return np.array([partial_x, partial_y]) @staticmethod def Hessian_Matrix(x_k): x, y = x_k partial_xx = 8064 * x ** 6 - 12096 * x ** 5 * y - 32256 * x ** 5 - 19440 * x ** 4 * y ** 2 + 40320 * x ** 4 * y + 28560 * x ** 4 + 24480 * x ** 3 * y ** 3 + \ 51840 * x ** 3 * y ** 2 - 3360 * x ** 3 * y + 26880 * x ** 3 + 15660 * x ** 2 * y ** 4 - 48960 * x ** 2 * y ** 3 - 64440 * x ** 2 * y ** 2 - \ 92160 * x ** 2 * y - 29448 * x ** 2 - 11016 * x * y ** 5 - 20880 * x * y ** 4 + 7440 * x * y ** 3 + 59040 * x * y ** 2 + 34704 * x * y - \ 6432 * x - 2916 * y ** 6 + 7344 * y ** 5 + 17460 * y ** 4 + 10080 * y ** 3 + 15552 * y ** 2 + 14688 * y + 2520 partial_xy = - 2016 * x ** 6 - 7776 * x ** 5 * y + 8064 * x ** 5 + 18360 * x ** 4 * y ** 2 + 25920 * x ** 4 * y - \ 840 * x ** 4 + 20880 * x ** 3 * y ** 3 - 48960 * x ** 3 * y ** 2 - 42960 * x ** 3 * y - \ 30720 * x ** 3 - 27540 * x ** 2 * y ** 4 - 41760 * x ** 2 * y ** 3 + 11160 * x ** 2 * y ** 2 + \ 59040 * x ** 2 * y + 17352 * x ** 2 - 17496 * x * y ** 5 + 36720 * x * y ** 4 + 69840 * x * y ** 3 + \ 30240 * x * y ** 2 + 31104 * x * y + 14688 * x + 6804 * y ** 6 + 11664 * y ** 5 - 5940 * y ** 4 - \ 47520 * y ** 3 - 70848 * y ** 2 - 38592 * y - 4680 partial_yx = - 2016 * x ** 6 - 7776 * x ** 5 * y + 8064 * x ** 5 + 18360 * x ** 4 * y ** 2 + 25920 * x ** 4 * y - \ 840 * x ** 4 + 20880 * x ** 3 * y ** 3 - 48960 * x ** 3 * y ** 2 - 42960 * x ** 3 * y - 30720 * x ** 3 - \ 27540 * x ** 2 * y ** 4 - 41760 * x ** 2 * y ** 3 + 11160 * x ** 2 * y ** 2 + 59040 * x ** 2 * y + \ 17352 * x ** 2 - 17496 * x * y ** 5 + 36720 * x * y ** 4 + 69840 * x * y ** 3 + 30240 * x * y ** 2 + \ 31104 * x * y + 14688 * x + 6804 * y ** 6 + 11664 * y ** 5 - 5940 * y ** 4 - 47520 * y ** 3 - 70848 * y ** 2 - 38592 * y - 4680 partial_yy = - 1296 * x ** 6 + 7344 * x ** 5 * y + 5184 * x ** 5 + 15660 * x ** 4 * y ** 2 - 24480 * x ** 4 * y - \ 10740 * x ** 4 - 36720 * x ** 3 * y ** 3 - 41760 * x ** 3 * y ** 2 + 7440 * x ** 3 * y + 19680 * x ** 3 - \ 43740 * x ** 2 * y ** 4 + 73440 * x ** 2 * y ** 3 + 104760 * x ** 2 * y ** 2 + 30240 * x ** 2 * y + \ 15552 * x ** 2 + 40824 * x * y ** 5 + 58320 * x * y ** 4 - 23760 * x * y ** 3 - 142560 * x * y ** 2 - \ 141696 * x * y - 38592 * x + 40824 * y ** 6 - 272208 * y ** 5 - 132840 * y ** 4 + 38880 * y ** 3 + 172152 * y ** 2 + 73728 * y + 6120 return np.array([[partial_xx, partial_xy], [partial_yx, partial_yy]]) class BoothFunction(TestFunctions2D): def __init__(self): super().__init__('Booth Function', -10, 10, -10, 10, [[1, 3]]) def __call__(self, x_k): x, y = x_k return (x + 2 * y - 7) ** 2 + (2 * x + y - 5) ** 2 def derivative(self, x_k): x, y = x_k partial_x = 10 * x + 8 * y - 34 partial_y = 8 * x + 10 * y - 38 return np.array([partial_x, partial_y]) @staticmethod def Hessian_Matrix(x_k): x, y = x_k partial_xx = 10 partial_xy = 8 partial_yx = 8 partial_yy = 10 return np.array([[partial_xx, partial_xy], [partial_yx, partial_yy]]) class MatyasFunction(TestFunctions2D): def __init__(self): super(MatyasFunction, self).__init__('Matyas Function', -10, 10, -10, 10, [[0, 0]]) def __call__(self, x_k): x, y = x_k return 0.26 * (x ** 2 + y ** 2) - 0.48 * x * y def derivative(self, x_k): x, y = x_k partial_x = (13 * x - 12 * y) / 25 partial_y = -12 * x / 25 + 13 * y / 25 return
np.array([partial_x, partial_y])
numpy.array
import gmplot from location import Satellite, River, BGate from matplotlib.cm import ScalarMappable import matplotlib.pyplot as plt import numpy as np SW_LAT, SW_LON = 52.464011, 13.274099 NE_LAT, NE_LON = 52.586925, 13.521837 class Mapper(object): def __init__(self, objs, n=256): self.objects = objs self.latitudes, self.longitudes = self.generate_mesh_grid(n) def generate_mesh_grid(self, n): """ Returns X and Y 1-D arrays of latitudes and longitudes gridding Berlin's map. """ x = np.linspace(SW_LAT, NE_LAT, n) y = np.linspace(SW_LON, NE_LON, n) X, Y = np.meshgrid(x, y) return X.flatten(), Y.flatten() def pull_heatmap_idx(self, distribution, size=10000): """ Sample points on map from a distribution to generate heatmap. """ return np.random.choice(np.arange(distribution.size), size=size, p=distribution) def get_distribution(self, objs): """ Get the distribution on the map from different objects. Distributions get combined through bayesian update: Starting from a uniform distribution, the new distributions from independent sources come as new likelihoods multiplying our prior to obtain the posterior. Normalization is done once, as a final step. """ distribution = np.ones(self.latitudes.shape) distribution /= np.sum(distribution) for obj in objs: probs = obj.get_pdf(self.latitudes, self.longitudes) distribution *= probs distribution /= np.sum(distribution) return distribution def find_maximum(self, distribution): """ Returns the coordinates of the maximum of a given distribution. """ max_idx =
np.argmax(distribution)
numpy.argmax
# -*- coding: utf-8 -*- """ Created on Sun Oct 27 19:09:30 2019 @author: <NAME> (Git:JueMol) """ import math as math import numpy as np import matplotlib.pyplot as plt class Trajectory(): ''' Convenient class to help with remembering trajectories ''' def __init__(self): self.posx = [] self.posy = [] self.velx = [] self.vely = [] self.accx = [] self.accy = [] self.angl = [] self.t = 0. self.episode = None def remember_step(self, pos, vel, acc, ang, t): self.posx.append(pos[0]) self.posy.append(pos[1]) self.velx.append(vel[0]) self.vely.append(vel[1]) self.accx.append(acc[0]) self.accy.append(acc[1]) self.angl.append(ang) self.t = t def gettrajectory(self): return self.posx,\ self.posy,\ self.velx,\ self.vely,\ self.accx,\ self.accy,\ self.angl,\ self.t X = 0 # ... used to make the code below more readable Y = 1 class SpaceShuttlePhysics(): ''' Simulates the physics of a space shuttle that has a constant thrust in a 100x100 world Initial position is (x=10, y=0) Initial heading of the shuttle is vertical Initial velocity is zero The goal is, to reach the right world boundary within in the y range between 60 and 100 There exist an obstacle as rectangle of height 60 positioned at x=60 to 70 ''' def __init__(self, runtime=100.): self.init_pose = np.array([10.0, 1.0]) # X=10, Y=1 self.init_velo = np.array([0.0, 0.0]) # stand still self.init_angle = 90.0 # start with vertical orientation self.pos = self.init_pose self.vel = self.init_velo self.ang = self.init_angle self.dt_ref = 0.2 self.dt = 1. self.thrust_max = 0.2 self.runtime = runtime self.demo = False self.obst_height = 55. # ... made the height of the obstacle variable # create action space tmp = [] tmp.append(np.array([-1, self.thrust_max])) tmp.append(np.array([ 0, self.thrust_max])) tmp.append(np.array([ 1, self.thrust_max])) self.real_action_space = np.array(tmp) # Worlds boundaries (used for drawing) self.x_bound = [100, 0., 0., 60., 60., 70., 70., 100., 100.] self.y_bound = [100., 100, 0., 0., self.obst_height, self.obst_height, 0., 0., 60.] self.bestpath = Trajectory() self.bestpath.t = np.inf self.bestpath_dist = np.inf self.dt_steps = [0.4, 0.5, 0.6, 0.8, 1.0] self.reset() ################################ # Algorithmic helper functions # ################################ def get_trust_vector(self, ang): return np.array([math.cos(ang*math.pi/180.0), math.sin(ang*math.pi/180.0)]) # ... think in 360 dregee angles def get_real_action(self, action): return(self.real_action_space[action]) def norm_vector(self, vec): return vec/self.len(vec) def len(self, vec1): return np.sqrt(np.sum(np.square(vec1))) def distance(self, vec1, vec2): return self.len(vec2-vec1) def scalar_product(self, vec1, vec2): return np.dot(vec1, vec2) def state_size(self): return 5 def action_size(self): return len(self.real_action_space) def get_angle(self, vec): tmp_ang = math.atan2(vec[Y], vec[X]) * 180.0 / math.pi if tmp_ang < 0.0: tmp_ang += 360.0 return tmp_ang def get_segment_fraction_in_area(self, pos_old, pos): segment_frac_in_area = 1.0 segment_frac_Y = 1.0 segment_frac_X = 1.0 if pos_old[Y] < 100. and pos[Y] >= 100.: segment_frac_Y = (100.-pos_old[Y])/(pos[Y]-pos_old[Y])+0.01 if pos_old[X] < 100. and pos[X] >= 100.: segment_frac_X = (100.-pos_old[X])/(pos[X]-pos_old[X])+0.01 segment_frac_in_area = min(segment_frac_Y, segment_frac_X) if pos_old[X] < 60. and pos[X] >= 60. and pos[Y] <= self.obst_height: segment_frac_in_area = (60.-pos_old[X])/(pos[X]-pos_old[X])+0.01 return segment_frac_in_area ##################################################### # Event funtions with respect to the world boundary # ##################################################### def obstacle(self, pos): ''' Checks if the obstacle is hit (thereby the size of shuttle is not taken to account) ''' return pos[X] >= 60. and pos[X] <= 70.0 and pos[Y] <= self.obst_height def crashes(self, pos): ''' Checks for collisions. (thereby the size of shuttle is not taken to account) ''' if pos[X] < 0.0: # leaves world to the left return True elif pos[Y] > 100.0 or pos[Y] < 0.0: # leaves world to top or bottom return True elif pos[X] > 100.0 and pos[Y] < 60.0: # Hits right wall return True def reached_goal(self, pos) : ''' Checks whether the goal ('docking bay') is reached. (thereby the size of shuttle is not taken to account) ''' return pos[X] > 100.0 and pos[Y] > 60.0 and pos[Y] < 100.0 # leaves world to the right, but through docking bay entry def naive_policy_action(self): ''' Get Action from naive linear policy. (It works mainly such, that the steering tends to point toward the (tempory) goal) ''' top_of_goal = np.array([100.0, 100.0]) - self.pos # ... top of goal (docking bay) target_vector = np.array([100.0, 60.0]) - self.pos # ... bottom of goal (docking bay) # Dont steer too early - just if just about to see the docking bay otherwise steer to corner of obstacle if (self.pos[1] + (top_of_goal[Y]-self.pos[1])/top_of_goal[X] * (60.-self.pos[X])) < 60. and self.pos[Y] < 30.: target_vector = np.array([60., self.obst_height+5.]) - self.pos self_ang = int(self.ang) heading_ang = int(self.get_angle(target_vector)) diff_ang = heading_ang-self_ang if diff_ang > 180.: diff_ang -= 360. return int(np.sign(diff_ang)) + 1 # steer always in the direction of the targets #################################### # Functions used for Deep Learning # #################################### def reset(self, eps=None): ''' Resets the shuttles physics. The shuttle is (again) placed in the lower left corner, heading up wit zero velocity ''' self.time = 0.0 self.pos = np.copy(self.init_pose) self.vel =
np.copy(self.init_velo)
numpy.copy
from math import ceil from sklearn.pipeline import Pipeline from matplotlib.pyplot import plot from sklearn.preprocessing import MinMaxScaler, FunctionTransformer import numpy as np import pandas as pd from IPython.core.display import display import matplotlib.pyplot as plt from tensorflow.keras.utils import to_categorical from .highlight import TimeseriesHighlightTransformer def load_ucr_dataset(name, path='data/UCR_TS_Archive_2015/', is_fft=False, combine=False, highlight_augmentation=False, reshape=True, feature_range=(-1, 1)): train = pd.read_csv('%s/%s/%s_TRAIN' % (path, name, name), header=None, sep=',') test = pd.read_csv('%s/%s/%s_TEST' % (path, name, name), header=None, sep=',') if combine: train = test = pd.concat([train, test]) if is_fft: X_train = np.fft.fft(train.loc[:, 1:].values) X_test = np.fft.fft(test.loc[:, 1:].values) else: X_train = train.loc[:, 1:].values X_test = test.loc[:, 1:].values y_train = train.loc[:, 0].values y_test = test.loc[:, 0].values display(X_train.shape) scaler = MinMaxScaler(feature_range=feature_range) # scaler = RobustScaler() plt.title('Before scaling') plot(X_train[0]) plt.show() X_train, X_test, _ = np.split( scaler.fit_transform(np.concatenate((X_train, X_test), axis=0).transpose()).transpose(), [X_train.shape[0], X_train.shape[0] + X_test.shape[0]] ) plt.title('After scaling') plot(X_train[0]) plt.show() display(X_train.shape) display(X_test.shape) if highlight_augmentation: pipeline = Pipeline([ ('timeseries_segmentation', TimeseriesHighlightTransformer()), ('transpose', FunctionTransformer(np.transpose)), ('scaler', MinMaxScaler(feature_range=(-1, 1))), ('transpose_back', FunctionTransformer(np.transpose)), ]) X_train, X_test, _ = np.split( pipeline.fit_transform(np.concatenate((X_train, X_test), axis=0)), [X_train.shape[0], X_train.shape[0] + X_test.shape[0]] ) plt.title('After highlight_augmentation') plot(X_train[0]) plt.show() display(X_train.shape) display(X_test.shape) if reshape: train_measurment_count, train_series_len = X_train.shape test_measurment_count, test_series_len = X_test.shape # TODO: test new shape # X_train = np.apply_along_axis(lambda x: [x], 1, X_train) # X_test = np.apply_along_axis(lambda x: [x], 1, X_test) X_train = np.reshape(X_train, X_train.shape + (1,)) X_test = np.reshape(X_test, X_test.shape + (1,)) display(y_train) y_train = np.reshape(np.apply_along_axis(lambda x: np.repeat(x, train_series_len), 0, np.reshape(y_train, (1, y_train.shape[0]))).transpose(), (train_measurment_count, 1, train_series_len)) display(y_test) y_test = np.reshape(np.apply_along_axis(lambda x: np.repeat(x, test_series_len), 0, np.reshape(y_test, (1, y_test.shape[0]))).transpose(), (test_measurment_count, 1, test_series_len)) # for series_num in range(0, X_train.shape[0]): # plt.plot(train.loc[series_num].values[1:]) # plt.show() f, plots = plt.subplots(len(np.unique(y_train)), 1) for series_num in range(0, X_train.shape[0]): color_num = y_train[series_num][0][0] % 10 plots[color_num].plot(np.transpose(X_train[series_num])[0], color='C%s' % (color_num), alpha=.5) plt.show() f, plots = plt.subplots(len(np.unique(y_test)), 1) for series_num in range(0, X_test.shape[0]): color_num = y_test[series_num][0][0] % 10 plots[color_num].plot(np.transpose(X_test[series_num])[0], color='C%s' % (color_num), alpha=.5) plt.show() return X_train, X_test, y_train, y_test # Taken from https://github.com/musyoku/adversarial-autoencoder/blob/6a2334fb010845f2d4e98cdb11920d73f3bb245a/aae/dataset/semi_supervised.py#L42 class Dataset(): def __init__(self, train, test, num_classes, num_labeled_data=5, num_extra_classes=0, use_test_as_unlabeled=False, batch_size=None): self.images_train, self.original_labels_train = train self.images_test, self.original_labels_test = test self.original_labels_train_map = np.unique(self.original_labels_train) self.original_labels_test_map = np.unique(self.original_labels_test) if self.original_labels_train_map.shape[0] != self.original_labels_test_map.shape[0]: raise AssertionError('train and test datasets contains different amount of classes') if self.original_labels_train_map.shape[0] != num_classes: raise AssertionError('train dataset amount of classes (%s) is not equal to num_classes (%s)' % (self.original_labels_train_map.shape[0], num_classes,)) self.labels_train_map = np.arange(self.original_labels_train_map.shape[0]) self.labels_test_map = np.arange(self.original_labels_test_map.shape[0]) self.labels_train = self.normalize_labels(self.original_labels_train, self.original_labels_train_map, self.labels_train_map) self.labels_test = self.normalize_labels(self.original_labels_test, self.original_labels_test_map, self.labels_test_map) self.num_classes = num_classes self.num_extra_classes = num_extra_classes indices_count = len(self.images_train) indices =
np.arange(0, indices_count)
numpy.arange
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(
np.isnan(result)
numpy.isnan
"""Plotting methods for model evaluation. This module can be used to evaluate any kind of weather model (machine learning, NWP, heuristics, human forecasting, etc.). This module is completely agnostic of where the forecasts come from. --- REFERENCES --- <NAME>., and <NAME>, 1986: "The attributes diagram: A geometrical framework for assessing the quality of probability forecasts". International Journal of Forecasting, 2 (3), 285-293. """ import numpy from descartes import PolygonPatch from matplotlib import pyplot import matplotlib.colors from gewittergefahr.gg_utils import model_evaluation as model_eval from gewittergefahr.gg_utils import polygons from gewittergefahr.gg_utils import number_rounding as rounder from gewittergefahr.gg_utils import error_checking from gewittergefahr.plotting import plotting_utils # TODO(thunderhoser): Variable and method names are way too verbose. ROC_CURVE_COLOUR = numpy.array([228, 26, 28], dtype=float) / 255 ROC_CURVE_WIDTH = 3. RANDOM_ROC_COLOUR = numpy.full(3, 152. / 255) RANDOM_ROC_WIDTH = 2. PERF_DIAGRAM_COLOUR = numpy.array([228, 26, 28], dtype=float) / 255 PERF_DIAGRAM_WIDTH = 3. FREQ_BIAS_COLOUR = numpy.full(3, 152. / 255) FREQ_BIAS_WIDTH = 2. FREQ_BIAS_STRING_FORMAT = '%.2f' FREQ_BIAS_PADDING = 10 FREQ_BIAS_LEVELS = numpy.array([0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5]) CSI_LEVELS =
numpy.linspace(0, 1, num=11, dtype=float)
numpy.linspace
import argparse from glob import glob import os import sys import joblib import numpy as np from skimage.io import imread from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.svm import SVC from tqdm import tqdm from utils import ImageTransformer models = [ GridSearchCV(SVC(), { 'kernel': ('linear', 'rbf', 'sigmoid'), 'C': [0.1, 1, 10] }), GridSearchCV(KNeighborsClassifier(), { 'n_neighbors': [3,5,7,9], 'weights': ('uniform', 'distance') }), GridSearchCV(RandomForestClassifier(), { 'n_estimators': [50, 100, 200, 300, 500], }), ] def read_dataset(data_path): categories = ['good', 'flare'] X = [] Y = [] for i, category in enumerate(categories): for img in glob(data_path+'/training/'+category+'/*'): raw_image = imread(img) X.append(raw_image) Y.append(i) return
np.array(X)
numpy.array
#!CRYOLO_INSTALL_PATH/bin/python ''' This script is designed to wrap cryolo and janni into a Relion Scheduler processing list. Original Version written by <NAME> (6/17/2021). ''' import os,sys,argparse,itertools,datetime import subprocess import numpy as np from cryolo_wrapper_library import * #Some libraries for crYOLO and relion disagree, so have the cryolo ones prepended only when running from the wrapper. cryolo_path = "CRYOLO_INSTALL_PATH" old_PATH = os.environ["PATH"] os.environ["PATH"] = os.path.join(cryolo_path,"bin") + os.pathsep + old_PATH old_LD_LIB = os.environ["LD_LIBRARY_PATH"] os.environ["LD_LIBRARY_PATH"] = os.path.join(cryolo_path,"lib") + os.pathsep + old_LD_LIB parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--train",action='store_true',help="Do cryolo_train (prepare the picking model), not cryolo_predict (full set particle picking).") parser.add_argument("--manual",action='store_true',help="Manually pick particles (typically for training model)") parser.add_argument("--predict",action='store_true',help="Pick particles from micrographs using model from \"--model\"") parser.add_argument("--p_model",default="/pl/active/BioKEM/cryolo_gen_models/gmodel_phosnet_202005_nn_N63_c17.h5",help="Model to use for particle picking") parser.add_argument("--denoise",action='store_true',help="Denoise micrographs from \"--in_mics\", rather than pick or train on them") parser.add_argument("--nmic",default=15,type=int,help="Number of micrographs to denoise (and use for manual picking pre-training)") parser.add_argument("--extension",default=".mrc",help="Extension by which to recognize micrographs for denoising and picking") parser.add_argument("--n_model",default="/pl/active/BioKEM/cryolo_gen_models/gmodel_janni_20190703.h5",help="Model for micrograph denoising.") parser.add_argument("--config_setup",action='store_true',help="Set up the config_cryolo.json file instead of running any denoising/picking.") parser.add_argument("--threshold",default=0.1,type=float,help="Threshold for picking algorithm (higher = more selective/fewer particles).") parser.add_argument("--train_path",help="Path to micrographs for neural net training (i.e., path to manually picked micrographs") parser.add_argument("--distance",help="crYOLO-enforced distance constraint to omit boxes. (i.e., particles must be spaces \"--distance\" apart to be considered).") #Define default paths for picking and noise models since an input of "" doesn't trip the "default", but just a blank string #These calls won't be run by relion (i.e., the default paths won't change unless you hard-code them here) parser.add_argument("--n_model_default",default="/pl/active/BioKEM/cryolo_gen_models/gmodel_janni_20190703.h5",help="Path to default model to use if none is explicitly defined") parser.add_argument("--p_model_default",default="/pl/active/BioKEM/cryolo_gen_models/gmodel_phosnet_202005_nn_N63_c17.h5",help="Path to default model to use if none is explicitly defined") #The following arguments are specific to different "relion external program" calls parser.add_argument("--in_mics",help="Input paths for micrographs star, fed to program by relion") parser.add_argument("--in_parts",help="Input paths for particles star, fed to program by relion") parser.add_argument("--o",help="Output folder (relion pipeline formatted)") parser.add_argument("--j",help="Number of CPU threads given to task") parser.add_argument("--pipeline_control",help="Haven't defined this yet...") #Load inputs args = parser.parse_args() #Check and see if different .h5 models were defined if args.n_model == "": args.n_model = args.n_model_default if args.p_model == "": args.p_model = args.p_model_default #set up log file logfile = open(os.path.join(args.o,"cryolo_wrapper_logfile.log"),'w') modelist =
np.array([args.denoise,args.config_setup,args.train,args.predict,args.manual],dtype=bool)
numpy.array
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data =
np.array([])
numpy.array
import tensorflow as tf from losses.face_losses import arcface_loss import tensorlayer as tl import os from os.path import join import numpy as np import cv2 import matplotlib.pyplot as plt # %matplotlib inline import datetime import os from os.path import join as pjoin import sys import copy from sklearn.model_selection import KFold from sklearn.decomposition import PCA import sklearn import facenet import data.eval_data_reader as eval_data_reader import verification import lfw import time from sklearn import metrics PROJECT_PATH = os.path.dirname(os.path.abspath(__file__)) log_path = os.path.join(PROJECT_PATH, 'output') models_path = os.path.join(PROJECT_PATH, 'models') from importlib.machinery import SourceFileLoader # facenet = SourceFileLoader('facenet', os.path.join(PROJECT_PATH, 'facenet.py')).load_module() mx2tfrecords = SourceFileLoader('mx2tfrecords', os.path.join(PROJECT_PATH, 'data/mx2tfrecords.py')).load_module() L_Resnet_E_IR_fix_issue9 = SourceFileLoader('L_Resnet_E_IR_fix_issue9', os.path.join(PROJECT_PATH, 'nets/L_Resnet_E_IR_fix_issue9.py')).load_module() face_losses = SourceFileLoader('face_losses', os.path.join(PROJECT_PATH, 'losses/face_losses.py')).load_module() # eval_data_reader = SourceFileLoader('eval_data_reader', os.path.join(PROJECT_PATH, 'data/eval_data_reader.py')).load_module() # verification = SourceFileLoader('verification', os.path.join(PROJECT_PATH, 'verification.py')).load_module() class Args: net_depth = 50 epoch = 1000 lr_steps = [40000, 60000, 80000] momentum = 0.9 weight_decay = 5e-4 num_output = 85164 # train_dataset_dir = train_dataset_path train_dataset_dir = None summary_path = join(log_path, 'summary') ckpt_path = join(log_path, 'ckpt') log_file_path = join(log_path, 'logs') saver_maxkeep = 10 buffer_size = 10000 log_device_mapping = False summary_interval = 100 ckpt_interval = 100 validate_interval = 100 show_info_interval = 100 seed = 313 nrof_preprocess_threads = 4 ckpt_file = r'F:\Documents\JetBrains\PyCharm\OFR\InsightFace_TF\output\ckpt\model_d\InsightFace_iter_best_' ckpt_index_list = ['710000.ckpt'] # insightface_dataset_dir = eval_dir_path insightface_pair = os.path.join(PROJECT_PATH, 'data/First_100_ALL VIS_112_1.txt') insightface_dataset_dir = r"E:\Projects & Courses\CpAE\NIR-VIS-2.0 Dataset -cbsr.ia.ac.cn\First_100_ALL VIS_112" insightface_image_size = 112 batch_size = 32 facenet_image_size = 160 facenet_dataset_dir = r"E:\Projects & Courses\CpAE\NIR-VIS-2.0 Dataset -cbsr.ia.ac.cn\First_100_ALL VIS_160" facenet_batch_size = batch_size facenet_model = os.path.join(PROJECT_PATH, 'models/facenet/20180402-114759') facenet_pairs = insightface_pair validation_set_split_ratio = 0.0 def data_iter(datasets, batch_size): data_num = datasets.shape[0] for i in range(0, data_num, batch_size): yield datasets[i:min(i + batch_size, data_num), ...] def get_facenet_embeddings(args): # Read the directory containing images dataset = facenet.get_dataset(args.facenet_dataset_dir) nrof_classes = len(dataset) # Evaluate custom dataset with facenet pre-trained model print("Getting embeddings with facenet pre-trained model") with tf.Graph().as_default(): # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(dataset) assert len(image_list) > 0, 'The dataset should not be empty' print('Number of classes in dataset: %d' % nrof_classes) print('Number of examples in dataset: %d' % len(image_list)) # Getting batched images by TF dataset tf_dataset = facenet.tf_gen_dataset(image_list=image_list, label_list=None, nrof_preprocess_threads=args.nrof_preprocess_threads, image_size=args.facenet_image_size, method='cache_slices', BATCH_SIZE=args.batch_size, repeat_count=1, to_float32=True, shuffle=False) tf_dataset_iterator = tf_dataset.make_initializable_iterator() tf_dataset_next_element = tf_dataset_iterator.get_next() # Getting flip to left_right batched images by TF dataset # tf_dataset_flip = facenet.tf_gen_dataset(image_list, label_list, args.nrof_preprocess_threads, args.facenet_image_size, # method='cache_slices', # BATCH_SIZE=args.batch_size, repeat_count=1, flip_left_right=True, shuffle=False) # # tf_dataset_iterator_flip = tf_dataset_flip.make_initializable_iterator() # tf_dataset_next_element_flip = tf_dataset_iterator_flip.get_next() with tf.Session() as sess: sess.run(tf_dataset_iterator.initializer) phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_batch = tf.placeholder(name='img_inputs', shape=[None, args.facenet_image_size, args.facenet_image_size, 3], dtype=tf.float32) label_batch = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int32) # Load the model input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder} facenet.load_model(args.facenet_model, input_map=input_map) # Get output tensor embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") batch_size = args.batch_size input_placeholder = image_batch print('getting embeddings..') total_time = 0 batch_number = 0 embeddings_array = None embeddings_array_flip = None while True: try: images = sess.run(tf_dataset_next_element) data_tmp = images.copy() # fix issues #4 for i in range(data_tmp.shape[0]): data_tmp[i, ...] -= 127.5 data_tmp[i, ...] *= 0.0078125 data_tmp[i, ...] = cv2.cvtColor(data_tmp[i, ...], cv2.COLOR_RGB2BGR) # Getting flip to left_right batched images by TF dataset data_tmp_flip = images.copy() # fix issues #4 for i in range(data_tmp_flip.shape[0]): data_tmp_flip[i, ...] = np.fliplr(data_tmp_flip[i, ...]) data_tmp_flip[i, ...] -= 127.5 data_tmp_flip[i, ...] *= 0.0078125 data_tmp_flip[i, ...] = cv2.cvtColor(data_tmp_flip[i, ...], cv2.COLOR_RGB2BGR) start_time = time.time() mr_feed_dict = {input_placeholder: data_tmp, phase_train_placeholder: False} mr_feed_dict_flip = {input_placeholder: data_tmp_flip, phase_train_placeholder: False} _embeddings = sess.run(embeddings, mr_feed_dict) _embeddings_flip = sess.run(embeddings, mr_feed_dict_flip) if embeddings_array is None: embeddings_array = np.zeros((len(image_list), _embeddings.shape[1])) embeddings_array_flip = np.zeros((len(image_list), _embeddings_flip.shape[1])) try: embeddings_array[batch_number * batch_size:min((batch_number + 1) * batch_size, len(image_list)), ...] = _embeddings embeddings_array_flip[batch_number * batch_size:min((batch_number + 1) * batch_size, len(image_list)), ...] = _embeddings_flip # print('try: ', batch_number * batch_size, min((batch_number + 1) * batch_size, len(image_list)), ...) except ValueError: print('batch_number*batch_size value is %d min((batch_number+1)*batch_size, len(image_list)) %d,' ' batch_size %d, data.shape[0] %d' % (batch_number * batch_size, min((batch_number + 1) * batch_size, len(image_list)), batch_size, images.shape[0])) print('except: ', batch_number * batch_size, min((batch_number + 1) * batch_size, images.shape[0]), ...) duration = time.time() - start_time batch_number += 1 total_time += duration except tf.errors.OutOfRangeError: print('tf.errors.OutOfRangeError, Reinitialize tf_dataset_iterator') sess.run(tf_dataset_iterator.initializer) # sess.run(tf_dataset_iterator_flip.initializer) break print(f"total_time: {total_time}") _xnorm = 0.0 _xnorm_cnt = 0 for embed in [embeddings_array, embeddings_array_flip]: for i in range(embed.shape[0]): _em = embed[i] _norm = np.linalg.norm(_em) # print(_em.shape, _norm) _xnorm += _norm _xnorm_cnt += 1 _xnorm /= _xnorm_cnt final_embeddings_output = embeddings_array + embeddings_array_flip final_embeddings_output = sklearn.preprocessing.normalize(final_embeddings_output) print(final_embeddings_output.shape) return embeddings_array, embeddings_array_flip, final_embeddings_output, _xnorm def custom_facenet_evaluation(args): tf.reset_default_graph() # Read the directory containing images pairs = read_pairs(args.insightface_pair) image_list, issame_list = get_paths_with_pairs(args.facenet_dataset_dir, pairs) # Evaluate custom dataset with facenet pre-trained model print("Getting embeddings with facenet pre-trained model") with tf.Graph().as_default(): # Getting batched images by TF dataset # image_list = path_list tf_dataset = facenet.tf_gen_dataset(image_list=image_list, label_list=None, nrof_preprocess_threads=args.nrof_preprocess_threads, image_size=args.facenet_image_size, method='cache_slices', BATCH_SIZE=args.batch_size, repeat_count=1, to_float32=True, shuffle=False) tf_dataset_iterator = tf_dataset.make_initializable_iterator() tf_dataset_next_element = tf_dataset_iterator.get_next() with tf.Session() as sess: sess.run(tf_dataset_iterator.initializer) phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_batch = tf.placeholder(name='img_inputs', shape=[None, args.facenet_image_size, args.facenet_image_size, 3], dtype=tf.float32) label_batch = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int32) # Load the model input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder} facenet.load_model(args.facenet_model, input_map=input_map) # Get output tensor embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") batch_size = args.batch_size input_placeholder = image_batch print('getting embeddings..') total_time = 0 batch_number = 0 embeddings_array = None embeddings_array_flip = None while True: try: images = sess.run(tf_dataset_next_element) data_tmp = images.copy() # fix issues #4 for i in range(data_tmp.shape[0]): data_tmp[i, ...] -= 127.5 data_tmp[i, ...] *= 0.0078125 data_tmp[i, ...] = cv2.cvtColor(data_tmp[i, ...], cv2.COLOR_RGB2BGR) # Getting flip to left_right batched images by TF dataset data_tmp_flip = images.copy() # fix issues #4 for i in range(data_tmp_flip.shape[0]): data_tmp_flip[i, ...] = np.fliplr(data_tmp_flip[i, ...]) data_tmp_flip[i, ...] -= 127.5 data_tmp_flip[i, ...] *= 0.0078125 data_tmp_flip[i, ...] = cv2.cvtColor(data_tmp_flip[i, ...], cv2.COLOR_RGB2BGR) start_time = time.time() mr_feed_dict = {input_placeholder: data_tmp, phase_train_placeholder: False} mr_feed_dict_flip = {input_placeholder: data_tmp_flip, phase_train_placeholder: False} _embeddings = sess.run(embeddings, mr_feed_dict) _embeddings_flip = sess.run(embeddings, mr_feed_dict_flip) if embeddings_array is None: embeddings_array = np.zeros((len(image_list), _embeddings.shape[1])) embeddings_array_flip = np.zeros((len(image_list), _embeddings_flip.shape[1])) try: embeddings_array[batch_number * batch_size:min((batch_number + 1) * batch_size, len(image_list)), ...] = _embeddings embeddings_array_flip[batch_number * batch_size:min((batch_number + 1) * batch_size, len(image_list)), ...] = _embeddings_flip # print('try: ', batch_number * batch_size, min((batch_number + 1) * batch_size, len(image_list)), ...) except ValueError: print('batch_number*batch_size value is %d min((batch_number+1)*batch_size, len(image_list)) %d,' ' batch_size %d, data.shape[0] %d' % (batch_number * batch_size, min((batch_number + 1) * batch_size, len(image_list)), batch_size, images.shape[0])) print('except: ', batch_number * batch_size, min((batch_number + 1) * batch_size, images.shape[0]), ...) duration = time.time() - start_time batch_number += 1 total_time += duration except tf.errors.OutOfRangeError: print('tf.errors.OutOfRangeError, Reinitialize tf_dataset_iterator') sess.run(tf_dataset_iterator.initializer) break print(f"total_time: {total_time}") _xnorm = 0.0 _xnorm_cnt = 0 for embed in [embeddings_array, embeddings_array_flip]: for i in range(embed.shape[0]): _em = embed[i] _norm = np.linalg.norm(_em) # print(_em.shape, _norm) _xnorm += _norm _xnorm_cnt += 1 _xnorm /= _xnorm_cnt final_embeddings_output = embeddings_array + embeddings_array_flip final_embeddings_output = sklearn.preprocessing.normalize(final_embeddings_output) print(final_embeddings_output.shape) tpr, fpr, accuracy, val, val_std, far = verification.evaluate(final_embeddings_output, issame_list, nrof_folds=10) acc2, std2 = np.mean(accuracy), np.std(accuracy) auc = metrics.auc(fpr, tpr) print('XNorm: %f' % (_xnorm)) print('Accuracy-Flip: %1.5f+-%1.5f' % (acc2, std2)) print('TPR: ', np.mean(tpr), 'FPR: ', np.mean(fpr)) print('Area Under Curve (AUC): %1.3f' % auc) tpr_lfw, fpr_lfw, accuracy_lfw, val_lfw, val_std_lfw, far_lfw = lfw.evaluate(final_embeddings_output, issame_list, nrof_folds=10, distance_metric=0, subtract_mean=False) print('accuracy_lfw: %2.5f+-%2.5f' % (np.mean(accuracy_lfw), np.std(accuracy_lfw))) print(f"val_lfw: {val_lfw}, val_std_lfw: {val_std_lfw}, far_lfw: {far_lfw}") print('val_lfw rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val_lfw, val_std_lfw, far_lfw)) auc_lfw = metrics.auc(fpr_lfw, tpr_lfw) print('TPR_LFW:', np.mean(tpr_lfw), 'FPR_LFW: ', np.mean(fpr_lfw)) print('Area Under Curve LFW (AUC): %1.3f' % auc_lfw) return acc2, std2, _xnorm, [embeddings_array, embeddings_array_flip] def read_pairs(pairs_filename): pairs = [] with open(pairs_filename, 'r') as f: for line in f.readlines()[1:]: pair = line.strip().split('\t') if pair not in pairs: pairs.append(pair) return np.array(pairs) def get_paths_with_pairs(dir, pairs): nrof_skipped_pairs = 0 path_list = [] issame_list = [] for pair in pairs: if len(pair) == 3: path0 = (os.path.join(dir, pair[0], pair[1])) path1 = (os.path.join(dir, pair[0], pair[2])) issame = True elif len(pair) == 4: path0 = os.path.join(dir, pair[0], pair[1]) path1 = os.path.join(dir, pair[2], pair[3]) issame = False if os.path.exists(path0) and os.path.exists(path1): # Only add the pair if both paths exist path_list += (path0, path1) issame_list.append(issame) else: print(path0, path1) nrof_skipped_pairs += 1 if nrof_skipped_pairs > 0: print('Skipped %d image pairs' % nrof_skipped_pairs) return path_list, issame_list def get_insightface_embeddings(args): tf.reset_default_graph() # Read the directory containing images dataset = facenet.get_dataset(args.insightface_dataset_dir) nrof_classes = len(dataset) # Evaluate custom dataset with facenet pre-trained model print("Getting embeddings with facenet pre-trained model") # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(dataset) assert len(image_list) > 0, 'The dataset should not be empty' print('Number of classes in dataset: %d' % nrof_classes) print('Number of examples in dataset: %d' % len(image_list)) # Getting batched images by TF dataset tf_dataset = facenet.tf_gen_dataset(image_list=image_list, label_list=None, nrof_preprocess_threads=args.nrof_preprocess_threads, image_size=args.insightface_dataset_dir, method='cache_slices', BATCH_SIZE=args.batch_size, repeat_count=1, to_float32=True, shuffle=False) tf_dataset_iterator = tf_dataset.make_initializable_iterator() tf_dataset_next_element = tf_dataset_iterator.get_next() images = tf.placeholder(name='img_inputs', shape=[None, args.insightface_image_size, args.insightface_image_size, 3], dtype=tf.float32) labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64) dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32) w_init_method = tf.contrib.layers.xavier_initializer(uniform=False) net = L_Resnet_E_IR_fix_issue9.get_resnet(images, args.net_depth, type='ir', w_init=w_init_method, trainable=False, keep_rate=dropout_rate) embeddings = net.outputs # mv_mean = tl.layers.get_variables_with_name('resnet_v1_50/bn0/moving_mean', False, True)[0] # 3.2 get arcface loss logit = arcface_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output) sess = tf.Session() saver = tf.train.Saver() feed_dict = {} feed_dict_flip = {} path = args.ckpt_file + args.ckpt_index_list[0] saver.restore(sess, path) print('ckpt file %s restored!' % args.ckpt_index_list[0]) feed_dict.update(tl.utils.dict_to_one(net.all_drop)) feed_dict_flip.update(tl.utils.dict_to_one(net.all_drop)) feed_dict[dropout_rate] = 1.0 feed_dict_flip[dropout_rate] = 1.0 batch_size = args.batch_size input_placeholder = images sess.run(tf_dataset_iterator.initializer) # sess.run(tf_dataset_iterator_flip.initializer) print('getting embeddings..') total_time = 0 batch_number = 0 embeddings_array = None embeddings_array_flip = None while True: try: images = sess.run(tf_dataset_next_element) data_tmp = images.copy() # fix issues #4 for i in range(data_tmp.shape[0]): data_tmp[i, ...] -= 127.5 data_tmp[i, ...] *= 0.0078125 data_tmp[i, ...] = cv2.cvtColor(data_tmp[i, ...], cv2.COLOR_RGB2BGR) # Getting flip to left_right batched images by TF dataset data_tmp_flip = images.copy() # fix issues #4 for i in range(data_tmp_flip.shape[0]): data_tmp_flip[i, ...] = np.fliplr(data_tmp_flip[i, ...]) data_tmp_flip[i, ...] -= 127.5 data_tmp_flip[i, ...] *= 0.0078125 data_tmp_flip[i, ...] = cv2.cvtColor(data_tmp_flip[i, ...], cv2.COLOR_RGB2BGR) start_time = time.time() feed_dict[input_placeholder] = data_tmp _embeddings = sess.run(embeddings, feed_dict) feed_dict_flip[input_placeholder] = data_tmp_flip _embeddings_flip = sess.run(embeddings, feed_dict_flip) if embeddings_array is None: embeddings_array = np.zeros((len(image_list), _embeddings.shape[1])) embeddings_array_flip = np.zeros((len(image_list), _embeddings_flip.shape[1])) try: embeddings_array[batch_number * batch_size:min((batch_number + 1) * batch_size, len(image_list)), ...] = _embeddings embeddings_array_flip[batch_number * batch_size:min((batch_number + 1) * batch_size, len(image_list)), ...] = _embeddings_flip # print('try: ', batch_number * batch_size, min((batch_number + 1) * batch_size, len(image_list)), ...) except ValueError: print('batch_number*batch_size value is %d min((batch_number+1)*batch_size, len(image_list)) %d,' ' batch_size %d, data.shape[0] %d' % (batch_number * batch_size, min((batch_number + 1) * batch_size, len(image_list)), batch_size, images.shape[0])) print('except: ', batch_number * batch_size, min((batch_number + 1) * batch_size, images.shape[0]), ...) duration = time.time() - start_time batch_number += 1 total_time += duration except tf.errors.OutOfRangeError: print('tf.errors.OutOfRangeError, Reinitialize tf_dataset_iterator') sess.run(tf_dataset_iterator.initializer) break print(f"total_time: {total_time}") _xnorm = 0.0 _xnorm_cnt = 0 for embed in [embeddings_array, embeddings_array_flip]: for i in range(embed.shape[0]): _em = embed[i] _norm = np.linalg.norm(_em) # print(_em.shape, _norm) _xnorm += _norm _xnorm_cnt += 1 _xnorm /= _xnorm_cnt final_embeddings_output = embeddings_array + embeddings_array_flip final_embeddings_output = sklearn.preprocessing.normalize(final_embeddings_output) print(final_embeddings_output.shape) sess.close() return embeddings_array, embeddings_array_flip, final_embeddings_output, _xnorm def custom_insightface_evaluation(args): tf.reset_default_graph() # Read the directory containing images pairs = read_pairs(args.insightface_pair) image_list, issame_list = get_paths_with_pairs(args.insightface_dataset_dir, pairs) # Evaluate custom dataset with facenet pre-trained model print("Getting embeddings with facenet pre-trained model") # Getting batched images by TF dataset tf_dataset = facenet.tf_gen_dataset(image_list=image_list, label_list=None, nrof_preprocess_threads=args.nrof_preprocess_threads, image_size=args.insightface_dataset_dir, method='cache_slices', BATCH_SIZE=args.batch_size, repeat_count=1, to_float32=True, shuffle=False) # tf_dataset = facenet.tf_gen_dataset(image_list, label_list, args.nrof_preprocess_threads, args.facenet_image_size, method='cache_slices', # BATCH_SIZE=args.batch_size, repeat_count=1, shuffle=False) tf_dataset_iterator = tf_dataset.make_initializable_iterator() tf_dataset_next_element = tf_dataset_iterator.get_next() images = tf.placeholder(name='img_inputs', shape=[None, args.insightface_image_size, args.insightface_image_size, 3], dtype=tf.float32) labels = tf.placeholder(name='img_labels', shape=[None, ], dtype=tf.int64) dropout_rate = tf.placeholder(name='dropout_rate', dtype=tf.float32) w_init_method = tf.contrib.layers.xavier_initializer(uniform=False) net = L_Resnet_E_IR_fix_issue9.get_resnet(images, args.net_depth, type='ir', w_init=w_init_method, trainable=False, keep_rate=dropout_rate) embeddings = net.outputs # mv_mean = tl.layers.get_variables_with_name('resnet_v1_50/bn0/moving_mean', False, True)[0] # 3.2 get arcface loss logit = arcface_loss(embedding=net.outputs, labels=labels, w_init=w_init_method, out_num=args.num_output) sess = tf.Session() saver = tf.train.Saver() feed_dict = {} feed_dict_flip = {} path = args.ckpt_file + args.ckpt_index_list[0] saver.restore(sess, path) print('ckpt file %s restored!' % args.ckpt_index_list[0]) feed_dict.update(tl.utils.dict_to_one(net.all_drop)) feed_dict_flip.update(tl.utils.dict_to_one(net.all_drop)) feed_dict[dropout_rate] = 1.0 feed_dict_flip[dropout_rate] = 1.0 batch_size = args.batch_size input_placeholder = images sess.run(tf_dataset_iterator.initializer) print('getting embeddings..') total_time = 0 batch_number = 0 embeddings_array = None embeddings_array_flip = None while True: try: images = sess.run(tf_dataset_next_element) data_tmp = images.copy() # fix issues #4 for i in range(data_tmp.shape[0]): data_tmp[i, ...] -= 127.5 data_tmp[i, ...] *= 0.0078125 data_tmp[i, ...] = cv2.cvtColor(data_tmp[i, ...], cv2.COLOR_RGB2BGR) # Getting flip to left_right batched images by TF dataset data_tmp_flip = images.copy() # fix issues #4 for i in range(data_tmp_flip.shape[0]): data_tmp_flip[i, ...] = np.fliplr(data_tmp_flip[i, ...]) data_tmp_flip[i, ...] -= 127.5 data_tmp_flip[i, ...] *= 0.0078125 data_tmp_flip[i, ...] = cv2.cvtColor(data_tmp_flip[i, ...], cv2.COLOR_RGB2BGR) start_time = time.time() feed_dict[input_placeholder] = data_tmp _embeddings = sess.run(embeddings, feed_dict) feed_dict_flip[input_placeholder] = data_tmp_flip _embeddings_flip = sess.run(embeddings, feed_dict_flip) if embeddings_array is None: embeddings_array = np.zeros((len(image_list), _embeddings.shape[1])) embeddings_array_flip = np.zeros((len(image_list), _embeddings_flip.shape[1])) try: embeddings_array[batch_number * batch_size:min((batch_number + 1) * batch_size, len(image_list)), ...] = _embeddings embeddings_array_flip[batch_number * batch_size:min((batch_number + 1) * batch_size, len(image_list)), ...] = _embeddings_flip # print('try: ', batch_number * batch_size, min((batch_number + 1) * batch_size, len(image_list)), ...) except ValueError: print('batch_number*batch_size value is %d min((batch_number+1)*batch_size, len(image_list)) %d,' ' batch_size %d, data.shape[0] %d' % (batch_number * batch_size, min((batch_number + 1) * batch_size, len(image_list)), batch_size, images.shape[0])) print('except: ', batch_number * batch_size, min((batch_number + 1) * batch_size, images.shape[0]), ...) duration = time.time() - start_time batch_number += 1 total_time += duration except tf.errors.OutOfRangeError: print('tf.errors.OutOfRangeError, Reinitialize tf_dataset_iterator') sess.run(tf_dataset_iterator.initializer) break print(f"total_time: {total_time}") _xnorm = 0.0 _xnorm_cnt = 0 for embed in [embeddings_array, embeddings_array_flip]: for i in range(embed.shape[0]): _em = embed[i] _norm = np.linalg.norm(_em) # print(_em.shape, _norm) _xnorm += _norm _xnorm_cnt += 1 _xnorm /= _xnorm_cnt final_embeddings_output = embeddings_array + embeddings_array_flip final_embeddings_output = sklearn.preprocessing.normalize(final_embeddings_output) print(final_embeddings_output.shape) tpr, fpr, accuracy, val, val_std, far = verification.evaluate(final_embeddings_output, issame_list, nrof_folds=10) acc2, std2 = np.mean(accuracy), np.std(accuracy) auc = metrics.auc(fpr, tpr) print('XNorm: %f' % (_xnorm)) print('Accuracy-Flip: %1.5f+-%1.5f' % (acc2, std2)) print('TPR: ', np.mean(tpr), 'FPR: ',
np.mean(fpr)
numpy.mean
''' #TODO refactor this module ''' import numpy as np from pathlib import Path import pandas as pd import sys from file_py_helper.ExtraInfo import EC_Properties if __name__ == "__main__": pass import logging logger = logging.getLogger(__name__) def RHE_potential_assignment(ovv_row): """ This function tries to determine a valid value for the RHE potential from the filename in several ways Parameters ---------- ovv_row : pd.DataFramw row, namedtuple this is a row of the overall index dataframe which contains the information to determine the potential in mV keys: RHE_fn, RHE_mean, PAR_date, PAR_file Returns ------- RHE_potential : float RHE value /1000 for unit V """ CVrow = ovv_row RHE_potential = 0 if np.abs(CVrow.RHE_fn) > 3: RHE_fn = np.abs(CVrow.RHE_fn) / 1000 else: RHE_fn = np.abs(CVrow.RHE_fn) if np.abs(CVrow.RHE_mean) > 3: RHE_mean = np.abs(CVrow.RHE_mean) / 1000 else: RHE_mean = np.abs(CVrow.RHE_mean) if RHE_fn == 0 and RHE_mean == 0: # Clean up Ovv again for 0 values try: OVV_prox = CVrow.loc[ ((CVrow.PAR_date - CVrow.PAR_date) != pd.Timedelta(seconds=0)) ] OVVproxRHE_fn = [i for i in OVV_prox.RHE_fn.unique() if i != 0] except: OVVproxRHE_fn = [] if OVVproxRHE_fn: RHE_potential = OVVproxRHE_fn[0] logger.warning( "CRITICAL Create CV, RHE problem both are 0, guessed from other Files {0} mV".format( RHE_potential, Path(CVrow.PAR_file).name ) ) else: RHE_potential = EC_Properties.guess_RHE_from_Electrolyte(CVrow.Electrolyte) logger.warning( "CRITICAL Create CV, RHE problem both are 0, guessed from Electrolyte {0} mV".format( RHE_potential, Path(CVrow.PAR_file).name ) ) elif RHE_fn != 0 and RHE_mean == 0: RHE_potential = RHE_fn elif RHE_fn == 0 and RHE_mean != 0: RHE_potential = RHE_mean elif RHE_fn != 0 and RHE_mean != 0: # RHE_fn == RHE_mean: if any([np.isclose(RHE_fn, RHE_mean, atol=0.004)]): RHE_potential = RHE_mean else: try: RHE_fromfn_opts = [ b for b in [ float(i) for i in Path(CVrow.PAR_file).stem.split("_") if i.isdigit() ] if b < 1100 and b > 150 and not b == 300 and not b == 10 ] if RHE_fromfn_opts: RHE_fromfn = RHE_fromfn_opts[0] / 1000 if any([
np.isclose(RHE_fn, RHE_fromfn, atol=0.001)
numpy.isclose
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation """ Parámetros """ c = 333 # m/s rho_ambient = 1.2 # kg/m^3 A = 10 # Pa L = 15 # m v_x_in = rho_prime_in = 0 def p_in(x): array = np.logical_and(-L/2 <= x, x <= L/2) return np.where(array, A, 0) def f(x, t): if t==0: return p_in(x)/2 else: array = np.logical_and(-L/2 + c*t <= x, x <= c*t + L/2) return np.where(array, A, 0) def g(x, t): if t==0: return p_in(x)/2 else: array = np.logical_and(-L/2 - c*t <= x, x <= -c*t + L/2) return np.where(array, A, 0) def p(x, t): return f(x, t) + g(x, t) def rho_prime(x, t): return p(x, t)/2 + rho_prime_in - p_in(x)/(c**2) def rho(x, t): return rho_prime(x, t) + rho_prime_in def v_x(x, t): return 1/(rho_ambient*c)*(f(x, t) - g(x, t))*10 x_list =
np.linspace(-50 - L/2, 50 + L/2, 1000)
numpy.linspace
# -*- coding: utf-8 -*- #from __future__ import print_function #import pixy #from ctypes import * #from pixy import * import math as ma import numpy as np test_data = 120,100 #test input #hight = 495-114 #mm #ball parameter r_ball = 114.8 #mm 'PIXY Parameter' #pixy-cam image size in pixy-coordination delta_X_pixy = 207 delta_Y_pixy = 315 #angles ang_cam_tilt = ma.radians(33) ang_rev_cam_tilt = ma.radians(90)-ang_cam_tilt ang_cam_flare_X = ma.radians(47) #Öffnungswinkel pixy cam ang_cam_flare_Y = ma.radians(75) delta_ang_X = ma.radians(47) #deg ang_ball_ratio = delta_X_pixy / delta_ang_X '''PIXY Parameter''' #pixy-cam position parameter 'vorläufige Parameter!!!' ang_offset = ma.radians(30) #1.0472 # 60 degree h_cam_offset = 463 #floor to camera-mountings rotation axle s_cam_offset = 77 #midpoint robot to camera mounting on x axle r_cam_rot = 55 #radius of camera rotation circle on xy-level #absolute position of camera on robot X_cam_pos = 0 Z_cam_pos = 0 #pixy-cam image parameter Xmin_image_cam = 0 Xmax_image_cam = 0 X_offset_image_cam = 0 Ymin_image_cam = 0 Ymax_image_cam = 0 delta_X_image_cam = 0 delta_Y_image_cam = 0 X_factor_cam = 1 Y_factor_cam = 1 X_ball_ego = 0 #mm Y_ball_ego = 0 #mm X_ball_filtered = 0 Y_ball_filtered = 0 'Kalman Parameter' dt = 1.0/60.0 #pixys freq = 60 Hz F = np.array([[1, dt, 0], [0, 1, dt],[0, 0, 1]]) #state transition model, A H = np.array([1, 0, 0]).reshape(1, 3) #transponieren #observation model C """ das ist meine C matrix für den Ausgang, also müsste das mittlere die geschwindigkeit sein """ q = 0.05 Q = np.array([[q, q, 0], [q, q, 0], [0, 0, 0]]) R = np.array([0.05]).reshape(1, 1) #observation noise # Pixy2 Python SWIG get blocks example ''' blocks = BlockArray(100) frame = 0 class Blocks (Structure): _fields_ = [ ("m_signature", c_uint), ("m_x", c_uint), ("m_y", c_uint), ("m_width", c_uint), ("m_height", c_uint), ("m_angle", c_uint), ("m_index", c_uint), ("m_age", c_uint) ] ''' class KalmanFilter(object): def __init__(self, F = None, B = None, H = None, Q = None, R = None, P = None, x0 = None): if(F is None or H is None): raise ValueError("Set proper system dynamics.") self.n = F.shape[1] self.m = H.shape[1] self.F = F self.H = H self.B = 0 if B is None else B self.Q = np.eye(self.n) if Q is None else Q self.R =
np.eye(self.n)
numpy.eye
#!/usr/bin/env python # Scale mesh in stl file. import numpy as np import os, sys import stl from stl import mesh # parse command line arguments outfile = "out.stl" infile = "in.stl" if len(sys.argv) < 2: print("usage: {} <fileNameIn> <fileNameOut> [<x> <y> <z>]\n Scale vertices with factors [x,y,z].".format(sys.argv[0])) sys.exit(0) if len(sys.argv) >= 2: if os.path.isfile(sys.argv[1]): infile = sys.argv[1] else: print("File \"{}\" does not exist.".format(sys.argv[1])) sys.exit(0) if len(sys.argv) >= 3: outfile = sys.argv[2] else: outfile = os.path.splitext(infile)[0]+"_out.stl" # parse scaling factors factor_x = 0.0 factor_y = 0.0 factor_z = 0.0 if len(sys.argv) == 6: factor_x = float(sys.argv[3]) factor_y = float(sys.argv[4]) factor_z = float(sys.argv[5]) print("Input file: \"{}\"".format(infile)) print("Output file: \"{}\"".format(outfile)) print("Scaling factors: {} {} {}".format(factor_x, factor_y, factor_z)) stl_mesh = mesh.Mesh.from_file(infile) out_triangles = [] # loop over triangles in mesh for p in stl_mesh.points: # p contains the 9 entries [p1x p1y p1z p2x p2y p2z p3x p3y p3z] of the triangle with corner points (p1,p2,p3) p1 =
np.array(p[0:3])
numpy.array
# -*- coding: utf-8 -*- # --- # jupyter: # '@webio': # lastCommId: a8ab2762cccf499696a7ef0a86be4d18 # lastKernelId: 261999dd-7ee7-4ad4-9a26-99a84a77979b # cite2c: # citations: # 6202365/8AH9AXN2: # URL: http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory.pdf # author: # - family: Carroll # given: Christopher # container-title: Manuscript, Department of Economics, Johns Hopkins University # id: 6202365/8AH9AXN2 # issued: # month: 2 # year: 2019 # note: "Available at http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory\ # \ \nCitation Key: carrollBufferStockTheory \nbibtex*[extra=bibtex:carrollBufferStockTheory]" # title: Theoretical Foundations of Buffer Stock Saving # type: article-journal # 6202365/TGG4U7J4: # author: # - family: Clarida # given: <NAME>. # container-title: International Economic Review # issued: # date-parts: # - - 1987 # page: "339\u2013351" # title: Consumption, Liquidity Constraints, and Asset Accumulation in the Face # of Random Fluctuations in Income # type: article-journal # volume: XXVIII # undefined: # URL: http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory.pdf # author: # - family: Carroll # given: Christopher # container-title: Manuscript, Department of Economics, Johns Hopkins University # issued: # date-parts: # - - '2019' # - 2 # note: "Available at http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory\ # \ \nCitation Key: carrollBufferStockTheory \nbibtex*[extra=bibtex:carrollBufferStockTheory]" # title: Theoretical Foundations of Buffer Stock Saving # type: article-journal # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.1' # jupytext_version: 0.8.3 # kernelspec: # display_name: Python 3 # language: python # name: python3 # language_info: # codemirror_mode: # name: ipython # version: 3 # file_extension: .py # mimetype: text/x-python # name: python # nbconvert_exporter: python # pygments_lexer: ipython3 # version: 3.6.6 # varInspector: # cols: # lenName: 16 # lenType: 16 # lenVar: 40 # kernels_config: # python: # delete_cmd_postfix: '' # delete_cmd_prefix: 'del ' # library: var_list.py # varRefreshCmd: print(var_dic_list()) # r: # delete_cmd_postfix: ') ' # delete_cmd_prefix: rm( # library: var_list.r # varRefreshCmd: 'cat(var_dic_list()) ' # types_to_exclude: # - module # - function # - builtin_function_or_method # - instance # - _Feature # window_display: false # --- # %% [markdown] # # Theoretical Foundations of Buffer Stock Saving # <p style="text-align: center;"><small><small>Generator: BufferStockTheory-make/notebooks_byname</small></small></p> # %% [markdown] # [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/econ-ark/REMARK/master?filepath=REMARKs%2FBufferStockTheory%2FBufferStockTheory.ipynb) # # [This notebook](https://github.com/econ-ark/REMARK/blob/master/REMARKs/BufferStockTheory/BufferStockTheory.ipynb) uses the [Econ-ARK/HARK](https://github.com/econ-ark/hark) toolkit to describe the main results and reproduce the figures in the paper [Theoretical Foundations of Buffer Stock Saving](http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory): <cite data-cite="6202365/8AH9AXN2"></cite> # # # If you are not familiar with the HARK toolkit, you may wish to browse the ["Gentle Introduction to HARK"](https://mybinder.org/v2/gh/econ-ark/DemARK/master?filepath=Gentle-Intro-To-HARK.ipynb) before continuing (since you are viewing this document, you presumably know a bit about [Jupyter Notebooks](https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/)). # # For instructions on how to install the [Econ-ARK/HARK](https://github.com/econ-ark/hark) toolkit on your computer, please refer to the [QUICK START GUIDE](https://github.com/econ-ark/HARK/blob/master/README.md). # # The main HARK tool used here is $\texttt{ConsIndShockModel.py}$, in which agents have CRRA utility and face idiosyncratic shocks to permanent and transitory income. For an introduction to this module, see the [ConsIndShockModel.ipynb](https://econ-ark.org/notebooks) notebook at the [Econ-ARK](https://econ-ark.org) website. # # # %% {"code_folding": [0]} # This cell does some setup and imports generic tools used to produce the figures Generator=False # Is this notebook the master or is it generated? # Import related generic python packages import numpy as np from time import clock mystr = lambda number : "{:.4f}".format(number) # This is a jupytext paired notebook that autogenerates BufferStockTheory.py # which can be executed from a terminal command line via "ipython BufferStockTheory.py" # But a terminal does not permit inline figures, so we need to test jupyter vs terminal # Google "how can I check if code is executed in the ipython notebook" from IPython import get_ipython # In case it was run from python instead of ipython def in_ipynb(): try: if str(type(get_ipython())) == "<class 'ipykernel.zmqshell.ZMQInteractiveShell'>": return True else: return False except NameError: return False # Determine whether to make the figures inline (for spyder or jupyter) # vs whatever is the automatic setting that will apply if run from the terminal if in_ipynb(): # %matplotlib inline generates a syntax error when run from the shell # so do this instead get_ipython().run_line_magic('matplotlib', 'inline') else: get_ipython().run_line_magic('matplotlib', 'auto') print('You appear to be running from a terminal') print('By default, figures will appear one by one') print('Close the visible figure in order to see the next one') # Import the plot-figure library matplotlib import matplotlib.pyplot as plt # In order to use LaTeX to manage all text layout in our figures, we import rc settings from matplotlib. from matplotlib import rc plt.rc('font', family='serif') # LaTeX is huge and takes forever to install on mybinder # so if it is not installed then do not use it from distutils.spawn import find_executable iflatexExists=False if find_executable('latex'): iflatexExists=True plt.rc('font', family='serif') plt.rc('text', usetex=iflatexExists) # The warnings package allows us to ignore some harmless but alarming warning messages import warnings warnings.filterwarnings("ignore") # The tools for navigating the filesystem import sys import os sys.path.insert(0, os.path.abspath('../../lib')) # REMARKs directory is two down from root from HARK.utilities import plotFuncsDer, plotFuncs from copy import copy, deepcopy # Define (and create, if necessary) the figures directory "Figures" if Generator: my_file_path = os.path.dirname(os.path.abspath("BufferStockTheory.ipynb")) # Find pathname to this file: Figures_HARK_dir = os.path.join(my_file_path,"Figures/") # LaTeX document assumes figures will be here Figures_HARK_dir = os.path.join(my_file_path,"/tmp/Figures/") # Uncomment to make figures outside of git path if not os.path.exists(Figures_HARK_dir): os.makedirs(Figures_HARK_dir) # %% [markdown] # ## [The Problem](http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory/#The-Problem) # # The paper defines and calibrates a small set of parameters: # # | Parameter | Description | Code | Value | # | :---: | --- | --- | :---: | # | $\newcommand{\PermGroFac}{\Gamma}\PermGroFac$ | Permanent Income Growth Factor | $\texttt{PermGroFac}$ | 1.03 | # | $\newcommand{\Rfree}{\mathrm{\mathsf{R}}}\Rfree$ | Interest Factor | $\texttt{Rfree}$ | 1.04 | # | $\newcommand{\DiscFac}{\beta}\DiscFac$ | Time Preference Factor | $\texttt{DiscFac}$ | 0.96 | # | $\newcommand{\CRRA}{\rho}\CRRA$ | Coefficient of Relative Risk Aversion| $\texttt{CRRA}$ | 2 | # | $\newcommand{\UnempPrb}{\wp}\UnempPrb$ | Probability of Unemployment | $\texttt{UnempPrb}$ | 0.005 | # | $\newcommand{\IncUnemp}{\mu}\IncUnemp$ | Income when Unemployed | $\texttt{IncUnemp}$ | 0. | # | $\newcommand{\PermShkStd}{\sigma_\psi}\PermShkStd$ | Std Dev of Log Permanent Shock| $\texttt{PermShkStd}$ | 0.1 | # | $\newcommand{\TranShkStd}{\sigma_\theta}\TranShkStd$ | Std Dev of Log Transitory Shock| $\texttt{TranShkStd}$ | 0.1 | # # For a microeconomic consumer with 'Market Resources' (net worth plus current income) $M_{t}$, end-of-period assets $A_{t}$ will be the amount remaining after consumption of $C_{t}$. <!-- Next period's 'Balances' $B_{t+1}$ reflect this period's $A_{t}$ augmented by return factor $R$:--> # \begin{eqnarray} # A_{t} &=&M_{t}-C_{t} \label{eq:DBCparts} \\ # %B_{t+1} & = & A_{t} R \notag \\ # \end{eqnarray} # # The consumer's permanent noncapital income $P$ grows by a predictable factor $\PermGroFac$ and is subject to an unpredictable lognormally distributed multiplicative shock $\mathbb{E}_{t}[\psi_{t+1}]=1$, # \begin{eqnarray} # P_{t+1} & = & P_{t} \PermGroFac \psi_{t+1} # \end{eqnarray} # # and actual income is permanent income multiplied by a logormal multiplicative transitory shock, $\mathbb{E}_{t}[\theta_{t+1}]=1$, so that next period's market resources are # \begin{eqnarray} # %M_{t+1} &=& B_{t+1} +P_{t+1}\theta_{t+1}, \notag # M_{t+1} &=& A_{t}R +P_{t+1}\theta_{t+1}. \notag # \end{eqnarray} # # When the consumer has a CRRA utility function $u(c)=\frac{c^{1-\rho}}{1-\rho}$, the paper shows that the problem can be written in terms of ratios of money variables to permanent income, e.g. $m_{t} \equiv M_{t}/P_{t}$, and the Bellman form of [the problem reduces to](http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory/#The-Related-Problem): # # \begin{eqnarray*} # v_t(m_t) &=& \max_{c_t}~~ u(c_t) + \beta~\mathbb{E}_{t} [(\Gamma\psi_{t+1})^{1-\rho} v_{t+1}(m_{t+1}) ] \\ # & s.t. & \\ # a_t &=& m_t - c_t \\ # m_{t+1} &=& R/(\Gamma \psi_{t+1}) a_t + \theta_{t+1} \\ # \end{eqnarray*} # # %% {"code_folding": [0]} # Define a parameter dictionary with baseline parameter values # Set the baseline parameter values PermGroFac = 1.03 Rfree = 1.04 DiscFac = 0.96 CRRA = 2.00 UnempPrb = 0.005 IncUnemp = 0.0 PermShkStd = 0.1 TranShkStd = 0.1 # Import default parameter values import HARK.ConsumptionSaving.ConsumerParameters as Params # Make a dictionary containing all parameters needed to solve the model base_params = Params.init_idiosyncratic_shocks # Set the parameters for the baseline results in the paper # using the variable values defined in the cell above base_params['PermGroFac'] = [PermGroFac] # Permanent income growth factor base_params['Rfree'] = Rfree # Interest factor on assets base_params['DiscFac'] = DiscFac # Time Preference Factor base_params['CRRA'] = CRRA # Coefficient of relative risk aversion base_params['UnempPrb'] = UnempPrb # Probability of unemployment (e.g. Probability of Zero Income in the paper) base_params['IncUnemp'] = IncUnemp # Induces natural borrowing constraint base_params['PermShkStd'] = [PermShkStd] # Standard deviation of log permanent income shocks base_params['TranShkStd'] = [TranShkStd] # Standard deviation of log transitory income shocks # Some technical settings that are not interesting for our purposes base_params['LivPrb'] = [1.0] # 100 percent probability of living to next period base_params['CubicBool'] = True # Use cubic spline interpolation base_params['T_cycle'] = 1 # No 'seasonal' cycles base_params['BoroCnstArt'] = None # No artificial borrowing constraint # %% {"code_folding": [0]} # from HARK.ConsumptionSaving.ConsIndShockModel import IndShockConsumerType # The code below is what you get if you exeute the command on the prior line # from a location where HARK is accessible. It is included here because the # latest pip-installable version of HARK does not include the impatience conditions # (though the online one does) from __future__ import division from __future__ import print_function from __future__ import absolute_import from builtins import str from builtins import range from builtins import object from copy import copy, deepcopy import numpy as np from scipy.optimize import newton from HARK import AgentType, Solution, NullFunc, HARKobject from HARK.utilities import warnings # Because of "patch" to warnings modules from HARK.interpolation import CubicInterp, LowerEnvelope, LinearInterp from HARK.simulation import drawDiscrete, drawBernoulli, drawLognormal, drawUniform from HARK.utilities import approxMeanOneLognormal, addDiscreteOutcomeConstantMean,\ combineIndepDstns, makeGridExpMult, CRRAutility, CRRAutilityP, \ CRRAutilityPP, CRRAutilityP_inv, CRRAutility_invP, CRRAutility_inv, \ CRRAutilityP_invP utility = CRRAutility utilityP = CRRAutilityP utilityPP = CRRAutilityPP utilityP_inv = CRRAutilityP_inv utility_invP = CRRAutility_invP utility_inv = CRRAutility_inv utilityP_invP = CRRAutilityP_invP # ===================================================================== # === Classes that help solve consumption-saving models === # ===================================================================== class ConsumerSolution(Solution): ''' A class representing the solution of a single period of a consumption-saving problem. The solution must include a consumption function and marginal value function. Here and elsewhere in the code, Nrm indicates that variables are normalized by permanent income. ''' distance_criteria = ['vPfunc'] def __init__(self, cFunc=None, vFunc=None, vPfunc=None, vPPfunc=None, mNrmMin=None, hNrm=None, MPCmin=None, MPCmax=None): ''' The constructor for a new ConsumerSolution object. Parameters ---------- cFunc : function The consumption function for this period, defined over market resources: c = cFunc(m). vFunc : function The beginning-of-period value function for this period, defined over market resources: v = vFunc(m). vPfunc : function The beginning-of-period marginal value function for this period, defined over market resources: vP = vPfunc(m). vPPfunc : function The beginning-of-period marginal marginal value function for this period, defined over market resources: vPP = vPPfunc(m). mNrmMin : float The minimum allowable market resources for this period; the consump- tion function (etc) are undefined for m < mNrmMin. hNrm : float Human wealth after receiving income this period: PDV of all future income, ignoring mortality. MPCmin : float Infimum of the marginal propensity to consume this period. MPC --> MPCmin as m --> infinity. MPCmax : float Supremum of the marginal propensity to consume this period. MPC --> MPCmax as m --> mNrmMin. Returns ------- None ''' # Change any missing function inputs to NullFunc if cFunc is None: cFunc = NullFunc() if vFunc is None: vFunc = NullFunc() if vPfunc is None: vPfunc = NullFunc() if vPPfunc is None: vPPfunc = NullFunc() self.cFunc = cFunc self.vFunc = vFunc self.vPfunc = vPfunc self.vPPfunc = vPPfunc self.mNrmMin = mNrmMin self.hNrm = hNrm self.MPCmin = MPCmin self.MPCmax = MPCmax def appendSolution(self,new_solution): ''' Appends one solution to another to create a ConsumerSolution whose attributes are lists. Used in ConsMarkovModel, where we append solutions *conditional* on a particular value of a Markov state to each other in order to get the entire solution. Parameters ---------- new_solution : ConsumerSolution The solution to a consumption-saving problem; each attribute is a list representing state-conditional values or functions. Returns ------- None ''' if type(self.cFunc)!=list: # Then we assume that self is an empty initialized solution instance. # Begin by checking this is so. assert NullFunc().distance(self.cFunc) == 0, 'appendSolution called incorrectly!' # We will need the attributes of the solution instance to be lists. Do that here. self.cFunc = [new_solution.cFunc] self.vFunc = [new_solution.vFunc] self.vPfunc = [new_solution.vPfunc] self.vPPfunc = [new_solution.vPPfunc] self.mNrmMin = [new_solution.mNrmMin] else: self.cFunc.append(new_solution.cFunc) self.vFunc.append(new_solution.vFunc) self.vPfunc.append(new_solution.vPfunc) self.vPPfunc.append(new_solution.vPPfunc) self.mNrmMin.append(new_solution.mNrmMin) class ValueFunc(HARKobject): ''' A class for representing a value function. The underlying interpolation is in the space of (m,u_inv(v)); this class "re-curves" to the value function. ''' distance_criteria = ['func','CRRA'] def __init__(self,vFuncNvrs,CRRA): ''' Constructor for a new value function object. Parameters ---------- vFuncNvrs : function A real function representing the value function composed with the inverse utility function, defined on market resources: u_inv(vFunc(m)) CRRA : float Coefficient of relative risk aversion. Returns ------- None ''' self.func = deepcopy(vFuncNvrs) self.CRRA = CRRA def __call__(self,m): ''' Evaluate the value function at given levels of market resources m. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose value is to be found. Returns ------- v : float or np.array Lifetime value of beginning this period with market resources m; has same size as input m. ''' return utility(self.func(m),gam=self.CRRA) class MargValueFunc(HARKobject): ''' A class for representing a marginal value function in models where the standard envelope condition of v'(m) = u'(c(m)) holds (with CRRA utility). ''' distance_criteria = ['cFunc','CRRA'] def __init__(self,cFunc,CRRA): ''' Constructor for a new marginal value function object. Parameters ---------- cFunc : function A real function representing the marginal value function composed with the inverse marginal utility function, defined on market resources: uP_inv(vPfunc(m)). Called cFunc because when standard envelope condition applies, uP_inv(vPfunc(m)) = cFunc(m). CRRA : float Coefficient of relative risk aversion. Returns ------- None ''' self.cFunc = deepcopy(cFunc) self.CRRA = CRRA def __call__(self,m): ''' Evaluate the marginal value function at given levels of market resources m. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose marginal value is to be found. Returns ------- vP : float or np.array Marginal lifetime value of beginning this period with market resources m; has same size as input m. ''' return utilityP(self.cFunc(m),gam=self.CRRA) def derivative(self,m): ''' Evaluate the derivative of the marginal value function at given levels of market resources m; this is the marginal marginal value function. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose marginal marginal value is to be found. Returns ------- vPP : float or np.array Marginal marginal lifetime value of beginning this period with market resources m; has same size as input m. ''' c, MPC = self.cFunc.eval_with_derivative(m) return MPC*utilityPP(c,gam=self.CRRA) class MargMargValueFunc(HARKobject): ''' A class for representing a marginal marginal value function in models where the standard envelope condition of v'(m) = u'(c(m)) holds (with CRRA utility). ''' distance_criteria = ['cFunc','CRRA'] def __init__(self,cFunc,CRRA): ''' Constructor for a new marginal marginal value function object. Parameters ---------- cFunc : function A real function representing the marginal value function composed with the inverse marginal utility function, defined on market resources: uP_inv(vPfunc(m)). Called cFunc because when standard envelope condition applies, uP_inv(vPfunc(m)) = cFunc(m). CRRA : float Coefficient of relative risk aversion. Returns ------- None ''' self.cFunc = deepcopy(cFunc) self.CRRA = CRRA def __call__(self,m): ''' Evaluate the marginal marginal value function at given levels of market resources m. Parameters ---------- m : float or np.array Market resources (normalized by permanent income) whose marginal marginal value is to be found. Returns ------- vPP : float or np.array Marginal marginal lifetime value of beginning this period with market resources m; has same size as input m. ''' c, MPC = self.cFunc.eval_with_derivative(m) return MPC*utilityPP(c,gam=self.CRRA) # ===================================================================== # === Classes and functions that solve consumption-saving models === # ===================================================================== class ConsPerfForesightSolver(object): ''' A class for solving a one period perfect foresight consumption-saving problem. An instance of this class is created by the function solvePerfForesight in each period. ''' def __init__(self,solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac): ''' Constructor for a new ConsPerfForesightSolver. Parameters ---------- solution_next : ConsumerSolution The solution to next period's one-period problem. DiscFac : float Intertemporal discount factor for future utility. LivPrb : float Survival probability; likelihood of being alive at the beginning of the next period. CRRA : float Coefficient of relative risk aversion. Rfree : float Risk free interest factor on end-of-period assets. PermGroFac : float Expected permanent income growth factor at the end of this period. Returns: ---------- None ''' # We ask that HARK users define single-letter variables they use in a dictionary # attribute called notation. # Do that first. self.notation = {'a': 'assets after all actions', 'm': 'market resources at decision time', 'c': 'consumption'} self.assignParameters(solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac) def assignParameters(self,solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac): ''' Saves necessary parameters as attributes of self for use by other methods. Parameters ---------- solution_next : ConsumerSolution The solution to next period's one period problem. DiscFac : float Intertemporal discount factor for future utility. LivPrb : float Survival probability; likelihood of being alive at the beginning of the succeeding period. CRRA : float Coefficient of relative risk aversion. Rfree : float Risk free interest factor on end-of-period assets. PermGroFac : float Expected permanent income growth factor at the end of this period. Returns ------- none ''' self.solution_next = solution_next self.DiscFac = DiscFac self.LivPrb = LivPrb self.CRRA = CRRA self.Rfree = Rfree self.PermGroFac = PermGroFac def defUtilityFuncs(self): ''' Defines CRRA utility function for this period (and its derivatives), saving them as attributes of self for other methods to use. Parameters ---------- none Returns ------- none ''' self.u = lambda c : utility(c,gam=self.CRRA) # utility function self.uP = lambda c : utilityP(c,gam=self.CRRA) # marginal utility function self.uPP = lambda c : utilityPP(c,gam=self.CRRA)# marginal marginal utility function def defValueFuncs(self): ''' Defines the value and marginal value function for this period. Parameters ---------- none Returns ------- none ''' MPCnvrs = self.MPC**(-self.CRRA/(1.0-self.CRRA)) vFuncNvrs = LinearInterp(np.array([self.mNrmMin, self.mNrmMin+1.0]),np.array([0.0, MPCnvrs])) self.vFunc = ValueFunc(vFuncNvrs,self.CRRA) self.vPfunc = MargValueFunc(self.cFunc,self.CRRA) def makePFcFunc(self): ''' Makes the (linear) consumption function for this period. Parameters ---------- none Returns ------- none ''' # Calculate human wealth this period (and lower bound of m) self.hNrmNow = (self.PermGroFac/self.Rfree)*(self.solution_next.hNrm + 1.0) self.mNrmMin = -self.hNrmNow # Calculate the (constant) marginal propensity to consume PatFac = ((self.Rfree*self.DiscFacEff)**(1.0/self.CRRA))/self.Rfree self.MPC = 1.0/(1.0 + PatFac/self.solution_next.MPCmin) # Construct the consumption function self.cFunc = LinearInterp([self.mNrmMin, self.mNrmMin+1.0],[0.0, self.MPC]) # Add two attributes to enable calculation of steady state market resources self.ExIncNext = 1.0 # Perfect foresight income of 1 self.mNrmMinNow = self.mNrmMin # Relabeling for compatibility with addSSmNrm def addSSmNrm(self,solution): ''' Finds steady state (normalized) market resources and adds it to the solution. This is the level of market resources such that the expectation of market resources in the next period is unchanged. This value doesn't necessarily exist. Parameters ---------- solution : ConsumerSolution Solution to this period's problem, which must have attribute cFunc. Returns ------- solution : ConsumerSolution Same solution that was passed, but now with the attribute mNrmSS. ''' # Make a linear function of all combinations of c and m that yield mNext = mNow mZeroChangeFunc = lambda m : (1.0-self.PermGroFac/self.Rfree)*m + (self.PermGroFac/self.Rfree)*self.ExIncNext # Find the steady state level of market resources searchSSfunc = lambda m : solution.cFunc(m) - mZeroChangeFunc(m) # A zero of this is SS market resources m_init_guess = self.mNrmMinNow + self.ExIncNext # Minimum market resources plus next income is okay starting guess try: mNrmSS = newton(searchSSfunc,m_init_guess) except: mNrmSS = None # Add mNrmSS to the solution and return it solution.mNrmSS = mNrmSS return solution def solve(self): ''' Solves the one period perfect foresight consumption-saving problem. Parameters ---------- none Returns ------- solution : ConsumerSolution The solution to this period's problem. ''' self.defUtilityFuncs() self.DiscFacEff = self.DiscFac*self.LivPrb self.makePFcFunc() self.defValueFuncs() solution = ConsumerSolution(cFunc=self.cFunc, vFunc=self.vFunc, vPfunc=self.vPfunc, mNrmMin=self.mNrmMin, hNrm=self.hNrmNow, MPCmin=self.MPC, MPCmax=self.MPC) #solution = self.addSSmNrm(solution) return solution def solvePerfForesight(solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac): ''' Solves a single period consumption-saving problem for a consumer with perfect foresight. Parameters ---------- solution_next : ConsumerSolution The solution to next period's one period problem. DiscFac : float Intertemporal discount factor for future utility. LivPrb : float Survival probability; likelihood of being alive at the beginning of the succeeding period. CRRA : float Coefficient of relative risk aversion. Rfree : float Risk free interest factor on end-of-period assets. PermGroFac : float Expected permanent income growth factor at the end of this period. Returns ------- solution : ConsumerSolution The solution to this period's problem. ''' solver = ConsPerfForesightSolver(solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac) solution = solver.solve() return solution ############################################################################### ############################################################################### class ConsIndShockSetup(ConsPerfForesightSolver): ''' A superclass for solvers of one period consumption-saving problems with constant relative risk aversion utility and permanent and transitory shocks to income. Has methods to set up but not solve the one period problem. ''' def __init__(self,solution_next,IncomeDstn,LivPrb,DiscFac,CRRA,Rfree, PermGroFac,BoroCnstArt,aXtraGrid,vFuncBool,CubicBool): ''' Constructor for a new solver-setup for problems with income subject to permanent and transitory shocks. Parameters ---------- solution_next : ConsumerSolution The solution to next period's one period problem. IncomeDstn : [np.array] A list containing three arrays of floats, representing a discrete approximation to the income process between the period being solved and the one immediately following (in solution_next). Order: event probabilities, permanent shocks, transitory shocks. LivPrb : float Survival probability; likelihood of being alive at the beginning of the succeeding period. DiscFac : float Intertemporal discount factor for future utility. CRRA : float Coefficient of relative risk aversion. Rfree : float Risk free interest factor on end-of-period assets. PermGroFac : float Expected permanent income growth factor at the end of this period. BoroCnstArt: float or None Borrowing constraint for the minimum allowable assets to end the period with. If it is less than the natural borrowing constraint, then it is irrelevant; BoroCnstArt=None indicates no artificial bor- rowing constraint. aXtraGrid: np.array Array of "extra" end-of-period asset values-- assets above the absolute minimum acceptable level. vFuncBool: boolean An indicator for whether the value function should be computed and included in the reported solution. CubicBool: boolean An indicator for whether the solver should use cubic or linear inter- polation. Returns ------- None ''' self.assignParameters(solution_next,IncomeDstn,LivPrb,DiscFac,CRRA,Rfree, PermGroFac,BoroCnstArt,aXtraGrid,vFuncBool,CubicBool) self.defUtilityFuncs() def assignParameters(self,solution_next,IncomeDstn,LivPrb,DiscFac,CRRA,Rfree, PermGroFac,BoroCnstArt,aXtraGrid,vFuncBool,CubicBool): ''' Assigns period parameters as attributes of self for use by other methods Parameters ---------- solution_next : ConsumerSolution The solution to next period's one period problem. IncomeDstn : [np.array] A list containing three arrays of floats, representing a discrete approximation to the income process between the period being solved and the one immediately following (in solution_next). Order: event probabilities, permanent shocks, transitory shocks. LivPrb : float Survival probability; likelihood of being alive at the beginning of the succeeding period. DiscFac : float Intertemporal discount factor for future utility. CRRA : float Coefficient of relative risk aversion. Rfree : float Risk free interest factor on end-of-period assets. PermGroFac : float Expected permanent income growth factor at the end of this period. BoroCnstArt: float or None Borrowing constraint for the minimum allowable assets to end the period with. If it is less than the natural borrowing constraint, then it is irrelevant; BoroCnstArt=None indicates no artificial bor- rowing constraint. aXtraGrid: np.array Array of "extra" end-of-period asset values-- assets above the absolute minimum acceptable level. vFuncBool: boolean An indicator for whether the value function should be computed and included in the reported solution. CubicBool: boolean An indicator for whether the solver should use cubic or linear inter- polation. Returns ------- none ''' ConsPerfForesightSolver.assignParameters(self,solution_next,DiscFac,LivPrb, CRRA,Rfree,PermGroFac) self.BoroCnstArt = BoroCnstArt self.IncomeDstn = IncomeDstn self.aXtraGrid = aXtraGrid self.vFuncBool = vFuncBool self.CubicBool = CubicBool def defUtilityFuncs(self): ''' Defines CRRA utility function for this period (and its derivatives, and their inverses), saving them as attributes of self for other methods to use. Parameters ---------- none Returns ------- none ''' ConsPerfForesightSolver.defUtilityFuncs(self) self.uPinv = lambda u : utilityP_inv(u,gam=self.CRRA) self.uPinvP = lambda u : utilityP_invP(u,gam=self.CRRA) self.uinvP = lambda u : utility_invP(u,gam=self.CRRA) if self.vFuncBool: self.uinv = lambda u : utility_inv(u,gam=self.CRRA) def setAndUpdateValues(self,solution_next,IncomeDstn,LivPrb,DiscFac): ''' Unpacks some of the inputs (and calculates simple objects based on them), storing the results in self for use by other methods. These include: income shocks and probabilities, next period's marginal value function (etc), the probability of getting the worst income shock next period, the patience factor, human wealth, and the bounding MPCs. Parameters ---------- solution_next : ConsumerSolution The solution to next period's one period problem. IncomeDstn : [np.array] A list containing three arrays of floats, representing a discrete approximation to the income process between the period being solved and the one immediately following (in solution_next). Order: event probabilities, permanent shocks, transitory shocks. LivPrb : float Survival probability; likelihood of being alive at the beginning of the succeeding period. DiscFac : float Intertemporal discount factor for future utility. Returns ------- None ''' self.DiscFacEff = DiscFac*LivPrb # "effective" discount factor self.ShkPrbsNext = IncomeDstn[0] self.PermShkValsNext = IncomeDstn[1] self.TranShkValsNext = IncomeDstn[2] self.PermShkMinNext = np.min(self.PermShkValsNext) self.TranShkMinNext = np.min(self.TranShkValsNext) self.vPfuncNext = solution_next.vPfunc self.WorstIncPrb = np.sum(self.ShkPrbsNext[ (self.PermShkValsNext*self.TranShkValsNext)== (self.PermShkMinNext*self.TranShkMinNext)]) if self.CubicBool: self.vPPfuncNext = solution_next.vPPfunc if self.vFuncBool: self.vFuncNext = solution_next.vFunc # Update the bounding MPCs and PDV of human wealth: self.PatFac = ((self.Rfree*self.DiscFacEff)**(1.0/self.CRRA))/self.Rfree self.MPCminNow = 1.0/(1.0 + self.PatFac/solution_next.MPCmin) self.ExIncNext = np.dot(self.ShkPrbsNext,self.TranShkValsNext*self.PermShkValsNext) self.hNrmNow = self.PermGroFac/self.Rfree*(self.ExIncNext + solution_next.hNrm) self.MPCmaxNow = 1.0/(1.0 + (self.WorstIncPrb**(1.0/self.CRRA))* self.PatFac/solution_next.MPCmax) def defBoroCnst(self,BoroCnstArt): ''' Defines the constrained portion of the consumption function as cFuncNowCnst, an attribute of self. Uses the artificial and natural borrowing constraints. Parameters ---------- BoroCnstArt : float or None Borrowing constraint for the minimum allowable assets to end the period with. If it is less than the natural borrowing constraint, then it is irrelevant; BoroCnstArt=None indicates no artificial bor- rowing constraint. Returns ------- none ''' # Calculate the minimum allowable value of money resources in this period self.BoroCnstNat = (self.solution_next.mNrmMin - self.TranShkMinNext)*\ (self.PermGroFac*self.PermShkMinNext)/self.Rfree # Note: need to be sure to handle BoroCnstArt==None appropriately. # In Py2, this would evaluate to 5.0: np.max([None, 5.0]). # However in Py3, this raises a TypeError. Thus here we need to directly # address the situation in which BoroCnstArt == None: if BoroCnstArt is None: self.mNrmMinNow = self.BoroCnstNat else: self.mNrmMinNow = np.max([self.BoroCnstNat,BoroCnstArt]) if self.BoroCnstNat < self.mNrmMinNow: self.MPCmaxEff = 1.0 # If actually constrained, MPC near limit is 1 else: self.MPCmaxEff = self.MPCmaxNow # Define the borrowing constraint (limiting consumption function) self.cFuncNowCnst = LinearInterp(np.array([self.mNrmMinNow, self.mNrmMinNow+1]), np.array([0.0, 1.0])) def prepareToSolve(self): ''' Perform preparatory work before calculating the unconstrained consumption function. Parameters ---------- none Returns ------- none ''' self.setAndUpdateValues(self.solution_next,self.IncomeDstn,self.LivPrb,self.DiscFac) self.defBoroCnst(self.BoroCnstArt) #################################################################################################### #################################################################################################### class ConsIndShockSolverBasic(ConsIndShockSetup): ''' This class solves a single period of a standard consumption-saving problem, using linear interpolation and without the ability to calculate the value function. ConsIndShockSolver inherits from this class and adds the ability to perform cubic interpolation and to calculate the value function. Note that this class does not have its own initializing method. It initial- izes the same problem in the same way as ConsIndShockSetup, from which it inherits. ''' def prepareToCalcEndOfPrdvP(self): ''' Prepare to calculate end-of-period marginal value by creating an array of market resources that the agent could have next period, considering the grid of end-of-period assets and the distribution of shocks he might experience next period. Parameters ---------- none Returns ------- aNrmNow : np.array A 1D array of end-of-period assets; also stored as attribute of self. ''' aNrmNow = np.asarray(self.aXtraGrid) + self.BoroCnstNat ShkCount = self.TranShkValsNext.size aNrm_temp = np.tile(aNrmNow,(ShkCount,1)) # Tile arrays of the income shocks and put them into useful shapes aNrmCount = aNrmNow.shape[0] PermShkVals_temp = (np.tile(self.PermShkValsNext,(aNrmCount,1))).transpose() TranShkVals_temp = (np.tile(self.TranShkValsNext,(aNrmCount,1))).transpose() ShkPrbs_temp = (np.tile(self.ShkPrbsNext,(aNrmCount,1))).transpose() # Get cash on hand next period mNrmNext = self.Rfree/(self.PermGroFac*PermShkVals_temp)*aNrm_temp + TranShkVals_temp # Store and report the results self.PermShkVals_temp = PermShkVals_temp self.ShkPrbs_temp = ShkPrbs_temp self.mNrmNext = mNrmNext self.aNrmNow = aNrmNow return aNrmNow def calcEndOfPrdvP(self): ''' Calculate end-of-period marginal value of assets at each point in aNrmNow. Does so by taking a weighted sum of next period marginal values across income shocks (in a preconstructed grid self.mNrmNext). Parameters ---------- none Returns ------- EndOfPrdvP : np.array A 1D array of end-of-period marginal value of assets ''' EndOfPrdvP = self.DiscFacEff*self.Rfree*self.PermGroFac**(-self.CRRA)*np.sum( self.PermShkVals_temp**(-self.CRRA)* self.vPfuncNext(self.mNrmNext)*self.ShkPrbs_temp,axis=0) return EndOfPrdvP def getPointsForInterpolation(self,EndOfPrdvP,aNrmNow): ''' Finds interpolation points (c,m) for the consumption function. Parameters ---------- EndOfPrdvP : np.array Array of end-of-period marginal values. aNrmNow : np.array Array of end-of-period asset values that yield the marginal values in EndOfPrdvP. Returns ------- c_for_interpolation : np.array Consumption points for interpolation. m_for_interpolation : np.array Corresponding market resource points for interpolation. ''' cNrmNow = self.uPinv(EndOfPrdvP) mNrmNow = cNrmNow + aNrmNow # Limiting consumption is zero as m approaches mNrmMin c_for_interpolation = np.insert(cNrmNow,0,0.,axis=-1) m_for_interpolation = np.insert(mNrmNow,0,self.BoroCnstNat,axis=-1) # Store these for calcvFunc self.cNrmNow = cNrmNow self.mNrmNow = mNrmNow return c_for_interpolation,m_for_interpolation def usePointsForInterpolation(self,cNrm,mNrm,interpolator): ''' Constructs a basic solution for this period, including the consumption function and marginal value function. Parameters ---------- cNrm : np.array (Normalized) consumption points for interpolation. mNrm : np.array (Normalized) corresponding market resource points for interpolation. interpolator : function A function that constructs and returns a consumption function. Returns ------- solution_now : ConsumerSolution The solution to this period's consumption-saving problem, with a consumption function, marginal value function, and minimum m. ''' # Construct the unconstrained consumption function cFuncNowUnc = interpolator(mNrm,cNrm) # Combine the constrained and unconstrained functions into the true consumption function cFuncNow = LowerEnvelope(cFuncNowUnc,self.cFuncNowCnst) # Make the marginal value function and the marginal marginal value function vPfuncNow = MargValueFunc(cFuncNow,self.CRRA) # Pack up the solution and return it solution_now = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=self.mNrmMinNow) return solution_now def makeBasicSolution(self,EndOfPrdvP,aNrm,interpolator): ''' Given end of period assets and end of period marginal value, construct the basic solution for this period. Parameters ---------- EndOfPrdvP : np.array Array of end-of-period marginal values. aNrm : np.array Array of end-of-period asset values that yield the marginal values in EndOfPrdvP. interpolator : function A function that constructs and returns a consumption function. Returns ------- solution_now : ConsumerSolution The solution to this period's consumption-saving problem, with a consumption function, marginal value function, and minimum m. ''' cNrm,mNrm = self.getPointsForInterpolation(EndOfPrdvP,aNrm) solution_now = self.usePointsForInterpolation(cNrm,mNrm,interpolator) return solution_now def addMPCandHumanWealth(self,solution): ''' Take a solution and add human wealth and the bounding MPCs to it. Parameters ---------- solution : ConsumerSolution The solution to this period's consumption-saving problem. Returns: ---------- solution : ConsumerSolution The solution to this period's consumption-saving problem, but now with human wealth and the bounding MPCs. ''' solution.hNrm = self.hNrmNow solution.MPCmin = self.MPCminNow solution.MPCmax = self.MPCmaxEff return solution def makeLinearcFunc(self,mNrm,cNrm): ''' Makes a linear interpolation to represent the (unconstrained) consumption function. Parameters ---------- mNrm : np.array Corresponding market resource points for interpolation. cNrm : np.array Consumption points for interpolation. Returns ------- cFuncUnc : LinearInterp The unconstrained consumption function for this period. ''' cFuncUnc = LinearInterp(mNrm,cNrm,self.MPCminNow*self.hNrmNow,self.MPCminNow) return cFuncUnc def solve(self): ''' Solves a one period consumption saving problem with risky income. Parameters ---------- None Returns ------- solution : ConsumerSolution The solution to the one period problem. ''' aNrm = self.prepareToCalcEndOfPrdvP() EndOfPrdvP = self.calcEndOfPrdvP() solution = self.makeBasicSolution(EndOfPrdvP,aNrm,self.makeLinearcFunc) solution = self.addMPCandHumanWealth(solution) return solution ############################################################################### ############################################################################### class ConsIndShockSolver(ConsIndShockSolverBasic): ''' This class solves a single period of a standard consumption-saving problem. It inherits from ConsIndShockSolverBasic, adding the ability to perform cubic interpolation and to calculate the value function. ''' def makeCubiccFunc(self,mNrm,cNrm): ''' Makes a cubic spline interpolation of the unconstrained consumption function for this period. Parameters ---------- mNrm : np.array Corresponding market resource points for interpolation. cNrm : np.array Consumption points for interpolation. Returns ------- cFuncUnc : CubicInterp The unconstrained consumption function for this period. ''' EndOfPrdvPP = self.DiscFacEff*self.Rfree*self.Rfree*self.PermGroFac**(-self.CRRA-1.0)* \ np.sum(self.PermShkVals_temp**(-self.CRRA-1.0)* self.vPPfuncNext(self.mNrmNext)*self.ShkPrbs_temp,axis=0) dcda = EndOfPrdvPP/self.uPP(np.array(cNrm[1:])) MPC = dcda/(dcda+1.) MPC = np.insert(MPC,0,self.MPCmaxNow) cFuncNowUnc = CubicInterp(mNrm,cNrm,MPC,self.MPCminNow*self.hNrmNow,self.MPCminNow) return cFuncNowUnc def makeEndOfPrdvFunc(self,EndOfPrdvP): ''' Construct the end-of-period value function for this period, storing it as an attribute of self for use by other methods. Parameters ---------- EndOfPrdvP : np.array Array of end-of-period marginal value of assets corresponding to the asset values in self.aNrmNow. Returns ------- none ''' VLvlNext = (self.PermShkVals_temp**(1.0-self.CRRA)*\ self.PermGroFac**(1.0-self.CRRA))*self.vFuncNext(self.mNrmNext) EndOfPrdv = self.DiscFacEff*np.sum(VLvlNext*self.ShkPrbs_temp,axis=0) EndOfPrdvNvrs = self.uinv(EndOfPrdv) # value transformed through inverse utility EndOfPrdvNvrsP = EndOfPrdvP*self.uinvP(EndOfPrdv) EndOfPrdvNvrs = np.insert(EndOfPrdvNvrs,0,0.0) EndOfPrdvNvrsP = np.insert(EndOfPrdvNvrsP,0,EndOfPrdvNvrsP[0]) # This is a very good approximation, vNvrsPP = 0 at the asset minimum aNrm_temp = np.insert(self.aNrmNow,0,self.BoroCnstNat) EndOfPrdvNvrsFunc = CubicInterp(aNrm_temp,EndOfPrdvNvrs,EndOfPrdvNvrsP) self.EndOfPrdvFunc = ValueFunc(EndOfPrdvNvrsFunc,self.CRRA) def addvFunc(self,solution,EndOfPrdvP): ''' Creates the value function for this period and adds it to the solution. Parameters ---------- solution : ConsumerSolution The solution to this single period problem, likely including the consumption function, marginal value function, etc. EndOfPrdvP : np.array Array of end-of-period marginal value of assets corresponding to the asset values in self.aNrmNow. Returns ------- solution : ConsumerSolution The single period solution passed as an input, but now with the value function (defined over market resources m) as an attribute. ''' self.makeEndOfPrdvFunc(EndOfPrdvP) solution.vFunc = self.makevFunc(solution) return solution def makevFunc(self,solution): ''' Creates the value function for this period, defined over market resources m. self must have the attribute EndOfPrdvFunc in order to execute. Parameters ---------- solution : ConsumerSolution The solution to this single period problem, which must include the consumption function. Returns ------- vFuncNow : ValueFunc A representation of the value function for this period, defined over normalized market resources m: v = vFuncNow(m). ''' # Compute expected value and marginal value on a grid of market resources mNrm_temp = self.mNrmMinNow + self.aXtraGrid cNrmNow = solution.cFunc(mNrm_temp) aNrmNow = mNrm_temp - cNrmNow vNrmNow = self.u(cNrmNow) + self.EndOfPrdvFunc(aNrmNow) vPnow = self.uP(cNrmNow) # Construct the beginning-of-period value function vNvrs = self.uinv(vNrmNow) # value transformed through inverse utility vNvrsP = vPnow*self.uinvP(vNrmNow) mNrm_temp =
np.insert(mNrm_temp,0,self.mNrmMinNow)
numpy.insert
from dataclasses import dataclass from typing import Optional, Tuple import numpy as np from numba import njit, jitclass, int32 from . import hex_io @dataclass class HexGameState: color: int # 0=first player (red), 1=second player (blue) legal_moves: np.ndarray result: int board: np.ndarray class HexGame: """Game of Hex See https://en.wikipedia.org/wiki/Hex_(board_game) """ # printing boards etc. io = hex_io def __init__(self, board_size: int = 11) -> None: self.board_size = board_size self.impl = HexGameImpl(self.board_size) self._game_snapshot = None self.reset() def __getstate__(self): """Pickling support""" return (self.impl.board.copy(), self.impl.color, self.impl.winner) def __setstate__(self, state): """Pickling support""" board, color, winner = state self.__init__(board.shape[0]) self.impl.board[:] = board self.impl.color = color self.impl.winner = winner def reset(self): self.impl = HexGameImpl(self.board_size) self._game_snapshot = None def seed(self, seed: Optional[int] = None) -> None: """Seed random number generator.""" pass @property def state(self) -> HexGameState: return HexGameState(self.impl.color - 1, self.impl.legal_moves(), self.impl.result(), self.impl.board.copy()) def step(self, move: int) -> None: self.impl.step(move) def snapshot(self) -> None: self._game_snapshot = self.__getstate__() def restore(self) -> None: assert self._game_snapshot self.__setstate__(self._game_snapshot) @staticmethod def flip_player_board(board: np.ndarray) -> np.ndarray: """Flip board to opponent perspective. Change both color and attack direction. :param board: One game board (M x M) or batch of boards (B x M x M) """ assert isinstance(board, np.ndarray) if len(board.shape) == 2: return HexGame.flip_player_board(board[None, :, :]) assert len(board.shape) == 3, 'expecting batch of boards' assert board.shape[-2] == board.shape[-1], 'board must be square' # flip color board = (board > 0) * (3 - board) # flip attack direction: mirror board along diagonal board = np.flip(np.rot90(board, axes=(-2, -1)), axis=-1) return board @staticmethod def flip_player_board_moves(board: np.ndarray, moves: np.ndarray) \ -> Tuple[np.ndarray, np.ndarray]: """Flip board and legal moves to opponent perspective. Change both color and attack direction. :param board: One game board (M x M) or batch of boards (B x M x M) :param moves: Legal moves (K) or padded batch of moves (B x K) """ assert isinstance(board, np.ndarray) assert isinstance(moves, np.ndarray) if len(board.shape) == 2: assert len(moves.shape) == 1, 'expecting 1D moves array' return HexGame.flip_player_board_moves(board[None, :, :], moves[None, :]) board = HexGame.flip_player_board(board) assert isinstance(moves, np.ndarray) assert len(moves.shape) == 2, 'expecting batch of moves' assert len(moves) == len(board), 'board and moves batch sizes differ' board_size = board.shape[-2:] # remove padding and collapse ragged rows moves_size = moves.shape flat_moves = moves.ravel().copy() mask = (flat_moves > 0) tiles = flat_moves[mask] - 1 # calculate new move coordinates mirrored along diagonal tile_ids =
np.unravel_index(tiles, board_size)
numpy.unravel_index
# Atom Tracing Code for International Workshop and Short Course on the FRONTIERS OF ELECTRON TOMOGRAPHY # https://www.electron-tomo.com/ import numpy as np import scipy as sp import scipy.io as sio import os import warnings def tripleRoll(vol, vec): return np.roll(np.roll(np.roll(vol, vec[0], axis=0), vec[1], axis=1), vec[2], axis=2) def peakFind3D(vol, thresh3D): """ Find peaks in a 3D volume vol: an ndarray of values with peaks to find thresh3D: [0,1] value to set a threshold for size of peak vs. max intensity in image """ pLarge = ((vol > tripleRoll(vol, [-1, -1, -1])) & (vol > tripleRoll(vol, [0, -1, -1])) & (vol > tripleRoll(vol, [1, -1, -1])) & (vol > tripleRoll(vol, [-1, 0, -1])) & (vol > tripleRoll(vol, [1, 0, -1])) & (vol > tripleRoll(vol, [-1, 1, -1])) & (vol > tripleRoll(vol, [0, 1, -1])) & (vol > tripleRoll(vol, [1, 1, -1])) & (vol > tripleRoll(vol, [0, 0, -1])) & (vol > tripleRoll(vol, [-1, -1, 0])) & (vol > tripleRoll(vol, [0, -1, 0])) & (vol > tripleRoll(vol, [1, -1, 0])) & (vol > tripleRoll(vol, [-1, 0, 0])) & (vol > tripleRoll(vol, [1, 0, 0])) & (vol > tripleRoll(vol, [-1, 1, 0])) & (vol > tripleRoll(vol, [0, 1, 0])) & (vol > tripleRoll(vol, [1, 1, 0])) & (vol > tripleRoll(vol, [-1, -1, 1])) & (vol > tripleRoll(vol, [0, -1, 1])) & (vol > tripleRoll(vol, [1, -1, 1])) & (vol > tripleRoll(vol, [-1, 0, 1])) & (vol > tripleRoll(vol, [1, 0, 1])) & (vol > tripleRoll(vol, [-1, 1, 1])) & (vol > tripleRoll(vol, [0, 1, 1])) & (vol > tripleRoll(vol, [1, 1, 1])) & (vol > tripleRoll(vol, [0, 0, 1])) & (vol > thresh3D * np.max(vol))) [xp, yp, zp] = np.where(pLarge * vol) ip = vol[xp, yp, zp] return {'xp': xp, 'yp': yp, 'zp': zp, 'ip': ip} def MatrixQuaternionRot(vector, theta): """ MatrixQuaternionRot(vector,theta) Returns a 3x3 rotation matrix [SO(3)] in numpy array (not numpy matrix!) for rotating "theta" angle around the given "vector" axis. vector - A non-zero 3-element numpy array representing rotation axis theta - A real number for rotation angle in "DEGREES" Author: <NAME>, Dept. of Physics and Astronomy, UCLA <EMAIL> """ theta = theta * np.pi / 180 vector = vector / np.float(np.sqrt(np.dot(vector, vector))) w = np.cos(theta / 2) x = -np.sin(theta / 2) * vector[0] y = -np.sin(theta / 2) * vector[1] z = -np.sin(theta / 2) * vector[2] RotM = np.array([[1. - 2 * y ** 2. - 2 * z ** 2, 2. * x * y + 2 * w * z, 2. * x * z - 2. * w * y], \ [2. * x * y - 2. * w * z, 1. - 2. * x ** 2 - 2. * z ** 2, 2. * y * z + 2. * w * x], \ [2 * x * z + 2 * w * y, 2 * y * z - 2. * w * x, 1 - 2. * x ** 2 - 2. * y ** 2]]) return RotM def gauss3DGEN_FIT(xyz, x0, y0, z0, sigma_x, sigma_y, sigma_z, Angle1, Angle2, Angle3, BG, Height): """ gauss3DGEN_FIT((x,y,z),x0,y0,z0,sigma_x,sigma_y,sigma_z,Angle1,Angle2,Angle3,BG,Height) Returns the value of a gaussian at a 3D set of points for the given sub-pixel positions with standard deviations, 3D Eular rotation angles, constant Background value, and Gaussian peak height. xyz - A tuple containing the 3D arrays of points (possibly from meshgrid) x0, y0, z0 = the x, y, z centers of the Gaussian sigma_x,sigma_y,sigma_z = standard deviations along x,y,z direction before 3D angular rotation Angle1,Angle2,Angle3 = Tiat-Bryan angles in ZYX convention for 3D rotation BG = constant background Height = the peak height of Gaussian function Author: <NAME>, Dept. of Physics and Astronomy, UCLA <EMAIL> """ # 3D vectors for each sampled positions v = np.array( [xyz[0].reshape(-1, order='F') - x0, xyz[1].reshape(-1, order='F') - y0, xyz[2].reshape(-1, order='F') - z0]) # rotation axes for Tiat-Bryan angles vector1 = np.array([0, 0, 1]) rotmat1 = MatrixQuaternionRot(vector1, Angle1) vector2 = np.array([0, 1, 0]) rotmat2 = MatrixQuaternionRot(vector2, Angle2) vector3 = np.array([1, 0, 0]) rotmat3 = MatrixQuaternionRot(vector3, Angle3) # full rotation matrix rotMAT = np.matrix(rotmat3) * np.matrix(rotmat2) * np.matrix(rotmat1) # 3x3 matrix for applying sigmas D = np.matrix(np.array([[1. / (2 * sigma_x ** 2), 0, 0, ], \ [0, 1. / (2 * sigma_y ** 2), 0], \ [0, 0, 1. / (2 * sigma_z ** 2)]])) # apply 3D rotation to the sigma matrix WidthMat = np.transpose(rotMAT) * D * rotMAT # caltulate 3D Gaussian RHS_calc = WidthMat * np.matrix(v) Result = Height * np.exp(-1 * np.sum(v * RHS_calc.A, axis=0)) + BG return Result def saveXYZ(filename, xyzCoords, AtomTypes, AtomNames, DataDescriptionStr): """ saveXYZ(filename,xyzCoords,AtomTypes,AtomNames,DataDescriptionStr) Writes the 3D atom coordinates and species into a file in xyz format. filename - filename to save the atomic coordinates xyzCoords - 3xN numpy array for xyz coordinates AtomTypes - postive integer describing the atomic species (0,1,2,...) AtomNames - a list of strings, containing the name of the atomic species for each atomtype of corresponding AtomTypes DataDescriptionStr - a string to be written on the header Author: <NAME>, Dept. of Physics and Astronomy, UCLA <EMAIL> """ f = open(filename, 'w') f.write('{0:d}\n'.format(xyzCoords.shape[1])) f.write('{0:s}\n'.format(DataDescriptionStr)) for i in range(xyzCoords.shape[1]): f.write('{0:s} {1:10.5f} {2:10.5f} {3:10.5f}\n'.format(AtomNames[int(AtomTypes[i] - 1)], xyzCoords[0, i], xyzCoords[1, i], xyzCoords[2, i])) f.close() def compute_average_atom_from_vol(DataMatrix, atom_pos, atom_ind, boxhalfsize): """ compute_average_atom_from_vol(DataMatrix,atom_pos,atom_ind,boxhalfsize) Computes the average atom based on given DataMatrix and atom positions and indices with the boxhalfsize. DataMatrix - a 3D array for reconstructed 3D intensity atom_pos - a 3xN numpy array for xyz coordinates atom_ind - a 1D numpy array for indices of atoms to be averaged boxhalfsize - half box size for the cropping, full box size will be (2*boxhalfsize+1,2*boxhalfsize+1,2*boxhalfsize+1) Author: <NAME>, Dept. of Physics and Astronomy, UCLA <EMAIL> """ total_vol = np.zeros((boxhalfsize * 2 + 1, boxhalfsize * 2 + 1, boxhalfsize * 2 + 1)) for kkk in atom_ind: curr_x = int(np.round(atom_pos[0, kkk])) curr_y = int(np.round(atom_pos[1, kkk])) curr_z = int(np.round(atom_pos[2, kkk])) curr_vol = DataMatrix[curr_x - boxhalfsize:curr_x + boxhalfsize + 1, \ curr_y - boxhalfsize:curr_y + boxhalfsize + 1, \ curr_z - boxhalfsize:curr_z + boxhalfsize + 1] total_vol = total_vol + curr_vol avatom = total_vol / len(atom_ind) return avatom def get_atomtype_vol_twoatom_useInd(DataMatrix, atom_pos, avatomFe, avatomPt, boxhalfsize, useInd): """ Author: <NAME>, Dept. of Physics and Astronomy, UCLA <EMAIL> """ atomtype = np.zeros((atom_pos.shape[1])) numAtom1 = 0 numAtom2 = 0 for kkk in range(atom_pos.shape[1]): curr_x = int(np.round(atom_pos[0, kkk])) curr_y = int(np.round(atom_pos[1, kkk])) curr_z = int(np.round(atom_pos[2, kkk])) curr_vol = DataMatrix[curr_x - boxhalfsize:curr_x + boxhalfsize + 1, \ curr_y - boxhalfsize:curr_y + boxhalfsize + 1, \ curr_z - boxhalfsize:curr_z + boxhalfsize + 1] D_Fe = np.sum(np.abs(curr_vol[useInd] - avatomFe[useInd])) D_Pt = np.sum(np.abs(curr_vol[useInd] - avatomPt[useInd])) if D_Fe > D_Pt: atomtype[kkk] = 2 numAtom2 += 1 else: atomtype[kkk] = 1 numAtom1 += 1 # print('hi') # print("number of Fe/Pt atoms: {0:d}/{0:d}".format( numAtom1,numAtom2)) # print("number of Pt: {0:d} atoms".format( sum(atomtype==2))) return atomtype def trace_atoms(volume, GaussRad=2, ClassificationRad=2, Res=0.35, MinDist=2., intensityThresh=0.08): """Define this method for Python operators that transform the input array inputs: dataset - the volume to trace as a 3D numpy array GaussRad - pixel radius for cropping small volume around each peak for Gaussian fitting ClassificationRad - radius for cropping small volume around a peak for atom classification Res - pixel resolution (isotropic) MinDist - enforce minimum distance between atom positions intensityThresh - threshold to find peaks in the volume """ warnings.filterwarnings('ignore') print('Start atom tracing.') # GaussRad = 2 # radius for cropping small volume for fitting Gaussian # Res = 0.35 # pixel size MinDist = MinDist / Res # minimum distance in Angstrom # ClassificationRad = 2 # radius for cropping small volume for species classification t1_vol1 = volume.copy() t1_vol1 = np.swapaxes(t1_vol1, 0, 2) pp3D = peakFind3D(t1_vol1, intensityThresh) # volume and intensity threshold allPeaksIXYZ = np.array((pp3D['ip'], pp3D['xp'], pp3D['yp'], pp3D['zp'])).T print("Number of peaks found: {}".format(allPeaksIXYZ.shape[0])) sortedPeaksIXYZ = allPeaksIXYZ[allPeaksIXYZ[:, 0].argsort()[::-1]] RecordedPeakPos = np.array([]) fittingValues = np.zeros((sortedPeaksIXYZ.shape[0], 11)) print('Start Gaussian fitting for each peak.') cutOut3 = GaussRad Y3D, X3D, Z3D = np.meshgrid(np.arange(-cutOut3, cutOut3 + 1, 1), np.arange(-cutOut3, cutOut3 + 1, 1), np.arange(-cutOut3, cutOut3 + 1, 1)) for PeakInd in range(sortedPeaksIXYZ.shape[0]): curX = sortedPeaksIXYZ[PeakInd, 1] curY = sortedPeaksIXYZ[PeakInd, 2] curZ = sortedPeaksIXYZ[PeakInd, 3] # Check if current point + fit region is within the bounds of the volume if (curX > cutOut3 + 1) & (curY > cutOut3 + 1) & (curZ > cutOut3 + 1) & (curX < t1_vol1.shape[0] - cutOut3) \ & (curY < t1_vol1.shape[1] - cutOut3) & (curZ < t1_vol1.shape[2] - cutOut3): curVol = np.float32(t1_vol1[int(curX) - cutOut3:int(curX) + cutOut3 + 1, \ int(curY) - cutOut3:int(curY) + cutOut3 + 1, \ int(curZ) - cutOut3:int(curZ) + cutOut3 + 1]) # Fit to a 3D Gaussian to the area around the peak initP3D = (0.0, 0.0, 0.0, 3.0, 3.0, 3.0, 0., 0., 0., 0., max(curVol.flatten())) # x0,y0,z0,sigma_x,sigma_y,sigma_z,angle1, angle2, angle3,BG,Height bb = ( (-cutOut3, -cutOut3, -cutOut3, 0.0, 0.0, 0.0, -np.pi, -np.pi, -np.pi, -np.inf, max(curVol.flatten()) / 2.), \ (cutOut3, cutOut3, cutOut3, cutOut3 * 3, cutOut3 * 3, cutOut3 * 3, np.pi, np.pi, np.pi, np.inf, max(curVol.flatten()) * 2.)) # fitting bounds ((lower),(upper)) optP3D, optCov3D = sp.optimize.curve_fit(gauss3DGEN_FIT, (X3D, Y3D, Z3D), curVol.reshape(-1, order='F'), p0=initP3D, bounds=bb) # Check minimum distance constraint and add to the array if good fittingValues[PeakInd, :] = optP3D if RecordedPeakPos.size == 0: # first peak, no need to check minimum dist RecordedPeakPos = np.array([[curX + optP3D[0]], [curY + optP3D[1]], [curZ + optP3D[2]]]) # print("recorded atom number 1, peak number 1") else: Dist = np.sqrt(np.sum( (RecordedPeakPos -
np.array([[curX + optP3D[0]], [curY + optP3D[1]], [curZ + optP3D[2]]])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -* '''Helper functions for geometry calculations. ''' from __future__ import print_function, division import numpy as np def ray_triangle_intersection(ray_near, ray_dir, triangle): """ Möller–Trumbore intersection algorithm in pure python Based on http://en.wikipedia.org/wiki/ M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm The returned t's are the scaling for ray_dir do get the triangle intersection point. The ray is starting from ray_near and goes to infinity. Only positive t's are returned. Parameters ---------- ray_near : array-like shape=(3,) Starting point of the ray. ray_dir : array-like shape=(3,) Directional vector of the ray. triangle : array-like shape=(3, 3) Triangle for which the interaction point should be found. Returns ------- t : float or np.nan Intersection is ray_near + t * ray_dir or np.nan for no intersection """ (v1, v2, v3) = triangle eps = 0.000001 edge1 = v2 - v1 edge2 = v3 - v1 pvec = np.cross(ray_dir, edge2) det = edge1.dot(pvec) if abs(det) < eps: return np.nan inv_det = 1. / det tvec = ray_near - v1 u = tvec.dot(pvec) * inv_det if u < 0. or u > 1.: return np.nan qvec = np.cross(tvec, edge1) v = ray_dir.dot(qvec) * inv_det if v < 0. or u + v > 1.: return np.nan t = edge2.dot(qvec) * inv_det if t < eps: return np.nan return t def get_intersections(convex_hull, v_pos, v_dir, eps=1e-4): '''Function to get the intersection points of an infinite line and the convex hull. The returned t's are the scaling factors for v_dir to get the intersection points. If t < 0 the intersection is 'behind' v_pos. This can be used decide whether a track is a starting track. Parameters ---------- convex_hull : scipy.spatial.ConvexHull defining the desired convex volume v_pos : array-like shape=(3,) A point of the line. v_dir : array-like shape=(3,) Directional vector of the line. eps : float or None Min distance between intersection points to be treated as different points. Returns ------- t : array-like shape=(n_intersections) Scaling factors for v_dir to get the intersection points. Actual intersection points are v_pos + t * v_dir. ''' if not isinstance(v_pos, np.ndarray): v_pos = np.array(v_pos) if not isinstance(v_dir, np.ndarray): v_dir = np.array(v_dir) t_s = [ray_triangle_intersection(v_pos, v_dir, convex_hull.points[simp]) for simp in convex_hull.simplices] t_s = np.array(t_s) t_s = t_s[np.isfinite(t_s)] if len(t_s) != 2: # A line should have at max 2 intersection points # with a convex hull t_s_back = [ray_triangle_intersection(v_pos, -v_dir, convex_hull.points[simp]) for simp in convex_hull.simplices] t_s_back = np.array(t_s_back) t_s_back = t_s_back[np.isfinite(t_s_back)] t_s = np.hstack((t_s, t_s_back * (-1.))) if isinstance(eps, float): # Remove similar intersections if eps >= 0.: t_selected = [] intersections = [] for t_i in t_s: intersection_i = v_pos + t_i * v_dir distances = [np.linalg.norm(intersection_i - intersection_j) for intersection_j in intersections] if not (np.array(distances) < eps).any(): t_selected.append(t_i) intersections.append(intersection_i) t_s = np.array(t_selected) return t_s def point_is_inside(convex_hull, v_pos, default_v_dir=np.array([0., 0., 1.]), eps=1e-4): '''Function to determine if a point is inside the convex hull. A default directional vector is asumend. If this track has an intersection in front and behind v_pos, then must v_pos be inside the hull. The rare case of a point inside the hull surface is treated as being inside the hull. Parameters ---------- convex_hull : scipy.spatial.ConvexHull defining the desired convex volume v_pos : array-like shape=(3,) Position. default_v_dir : array-like shape=(3,), optional (default=[0, 0, 1]) See get_intersections() eps : float or None See get_intersections() Returns ------- is_inside : boolean True if the point is inside the detector. False if the point is outside the detector ''' t_s = get_intersections(convex_hull, v_pos, default_v_dir, eps) return len(t_s) == 2 and (t_s >= 0).any() and (t_s <= 0).any() def distance_to_convex_hull(convex_hull, v_pos): '''Function to determine the closest distance of a point to the convex hull. Parameters ---------- convex_hull : scipy.spatial.ConvexHull defining the desired convex volume v_pos : array-like shape=(3,) Position. Returns ------- distance: float absolute value of closest distance from the point to the convex hull (maybe easier/better to have distance poositive or negativ depending on wheter the point is inside or outside. Alernatively check with point_is_inside) ''' raise NotImplementedError def get_closest_point_on_edge(edge_point1, edge_point2, point): '''Function to determine the closest point on an edge defined by the two points edge_point1 and edge_point2 Parameters ---------- edge_point1 : array-like shape=(3,) First edge point . edge_point2 : array-like shape=(3,) Second edge point . point : array-like shape=(3,) point of which to find the distance to the edge Returns ------- distance: array-like shape=(3,) closest point on the edge ''' if edge_point1 == edge_point2: return ValueError('Points do not define line.') A = np.array(edge_point1) B = np.array(edge_point2) P = np.array(point) vec_edge = B - A vec_point = P - A norm_edge = np.linalg.norm(vec_edge) t_projection = np.dot(vec_edge, vec_point) / (norm_edge**2) t_clipped = min(1, max(t_projection, 0)) closest_point = A + t_clipped*vec_edge return closest_point def get_distance_to_edge(edge_point1, edge_point2, point): '''Function to determine the closest distance of a point to an edge defined by the two points edge_point1 and edge_point2 Parameters ---------- edge_point1 : array-like shape=(3,) First edge point . edge_point2 : array-like shape=(3,) Second edge point . point : array-like shape=(3,) point of which to find the distance to the edge Returns ------- distance: float ''' closest_point = get_closest_point_on_edge(edge_point1, edge_point2, point) distance = np.linalg.norm(closest_point - point) return distance def get_edge_intersection(edge_point1, edge_point2, point): '''Returns t: edge_point1 + u*(edge_point2-edge_point1) = point + t * (0, 1, 0) if u is within [0,1]. [Helper Function to find out if point is inside the icecube 2D Polygon] Parameters ---------- edge_point1 : array-like shape=(3,) First edge point . edge_point2 : array-like shape=(3,) Second edge point . point : array-like shape=(3,) point of which to find the distance to the edge Returns ------- t: float. If intersection is within edge othwise returns nan. ''' if edge_point1 == edge_point2: return ValueError('Points do not define line.') A = np.array(edge_point1) B =
np.array(edge_point2)
numpy.array
# -*- coding: utf-8 -*- # from __future__ import division import numpy import sympy from ..helpers import untangle class WissmannBecker(object): """ <NAME> and <NAME>, Partially Symmetric Cubature Formulas for Even Degrees of Exactness, SIAM J. Numer. Anal., 23(3), 676–685, 10 pages, <https://doi.org/10.1137/0723043>. """ def __init__(self, index, symbolic=False): frac = sympy.Rational if symbolic else lambda x, y: x / y self.name = "WB({})".format(index) if index == "4-1": self.degree = 4 data = [ (frac(8, 7), _z(0)), (0.439560439560440, _z(0.966091783079296)), (0.566072207007532, _m(0.851914653304601, 0.455603727836193)), (0.642719001783677, _m(0.630912788976754, -0.731629951573135)), ] elif index == "4-2": self.degree = 4 data = [ (1.286412084888852, _z(-0.356822089773090)), (0.491365692888926, _z(0.934172358962716)), (0.761883709085613, _m(0.774596669241483, 0.390885162530071)), (0.349227402025498, _m(0.774596669241483, -0.852765377881771)), ] elif index == "6-1": self.degree = 6 data = [ (0.455343245714174, _z(0.836405633697626)), (0.827395973202966, _z(-0.357460165391307)), (0.144000884599645, _m(0.888764014654765, 0.872101531193131)), (0.668259104262665, _m(0.604857639464685, 0.305985162155427)), (0.225474004890679, _m(0.955447506641064, -0.410270899466658)), (0.320896396788441, _m(0.565459993438754, -0.872869311156879)), ] elif index == "6-2": self.degree = 6 data = [ (0.392750590964348, _z(0.869833375250059)), (0.754762881242610, _z(-0.479406351612111)), (0.206166050588279, _m(0.863742826346154, 0.802837516207657)), (0.689992138489864, _m(0.518690521392582, 0.262143665508058)), (0.260517488732317, _m(0.933972544972849, -0.363096583148066)), (0.269567586086061, _m(0.608977536016356, -0.896608632762453)), ] elif index == "8-1": self.degree = 8 data = [ (0.055364705621440, _z(0)), (0.404389368726076, _z(0.757629177660505)), (0.533546604952635, _z(-0.236871842255702)), (0.117054188786739, _z(-0.989717929044527)), (0.125614417613747, _m(0.639091304900370, 0.950520955645667)), (0.136544584733588, _m(0.937069076924990, 0.663882736885633)), (0.483408479211257, _m(0.537083530541494, 0.304210681724104)), (0.252528506429544, _m(0.887188506449625, -0.236496718536120)), (0.361262323882172, _m(0.494698820670197, -0.698953476086564)), (0.085464254086247, _m(0.897495818279768, -0.900390774211580)), ] else: assert index == "8-2" self.degree = 8 data = [ (0.450276776305590, _z(0.659560131960342)), (0.166570426777813, _z(-0.949142923043125)), (0.098869459933431, _m(0.952509466071562, 0.765051819557684)), (0.153696747140812, _m(0.532327454074206, 0.936975981088416)), (0.396686976072903, _m(0.684736297951735, 0.333656717735747)), (0.352014367945695, _m(0.233143240801405, -0.079583272377397)), (0.189589054577798, _m(0.927683319306117, -0.272240080612534)), (0.375101001147587, _m(0.453120687403749, -0.613735353398028)), (0.125618791640072, _m(0.837503640422812, -0.888477650535971)), ] self.points, self.weights = untangle(data) return def _z(a): return
numpy.array([[0, a]])
numpy.array
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from __future__ import print_function import numpy as np import pandas as pd from sklearn.decomposition import PCA from scipy.interpolate import splev, splrep import logging log = logging.getLogger(__name__) __all__ = ["do_pca", "time_interpolate", "back_proj_interp", "back_proj_pca", "transformations_matrix", "interp_series"] def do_pca(trajs, pca=None, coords=['x', 'y', 'z'], suffix='_pca', append=False, return_pca=False): ''' Performs a principal component analysis on the input coordinates suffix is only applied when appending ''' if pca is None: pca = PCA() if not np.all(np.isfinite(trajs[coords])): log.warning('''Droping non finite values before performing PCA''') rotated_ = pd.DataFrame(pca.fit_transform(trajs[coords].dropna())) rotated_.set_index(trajs[coords].dropna().index, inplace=True) rotated = pd.DataFrame(columns=coords, index=trajs.index) rotated.loc[rotated_.index] = rotated_ rotated['t'] = trajs.t if append: for pca_coord in [c + suffix for c in coords]: trajs[pca_coord] = rotated[pca_coord] if return_pca: return trajs, pca else: return trajs if return_pca: return rotated, pca else: return rotated def _grouped_pca(trajs, pca, coords, group_kw): return trajs.groupby(**group_kw).apply( lambda df: pca.fit_transform(df[coords].dropna()), coords) def time_interpolate(trajs, sampling=1, s=0, k=3, coords=['x', 'y', 'z']): """Interpolates each segment of the trajectories along time using `scipy.interpolate.splrep` Parameters ---------- sampling : int, Must be higher or equal than 1, will add `sampling - 1` extra points between two consecutive original data point. Sub-sampling is not supported. coords : tuple of column names, default `('x', 'y', 'z')` the coordinates to interpolate. s : float A smoothing condition. The amount of smoothness is determined by satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed interpolation of (x,y). The user can use s to control the tradeoff between closeness and smoothness of fit. Larger s means more smoothing while smaller values of s indicate less smoothing. Recommended values of s depend on the weights, w. If the weights represent the inverse of the standard- deviation of y, then a good s value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if weights are supplied. s = 0.0 (interpolating) if no weights are supplied. k : int The order of the spline fit. It is recommended to use cubic splines. Even order splines should be avoided especially with small s values. 1 <= k <= 5 Returns ------- interpolated : a :class:`pandas.Dataframe` instance The interpolated values, with column names given by `coords` plus the computed speeds (first order derivative) and accelarations (second order derivative) if `k` > 2 Notes ----- - The returned DataFrame is NOT indexed like the input (in particular for `t_stamp`). - It is also NOT casted to a Trajectories instance. - The `s` and `k` arguments are passed to `scipy.interpolate.splrep`, see this function documentation for more details - If a segment is too short to be interpolated with the passed order `k`, the order will be automatically diminished. - Segments with only one point will be returned as is """ interpolated = trajs.groupby(level='label').apply(_segment_interpolate_, sampling=sampling, s=s, k=k, coords=coords) interpolated = interpolated.swaplevel( 't_stamp', 'label').sortlevel(['t_stamp', 'label']) return interpolated def _segment_interpolate_(segment, sampling, s=0, k=3, coords=['x', 'y', 'z']): """ """ corrected_k = k while segment.shape[0] <= corrected_k: corrected_k -= 2 t_stamps_in = segment.index.get_level_values('t_stamp').values t_stamp0, t_stamp1 = t_stamps_in[0], t_stamps_in[-1] t0, t1 = segment.t.iloc[0], segment.t.iloc[-1] t_stamps = np.arange(t_stamp0*sampling, t_stamp1*sampling+1, dtype=np.int) times = np.linspace(t0, t1, t_stamps.size) t_stamps = pd.Index(t_stamps, dtype=np.int, name='t_stamp') tmp_df = pd.DataFrame(index=t_stamps) tmp_df['t'] = times if segment.shape[0] < 2: for coord in coords: tmp_df[coord] = segment[coord].values tmp_df['v_'+coord] = np.nan tmp_df['a_'+coord] = np.nan return tmp_df #pass tck = _spline_rep(segment, coords, s=s, k=corrected_k) for coord in coords: tmp_df[coord] = splev(times, tck[coord], der=0) tmp_df['v_'+coord] = splev(times, tck[coord], der=1) if k > 2: if corrected_k > 2: tmp_df['a_'+coord] = splev(times, tck[coord], der=2) else: tmp_df['a_'+coord] = times * np.nan return tmp_df def _spline_rep(df, coords=('x', 'y', 'z'), s=0, k=3): time = df.t tcks = {} for coord in coords: tcks[coord] = splrep(time, df[coord].values, s=s, k=k) return pd.DataFrame.from_dict(tcks) def back_proj_interp(interpolated, orig, sampling): ''' back_proj_interp(interpolated, trajs, 3).iloc[0].x - trajs.iloc[0].x = 0 ''' back_t_stamps = orig.index.get_level_values('t_stamp') back_labels = orig.index.get_level_values('label') back_index = pd.MultiIndex.from_arrays([back_t_stamps, back_labels], names=['t_stamp', 'label']) interp_index = pd.MultiIndex.from_arrays([back_t_stamps*sampling, back_labels], names=['t_stamp', 'label']) back_projected_ = interpolated.loc[interp_index] back_index = pd.MultiIndex.from_arrays([back_t_stamps, back_labels], names=['t_stamp', 'label']) back_projected = back_projected_.set_index(back_index) return back_projected def back_proj_pca(rotated, pca, coords): back_projected_ = pca.inverse_transform(rotated[coords]) back_t_stamps = rotated.index.get_level_values('t_stamp') back_labels = rotated.index.get_level_values('label') back_index = pd.MultiIndex.from_arrays([back_t_stamps, back_labels], names=['t_stamp', 'label']) back_projected = pd.DataFrame(back_projected_, index=back_index, columns=coords) for col in set(rotated.columns) - set(back_projected.columns): back_projected[col] = rotated[col] return back_projected def transformations_matrix(center, vec): """Build transformation matrix: - translation : from (0, 0) to a point (center) - rotation : following angle between (1, 0) and vec Parameters ---------- center : list or np.ndarray vec : list or np.ndarray Returns ------- The transformation matrix, np.ndarray. """ # Setup vectors origin_vec = np.array([1, 0]) current_vec = vec / np.linalg.norm(vec) # Find the rotation angle a = origin_vec b = current_vec theta = np.arctan2(a[1], a[0]) + np.arctan2(b[1], b[0]) # Build rotation matrix R = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]], dtype="float") # Build translation matrix T = np.array([[1, 0, -center[0]], [0, 1, -center[1]], [0, 0, 1]], dtype="float") # Make transformations from R and T in one A =
np.dot(T.T, R)
numpy.dot
import os import sys TRASH = [ 'bottle', 'cup', 'fork', 'knife', 'spoon' 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake' ] YOLO_PATH = os.path.join(sys.path[0], 'yc') IMAGE_PATH = os.path.join(sys.path[0], 'input.jpg') DEFAULT_CONFIDENCE = 0.5 DEFAULT_THRESHOLD = 0.3 import numpy as np import argparse import time import cv2 from model_def import load_model from keras import backend as K import tensorflow as tf import numpy as np from keras.preprocessing.image import ImageDataGenerator, img_to_array, array_to_img, load_img from slidingBox import boxCoordinates from PIL import Image,ImageDraw img_width, img_height = 256, 256 if K.image_data_format() == 'channels_first': input_shape = (3, img_width, img_height) else: input_shape = (img_width, img_height, 3) model = load_model(input_shape, "4.h5") graph = tf.get_default_graph() labelsPath = os.path.join(YOLO_PATH, 'coco.names') LABELS = open(labelsPath).read().strip().splitlines() # random list of colors for class labels np.random.seed(42) COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype='uint8') weightsPath = os.path.join(YOLO_PATH, 'yolov3.weights') configPath = os.path.join(YOLO_PATH, 'yolov3.cfg') # load YOLO data net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) def process_image(image): (H, W) = image.shape[:2] # determine only the *output* layer names that we need from YOLO ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] # construct blob from image blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) start = time.time() layerOutputs = net.forward(ln) end = time.time() # show timing information on YOLO print('took {:.6f} seconds'.format(end - start)) boxes = [] confidences = [] classIDs = [] for output in layerOutputs: for detection in output: # extract the class ID and confidence (i.e., probability) of # the current object detection scores = detection[5:] classID =
np.argmax(scores)
numpy.argmax
import numpy as np from scipy.integrate import odeint from ..csc.utils_velocity import sol_u, sol_s from ...dynamo_logger import main_debug, main_info class LinearODE: def __init__(self, n_species, x0=None): """A general class for linear odes""" self.n_species = n_species # solution self.t = None self.x = None self.x0 = np.zeros(self.n_species) if x0 is None else x0 self.K = None self.p = None # methods self.methods = ["numerical", "matrix"] self.default_method = "matrix" def ode_func(self, x, t): """Implement your own ODE functions here such that dx=f(x, t)""" dx = np.zeros(len(x)) return dx def integrate(self, t, x0=None, method=None): method = self.default_method if method is None else method if method == "matrix": sol = self.integrate_matrix(t, x0) elif method == "numerical": sol = self.integrate_numerical(t, x0) else: raise NotImplementedError("The LinearODE integrate operation currently not supports method: %s." % (method)) self.x = sol self.t = t return sol def integrate_numerical(self, t, x0=None): if x0 is None: x0 = self.x0 else: self.x0 = x0 sol = odeint(self.ode_func, x0, t) return sol def reset(self): # reset solutions self.t = None self.x = None self.K = None self.p = None def computeKnp(self): """Implement your own vectorized ODE functions here such that dx = Kx + p""" K = np.zeros((self.n_species, self.n_species)) p = np.zeros(self.n_species) return K, p def integrate_matrix(self, t, x0=None): # t0 = t[0] t0 = 0 if x0 is None: x0 = self.x0 else: self.x0 = x0 if self.K is None or self.p is None: K, p = self.computeKnp() self.K = K self.p = p else: K = self.K p = self.p x_ss = np.linalg.solve(K, p) # x_ss = linalg.inv(K).dot(p) y0 = x0 + x_ss D, U = np.linalg.eig(K) V = np.linalg.inv(U) D, U, V = map(np.real, (D, U, V)) expD = np.exp(D) x = np.zeros((len(t), self.n_species)) # x[0] = x0 for i in range(len(t)): x[i] = U.dot(np.diag(expD ** (t[i] - t0))).dot(V).dot(y0) - x_ss return x class MixtureModels: def __init__(self, models, param_distributor): """A general class for linear odes""" self.n_models = len(models) self.models = models self.n_species = np.array([mdl.n_species for mdl in self.models]) self.distributor = param_distributor # solution self.t = None self.x = None # methods self.methods = ["numerical", "matrix"] self.default_method = "matrix" def integrate(self, t, x0=None, method=None): self.x = np.zeros((len(t), np.sum(self.n_species))) for i, mdl in enumerate(self.models): x0_ = None if x0 is None else x0[self.get_model_species(i)] method_ = method if method is None or type(method) is str else method[i] mdl.integrate(t, x0_, method_) self.x[:, self.get_model_species(i)] = mdl.x self.t = np.array(self.models[0].t, copy=True) def get_model_species(self, model_index): id = np.hstack((0, np.cumsum(self.n_species))) idx = np.arange(id[-1] + 1) return idx[id[model_index] : id[model_index + 1]] def reset(self): # reset solutions self.t = None self.x = None for mdl in self.models: mdl.reset() def param_mixer(self, *params): return params def set_params(self, *params): params = self.param_mixer(*params) for i, mdl in enumerate(self.models): idx = self.distributor[i] p = np.zeros(len(idx)) for j in range(len(idx)): p[j] = params[idx[j]] mdl.set_params(*p) self.reset() class LambdaModels_NoSwitching(MixtureModels): def __init__(self, model1, model2): """ parameter order: alpha, lambda, (beta), gamma distributor order: alpha_1, alpha_2, (beta), gamma """ models = [model1, model2] if type(model1) in nosplicing_models and type(model2) in nosplicing_models: param_distributor = [[0, 2], [1, 2]] else: dist1 = [0, 3] if model1 in nosplicing_models else [0, 2, 3] dist2 = [1, 3] if model2 in nosplicing_models else [1, 2, 3] param_distributor = [dist1, dist2] super().__init__(models, param_distributor) def param_mixer(self, *params): lam = params[1] alp_1 = params[0] * lam alp_2 = params[0] * (1 - lam) p = np.hstack((alp_1, alp_2, params[2:])) return p class Moments(LinearODE): def __init__( self, a=None, b=None, alpha_a=None, alpha_i=None, beta=None, gamma=None, x0=None, ): """This class simulates the dynamics of first and second moments of a transcription-splicing system with promoter switching.""" # species self.ua = 0 self.ui = 1 self.xa = 2 self.xi = 3 self.uu = 4 self.xx = 5 self.ux = 6 n_species = 7 # solution super().__init__(n_species, x0=x0) # parameters if not (a is None or b is None or alpha_a is None or alpha_i is None or beta is None or gamma is None): self.set_params(a, b, alpha_a, alpha_i, beta, gamma) def ode_func(self, x, t): dx = np.zeros(len(x)) # parameters a = self.a b = self.b aa = self.aa ai = self.ai be = self.be ga = self.ga # first moments dx[self.ua] = aa - be * x[self.ua] + a * (x[self.ui] - x[self.ua]) dx[self.ui] = ai - be * x[self.ui] - b * (x[self.ui] - x[self.ua]) dx[self.xa] = be * x[self.ua] - ga * x[self.xa] + a * (x[self.xi] - x[self.xa]) dx[self.xi] = be * x[self.ui] - ga * x[self.xi] - b * (x[self.xi] - x[self.xa]) # second moments dx[self.uu] = 2 * self.fbar(aa * x[self.ua], ai * x[self.ui]) - 2 * be * x[self.uu] dx[self.xx] = 2 * be * x[self.ux] - 2 * ga * x[self.xx] dx[self.ux] = self.fbar(aa * x[self.xa], ai * x[self.xi]) + be * x[self.uu] - (be + ga) * x[self.ux] return dx def fbar(self, x_a, x_i): return self.b / (self.a + self.b) * x_a + self.a / (self.a + self.b) * x_i def set_params(self, a, b, alpha_a, alpha_i, beta, gamma): self.a = a self.b = b self.aa = alpha_a self.ai = alpha_i self.be = beta self.ga = gamma # reset solutions super().reset() def get_all_central_moments(self): ret = np.zeros((4, len(self.t))) ret[0] = self.get_nu() ret[1] = self.get_nx() ret[2] = self.get_var_nu() ret[3] = self.get_var_nx() return ret def get_nosplice_central_moments(self): ret = np.zeros((2, len(self.t))) ret[0] = self.get_n_labeled() ret[1] = self.get_var_labeled() return ret def get_nu(self): return self.fbar(self.x[:, self.ua], self.x[:, self.ui]) def get_nx(self): return self.fbar(self.x[:, self.xa], self.x[:, self.xi]) def get_n_labeled(self): return self.get_nu() + self.get_nx() def get_var_nu(self): c = self.get_nu() return self.x[:, self.uu] + c - c ** 2 def get_var_nx(self): c = self.get_nx() return self.x[:, self.xx] + c - c ** 2 def get_cov_ux(self): cu = self.get_nu() cx = self.get_nx() return self.x[:, self.ux] - cu * cx def get_var_labeled(self): return self.get_var_nu() + self.get_var_nx() + 2 * self.get_cov_ux() def computeKnp(self): # parameters a = self.a b = self.b aa = self.aa ai = self.ai be = self.be ga = self.ga K = np.zeros((self.n_species, self.n_species)) # E1 K[self.ua, self.ua] = -be - a K[self.ua, self.ui] = a K[self.ui, self.ua] = b K[self.ui, self.ui] = -be - b # E2 K[self.xa, self.xa] = -ga - a K[self.xa, self.xi] = a K[self.xi, self.xa] = b K[self.xi, self.xi] = -ga - b # E3 K[self.uu, self.uu] = -2 * be K[self.xx, self.xx] = -2 * ga # E4 K[self.ux, self.ux] = -be - ga # F21 K[self.xa, self.ua] = be K[self.xi, self.ui] = be # F31 K[self.uu, self.ua] = 2 * aa * b / (a + b) K[self.uu, self.ui] = 2 * ai * a / (a + b) # F34 K[self.xx, self.ux] = 2 * be # F42 K[self.ux, self.xa] = aa * b / (a + b) K[self.ux, self.xi] = ai * a / (a + b) # F43 K[self.ux, self.uu] = be p =
np.zeros(self.n_species)
numpy.zeros
import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np from common_layers import * from training_param_add import * # import numpy as np가 되어있음. from gradient import numerical_gradient from collections import OrderedDict class TwoLayerNet: def __init__(self): self.check = None def twolayernet(self, wi, weight_init_std = 0.9): # 重みの初期化 voc_length = wi.inform['voc_length'] voc_length_diff = wi.inform['voc_length_diff'] input_size = voc_length output_size = voc_length hidden_size = 7 if self.check is None: self.params = {} self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) # レイヤの生成 self.layers = OrderedDict() self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1']) self.layers['Relu1'] = Relu() self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2']) self.check = 1 else: print("checking new words ~~ing~~ ") print("추가된 단어 수 " , voc_length_diff) #단어가 몇개가 추가되엇는지 내가 확인하기 위함. if voc_length_diff == 0: print("network is ready to use") else: print("adding words in vocabulary ~~ing~~ ") add_param = new_word_in_voc(self.params['W1'], self.params['W2'],self.params['b2'],voc_length_diff) add_param.make_new_params() for key in('W1','W2','b2'): self.params[key] = add_param.params[key] print("ready to use") self.layers = OrderedDict() self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1']) self.layers['Relu1'] = Relu() self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2']) self.lastLayer = SoftmaxWithLoss() def predict(self, x): for layer in self.layers.values(): x = layer.forward(x) return x # x:入力データ, t:教師データ def loss(self, x, t): y = self.predict(x) return self.lastLayer.forward(y, t) def accuracy(self, x, t): y = self.predict(x) y = np.argmax(y, axis=1) if t.ndim != 1 : t =
np.argmax(t, axis=1)
numpy.argmax
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from collections import OrderedDict import numpy as np import math import oneflow.experimental as flow from test_util import GenArgList def _nd_tuple_to_dhw(nd_tuple, dim, prefix=1, dhw_offset=0): assert dim <= 3 assert dim == len(nd_tuple) - dhw_offset nd_tuple = list(nd_tuple) dhw_tuple = nd_tuple[:dhw_offset] dhw_tuple.extend([prefix for _ in range(3 - dim)]) dhw_tuple.extend(nd_tuple[dhw_offset:]) return tuple(dhw_tuple) def _dhw_tuple_to_nd(dhw_tuple, dim, prefix=1, dhw_offset=0): assert dim <= 3 assert 3 == len(dhw_tuple) - dhw_offset dhw_tuple = list(dhw_tuple) nd_tuple = dhw_tuple[:dhw_offset] nd_offset = dhw_offset + 3 - dim for i in dhw_tuple[dhw_offset:nd_offset]: assert prefix == i nd_tuple.extend(dhw_tuple[nd_offset:]) return tuple(nd_tuple) class MaxPoolNumpy: def __init__(self, dim=2, kernel_size=(2, 2), stride=(2, 2), padding=(0, 0)): self.dim = dim self.stride = _nd_tuple_to_dhw(stride, dim) self.padding = _nd_tuple_to_dhw(padding, dim, prefix=0) self.kernel_size = _nd_tuple_to_dhw(kernel_size, dim) self.w_depth = self.kernel_size[0] self.w_height = self.kernel_size[1] self.w_width = self.kernel_size[2] self.min_val = np.finfo(np.float64).min def __call__(self, x): self.x_shape = x.shape x_shape_5d = _nd_tuple_to_dhw(self.x_shape, self.dim, prefix=1, dhw_offset=2) x = x.reshape(x_shape_5d) self.in_batch = np.shape(x)[0] self.in_channel = np.shape(x)[1] self.in_depth = np.shape(x)[2] self.in_height = np.shape(x)[3] self.in_width = np.shape(x)[4] pad_x = np.pad( x, ( (0, 0), (0, 0), (self.padding[0], self.padding[0]), (self.padding[1], self.padding[1]), (self.padding[2], self.padding[2]), ), "constant", constant_values=(self.min_val, self.min_val), ) self.pad_x = pad_x self.pad_shape = pad_x.shape self.out_depth = int((self.in_depth - self.w_depth) / self.stride[0]) + 1 self.out_height = int((self.in_height - self.w_height) / self.stride[1]) + 1 self.out_width = int((self.in_width - self.w_width) / self.stride[2]) + 1 self.pad_out_depth = np.uint16( math.ceil((self.pad_shape[2] - self.w_depth + 1) / self.stride[0]) ) self.pad_out_height = np.uint16( math.ceil((self.pad_shape[3] - self.w_height + 1) / self.stride[1]) ) self.pad_out_width = np.uint16( math.ceil((self.pad_shape[4] - self.w_width + 1) / self.stride[2]) ) out = np.zeros( ( self.in_batch, self.in_channel, self.pad_out_depth, self.pad_out_height, self.pad_out_width, ) ) self.arg_max = np.zeros_like(out, dtype=np.int32) for n in range(self.in_batch): for c in range(self.in_channel): for i in range(self.pad_out_depth): for j in range(self.pad_out_height): for k in range(self.pad_out_width): start_i = i * self.stride[0] start_j = j * self.stride[1] start_k = k * self.stride[2] end_i = start_i + self.w_depth end_j = start_j + self.w_height end_k = start_k + self.w_width out[n, c, i, j, k] = np.max( pad_x[n, c, start_i:end_i, start_j:end_j, start_k:end_k] ) self.arg_max[n, c, i, j, k] = np.argmax( pad_x[n, c, start_i:end_i, start_j:end_j, start_k:end_k] ) self.out_shape_5d = out.shape out_shape = _dhw_tuple_to_nd(out.shape, self.dim, dhw_offset=2) out = out.reshape(out_shape) return out def backward(self, d_loss): d_loss = d_loss.reshape(self.out_shape_5d) dx = np.zeros_like(self.pad_x) for n in range(self.in_batch): for c in range(self.in_channel): for i in range(self.pad_out_depth): for j in range(self.pad_out_height): for k in range(self.pad_out_width): start_i = i * self.stride[0] start_j = j * self.stride[1] start_k = k * self.stride[2] end_i = start_i + self.w_depth end_j = start_j + self.w_height end_k = start_k + self.w_width index = np.unravel_index( self.arg_max[n, c, i, j, k], self.kernel_size ) dx[n, c, start_i:end_i, start_j:end_j, start_k:end_k][ index ] += d_loss[n, c, i, j, k] dx = dx[ :, :, self.padding[0] : self.pad_shape[2] - self.padding[0], self.padding[1] : self.pad_shape[3] - self.padding[1], self.padding[2] : self.pad_shape[4] - self.padding[2], ] dx = dx.reshape(self.x_shape) return dx def _test_maxpool1d_impl(test_case, device): input_arr = np.array( [ [ [-0.89042996, 2.33971243, -0.86660827, 0.80398747], [-1.46769364, -0.78125064, 1.50086563, -0.76278226], [1.31984534, 0.20741192, -0.86507054, -0.40776015], [-0.89910823, 0.44932938, 1.49148118, -0.22036761], ], [ [-0.5452334, -0.10255169, -1.42035108, 0.73922913], [-0.03192764, 0.69341935, 0.96263152, -1.52070843], [0.02058239, 1.504032, 1.84423001, -0.0130596], [2.20517719, 0.38449598, 0.85677771, 0.60425179], ], [ [-1.64366213, 0.51370298, -0.21754866, -0.05085382], [1.17065374, 1.13857674, -1.13070507, 0.44353707], [-1.30783846, -0.48031445, 0.41807536, -2.13778887], [0.08259005, 0.5798125, 0.03024696, 1.96100924], ], ] ) kernel_size, stride, padding = (3,), (1,), (1,) output = np.array( [ [ [2.33971243, 2.33971243, 2.33971243, 0.80398747], [-0.78125064, 1.50086563, 1.50086563, 1.50086563], [1.31984534, 1.31984534, 0.20741192, -0.40776015], [0.44932938, 1.49148118, 1.49148118, 1.49148118], ], [ [-0.10255169, -0.10255169, 0.73922913, 0.73922913], [0.69341935, 0.96263152, 0.96263152, 0.96263152], [1.504032, 1.84423001, 1.84423001, 1.84423001], [2.20517719, 2.20517719, 0.85677771, 0.85677771], ], [ [0.51370298, 0.51370298, 0.51370298, -0.05085382], [1.17065374, 1.17065374, 1.13857674, 0.44353707], [-0.48031445, 0.41807536, 0.41807536, 0.41807536], [0.5798125, 0.5798125, 1.96100924, 1.96100924], ], ] ) output_indice = np.array( [ [[1, 1, 1, 3], [1, 2, 2, 2], [0, 0, 1, 3], [1, 2, 2, 2]], [[1, 1, 3, 3], [1, 2, 2, 2], [1, 2, 2, 2], [0, 0, 2, 2]], [[1, 1, 1, 3], [0, 0, 1, 3], [1, 2, 2, 2], [1, 1, 3, 3]], ] ) grad = np.array( [ [ [0.0, 3.0, 0.0, 1.0], [0.0, 1.0, 3.0, 0.0], [2.0, 1.0, 0.0, 1.0], [0.0, 1.0, 3.0, 0.0], ], [ [0.0, 2.0, 0.0, 2.0], [0.0, 1.0, 3.0, 0.0], [0.0, 1.0, 3.0, 0.0], [2.0, 0.0, 2.0, 0.0], ], [ [0.0, 3.0, 0.0, 1.0], [2.0, 1.0, 0.0, 1.0], [0.0, 1.0, 3.0, 0.0], [0.0, 2.0, 0.0, 2.0], ], ] ) m = flow.nn.MaxPool1d( kernel_size=kernel_size, stride=stride, padding=padding, return_indices=True ) m.to(flow.device(device)) x = flow.Tensor(input_arr, device=flow.device(device), requires_grad=True) of_output, of_indice = m(x) y = of_output.sum() y.backward() test_case.assertTrue(np.allclose(x.grad.numpy(), grad, 1e-4, 1e-4)) test_case.assertTrue(np.allclose(of_indice.numpy(), output_indice, 1e-4, 1e-4)) test_case.assertTrue(np.allclose(of_output.numpy(), output, 1e-4, 1e-4)) def _test_maxpool1d_zero_padding(test_case, device): arr = np.arange(1000).reshape(4, 5, 50).astype(np.float) input = flow.tensor(arr, dtype=flow.float32, device=flow.device(device)) m1 = flow.nn.MaxPool1d(kernel_size=3, stride=3, padding=0) of_out = m1(input) m2 = MaxPoolNumpy(2, kernel_size=(3, 1), stride=(3, 1), padding=(0, 0)) np_out = m2(arr.reshape(4, 5, 50, 1)) np_out = np.squeeze(np_out, axis=3) test_case.assertTrue(np.allclose(np_out, of_out.numpy(), 1e-4, 1e-4)) def _test_maxpool2d(test_case, device): dim = 2 input_arr = np.random.randn(2, 3, 4, 5) kernel_size, stride, padding = (3, 3), (1, 1), (1, 1) m_numpy = MaxPoolNumpy(dim, kernel_size, stride, padding) numpy_output = m_numpy(input_arr) m = flow.nn.MaxPool2d( kernel_size=kernel_size, stride=stride, padding=padding, return_indices=True ) m.to(flow.device(device)) x = flow.Tensor(input_arr, device=flow.device(device)) output, indice = m(x) test_case.assertTrue(indice.shape == x.shape) test_case.assertTrue(np.allclose(numpy_output, output.numpy(), 1e-4, 1e-4)) def _test_maxpool2d_ceil_mode(test_case, device): dim = 2 input_arr = np.array( [ [ [ [-0.89042996, 2.33971243, -0.86660827, 0.80398747], [-1.46769364, -0.78125064, 1.50086563, -0.76278226], [1.31984534, 0.20741192, -0.86507054, -0.40776015], [-0.89910823, 0.44932938, 1.49148118, -0.22036761], ], [ [-0.5452334, -0.10255169, -1.42035108, 0.73922913], [-0.03192764, 0.69341935, 0.96263152, -1.52070843], [0.02058239, 1.504032, 1.84423001, -0.0130596], [2.20517719, 0.38449598, 0.85677771, 0.60425179], ], [ [-1.64366213, 0.51370298, -0.21754866, -0.05085382], [1.17065374, 1.13857674, -1.13070507, 0.44353707], [-1.30783846, -0.48031445, 0.41807536, -2.13778887], [0.08259005, 0.5798125, 0.03024696, 1.96100924], ], ], [ [ [0.45173843, -0.34680027, -0.99754943, 0.18539502], [-0.68451047, -0.03217399, 0.44705642, -0.39016231], [-0.18062337, 1.82099303, -0.19113869, 0.85298683], [0.14080452, 0.15306701, -1.02466827, -0.34480665], ], [ [-0.21048489, 0.20933038, -0.09206508, -1.80402519], [-0.52028985, 0.01140166, -1.13452858, 0.96648332], [0.26454393, 0.48343972, -1.84055509, -0.01256443], [0.31024029, 0.11983007, 0.98806488, 0.93557438], ], [ [0.39152445, 0.672159, 0.71289289, -0.68072016], [0.33711062, -1.78106242, 0.34545201, -1.62029359], [0.47343899, -2.3433269, -0.44517497, 0.09004267], [0.26310742, -1.53121271, 0.65028836, 1.3669488], ], ], ] ) ceil_mode_out = np.array( [ [ [ [2.33971243, 2.33971243, 0.80398747], [1.31984534, 1.50086563, -0.22036761], [0.44932938, 1.49148118, -0.22036761], ], [ [0.69341935, 0.96263152, 0.73922913], [2.20517719, 1.84423001, 0.60425179], [2.20517719, 0.85677771, 0.60425179], ], [ [1.17065374, 1.13857674, 0.44353707], [1.17065374, 1.96100924, 1.96100924], [0.5798125, 1.96100924, 1.96100924], ], ], [ [ [0.45173843, 0.44705642, 0.18539502], [1.82099303, 1.82099303, 0.85298683], [0.15306701, 0.15306701, -0.34480665], ], [ [0.20933038, 0.96648332, 0.96648332], [0.48343972, 0.98806488, 0.96648332], [0.31024029, 0.98806488, 0.93557438], ], [ [0.672159, 0.71289289, -0.68072016], [0.47343899, 1.3669488, 1.3669488], [0.26310742, 1.3669488, 1.3669488], ], ], ] ) kernel_size, stride, padding = (3, 3), (2, 2), (1, 1) m_numpy = MaxPoolNumpy(dim, kernel_size, stride, padding) numpy_output = m_numpy(input_arr) m1 = flow.nn.MaxPool2d( kernel_size=kernel_size, stride=stride, padding=padding, ceil_mode=False ) m2 = flow.nn.MaxPool2d( kernel_size=kernel_size, stride=stride, padding=padding, ceil_mode=True ) m1.to(flow.device(device)) m2.to(flow.device(device)) x = flow.Tensor(input_arr, device=flow.device(device)) output1 = m1(x) output2 = m2(x) test_case.assertTrue(np.allclose(numpy_output, output1.numpy(), 1e-4, 1e-4)) test_case.assertTrue(np.allclose(ceil_mode_out, output2.numpy(), 1e-4, 1e-4)) def _test_maxpool2d_special_kernel_size(test_case, device): dim = 2 input_arr = np.random.randn(1, 1, 6, 6) kernel_size, stride, padding = (1, 1), (5, 5), (0, 0) m_numpy = MaxPoolNumpy(dim, kernel_size, stride, padding) numpy_output = m_numpy(input_arr) m = flow.nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=padding) m.to(flow.device(device)) x = flow.Tensor(input_arr, device=flow.device(device)) output = m(x) test_case.assertTrue(np.allclose(numpy_output, output.numpy(), 1e-4, 1e-4)) def _test_maxpool2d_diff_kernel_stride(test_case, device): dim = 2 input_arr = np.random.randn(9, 7, 32, 20) kernel_size, stride, padding = (2, 4), (4, 5), (1, 2) m_numpy = MaxPoolNumpy(dim, kernel_size, stride, padding) numpy_output = m_numpy(input_arr) m = flow.nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=padding) m.to(flow.device(device)) x = flow.Tensor(input_arr, device=flow.device(device)) output = m(x) test_case.assertTrue(np.allclose(numpy_output, output.numpy(), 1e-4, 1e-4)) def _test_maxpool2d_negative_input(test_case, device): dim = 2 input_arr = -1.23456 * np.ones((1, 1, 1, 1), dtype=np.float32) kernel_size, stride, padding = (5, 5), (5, 5), (2, 2) m_numpy = MaxPoolNumpy(dim, kernel_size, stride, padding) numpy_output = m_numpy(input_arr) m = flow.nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=padding) m.to(flow.device(device)) x = flow.Tensor(input_arr, device=flow.device(device)) output = m(x) test_case.assertTrue(np.allclose(numpy_output, output.numpy(), 1e-4, 1e-4)) def _test_maxpool2d_backward(test_case, device): dim = 2 input_arr = np.random.randn(6, 4, 7, 9) kernel_size, stride, padding = (4, 4), (1, 1), (1, 2) m_numpy = MaxPoolNumpy(dim, kernel_size, stride, padding) numpy_output = m_numpy(input_arr) m = flow.nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=padding) m.to(flow.device(device)) x = flow.Tensor(input_arr, requires_grad=True, device=flow.device(device)) output = m(x) output = output.sum() output.backward() doutput =
np.ones_like(numpy_output, dtype=np.float64)
numpy.ones_like
import itertools from collections import defaultdict import numpy as np from .get_atom_properties import getAtomProperties class Atom: def __init__(self, element, label, aindex, mass, x, y, z, intensity): """ 原子类 :param element: 元素符号 :param label: 晶体文件里的原子标签,如C001 :param aindex: 原子序数,用于电子加权计算 :param mass: 原子质量,用于质量加权计算 :param x: 分数坐标 :param y: 分数坐标 :param z: 分数坐标 :param intensity: RES中的强度 """ self.element = element self.label = label self.aindex = aindex self.mass = mass self.x = x self.y = y self.z = z self.intensity = intensity class AtomGroup: class CellParameter: def __init__(self): """ rotation_matrix: 用于换算分数坐标和绝对坐标的旋转矩阵 """ self.a = 1 self.b = 1 self.c = 1 self.alpha = 90 self.beta = 90 self.gamma = 90 self.rotation_matrix = None def coordinate_transform(self, x, y, z): """计算坐标转换结果""" if self.rotation_matrix is None: return x, y, z new_xyz = np.matmul(self.rotation_matrix, np.array([x, y, z]).T) new_xyz = new_xyz.T return np.round(new_xyz[0], 2), np.round(new_xyz[1], 2), np.round(new_xyz[2], 2) def set_parameter(self, a, b, c, alpha, beta, gamma): """设置晶胞参数""" self.a = a self.b = b self.c = c self.alpha = np.deg2rad(alpha) self.beta = np.deg2rad(beta) self.gamma =
np.deg2rad(gamma)
numpy.deg2rad
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: lab3_Shadings Description : Author : zdf's desktop date: 2019/2/24 ------------------------------------------------- Change Activity: 2019/2/24:23:27 ------------------------------------------------- """ import numpy as np import random from pyglet.gl import * class Edge: def __init__(self): self.ymax = 0 self.ymin = 0 self.xmin = 0 self.slope = 0 class ScreenVertex: def __init__(self, x, y): self.x = x self.y = y class Pixel: def __init__(self, x, y, z): self.x = x self.y = y self.z = z class Vertex: def __init__(self, cord, normal=None): if normal is None: normal = [] self.cord = cord self.normal = normal class Polygon: def __init__(self): self.vertex_num = 0 self.vertex_list = [] self.main_color = (255, 255, 255) self.edge_table = [] self.pixel_list = [] # all pixels inside this polygon(including vertex) self.normal = np.zeros(3, dtype=np.float64) # the normal vector of polygon def print(self): """ Print attributes of polygon :return: None """ print("Vertex Number:", self.vertex_num) for i, v in enumerate(self.vertex_list): print("Vertex", i, ":", v) print(self.main_color) print(self.edge_table) print(self.pixel_list) print(self.normal) class Model: """ Model contains data of vertices and polygons """ def __init__(self): self.raw_vertex = [] self.raw_polygon = [] self.final_vertex = [] # ScreenVertex self.final_polygon = [] # viewing polygon under current observer after backface-culling # self.visible_vertex = [] # viewing vertices under current observer after backface-culling def load_model(self, path): """ load raw data from file to a model :param path: the data path :return: None """ with open(path) as f: read_data = f.read() data = read_data.replace("\t", " ").replace("data", "").split("\n") try: data.remove("") except Exception: pass temp = data[0].split(" ") temp = [x for x in temp if x] # filter the duplicated empty element. point_number = temp[0] data = data[1:] # trim the first data for i, val in enumerate(data): if i < int(point_number): self.raw_vertex.append(val.split(" ")) else: self.raw_polygon.append(val.split(" ")) for i, v in enumerate(self.raw_vertex): temp = [float(x) for x in v if x] temp.append(1) v = Vertex(temp, []) self.raw_vertex[i] = v for i, p in enumerate(self.raw_polygon): temp = [int(x) for x in p if x] self.raw_polygon[i] = temp def find_pologon_normal(self): for p in self.final_polygon: p.normal = np.zeros(3, dtype=np.float64) v1 = self.raw_vertex[p.vertex_list[0] - 1].cord v2 = self.raw_vertex[p.vertex_list[1] - 1].cord v3 = self.raw_vertex[p.vertex_list[2] - 1].cord print(v1, v2, v3) v1 = v1[:-1] v2 = v2[:-1] v3 = v3[:-1] e1 = np.subtract(v2, v1) e2 = np.subtract(v3, v2) p.normal = np.cross(e1, e2) p.normal /= np.linalg.norm(p.normal) print("p.normal = ", p.normal) def zoom_model(self, amplifier, shift): for v in self.final_vertex: v.x = v.x * amplifier + shift v.y = v.y * amplifier + shift def create_edge_table(self): """ Creating an edge_table for a certain model :return: None """ for p in self.final_polygon: num = p.vertex_num # vertices number of this polygon for i in range(0, num): ''' Warning: to Visit proper vertex, you need to add -1 on index since the vertex are labeled start by 1, not 0. ''' v1 = self.final_vertex[p.vertex_list[i]] if i == num - 1: v2 = self.final_vertex[p.vertex_list[0]] else: v2 = self.final_vertex[p.vertex_list[i + 1]] if int(v1.y) == int(v2.y): # skip the horizontal edge continue e = Edge() e.ymax = int(max(v1.y, v2.y)) # compare Y value of V1 and V2 e.ymin = int(min(v1.y, v2.y)) e.xmin = v1.x if v1.y < v2.y else v2.x # store the x value of the bottom vertex e.slope = (v1.x - v2.x) / (v1.y - v2.y) # store the edge slope for coherence e.ymax -= 1 # dealing with vertex-scanline intersection(shorten edges) p.edge_table.append(e) def ymin_cmp(edge): return edge.ymin p.edge_table.sort(key=ymin_cmp) # sort edge_table by Y value print("Finished edge_table creation") def scan_conversion(self): """ making a scan conversion on a certain model :return: None """ print("Start Scan conversion...") for p in self.final_polygon: AET = [] # Active edge table if not p.edge_table: # ignoring empty edge_table continue ymin = int(p.edge_table[0].ymin) # ymin value among all edges ymax = int(max(node.ymax for node in p.edge_table)) # ymax value among all edges for scanY in range(ymin, ymax + 1): # scanline Y value for e in p.edge_table: if e.ymin == scanY: # put edge into AET which intersect with current scanline AET.append(e) elif e.ymin > scanY: # already finished since ET are pre-sorted break def x_cmp(edge): return edge.xmin AET.sort(key=x_cmp) # re-sort AET by X value for i in range(len(AET) // 2): for j in range(int(AET[i].xmin), int(AET[i + 1].xmin)): # for each intersections between scanline and edge # store all pixels coordinate between them into a pixel list pixel = Pixel(j, scanY, 0) p.pixel_list.append(pixel) for e in AET: if e.ymax == scanY: # remove edges that no longer intersect with the next scanline AET.remove(e) for e in AET: e.xmin += e.slope # adjust X value by coherence AET.sort(key=x_cmp) # re-sort AET by X value print("Finished Scanline conversion") def illumination_model(self): diffuse, specular, ambient = [0, 0, 0], [0, 0, 0], [0, 0, 0] light_intensity = [0.0, 0.0, 0.0] light_source = [0.5, 1.0, 0.8] # color of light # light_source[0] = 0.5 h_vector = np.zeros(3, dtype=np.float64) light_direction = np.zeros(3, dtype=np.float64) light_direction[0] = 1.5 print("LightDir = ", light_direction) view_direction = np.zeros(3, dtype=np.float64) h_vector = light_direction + view_direction h_vector /= np.linalg.norm(h_vector) print("h_vector = ", h_vector) kd = 0.3 # diffuse term ks = 0.6 # specular term ka = 0.2 # ambient term for p in self.final_polygon: for i in range(0, 3): diffuse[i] = kd * light_source[i] * np.dot(p.normal, light_direction) specular[i] = ks * light_source[i] * np.dot(p.normal, h_vector) ambient[i] = ka * light_source[i] light_intensity[i] = diffuse[i] + specular[i] + ambient[i] print(tuple(light_intensity)) p.main_color = tuple(light_intensity) class Observer: """ Observer provide certain parameters to observe specific model. """ def __init__(self): self.local = [] self.camera = [] self.up_vector = [] self.p_ref = [] self.near = 0 self.far = 0 self.width = 0 self.u = [] self.v = [] self.n = [] self.model_matrix = np.identity(4, dtype=np.float64) self.view_matrix = np.zeros(4, dtype=np.float64) self.pers_matrix = np.zeros(4, dtype=np.float64) self.final_matrix = np.zeros(4, dtype=np.float64) def set_modeling_matrix(self, l): self.local = l def set_viewing_matrix(self, c, up): self.camera = c self.up_vector = up def set_perspective_matrix(self, n, f, h): self.near = n self.far = f self.width = h def set_project_ref(self, p): self.p_ref = p def calculate_uvn(self): self.n = np.zeros(3, dtype=np.float64) self.n = np.subtract(self.n, self.camera) # Warning! this is n - camera(Pref - c), not the backwards! self.n /= np.linalg.norm(self.n) # calculate the magnitude of vector N self.u = np.zeros(3, dtype=np.float64) temp = np.cross(self.n, self.up_vector) # calculate the N x V' temp /= np.linalg.norm(temp) # divided by |N x V'| self.u = temp self.v = np.cross(self.n, self.u) def calculate_matrix(self): temp = np.identity(4, dtype=np.float64) temp[0][3] = self.local[0] temp[1][3] = self.local[1] temp[2][3] = self.local[2] self.model_matrix = temp temp = np.identity(4, dtype=np.float64) # calculate T matrix, save as temp for i in range(0, 3): temp[i][3] = -self.camera[i] T = temp temp = np.identity(4, dtype=np.float64) # calculate R matrix, save as temp # print(type(n)) temp[0][0] = self.u[0] temp[0][1] = self.u[1] temp[0][2] = self.u[2] temp[1][0] = self.v[0] temp[1][1] = self.v[1] temp[1][2] = self.v[2] temp[2][0] = self.n[0] temp[2][1] = self.n[1] temp[2][2] = self.n[2] R = temp self.view_matrix = R @ T temp = np.zeros((4, 4), dtype=np.float64) temp[0][0] = self.near / self.width temp[1][1] = self.near / self.width temp[2][2] = self.far / (self.far - self.near) temp[2][3] = - (self.far * self.near / (self.far - self.near)) temp[3][2] = 1 self.pers_matrix = temp self.final_matrix = self.pers_matrix @ self.view_matrix def calculate_vertex(model, observer): """ calculate final vertex of a model under a certain observe parameter :param model: :param observer: :return: """ model.final_vertex.append(ScreenVertex(0, 0)) # add a void vertex to make sure vertex index start from 1 for i, v in enumerate(model.raw_vertex): v = observer.pers_matrix @ observer.view_matrix @ v.cord v[0] = v[0] / v[3] v[1] = v[1] / v[3] vertex = ScreenVertex(v[0], v[1]) model.final_vertex.append(vertex) def backface_culling(model, observer): """ Applying back-face culling on certain model under a certain observe parameter :param model: :param observer: :return: """ view_vertex = [] # vertex temp-list in view space for i, v in enumerate(model.raw_vertex): v = observer.pers_matrix @ observer.view_matrix @ v.cord # vertex in view space view_vertex.append(v) for p in model.raw_polygon: v1 = np.subtract(view_vertex[p[2] - 1], view_vertex[p[1] - 1]) v2 = np.subtract(view_vertex[p[3] - 1], view_vertex[p[2] - 1]) v1 = v1[:-1] v2 = v2[:-1] Pn =
np.cross(v1, v2)
numpy.cross
# -*- coding: utf-8 -*- """ Survey_Estimate3dCoord.py *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = '<NAME>' __date__ = '2020-02-07' __copyright__ = '(C) 2020, <NAME>' from PyQt5.QtCore import QCoreApplication, QVariant from qgis.core import * import qgis.utils from numpy import radians, array, sin, cos, sqrt, matrix, zeros, floor, identity, diag from numpy.linalg import pinv, norm from lftools.geocapt.imgs import Imgs from lftools.geocapt.topogeo import str2HTML, String2CoordList, String2StringList, dms2dd import os from qgis.PyQt.QtGui import QIcon class Estimate3dCoord(QgsProcessingAlgorithm): COC = 'COC' AZIMUTH = 'AZIMUTH' ZENITH = 'ZENITH' OUTPUT = 'OUTPUT' WEIGHT = 'WEIGHT' OPENOUTPUT = 'OPENOUTPUT' HTML = 'HTML' OPEN = 'OPEN' LOC = QgsApplication.locale()[:2] def translate(self, string): return QCoreApplication.translate('Processing', string) def tr(self, *string): # Traduzir para o portugês: arg[0] - english (translate), arg[1] - português if self.LOC == 'pt': if len(string) == 2: return string[1] else: return self.translate(string[0]) else: return self.translate(string[0]) def createInstance(self): return Estimate3dCoord() def name(self): return 'estimate3dcoord' def displayName(self): return self.tr('Estimate 3D coordinates', 'Estimar coordenadas 3D') def group(self): return self.tr('Survey', 'Agrimensura') def groupId(self): return 'survey' def tags(self): return self.tr('survey,agrimensura,3D,coordinate,azimuth,zenith,angle,least square,minimum distantce,adjustment,slant').split(',') def icon(self): return QIcon(os.path.join(os.path.dirname(os.path.dirname(__file__)), 'images/total_station.png')) txt_en = 'This tool calculates the coordinates (X, Y, Z) of a point from azimuth and zenith angle measurements observed from two or more stations with known coordinates using the Foward Intersection Method adjusted by the Minimum Distances.' txt_pt = 'Esta ferramenta calcula as coordenadas (X,Y,Z) de um ponto a partir de medições de azimute e ângulo zenital observados de duas ou mais estações de coordenadas conhecidas utilizando o Método de Interseção à Vante ajustado pelas Distâncias Mínimas.' figure = 'images/tutorial/survey_3D_coord.jpg' def shortHelpString(self): social_BW = Imgs().social_BW nota_en = '''Notes: Data collected in the discipline of <i>Geodetic Surveys</i> in the Graduate Program at UFPE, in field work coordinated by <b>Prof. Dr. <NAME></b>. For more information on the methodology used, please read the article at the link below:''' nota_pt = '''Notas: Dados coletados na disciplina de <i>Levantamentos Geodésicos</i> no programa de Pós-Graduação da UFPE, em trabalho de campo coordenado pela <b>Profa. Dra. Andrea de Seixas</b>. Para mais informações sobre a metodologia utilizada, por favor leia o artigo no link abaixo:''' footer = '''<div align="center"> <img src="'''+ os.path.join(os.path.dirname(os.path.dirname(__file__)), self.figure) +'''"> </div> <div align="right"> <div>''' + self.tr(nota_en, nota_pt) + ''' </div> <p align="right"> <b><a href="https://www.researchgate.net/publication/352817150_OPTIMIZED_DETERMINATION_OF_3D_COORDINATES_IN_THE_SURVEY_OF_INACCESSIBLE_POINTS_OF_BUILDINGS_-_EXAMPLE_OF_APPLICATION_IMPLEMENTED_IN_FREE_SOFTWARE_Determinacao_otimizada_de_coordenadas_3D_no_levantamen" target="_blank">'''+self.tr('<NAME>.; <NAME>.; <NAME>.; <NAME>. Optimized determination of 3D coordinates in the survey of inaccessible points of buildings - example of application implemented in free software. Bulletin of Geodetic Sciences. 27(2): e2021017, 2021. ') + '''</b> ''' +'</a><br><b>'+ self.tr('Author: <NAME>', 'Autor: <NAME>')+'''</b> </p>'''+ social_BW + '''</div> </div>''' return self.tr(self.txt_en, self.txt_pt) + footer def initAlgorithm(self, config=None): # 'INPUTS' self.addParameter( QgsProcessingParameterString( self.COC, self.tr('Coordinates of Optical Centers', 'Coordenadas dos Centros Ópticos'), defaultValue = '149867.058, 249817.768, 1.825; 149988.309, 249782.867, 1.962; 150055.018, 249757.128, 1.346; 150085.600, 249877.691, 1.559', multiLine = True ) ) self.addParameter( QgsProcessingParameterString( self.AZIMUTH, self.tr('Azimuths', 'Azimutes'), defaultValue = '''46°10'06.37”, 359°12'12.21”, 338°32'59.40”, 298°46'22.93”''', multiLine = True ) ) self.addParameter( QgsProcessingParameterString( self.ZENITH, self.tr('Zenith Angles', 'Ângulos Zenitais'), defaultValue = '''72°24'22.25”, 70°43'01.75", 74°17'54.17", 65°04'27.25"''', multiLine = True ) ) self.addParameter( QgsProcessingParameterBoolean( self.WEIGHT, self.tr('Use Weight Matrix (W)', 'Usar Matrix Peso (P)'), defaultValue = False ) ) # 'OUTPUT' self.addParameter( QgsProcessingParameterFileDestination( self.OUTPUT, self.tr('Adjusted 3D Coordinates', 'Coordenadas 3D Ajustadas'), fileFilter = 'CSV (*.csv)' ) ) self.addParameter( QgsProcessingParameterFileDestination( 'HTML', self.tr('Adjustment Report', 'Relatório de Ajustamento'), self.tr('HTML files (*.html)') ) ) self.addParameter( QgsProcessingParameterBoolean( self.OPEN, self.tr('Open output file after executing the algorithm', 'Abrir arquivo de saída com coordenadas 3D'), defaultValue= True ) ) def CosDir(self, Az, Z): k = sin(Z)*sin(Az) m = sin(Z)*cos(Az) n = cos(Z) return array([[k],[m],[n]]) def processAlgorithm(self, parameters, context, feedback): COs = self.parameterAsString( parameters, self.COC, context ) Azimutes = self.parameterAsString( parameters, self.AZIMUTH, context ) ÂngulosZenitais = self.parameterAsString( parameters, self.ZENITH, context ) usar_peso = self.parameterAsBool( parameters, self.WEIGHT, context ) abrir_arquivo = self.parameterAsBool( parameters, self.OPENOUTPUT, context ) output = self.parameterAsFileOutput( parameters, self.OUTPUT, context ) if output[-3:] != 'csv': output += '.csv' html_output = self.parameterAsFileOutput( parameters, self.HTML, context ) # Pontos Coords = String2CoordList(COs) # Azimutes (radianos) Az = [] for item in String2StringList(Azimutes): Az += [dms2dd(item)] Az = radians(array(Az)) # Ângulos Zenitais (radianos) Z = [] for item in String2StringList(ÂngulosZenitais): Z += [dms2dd(item)] Z = radians(array(Z)) # Validação dos dados de entrada if not (len(Coords) == len(Az) and len(Az) == len(Z)): raise QgsProcessingException(self.tr('Wrong number of parameters!', 'Número de parâmetros errado!')) else: n = len(Coords) # não deve haver valores nulos # ângulos entre 0 e 360 graus # Montagem do Vetor L L = [] for k in range(len(Coords)): L+= [[Coords[k][0]], [Coords[k][1]], [Coords[k][2]]] L = array(L) # Montagem da Matriz A e = 3*n p = 3 + n A = matrix(
zeros([e, p])
numpy.zeros
from dataclasses import dataclass import typing import numpy as np from scipy.integrate import quad from scipy.special import erf import numpy.testing as npt import pytest import cara.monte_carlo as mc from cara import models,data from cara.utils import method_cache from cara.models import _VectorisedFloat,Interval,SpecificInterval from cara.monte_carlo.sampleable import LogNormal from cara.monte_carlo.data import (expiration_distributions, expiration_BLO_factors,short_range_expiration_distributions, short_range_distances,virus_distributions,activity_distributions) # TODO: seed better the random number generators np.random.seed(2000) SAMPLE_SIZE = 1_000_000 TOLERANCE = 0.04 sqrt2pi = np.sqrt(2.*np.pi) sqrt2 = np.sqrt(2.) ln2 = np.log(2) @dataclass(frozen=True) class SimpleConcentrationModel: """ Simple model for the background (long-range) concentration, without all the flexibility of cara.models.ConcentrationModel. For independent, end-to-end testing purposes. This assumes no mask wearing, and the same ventilation rate at all times. """ #: infected people presence interval infected_presence: Interval #: viral load (RNA copies / mL) viral_load: _VectorisedFloat #: breathing rate (m^3/h) breathing_rate: _VectorisedFloat #: room volume (m^3) room_volume: _VectorisedFloat #: ventilation rate (air changes per hour) - including HEPA lambda_ventilation: _VectorisedFloat #: BLO factors BLO_factors: typing.Tuple[float, float, float] #: number of infected people num_infected: int = 1 #: relative humidity RH humidity: float = 0.3 #: minimum particle diameter considered (microns) diameter_min: float = 0.1 #: maximum particle diameter considered (microns) diameter_max: float = 30. #: evaporation factor evaporation: float = 0.3 #: cn (cm^-3) for resp. the B, L and O modes. Corresponds to the # total concentration of aerosols for each mode. cn: typing.Tuple[float, float, float] = (0.06, 0.2, 0.0010008) # mean of the underlying normal distributions (represents the log of a # diameter in microns), for resp. the B, L and O modes. mu: typing.Tuple[float, float, float] = (0.989541, 1.38629, 4.97673) # std deviation of the underlying normal distribution, for resp. # the B, L and O modes. sigma: typing.Tuple[float, float, float] = (0.262364, 0.506818, 0.585005) def removal_rate(self) -> _VectorisedFloat: """ removal rate lambda in h^-1, excluding the deposition rate. """ hl_calc = ((ln2/((0.16030 + 0.04018*(((293-273.15)-20.615)/10.585) +0.02176*(((self.humidity*100)-45.235)/28.665) -0.14369 -0.02636*((293-273.15)-20.615)/10.585)))/60) return (self.lambda_ventilation + ln2/(np.where(hl_calc <= 0, 6.43, np.minimum(6.43, hl_calc)))) @method_cache def deposition_removal_coefficient(self) -> float: """ coefficient in front of gravitational deposition rate, in h^-1.microns^-2 Note: 0.4512 = 1.88e-4 * 3600 / 1.5 """ return 0.4512*(self.evaporation/2.5)**2 @method_cache def aerosol_volume(self,diameter: float) -> float: """ particle volume in microns^3 """ return 4*np.pi/3. * (diameter/2.)**3 @method_cache def Np(self,diameter: float, BLO_factors: typing.Tuple[float, float, float]) -> float: """ number of emitted particles per unit volume (BLO model) in cm^-3.ln(micron)^-1 """ result = 0. for cn,mu,sigma,famp in zip(self.cn,self.mu,self.sigma, BLO_factors): result += ( (cn * famp)/sigma * np.exp(-(
np.log(diameter)
numpy.log
# -*- coding: utf-8 -*- import random as rn rn.seed(2) from numpy.random import seed seed(2) from tensorflow import set_random_seed set_random_seed(2) import tensorflow as tf session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) from keras import backend as K sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) import os import numpy as np def load_data(name='freq', get_all_special_data=True): if name == 'freq': path = 'D:/Python/TAR/dataset/metadata/bags of words' elif name == 'chi2': path = 'D:/Python/TAR/chi2_scores/metadata/bags_of_words' elif name == 'tfidf': path = 'D:/Python/TAR/tf-idf_scores/metadata/bags_of_words' else: raise ValueError train_negative = path + '/negative' train_positive = path + '/positive' test_negative = path + '/negative_test' test_positive = path + '/positive_test' special_path = 'D:/Python/TAR/special-data/bags of words' special_train_negative = special_path + '/negative/' special_train_positive = special_path + '/positive/' special_test_negative = special_path + '/negative_test/' special_test_positive = special_path + '/positive_test/' # # load train data # train = [] train_X = [] train_S = [] train_y = [] os.chdir(train_negative) negative_files = os.listdir() #print('negative train files:', len(negative_files)) for txtfile in negative_files: with open(txtfile, 'r', encoding='utf8') as file: vector = file.readlines() vector = [int(token[:-1]) for token in vector] # remove '\n', convert values to int special_vector = [] with open(special_train_negative + txtfile, 'r', encoding='utf-8') as sf: special_vector = sf.readlines() special_vector = [float(token[:-1]) for token in special_vector] if get_all_special_data == False: special_vector = [special_vector[1], special_vector[4], special_vector[5], special_vector[8]] train.append([np.array(vector), np.array(special_vector), np.array([1, 0])]) os.chdir(train_positive) positive_files = os.listdir() #print('positive train files:', len(positive_files)) for txtfile in positive_files: with open(txtfile, 'r', encoding='utf8') as file: vector = file.readlines() vector = [int(token[:-1]) for token in vector] # remove '\n', convert values to int special_vector = [] with open(special_train_positive + txtfile, 'r', encoding='utf-8') as sf: special_vector = sf.readlines() special_vector = [float(token[:-1]) for token in special_vector] if get_all_special_data == False: special_vector = [special_vector[1], special_vector[4], special_vector[5], special_vector[8]] train.append([np.array(vector), np.array(special_vector), np.array([0, 1])]) train.append([np.array(vector), np.array(special_vector), np.array([0, 1])]) train.append([
np.array(vector)
numpy.array
import wave import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import fft, ifft, fftshift, ifftshift, rfft, irfft from scipy.stats import truncnorm, uniform from scipy.sparse import csr_matrix, coo_matrix from scipy.signal import detrend class SignalFrame: """ SignalFrame class provides tools to read wave signal, generate periodic signal with or without noise and perform a random sampling Attributes ---------- temporal : bytearray, shape = [len] Signal in temporal basis. temporal_sampled : bytearray, shape = [len] Sampled signal in temporal basis. freq : bytearray Signal in frequency basis. freq_sampled : bytearray Sampled signal in frequency basis. len : int Signal length. phi : scipy.sparse.csr_matrix object with rate*len elements Sampling matrix in compressed sparse row matrix format. """ def __init__(self): self.temporal = np.array(0) self.temporal_sampled = np.array(0) self.freq =
np.array(0)
numpy.array
# # FAPS PLMAgents import logging import os import random from collections import deque import keras.backend as k import numpy as np from keras.layers import Dense from keras.models import Sequential from keras.optimizers import Adam from FAPSPLMAgents.exception import FAPSPLMEnvironmentException logger = logging.getLogger("FAPSPLMAgents") class FAPSTrainerException(FAPSPLMEnvironmentException): """ Related to errors with the Trainer. """ pass class A2C(object): """This class is the abstract class for the unitytrainers""" def __init__(self, env, brain_name, trainer_parameters, training, seed): """ Responsible for collecting experiences and training a neural network model. :param env: The FAPSPLMEnvironment. :param brain_name: The brain to train. :param trainer_parameters: The parameters for the trainer (dictionary). :param training: Whether the trainer is set for training. :param seed: Random seed. """ self.brain_name = brain_name self.brain = env self.trainer_parameters = trainer_parameters self.is_training = training self.seed = seed self.steps = 0 self.last_reward = 0 self.initialized = False # initialize specific PPO parameters self.env_brain = env self.state_size = env.stateSize self.action_size = env.actionSize self.action_space_type = env.actionSpaceType self.num_layers = self.trainer_parameters['num_layers'] self.batch_size = self.trainer_parameters['batch_size'] self.hidden_units = self.trainer_parameters['hidden_units'] self.replay_memory = deque(maxlen=self.trainer_parameters['memory_size']) self.gamma = self.trainer_parameters['gamma'] # discount rate self.epsilon = self.trainer_parameters['epsilon'] # exploration rate self.epsilon_min = self.trainer_parameters['epsilon_min'] self.epsilon_decay = self.trainer_parameters['epsilon_decay'] self.learning_rate = self.trainer_parameters['learning_rate'] self.actor_model = None self.critic_model = None def __str__(self): return '''A2C(Advantage Actor-Critic) Trainer''' @property def parameters(self): """ Returns the trainer parameters of the trainer. """ return self.trainer_parameters @property def get_max_steps(self): """ Returns the maximum number of steps. Is used to know when the trainer should be stopped. :return: The maximum number of steps of the trainer """ return self.trainer_parameters['max_steps'] @property def get_step(self): """ Returns the number of steps the trainer has performed :return: the step count of the trainer """ return self.steps @property def get_last_reward(self): """ Returns the last reward the trainer has had :return: the new last reward """ return self.last_reward def is_initialized(self): """ check if the trainer is initialized """ return self.initialized def _create_actor_model(self): model = Sequential() model.add(Dense(self.hidden_units, input_dim=self.state_size, activation='relu', kernel_initializer='he_uniform')) for x in range(1, self.num_layers): model.add(Dense(self.hidden_units, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(self.action_size, activation='softmax', kernel_initializer='he_uniform')) return model def _create_critic_model(self): model = Sequential() model.add(Dense(self.hidden_units, input_dim=self.state_size, activation='relu', kernel_initializer='he_uniform')) for x in range(1, self.num_layers): model.add(Dense(self.hidden_units, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(1, activation='linear', kernel_initializer='he_uniform')) return model def initialize(self): """ Initialize the trainer """ self.actor_model = self._create_actor_model() self.actor_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=self.learning_rate)) print('\n##### Actor Model ') print(self.actor_model.summary()) self.critic_model = self._create_critic_model() self.critic_model.compile(loss="mse", optimizer=Adam(lr=self.learning_rate)) print('\n##### Critic Model ') print(self.critic_model.summary()) self.initialized = True def clear(self): """ Clear the trainer """ k.clear_session() self.replay_memory.clear() self.actor_model = None self.critic_model = None def load_model_and_restore(self, model_path): """ Load and restore the model from a defined path. :param model_path: Random seed. """ self.actor_model = self._create_actor_model() if os.path.exists(model_path + '/A2C_actor_model.h5'): self.actor_model.load_weights(model_path + '/A2C_actor_model.h5') self.actor_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=self.learning_rate)) else: self.actor_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=self.learning_rate)) self.critic_model = self._create_critic_model() if os.path.exists(model_path + '/A2C_critic_model.h5'): self.critic_model.load_weights(model_path + '/A2C_critic_model.h5') self.critic_model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) else: self.critic_model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) def increment_step(self): """ Increment the step count of the trainer """ self.steps = self.steps + 1 def update_last_reward(self, reward): """ Updates the last reward """ self.last_reward = reward def take_action(self, brain_info): """ Decides actions given state/observation information, and takes them in environment. :param brain_info: The BrainInfo from environment. :return: the action array and an object to be passed to add experiences """ policy = self.actor_model.predict(brain_info.states, batch_size=1).flatten() index = np.random.choice(self.action_size, 1, p=policy)[0] rslt = np.zeros(shape=self.action_size, dtype=np.dtype(int)) rslt[index] = 1 #print("Hello !!!!") return rslt def add_experiences(self, curr_info, action_vector, next_info): """ Adds experiences to each agent's experience history. :param action_vector: Current executed action :param curr_info: Current AllBrainInfo. :param next_info: Next AllBrainInfo. """ self.replay_memory.append( (curr_info.states, action_vector, [next_info.rewards], next_info.states, [next_info.local_done])) def process_experiences(self, current_info, action_vector, next_info): """ Checks agent histories for processing condition, and processes them as necessary. Processing involves calculating value and advantage targets for model updating step. :param current_info: Current BrainInfo. :param action_vector: Current executed action :param next_info: Next corresponding BrainInfo. """ # Nothing to be done. def end_episode(self): """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ self.replay_memory.clear() def is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to wether or not update_model() can be run """ # The NN is ready to be updated everytime a batch is sampled return (self.steps > 1) and ((self.steps % self.batch_size) == 0) def update_model(self): """ Uses training_buffer to update model. Run back propagation. """ num_samples = min(self.batch_size, len(self.replay_memory)) mini_batch = random.sample(self.replay_memory, num_samples) states = np.zeros((self.batch_size, self.state_size)) advantagess = np.zeros((self.batch_size, self.action_size)) targets = np.zeros((self.batch_size, 1)) i = 0 for state, action, reward, next_state, done in mini_batch: target = np.zeros((1, 1)) advantages =
np.zeros((1, self.action_size))
numpy.zeros