prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
import numpy as np
import rlkit.torch.pytorch_util as ptu
from multiworld.core.image_env import normalize_image
from rlkit.core.eval_util import create_stats_ordered_dict
from rlkit.data_management.obs_dict_replay_buffer import flatten_dict
from rlkit.data_management.shared_obs_dict_replay_buffer import \
SharedObsDictRelabelingBuffer
from ROLL.LSTM_wrapped_env import LSTMWrappedEnv
from rlkit.torch.vae.vae_trainer import (
compute_p_x_np_to_np,
relative_probs_from_log_probs,
)
import copy
import cv2
class OnlineLSTMRelabelingBuffer(SharedObsDictRelabelingBuffer):
def __init__(
self,
vae_ori,
lstm_seg,
*args,
decoded_obs_key='image_observation',
decoded_achieved_goal_key='image_achieved_goal',
decoded_desired_goal_key='image_desired_goal',
exploration_rewards_type='None',
exploration_rewards_scale=1.0,
vae_priority_type='None',
start_skew_epoch=0,
power=1.0,
internal_keys=[],
priority_function_kwargs=None,
relabeling_goal_sampling_mode='vae_prior',
observation_mode='original_image',
**kwargs
):
if internal_keys is None:
internal_keys = []
for key in [
decoded_obs_key,
decoded_achieved_goal_key,
decoded_desired_goal_key
]:
if key not in internal_keys:
internal_keys.append(key)
super().__init__(internal_keys=internal_keys, segmentation=True, *args, **kwargs)
assert isinstance(self.env, LSTMWrappedEnv)
self.vae = vae_ori
self.lstm_seg = lstm_seg
self.decoded_obs_key = decoded_obs_key
self.decoded_obs_key_seg = decoded_obs_key + '_segmented'
self.decoded_desired_goal_key = decoded_desired_goal_key
self.decoded_achieved_goal_key = decoded_achieved_goal_key
self.exploration_rewards_type = exploration_rewards_type
self.exploration_rewards_scale = exploration_rewards_scale
self.start_skew_epoch = start_skew_epoch
self.vae_priority_type = vae_priority_type
self.power = power
self._relabeling_goal_sampling_mode = relabeling_goal_sampling_mode
self._give_explr_reward_bonus = (
exploration_rewards_type != 'None'
and exploration_rewards_scale != 0.
)
self._exploration_rewards = np.zeros((self.max_size, 1))
self._prioritize_vae_samples = (
vae_priority_type != 'None'
and power != 0.
)
self._vae_sample_priorities = np.zeros((self.max_size, 1))
self._vae_sample_probs = None
self._vae_sample_priorities_seg = np.zeros((self.max_size, 1))
self._vae_sample_probs_seg = None
type_to_function = {
'vae_prob': self.vae_prob,
'None': self.no_reward,
}
self.exploration_reward_func = (
type_to_function[self.exploration_rewards_type]
)
self.vae_prioritization_func = (
type_to_function[self.vae_priority_type]
)
if priority_function_kwargs is None:
self.priority_function_kwargs = dict()
else:
self.priority_function_kwargs = priority_function_kwargs
self.epoch = 0
self._register_mp_array("_exploration_rewards")
self._register_mp_array("_vae_sample_priorities")
self._register_mp_array("_vae_sample_priorities_seg")
self.observation_mode = observation_mode
def add_path(self, path):
self.add_decoded_vae_goals_to_path(path)
super().add_path(path)
def add_decoded_vae_goals_to_path(self, path):
# decoding the self-sampled vae images should be done in batch (here)
# rather than in the env for efficiency
desired_goals = flatten_dict(
path['observations'],
[self.desired_goal_key]
)[self.desired_goal_key]
desired_decoded_goals = self.env._decode(desired_goals, self.env.lstm_segmented)
desired_decoded_goals = desired_decoded_goals.reshape(
len(desired_decoded_goals),
-1
)
for idx, next_obs in enumerate(path['observations']):
path['observations'][idx][self.decoded_desired_goal_key] = \
desired_decoded_goals[idx]
path['next_observations'][idx][self.decoded_desired_goal_key] = \
desired_decoded_goals[idx]
def get_diagnostics(self):
if self._vae_sample_probs is None or self._vae_sample_priorities is None:
stats = create_stats_ordered_dict(
'VAE Sample Weights',
np.zeros(self._size),
)
stats.update(create_stats_ordered_dict(
'VAE Sample Probs',
np.zeros(self._size),
))
else:
vae_sample_priorities = self._vae_sample_priorities[:self._size]
vae_sample_probs = self._vae_sample_probs[:self._size]
stats = create_stats_ordered_dict(
'VAE Sample Weights',
vae_sample_priorities,
)
stats.update(create_stats_ordered_dict(
'VAE Sample Probs',
vae_sample_probs,
))
vae_sample_priorities_seg = self._vae_sample_priorities_seg[:self._size]
vae_sample_probs_seg = self._vae_sample_probs_seg[:self._size]
stats.update(create_stats_ordered_dict(
'VAE Seg Sample Probs',
vae_sample_probs_seg,
))
stats.update(create_stats_ordered_dict(
'VAE Seg Weights',
vae_sample_priorities_seg,
))
return stats
def show_obs(self, normalized_img_vec_, name='img'):
print(name)
normalized_img_vec = copy.deepcopy(normalized_img_vec_)
img = (normalized_img_vec * 255).astype(np.uint8)
img = img.reshape(3, 48, 48).transpose()
img = img[::-1, :, ::-1]
cv2.imshow(name, img)
cv2.waitKey()
def refresh_latents(self, epoch, refresh_goals=False):
self.epoch = epoch
self.skew = (self.epoch > self.start_skew_epoch)
batch_size = 512
next_idx = min(batch_size, self._size)
if self.exploration_rewards_type == 'hash_count':
# you have to count everything then compute exploration rewards
cur_idx = 0
next_idx = min(batch_size, self._size)
while cur_idx < self._size:
idxs = np.arange(cur_idx, next_idx)
normalized_imgs = (
normalize_image(self._next_obs[self.decoded_obs_key][idxs])
)
cur_idx = next_idx
next_idx += batch_size
next_idx = min(next_idx, self._size)
cur_idx = 0
obs_sum = np.zeros(self.vae.representation_size)
obs_square_sum = np.zeros(self.vae.representation_size)
while cur_idx < self._size:
idxs = np.arange(cur_idx, next_idx)
if self.observation_mode == 'original_image':
# NOTE yufei: observation should use env.vae_original (non-segmented images)
self._obs[self.observation_key][idxs] = \
self.env._encode(
normalize_image(self._obs[self.decoded_obs_key][idxs]), self.env.vae_original
)
self._next_obs[self.observation_key][idxs] = \
self.env._encode(
normalize_image(self._next_obs[self.decoded_obs_key][idxs]), self.env.vae_original
)
elif self.observation_mode == 'segmentation_proprio_cross_weight':
latent_dim = self.env.lstm_segmented.representation_size
self._obs[self.observation_key][idxs][:, -latent_dim:] = \
self.env._encode_lstm(
normalize_image(self._obs[self.decoded_obs_key_seg][idxs]), self.env.lstm_segmented
)
self._next_obs[self.observation_key][idxs][:, -latent_dim:] = \
self.env._encode_lstm(
normalize_image(self._next_obs[self.decoded_obs_key_seg][idxs]), self.env.lstm_segmented
)
elif self.observation_mode == 'segmentation_proprio_conv_concat':
# cur_obj_image = self._obs[self.decoded_desired_goal_key][idxs]
# normalized_cur_obj_image = normalize_image(cur_obj_image)
# cur_gripper_pos = self._obs['state_observation']
# cur_gripper_x = cur_gripper_pos[:, 0]
# cur_gripper_y = cur_gripper_pos[:, 1]
# segmented_object_with_gripper = np.concatenate([normalized_cur_obj_image, cur_gripper_x], axis=1)
# segmented_object_with_gripper = np.concatenate([segmented_object_with_gripper, cur_gripper_y], axis=1)
# self._obs[self.observation_key][idxs] = \
# self.env._encode(
# segmented_object_with_gripper, self.env.vae_original
# )
# next_obj_image = self._next_obs[self.decoded_desired_goal_key][idxs]
# normalized_next_obj_image = normalize_image(next_obj_image)
# next_gripper_pos = self._next_obs['state_observation']
# next_gripper_x = next_gripper_pos[:, 0]
# next_gripper_y = next_gripper_pos[:, 1]
# segmented_object_with_gripper = np.concatenate([normalized_next_obj_image, next_gripper_x], axis=1)
# segmented_object_with_gripper = np.concatenate([segmented_object_with_gripper, next_gripper_y], axis=1)
# self._next_obs[self.observation_key][idxs] = \
# self.env._encode(
# segmented_object_with_gripper, self.env.vae_original
# )
pass
else:
raise NotImplementedError
# WARNING: we only refresh the desired/achieved latents for
# "next_obs". This means that obs[desired/achieve] will be invalid,
# so make sure there's no code that references this.
# TODO: enforce this with code and not a comment
# NOTE yufei: for desired_goal_key we use env.lstm_segmented
if refresh_goals:
# NOTE LSTM: if you really want to keep training LSTM during RL learning and re-encode the latent goals,
# better store the hiddens (but hiddens also change, how to handle this?)
self._next_obs[self.desired_goal_key][idxs] = \
self.env._encode_lstm(
normalize_image(self._next_obs[self.decoded_desired_goal_key][idxs]), self.env.lstm_segmented
)
self._next_obs[self.achieved_goal_key][idxs] = \
self.env._encode_lstm(
normalize_image(self._next_obs[self.decoded_achieved_goal_key][idxs]), self.env.lstm_segmented
)
if 'segmentation_proprio' not in self.observation_mode:
normalized_imgs = (
normalize_image(self._next_obs[self.decoded_obs_key][idxs])
)
normalized_imgs_seg = (
normalize_image(self._next_obs[self.decoded_obs_key_seg][idxs])
)
if self._give_explr_reward_bonus:
rewards = self.exploration_reward_func(
normalized_imgs,
idxs,
**self.priority_function_kwargs
)
self._exploration_rewards[idxs] = rewards.reshape(-1, 1)
if self._prioritize_vae_samples:
if (
self.exploration_rewards_type == self.vae_priority_type
and self._give_explr_reward_bonus
):
self._vae_sample_priorities[idxs] = (
self._exploration_rewards[idxs]
)
else: # NOTE yufei: this is what actually being used. So I only updated this.
self._vae_sample_priorities[idxs] = (
self.vae_prioritization_func(
self.vae,
normalized_imgs,
idxs,
**self.priority_function_kwargs
).reshape(-1, 1)
)
obs_sum+= self._obs[self.observation_key][idxs][:, :self.vae.representation_size].sum(axis=0)
obs_square_sum+= np.power(self._obs[self.observation_key][idxs][:, :self.vae.representation_size], 2).sum(axis=0)
cur_idx = next_idx
next_idx += batch_size
next_idx = min(next_idx, self._size)
self.vae.dist_mu = obs_sum/self._size
self.vae.dist_std = np.sqrt(obs_square_sum/self._size - np.power(self.vae.dist_mu, 2))
if self._prioritize_vae_samples:
"""
priority^power is calculated in the priority function
for image_bernoulli_prob or image_gaussian_inv_prob and
directly here if not.
"""
if self.vae_priority_type == 'vae_prob':
self._vae_sample_priorities[:self._size] = relative_probs_from_log_probs(
self._vae_sample_priorities[:self._size]
)
self._vae_sample_probs = self._vae_sample_priorities[:self._size]
self._vae_sample_priorities_seg[:self._size] = relative_probs_from_log_probs(
self._vae_sample_priorities_seg[:self._size]
)
self._vae_sample_probs_seg = self._vae_sample_priorities_seg[:self._size]
else:
self._vae_sample_probs = self._vae_sample_priorities[:self._size] ** self.power
self._vae_sample_probs_seg = self._vae_sample_priorities_seg[:self._size] ** self.power
p_sum = np.sum(self._vae_sample_probs)
assert p_sum > 0, "Unnormalized p sum is {}".format(p_sum)
self._vae_sample_probs /= np.sum(self._vae_sample_probs)
self._vae_sample_probs = self._vae_sample_probs.flatten()
p_sum = np.sum(self._vae_sample_probs_seg)
assert p_sum > 0, "Unnormalized p sum is {}".format(p_sum)
self._vae_sample_probs_seg /= np.sum(self._vae_sample_probs_seg)
self._vae_sample_probs_seg = self._vae_sample_probs_seg.flatten()
def sample_weighted_indices(self, batch_size, key=None, skew=True):
if key == 'image_observation_segmented':
_vae_sample_probs = self._vae_sample_probs_seg
else:
_vae_sample_probs = self._vae_sample_probs
if (
self._prioritize_vae_samples and
_vae_sample_probs is not None and
self.skew and skew
):
indices = np.random.choice(
len(_vae_sample_probs),
batch_size,
p=_vae_sample_probs,
)
assert (
np.max(_vae_sample_probs) <= 1 and
np.min(_vae_sample_probs) >= 0
)
else:
indices = self._sample_indices(batch_size)
return indices
def _sample_goals_from_env(self, batch_size):
self.env.goal_sampling_mode = self._relabeling_goal_sampling_mode
return self.env.sample_goals(batch_size)
def sample_buffer_goals(self, batch_size, skew=True, key='image_observation_segmented'):
"""
Samples goals from weighted replay buffer for relabeling or exploration.
Returns None if replay buffer is empty.
Example of what might be returned:
dict(
image_desired_goals: image_achieved_goals[weighted_indices],
latent_desired_goals: latent_desired_goals[weighted_indices],
)
"""
if self._size == 0:
return None
weighted_idxs = self.sample_weighted_indices(
batch_size, skew=skew
)
# NOTE yufei: this is the original RLkit code, I think it does not make sense in the segmentation case,
# because self.decoded_obs_key is just 'image_observation', which can not serve as the 'image_desired_goal'
# here.
# next_image_obs = normalize_image(
# self._next_obs[self.decoded_obs_key][weighted_idxs]
# )
next_latent_obs = self._next_obs[self.achieved_goal_key][weighted_idxs]
next_img_obs = normalize_image(
self._next_obs[key][weighted_idxs]
) # we should use the segmented images as the image_desired_goal
# NOTE LSTM: if we ever want to change the key, remember to pass a key in!
return {
self.decoded_desired_goal_key: next_img_obs,
self.desired_goal_key: next_latent_obs
}
def random_lstm_training_data(self, batch_size, key=None):
if key is None:
key = self.decoded_obs_key
traj_idxes = np.random.randint(0, self._traj_num, batch_size)
imlen = self._next_obs[key].shape[-1]
data = | np.zeros((batch_size, self.max_path_length, imlen), dtype=np.uint8) | numpy.zeros |
#%%
import numpy as np
import math
import scipy
from scipy.optimize import curve_fit
from scipy.interpolate import interp1d
from scipy.interpolate import CloughTocher2DInterpolator
from scipy.integrate import quad
import sys
sys.path.append('../')
import SQ_calcs
# Constants
pi = math.pi
heV = 4.14e-15 # eV*s
c = 2.99792e8 # m/s
kbeV = 8.6173e-5 # eV/K
keV = 8.6173e-5 # eV/K
h = 6.626e-34
kb = 1.38065e-23
q = 1.60218e-19
#%%
# This module contains functions for Photoluminescence data analysis and modeling
def aipl(data, dark, grating):
"""
This function takes PL data in cts/second units and
converts to AIPL based on a laser power and grating calibration
file. Functionality is built in to handle both single and map files
INPUTS:
data - data matrix containing input wavelength and PL cts/sec data
if m x 2 matrix, treats as single spectra file
if m x n matrix, treats as map along m
if n x m matrix, treats as map along n
dark - can be 0
grating - specifies which grating used, a string either '500nm' or '1200nm'
or '1200nm-InGaAs'
OUTPUTS:
aipl_data - data converted to absolute units , [=] photons/m^2-s-eV
"""
#Get grating calibration file, then calculate conversion factor
def BBPhotonFluxPerNM(lam,T):
a = 2*pi/(h**3*c**2)*((h*c/(lam*1e-9))**2/(np.exp((h*c/(lam*1e-9))/(kb*T))-1))*(h*c/(lam*1e-9)**2)*1e-9
return a
if grating == '500nm':
BB1050 = np.loadtxt('../../data/PLdata/grating_calibration_files/150 500'
'blaze BB files/BB 1050 10 um hole 10x SiCCD 532 LP'
'F No Duoscan Autoscanning_2.txt')
BB_raw_photon_data = BB1050[:,1]/np.insert(BB1050[1:,0]-BB1050[:-1,0],
0,BB1050[1,0]-BB1050[0,0])
AbsFluxesPerNM = np.zeros(BB1050.shape[0])
Ts = 1050;
for ii in range(BB1050.shape[0]):
AbsFluxesPerNM[ii] = BBPhotonFluxPerNM(BB1050[ii,0],Ts+273.15)
AbsPhotonRate = pi*(10/2*1e-6)**2*AbsFluxesPerNM #photons/sec-nm
Conversion_factor = AbsPhotonRate/BB_raw_photon_data
Ave_conv_factors = np.zeros([BB1050.shape[0],2])
Ave_conv_factors[:,0] = BB1050[:,0]
Ave_conv_factors[:,1] = Conversion_factor
f2 = interp1d(Ave_conv_factors[:,0], Ave_conv_factors[:,1], kind='cubic')
elif grating == '1200nm':
BB850 = np.loadtxt('../../data/PLdata/grating_calibration_files/BB 850C 10 um hole D0 10x 150 grating CCD 532 nm NoDS.txt')
BB950 = np.loadtxt('../../data/PLdata/grating_calibration_files/BB 950C 10 um hole D0 10x 150 grating CCD 532 nm NoDS.txt')
BB1050 = np.loadtxt('../../data/PLdata/grating_calibration_files/BB 1050C 10 um hole D0 10x 150 grating CCD 532 nm NoDS.txt')
BB_raw_photon_data_1 = BB850[:,1]/np.insert(BB1050[1:,0]-BB1050[:-1,0],
0,BB1050[1,0]-BB1050[0,0])
BB_raw_photon_data_2 = BB950[:,1]/np.insert(BB1050[1:,0]-BB1050[:-1,0],
0,BB1050[1,0]-BB1050[0,0])
BB_raw_photon_data_3 = BB1050[:,1]/np.insert(BB1050[1:,0]-BB1050[:-1,0],
0,BB1050[1,0]-BB1050[0,0])
BB_raw_photon_data = np.array([BB_raw_photon_data_1,BB_raw_photon_data_2,BB_raw_photon_data_3])
AbsFluxesPerNM = np.zeros(BB_raw_photon_data.shape)
for lam in range(len(BB_raw_photon_data_1)):
tt = 0
for T in (850,950,1050):
AbsFluxesPerNM[tt,lam] = BBPhotonFluxPerNM(BB850[lam,0],T+273.15)
tt += 1
AbsPhotonRate = pi*(10/2*1e-6)**2*AbsFluxesPerNM #photons/sec-nm
Conversion_factor = AbsPhotonRate/BB_raw_photon_data
Ave_conv_factors = np.zeros([BB850.shape[0],2])
Ave_conv_factors[:,0] = BB850[:,0]
Ave_conv_factors[:,1] = np.mean(Conversion_factor,0)
f2 = interp1d(Ave_conv_factors[:,0], Ave_conv_factors[:,1], kind='cubic')
elif grating == '1200nm-InGaAs':
BB850 = np.loadtxt('../../data/PLdata/grating_calibration_files/Response_Synapse CCD2_784_150_Objective_x10_UV_0_Detector_Second_InjRej_Edge 785nm PL.txt')
BB_raw_photon_data = BB850[:,1]/np.insert(BB850[1:,0]-BB850[:-1,0],
0,BB850[1,0]-BB850[0,0])
AbsFluxesPerNM = np.zeros(BB850.shape[0])
Ts = 850;
for ii in range(BB850.shape[0]):
AbsFluxesPerNM[ii] = BBPhotonFluxPerNM(BB850[ii,0],Ts+273.15)
AbsPhotonRate = pi*(10/2*1e-6)**2*AbsFluxesPerNM #photons/sec-nm
Conversion_factor = AbsPhotonRate/BB_raw_photon_data
Ave_conv_factors = | np.zeros([BB850.shape[0],2]) | numpy.zeros |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = | N.array([1,1,1]) | numpy.array |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Imports
import random
import sys
import numpy as np
import time
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import torch.nn as nn
import torch.optim as optim
import torchvision.utils as vutils
import matplotlib.animation as animation
from IPython.display import HTML
import model_v4_small as model
import torch
import keijzer_exogan as ke
# initialize random seeds
manualSeed = 999
random.seed(manualSeed)
torch.manual_seed(manualSeed)
#get_ipython().run_line_magic('matplotlib', 'inline')
#get_ipython().run_line_magic('config', 'InlineBackend.print_figure_kwargs={\'facecolor\' : "w"} # Make sure the axis background of plots is white, this is usefull for the black theme in JupyterLab')
# Initialize default seaborn layout
sns.set_palette(sns.hls_palette(8, l=.3, s=.8))
sns.set(style='ticks')
"""
Local variables
"""
workers = 0 # Number of workers for dataloader, 0 when to_vram is enabled
batch_size = 1 # using one image ofcourse
image_size = 32
nz = 100 # size of latent vector
n_iters = 1000 #25*10**3 # number of iterations to do for inpainting
torch.backends.cudnn.benchmark=True # Uses udnn auto-tuner to find the best algorithm to use for your hardware, speeds up training by almost 50%
lr = 1e-1
lamb1 = 1 #1e4
lamb2 = 1e-1 # 1 , total_loss = lamb1*loss_context + lamb2*loss_perceptual
beta1 = 0.5 # Beta1 hyperparam for Adam optimizers
selected_gpus = [3] # Number of GPUs available. Use 0 for CPU mode.
#n_images = 500
inpaint_n_times = 15
save_array_results = True
load_array_results = False
filename = 'debug_0_1000_1e-1_15_wgan_simple' # 0:100 lamb1=10, lamb2=1
# debug_0_5000_1_1e-1_* c is exogan data with original brian mask, d is with binary mask
# In[2]:
path = '/datb/16011015/ExoGAN_data/selection//' #notice how you dont put the last folder in here...
# # Load all ASPAs
images = np.load(path+'last_chunks_25_percent_images_v4.npy').astype('float32')
np.random.shuffle(images)
len(images)
# np.save(path+'last_chunks_mini_selection.npy', images[:3000])
# # Load smaller selection of ASPAs
# In[3]:
#images = np.load(path+'last_chunks_25_percent_images_v4.1.npy') # 4.1 is a random selection of 5k images
images = np.load(path+'last_chunks_25_percent_images_v4.2.npy')
print('Loaded %s images' % len(images))
print('Batch size: ', batch_size)
# Number of training epochs
# Learning rate for optimizers
ngpu = len(selected_gpus)
print('Number of GPUs used: ', ngpu)
"""
Load data and prepare DataLoader
"""
shuffle = False
if shuffle:
np.random.shuffle(images) # shuffles the images
images = images[0:1000]
n_images = len(images)
#images = images[:int(len(images)*0.005)]
print('Number of images: ', n_images)
dataset = ke.numpy_dataset(data=images, to_vram=True) # to_vram pins it to all GPU's
#dataset = numpy_dataset(data=images, to_vram=True, transform=transforms.Compose([transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])) # to_vram pins it to all GPU's
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
shuffle=True, num_workers=workers, pin_memory=False)
# In[4]:
"""
Load and setup models
"""
# Initialize cuda
device = torch.device("cuda:"+str(selected_gpus[0]) if (torch.cuda.is_available() and ngpu > 0) else "cpu")
# Load models, set to evaluation mode since training is not needed (this also allows batchsize 1 to work with batchnorm2d layers)
netG = model.Generator(ngpu).eval().to(device)
netD = model.Discriminator(ngpu).eval().to(device)
# Apply weights
print('Loading weights...')
try:
# Load saved weights
netG.load_state_dict(torch.load('gan_data//weights//netG_state_dict_wgan_model_v4_small', map_location=device)) #net.module..load_... for parallel model , net.load_... for single gpu model
netD.load_state_dict(torch.load('gan_data//weights//netD_state_dict_wgan_model_v4_small', map_location=device))
except:
print('Could not load saved weights.')
sys.exit()
"""
Define input training stuff (fancy this up)
"""
G = netG
D = netD
z = torch.randn(1, nz, 1, 1, requires_grad=True, device=device)
# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
G = nn.DataParallel(G, device_ids=selected_gpus, output_device=device)
D = nn.DataParallel(D, device_ids=selected_gpus, output_device=device)
#z = nn.DataParallel(z, device_ids=selected_gpus, output_device=device)
# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) # should be sgd
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
print('done')
# # Show generated images
# In[ ]:
from sklearn.preprocessing import MinMaxScaler
z_tests = [torch.randn(1, nz, 1, 1, device=device) for _ in range(9)]
#plt.figure(figsize=(10,10))
for i in range(9):
img = G(z_tests[i]).detach().cpu()[0, 0, :, :]
#plt.subplot(3,3,i+1)
#scaler = MinMaxScaler((0, 1.2))
#img = scaler.fit_transform(img)
#plt.imshow(img, cmap='gray', vmin=-1.2, vmax=1.2)
#plt.imshow(img, cmap='gray')
#plt.tight_layout()
img.min(), img.max(), img.mean(), img.std()
# # Show first 9 selected images
# In[ ]:
#plt.figure(figsize=(10,10))
for i in range(9):
try:
img = images[i]
#plt.subplot(3,3,i+1)
#plt.imshow(img[0, :, :], cmap='gray', vmin=-1.2, vmax=1.2)
except:
pass
#plt.tight_layout()
img.min(), img.max(), img.mean(), img.std()
# # Visualizing the weights
# In[ ]:
weights = [param.data.cpu().numpy().flatten() for param in netD.parameters()]
"""
plt.figure(figsize=(10,10))
for i,layer_weights in enumerate(weights):
print('Layer: %s \t n_weights: %s \t std: %.4f \t mean: %.4f' % (i, len(layer_weights), layer_weights.std(), layer_weights.mean()))
plt.subplot(3,2,i+1)
plt.title('netD layer %s weights' % i)
plt.hist(layer_weights, bins=100)
plt.grid()
plt.tight_layout()
"""
# In[ ]:
weights = [param.data.cpu().numpy().flatten() for param in netG.parameters()] # where param.data are the weights of the i-th layer
"""
plt.figure(figsize=(10,10))
for i,layer_weights in enumerate(weights):
print('Layer: %s \t n_weights: %s \t std: %.4f \t mean: %.4f' % (i, len(layer_weights), layer_weights.std(), layer_weights.mean()))
plt.subplot(3,2,i+1)
plt.title('netG layer %s weights' % i)
plt.hist(layer_weights, bins=100)
plt.grid()
plt.tight_layout()
"""
# # Inpainting
# The corrupted image $y$ is mapped to the closest $z$ in the latent representation space, this mapping is denoted as $\hat{z}$.
#
# $\hat{z} = \operatorname{arg\,min}_z \{ \mathcal{L}_c(z |y, M) + \mathcal{L}_p (z) \}$
#
# where
#
# $\mathcal{L}_c(z |y, M) = || M \bigodot G(z) - M \bigodot y||_1 = || M \bigodot (G(z)-y) ||_1 $
#
# with $\mathcal{L}_c$ being contextual loss and $M$ being a binary mask with the same size as $y$,
#
# $\mathcal{L}_p (z) = \lambda \operatorname{log}(1-D(G(z)))$
#
# with $\mathcal{L}_p$ being perceptual loss and $D$ being the discriminator.
#
# Once $G(\hat{z})$ is generated, the final solution $\hat{x}$ is calculated as
#
# $\hat{x} = \operatorname{arg\, min}_x ||\nabla x - \nabla G(\hat{z}) ||^2_2$
#
# (substitute $x_i = y_i$ for $M_i = 1$).
#
# -----
#
# $|| ... ||$ is done by `torch.norm()`.
# $... \bigodot ...$ is done by `torch.mul()`.
# -----
# TODO: Implement $\hat{x} = \operatorname{arg\, min}_x ||\nabla x - \nabla G(\hat{z}) ||^2_2$
# Currently $\hat{x} = G(\hat{z}) \bigodot (1 -M)+y$
# ## Create the mask
# In[ ]:
def create_mask():
mask = np.full([1,1,32,32], 1) # init array with 0.5's
mask = torch.from_numpy(mask).to(device)
#mask = torch.ones([1, 1, 32, 32]).to(device) # create mask with 1's in the shape of image
#print("mask.shape", mask.shape)
# use a random 'easy' mask
# set all params to 0
mask[:, :, :16, 25:] = 0
# set noise to 0
mask[:, :, 18:, :] = 0
"""Weighted mask"""
# Normalization factors
mask[:, :, 16:18, :] = 6 #6
# Planet mass
mask[:, :, :16, 25:26] = 0
mask = mask.float() # make sure dtype is float, torch was complaining during inpainting that this is a double
return mask
# In[ ]:
m = create_mask().cpu()[0, 0, :, :]
#plt.imshow(m, cmap='gray', vmin=0, vmax=2)
# # Inpaiting functions
# In[ ]:
def save_inpainting_results():
# save real aspa's
all_reals = []
for selected_aspa in range(len(real_images)):
reals = np.array([real_images[selected_aspa][i].detach().cpu().numpy()[0, 0, :, :] for i in range(inpaint_n_times)])
all_reals.append(reals)
all_reals = np.array(all_reals)
np.save('gan_data//val_errors//'+filename+'_reals.npy', all_reals)
# save inpained aspa's
all_inpainteds = []
for selected_aspa in range(len(real_images)):
inpainteds = np.array([final_inpainted_images[selected_aspa][i].detach().cpu().numpy()[0, 0, :, :] for i in range(inpaint_n_times)])
all_inpainteds.append(inpainteds)
all_inpainteds = np.array(all_inpainteds)
np.save('gan_data//val_errors//'+filename+'_inpainteds.npy', all_inpainteds)
np.save('gan_data//val_errors//'+filename+'_n_iterations.npy', n_iteration)
| np.save('gan_data//val_errors//'+filename+'_contextual_losses.npy', contextual_losses) | numpy.save |
# -*- coding: utf-8 -*-
"""
@author: <NAME> <<EMAIL>>
"""
import numpy as np
import random
from sklearn.base import BaseEstimator, ClassifierMixin
from scipy.optimize import fmin_l_bfgs_b
from sklearn.gaussian_process.gpc import _BinaryGaussianProcessClassifierLaplace as BinaryGPC
from sklearn.gaussian_process.kernels import Matern, RBF, ConstantKernel as C
__all__ = ['SharedKernelClassifier']
class SharedKernelClassifier(BaseEstimator, ClassifierMixin):
def __init__(self, n_iter=100, kernel='rbf', ard=True, ardinit=True,
n_restarts=0, model_batch_size=None, verbose=False):
# Check and store parameters
assert n_iter > 0
assert n_restarts >= 0
assert kernel in ['rbf', 'matern52', 'matern32']
assert type(ard) is bool
self.n_iter = n_iter
self.n_restarts = n_restarts
self.kernel = kernel
self.ard = ard
self.ardinit = ardinit
self.verbose = verbose
self.model_batch_size = model_batch_size
# Container for the sub models
self.models_ = dict()
# Stores likelihoods of optimizations
self.convergence_ = list()
@property
def classes_(self):
return list(self.models_.keys())
@property
def log_likelihood_(self):
likelihood = list()
for m in self.models_.values():
likelihood.append(m.log_marginal_likelihood())
return | np.mean(likelihood) | numpy.mean |
import numpy as np
from alg_parameters import *
from util import swap_flat
class Runner(object):
"""Run multiple episode in multiprocessing environments."""
def __init__(self, env, model):
"""Initialize environments"""
self.env = env
self.model = model
self.episode_rewards = np.zeros((N_ENVS,))
self.env.reset()
self.obs = env.get_obs()
self.state = env.get_state()
self.state = np.repeat(self.state, N_AGENTS, axis=1)
self.cent_state = np.concatenate((self.obs, self.state), axis=-1)
self.dones = [False for _ in range(N_ENVS)]
self.actor_hidden_state_c = np.zeros((N_ENVS * N_AGENTS, ACTOR_LAYER2))
self.actor_hidden_state_h = np.zeros((N_ENVS * N_AGENTS, ACTOR_LAYER2))
self.critic_hidden_state_c = np.zeros((N_ENVS * N_AGENTS, CRITIC_LAYER2))
self.critic_hidden_state_h = np.zeros((N_ENVS * N_AGENTS, CRITIC_LAYER2))
def run(self):
# Use to store experiences
mb_obs, mb_cent_state, mb_rewards, mb_values, mb_dones, \
ep_infos, mb_actions, mb_ps = [], [], [], [], [], [], [], []
mb_actor_hidden_state_c, mb_actor_hidden_state_h, \
mb_critic_hidden_state_c, mb_critic_hidden_state_h = [], [], [], []
episode_rewrads_info = []
for _ in range(N_STEPS):
mb_obs.append(self.obs)
mb_cent_state.append(self.cent_state)
mb_actor_hidden_state_c.append(self.actor_hidden_state_c)
mb_critic_hidden_state_c.append(self.critic_hidden_state_c)
mb_actor_hidden_state_h.append(self.actor_hidden_state_h)
mb_critic_hidden_state_h.append(self.critic_hidden_state_h)
valid_action = self.env.get_avail_actions()
actions, values, ps, critic_hidden_state, actor_hidden_state = self.model.step(self.obs, self.cent_state,
valid_action,
self.critic_hidden_state_c,
self.critic_hidden_state_h,
self.actor_hidden_state_c,
self.actor_hidden_state_h)
self.critic_hidden_state_c, self.critic_hidden_state_h = critic_hidden_state
self.actor_hidden_state_c, self.actor_hidden_state_h = actor_hidden_state
mb_values.append(values)
mb_ps.append(ps)
mb_actions.append(actions)
mb_dones.append(self.dones)
rewards, self.dones, infos = self.env.step(actions)
self.obs = self.env.get_obs()
self.state = self.env.get_state()
self.state = np.repeat(self.state, N_AGENTS, axis=1)
self.cent_state = np.concatenate((self.obs, self.state), axis=-1)
self.episode_rewards += rewards
true_index = np.argwhere(self.dones)
if len(true_index) != 0:
# Initialize memory
true_index = np.squeeze(true_index)
self.actor_hidden_state_c = np.reshape(self.actor_hidden_state_c, (-1, N_AGENTS, ACTOR_LAYER2))
self.actor_hidden_state_h = np.reshape(self.actor_hidden_state_h, (-1, N_AGENTS, ACTOR_LAYER2))
self.critic_hidden_state_c = np.reshape(self.critic_hidden_state_c, (-1, N_AGENTS, CRITIC_LAYER2))
self.critic_hidden_state_h = np.reshape(self.critic_hidden_state_h, (-1, N_AGENTS, CRITIC_LAYER2))
self.actor_hidden_state_c[true_index] = np.zeros(self.actor_hidden_state_c[true_index].shape)
self.actor_hidden_state_h[true_index] = np.zeros(self.actor_hidden_state_h[true_index].shape)
self.critic_hidden_state_c[true_index] = np.zeros(self.critic_hidden_state_c[true_index].shape)
self.critic_hidden_state_h[true_index] = np.zeros(self.critic_hidden_state_h[true_index].shape)
self.actor_hidden_state_c = np.reshape(self.actor_hidden_state_c, (-1, ACTOR_LAYER2))
self.actor_hidden_state_h = np.reshape(self.actor_hidden_state_h, (-1, ACTOR_LAYER2))
self.critic_hidden_state_c = np.reshape(self.critic_hidden_state_c,
(-1, CRITIC_LAYER2))
self.critic_hidden_state_h = np.reshape(self.critic_hidden_state_h,
(-1, CRITIC_LAYER2))
# Record information of the episode when it ends
episode_rewrads_info.append(np.nanmean(self.episode_rewards[true_index]))
self.episode_rewards[true_index] = np.zeros(self.episode_rewards[true_index].shape)
if true_index.shape == ():
ep_infos.append(infos[true_index])
else:
for item in true_index:
ep_infos.append(infos[item])
mb_rewards.append(rewards)
mb_obs = np.asarray(mb_obs, dtype=np.float32)
mb_cent_state = np.asarray(mb_cent_state, dtype=np.float32)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
mb_rewards = np.expand_dims(mb_rewards, axis=-1)
mb_rewards = np.repeat(mb_rewards, N_AGENTS, axis=-1)
mb_values = np.asarray(mb_values, dtype=np.float32)
mb_dones = np.asarray(mb_dones, dtype=np.bool)
mb_actions = | np.asarray(mb_actions, dtype=np.int32) | numpy.asarray |
"""
This module is an example of a barebones function plugin for napari
It implements the ``napari_experimental_provide_function`` hook specification.
see: https://napari.org/docs/dev/plugins/hook_specifications.html
Replace code below according to your needs.
"""
from __future__ import print_function, division
from typing import TYPE_CHECKING, DefaultDict
from unicodedata import name
import six
# import modules
import sys # input, output, errors, and files
import os # interacting with file systems
import time # getting time
import datetime
import inspect # get passed parameters
import yaml # parameter importing
import json # for importing tiff metadata
try:
import cPickle as pickle # loading and saving python objects
except:
import pickle
import numpy as np # numbers package
import struct # for interpretting strings as binary data
import re # regular expressions
from pprint import pprint # for human readable file output
import traceback # for error messaging
import warnings # error messaging
import copy # not sure this is needed
import h5py # working with HDF5 files
import pandas as pd
import networkx as nx
import collections
# scipy and image analysis
from scipy.signal import find_peaks_cwt # used in channel finding
from scipy.optimize import curve_fit # fitting ring profile
from scipy.optimize import leastsq # fitting 2d gaussian
from scipy import ndimage as ndi # labeling and distance transform
from skimage import io
from skimage import segmentation # used in make_masks and segmentation
from skimage.transform import rotate
from skimage.feature import match_template # used to align images
from skimage.feature import blob_log # used for foci finding
from skimage.filters import threshold_otsu, median # segmentation
from skimage import filters
from skimage import morphology # many functions is segmentation used from this
from skimage.measure import regionprops # used for creating lineages
from skimage.measure import profile_line # used for ring an nucleoid analysis
from skimage import util, measure, transform, feature
import tifffile as tiff
from sklearn import metrics
# deep learning
import tensorflow as tf # ignore message about how tf was compiled
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import models
from tensorflow.keras import losses
from tensorflow.keras import utils
from tensorflow.keras import backend as K
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # supress warnings
# Parralelization modules
import multiprocessing
from multiprocessing import Pool
# Plotting for debug
import matplotlib as mpl
font = {'family' : 'sans-serif',
'weight' : 'normal',
'size' : 12}
mpl.rc('font', **font)
mpl.rcParams['pdf.fonttype'] = 42
from matplotlib.patches import Ellipse
from pathlib import Path
import time
import matplotlib.pyplot as plt
# import modules
import os
import glob
import re
import numpy as np
import tifffile as tiff
import pims_nd2
from skimage import io, measure, morphology
import tifffile as tiff
from scipy import stats
from pprint import pprint # for human readable file output
import multiprocessing
from multiprocessing import Pool
import numpy as np
import warnings
from tensorflow.python.keras import models
from enum import Enum
import numpy as np
import multiprocessing
from multiprocessing import Pool
import os
from napari_plugin_engine import napari_hook_implementation
from skimage.filters import threshold_otsu # segmentation
from skimage import morphology # many functions is segmentation used from this
from skimage import segmentation # used in make_masks and segmentation
from scipy import ndimage as ndi # labeling and distance transform
import matplotlib.gridspec as gridspec
from skimage.exposure import rescale_intensity # for displaying in GUI
from skimage import io, morphology, segmentation
# import mm3_helpers as mm3
import napari
# This is the actual plugin function, where we export our function
# (The functions themselves are defined below)
@napari_hook_implementation
def napari_experimental_provide_function():
# we can return a single function
# or a tuple of (function, magicgui_options)
# or a list of multiple functions with or without options, as shown here:
#return [Segment, threshold, image_arithmetic]
return [Compile, ChannelPicker, Segment]
# 1. First example, a simple function that thresholds an image and creates a labels layer
def threshold(data: "napari.types.ImageData", threshold: int) -> "napari.types.LabelsData":
"""Threshold an image and return a mask."""
return (data > threshold).astype(int)
# print a warning
def warning(*objs):
print(time.strftime("%H:%M:%S WARNING:", time.localtime()), *objs, file=sys.stderr)
# print information
def information(*objs):
print(time.strftime("%H:%M:%S", time.localtime()), *objs, file=sys.stdout)
def julian_day_number():
"""
Need this to solve a bug in pims_nd2.nd2reader.ND2_Reader instance initialization.
The bug is in /usr/local/lib/python2.7/site-packages/pims_nd2/ND2SDK.py in function `jdn_to_datetime_local`, when the year number in the metadata (self._lim_metadata_desc) is not in the correct range. This causes a problem when calling self.metadata.
https://en.wikipedia.org/wiki/Julian_day
"""
dt=datetime.datetime.now()
tt=dt.timetuple()
jdn=(1461.*(tt.tm_year + 4800. + (tt.tm_mon - 14.)/12))/4. + (367.*(tt.tm_mon - 2. - 12.*((tt.tm_mon -14.)/12)))/12. - (3.*((tt.tm_year + 4900. + (tt.tm_mon - 14.)/12.)/100.))/4. + tt.tm_mday - 32075
return jdn
def get_plane(filepath):
pattern = r'(c\d+).tif'
res = re.search(pattern,filepath)
if (res != None):
return res.group(1)
else:
return None
def get_fov(filepath):
pattern = r'xy(\d+)\w*.tif'
res = re.search(pattern,filepath)
if (res != None):
return int(res.group(1))
else:
return None
def get_time(filepath):
pattern = r't(\d+)xy\w+.tif'
res = re.search(pattern,filepath)
if (res != None):
return np.int_(res.group(1))
else:
return None
# loads and image stack from TIFF or HDF5 using mm3 conventions
def load_stack(fov_id, peak_id, color='c1', image_return_number=None):
'''
Loads an image stack.
Supports reading TIFF stacks or HDF5 files.
Parameters
----------
fov_id : int
The FOV id
peak_id : int
The peak (channel) id. Dummy None value incase color='empty'
color : str
The image stack type to return. Can be:
c1 : phase stack
cN : where n is an integer for arbitrary color channel
sub : subtracted images
seg : segmented images
empty : get the empty channel for this fov, slightly different
Returns
-------
image_stack : np.ndarray
The image stack through time. Shape is (t, y, x)
'''
# things are slightly different for empty channels
if 'empty' in color:
if params['output'] == 'TIFF':
img_filename = params['experiment_name'] + '_xy%03d_%s.tif' % (fov_id, color)
with tiff.TiffFile(os.path.join(params['empty_dir'],img_filename)) as tif:
img_stack = tif.asarray()
if params['output'] == 'HDF5':
with h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r') as h5f:
img_stack = h5f[color][:]
return img_stack
# load normal images for either TIFF or HDF5
if params['output'] == 'TIFF':
if color[0] == 'c':
img_dir = params['chnl_dir']
elif 'sub' in color:
img_dir = params['sub_dir']
elif 'foci' in color:
img_dir = params['foci_seg_dir']
elif 'seg' in color:
img_dir = params['seg_dir']
img_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, color)
with tiff.TiffFile(os.path.join(img_dir, img_filename)) as tif:
img_stack = tif.asarray()
if params['output'] == 'HDF5':
with h5py.File(os.path.join(params['hdf5_dir'], 'xy%03d.hdf5' % fov_id), 'r') as h5f:
# normal naming
# need to use [:] to get a copy, else it references the closed hdf5 dataset
img_stack = h5f['channel_%04d/p%04d_%s' % (peak_id, peak_id, color)][:]
return img_stack
# load the time table and add it to the global params
def load_time_table():
'''Add the time table dictionary to the params global dictionary.
This is so it can be used during Cell creation.
'''
# try first for yaml, then for pkl
try:
with open(os.path.join(params['ana_dir'], 'time_table.yaml'), 'rb') as time_table_file:
params['time_table'] = yaml.safe_load(time_table_file)
except:
with open(os.path.join(params['ana_dir'], 'time_table.pkl'), 'rb') as time_table_file:
params['time_table'] = pickle.load(time_table_file)
return
# function for loading the channel masks
def load_channel_masks():
'''Load channel masks dictionary. Should be .yaml but try pickle too.
'''
information("Loading channel masks dictionary.")
# try loading from .yaml before .pkl
try:
information('Path:', os.path.join(params['ana_dir'], 'channel_masks.yaml'))
with open(os.path.join(params['ana_dir'], 'channel_masks.yaml'), 'r') as cmask_file:
channel_masks = yaml.safe_load(cmask_file)
except:
warning('Could not load channel masks dictionary from .yaml.')
try:
information('Path:', os.path.join(params['ana_dir'], 'channel_masks.pkl'))
with open(os.path.join(params['ana_dir'], 'channel_masks.pkl'), 'rb') as cmask_file:
channel_masks = pickle.load(cmask_file)
except ValueError:
warning('Could not load channel masks dictionary from .pkl.')
return channel_masks
# function for loading the specs file
def load_specs():
'''Load specs file which indicates which channels should be analyzed, used as empties, or ignored.'''
try:
with open(os.path.join(params['ana_dir'], 'specs.yaml'), 'r') as specs_file:
specs = yaml.safe_load(specs_file)
except:
try:
with open(os.path.join(params['ana_dir'], 'specs.pkl'), 'rb') as specs_file:
specs = pickle.load(specs_file)
except ValueError:
warning('Could not load specs file.')
return specs
### functions for dealing with raw TIFF images
# get params is the major function which processes raw TIFF images
def get_initial_tif_params(image_filename):
'''This is a function for getting the information
out of an image for later trap identification, cropping, and aligning with Unet. It loads a tiff file and pulls out the image metadata.
it returns a dictionary like this for each image:
'filename': image_filename,
'fov' : image_metadata['fov'], # fov id
't' : image_metadata['t'], # time point
'jdn' : image_metadata['jdn'], # absolute julian time
'x' : image_metadata['x'], # x position on stage [um]
'y' : image_metadata['y'], # y position on stage [um]
'plane_names' : image_metadata['plane_names'] # list of plane names
Called by
mm3_Compile.py __main__
Calls
mm3.extract_metadata
mm3.find_channels
'''
try:
# open up file and get metadata
with tiff.TiffFile(os.path.join(params['TIFF_dir'],image_filename)) as tif:
image_data = tif.asarray()
#print(image_data.shape) # uncomment for debug
#if len(image_data.shape) == 2:
# img_shape = [image_data.shape[0],image_data.shape[1]]
#else:
img_shape = [image_data.shape[1],image_data.shape[2]]
plane_list = [str(i+1) for i in range(image_data.shape[0])]
#print(plane_list) # uncomment for debug
if params['TIFF_source'] == 'elements':
image_metadata = get_tif_metadata_elements(tif)
elif params['TIFF_source'] == 'nd2ToTIFF':
image_metadata = get_tif_metadata_nd2ToTIFF(tif)
else:
image_metadata = get_tif_metadata_filename(tif)
information('Analyzed %s' % image_filename)
# return the file name, the data for the channels in that image, and the metadata
return {'filepath': os.path.join(params['TIFF_dir'], image_filename),
'fov' : image_metadata['fov'], # fov id
't' : image_metadata['t'], # time point
'jd' : image_metadata['jd'], # absolute julian time
'x' : image_metadata['x'], # x position on stage [um]
'y' : image_metadata['y'], # y position on stage [um]
'planes' : plane_list, # list of plane names
'shape' : img_shape} # image shape x y in pixels
except:
warning('Failed get_params for ' + image_filename.split("/")[-1])
print(sys.exc_info()[0])
print(sys.exc_info()[1])
print(traceback.print_tb(sys.exc_info()[2]))
return {'filepath': os.path.join(params['TIFF_dir'],image_filename), 'analyze_success': False}
# get params is the major function which processes raw TIFF images
def get_tif_params(image_filename, find_channels=True):
'''This is a damn important function for getting the information
out of an image. It loads a tiff file, pulls out the image data, and the metadata,
including the location of the channels if flagged.
it returns a dictionary like this for each image:
'filename': image_filename,
'fov' : image_metadata['fov'], # fov id
't' : image_metadata['t'], # time point
'jdn' : image_metadata['jdn'], # absolute julian time
'x' : image_metadata['x'], # x position on stage [um]
'y' : image_metadata['y'], # y position on stage [um]
'plane_names' : image_metadata['plane_names'] # list of plane names
'channels': cp_dict, # dictionary of channel locations, in the case of Unet-based channel segmentation, it's a dictionary of channel labels
Called by
mm3_Compile.py __main__
Calls
mm3.extract_metadata
mm3.find_channels
'''
try:
# open up file and get metadata
with tiff.TiffFile(os.path.join(params['TIFF_dir'],image_filename)) as tif:
image_data = tif.asarray()
if params['TIFF_source'] == 'elements':
image_metadata = get_tif_metadata_elements(tif)
elif params['TIFF_source'] == 'nd2ToTIFF':
image_metadata = get_tif_metadata_nd2ToTIFF(tif)
else:
image_metadata = get_tif_metadata_filename(tif)
# look for channels if flagged
if find_channels:
# fix the image orientation and get the number of planes
image_data = fix_orientation(image_data)
# if the image data has more than 1 plane restrict image_data to phase,
# which should have highest mean pixel data
if len(image_data.shape) > 2:
#ph_index = np.argmax([np.mean(image_data[ci]) for ci in range(image_data.shape[0])])
ph_index = int(params['phase_plane'][1:]) - 1
image_data = image_data[ph_index]
# get shape of single plane
img_shape = [image_data.shape[0], image_data.shape[1]]
# find channels on the processed image
chnl_loc_dict = find_channel_locs(image_data)
information('Analyzed %s' % image_filename)
# return the file name, the data for the channels in that image, and the metadata
return {'filepath': os.path.join(params['TIFF_dir'], image_filename),
'fov' : image_metadata['fov'], # fov id
't' : image_metadata['t'], # time point
'jd' : image_metadata['jd'], # absolute julian time
'x' : image_metadata['x'], # x position on stage [um]
'y' : image_metadata['y'], # y position on stage [um]
'planes' : image_metadata['planes'], # list of plane names
'shape' : img_shape, # image shape x y in pixels
# 'channels' : {1 : {'A' : 1, 'B' : 2}, 2 : {'C' : 3, 'D' : 4}}}
'channels' : chnl_loc_dict} # dictionary of channel locations
except:
warning('Failed get_params for ' + image_filename.split("/")[-1])
print(sys.exc_info()[0])
print(sys.exc_info()[1])
print(traceback.print_tb(sys.exc_info()[2]))
return {'filepath': os.path.join(params['TIFF_dir'],image_filename), 'analyze_success': False}
# finds metdata in a tiff image which has been expoted with Nikon Elements.
def get_tif_metadata_elements(tif):
'''This function pulls out the metadata from a tif file and returns it as a dictionary.
This if tiff files as exported by Nikon Elements as a stacked tiff, each for one tpoint.
tif is an opened tif file (using the package tifffile)
arguments:
fname (tifffile.TiffFile): TIFF file object from which data will be extracted
returns:
dictionary of values:
'jdn' (float)
'x' (float)
'y' (float)
'plane_names' (list of strings)
Called by
mm3.Compile
'''
# image Metadata
idata = { 'fov': -1,
't' : -1,
'jd': -1 * 0.0,
'x': -1 * 0.0,
'y': -1 * 0.0,
'planes': []}
# get the fov and t simply from the file name
idata['fov'] = int(tif.fname.split('xy')[1].split('.tif')[0])
idata['t'] = int(tif.fname.split('xy')[0].split('t')[-1])
# a page is plane, or stack, in the tiff. The other metdata is hidden down in there.
for page in tif:
for tag in page.tags.values():
#print("Checking tag",tag.name,tag.value)
t = tag.name, tag.value
t_string = u""
time_string = u""
# Interesting tag names: 65330, 65331 (binary data; good stuff), 65332
# we wnat to work with the tag of the name 65331
# if the tag name is not in the set of tegs we find interesting then skip this cycle of the loop
if tag.name not in ('65331', '65332', 'strip_byte_counts', 'image_width', 'orientation', 'compression', 'new_subfile_type', 'fill_order', 'max_sample_value', 'bits_per_sample', '65328', '65333'):
#print("*** " + tag.name)
#print(tag.value)
pass
#if tag.name == '65330':
# return tag.value
if tag.name in ('65331'):
# make info list a list of the tag values 0 to 65535 by zipoing up a paired list of two bytes, at two byte intervals i.e. fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b
# note that 0X100 is hex for 256
infolist = [a+b*0x100 for a,b in zip(tag.value[0::2], tag.value[1::2])]
# get char values for each element in infolist
for c_entry in range(0, len(infolist)):
# the element corresponds to an ascii char for a letter or bracket (and a few other things)
if infolist[c_entry] < 127 and infolist[c_entry] > 64:
# add the letter to the unicode string t_string
t_string += chr(infolist[c_entry])
#elif infolist[c_entry] == 0:
# continue
else:
t_string += " "
# this block will find the dTimeAbsolute and print the subsequent integers
# index 170 is counting seconds, and rollover of index 170 leads to increment of index 171
# rollover of index 171 leads to increment of index 172
# get the position of the array by finding the index of the t_string at which dTimeAbsolute is listed not that 2*len(dTimeAbsolute)=26
#print(t_string)
arraypos = t_string.index("dXPos") * 2 + 16
xarr = tag.value[arraypos:arraypos+4]
b = ''.join(chr(i) for i in xarr)
idata['x'] = float(struct.unpack('<f', b)[0])
arraypos = t_string.index("dYPos") * 2 + 16
yarr = tag.value[arraypos:arraypos+4]
b = ''.join(chr(i) for i in yarr)
idata['y'] = float(struct.unpack('<f', b)[0])
arraypos = t_string.index("dTimeAbsolute") * 2 + 26
shortarray = tag.value[arraypos+2:arraypos+10]
b = ''.join(chr(i) for i in shortarray)
idata['jd'] = float(struct.unpack('<d', b)[0])
# extract plane names
il = [a+b*0x100 for a,b in zip(tag.value[0::2], tag.value[1::2])]
li = [a+b*0x100 for a,b in zip(tag.value[1::2], tag.value[2::2])]
strings = list(zip(il, li))
allchars = ""
for c_entry in range(0, len(strings)):
if 31 < strings[c_entry][0] < 127:
allchars += chr(strings[c_entry][0])
elif 31 < strings[c_entry][1] < 127:
allchars += chr(strings[c_entry][1])
else:
allchars += " "
allchars = re.sub(' +',' ', allchars)
words = allchars.split(" ")
planes = []
for idx in [i for i, x in enumerate(words) if x == "sOpticalConfigName"]:
planes.append(words[idx+1])
idata['planes'] = planes
return idata
# finds metdata in a tiff image which has been expoted with nd2ToTIFF.py.
def get_tif_metadata_nd2ToTIFF(tif):
'''This function pulls out the metadata from a tif file and returns it as a dictionary.
This if tiff files as exported by the mm3 function mm3_nd2ToTIFF.py. All the metdata
is found in that script and saved in json format to the tiff, so it is simply extracted here
Paramters:
tif: TIFF file object from which data will be extracted
Returns:
dictionary of values:
'fov': int,
't' : int,
'jdn' (float)
'x' (float)
'y' (float)
'planes' (list of strings)
Called by
mm3_Compile.get_tif_params
'''
# get the first page of the tiff and pull out image description
# this dictionary should be in the above form
for tag in tif.pages[0].tags:
if tag.name=="ImageDescription":
idata=tag.value
break
#print(idata)
idata = json.loads(idata)
return idata
# Finds metadata from the filename
def get_tif_metadata_filename(tif):
'''This function pulls out the metadata from a tif file and returns it as a dictionary.
This just gets the tiff metadata from the filename and is a backup option when the known format of the metadata is not known.
Paramters:
tif: TIFF file object from which data will be extracted
Returns:
dictionary of values:
'fov': int,
't' : int,
'jdn' (float)
'x' (float)
'y' (float)
Called by
mm3_Compile.get_tif_params
'''
idata = {'fov' : get_fov(tif.filename), # fov id
't' : get_time(tif.filename), # time point
'jd' : -1 * 0.0, # absolute julian time
'x' : -1 * 0.0, # x position on stage [um]
'y' : -1 * 0.0} # y position on stage [um]
return idata
# make a lookup time table for converting nominal time to elapsed time in seconds
def make_time_table(analyzed_imgs):
'''
Loops through the analyzed images and uses the jd time in the metadata to find the elapsed
time in seconds that each picture was taken. This is later used for more accurate elongation
rate calculation.
Parametrs
---------
analyzed_imgs : dict
The output of get_tif_params.
params['use_jd'] : boolean
If set to True, 'jd' time will be used from the image metadata to use to create time table. Otherwise the 't' index will be used, and the parameter 'seconds_per_time_index' will be used from the parameters.yaml file to convert to seconds.
Returns
-------
time_table : dict
Look up dictionary with keys for the FOV and then the time point.
'''
information('Making time table...')
# initialize
time_table = {}
first_time = float('inf')
# need to go through the data once to find the first time
for iname, idata in six.iteritems(analyzed_imgs):
if params['use_jd']:
if idata['jd'] < first_time:
first_time = idata['jd']
else:
if idata['t'] < first_time:
first_time = idata['t']
# init dictionary for specific times per FOV
if idata['fov'] not in time_table:
time_table[idata['fov']] = {}
for iname, idata in six.iteritems(analyzed_imgs):
if params['use_jd']:
# convert jd time to elapsed time in seconds
t_in_seconds = np.around((idata['jd'] - first_time) * 24*60*60, decimals=0).astype('uint32')
else:
t_in_seconds = np.around((idata['t'] - first_time) * params['moviemaker']['seconds_per_time_index'], decimals=0).astype('uint32')
time_table[int(idata['fov'])][int(idata['t'])] = int(t_in_seconds)
# save to .pkl. This pkl will be loaded into the params
# with open(os.path.join(params['ana_dir'], 'time_table.pkl'), 'wb') as time_table_file:
# pickle.dump(time_table, time_table_file, protocol=pickle.HIGHEST_PROTOCOL)
# with open(os.path.join(params['ana_dir'], 'time_table.txt'), 'w') as time_table_file:
# pprint(time_table, stream=time_table_file)
with open(os.path.join(params['ana_dir'], 'time_table.yaml'), 'w') as time_table_file:
yaml.dump(data=time_table, stream=time_table_file, default_flow_style=False, tags=None)
information('Time table saved.')
return time_table
# saves traps sliced via Unet
def save_tiffs(imgDict, analyzed_imgs, fov_id):
savePath = os.path.join(params['experiment_directory'],
params['analysis_directory'],
params['chnl_dir'])
img_names = [key for key in analyzed_imgs.keys()]
image_params = analyzed_imgs[img_names[0]]
for peak,img in six.iteritems(imgDict):
img = img.astype('uint16')
if not os.path.isdir(savePath):
os.mkdir(savePath)
for planeNumber in image_params['planes']:
channel_filename = os.path.join(savePath, params['experiment_name'] + '_xy{0:0=3}_p{1:0=4}_c{2}.tif'.format(fov_id, peak, planeNumber))
io.imsave(channel_filename, img[:,:,:,int(planeNumber)-1])
# slice_and_write cuts up the image files one at a time and writes them out to tiff stacks
def tiff_stack_slice_and_write(images_to_write, channel_masks, analyzed_imgs):
'''Writes out 4D stacks of TIFF images per channel.
Loads all tiffs from and FOV into memory and then slices all time points at once.
Called by
__main__
'''
# make an array of images and then concatenate them into one big stack
image_fov_stack = []
# go through list of images and get the file path
for n, image in enumerate(images_to_write):
# analyzed_imgs dictionary will be found in main scope. [0] is the key, [1] is jd
image_params = analyzed_imgs[image[0]]
information("Loading %s." % image_params['filepath'].split('/')[-1])
if n == 1:
# declare identification variables for saving using first image
fov_id = image_params['fov']
# load the tif and store it in array
with tiff.TiffFile(image_params['filepath']) as tif:
image_data = tif.asarray()
# channel finding was also done on images after orientation was fixed
image_data = fix_orientation(image_data)
# add additional axis if the image is flat
if len(image_data.shape) == 2:
image_data = np.expand_dims(image_data, 0)
# change axis so it goes Y, X, Plane
image_data = np.rollaxis(image_data, 0, 3)
# add it to list. The images should be in time order
image_fov_stack.append(image_data)
# concatenate the list into one big ass stack
image_fov_stack = np.stack(image_fov_stack, axis=0)
# cut out the channels as per channel masks for this fov
for peak, channel_loc in six.iteritems(channel_masks[fov_id]):
#information('Slicing and saving channel peak %s.' % channel_filename.split('/')[-1])
information('Slicing and saving channel peak %d.' % peak)
# channel masks should only contain ints, but you can use this for hard fix
# for i in range(len(channel_loc)):
# for j in range(len(channel_loc[i])):
# channel_loc[i][j] = int(channel_loc[i][j])
# slice out channel.
# The function should recognize the shape length as 4 and cut all time points
channel_stack = cut_slice(image_fov_stack, channel_loc)
# save a different time stack for all colors
for color_index in range(channel_stack.shape[3]):
# this is the filename for the channel
# # chnl_dir and p will be looked for in the scope above (__main__)
channel_filename = os.path.join(params['chnl_dir'], params['experiment_name'] + '_xy%03d_p%04d_c%1d.tif' % (fov_id, peak, color_index+1))
# save stack
tiff.imsave(channel_filename, channel_stack[:,:,:,color_index], compress=4)
return
# saves traps sliced via Unet to an hdf5 file
def save_hdf5(imgDict, img_names, analyzed_imgs, fov_id, channel_masks):
'''Writes out 4D stacks of images to an HDF5 file.
Called by
mm3_Compile.py
'''
savePath = params['hdf5_dir']
if not os.path.isdir(savePath):
os.mkdir(savePath)
img_times = [analyzed_imgs[key]['t'] for key in img_names]
img_jds = [analyzed_imgs[key]['jd'] for key in img_names]
fov_ids = [analyzed_imgs[key]['fov'] for key in img_names]
# get image_params from first image from current fov
image_params = analyzed_imgs[img_names[0]]
# establish some variables for hdf5 attributes
fov_id = image_params['fov']
x_loc = image_params['x']
y_loc = image_params['y']
image_shape = image_params['shape']
image_planes = image_params['planes']
fov_channel_masks = channel_masks[fov_id]
with h5py.File(os.path.join(savePath,'{}_xy{:0=2}.hdf5'.format(params['experiment_name'],fov_id)), 'w', libver='earliest') as h5f:
# add in metadata for this FOV
# these attributes should be common for all channel
h5f.attrs.create('fov_id', fov_id)
h5f.attrs.create('stage_x_loc', x_loc)
h5f.attrs.create('stage_y_loc', y_loc)
h5f.attrs.create('image_shape', image_shape)
# encoding is because HDF5 has problems with numpy unicode
h5f.attrs.create('planes', [plane.encode('utf8') for plane in image_planes])
h5f.attrs.create('peaks', sorted([key for key in imgDict.keys()]))
# this is for things that change across time, for these create a dataset
img_names = np.asarray(img_names)
img_names = np.expand_dims(img_names, 1)
img_names = img_names.astype('S100')
h5ds = h5f.create_dataset(u'filenames', data=img_names,
chunks=True, maxshape=(None, 1), dtype='S100',
compression="gzip", shuffle=True, fletcher32=True)
h5ds = h5f.create_dataset(u'times', data=np.expand_dims(img_times, 1),
chunks=True, maxshape=(None, 1),
compression="gzip", shuffle=True, fletcher32=True)
h5ds = h5f.create_dataset(u'times_jd', data=np.expand_dims(img_jds, 1),
chunks=True, maxshape=(None, 1),
compression="gzip", shuffle=True, fletcher32=True)
# cut out the channels as per channel masks for this fov
for peak,channel_stack in six.iteritems(imgDict):
channel_stack = channel_stack.astype('uint16')
# create group for this trap
h5g = h5f.create_group('channel_%04d' % peak)
# add attribute for peak_id, channel location
# add attribute for peak_id, channel location
h5g.attrs.create('peak_id', peak)
channel_loc = fov_channel_masks[peak]
h5g.attrs.create('channel_loc', channel_loc)
# save a different dataset for all colors
for color_index in range(channel_stack.shape[3]):
# create the dataset for the image. Review docs for these options.
h5ds = h5g.create_dataset(u'p%04d_c%1d' % (peak, color_index+1),
data=channel_stack[:,:,:,color_index],
chunks=(1, channel_stack.shape[1], channel_stack.shape[2]),
maxshape=(None, channel_stack.shape[1], channel_stack.shape[2]),
compression="gzip", shuffle=True, fletcher32=True)
# h5ds.attrs.create('plane', image_planes[color_index].encode('utf8'))
# write the data even though we have more to write (free up memory)
h5f.flush()
return
# same thing as tiff_stack_slice_and_write but do it for hdf5
def hdf5_stack_slice_and_write(images_to_write, channel_masks, analyzed_imgs):
'''Writes out 4D stacks of TIFF images to an HDF5 file.
Called by
__main__
'''
# make an array of images and then concatenate them into one big stack
image_fov_stack = []
# make arrays for filenames and times
image_filenames = []
image_times = [] # times is still an integer but may be indexed arbitrarily
image_jds = [] # jds = julian dates (times)
# go through list of images, load and fix them, and create arrays of metadata
for n, image in enumerate(images_to_write):
image_name = image[0] # [0] is the key, [1] is jd
# analyzed_imgs dictionary will be found in main scope.
image_params = analyzed_imgs[image_name]
information("Loading %s." % image_params['filepath'].split('/')[-1])
# add information to metadata arrays
image_filenames.append(image_name)
image_times.append(image_params['t'])
image_jds.append(image_params['jd'])
# declare identification variables for saving using first image
if n == 1:
# same across fov
fov_id = image_params['fov']
x_loc = image_params['x']
y_loc = image_params['y']
image_shape = image_params['shape']
image_planes = image_params['planes']
# load the tif and store it in array
with tiff.TiffFile(image_params['filepath']) as tif:
image_data = tif.asarray()
# channel finding was also done on images after orientation was fixed
image_data = fix_orientation(image_data)
# add additional axis if the image is flat
if len(image_data.shape) == 2:
image_data = np.expand_dims(image_data, 0)
#change axis so it goes X, Y, Plane
image_data = np.rollaxis(image_data, 0, 3)
# add it to list. The images should be in time order
image_fov_stack.append(image_data)
# concatenate the list into one big ass stack
image_fov_stack = np.stack(image_fov_stack, axis=0)
# create the HDF5 file for the FOV, first time this is being done.
with h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'w', libver='earliest') as h5f:
# add in metadata for this FOV
# these attributes should be common for all channel
h5f.attrs.create('fov_id', fov_id)
h5f.attrs.create('stage_x_loc', x_loc)
h5f.attrs.create('stage_y_loc', y_loc)
h5f.attrs.create('image_shape', image_shape)
# encoding is because HDF5 has problems with numpy unicode
h5f.attrs.create('planes', [plane.encode('utf8') for plane in image_planes])
h5f.attrs.create('peaks', sorted(channel_masks[fov_id].keys()))
# this is for things that change across time, for these create a dataset
h5ds = h5f.create_dataset(u'filenames', data=np.expand_dims(image_filenames, 1),
chunks=True, maxshape=(None, 1), dtype='S100',
compression="gzip", shuffle=True, fletcher32=True)
h5ds = h5f.create_dataset(u'times', data=np.expand_dims(image_times, 1),
chunks=True, maxshape=(None, 1),
compression="gzip", shuffle=True, fletcher32=True)
h5ds = h5f.create_dataset(u'times_jd', data=np.expand_dims(image_jds, 1),
chunks=True, maxshape=(None, 1),
compression="gzip", shuffle=True, fletcher32=True)
# cut out the channels as per channel masks for this fov
for peak, channel_loc in six.iteritems(channel_masks[fov_id]):
#information('Slicing and saving channel peak %s.' % channel_filename.split('/')[-1])
information('Slicing and saving channel peak %d.' % peak)
# create group for this channel
h5g = h5f.create_group('channel_%04d' % peak)
# add attribute for peak_id, channel location
h5g.attrs.create('peak_id', peak)
h5g.attrs.create('channel_loc', channel_loc)
# channel masks should only contain ints, but you can use this for a hard fix
# for i in range(len(channel_loc)):
# for j in range(len(channel_loc[i])):
# channel_loc[i][j] = int(channel_loc[i][j])
# slice out channel.
# The function should recognize the shape length as 4 and cut all time points
channel_stack = cut_slice(image_fov_stack, channel_loc)
# save a different dataset for all colors
for color_index in range(channel_stack.shape[3]):
# create the dataset for the image. Review docs for these options.
h5ds = h5g.create_dataset(u'p%04d_c%1d' % (peak, color_index+1),
data=channel_stack[:,:,:,color_index],
chunks=(1, channel_stack.shape[1], channel_stack.shape[2]),
maxshape=(None, channel_stack.shape[1], channel_stack.shape[2]),
compression="gzip", shuffle=True, fletcher32=True)
# h5ds.attrs.create('plane', image_planes[color_index].encode('utf8'))
# write the data even though we have more to write (free up memory)
h5f.flush()
return
def tileImage(img, subImageNumber):
divisor = int(np.sqrt(subImageNumber))
M = img.shape[0]//divisor
N = img.shape[0]//divisor
print(img.shape, M, N, divisor, subImageNumber)
ans = ([img[x:x+M,y:y+N] for x in range(0,img.shape[0],M) for y in range(0,img.shape[1],N)])
tiles=[]
for m in ans:
if m.shape[0]==512 and m.shape[1]==512:
tiles.append(m)
tiles=np.asarray(tiles)
#print(tiles)
return(tiles)
def get_weights(img, subImageNumber):
divisor = int(np.sqrt(subImageNumber))
M = img.shape[0]//divisor
N = img.shape[0]//divisor
weights = np.ones((img.shape[0],img.shape[1]),dtype='uint8')
for i in range(divisor-1):
weights[(M*(i+1))-25:(M*(i+1)+25),:] = 0
weights[:,(N*(i+1))-25:(N*(i+1)+25)] = 0
return(weights)
def permute_image(img, trap_align_metadata):
# are there three dimensions?
if len(img.shape) == 3:
if img.shape[0] < 3: # for tifs with fewer than three imageing channels, the first dimension separates channels
# img = np.transpose(img, (1,2,0))
img = img[trap_align_metadata['phase_plane_index'],:,:] # grab just the phase channel
else:
img = img[:,:,trap_align_metadata['phase_plane_index']] # grab just the phase channel
return(img)
def imageConcatenatorFeatures(imgStack, subImageNumber = 64):
rowNumPerImage = int(np.sqrt(subImageNumber)) # here I'm assuming our large images are square, with equal number of crops in each dimension
#print(rowNumPerImage)
imageNum = int(imgStack.shape[0]/subImageNumber) # total number of sub-images divided by the number of sub-images in each original large image
iterNum = int(imageNum*rowNumPerImage)
imageDims = int(np.sqrt(imgStack.shape[1]*imgStack.shape[2]*subImageNumber))
featureNum = int(imgStack.shape[3])
bigImg = np.zeros(shape=(imageNum, imageDims, imageDims, featureNum), dtype='float32') # create array to store reconstructed images
featureRowDicts = []
for j in range(featureNum):
rowDict = {}
for i in range(iterNum):
baseNum = int(i*iterNum/imageNum)
# concatenate columns of 256x256 images to build each 256x2048 row
rowDict[i] = np.column_stack((imgStack[baseNum,:,:,j],imgStack[baseNum+1,:,:,j],
imgStack[baseNum+2,:,:,j], imgStack[baseNum+3,:,:,j]))#,
#imgStack[baseNum+4,:,:,j],imgStack[baseNum+5,:,:,j],
#imgStack[baseNum+6,:,:,j],imgStack[baseNum+7,:,:,j]))
featureRowDicts.append(rowDict)
for j in range(featureNum):
for i in range(imageNum):
baseNum = int(i*rowNumPerImage)
# concatenate appropriate 256x2048 rows to build a 2048x2048 image and place it into bigImg
bigImg[i,:,:,j] = np.row_stack((featureRowDicts[j][baseNum],featureRowDicts[j][baseNum+1],
featureRowDicts[j][baseNum+2],featureRowDicts[j][baseNum+3]))#,
#featureRowDicts[j][baseNum+4],featureRowDicts[j][baseNum+5],
#featureRowDicts[j][baseNum+6],featureRowDicts[j][baseNum+7]))
return(bigImg)
def imageConcatenatorFeatures2(imgStack, subImageNumber = 81):
rowNumPerImage = int(np.sqrt(subImageNumber)) # here I'm assuming our large images are square, with equal number of crops in each dimension
imageNum = int(imgStack.shape[0]/subImageNumber) # total number of sub-images divided by the number of sub-images in each original large image
iterNum = int(imageNum*rowNumPerImage)
imageDims = int(np.sqrt(imgStack.shape[1]*imgStack.shape[2]*subImageNumber))
featureNum = int(imgStack.shape[3])
bigImg = np.zeros(shape=(imageNum, imageDims, imageDims, featureNum), dtype='float32') # create array to store reconstructed images
featureRowDicts = []
for j in range(featureNum):
rowDict = {}
for i in range(iterNum):
baseNum = int(i*iterNum/imageNum)
# concatenate columns of 256x256 images to build each 256x2048 row
rowDict[i] = np.column_stack((imgStack[baseNum,:,:,j],imgStack[baseNum+1,:,:,j],
imgStack[baseNum+2,:,:,j], imgStack[baseNum+3,:,:,j],
imgStack[baseNum+4,:,:,j]))#,imgStack[baseNum+5,:,:,j],
#imgStack[baseNum+6,:,:,j],imgStack[baseNum+7,:,:,j],
#imgStack[baseNum+8,:,:,j]))
featureRowDicts.append(rowDict)
for j in range(featureNum):
for i in range(imageNum):
baseNum = int(i*rowNumPerImage)
# concatenate appropriate 256x2048 rows to build a 2048x2048 image and place it into bigImg
bigImg[i,:,:,j] = np.row_stack((featureRowDicts[j][baseNum],featureRowDicts[j][baseNum+1],
featureRowDicts[j][baseNum+2],featureRowDicts[j][baseNum+3],
featureRowDicts[j][baseNum+4]))#,featureRowDicts[j][baseNum+5],
#featureRowDicts[j][baseNum+6],featureRowDicts[j][baseNum+7],
#featureRowDicts[j][baseNum+8]))
return(bigImg)
def get_weights_array(arr=np.zeros((2048,2048)), shiftDistance=128, subImageNumber=64, padSubImageNumber=81):
originalImageWeights = get_weights(arr, subImageNumber=subImageNumber)
shiftLeftWeights = np.pad(originalImageWeights, pad_width=((0,0),(0,shiftDistance)),
mode='constant', constant_values=((0,0),(0,0)))[:,shiftDistance:]
shiftRightWeights = np.pad(originalImageWeights, pad_width=((0,0),(shiftDistance,0)),
mode='constant', constant_values=((0,0),(0,0)))[:,:(-1*shiftDistance)]
shiftUpWeights = np.pad(originalImageWeights, pad_width=((0,shiftDistance),(0,0)),
mode='constant', constant_values=((0,0),(0,0)))[shiftDistance:,:]
shiftDownWeights = np.pad(originalImageWeights, pad_width=((shiftDistance,0),(0,0)),
mode='constant', constant_values=((0,0),(0,0)))[:(-1*shiftDistance),:]
expandedImageWeights = get_weights(np.zeros((arr.shape[0]+2*shiftDistance,arr.shape[1]+2*shiftDistance)), subImageNumber=padSubImageNumber)[shiftDistance:-shiftDistance,shiftDistance:-shiftDistance]
allWeights = np.stack((originalImageWeights, expandedImageWeights, shiftUpWeights, shiftDownWeights, shiftLeftWeights,shiftRightWeights), axis=-1)
stackWeights = np.stack((allWeights,allWeights),axis=0)
stackWeights = np.stack((stackWeights,stackWeights,stackWeights),axis=3)
return(stackWeights)
# predicts locations of channels in an image using deep learning model
def get_frame_predictions(img,model,stackWeights, shiftDistance=256, subImageNumber=16, padSubImageNumber=25, debug=False):
pred = predict_first_image_channels(img, model, shiftDistance=shiftDistance,
subImageNumber=subImageNumber, padSubImageNumber=padSubImageNumber, debug=debug)[0,...]
# print(pred.shape)
if debug:
print(pred.shape)
compositePrediction = np.average(pred, axis=3, weights=stackWeights)
# print(compositePrediction.shape)
padSize = (compositePrediction.shape[0]-img.shape[0])//2
compositePrediction = util.crop(compositePrediction,((padSize,padSize),
(padSize,padSize),
(0,0)))
# print(compositePrediction.shape)
return(compositePrediction)
def apply_median_filter_normalize(imgs):
selem = morphology.disk(3)
for i in range(imgs.shape[0]):
# Store sample
tmpImg = imgs[i,:,:,0]
medImg = median(tmpImg, selem)
tmpImg = medImg/np.max(medImg)
tmpImg = np.expand_dims(tmpImg, axis=-1)
imgs[i,:,:,:] = tmpImg
return(imgs)
def predict_first_image_channels(img, model,
subImageNumber=16, padSubImageNumber=25,
shiftDistance=128, batchSize=1,
debug=False):
imgSize = img.shape[0]
padSize = (2048-imgSize)//2 # how much to pad on each side to get up to 2048x2048?
imgStack = np.pad(img, pad_width=((padSize,padSize),(padSize,padSize)),
mode='constant', constant_values=((0,0),(0,0))) # pad the images to make them 2048x2048
# pad the stack by 128 pixels on each side to get complemetary crops that I can run the network on. This
# should help me fill in low-confidence regions where the crop boundaries were for the original image
imgStackExpand = np.pad(imgStack, pad_width=((shiftDistance,shiftDistance),(shiftDistance,shiftDistance)),
mode='constant', constant_values=((0,0),(0,0)))
imgStackShiftRight = np.pad(imgStack, pad_width=((0,0),(0,shiftDistance)),
mode='constant', constant_values=((0,0),(0,0)))[:,shiftDistance:]
imgStackShiftLeft = np.pad(imgStack, pad_width=((0,0),(shiftDistance,0)),
mode='constant', constant_values=((0,0),(0,0)))[:,:-shiftDistance]
imgStackShiftDown = np.pad(imgStack, pad_width=((0,shiftDistance),(0,0)),
mode='constant', constant_values=((0,0),(0,0)))[shiftDistance:,:]
imgStackShiftUp = np.pad(imgStack, pad_width=((shiftDistance,0),(0,0)),
mode='constant', constant_values=((0,0),(0,0)))[:-shiftDistance,:]
#print(imgStackShiftUp.shape)
crops = tileImage(imgStack, subImageNumber=subImageNumber)
print("Crops: ", crops.shape)
crops = np.expand_dims(crops, -1)
data_gen_args = {'batch_size':params['compile']['channel_prediction_batch_size'],
'n_channels':1,
'normalize_to_one':True,
'shuffle':False}
predict_gen_args = {'verbose':1,
'use_multiprocessing':True,
'workers':params['num_analyzers']}
img_generator = TrapSegmentationDataGenerator(crops, **data_gen_args)
predictions = model.predict_generator(img_generator, **predict_gen_args)
prediction = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber)
#print(prediction.shape)
cropsExpand = tileImage(imgStackExpand, subImageNumber=padSubImageNumber)
cropsExpand = np.expand_dims(cropsExpand, -1)
img_generator = TrapSegmentationDataGenerator(cropsExpand, **data_gen_args)
predictions = model.predict_generator(img_generator, **predict_gen_args)
predictionExpand = imageConcatenatorFeatures2(predictions, subImageNumber=padSubImageNumber)
predictionExpand = util.crop(predictionExpand, ((0,0),(shiftDistance,shiftDistance),(shiftDistance,shiftDistance),(0,0)))
#print(predictionExpand.shape)
cropsShiftLeft = tileImage(imgStackShiftLeft, subImageNumber=subImageNumber)
cropsShiftLeft = np.expand_dims(cropsShiftLeft, -1)
img_generator = TrapSegmentationDataGenerator(cropsShiftLeft, **data_gen_args)
predictions = model.predict_generator(img_generator, **predict_gen_args)
predictionLeft = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber)
predictionLeft = np.pad(predictionLeft, pad_width=((0,0),(0,0),(0,shiftDistance),(0,0)),
mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:,shiftDistance:,:]
#print(predictionLeft.shape)
cropsShiftRight = tileImage(imgStackShiftRight, subImageNumber=subImageNumber)
cropsShiftRight = np.expand_dims(cropsShiftRight, -1)
img_generator = TrapSegmentationDataGenerator(cropsShiftRight, **data_gen_args)
predictions = model.predict_generator(img_generator, **predict_gen_args)
predictionRight = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber)
predictionRight = np.pad(predictionRight, pad_width=((0,0),(0,0),(shiftDistance,0),(0,0)),
mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:,:(-1*shiftDistance),:]
#print(predictionRight.shape)
cropsShiftUp = tileImage(imgStackShiftUp, subImageNumber=subImageNumber)
#print(cropsShiftUp.shape)
cropsShiftUp = np.expand_dims(cropsShiftUp, -1)
img_generator = TrapSegmentationDataGenerator(cropsShiftUp, **data_gen_args)
predictions = model.predict_generator(img_generator, **predict_gen_args)
predictionUp = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber)
predictionUp = np.pad(predictionUp, pad_width=((0,0),(0,shiftDistance),(0,0),(0,0)),
mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,shiftDistance:,:,:]
#print(predictionUp.shape)
cropsShiftDown = tileImage(imgStackShiftDown, subImageNumber=subImageNumber)
cropsShiftDown = np.expand_dims(cropsShiftDown, -1)
img_generator = TrapSegmentationDataGenerator(cropsShiftDown, **data_gen_args)
predictions = model.predict_generator(img_generator, **predict_gen_args)
predictionDown = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber)
predictionDown = np.pad(predictionDown, pad_width=((0,0),(shiftDistance,0),(0,0),(0,0)),
mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:(-1*shiftDistance),:,:]
#print(predictionDown.shape)
allPredictions = np.stack((prediction, predictionExpand,
predictionUp, predictionDown,
predictionLeft, predictionRight), axis=-1)
return(allPredictions)
# takes initial U-net centroids for trap locations, and creats bounding boxes for each trap at the defined height and width
def get_frame_trap_bounding_boxes(trapLabels, trapProps, trapAreaThreshold=2000, trapWidth=27, trapHeight=256):
badTrapLabels = [reg.label for reg in trapProps if reg.area < trapAreaThreshold] # filter out small "trap" regions
goodTraps = trapLabels.copy()
for label in badTrapLabels:
goodTraps[goodTraps == label] = 0 # re-label bad traps as background (0)
goodTrapProps = measure.regionprops(goodTraps)
trapCentroids = [(int(np.round(reg.centroid[0])),int(np.round(reg.centroid[1]))) for reg in goodTrapProps] # get centroids as integers
trapBboxes = []
for centroid in trapCentroids:
rowIndex = centroid[0]
colIndex = centroid[1]
minRow = rowIndex-trapHeight//2
maxRow = rowIndex+trapHeight//2
minCol = colIndex-trapWidth//2
maxCol = colIndex+trapWidth//2
if trapWidth % 2 != 0:
maxCol += 1
coordArray = np.array([minRow,maxRow,minCol,maxCol])
# remove any traps at edges of image
if np.any(coordArray > goodTraps.shape[0]):
continue
if np.any(coordArray < 0):
continue
trapBboxes.append((minRow,minCol,maxRow,maxCol))
return(trapBboxes)
# this function performs image alignment as defined by the shifts passed as an argument
def crop_traps(fileNames, trapProps, labelledTraps, bboxesDict, trap_align_metadata):
frameNum = trap_align_metadata['frame_count']
channelNum = trap_align_metadata['plane_number']
trapImagesDict = {key:np.zeros((frameNum,
trap_align_metadata['trap_height'],
trap_align_metadata['trap_width'],
channelNum)) for key in bboxesDict}
trapClosedEndPxDict = {}
flipImageDict = {}
trapMask = labelledTraps
for frame in range(frameNum):
if (frame+1) % 20 == 0:
print("Cropping trap regions for frame number {} of {}.".format(frame+1, frameNum))
imgPath = os.path.join(params['experiment_directory'],params['image_directory'],fileNames[frame])
fullFrameImg = io.imread(imgPath)
if len(fullFrameImg.shape) == 3:
if fullFrameImg.shape[0] < 3: # for tifs with less than three imaging channels, the first dimension separates channels
fullFrameImg = np.transpose(fullFrameImg, (1,2,0))
trapClosedEndPxDict[fileNames[frame]] = {key:{} for key in bboxesDict.keys()}
for key in trapImagesDict.keys():
bbox = bboxesDict[key][frame]
trapImagesDict[key][frame,:,:,:] = fullFrameImg[bbox[0]:bbox[2],bbox[1]:bbox[3],:]
#tmpImg = np.reshape(fullFrameImg[trapMask==key], (trapHeight,trapWidth,channelNum))
if frame == 0:
medianProfile = np.median(trapImagesDict[key][frame,:,:,0],axis=1) # get intensity of middle column of trap
maxIntensityRow = np.argmax(medianProfile)
if maxIntensityRow > trap_align_metadata['trap_height']//2:
flipImageDict[key] = 0
else:
flipImageDict[key] = 1
if flipImageDict[key] == 1:
trapImagesDict[key][frame,:,:,:] = trapImagesDict[key][frame,::-1,:,:]
trapClosedEndPxDict[fileNames[frame]][key]['closed_end_px'] = bbox[0]
trapClosedEndPxDict[fileNames[frame]][key]['open_end_px'] = bbox[2]
else:
trapClosedEndPxDict[fileNames[frame]][key]['closed_end_px'] = bbox[2]
trapClosedEndPxDict[fileNames[frame]][key]['open_end_px'] = bbox[0]
continue
return(trapImagesDict, trapClosedEndPxDict)
# gets shifted bounding boxes to crop traps through time
def shift_bounding_boxes(bboxesDict, shifts, imgSize):
bboxesShiftDict = {}
for key in bboxesDict.keys():
bboxesShiftDict[key] = []
bboxes = bboxesDict[key]
for i in range(shifts.shape[0]):
if i == 0:
bboxesShiftDict[key].append(bboxes)
else:
minRow = bboxes[0]+shifts[i,0]
minCol = bboxes[1]+shifts[i,1]
maxRow = bboxes[2]+shifts[i,0]
maxCol = bboxes[3]+shifts[i,1]
bboxesShiftDict[key].append((minRow,
minCol,
maxRow,
maxCol))
if np.any(np.asarray([minRow,minCol,maxRow,maxCol]) < 0):
print("channel {} removed: out of frame".format(key))
del bboxesShiftDict[key]
break
if np.any(np.asarray([minRow,minCol,maxRow,maxCol]) > imgSize):
print("channel {} removed: out of frame".format(key))
del bboxesShiftDict[key]
break
return(bboxesShiftDict)
# finds the location of channels in a tif
def find_channel_locs(image_data):
'''Finds the location of channels from a phase contrast image. The channels are returned in
a dictionary where the key is the x position of the channel in pixel and the value is a
dicionary with the open and closed end in pixels in y.
Called by
mm3_Compile.get_tif_params
'''
# declare temp variables from yaml parameter dict.
chan_w = params['compile']['channel_width']
chan_sep = params['compile']['channel_separation']
crop_wp = int(params['compile']['channel_width_pad'] + chan_w/2)
chan_snr = params['compile']['channel_detection_snr']
# Detect peaks in the x projection (i.e. find the channels)
projection_x = image_data.sum(axis=0).astype(np.int32)
# find_peaks_cwt is a function which attempts to find the peaks in a 1-D array by
# convolving it with a wave. here the wave is the default Mexican hat wave
# but the minimum signal to noise ratio is specified
# *** The range here should be a parameter or changed to a fraction.
peaks = find_peaks_cwt(projection_x, np.arange(chan_w-5,chan_w+5), min_snr=chan_snr)
# If the left-most peak position is within half of a channel separation,
# discard the channel from the list.
if peaks[0] < (chan_sep / 2):
peaks = peaks[1:]
# If the diference between the right-most peak position and the right edge
# of the image is less than half of a channel separation, discard the channel.
if image_data.shape[1] - peaks[-1] < (chan_sep / 2):
peaks = peaks[:-1]
# Find the average channel ends for the y-projected image
projection_y = image_data.sum(axis=1)
# find derivative, must use int32 because it was unsigned 16b before.
proj_y_d = np.diff(projection_y.astype(np.int32))
# use the top third to look for closed end, is pixel location of highest deriv
onethirdpoint_y = int(projection_y.shape[0]/3.0)
default_closed_end_px = proj_y_d[:onethirdpoint_y].argmax()
# use bottom third to look for open end, pixel location of lowest deriv
twothirdpoint_y = int(projection_y.shape[0]*2.0/3.0)
default_open_end_px = twothirdpoint_y + proj_y_d[twothirdpoint_y:].argmin()
default_length = default_open_end_px - default_closed_end_px # used for checks
# go through peaks and assign information
# dict for channel dimensions
chnl_loc_dict = {}
# key is peak location, value is dict with {'closed_end_px': px, 'open_end_px': px}
for peak in peaks:
# set defaults
chnl_loc_dict[peak] = {'closed_end_px': default_closed_end_px,
'open_end_px': default_open_end_px}
# redo the previous y projection finding with just this channel
channel_slice = image_data[:, peak-crop_wp:peak+crop_wp]
slice_projection_y = channel_slice.sum(axis = 1)
slice_proj_y_d = np.diff(slice_projection_y.astype(np.int32))
slice_closed_end_px = slice_proj_y_d[:onethirdpoint_y].argmax()
slice_open_end_px = twothirdpoint_y + slice_proj_y_d[twothirdpoint_y:].argmin()
slice_length = slice_open_end_px - slice_closed_end_px
# check if these values make sense. If so, use them. If not, use default
# make sure lenght is not 30 pixels bigger or smaller than default
# *** This 15 should probably be a parameter or at least changed to a fraction.
if slice_length + 15 < default_length or slice_length - 15 > default_length:
continue
# make sure ends are greater than 15 pixels from image edge
if slice_closed_end_px < 15 or slice_open_end_px > image_data.shape[0] - 15:
continue
# if you made it to this point then update the entry
chnl_loc_dict[peak] = {'closed_end_px' : slice_closed_end_px,
'open_end_px' : slice_open_end_px}
return chnl_loc_dict
# make masks from initial set of images (same images as clusters)
def make_masks(analyzed_imgs):
'''
Make masks goes through the channel locations in the image metadata and builds a consensus
Mask for each image per fov, which it returns as dictionary named channel_masks.
The keys in this dictionary are fov id, and the values is a another dictionary. This dict's keys are channel locations (peaks) and the values is a [2][2] array:
[[minrow, maxrow],[mincol, maxcol]] of pixel locations designating the corner of each mask
for each channel on the whole image
One important consequence of these function is that the channel ids and the size of the
channel slices are decided now. Updates to mask must coordinate with these values.
Parameters
analyzed_imgs : dict
image information created by get_params
Returns
channel_masks : dict
dictionary of consensus channel masks.
Called By
mm3_Compile.py
Calls
'''
information("Determining initial channel masks...")
# declare temp variables from yaml parameter dict.
crop_wp = int(params['compile']['channel_width_pad'] + params['compile']['channel_width']/2)
chan_lp = int(params['compile']['channel_length_pad'])
#intiaize dictionary
channel_masks = {}
# get the size of the images (hope they are the same)
for img_k in analyzed_imgs.keys():
img_v = analyzed_imgs[img_k]
image_rows = img_v['shape'][0] # x pixels
image_cols = img_v['shape'][1] # y pixels
break # just need one. using iteritems mean the whole dict doesn't load
# get the fov ids
fovs = []
for img_k in analyzed_imgs.keys():
img_v = analyzed_imgs[img_k]
if img_v['fov'] not in fovs:
fovs.append(img_v['fov'])
# max width and length across all fovs. channels will get expanded by these values
# this important for later updates to the masks, which should be the same
max_chnl_mask_len = 0
max_chnl_mask_wid = 0
# for each fov make a channel_mask dictionary from consensus mask
for fov in fovs:
# initialize a the dict and consensus mask
channel_masks_1fov = {} # dict which holds channel masks {peak : [[y1, y2],[x1,x2]],...}
consensus_mask = np.zeros([image_rows, image_cols]) # mask for labeling
# bring up information for each image
for img_k in analyzed_imgs.keys():
img_v = analyzed_imgs[img_k]
# skip this one if it is not of the current fov
if img_v['fov'] != fov:
continue
# for each channel in each image make a single mask
img_chnl_mask = np.zeros([image_rows, image_cols])
# and add the channel mask to it
for chnl_peak, peak_ends in six.iteritems(img_v['channels']):
# pull out the peak location and top and bottom location
# and expand by padding (more padding done later for width)
x1 = max(chnl_peak - crop_wp, 0)
x2 = min(chnl_peak + crop_wp, image_cols)
y1 = max(peak_ends['closed_end_px'] - chan_lp, 0)
y2 = min(peak_ends['open_end_px'] + chan_lp, image_rows)
# add it to the mask for this image
img_chnl_mask[y1:y2, x1:x2] = 1
# add it to the consensus mask
consensus_mask += img_chnl_mask
# Normalize concensus mask between 0 and 1.
consensus_mask = consensus_mask.astype('float32') / float(np.amax(consensus_mask))
# threshhold and homogenize each channel mask within the mask, label them
# label when value is above 0.1 (so 90% occupancy), transpose.
# the [0] is for the array ([1] is the number of regions)
# It transposes and then transposes again so regions are labeled left to right
# clear border it to make sure the channels are off the edge
consensus_mask = ndi.label(consensus_mask)[0]
# go through each label
for label in np.unique(consensus_mask):
if label == 0: # label zero is the background
continue
binary_core = consensus_mask == label
# clean up the rough edges
poscols = np.any(binary_core, axis = 0) # column positions where true (any)
posrows = np.any(binary_core, axis = 1) # row positions where true (any)
# channel_id givin by horizontal position
# this is important. later updates to the positions will have to check
# if their channels contain this median value to match up
channel_id = int(np.median(np.where(poscols)[0]))
# store the edge locations of the channel mask in the dictionary. Will be ints
min_row = np.min(np.where(posrows)[0])
max_row = np.max(np.where(posrows)[0])
min_col = np.min(np.where(poscols)[0])
max_col = np.max(np.where(poscols)[0])
# if the min/max cols are within the image bounds,
# add the mask, as 4 points, to the dictionary
if min_col > 0 and max_col < image_cols:
channel_masks_1fov[channel_id] = [[min_row, max_row], [min_col, max_col]]
# find the largest channel width and height while you go round
max_chnl_mask_len = int(max(max_chnl_mask_len, max_row - min_row))
max_chnl_mask_wid = int(max(max_chnl_mask_wid, max_col - min_col))
# add channel_mask dictionary to the fov dictionary, use copy to play it safe
channel_masks[fov] = channel_masks_1fov.copy()
# update all channel masks to be the max size
cm_copy = channel_masks.copy()
for fov, peaks in six.iteritems(channel_masks):
# f_id = int(fov)
for peak, chnl_mask in six.iteritems(peaks):
# p_id = int(peak)
# just add length to the open end (bottom of image, low column)
if chnl_mask[0][1] - chnl_mask[0][0] != max_chnl_mask_len:
cm_copy[fov][peak][0][1] = chnl_mask[0][0] + max_chnl_mask_len
# enlarge widths around the middle, but make sure you don't get floats
if chnl_mask[1][1] - chnl_mask[1][0] != max_chnl_mask_wid:
wid_diff = max_chnl_mask_wid - (chnl_mask[1][1] - chnl_mask[1][0])
if wid_diff % 2 == 0:
cm_copy[fov][peak][1][0] = max(chnl_mask[1][0] - wid_diff/2, 0)
cm_copy[fov][peak][1][1] = min(chnl_mask[1][1] + wid_diff/2, image_cols - 1)
else:
cm_copy[fov][peak][1][0] = max(chnl_mask[1][0] - (wid_diff-1)/2, 0)
cm_copy[fov][peak][1][1] = min(chnl_mask[1][1] + (wid_diff+1)/2, image_cols - 1)
# convert all values to ints
chnl_mask[0][0] = int(chnl_mask[0][0])
chnl_mask[0][1] = int(chnl_mask[0][1])
chnl_mask[1][0] = int(chnl_mask[1][0])
chnl_mask[1][1] = int(chnl_mask[1][1])
# cm_copy[fov][peak] = {'y_top': chnl_mask[0][0],
# 'y_bot': chnl_mask[0][1],
# 'x_left': chnl_mask[1][0],
# 'x_right': chnl_mask[1][1]}
# print(type(cm_copy[fov][peak][1][0]), cm_copy[fov][peak][1][0])
#save the channel mask dictionary to a pickle and a text file
# with open(os.path.join(params['ana_dir'], 'channel_masks.pkl'), 'wb') as cmask_file:
# pickle.dump(cm_copy, cmask_file, protocol=pickle.HIGHEST_PROTOCOL)
with open(os.path.join(params['ana_dir'], 'channel_masks.txt'), 'w') as cmask_file:
pprint(cm_copy, stream=cmask_file)
with open(os.path.join(params['ana_dir'], 'channel_masks.yaml'), 'w') as cmask_file:
yaml.dump(data=cm_copy, stream=cmask_file, default_flow_style=False, tags=None)
information("Channel masks saved.")
return cm_copy
# get each fov_id, peak_id, frame's mask bounding box from bounding boxes arrived at by convolutional neural network
def make_channel_masks_CNN(bboxes_dict):
'''
The keys in this dictionary are peak_ids and the values of each is an array of shape (frameNumber,2,2):
Each frameNumber's 2x2 slice of the array represents the given peak_id's [[minrow, maxrow],[mincol, maxcol]].
One important consequence of these function is that the channel ids and the size of the
channel slices are decided now. Updates to mask must coordinate with these values.
Parameters
analyzed_imgs : dict
image information created by get_params
Returns
channel_masks : dict
dictionary of consensus channel masks.
Called By
mm3_Compile.py
Calls
'''
# initialize the new channel_masks dict
channel_masks = {}
# reorder elements of tuples in bboxes_dict to match [[minrow, maxrow], [mincol, maxcol]] convention above
peak_ids = [peak_id for peak_id in bboxes_dict.keys()]
peak_ids.sort()
bbox_array = np.zeros((len(bboxes_dict[peak_ids[0]]),2,2), dtype='uint16')
for peak_id in peak_ids:
# get each frame's bounding boxes for the given peak_id
frame_bboxes = bboxes_dict[peak_id]
for frame_index in range(len(frame_bboxes)):
# replace the values in bbox_array with the proper ones from frame_bboxes
minrow = frame_bboxes[frame_index][0]
maxrow = frame_bboxes[frame_index][2]
mincol = frame_bboxes[frame_index][1]
maxcol = frame_bboxes[frame_index][3]
bbox_array[frame_index,0,0] = minrow
bbox_array[frame_index,0,1] = maxrow
bbox_array[frame_index,1,0] = mincol
bbox_array[frame_index,1,1] = maxcol
channel_masks[peak_id] = bbox_array
return(channel_masks)
### functions about trimming, padding, and manipulating images
# define function for flipping the images on an FOV by FOV basis
def fix_orientation(image_data):
'''
Fix the orientation. The standard direction for channels to open to is down.
called by
process_tif
get_params
'''
# user parameter indicates how things should be flipped
image_orientation = params['compile']['image_orientation']
# if this is just a phase image give in an extra layer so rest of code is fine
flat = False # flag for if the image is flat or multiple levels
if len(image_data.shape) == 2:
image_data = np.expand_dims(image_data, 0)
flat = True
# setting image_orientation to 'auto' will use autodetection
if image_orientation == "auto":
# use 'phase_plane' to find the phase plane in image_data, assuming c1, c2, c3... naming scheme here.
try:
ph_channel = int(re.search('[0-9]', params['phase_plane']).group(0)) - 1
except:
# Pick the plane to analyze with the highest mean px value (should be phase)
ph_channel = np.argmax([np.mean(image_data[ci]) for ci in range(image_data.shape[0])])
# flip based on the index of the higest average row value
# this should be closer to the opening
if np.argmax(image_data[ph_channel].mean(axis = 1)) < image_data[ph_channel].shape[0] / 2:
image_data = image_data[:,::-1,:]
else:
pass # no need to do anything
# flip if up is chosen
elif image_orientation == "up":
return image_data[:,::-1,:]
# do not flip the images if "down is the specified image orientation"
elif image_orientation == "down":
pass
if flat:
image_data = image_data[0] # just return that first layer
return image_data
# cuts out channels from the image
def cut_slice(image_data, channel_loc):
'''Takes an image and cuts out the channel based on the slice location
slice location is the list with the peak information, in the form
[][y1, y2],[x1, x2]]. Returns the channel slice as a numpy array.
The numpy array will be a stack if there are multiple planes.
if you want to slice all the channels from a picture with the channel_masks
dictionary use a loop like this:
for channel_loc in channel_masks[fov_id]: # fov_id is the fov of the image
channel_slice = cut_slice[image_pixel_data, channel_loc]
# ... do something with the slice
NOTE: this function will try to determine what the shape of your
image is and slice accordingly. It expects the images are in the order
[t, x, y, c]. It assumes images with three dimensions are [x, y, c] not
[t, x, y].
'''
# case where image is in form [x, y]
if len(image_data.shape) == 2:
# make slice object
channel_slicer = np.s_[channel_loc[0][0]:channel_loc[0][1],
channel_loc[1][0]:channel_loc[1][1]]
# case where image is in form [x, y, c]
elif len(image_data.shape) == 3:
channel_slicer = np.s_[channel_loc[0][0]:channel_loc[0][1],
channel_loc[1][0]:channel_loc[1][1],:]
# case where image in form [t, x , y, c]
elif len(image_data.shape) == 4:
channel_slicer = np.s_[:,channel_loc[0][0]:channel_loc[0][1],
channel_loc[1][0]:channel_loc[1][1],:]
# slice based on appropriate slicer object.
channel_slice = image_data[channel_slicer]
# pad y of channel if slice happened to be outside of image
y_difference = (channel_loc[0][1] - channel_loc[0][0]) - channel_slice.shape[1]
if y_difference > 0:
paddings = [[0, 0], # t
[0, y_difference], # y
[0, 0], # x
[0, 0]] # c
channel_slice = np.pad(channel_slice, paddings, mode='edge')
return channel_slice
# calculate cross correlation between pixels in channel stack
def channel_xcorr(fov_id, peak_id):
'''
Function calculates the cross correlation of images in a
stack to the first image in the stack. The output is an
array that is the length of the stack with the best cross
correlation between that image and the first image.
The very first value should be 1.
'''
pad_size = params['subtract']['alignment_pad']
# Use this number of images to calculate cross correlations
number_of_images = 20
# load the phase contrast images
image_data = load_stack(fov_id, peak_id, color=params['phase_plane'])
# if there are more images than number_of_images, use number_of_images images evenly
# spaced across the range
if image_data.shape[0] > number_of_images:
spacing = int(image_data.shape[0] / number_of_images)
image_data = image_data[::spacing,:,:]
if image_data.shape[0] > number_of_images:
image_data = image_data[:number_of_images,:,:]
# we will compare all images to this one, needs to be padded to account for image drift
first_img = np.pad(image_data[0,:,:], pad_size, mode='reflect')
xcorr_array = [] # array holds cross correlation vaues
for img in image_data:
# use match_template to find all cross correlations for the
# current image against the first image.
xcorr_array.append(np.max(match_template(first_img, img)))
return xcorr_array
### functions about subtraction
# average empty channels from stacks, making another TIFF stack
def average_empties_stack(fov_id, specs, color='c1', align=True):
'''Takes the fov file name and the peak names of the designated empties,
averages them and saves the image
Parameters
fov_id : int
FOV number
specs : dict
specifies whether a channel should be analyzed (1), used for making
an average empty (0), or ignored (-1).
color : string
Which plane to use.
align : boolean
Flag that is passed to the worker function average_empties, indicates
whether images should be aligned be for averaging (use False for fluorescent images)
Returns
True if succesful.
Saves empty stack to analysis folder
'''
information("Creating average empty channel for FOV %d." % fov_id)
# get peak ids of empty channels for this fov
empty_peak_ids = []
for peak_id, spec in six.iteritems(specs[fov_id]):
if spec == 0: # 0 means it should be used for empty
empty_peak_ids.append(peak_id)
empty_peak_ids = sorted(empty_peak_ids) # sort for repeatability
# depending on how many empties there are choose what to do
# if there is no empty the user is going to have to copy another empty stack
if len(empty_peak_ids) == 0:
information("No empty channel designated for FOV %d." % fov_id)
return False
# if there is just one then you can just copy that channel
elif len(empty_peak_ids) == 1:
peak_id = empty_peak_ids[0]
information("One empty channel (%d) designated for FOV %d." % (peak_id, fov_id))
# load the one phase contrast as the empties
avg_empty_stack = load_stack(fov_id, peak_id, color=color)
# but if there is more than one empty you need to align and average them per timepoint
elif len(empty_peak_ids) > 1:
# load the image stacks into memory
empty_stacks = [] # list which holds phase image stacks of designated empties
for peak_id in empty_peak_ids:
# load data and append to list
image_data = load_stack(fov_id, peak_id, color=color)
empty_stacks.append(image_data)
information("%d empty channels designated for FOV %d." % (len(empty_stacks), fov_id))
# go through time points and create list of averaged empties
avg_empty_stack = [] # list will be later concatentated into numpy array
time_points = range(image_data.shape[0]) # index is time
for t in time_points:
# get images from one timepoint at a time and send to alignment and averaging
imgs = [stack[t] for stack in empty_stacks]
avg_empty = average_empties(imgs, align=align) # function is in mm3
avg_empty_stack.append(avg_empty)
# concatenate list and then save out to tiff stack
avg_empty_stack = np.stack(avg_empty_stack, axis=0)
# save out data
if params['output'] == 'TIFF':
# make new name and save it
empty_filename = params['experiment_name'] + '_xy%03d_empty_%s.tif' % (fov_id, color)
tiff.imsave(os.path.join(params['empty_dir'],empty_filename), avg_empty_stack, compress=4)
if params['output'] == 'HDF5':
h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+')
# delete the dataset if it exists (important for debug)
if 'empty_%s' % color in h5f:
del h5f[u'empty_%s' % color]
# the empty channel should be it's own dataset
h5ds = h5f.create_dataset(u'empty_%s' % color,
data=avg_empty_stack,
chunks=(1, avg_empty_stack.shape[1], avg_empty_stack.shape[2]),
maxshape=(None, avg_empty_stack.shape[1], avg_empty_stack.shape[2]),
compression="gzip", shuffle=True, fletcher32=True)
# give attribute which says which channels contribute
h5ds.attrs.create('empty_channels', empty_peak_ids)
h5f.close()
information("Saved empty channel for FOV %d." % fov_id)
return True
# averages a list of empty channels
def average_empties(imgs, align=True):
'''
This function averages a set of images (empty channels) and returns a single image
of the same size. It first aligns the images to the first image before averaging.
Alignment is done by enlarging the first image using edge padding.
Subsequent images are then aligned to this image and the offset recorded.
These images are padded such that they are the same size as the first (padded) image but
with the image in the correct (aligned) place. Edge padding is again used.
The images are then placed in a stack and aveaged. This image is trimmed so it is the size
of the original images
Called by
average_empties_stack
'''
aligned_imgs = [] # list contains the aligned, padded images
if align:
# pixel size to use for padding (ammount that alignment could be off)
pad_size = params['subtract']['alignment_pad']
for n, img in enumerate(imgs):
# if this is the first image, pad it and add it to the stack
if n == 0:
ref_img = np.pad(img, pad_size, mode='reflect') # padded reference image
aligned_imgs.append(ref_img)
# otherwise align this image to the first padded image
else:
# find correlation between a convolution of img against the padded reference
match_result = match_template(ref_img, img)
# find index of highest correlation (relative to top left corner of img)
y, x = np.unravel_index(np.argmax(match_result), match_result.shape)
# pad img so it aligns and is the same size as reference image
pad_img = np.pad(img, ((y, ref_img.shape[0] - (y + img.shape[0])),
(x, ref_img.shape[1] - (x + img.shape[1]))), mode='reflect')
aligned_imgs.append(pad_img)
else:
# don't align, just link the names to go forward easily
aligned_imgs = imgs
# stack the aligned data along 3rd axis
aligned_imgs = np.dstack(aligned_imgs)
# get a mean image along 3rd axis
avg_empty = np.nanmean(aligned_imgs, axis=2)
# trim off the padded edges (only if images were alinged, otherwise there was no padding)
if align:
avg_empty = avg_empty[pad_size:-1*pad_size, pad_size:-1*pad_size]
# change type back to unsigned 16 bit not floats
avg_empty = avg_empty.astype(dtype='uint16')
return avg_empty
# this function is used when one FOV doesn't have an empty
def copy_empty_stack(from_fov, to_fov, color='c1'):
'''Copy an empty stack from one FOV to another'''
# load empty stack from one FOV
information('Loading empty stack from FOV {} to save for FOV {}.'.format(from_fov, to_fov))
avg_empty_stack = load_stack(from_fov, 0, color='empty_{}'.format(color))
# save out data
if params['output'] == 'TIFF':
# make new name and save it
empty_filename = params['experiment_name'] + '_xy%03d_empty_%s.tif' % (to_fov, color)
tiff.imsave(os.path.join(params['empty_dir'],empty_filename), avg_empty_stack, compress=4)
if params['output'] == 'HDF5':
h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % to_fov), 'r+')
# delete the dataset if it exists (important for debug)
if 'empty_%s' % color in h5f:
del h5f[u'empty_%s' % color]
# the empty channel should be it's own dataset
h5ds = h5f.create_dataset(u'empty_%s' % color,
data=avg_empty_stack,
chunks=(1, avg_empty_stack.shape[1], avg_empty_stack.shape[2]),
maxshape=(None, avg_empty_stack.shape[1], avg_empty_stack.shape[2]),
compression="gzip", shuffle=True, fletcher32=True)
# give attribute which says which channels contribute. Just put 0
h5ds.attrs.create('empty_channels', [0])
h5f.close()
information("Saved empty channel for FOV %d." % to_fov)
# Do subtraction for an fov over many timepoints
def subtract_fov_stack(fov_id, specs, color='c1', method='phase'):
'''
For a given FOV, loads the precomputed empty stack and does subtraction on
all peaks in the FOV designated to be analyzed
Parameters
----------
color : string, 'c1', 'c2', etc.
This is the channel to subtraction. will be appended to the word empty.
Called by
mm3_Subtract.py
Calls
mm3.subtract_phase
'''
information('Subtracting peaks for FOV %d.' % fov_id)
# load empty stack feed dummy peak number to get empty
avg_empty_stack = load_stack(fov_id, 0, color='empty_{}'.format(color))
# determine which peaks are to be analyzed
ana_peak_ids = []
for peak_id, spec in six.iteritems(specs[fov_id]):
if spec == 1: # 0 means it should be used for empty, -1 is ignore
ana_peak_ids.append(peak_id)
ana_peak_ids = sorted(ana_peak_ids) # sort for repeatability
information("Subtracting %d channels for FOV %d." % (len(ana_peak_ids), fov_id))
# just break if there are to peaks to analize
if not ana_peak_ids:
return False
# load images for the peak and get phase images
for peak_id in ana_peak_ids:
information('Subtracting peak %d.' % peak_id)
image_data = load_stack(fov_id, peak_id, color=color)
# make a list for all time points to send to a multiprocessing pool
# list will length of image_data with tuples (image, empty)
subtract_pairs = zip(image_data, avg_empty_stack)
# # set up multiprocessing pool to do subtraction. Should wait until finished
# pool = Pool(processes=params['num_analyzers'])
# if method == 'phase':
# subtracted_imgs = pool.map(subtract_phase, subtract_pairs, chunksize=10)
# elif method == 'fluor':
# subtracted_imgs = pool.map(subtract_fluor, subtract_pairs, chunksize=10)
# pool.close() # tells the process nothing more will be added.
# pool.join() # blocks script until everything has been processed and workers exit
# linear loop for debug
subtracted_imgs = [subtract_phase(subtract_pair) for subtract_pair in subtract_pairs]
# stack them up along a time axis
subtracted_stack = np.stack(subtracted_imgs, axis=0)
# save out the subtracted stack
if params['output'] == 'TIFF':
sub_filename = params['experiment_name'] + '_xy%03d_p%04d_sub_%s.tif' % (fov_id, peak_id, color)
tiff.imsave(os.path.join(params['sub_dir'],sub_filename), subtracted_stack, compress=4) # save it
if fov_id==1 and peak_id<50:
napari.current_viewer().add_image(subtracted_stack, name='Subtracted' + '_xy1_p'+str(peak_id)+'_sub_'+str(color)+'.tif', visible=True)
if params['output'] == 'HDF5':
h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+')
# put subtracted channel in correct group
h5g = h5f['channel_%04d' % peak_id]
# delete the dataset if it exists (important for debug)
if 'p%04d_sub_%s' % (peak_id, color) in h5g:
del h5g['p%04d_sub_%s' % (peak_id, color)]
h5ds = h5g.create_dataset(u'p%04d_sub_%s' % (peak_id, color),
data=subtracted_stack,
chunks=(1, subtracted_stack.shape[1], subtracted_stack.shape[2]),
maxshape=(None, subtracted_stack.shape[1], subtracted_stack.shape[2]),
compression="gzip", shuffle=True, fletcher32=True)
information("Saved subtracted channel %d." % peak_id)
if params['output'] == 'HDF5':
h5f.close()
return True
# subtracts one phase contrast image from another.
def subtract_phase(image_pair):
'''subtract_phase aligns and subtracts a .
Modified from subtract_phase_only by jt on 20160511
The subtracted image returned is the same size as the image given. It may however include
data points around the edge that are meaningless but not marked.
We align the empty channel to the phase channel, then subtract.
Parameters
image_pair : tuple of length two with; (image, empty_mean)
Returns
channel_subtracted : np.array
The subtracted image
Called by
subtract_fov_stack
'''
# get out data and pad
cropped_channel, empty_channel = image_pair # [channel slice, empty slice]
# this is for aligning the empty channel to the cell channel.
### Pad cropped channel.
pad_size = params['subtract']['alignment_pad'] # pixel size to use for padding (ammount that alignment could be off)
padded_chnl = np.pad(cropped_channel, pad_size, mode='reflect')
# ### Align channel to empty using match template.
# use match template to get a correlation array and find the position of maximum overlap
match_result = match_template(padded_chnl, empty_channel)
# get row and colum of max correlation value in correlation array
y, x = np.unravel_index(np.argmax(match_result), match_result.shape)
# pad the empty channel according to alignment to be overlayed on padded channel.
empty_paddings = [[y, padded_chnl.shape[0] - (y + empty_channel.shape[0])],
[x, padded_chnl.shape[1] - (x + empty_channel.shape[1])]]
aligned_empty = np.pad(empty_channel, empty_paddings, mode='reflect')
# now trim it off so it is the same size as the original channel
aligned_empty = aligned_empty[pad_size:-1*pad_size, pad_size:-1*pad_size]
### Compute the difference between the empty and channel phase contrast images
# subtract cropped cell image from empty channel.
channel_subtracted = aligned_empty.astype('int32') - cropped_channel.astype('int32')
# channel_subtracted = cropped_channel.astype('int32') - aligned_empty.astype('int32')
# just zero out anything less than 0. This is what Sattar does
channel_subtracted[channel_subtracted < 0] = 0
channel_subtracted = channel_subtracted.astype('uint16') # change back to 16bit
return channel_subtracted
# subtract one fluorescence image from another.
def subtract_fluor(image_pair):
''' subtract_fluor does a simple subtraction of one image to another. Unlike subtract_phase,
there is no alignment. Also, the empty channel is subtracted from the full channel.
Parameters
image_pair : tuple of length two with; (image, empty_mean)
Returns
channel_subtracted : np.array
The subtracted image.
Called by
subtract_fov_stack
'''
# get out data and pad
cropped_channel, empty_channel = image_pair # [channel slice, empty slice]
# check frame size of cropped channel and background, always keep crop channel size the same
crop_size = np.shape(cropped_channel)[:2]
empty_size = np.shape(empty_channel)[:2]
if crop_size != empty_size:
if crop_size[0] > empty_size[0] or crop_size[1] > empty_size[1]:
pad_row_length = max(crop_size[0] - empty_size[0], 0) # prevent negatives
pad_column_length = max(crop_size[1] - empty_size[1], 0)
empty_channel = np.pad(empty_channel,
[[np.int(.5*pad_row_length), pad_row_length-np.int(.5*pad_row_length)],
[np.int(.5*pad_column_length), pad_column_length-np.int(.5*pad_column_length)],
[0,0]], 'edge')
# mm3.information('size adjusted 1')
empty_size = np.shape(empty_channel)[:2]
if crop_size[0] < empty_size[0] or crop_size[1] < empty_size[1]:
empty_channel = empty_channel[:crop_size[0], :crop_size[1],]
### Compute the difference between the empty and channel phase contrast images
# subtract cropped cell image from empty channel.
channel_subtracted = cropped_channel.astype('int32') - empty_channel.astype('int32')
# channel_subtracted = cropped_channel.astype('int32') - aligned_empty.astype('int32')
# just zero out anything less than 0.
channel_subtracted[channel_subtracted < 0] = 0
channel_subtracted = channel_subtracted.astype('uint16') # change back to 16bit
return channel_subtracted
### functions that deal with segmentation and lineages
# Do segmentation for an channel time stack
def segment_chnl_stack(fov_id, peak_id):
'''
For a given fov and peak (channel), do segmentation for all images in the
subtracted .tif stack.
Called by
mm3_Segment.py
Calls
mm3.segment_image
'''
information('Segmenting FOV %d, channel %d.' % (fov_id, peak_id))
# load subtracted images
sub_stack = load_stack(fov_id, peak_id, color='sub_{}'.format(params['phase_plane']))
# set up multiprocessing pool to do segmentation. Will do everything before going on.
#pool = Pool(processes=params['num_analyzers'])
# send the 3d array to multiprocessing
#segmented_imgs = pool.map(segment_image, sub_stack, chunksize=8)
#pool.close() # tells the process nothing more will be added.
#pool.join() # blocks script until everything has been processed and workers exit
# image by image for debug
segmented_imgs = []
for sub_image in sub_stack:
segmented_imgs.append(segment_image(sub_image))
# stack them up along a time axis
segmented_imgs = np.stack(segmented_imgs, axis=0)
segmented_imgs = segmented_imgs.astype('uint8')
# save out the segmented stack
if params['output'] == 'TIFF':
seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img'])
tiff.imsave(os.path.join(params['seg_dir'],seg_filename),
segmented_imgs, compress=5)
if fov_id==1 and peak_id<50:
napari.current_viewer().add_image(segmented_imgs, name='Segmented' + '_xy1_p'+str(peak_id)+'_sub_'+str(params['seg_img'])+'.tif', visible=True)
if params['output'] == 'HDF5':
h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+')
# put segmented channel in correct group
h5g = h5f['channel_%04d' % peak_id]
# delete the dataset if it exists (important for debug)
if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g:
del h5g['p%04d_%s' % (peak_id, params['seg_img'])]
h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']),
data=segmented_imgs,
chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]),
maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]),
compression="gzip", shuffle=True, fletcher32=True)
h5f.close()
information("Saved segmented channel %d." % peak_id)
return True
# segmentation algorithm
def segment_image(image):
'''Segments a subtracted image and returns a labeled image
Parameters
image : a ndarray which is an image. This should be the subtracted image
Returns
labeled_image : a ndarray which is also an image. Labeled values, which
should correspond to cells, all have the same integer value starting with 1.
Non labeled area should have value zero.
'''
# load in segmentation parameters
OTSU_threshold = params['segment']['otsu']['OTSU_threshold']
first_opening_size = params['segment']['otsu']['first_opening_size']
distance_threshold = params['segment']['otsu']['distance_threshold']
second_opening_size = params['segment']['otsu']['second_opening_size']
min_object_size = params['segment']['otsu']['min_object_size']
# threshold image
try:
thresh = threshold_otsu(image) # finds optimal OTSU threshhold value
except:
return np.zeros_like(image)
threshholded = image > OTSU_threshold*thresh # will create binary image
# if there are no cells, good to clear the border
# because otherwise the OTSU is just for random bullshit, most
# likely on the side of the image
threshholded = segmentation.clear_border(threshholded)
# Opening = erosion then dialation.
# opening smooths images, breaks isthmuses, and eliminates protrusions.
# "opens" dark gaps between bright features.
morph = morphology.binary_opening(threshholded, morphology.disk(first_opening_size))
# if this image is empty at this point (likely if there were no cells), just return
# zero array
if np.amax(morph) == 0:
return np.zeros_like(image)
### Calculate distance matrix, use as markers for random walker (diffusion watershed)
# Generate the markers based on distance to the background
distance = ndi.distance_transform_edt(morph)
# threshold distance image
distance_thresh = np.zeros_like(distance)
distance_thresh[distance < distance_threshold] = 0
distance_thresh[distance >= distance_threshold] = 1
# do an extra opening on the distance
distance_opened = morphology.binary_opening(distance_thresh,
morphology.disk(second_opening_size))
# remove artifacts connected to image border
cleared = segmentation.clear_border(distance_opened)
# remove small objects. Remove small objects wants a
# labeled image and will fail if there is only one label. Return zero image in that case
# could have used try/except but remove_small_objects loves to issue warnings.
cleared, label_num = morphology.label(cleared, connectivity=1, return_num=True)
if label_num > 1:
cleared = morphology.remove_small_objects(cleared, min_size=min_object_size)
else:
# if there are no labels, then just return the cleared image as it is zero
return np.zeros_like(image)
# relabel now that small objects and labels on edges have been cleared
markers = morphology.label(cleared, connectivity=1)
# just break if there is no label
if np.amax(markers) == 0:
return np.zeros_like(image)
# the binary image for the watershed, which uses the unmodified OTSU threshold
threshholded_watershed = threshholded
threshholded_watershed = segmentation.clear_border(threshholded_watershed)
# label using the random walker (diffusion watershed) algorithm
try:
# set anything outside of OTSU threshold to -1 so it will not be labeled
markers[threshholded_watershed == 0] = -1
# here is the main algorithm
labeled_image = segmentation.random_walker(-1*image, markers)
# put negative values back to zero for proper image
labeled_image[labeled_image == -1] = 0
except:
return np.zeros_like(image)
return labeled_image
# loss functions for model
def dice_coeff(y_true, y_pred):
smooth = 1.
# Flatten
y_true_f = tf.reshape(y_true, [-1])
y_pred_f = tf.reshape(y_pred, [-1])
intersection = tf.reduce_sum(y_true_f * y_pred_f)
score = (2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth)
return score
def dice_loss(y_true, y_pred):
loss = 1 - dice_coeff(y_true, y_pred)
return loss
def bce_dice_loss(y_true, y_pred):
loss = losses.binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)
return loss
def tversky_loss(y_true, y_pred):
alpha = 0.5
beta = 0.5
ones = K.ones((512,512,3)) #K.ones(K.shape(y_true))
p0 = y_pred # proba that voxels are class i
p1 = ones-y_pred # proba that voxels are not class i
g0 = y_true
g1 = ones-y_true
num = K.sum(p0*g0, (0,1,2))
den = num + alpha*K.sum(p0*g1,(0,1,2)) + beta*K.sum(p1*g0,(0,1,2))
T = K.sum(num/den) # when summing over classes, T has dynamic range [0 Ncl]
Ncl = K.cast(K.shape(y_true)[-1], 'float32')
return Ncl-T
def cce_tversky_loss(y_true, y_pred):
loss = losses.categorical_crossentropy(y_true, y_pred) + tversky_loss(y_true, y_pred)
return loss
def get_pad_distances(unet_shape, img_height, img_width):
'''Finds padding and trimming sizes to make the input image the same as the size expected by the U-net model.
Padding is done evenly to the top and bottom of the image. Trimming is only done from the right or bottom.
'''
half_width_pad = (unet_shape[1]-img_width)/2
if half_width_pad > 0:
left_pad = int(np.floor(half_width_pad))
right_pad = int(np.ceil(half_width_pad))
right_trim = 0
else:
left_pad = 0
right_pad = 0
right_trim = img_width - unet_shape[1]
half_height_pad = (unet_shape[0]-img_height)/2
if half_height_pad > 0:
top_pad = int(np.floor(half_height_pad))
bottom_pad = int(np.ceil(half_height_pad))
bottom_trim = 0
else:
top_pad = 0
bottom_pad = 0
bottom_trim = img_height - unet_shape[0]
pad_dict = {'top_pad' : top_pad,
'bottom_pad' : bottom_pad,
'right_pad' : right_pad,
'left_pad' : left_pad,
'bottom_trim' : bottom_trim,
'right_trim' : right_trim}
return pad_dict
#@profile
def segment_cells_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model):
batch_size = params['segment']['batch_size']
cellClassThreshold = params['segment']['cell_class_threshold']
if cellClassThreshold == 'None': # yaml imports None as a string
cellClassThreshold = False
min_object_size = params['segment']['min_object_size']
# arguments to data generator
# data_gen_args = {'batch_size':batch_size,
# 'n_channels':1,
# 'normalize_to_one':False,
# 'shuffle':False}
# arguments to predict_generator
predict_args = dict(use_multiprocessing=True,
workers=params['num_analyzers'],
verbose=1)
for peak_id in ana_peak_ids:
information('Segmenting peak {}.'.format(peak_id))
img_stack = load_stack(fov_id, peak_id, color=params['phase_plane'])
if params['segment']['normalize_to_one']:
med_stack = np.zeros(img_stack.shape)
selem = morphology.disk(1)
for frame_idx in range(img_stack.shape[0]):
tmpImg = img_stack[frame_idx,...]
med_stack[frame_idx,...] = median(tmpImg, selem)
# robust normalization of peak's image stack to 1
max_val = np.max(med_stack)
img_stack = img_stack/max_val
img_stack[img_stack > 1] = 1
# trim and pad image to correct size
img_stack = img_stack[:, :unet_shape[0], :unet_shape[1]]
img_stack = np.pad(img_stack,
((0,0),
(pad_dict['top_pad'],pad_dict['bottom_pad']),
(pad_dict['left_pad'],pad_dict['right_pad'])),
mode='constant')
img_stack = np.expand_dims(img_stack, -1) # TF expects images to be 4D
# set up image generator
# image_generator = CellSegmentationDataGenerator(img_stack, **data_gen_args)
image_datagen = ImageDataGenerator()
image_generator = image_datagen.flow(x=img_stack,
batch_size=batch_size,
shuffle=False) # keep same order
# predict cell locations. This has multiprocessing built in but I need to mess with the parameters to see how to best utilize it. ***
predictions = model.predict_generator(image_generator, **predict_args)
# post processing
# remove padding including the added last dimension
predictions = predictions[:, pad_dict['top_pad']:unet_shape[0]-pad_dict['bottom_pad'],
pad_dict['left_pad']:unet_shape[1]-pad_dict['right_pad'], 0]
# pad back incase the image had been trimmed
predictions = np.pad(predictions,
((0,0),
(0,pad_dict['bottom_trim']),
(0,pad_dict['right_trim'])),
mode='constant')
if params['segment']['save_predictions']:
pred_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['pred_img'])
if not os.path.isdir(params['pred_dir']):
os.makedirs(params['pred_dir'])
int_preds = (predictions * 255).astype('uint8')
tiff.imsave(os.path.join(params['pred_dir'], pred_filename),
int_preds, compress=4)
# binarized and label (if there is a threshold value, otherwise, save a grayscale for debug)
if cellClassThreshold:
predictions[predictions >= cellClassThreshold] = 1
predictions[predictions < cellClassThreshold] = 0
predictions = predictions.astype('uint8')
segmented_imgs = np.zeros(predictions.shape, dtype='uint8')
# process and label each frame of the channel
for frame in range(segmented_imgs.shape[0]):
# get rid of small holes
predictions[frame,:,:] = morphology.remove_small_holes(predictions[frame,:,:], min_object_size)
# get rid of small objects.
predictions[frame,:,:] = morphology.remove_small_objects(morphology.label(predictions[frame,:,:], connectivity=1), min_size=min_object_size)
# remove labels which touch the boarder
predictions[frame,:,:] = segmentation.clear_border(predictions[frame,:,:])
# relabel now
segmented_imgs[frame,:,:] = morphology.label(predictions[frame,:,:], connectivity=1)
else: # in this case you just want to scale the 0 to 1 float image to 0 to 255
information('Converting predictions to grayscale.')
segmented_imgs = np.around(predictions * 100)
# both binary and grayscale should be 8bit. This may be ensured above and is unneccesary
segmented_imgs = segmented_imgs.astype('uint8')
# save out the segmented stacks
if params['output'] == 'TIFF':
seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img'])
tiff.imsave(os.path.join(params['seg_dir'], seg_filename),
segmented_imgs, compress=4)
if params['output'] == 'HDF5':
h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+')
# put segmented channel in correct group
h5g = h5f['channel_%04d' % peak_id]
# delete the dataset if it exists (important for debug)
if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g:
del h5g['p%04d_%s' % (peak_id, params['seg_img'])]
h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']),
data=segmented_imgs,
chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]),
maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]),
compression="gzip", shuffle=True, fletcher32=True)
h5f.close()
#@profile
def segment_fov_unet(fov_id, specs, model, color=None):
'''
Segments the channels from one fov using the U-net CNN model.
Parameters
----------
fov_id : int
specs : dict
model : TensorFlow model
'''
information('Segmenting FOV {} with U-net.'.format(fov_id))
if color is None:
color = params['phase_plane']
# load segmentation parameters
unet_shape = (params['segment']['trained_model_image_height'],
params['segment']['trained_model_image_width'])
### determine stitching of images.
# need channel shape, specifically the width. load first for example
# this assumes that all channels are the same size for this FOV, which they should
for peak_id, spec in six.iteritems(specs[fov_id]):
if spec == 1:
break # just break out with the current peak_id
img_stack = load_stack(fov_id, peak_id, color=color)
img_height = img_stack.shape[1]
img_width = img_stack.shape[2]
pad_dict = get_pad_distances(unet_shape, img_height, img_width)
# dermine how many channels we have to analyze for this FOV
ana_peak_ids = []
for peak_id, spec in six.iteritems(specs[fov_id]):
if spec == 1:
ana_peak_ids.append(peak_id)
ana_peak_ids.sort() # sort for repeatability
#ana_peak_ids = ana_peak_ids[:2]
segment_cells_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model)
information("Finished segmentation for FOV {}.".format(fov_id))
return
def segment_foci_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model):
# batch_size = params['foci']['batch_size']
focusClassThreshold = params['foci']['focus_threshold']
if focusClassThreshold == 'None': # yaml imports None as a string
focusClassThreshold = False
# arguments to data generator
data_gen_args = {'batch_size':params['foci']['batch_size'],
'n_channels':1,
'normalize_to_one':False,
'shuffle':False}
# arguments to predict_generator
predict_args = dict(use_multiprocessing=False,
# workers=params['num_analyzers'],
verbose=1)
for peak_id in ana_peak_ids:
information('Segmenting foci in peak {}.'.format(peak_id))
# print(peak_id) # debugging a shape error at some traps
img_stack = load_stack(fov_id, peak_id, color=params['foci']['foci_plane'])
# pad image to correct size
img_stack = np.pad(img_stack,
((0,0),
(pad_dict['top_pad'],pad_dict['bottom_pad']),
(pad_dict['left_pad'],pad_dict['right_pad'])),
mode='constant')
img_stack = np.expand_dims(img_stack, -1)
# set up image generator
image_generator = FocusSegmentationDataGenerator(img_stack, **data_gen_args)
# predict foci locations.
predictions = model.predict_generator(image_generator, **predict_args)
# post processing
# remove padding including the added last dimension
predictions = predictions[:, pad_dict['top_pad']:unet_shape[0]-pad_dict['bottom_pad'],
pad_dict['left_pad']:unet_shape[1]-pad_dict['right_pad'], 0]
if params['foci']['save_predictions']:
pred_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['pred_img'])
if not os.path.isdir(params['foci_pred_dir']):
os.makedirs(params['foci_pred_dir'])
int_preds = (predictions * 255).astype('uint8')
tiff.imsave(os.path.join(params['foci_pred_dir'], pred_filename),
int_preds, compress=4)
# binarized and label (if there is a threshold value, otherwise, save a grayscale for debug)
if focusClassThreshold:
predictions[predictions >= focusClassThreshold] = 1
predictions[predictions < focusClassThreshold] = 0
predictions = predictions.astype('uint8')
segmented_imgs = np.zeros(predictions.shape, dtype='uint8')
# process and label each frame of the channel
for frame in range(segmented_imgs.shape[0]):
# get rid of small holes
# predictions[frame,:,:] = morphology.remove_small_holes(predictions[frame,:,:], min_object_size)
# get rid of small objects.
# predictions[frame,:,:] = morphology.remove_small_objects(morphology.label(predictions[frame,:,:], connectivity=1), min_size=min_object_size)
# remove labels which touch the boarder
predictions[frame,:,:] = segmentation.clear_border(predictions[frame,:,:])
# relabel now
segmented_imgs[frame,:,:] = morphology.label(predictions[frame,:,:], connectivity=2)
else: # in this case you just want to scale the 0 to 1 float image to 0 to 255
information('Converting predictions to grayscale.')
segmented_imgs = np.around(predictions * 100)
# both binary and grayscale should be 8bit. This may be ensured above and is unneccesary
segmented_imgs = segmented_imgs.astype('uint8')
# save out the segmented stacks
if params['output'] == 'TIFF':
seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img'])
tiff.imsave(os.path.join(params['foci_seg_dir'], seg_filename),
segmented_imgs, compress=4)
if params['output'] == 'HDF5':
h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+')
# put segmented channel in correct group
h5g = h5f['channel_%04d' % peak_id]
# delete the dataset if it exists (important for debug)
if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g:
del h5g['p%04d_%s' % (peak_id, params['seg_img'])]
h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']),
data=segmented_imgs,
chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]),
maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]),
compression="gzip", shuffle=True, fletcher32=True)
h5f.close()
def segment_fov_foci_unet(fov_id, specs, model, color=None):
'''
Segments the channels from one fov using the U-net CNN model.
Parameters
----------
fov_id : int
specs : dict
model : TensorFlow model
'''
information('Segmenting FOV {} with U-net.'.format(fov_id))
if color is None:
color = params['phase_plane']
# load segmentation parameters
unet_shape = (params['segment']['trained_model_image_height'],
params['segment']['trained_model_image_width'])
### determine stitching of images.
# need channel shape, specifically the width. load first for example
# this assumes that all channels are the same size for this FOV, which they should
for peak_id, spec in six.iteritems(specs[fov_id]):
if spec == 1:
break # just break out with the current peak_id
img_stack = load_stack(fov_id, peak_id, color=color)
img_height = img_stack.shape[1]
img_width = img_stack.shape[2]
# find padding and trimming distances
pad_dict = get_pad_distances(unet_shape, img_height, img_width)
# timepoints = img_stack.shape[0]
# dermine how many channels we have to analyze for this FOV
ana_peak_ids = []
for peak_id, spec in six.iteritems(specs[fov_id]):
if spec == 1:
ana_peak_ids.append(peak_id)
ana_peak_ids.sort() # sort for repeatability
k = segment_foci_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model)
information("Finished segmentation for FOV {}.".format(fov_id))
return(k)
# class for image generation for predicting cell locations in phase-contrast images
class CellSegmentationDataGenerator(utils.Sequence):
'Generates data for Keras'
def __init__(self,
img_array,
batch_size=32,
n_channels=1,
shuffle=False,
normalize_to_one=False):
'Initialization'
self.dim = (img_array.shape[1], img_array.shape[2])
self.batch_size = batch_size
self.img_array = img_array
self.img_number = img_array.shape[0]
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
self.normalize_to_one = normalize_to_one
if normalize_to_one:
self.selem = morphology.disk(1)
def __len__(self):
'Denotes the number of batches per epoch'
return(int(np.ceil(self.img_number / self.batch_size)))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
array_list_temp = [self.img_array[k,:,:,0] for k in indexes]
# Generate data
X = self.__data_generation(array_list_temp)
return X
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(self.img_number)
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, array_list_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels))
# Generate data
for i in range(self.batch_size):
# Store sample
try:
tmpImg = array_list_temp[i]
except IndexError:
X = X[:i,...]
break
# ensure image is uint8
if tmpImg.dtype=="uint16":
tmpImg = tmpImg / 2**16 * 2**8
tmpImg = tmpImg.astype('uint8')
if self.normalize_to_one:
with warnings.catch_warnings():
warnings.simplefilter('ignore')
medImg = median(tmpImg, self.selem)
tmpImg = tmpImg/np.max(medImg)
tmpImg[tmpImg > 1] = 1
X[i,:,:,0] = tmpImg
return (X)
class TemporalCellDataGenerator(utils.Sequence):
'Generates data for Keras'
def __init__(self,
fileName,
batch_size=32,
dim=(32,32,32),
n_channels=1,
n_classes=10,
shuffle=False,
normalize_to_one=False):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.fileName = fileName
self.n_channels = n_channels
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
self.normalize_to_one = normalize_to_one
if normalize_to_one:
self.selem = morphology.disk(1)
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.ceil(self.batch_size / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate data
X = self.__data_generation()
return X
def on_epoch_end(self):
'Updates indexes after each epoch'
pass
def __data_generation(self):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.dim[2], self.n_channels))
full_stack = io.imread(self.fileName)
if full_stack.dtype=="uint16":
full_stack = full_stack / 2**16 * 2**8
full_stack = full_stack.astype('uint8')
img_height = full_stack.shape[1]
img_width = full_stack.shape[2]
pad_dict = get_pad_distances(self.dim, img_height, img_width)
full_stack = np.pad(full_stack,
((0,0),
(pad_dict['top_pad'],pad_dict['bottom_pad']),
(pad_dict['left_pad'],pad_dict['right_pad'])
),
mode='constant')
full_stack = full_stack.transpose(1,2,0)
# Generate data
for i in range(self.batch_size):
if i == 0:
tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1))
tmpImg[:,:,0,0] = full_stack[:,:,0]
for j in range(1,self.dim[2]):
tmpImg[:,:,j,0] = full_stack[:,:,j]
elif i == (self.batch_size - 1):
tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1))
tmpImg[:,:,-1,0] = full_stack[:,:,-1]
for j in range(self.dim[2]-1):
tmpImg[:,:,j,0] = full_stack[:,:,j]
else:
tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1))
tmpImg[:,:,:,0] = full_stack[:,:,(i-1):(i+2)]
X[i,:,:,:,:] = tmpImg
return X
# class for image generation for predicting cell locations in phase-contrast images
class FocusSegmentationDataGenerator(utils.Sequence):
'Generates data for Keras'
def __init__(self,
img_array,
batch_size=32,
n_channels=1,
shuffle=False,
normalize_to_one=False):
'Initialization'
self.dim = (img_array.shape[1], img_array.shape[2])
self.batch_size = batch_size
self.img_array = img_array
self.img_number = img_array.shape[0]
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
self.normalize_to_one = normalize_to_one
if normalize_to_one:
self.selem = morphology.disk(1)
def __len__(self):
'Denotes the number of batches per epoch'
return(int(np.ceil(self.img_number / self.batch_size)))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
array_list_temp = [self.img_array[k,:,:,0] for k in indexes]
# Generate data
X = self.__data_generation(array_list_temp)
return X
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(self.img_number)
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, array_list_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels), 'uint16')
if self.normalize_to_one:
max_pixels = []
# Generate data
for i in range(self.batch_size):
# Store sample
try:
tmpImg = array_list_temp[i]
if self.normalize_to_one:
# tmpMedian = filters.median(tmpImg, self.selem)
tmpMax = np.max(tmpImg)
max_pixels.append(tmpMax)
except IndexError:
X = X[:i,...]
break
# ensure image is uint8
# if tmpImg.dtype=="uint16":
# tmpImg = tmpImg / 2**16 * 2**8
# tmpImg = tmpImg.astype('uint8')
# if self.normalize_to_one:
# with warnings.catch_warnings():
# warnings.simplefilter('ignore')
# medImg = median(tmpImg, self.selem)
# tmpImg = tmpImg/np.max(medImg)
# tmpImg[tmpImg > 1] = 1
X[i,:,:,0] = tmpImg
if self.normalize_to_one:
channel_max = np.max(max_pixels) / (2**8 - 1)
# print("Channel max: {}".format(channel_max))
# print("Array max: {}".format(np.max(X)))
X = X/channel_max
# print("Normalized array max: {}".format(np.max(X)))
X[X > 1] = 1
return (X)
# class for image generation for predicting trap locations in phase-contrast images
class TrapSegmentationDataGenerator(utils.Sequence):
'Generates data for Keras'
def __init__(self, img_array, batch_size=32,
n_channels=1, normalize_to_one=False, shuffle=False):
'Initialization'
self.dim = (img_array.shape[1], img_array.shape[2])
self.img_number = img_array.shape[0]
self.img_array = img_array
self.batch_size = batch_size
self.n_channels = n_channels
self.shuffle = shuffle
self.on_epoch_end()
self.normalize_to_one = normalize_to_one
if normalize_to_one:
self.selem = morphology.disk(3)
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.ceil(self.img_number / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
array_list_temp = [self.img_array[k,:,:,0] for k in indexes]
# Generate data
X = self.__data_generation(array_list_temp)
return X
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(self.img_number)
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, array_list_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels))
# Generate data
for i in range(self.batch_size):
# Store sample
try:
tmpImg = array_list_temp[i]
except IndexError:
X = X[:i,...]
break
if self.normalize_to_one:
medImg = median(tmpImg, self.selem)
tmpImg = medImg/np.max(medImg)
X[i,:,:,0] = tmpImg
return (X)
# class for image generation for classifying traps as good, empty, out-of-focus, or defective
class TrapKymographPredictionDataGenerator(utils.Sequence):
'Generates data for Keras'
def __init__(self, list_fileNames, batch_size=32, dim=(32,32,32), n_channels=1,
n_classes=10, shuffle=False):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.list_fileNames = list_fileNames
self.n_channels = n_channels
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.ceil(len(self.list_fileNames) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_fileNames_temp = [self.list_fileNames[k] for k in indexes]
# Generate data
X = self.__data_generation(list_fileNames_temp)
return X
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_fileNames))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_fileNames_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels))
# Generate data
for i, fName in enumerate(list_fileNames_temp):
# Store sample
tmpImg = io.imread(fName)
tmpImgShape = tmpImg.shape
if tmpImgShape[0] < self.dim[0]:
t_end = tmpImgShape[0]
else:
t_end = self.dim[0]
X[i,:t_end,:,:] = np.expand_dims(tmpImg[:t_end,:,tmpImg.shape[-1]//2], axis=-1)
return X
def absolute_diff(y_true, y_pred):
y_true_sum = K.sum(y_true)
y_pred_sum = K.sum(y_pred)
diff = K.abs(y_pred_sum - y_true_sum)/tf.to_float(tf.size(y_true))
return diff
def all_loss(y_true, y_pred):
loss = losses.binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) + absolute_diff(y_true, y_pred)
return loss
def absolute_dice_loss(y_true, y_pred):
loss = dice_loss(y_true, y_pred) + absolute_diff(y_true, y_pred)
return loss
def recall_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def f2_m(y_true, y_pred, beta=2):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
numer = (1+beta**2)*recall*precision
denom = recall + (beta**2)*precision + K.epsilon()
return numer/denom
def f_precision_m(y_true, y_pred, beta=0.5):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
numer = (1+beta**2)*recall*precision
denom = recall + (beta**2)*precision + K.epsilon()
return numer/denom
# finds lineages for all peaks in a fov
def make_lineages_fov(fov_id, specs):
'''
For a given fov, create the lineages from the segmented images.
Called by
mm3_Segment.py
Calls
mm3.make_lineage_chnl_stack
'''
ana_peak_ids = [] # channels to be analyzed
for peak_id, spec in six.iteritems(specs[fov_id]):
if spec == 1: # 1 means analyze
ana_peak_ids.append(peak_id)
ana_peak_ids = sorted(ana_peak_ids) # sort for repeatability
information('Creating lineage for FOV %d with %d channels.' % (fov_id, len(ana_peak_ids)))
# just break if there are no peaks to analize
if not ana_peak_ids:
# returning empty dictionary will add nothing to current cells dictionary
return {}
# This is a list of tuples (fov_id, peak_id) to send to the Pool command
fov_and_peak_ids_list = [(fov_id, peak_id) for peak_id in ana_peak_ids]
# set up multiprocessing pool. will complete pool before going on
#pool = Pool(processes=params['num_analyzers'])
# create the lineages for each peak individually
# the output is a list of dictionaries
#lineages = pool.map(make_lineage_chnl_stack, fov_and_peak_ids_list, chunksize=8)
#pool.close() # tells the process nothing more will be added.
#pool.join() # blocks script until everything has been processed and workers exit
# This is the non-parallelized version (useful for debug)
lineages = []
for fov_and_peak_ids in fov_and_peak_ids_list:
lineages.append(make_lineage_chnl_stack(fov_and_peak_ids))
# combine all dictionaries into one dictionary
Cells = {} # create dictionary to hold all information
for cell_dict in lineages: # for all the other dictionaries in the list
Cells.update(cell_dict) # updates Cells with the entries in cell_dict
return Cells
# get number of cells in each frame and total number of pairwise interactions
def get_cell_counts(regionprops_list):
cell_count_list = [len(time_regions) for time_regions in regionprops_list]
interaction_count_list = []
for i,cell_count in enumerate(cell_count_list):
if i+1 == len(cell_count_list):
break
interaction_count_list.append(cell_count*cell_count_list[i+1])
total_cells = np.sum(cell_count_list)
total_interactions = np.sum(interaction_count_list)
return(total_cells, total_interactions, cell_count_list, interaction_count_list)
# get cells' information for track prediction
def gather_interactions_and_events(regionprops_list):
total_cells, total_interactions, cell_count_list, interaction_count_list = get_cell_counts(regionprops_list)
# instantiate an array with a 2x4 array for each pair of cells'
# min_y, max_y, centroid_y, and area
# in reality it would be much, much more efficient to
# look this information up in the data generator at run time
# for now, this will work
pairwise_cell_data = np.zeros((total_interactions,2,5,1))
# make a dictionary, the keys of which will be row indices so that we
# can quickly look up which timepoints/cells correspond to which
# rows of our model's ouput
pairwise_cell_lookup = {}
# populate arrays
interaction_count = 0
cell_count = 0
for frame, frame_regions in enumerate(regionprops_list):
for region in frame_regions:
cell_label = region.label
y,x = region.centroid
bbox = region.bbox
orientation = region.orientation
min_y = bbox[0]
max_y = bbox[2]
area = region.area
cell_label = region.label
cell_info = (min_y, max_y, y, area, orientation)
cell_count += 1
try:
frame_plus_one_regions = regionprops_list[frame+1]
except IndexError as e:
# print(e)
break
for region_plus_one in frame_plus_one_regions:
paired_cell_label = region_plus_one.label
y,x = region_plus_one.centroid
bbox = region_plus_one.bbox
min_y = bbox[0]
max_y = bbox[2]
area = region_plus_one.area
paired_cell_label = region_plus_one.label
pairwise_cell_data[interaction_count,0,:,0] = cell_info
pairwise_cell_data[interaction_count,1,:,0] = (min_y, max_y, y, area, orientation)
pairwise_cell_lookup[interaction_count] = {'frame':frame, 'cell_label':cell_label, 'paired_cell_label':paired_cell_label}
interaction_count += 1
return(pairwise_cell_data, pairwise_cell_lookup)
# look up which cells are interacting according to the track model
def cell_interaction_lookup(predictions, lookup_table):
'''
Accepts prediction matrix and
'''
frame = []
cell_label = []
paired_cell_label = []
interaction_type = []
# loop over rows of predictions
for row_index in range(predictions.shape[0]):
row_predictions = predictions[row_index]
row_relationship = np.where(row_predictions > 0.95)[0]
if row_relationship.size == 0:
continue
elif row_relationship[0] == 3:
continue
elif row_relationship[0] == 0:
interaction_type.append('migration')
elif row_relationship[0] == 1:
interaction_type.append('child')
elif row_relationship[0] == 2:
interaction_type.append('false_join')
frame.append(lookup_table[row_index]['frame'])
cell_label.append(lookup_table[row_index]['cell_label'])
paired_cell_label.append(lookup_table[row_index]['paired_cell_label'])
track_df = pd.DataFrame(data={'frame':frame,
'cell_label':cell_label,
'paired_cell_label':paired_cell_label,
'interaction_type':interaction_type})
return(track_df)
def get_tracking_model_dict():
model_dict = {}
if not 'migrate_model' in model_dict:
model_dict['migrate_model'] = models.load_model(params['tracking']['migrate_model'],
custom_objects={'all_loss':all_loss,
'f2_m':f2_m})
if not 'child_model' in model_dict:
model_dict['child_model'] = models.load_model(params['tracking']['child_model'],
custom_objects={'bce_dice_loss':bce_dice_loss,
'f2_m':f2_m})
if not 'appear_model' in model_dict:
model_dict['appear_model'] = models.load_model(params['tracking']['appear_model'],
custom_objects={'all_loss':all_loss,
'f2_m':f2_m})
if not 'die_model' in model_dict:
model_dict['die_model'] = models.load_model(params['tracking']['die_model'],
custom_objects={'all_loss':all_loss,
'f2_m':f2_m})
if not 'disappear_model' in model_dict:
model_dict['disappear_model'] = models.load_model(params['tracking']['disappear_model'],
custom_objects={'all_loss':all_loss,
'f2_m':f2_m})
if not 'born_model' in model_dict:
model_dict['born_model'] = models.load_model(params['tracking']['born_model'],
custom_objects={'all_loss':all_loss,
'f2_m':f2_m})
# if not 'zero_cell_model' in model_dict:
# model_dict['zero_cell_model'] = models.load_model(params['tracking']['zero_cell_model'],
# custom_objects={'absolute_dice_loss':absolute_dice_loss,
# 'f2_m':f2_m})
# if not 'one_cell_model' in model_dict:
# model_dict['one_cell_model'] = models.load_model(params['tracking']['one_cell_model'],
# custom_objects={'bce_dice_loss':bce_dice_loss,
# 'f2_m':f2_m})
# if not 'two_cell_model' in model_dict:
# model_dict['two_cell_model'] = models.load_model(params['tracking']['two_cell_model'],
# custom_objects={'all_loss':all_loss,
# 'f2_m':f2_m})
# if not 'geq_three_cell_model' in model_dict:
# model_dict['geq_three_cell_model'] = models.load_model(params['tracking']['geq_three_cell_model'],
# custom_objects={'bce_dice_loss':bce_dice_loss,
# 'f2_m':f2_m})
return(model_dict)
# Creates lineage for a single channel
def make_lineage_chnl_stack(fov_and_peak_id):
'''
Create the lineage for a set of segmented images for one channel. Start by making the regions in the first time points potenial cells. Go forward in time and map regions in the timepoint to the potential cells in previous time points, building the life of a cell. Used basic checks such as the regions should overlap, and grow by a little and not shrink too much. If regions do not link back in time, discard them. If two regions map to one previous region, check if it is a sensible division event.
Parameters
----------
fov_and_peak_ids : tuple.
(fov_id, peak_id)
Returns
-------
Cells : dict
A dictionary of all the cells from this lineage, divided and undivided
'''
# load in parameters
# if leaf regions see no action for longer than this, drop them
lost_cell_time = params['track']['lost_cell_time']
# only cells with y positions below this value will recieve the honor of becoming new
# cells, unless they are daughters of current cells
new_cell_y_cutoff = params['track']['new_cell_y_cutoff']
# only regions with labels less than or equal to this value will be considered to start cells
new_cell_region_cutoff = params['track']['new_cell_region_cutoff']
# get the specific ids from the tuple
fov_id, peak_id = fov_and_peak_id
# start time is the first time point for this series of TIFFs.
start_time_index = min(params['time_table'][fov_id].keys())
information('Creating lineage for FOV %d, channel %d.' % (fov_id, peak_id))
# load segmented data
image_data_seg = load_stack(fov_id, peak_id, color=params['track']['seg_img'])
# image_data_seg = load_stack(fov_id, peak_id, color='seg')
# Calculate all data for all time points.
# this list will be length of the number of time points
regions_by_time = [regionprops(label_image=timepoint) for timepoint in image_data_seg] # removed coordinates='xy'
# Set up data structures.
Cells = {} # Dict that holds all the cell objects, divided and undivided
cell_leaves = [] # cell ids of the current leaves of the growing lineage tree
# go through regions by timepoint and build lineages
# timepoints start with the index of the first image
for t, regions in enumerate(regions_by_time, start=start_time_index):
# if there are cell leaves who are still waiting to be linked, but
# too much time has passed, remove them.
for leaf_id in cell_leaves:
if t - Cells[leaf_id].times[-1] > lost_cell_time:
cell_leaves.remove(leaf_id)
# make all the regions leaves if there are no current leaves
if not cell_leaves:
for region in regions:
if region.centroid[0] < new_cell_y_cutoff and region.label <= new_cell_region_cutoff:
# Create cell and put in cell dictionary
cell_id = create_cell_id(region, t, peak_id, fov_id)
Cells[cell_id] = Cell(cell_id, region, t, parent_id=None)
# add thes id to list of current leaves
cell_leaves.append(cell_id)
# Determine if the regions are children of current leaves
else:
### create mapping between regions and leaves
leaf_region_map = {}
leaf_region_map = {leaf_id : [] for leaf_id in cell_leaves}
# get the last y position of current leaves and create tuple with the id
current_leaf_positions = [(leaf_id, Cells[leaf_id].centroids[-1][0]) for leaf_id in cell_leaves]
# go through regions, they will come off in Y position order
for r, region in enumerate(regions):
# create tuple which is cell_id of closest leaf, distance
current_closest = (None, float('inf'))
# check this region against all positions of all current leaf regions,
# find the closest one in y.
for leaf in current_leaf_positions:
# calculate distance between region and leaf
y_dist_region_to_leaf = abs(region.centroid[0] - leaf[1])
# if the distance is closer than before, update
if y_dist_region_to_leaf < current_closest[1]:
current_closest = (leaf[0], y_dist_region_to_leaf)
# update map with the closest region
leaf_region_map[current_closest[0]].append((r, y_dist_region_to_leaf))
# go through the current leaf regions.
# limit by the closest two current regions if there are three regions to the leaf
for leaf_id, region_links in six.iteritems(leaf_region_map):
if len(region_links) > 2:
closest_two_regions = sorted(region_links, key=lambda x: x[1])[:2]
# but sort by region order so top region is first
closest_two_regions = sorted(closest_two_regions, key=lambda x: x[0])
# replace value in dictionary
leaf_region_map[leaf_id] = closest_two_regions
# for the discarded regions, put them as new leaves
# if they are near the closed end of the channel
discarded_regions = sorted(region_links, key=lambda x: x[1])[2:]
for discarded_region in discarded_regions:
region = regions[discarded_region[0]]
if region.centroid[0] < new_cell_y_cutoff and region.label <= new_cell_region_cutoff:
cell_id = create_cell_id(region, t, peak_id, fov_id)
Cells[cell_id] = Cell(cell_id, region, t, parent_id=None)
cell_leaves.append(cell_id) # add to leaves
else:
# since the regions are ordered, none of the remaining will pass
break
### iterate over the leaves, looking to see what regions connect to them.
for leaf_id, region_links in six.iteritems(leaf_region_map):
# if there is just one suggested descendant,
# see if it checks out and append the data
if len(region_links) == 1:
region = regions[region_links[0][0]] # grab the region from the list
# check if the pairing makes sense based on size and position
# this function returns true if things are okay
if check_growth_by_region(Cells[leaf_id], region):
# grow the cell by the region in this case
Cells[leaf_id].grow(region, t)
# there may be two daughters, or maybe there is just one child and a new cell
elif len(region_links) == 2:
# grab these two daughters
region1 = regions[region_links[0][0]]
region2 = regions[region_links[1][0]]
# check_division returns 3 if cell divided,
# 1 if first region is just the cell growing and the second is trash
# 2 if the second region is the cell, and the first is trash
# or 0 if it cannot be determined.
check_division_result = check_division(Cells[leaf_id], region1, region2)
if check_division_result == 3:
# create two new cells and divide the mother
daughter1_id = create_cell_id(region1, t, peak_id, fov_id)
daughter2_id = create_cell_id(region2, t, peak_id, fov_id)
Cells[daughter1_id] = Cell(daughter1_id, region1, t,
parent_id=leaf_id)
Cells[daughter2_id] = Cell(daughter2_id, region2, t,
parent_id=leaf_id)
Cells[leaf_id].divide(Cells[daughter1_id], Cells[daughter2_id], t)
# remove mother from current leaves
cell_leaves.remove(leaf_id)
# add the daughter ids to list of current leaves if they pass cutoffs
if region1.centroid[0] < new_cell_y_cutoff and region1.label <= new_cell_region_cutoff:
cell_leaves.append(daughter1_id)
if region2.centroid[0] < new_cell_y_cutoff and region2.label <= new_cell_region_cutoff:
cell_leaves.append(daughter2_id)
# 1 means that daughter 1 is just a continuation of the mother
# The other region should be a leaf it passes the requirements
elif check_division_result == 1:
Cells[leaf_id].grow(region1, t)
if region2.centroid[0] < new_cell_y_cutoff and region2.label <= new_cell_region_cutoff:
cell_id = create_cell_id(region2, t, peak_id, fov_id)
Cells[cell_id] = Cell(cell_id, region2, t, parent_id=None)
cell_leaves.append(cell_id) # add to leaves
# ditto for 2
elif check_division_result == 2:
Cells[leaf_id].grow(region2, t)
if region1.centroid[0] < new_cell_y_cutoff and region1.label <= new_cell_region_cutoff:
cell_id = create_cell_id(region1, t, peak_id, fov_id)
Cells[cell_id] = Cell(cell_id, region1, t, parent_id=None)
cell_leaves.append(cell_id) # add to leaves
# return the dictionary with all the cells
return Cells
### Cell class and related functions
# this is the object that holds all information for a detection
class Detection():
'''
The Detection is a single detection in a single frame.
'''
# initialize (birth) the cell
def __init__(self, detection_id, region, t):
'''The detection must be given a unique detection_id and passed the region
information from the segmentation
Parameters
__________
detection_id : str
detection_id is a string in the form fXpXtXrX
f is 3 digit FOV number
p is 4 digit peak number
t is 4 digit time point
r is region label for that segmentation
Use the function create_detection_id to return a proper string.
region : region properties object
Information about the labeled region from
skimage.measure.regionprops()
'''
# create all the attributes
# id
self.id = detection_id
# identification convenience
self.fov = int(detection_id.split('f')[1].split('p')[0])
self.peak = int(detection_id.split('p')[1].split('t')[0])
self.t = t
self.cell_count = 1
# self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds
if region is not None:
self.label = region.label
self.bbox = region.bbox
self.area = region.area
# calculating cell length and width by using Feret Diamter. These values are in pixels
length_tmp, width_tmp = feretdiameter(region)
if length_tmp == None:
warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.')
self.length = length_tmp
self.width = width_tmp
# calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3
self.volume = (length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3
# angle of the fit elipsoid and centroid location
self.orientation = region.orientation
self.centroid = region.centroid
else:
self.label = None
self.bbox = None
self.area = None
# calculating cell length and width by using Feret Diamter. These values are in pixels
length_tmp, width_tmp = (None, None)
self.length = None
self.width = None
# calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3
self.volume = None
# angle of the fit elipsoid and centroid location
self.orientation = None
self.centroid = None
# this is the object that holds all information for a cell
class Cell():
'''
The Cell class is one cell that has been born. It is not neccesarily a cell that
has divided.
'''
# initialize (birth) the cell
def __init__(self, cell_id, region, t, parent_id=None):
'''The cell must be given a unique cell_id and passed the region
information from the segmentation
Parameters
__________
cell_id : str
cell_id is a string in the form fXpXtXrX
f is 3 digit FOV number
p is 4 digit peak number
t is 4 digit time point at time of birth
r is region label for that segmentation
Use the function create_cell_id to do return a proper string.
region : region properties object
Information about the labeled region from
skimage.measure.regionprops()
parent_id : str
id of the parent if there is one.
'''
# create all the attributes
# id
self.id = cell_id
# identification convenience
self.fov = int(cell_id.split('f')[1].split('p')[0])
self.peak = int(cell_id.split('p')[1].split('t')[0])
self.birth_label = int(cell_id.split('r')[1])
# parent id may be none
self.parent = parent_id
# daughters is updated when cell divides
# if this is none then the cell did not divide
self.daughters = None
# birth and division time
self.birth_time = t
self.division_time = None # filled out if cell divides
# the following information is on a per timepoint basis
self.times = [t]
self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds
self.labels = [region.label]
self.bboxes = [region.bbox]
self.areas = [region.area]
# calculating cell length and width by using Feret Diamter. These values are in pixels
length_tmp, width_tmp = feretdiameter(region)
if length_tmp == None:
warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.')
self.lengths = [length_tmp]
self.widths = [width_tmp]
# calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3
self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 +
(4/3) * np.pi * (width_tmp/2)**3]
# angle of the fit elipsoid and centroid location
self.orientations = [region.orientation]
self.centroids = [region.centroid]
# these are special datatype, as they include information from the daugthers for division
# computed upon division
self.times_w_div = None
self.lengths_w_div = None
self.widths_w_div = None
# this information is the "production" information that
# we want to extract at the end. Some of this is for convenience.
# This is only filled out if a cell divides.
self.sb = None # in um
self.sd = None # this should be combined lengths of daughters, in um
self.delta = None
self.tau = None
self.elong_rate = None
self.septum_position = None
self.width = None
self.death = None
def grow(self, region, t):
'''Append data from a region to this cell.
use cell.times[-1] to get most current value'''
self.times.append(t)
self.abs_times.append(params['time_table'][self.fov][t])
self.labels.append(region.label)
self.bboxes.append(region.bbox)
self.areas.append(region.area)
#calculating cell length and width by using <NAME>
length_tmp, width_tmp = feretdiameter(region)
if length_tmp == None:
warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.')
self.lengths.append(length_tmp)
self.widths.append(width_tmp)
self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 +
(4/3) * np.pi * (width_tmp/2)**3)
self.orientations.append(region.orientation)
self.centroids.append(region.centroid)
def die(self, region, t):
'''
Annotate cell as dying from current t to next t.
'''
self.death = t
def divide(self, daughter1, daughter2, t):
'''Divide the cell and update stats.
daugther1 and daugther2 are instances of the Cell class.
daughter1 is the daugther closer to the closed end.'''
# put the daugther ids into the cell
self.daughters = [daughter1.id, daughter2.id]
# give this guy a division time
self.division_time = daughter1.birth_time
# update times
self.times_w_div = self.times + [self.division_time]
self.abs_times.append(params['time_table'][self.fov][self.division_time])
# flesh out the stats for this cell
# size at birth
self.sb = self.lengths[0] * params['pxl2um']
# force the division length to be the combined lengths of the daughters
self.sd = (daughter1.lengths[0] + daughter2.lengths[0]) * params['pxl2um']
# delta is here for convenience
self.delta = self.sd - self.sb
# generation time. Use more accurate times and convert to minutes
self.tau = np.float64((self.abs_times[-1] - self.abs_times[0]) / 60.0)
# include the data points from the daughters
self.lengths_w_div = [l * params['pxl2um'] for l in self.lengths] + [self.sd]
self.widths_w_div = [w * params['pxl2um'] for w in self.widths] + [((daughter1.widths[0] + daughter2.widths[0])/2) * params['pxl2um']]
# volumes for all timepoints, in um^3
self.volumes_w_div = []
for i in range(len(self.lengths_w_div)):
self.volumes_w_div.append((self.lengths_w_div[i] - self.widths_w_div[i]) *
np.pi * (self.widths_w_div[i]/2)**2 +
(4/3) * np.pi * (self.widths_w_div[i]/2)**3)
# calculate elongation rate.
try:
times = np.float64((np.array(self.abs_times) - self.abs_times[0]) / 60.0)
log_lengths = np.float64(np.log(self.lengths_w_div))
p = np.polyfit(times, log_lengths, 1) # this wants float64
self.elong_rate = p[0] * 60.0 # convert to hours
except:
self.elong_rate = np.float64('NaN')
warning('Elongation rate calculate failed for {}.'.format(self.id))
# calculate the septum position as a number between 0 and 1
# which indicates the size of daughter closer to the closed end
# compared to the total size
self.septum_position = daughter1.lengths[0] / (daughter1.lengths[0] + daughter2.lengths[0])
# calculate single width over cell's life
self.width = np.mean(self.widths_w_div)
# convert data to smaller floats. No need for float64
# see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html
convert_to = 'float16' # numpy datatype to convert to
self.sb = self.sb.astype(convert_to)
self.sd = self.sd.astype(convert_to)
self.delta = self.delta.astype(convert_to)
self.elong_rate = self.elong_rate.astype(convert_to)
self.tau = self.tau.astype(convert_to)
self.septum_position = self.septum_position.astype(convert_to)
self.width = self.width.astype(convert_to)
self.lengths = [length.astype(convert_to) for length in self.lengths]
self.lengths_w_div = [length.astype(convert_to) for length in self.lengths_w_div]
self.widths = [width.astype(convert_to) for width in self.widths]
self.widths_w_div = [width.astype(convert_to) for width in self.widths_w_div]
self.volumes = [vol.astype(convert_to) for vol in self.volumes]
self.volumes_w_div = [vol.astype(convert_to) for vol in self.volumes_w_div]
# note the float16 is hardcoded here
self.orientations = [np.float16(orientation) for orientation in self.orientations]
self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids]
def print_info(self):
'''prints information about the cell'''
print('id = %s' % self.id)
print('times = {}'.format(', '.join('{}'.format(t) for t in self.times)))
print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths)))
class CellTree():
def __init__(self):
self.cells = {}
self.scores = [] # probably needs to be different
self.score = 0
self.cell_id_list = []
def add_cell(self, cell):
self.cells[cell.id] = cell
self.cell_id_list.append(cell.id)
self.cell_id_list.sort()
def update_score(self):
pass
def get_cell(self, cell_id):
return(self.cells[cell_id])
def get_top_from_cell(self, cell_id):
pass
# this is the object that holds all information for a cell
class CellFromGraph():
'''
The CellFromGraph class is one cell that has been born.
It is not neccesarily a cell that has divided.
'''
# initialize (birth) the cell
def __init__(self, cell_id, region, t, parent=None):
'''The cell must be given a unique cell_id and passed the region
information from the segmentation
Parameters
__________
cell_id : str
cell_id is a string in the form fXpXtXrX
f is 3 digit FOV number
p is 4 digit peak number
t is 4 digit time point at time of birth
r is region label for that segmentation
Use the function create_cell_id to do return a proper string.
region : region properties object
Information about the labeled region from
skimage.measure.regionprops()
parent_id : str
id of the parent if there is one.
'''
# create all the attributes
# id
self.id = cell_id
# identification convenience
self.fov = int(cell_id.split('f')[1].split('p')[0])
self.peak = int(cell_id.split('p')[1].split('t')[0])
self.birth_label = int(region.label)
self.regions = [region]
# parent is a CellFromGraph object, can be None
self.parent = parent
# daughters is updated when cell divides
# if this is none then the cell did not divide
self.daughters = None
# birth and division time
self.birth_time = t
self.division_time = None # filled out if cell divides
# the following information is on a per timepoint basis
self.times = [t]
self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds
self.labels = [region.label]
self.bboxes = [region.bbox]
self.areas = [region.area]
# calculating cell length and width by using Feret Diamter. These values are in pixels
length_tmp, width_tmp = feretdiameter(region)
if length_tmp == None:
warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.')
self.lengths = [length_tmp]
self.widths = [width_tmp]
# calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3
self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 +
(4/3) * np.pi * (width_tmp/2)**3]
# angle of the fit elipsoid and centroid location
self.orientations = [region.orientation]
self.centroids = [region.centroid]
# these are special datatype, as they include information from the daugthers for division
# computed upon division
self.times_w_div = None
self.lengths_w_div = None
self.widths_w_div = None
# this information is the "production" information that
# we want to extract at the end. Some of this is for convenience.
# This is only filled out if a cell divides.
self.sb = None # in um
self.sd = None # this should be combined lengths of daughters, in um
self.delta = None
self.tau = None
self.elong_rate = None
self.septum_position = None
self.width = None
self.death = None
self.disappear = None
self.area_mean_fluorescence = {}
self.volume_mean_fluorescence = {}
self.total_fluorescence = {}
self.foci = {}
def __len__(self):
return(len(self.times))
def add_parent(self, parent):
self.parent = parent
def grow(self, region, t):
'''Append data from a region to this cell.
use cell.times[-1] to get most current value'''
self.times.append(t)
self.abs_times.append(params['time_table'][self.fov][t])
self.labels.append(region.label)
self.bboxes.append(region.bbox)
self.areas.append(region.area)
self.regions.append(region)
#calculating cell length and width by using Feret Diamter
length_tmp, width_tmp = feretdiameter(region)
if length_tmp == None:
warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.')
self.lengths.append(length_tmp)
self.widths.append(width_tmp)
self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 +
(4/3) * np.pi * (width_tmp/2)**3)
self.orientations.append(region.orientation)
self.centroids.append(region.centroid)
def die(self, region, t):
'''
Annotate cell as dying from current t to next t.
'''
self.death = t
def disappears(self, region, t):
'''
Annotate cell as disappearing from current t to next t.
'''
self.disappear = t
def add_daughter(self, daughter, t):
if self.daughters is None:
self.daughters = [daughter]
else:
self.daughters.append(daughter)
assert len(self.daughters) < 3, "Too many daughter cells in cell {}".format(self.id)
# sort daughters by y position, with smaller y-value first.
# this will cause the daughter closer to the closed end of the trap to be listed first.
self.daughters.sort(key=lambda cell: cell.centroids[0][0])
self.divide(t)
def divide(self, t):
'''Divide the cell and update stats.
daughter1 is the daugther closer to the closed end.'''
# put the daugther ids into the cell
# self.daughters = [daughter1.id, daughter2.id]
# give this guy a division time
self.division_time = self.daughters[0].birth_time
# update times
self.times_w_div = self.times + [self.division_time]
self.abs_times.append(params['time_table'][self.fov][self.division_time])
# flesh out the stats for this cell
# size at birth
self.sb = self.lengths[0] * params['pxl2um']
# force the division length to be the combined lengths of the daughters
self.sd = (self.daughters[0].lengths[0] + self.daughters[1].lengths[0]) * params['pxl2um']
# delta is here for convenience
self.delta = self.sd - self.sb
# generation time. Use more accurate times and convert to minutes
self.tau = np.float64((self.abs_times[-1] - self.abs_times[0]) / 60.0)
# include the data points from the daughters
self.lengths_w_div = [l * params['pxl2um'] for l in self.lengths] + [self.sd]
self.widths_w_div = [w * params['pxl2um'] for w in self.widths] + [((self.daughters[0].widths[0] + self.daughters[1].widths[0])/2) * params['pxl2um']]
# volumes for all timepoints, in um^3
self.volumes_w_div = []
for i in range(len(self.lengths_w_div)):
self.volumes_w_div.append((self.lengths_w_div[i] - self.widths_w_div[i]) *
np.pi * (self.widths_w_div[i]/2)**2 +
(4/3) * np.pi * (self.widths_w_div[i]/2)**3)
# calculate elongation rate.
try:
times = np.float64((np.array(self.abs_times) - self.abs_times[0]) / 60.0) # convert times to minutes
log_lengths = np.float64(np.log(self.lengths_w_div))
p = np.polyfit(times, log_lengths, 1) # this wants float64
self.elong_rate = p[0] * 60.0 # convert to hours
except:
self.elong_rate = np.float64('NaN')
warning('Elongation rate calculate failed for {}.'.format(self.id))
# calculate the septum position as a number between 0 and 1
# which indicates the size of daughter closer to the closed end
# compared to the total size
self.septum_position = self.daughters[0].lengths[0] / (self.daughters[0].lengths[0] + self.daughters[1].lengths[0])
# calculate single width over cell's life
self.width = np.mean(self.widths_w_div)
# convert data to smaller floats. No need for float64
# see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html
convert_to = 'float16' # numpy datatype to convert to
self.sb = self.sb.astype(convert_to)
self.sd = self.sd.astype(convert_to)
self.delta = self.delta.astype(convert_to)
self.elong_rate = self.elong_rate.astype(convert_to)
self.tau = self.tau.astype(convert_to)
self.septum_position = self.septum_position.astype(convert_to)
self.width = self.width.astype(convert_to)
self.lengths = [length.astype(convert_to) for length in self.lengths]
self.lengths_w_div = [length.astype(convert_to) for length in self.lengths_w_div]
self.widths = [width.astype(convert_to) for width in self.widths]
self.widths_w_div = [width.astype(convert_to) for width in self.widths_w_div]
self.volumes = [vol.astype(convert_to) for vol in self.volumes]
self.volumes_w_div = [vol.astype(convert_to) for vol in self.volumes_w_div]
# note the float16 is hardcoded here
self.orientations = [np.float16(orientation) for orientation in self.orientations]
self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids]
def add_focus(self, focus, t):
'''Adds a focus to the cell. See function foci_info_unet'''
self.foci[focus.id] = focus
def print_info(self):
'''prints information about the cell'''
print('id = %s' % self.id)
print('times = {}'.format(', '.join('{}'.format(t) for t in self.times)))
print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths)))
if self.daughters is not None:
print('daughters = {}'.format(', '.join('{}'.format(daughter.id) for daughter in self.daughters)))
if self.parent is not None:
print('parent = {}'.format(self.parent.id))
def make_wide_df(self):
data = {}
data['id'] = self.id
data['fov'] = self.fov
data['trap'] = self.peak
data['parent'] = self.parent
data['child1'] = None
data['child2'] = None
data['division_time'] = self.division_time
data['birth_label'] = self.birth_label
data['birth_time'] = self.birth_time
data['sb'] = self.sb
data['sd'] = self.sd
data['delta'] = self.delta
data['tau'] = self.tau
data['elong_rate'] = self.elong_rate
data['septum_position'] = self.septum_position
data['death'] = self.death
data['disappear'] = self.disappear
if self.daughters is not None:
data['child1'] = self.daughters[0]
if len(self.daughters) == 2:
data['child2'] = self.daughters[1]
df = pd.DataFrame(data, index=[self.id])
return(df)
def make_long_df(self):
data = {}
data['id'] = [self.id]*len(self.times)
data['times'] = self.times
data['length'] = self.lengths
data['volume'] = self.volumes
data['area'] = self.areas
# if a cell divides then there is one extra value in abs_times
if self.division_time is None:
data['seconds'] = self.abs_times
else:
data['seconds'] = self.abs_times[:-1]
# if there is fluorescence data, place it into the dataframe
if len(self.area_mean_fluorescence.keys()) != 0:
for fluorescence_channel in self.area_mean_fluorescence.keys():
data['{}_area_mean_fluorescence'.format(fluorescence_channel)] = self.area_mean_fluorescence[fluorescence_channel]
data['{}_volume_mean_fluorescence'.format(fluorescence_channel)] = self.volume_mean_fluorescence[fluorescence_channel]
data['{}_total_fluorescence'.format(fluorescence_channel)] = self.total_fluorescence[fluorescence_channel]
df = pd.DataFrame(data, index=data['id'])
return(df)
# this is the object that holds all information for a fluorescent focus
# this class can eventually be used in focus tracking, much like the Cell class
# is used for cell tracking
class Focus():
'''
The Focus class holds information on fluorescent foci.
A single focus can be present in multiple different cells.
'''
# initialize the focus
def __init__(self,
cell,
region,
seg_img,
intensity_image,
t):
'''The cell must be given a unique cell_id and passed the region
information from the segmentation
Parameters
__________
cell : a Cell object
region : region properties object
Information about the labeled region from
skimage.measure.regionprops()
seg_img : 2D numpy array
Labelled image of cell segmentations
intensity_image : 2D numpy array
Fluorescence image with foci
'''
# create all the attributes
# id
focus_id = create_focus_id(region,
t,
cell.peak,
cell.fov,
experiment_name=params['experiment_name'])
self.id = focus_id
# identification convenience
self.appear_label = int(region.label)
self.regions = [region]
self.fov = cell.fov
self.peak = cell.peak
# cell is a CellFromGraph object
# cells are added later using the .add_cell method
self.cells = [cell]
# daughters is updated when focus splits
# if this is none then the focus did not split
self.parent = None
self.daughters = None
self.merger_partner = None
# appearance and split time
self.appear_time = t
self.split_time = None # filled out if focus splits
# the following information is on a per timepoint basis
self.times = [t]
self.abs_times = [params['time_table'][cell.fov][t]] # elapsed time in seconds
self.labels = [region.label]
self.bboxes = [region.bbox]
self.areas = [region.area]
# calculating focus length and width by using Feret Diamter.
# These values are in pixels
# NOTE: in the future, update to straighten a focus an get straightened length/width
# print(region)
length_tmp = region.major_axis_length
width_tmp = region.minor_axis_length
# length_tmp, width_tmp = feretdiameter(region)
# if length_tmp == None:
# warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.')
self.lengths = [length_tmp]
self.widths = [width_tmp]
# calculate focus volume as cylinder plus hemispherical ends (sphere). Unit is px^3
self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 +
(4/3) * np.pi * (width_tmp/2)**3]
# angle of the fit elipsoid and centroid location
self.orientations = [region.orientation]
self.centroids = [region.centroid]
# special information for focci
self.elong_rate = None
self.disappear = None
self.area_mean_fluorescence = []
self.volume_mean_fluorescence = []
self.total_fluorescence = []
self.median_fluorescence = []
self.sd_fluorescence = []
self.disp_l = []
self.disp_w = []
self.calculate_fluorescence(seg_img, intensity_image, region)
def __len__(self):
return(len(self.times))
def __str__(self):
return(self.print_info())
def add_cell(self, cell):
self.cells.append(cell)
def add_parent_focus(self, parent):
self.parent = parent
def merge(self, partner):
self.merger_partner = partner
def grow(self,
region,
t,
seg_img,
intensity_image,
current_cell):
'''Append data from a region to this focus.
use self.times[-1] to get most current value.'''
if current_cell is not self.cells[-1]:
self.add_cell(current_cell)
self.times.append(t)
self.abs_times.append(params['time_table'][self.cells[-1].fov][t])
self.labels.append(region.label)
self.bboxes.append(region.bbox)
self.areas.append(region.area)
self.regions.append(region)
#calculating focus length and width by using Feret Diamter
length_tmp = region.major_axis_length
width_tmp = region.minor_axis_length
# length_tmp, width_tmp = feretdiameter(region)
# if length_tmp == None:
# warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.')
self.lengths.append(length_tmp)
self.widths.append(width_tmp)
self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 +
(4/3) * np.pi * (width_tmp/2)**3)
self.orientations.append(region.orientation)
self.centroids.append(region.centroid)
self.calculate_fluorescence(seg_img, intensity_image, region)
def calculate_fluorescence(self,
seg_img,
intensity_image,
region):
total_fluor = np.sum(intensity_image[seg_img == region.label])
self.total_fluorescence.append(total_fluor)
self.area_mean_fluorescence.append(total_fluor/self.areas[-1])
self.volume_mean_fluorescence.append(total_fluor/self.volumes[-1])
self.median_fluorescence.append(np.median(intensity_image[seg_img == region.label]))
self.sd_fluorescence.append(np.std(intensity_image[seg_img == region.label]))
# get the focus' displacement from center of cell
# find x and y position relative to the whole image (convert from small box)
# calculate distance of foci from middle of cell (scikit image)
orientation = region.orientation
if orientation < 0:
orientation = np.pi+orientation
cell_idx = self.cells[-1].times.index(self.times[-1]) # final time in self.times is current time
cell_centroid = self.cells[-1].centroids[cell_idx]
focus_centroid = region.centroid
disp_y = (focus_centroid[0]-cell_centroid[0])*np.sin(orientation) - (focus_centroid[1]-cell_centroid[1])*np.cos(orientation)
disp_x = (focus_centroid[0]-cell_centroid[0])*np.cos(orientation) + (focus_centroid[1]-cell_centroid[1])*np.sin(orientation)
# append foci information to the list
self.disp_l = np.append(self.disp_l, disp_y)
self.disp_w = np.append(self.disp_w, disp_x)
def disappears(self, region, t):
'''
Annotate focus as disappearing from current t to next t.
'''
self.disappear = t
def add_daughter(self, daughter, t):
if self.daughters is None:
self.daughters = [daughter]
else:
self.daughters.append(daughter)
# sort daughters by y position, with smaller y-value first.
# this will cause the daughter closer to the closed end of the trap to be listed first.
self.daughters.sort(key=lambda focus: focus.centroids[0][0])
self.divide(t)
def divide(self, t):
'''Divide the cell and update stats.
daughter1 is the daugther closer to the closed end.'''
# put the daugther ids into the cell
# self.daughters = [daughter1.id, daughter2.id]
# give this guy a division time
self.split_time = self.daughters[0].appear_time
# convert data to smaller floats. No need for float64
# see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html
convert_to = 'float16' # numpy datatype to convert to
self.lengths = [length.astype(convert_to) for length in self.lengths]
self.widths = [width.astype(convert_to) for width in self.widths]
self.volumes = [vol.astype(convert_to) for vol in self.volumes]
# note the float16 is hardcoded here
self.orientations = [np.float16(orientation) for orientation in self.orientations]
self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids]
def print_info(self):
'''prints information about the focus'''
print('id = %s' % self.id)
print('times = {}'.format(', '.join('{}'.format(t) for t in self.times)))
print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths)))
if self.daughters is not None:
print('daughters = {}'.format(', '.join('{}'.format(daughter.id) for daughter in self.daughters)))
if self.cells is not None:
print('cells = {}'.format([cell.id for cell in self.cells]))
def make_wide_df(self):
data = {}
data['id'] = self.id
data['cells'] = self.cells
data['parent'] = self.parent
data['child1'] = None
data['child2'] = None
# data['division_time'] = self.division_time
data['appear_label'] = self.appear_label
data['appear_time'] = self.appear_time
data['disappear'] = self.disappear
if self.daughters is not None:
data['child1'] = self.daughters[0]
if len(self.daughters) == 2:
data['child2'] = self.daughters[1]
df = pd.DataFrame(data, index=[self.id])
return(df)
def make_long_df(self):
data = {}
data['id'] = [self.id]*len(self.times)
data['time'] = self.times
# data['cell'] = self.cells
data['length'] = self.lengths
data['volume'] = self.volumes
data['area'] = self.areas
data['seconds'] = self.abs_times
data['area_mean_fluorescence'] = self.area_mean_fluorescence
data['volume_mean_fluorescence'] = self.volume_mean_fluorescence
data['total_fluorescence'] = self.total_fluorescence
data['median_fluorescence'] = self.median_fluorescence
data['sd_fluorescence'] = self.sd_fluorescence
data['disp_l'] = self.disp_l
data['disp_w'] = self.disp_w
# print(data['id'])
df = pd.DataFrame(data, index=data['id'])
return(df)
class PredictTrackDataGenerator(utils.Sequence):
'''Generates data for running tracking class preditions
Input is a stack of labeled images'''
def __init__(self,
data,
batch_size=32,
dim=(4,5,9)):
'Initialization'
self.batch_size = batch_size
self.data = data
self.dim = dim
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.ceil(len(self.data) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate keys of the batch
batch_indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]
# Generate data
X = self.__data_generation(batch_indices)
return X
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indices = np.arange(len(self.data))
def __data_generation(self, batch_indices):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
# shape is (batch_size, max_cell_num, frame_num, cell_feature_num, 1)
X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.dim[2], 1))
# Generate data
for idx in batch_indices:
start_idx = idx-2
end_idx = idx+3
# print(start_idx, end_idx)
if start_idx < 0:
batch_frame_list = []
for empty_idx in range(abs(start_idx)):
batch_frame_list.append([])
batch_frame_list.extend(self.data[0:end_idx])
elif end_idx > len(self.data):
batch_frame_list = self.data[start_idx:len(self.data)+1]
for empty_idx in range(abs(end_idx - len(self.data))):
batch_frame_list.extend([])
else:
batch_frame_list = self.data[start_idx:end_idx]
for i,frame_region_list in enumerate(batch_frame_list):
# shape is (max_cell_num, frame_num, cell_feature_num)
# tmp_x = np.zeros((self.dim[0], self.dim[1], self.dim[2]))
if not frame_region_list:
continue
for region_idx, region, in enumerate(frame_region_list):
y,x = region.centroid
bbox = region.bbox
orientation = region.orientation
min_y = bbox[0]
max_y = bbox[2]
min_x = bbox[1]
max_x = bbox[3]
area = region.area
length = region.major_axis_length
cell_label = region.label
cell_index = cell_label - 1
cell_info = (min_x, max_x, x, min_y, max_y, y, orientation, area, length)
if region_idx + 1 > self.dim[0]:
continue
# supplement tmp_x at (region_idx, )
# tmp_x[region_idx, i, :] = cell_info
X[idx, cell_index, i, :,0] = cell_info # tmp_x
return X
def get_greatest_score_info(first_node, second_node, graph):
'''A function that is useful for track linking
'''
score_names = [k for k in graph.get_edge_data(first_node, second_node).keys()]
pred_scores = [val['score'] for k,val in graph.get_edge_data(first_node, second_node).items()]
max_score_index = np.argmax(pred_scores)
max_name = score_names[max_score_index]
max_score = pred_scores[max_score_index]
return(max_name, max_score)
def get_score_by_type(first_node, second_node, graph, score_type='child'):
'''A function useful in track linking
'''
pred_score = graph.get_edge_data(first_node, second_node)[score_type]['score']
return(pred_score)
def count_unvisited(G, experiment_name):
count = 0
for node_id in G.nodes:
if node_id.startswith(experiment_name):
if not G.nodes[node_id]['visited']:
count += 1
return(count)
def create_lineages_from_graph(graph,
graph_df,
fov_id,
peak_id,
):
'''
This function iterates through nodes in a graph of detections
to link the nodes as "CellFromGraph" objects, eventually
leading to the ultimate goal of returning
a CellTree object with each cell's information for the experiment.
For now it ignores the number of cells in a detection and simply
assumes a 1:1 relationship between detections and cell number.
'''
# iterate through all nodes in graph
# graph_score = 0
# track_dict = {}
# tracks = CellTree()
tracks = {}
for node_id in graph.nodes:
graph.nodes[node_id]['visited'] = False
graph_df['visited'] = False
num_unvisited = count_unvisited(graph, params['experiment_name'])
while num_unvisited > 0:
# which detection nodes are not yet visited
unvisited_detection_nodes = graph_df[(~(graph_df.visited) & graph_df.node_id.str.startswith(params['experiment_name']))]
# grab the first unvisited node_id from the dataframe
prior_node_id = unvisited_detection_nodes.iloc[0,1]
prior_node_time = graph.nodes[prior_node_id]['time']
prior_node_region = graph.nodes[prior_node_id]['region']
cell_id = create_cell_id(prior_node_region,
prior_node_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
current_cell = CellFromGraph(cell_id,
prior_node_region,
prior_node_time,
parent=None)
if not cell_id in tracks.keys():
tracks[cell_id] = current_cell
else:
current_cell = tracks[cell_id]
# for use later in establishing predecessors
current_node_id = prior_node_id
# set this detection's "visited" status to True in the graph and in the dataframe
graph.nodes[prior_node_id]['visited'] = True
graph_df.iloc[np.where(graph_df.node_id==prior_node_id)[0][0],3] = True
# build current_track list to this detection's node
current_track = collections.deque()
current_track.append(current_node_id)
predecessors_list = [k for k in graph.predecessors(prior_node_id)]
unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']]
while len(unvisited_predecessors_list) != 0:
# initialize a scores array to select highest score from the available options
predecessor_scores = np.zeros(len(unvisited_predecessors_list))
# populate array with scores
for i in range(len(unvisited_predecessors_list)):
predecessor_node_id = unvisited_predecessors_list[i]
edge_type, edge_score = get_greatest_score_info(predecessor_node_id, current_node_id, graph)
predecessor_scores[i] = edge_score
# find highest score
max_index = np.argmax(predecessor_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
current_node_id = unvisited_predecessors_list[max_index]
current_track.appendleft(current_node_id)
predecessors_list = [k for k in graph.predecessors(current_node_id)]
unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']]
while prior_node_id is not 'B':
# which nodes succeed our current node?
successor_node_ids = [node_id for node_id in graph.successors(prior_node_id)]
# keep only the potential successor detections that have not yet been visited
unvisited_node_ids = []
for i,successor_node_id in enumerate(successor_node_ids):
# if it starts with params['experiment_name'], it is a detection node, and not born, appear, etc.
if successor_node_id.startswith(params['experiment_name']):
# if it has been used in the cell track graph, i.e., if 'visited' is True,
# move on. Otherwise, append to our list
if graph.nodes[successor_node_id]['visited']:
continue
else:
unvisited_node_ids.append(successor_node_id)
# if it doesn't start with params['experiment_name'], it is a born, appear, etc., and should always be appended
else:
unvisited_node_ids.append(successor_node_id)
# initialize a scores array to select highest score from the available options
successor_scores = np.zeros(len(unvisited_node_ids))
successor_edge_types = []
# populate array with scores
for i in range(len(unvisited_node_ids)):
successor_node_id = unvisited_node_ids[i]
edge_type, edge_score = get_greatest_score_info(prior_node_id, successor_node_id, graph)
successor_scores[i] = edge_score
successor_edge_types.append(edge_type)
# find highest score
max_score = np.max(successor_scores)
max_index = np.argmax(successor_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
next_node_id = unvisited_node_ids[max_index]
max_edge_type = successor_edge_types[max_index]
# if the max_score in successor_scores isn't greater than log(0.1), just make the cell disappear for now.
if max_score < np.log(0.1):
max_edge_type = 'disappear'
next_node_id = [n_id for n_id in unvisited_node_ids if n_id.startswith('disappear')][0]
# if this is a division event, add child node as a new cell,
# add the new cell as a daughter to current_cell,
# add current_cell as a parent to new cell.
# Then, search for the second child cell, add it to current_cell, etc.
if max_edge_type == 'child':
new_cell_time = graph.nodes[next_node_id]['time']
new_cell_region = graph.nodes[next_node_id]['region']
new_cell_id = create_cell_id(new_cell_region,
new_cell_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
new_cell = CellFromGraph(new_cell_id,
new_cell_region,
new_cell_time,
parent=current_cell)
tracks[new_cell_id] = new_cell
current_cell.add_daughter(new_cell, new_cell_time)
# initialize a scores array to select highest score from the available options
unvisited_detection_nodes = [unvisited_node_id for unvisited_node_id in unvisited_node_ids if unvisited_node_id.startswith(params['experiment_name'])]
child_scores = np.zeros(len(unvisited_detection_nodes))
# populate array with scores
for i in range(len(unvisited_detection_nodes)):
successor_node_id = unvisited_detection_nodes[i]
if successor_node_id == next_node_id:
child_scores[i] = -np.inf
continue
child_score = get_score_by_type(prior_node_id, successor_node_id, graph, score_type='child')
child_scores[i] = child_score
try:
second_daughter_score = np.max(child_scores)
# sometimes a second daughter doesn't exist: perhaps parent is at mouth of a trap and one
# daughter is lost to the central channel at division time. In this case, do the following:
if second_daughter_score < np.log(0.5):
current_cell = new_cell
else:
second_daughter_index = np.argmax(child_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
other_daughter_node_id = unvisited_detection_nodes[second_daughter_index]
other_daughter_cell_time = graph.nodes[other_daughter_node_id]['time']
other_daughter_cell_region = graph.nodes[other_daughter_node_id]['region']
other_daughter_cell_id = create_cell_id(other_daughter_cell_region,
other_daughter_cell_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
other_daughter_cell = CellFromGraph(other_daughter_cell_id,
other_daughter_cell_region,
other_daughter_cell_time,
parent=current_cell)
tracks[other_daughter_cell_id] = other_daughter_cell
current_cell.add_daughter(other_daughter_cell, new_cell_time)
# now we remove current_cell, since it's done, and move on to one of the daughters
current_cell = new_cell
# sometimes a second daughter doesn't exist: perhaps parent is at mouth of a trap and one
# daughter is lost to the central channel at division time. In this case, do the following:
except IndexError:
current_cell = new_cell
# if this is a migration, grow the current_cell.
elif max_edge_type == 'migrate':
cell_time = graph.nodes[next_node_id]['time']
cell_region = graph.nodes[next_node_id]['region']
current_cell.grow(cell_region, cell_time)
# if the event represents death, kill the cell
elif max_edge_type == 'die':
if prior_node_id.startswith(params['experiment_name']):
death_time = graph.nodes[prior_node_id]['time']
death_region = graph.nodes[prior_node_id]['region']
current_cell.die(death_region, death_time)
# if the event represents disappearance, end the cell
elif max_edge_type == 'disappear':
if prior_node_id.startswith(params['experiment_name']):
disappear_time = graph.nodes[prior_node_id]['time']
disappear_region = graph.nodes[prior_node_id]['region']
current_cell.disappears(disappear_region, disappear_time)
# set the next node to 'visited'
graph.nodes[next_node_id]['visited'] = True
if next_node_id != 'B':
graph_df.iloc[np.where(graph_df.node_id==next_node_id)[0][0],3] = True
# reset prior_node_id to iterate to next frame and append node_id to current track
prior_node_id = next_node_id
if num_unvisited != count_unvisited(graph, params['experiment_name']):
same_iter_num = 0
else:
same_iter_num += 1
num_unvisited = count_unvisited(graph, params['experiment_name'])
print("{} detections remain unvisited.".format(num_unvisited))
if same_iter_num > 10:
print("WARNING: Ten iterations surpassed without decreasing the number of visited nodes.\n \
Breaking tracking loop now. You should probably not trust these results.")
break
return tracks
def viterbi_create_lineages_from_graph(graph,
graph_df,
fov_id,
peak_id,
):
'''
This function iterates through nodes in a graph of detections
to link the nodes as "CellFromGraph" objects, eventually
leading to the ultimate goal of returning
a maximally-scoring CellTree object with each cell's information for the experiment.
For now it ignores the number of cells in a detection and simply
assumes a 1:1 relationship between detections and cell number.
'''
# iterate through all nodes in G
graph_score = 0
# track_dict = {}
tracks = CellTree()
max_time = np.max([node.timepoint for node in graph.nodes])
print(max_time)
for node_id in graph.nodes:
graph.nodes[node_id]['visited'] = False
graph_df['visited'] = False
num_unvisited = count_unvisited(graph, params['experiment_name'])
for t in range(1,max_time+1):
if t > 1:
prior_time_nodes = time_nodes
if t == 1:
time_nodes = [node for node in G.nodes if node.time == t]
else:
time_nodes = next_time_nodes
if t != max_time:
next_time_nodes = [node for node in G.nodes if node.time == t+1]
for node in time_nodes:
pass
while num_unvisited > 0:
# which detection nodes are not yet visited
unvisited_detection_nodes = graph_df[(~(graph_df.visited) & graph_df.node_id.str.startswith(params['experiment_name']))]
# grab the first unvisited node_id from the dataframe
prior_node_id = unvisited_detection_nodes.iloc[0,1]
prior_node_time = graph.nodes[prior_node_id]['time']
prior_node_region = graph.nodes[prior_node_id]['region']
cell_id = create_cell_id(prior_node_region,
prior_node_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
current_cell = CellFromGraph(cell_id,
prior_node_region,
prior_node_time,
parent=None)
if not cell_id in tracks.cell_id_list:
tracks.add_cell(current_cell)
else:
current_cell = tracks.get_cell(cell_id)
# track_dict_key = prior_node_id
# for use later in establishing predecessors
current_node_id = prior_node_id
# set this detection's "visited" status to True in the graph and in the dataframe
graph.nodes[prior_node_id]['visited'] = True
graph_df.iloc[np.where(graph_df.node_id==prior_node_id)[0][0],3] = True
# build current_track list to this detection's node
current_track = collections.deque()
current_track.append(current_node_id)
predecessors_list = [k for k in graph.predecessors(prior_node_id)]
unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']]
while len(unvisited_predecessors_list) != 0:
# initialize a scores array to select highest score from the available options
predecessor_scores = np.zeros(len(unvisited_predecessors_list))
# populate array with scores
for i in range(len(unvisited_predecessors_list)):
predecessor_node_id = unvisited_predecessors_list[i]
edge_type, edge_score = get_greatest_score_info(predecessor_node_id, current_node_id, graph)
predecessor_scores[i] = edge_score
# find highest score
max_index = np.argmax(predecessor_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
current_node_id = unvisited_predecessors_list[max_index]
current_track.appendleft(current_node_id)
predecessors_list = [k for k in graph.predecessors(current_node_id)]
unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']]
while prior_node_id is not 'B':
# which nodes succeed our current node?
successor_node_ids = [node_id for node_id in graph.successors(prior_node_id)]
# keep only the potential successor detections that have not yet been visited
unvisited_node_ids = []
for i,successor_node_id in enumerate(successor_node_ids):
# if it starts with params['experiment_name'], it is a detection node, and not born, appear, etc.
if successor_node_id.startswith(params['experiment_name']):
# if it has been used in the cell track graph, i.e., if 'visited' is True,
# move on. Otherwise, append to our list
if graph.nodes[successor_node_id]['visited']:
continue
else:
unvisited_node_ids.append(successor_node_id)
# if it doesn't start with params['experiment_name'], it is a born, appear, etc., and should always be appended
else:
unvisited_node_ids.append(successor_node_id)
# initialize a scores array to select highest score from the available options
successor_scores = np.zeros(len(unvisited_node_ids))
successor_edge_types = []
# populate array with scores
for i in range(len(unvisited_node_ids)):
successor_node_id = unvisited_node_ids[i]
edge_type, edge_score = get_greatest_score_info(prior_node_id, successor_node_id, graph)
successor_scores[i] = edge_score
successor_edge_types.append(edge_type)
# find highest score
max_index = np.argmax(successor_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
next_node_id = unvisited_node_ids[max_index]
max_edge_type = successor_edge_types[max_index]
# if this is a division event, add child node as a new cell,
# add the new cell as a daughter to current_cell,
# add current_cell as a parent to new cell.
# Then, search for the second child cell, add it to current_cell, etc.
if max_edge_type == 'child':
new_cell_time = graph.nodes[next_node_id]['time']
new_cell_region = graph.nodes[next_node_id]['region']
new_cell_id = create_cell_id(new_cell_region,
new_cell_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
new_cell = CellFromGraph(new_cell_id,
new_cell_region,
new_cell_time,
parent=current_cell)
tracks.add_cell(new_cell)
current_cell.add_daughter(new_cell, new_cell_time)
# print("First daughter", current_cell.id, new_cell.id)
# initialize a scores array to select highest score from the available options
unvisited_detection_nodes = [unvisited_node_id for unvisited_node_id in unvisited_node_ids if unvisited_node_id.startswith(params['experiment_name'])]
child_scores = np.zeros(len(unvisited_detection_nodes))
# populate array with scores
for i in range(len(unvisited_detection_nodes)):
successor_node_id = unvisited_detection_nodes[i]
if successor_node_id == next_node_id:
child_scores[i] = -np.inf
continue
child_score = get_score_by_type(prior_node_id, successor_node_id, graph, score_type='child')
child_scores[i] = child_score
# print(child_scores)
try:
second_daughter_index = np.argmax(child_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
other_daughter_node_id = unvisited_detection_nodes[second_daughter_index]
other_daughter_cell_time = graph.nodes[other_daughter_node_id]['time']
other_daughter_cell_region = graph.nodes[other_daughter_node_id]['region']
other_daughter_cell_id = create_cell_id(other_daughter_cell_region,
other_daughter_cell_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
other_daughter_cell = CellFromGraph(other_daughter_cell_id,
other_daughter_cell_region,
other_daughter_cell_time,
parent=current_cell)
tracks.add_cell(other_daughter_cell)
current_cell.add_daughter(other_daughter_cell, new_cell_time)
# now we remove current_cell, since it's done, and move on to one of the daughters
current_cell = new_cell
# print("Second daughter", current_cell.parent.id, other_daughter_cell.id)
# sometimes a second daughter doesn't exist: perhaps parent is at mouth of a trap and one
# daughter is lost to the central channel at division time. In this case, do the following:
except IndexError:
current_cell = new_cell
# if this is a migration, grow the current_cell.
elif max_edge_type == 'migrate':
cell_time = graph.nodes[next_node_id]['time']
cell_region = graph.nodes[next_node_id]['region']
current_cell.grow(cell_region, cell_time)
# if the event represents death, kill the cell
elif max_edge_type == 'die':
if prior_node_id.startswith(params['experiment_name']):
death_time = graph.nodes[prior_node_id]['time']
death_region = graph.nodes[prior_node_id]['region']
current_cell.die(death_region, death_time)
# if the event represents disappearance, end the cell
elif max_edge_type == 'disappear':
if prior_node_id.startswith(params['experiment_name']):
disappear_time = graph.nodes[prior_node_id]['time']
disappear_region = graph.nodes[prior_node_id]['region']
current_cell.disappears(disappear_region, disappear_time)
# set the next node to 'visited'
graph.nodes[next_node_id]['visited'] = True
if next_node_id != 'B':
graph_df.iloc[np.where(graph_df.node_id==next_node_id)[0][0],3] = True
# reset prior_node_id to iterate to next frame and append node_id to current track
# current_track.append(next_node_id)
prior_node_id = next_node_id
# print(current_cell.id, current_cell.parent.id)
# track_dict[track_dict_key][:] = current_track
if num_unvisited != count_unvisited(graph, params['experiment_name']):
same_iter_num = 0
else:
same_iter_num += 1
num_unvisited = count_unvisited(graph, params['experiment_name'])
print("{} detections remain unvisited.".format(num_unvisited))
if same_iter_num > 10:
break
return(tracks)
def create_lineages_from_graph_2(graph,
graph_df,
fov_id,
peak_id,
):
'''
This function iterates through nodes in a graph of detections
to link the nodes as "CellFromGraph" objects, eventually
leading to the ultimate goal of returning
a CellTree object with each cell's information for the experiment.
For now it ignores the number of cells in a detection and simply
assumes a 1:1 relationship between detections and cell number.
'''
# iterate through all nodes in G
# graph_score = 0
# track_dict = {}
tracks = CellTree()
for node_id in graph.nodes:
graph.nodes[node_id]['visited'] = False
graph_df['visited'] = False
num_unvisited = count_unvisited(graph, params['experiment_name'])
while num_unvisited > 0:
# which detection nodes are not yet visited
unvisited_detection_nodes = graph_df[(~(graph_df.visited) & graph_df.node_id.str.startswith(params['experiment_name']))]
# grab the first unvisited node_id from the dataframe
prior_node_id = unvisited_detection_nodes.iloc[0,1]
prior_node_time = graph.nodes[prior_node_id]['time']
prior_node_region = graph.nodes[prior_node_id]['region']
cell_id = create_cell_id(prior_node_region,
prior_node_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
current_cell = CellFromGraph(cell_id,
prior_node_region,
prior_node_time,
parent=None)
if not cell_id in tracks.cell_id_list:
tracks.add_cell(current_cell)
else:
current_cell = tracks.get_cell(cell_id)
# track_dict_key = prior_node_id
# for use later in establishing predecessors
current_node_id = prior_node_id
# set this detection's "visited" status to True in the graph and in the dataframe
graph.nodes[prior_node_id]['visited'] = True
graph_df.iloc[np.where(graph_df.node_id==prior_node_id)[0][0],3] = True
# build current_track list to this detection's node
current_track = collections.deque()
current_track.append(current_node_id)
predecessors_list = [k for k in graph.predecessors(prior_node_id)]
unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']]
while len(unvisited_predecessors_list) != 0:
# initialize a scores array to select highest score from the available options
predecessor_scores = np.zeros(len(unvisited_predecessors_list))
# populate array with scores
for i in range(len(unvisited_predecessors_list)):
predecessor_node_id = unvisited_predecessors_list[i]
edge_type, edge_score = get_greatest_score_info(predecessor_node_id, current_node_id, graph)
predecessor_scores[i] = edge_score
# find highest score
max_index = np.argmax(predecessor_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
current_node_id = unvisited_predecessors_list[max_index]
current_track.appendleft(current_node_id)
predecessors_list = [k for k in graph.predecessors(current_node_id)]
unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']]
while prior_node_id is not 'B':
# which nodes succeed our current node?
successor_node_ids = [node_id for node_id in graph.successors(prior_node_id)]
# keep only the potential successor detections that have not yet been visited
unvisited_node_ids = []
for i,successor_node_id in enumerate(successor_node_ids):
# if it starts with params['experiment_name'], it is a detection node, and not born, appear, etc.
if successor_node_id.startswith(params['experiment_name']):
# if it has been used in the cell track graph, i.e., if 'visited' is True,
# move on. Otherwise, append to our list
if graph.nodes[successor_node_id]['visited']:
continue
else:
unvisited_node_ids.append(successor_node_id)
# if it doesn't start with params['experiment_name'], it is a born, appear, etc., and should always be appended
else:
unvisited_node_ids.append(successor_node_id)
# initialize a scores array to select highest score from the available options
successor_scores = np.zeros(len(unvisited_node_ids))
successor_edge_types = []
# populate array with scores
for i in range(len(unvisited_node_ids)):
successor_node_id = unvisited_node_ids[i]
edge_type, edge_score = get_greatest_score_info(prior_node_id, successor_node_id, graph)
successor_scores[i] = edge_score
successor_edge_types.append(edge_type)
# find highest score
max_index = np.argmax(successor_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
next_node_id = unvisited_node_ids[max_index]
max_edge_type = successor_edge_types[max_index]
# if this is a division event, add child node as a new cell,
# add the new cell as a daughter to current_cell,
# add current_cell as a parent to new cell.
# Then, search for the second child cell, add it to current_cell, etc.
if max_edge_type == 'child':
new_cell_time = graph.nodes[next_node_id]['time']
new_cell_region = graph.nodes[next_node_id]['region']
new_cell_id = create_cell_id(new_cell_region,
new_cell_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
new_cell = CellFromGraph(new_cell_id,
new_cell_region,
new_cell_time,
parent=current_cell)
tracks.add_cell(new_cell)
current_cell.add_daughter(new_cell, new_cell_time)
# print("First daughter", current_cell.id, new_cell.id)
# initialize a scores array to select highest score from the available options
unvisited_detection_nodes = [unvisited_node_id for unvisited_node_id in unvisited_node_ids if unvisited_node_id.startswith(params['experiment_name'])]
child_scores = np.zeros(len(unvisited_detection_nodes))
# populate array with scores
for i in range(len(unvisited_detection_nodes)):
successor_node_id = unvisited_detection_nodes[i]
if successor_node_id == next_node_id:
child_scores[i] = -np.inf
continue
child_score = get_score_by_type(prior_node_id, successor_node_id, graph, score_type='child')
child_scores[i] = child_score
# print(child_scores)
try:
second_daughter_index = np.argmax(child_scores)
# grab the node_id corresponding to traversing the highest-scoring edge from the prior node
other_daughter_node_id = unvisited_detection_nodes[second_daughter_index]
other_daughter_cell_time = graph.nodes[other_daughter_node_id]['time']
other_daughter_cell_region = graph.nodes[other_daughter_node_id]['region']
other_daughter_cell_id = create_cell_id(other_daughter_cell_region,
other_daughter_cell_time,
peak_id,
fov_id,
experiment_name=params['experiment_name'])
other_daughter_cell = CellFromGraph(other_daughter_cell_id,
other_daughter_cell_region,
other_daughter_cell_time,
parent=current_cell)
tracks.add_cell(other_daughter_cell)
current_cell.add_daughter(other_daughter_cell, new_cell_time)
# now we remove current_cell, since it's done, and move on to one of the daughters
current_cell = new_cell
# print("Second daughter", current_cell.parent.id, other_daughter_cell.id)
# sometimes a second daughter doesn't exist: perhaps parent is at mouth of a trap and one
# daughter is lost to the central channel at division time. In this case, do the following:
except IndexError:
current_cell = new_cell
# if this is a migration, grow the current_cell.
elif max_edge_type == 'migrate':
cell_time = graph.nodes[next_node_id]['time']
cell_region = graph.nodes[next_node_id]['region']
current_cell.grow(cell_region, cell_time)
# if the event represents death, kill the cell
elif max_edge_type == 'die':
if prior_node_id.startswith(params['experiment_name']):
death_time = graph.nodes[prior_node_id]['time']
death_region = graph.nodes[prior_node_id]['region']
current_cell.die(death_region, death_time)
# if the event represents disappearance, end the cell
elif max_edge_type == 'disappear':
if prior_node_id.startswith(params['experiment_name']):
disappear_time = graph.nodes[prior_node_id]['time']
disappear_region = graph.nodes[prior_node_id]['region']
current_cell.disappears(disappear_region, disappear_time)
# set the next node to 'visited'
graph.nodes[next_node_id]['visited'] = True
if next_node_id != 'B':
graph_df.iloc[np.where(graph_df.node_id==next_node_id)[0][0],3] = True
# reset prior_node_id to iterate to next frame and append node_id to current track
# current_track.append(next_node_id)
prior_node_id = next_node_id
# print(current_cell.id, current_cell.parent.id)
# track_dict[track_dict_key][:] = current_track
if num_unvisited != count_unvisited(graph, params['experiment_name']):
same_iter_num = 0
else:
same_iter_num += 1
num_unvisited = count_unvisited(graph, params['experiment_name'])
print("{} detections remain unvisited.".format(num_unvisited))
if same_iter_num > 10:
break
return(tracks)
# obtains cell length and width of the cell using the feret diameter
def feretdiameter(region):
'''
feretdiameter calculates the length and width of the binary region shape. The cell orientation
from the ellipsoid is used to find the major and minor axis of the cell.
See https://en.wikipedia.org/wiki/Feret_diameter.
'''
# y: along vertical axis of the image; x: along horizontal axis of the image;
# calculate the relative centroid in the bounding box (non-rotated)
# print(region.centroid)
y0, x0 = region.centroid
y0 = y0 - np.int16(region.bbox[0]) + 1
x0 = x0 - np.int16(region.bbox[1]) + 1
cosorient = np.cos(region.orientation)
sinorient = np.sin(region.orientation)
# print(cosorient, sinorient)
amp_param = 1.2 #amplifying number to make sure the axis is longer than actual cell length
# coordinates relative to bounding box
# r_coords = region.coords - [np.int16(region.bbox[0]), np.int16(region.bbox[1])]
# limit to perimeter coords. pixels are relative to bounding box
region_binimg = np.pad(region.image, 1, 'constant') # pad region binary image by 1 to avoid boundary non-zero pixels
distance_image = ndi.distance_transform_edt(region_binimg)
r_coords = np.where(distance_image == 1)
r_coords = list(zip(r_coords[0], r_coords[1]))
# coordinates are already sorted by y. partion into top and bottom to search faster later
# if orientation > 0, L1 is closer to top of image (lower Y coord)
if region.orientation > 0:
L1_coords = r_coords[:int(np.round(len(r_coords)/4))]
L2_coords = r_coords[int(np.round(len(r_coords)/4)):]
else:
L1_coords = r_coords[int(np.round(len(r_coords)/4)):]
L2_coords = r_coords[:int(np.round(len(r_coords)/4))]
#####################
# calculte cell length
L1_pt = np.zeros((2,1))
L2_pt = np.zeros((2,1))
# define the two end points of the the long axis line
# one pole.
L1_pt[1] = x0 + cosorient * 0.5 * region.major_axis_length*amp_param
L1_pt[0] = y0 - sinorient * 0.5 * region.major_axis_length*amp_param
# the other pole.
L2_pt[1] = x0 - cosorient * 0.5 * region.major_axis_length*amp_param
L2_pt[0] = y0 + sinorient * 0.5 * region.major_axis_length*amp_param
# calculate the minimal distance between the points at both ends of 3 lines
# aka calcule the closest coordiante in the region to each of the above points.
# pt_L1 = r_coords[np.argmin([np.sqrt(np.power(Pt[0]-L1_pt[0],2) + np.power(Pt[1]-L1_pt[1],2)) for Pt in r_coords])]
# pt_L2 = r_coords[np.argmin([np.sqrt(np.power(Pt[0]-L2_pt[0],2) + np.power(Pt[1]-L2_pt[1],2)) for Pt in r_coords])]
try:
pt_L1 = L1_coords[np.argmin([np.sqrt(np.power(Pt[0]-L1_pt[0],2) + np.power(Pt[1]-L1_pt[1],2)) for Pt in L1_coords])]
pt_L2 = L2_coords[np.argmin([np.sqrt(np.power(Pt[0]-L2_pt[0],2) + np.power(Pt[1]-L2_pt[1],2)) for Pt in L2_coords])]
length = np.sqrt(np.power(pt_L1[0]-pt_L2[0],2) + np.power(pt_L1[1]-pt_L2[1],2))
except:
length = None
#####################
# calculate cell width
# draw 2 parallel lines along the short axis line spaced by 0.8*quarter of length = 0.4, to avoid in midcell
# limit to points in each half
W_coords = []
if region.orientation > 0:
W_coords.append(r_coords[:int(np.round(len(r_coords)/2))]) # note the /2 here instead of /4
W_coords.append(r_coords[int(np.round(len(r_coords)/2)):])
else:
W_coords.append(r_coords[int(np.round(len(r_coords)/2)):])
W_coords.append(r_coords[:int(np.round(len(r_coords)/2))])
# starting points
x1 = x0 + cosorient * 0.5 * length*0.4
y1 = y0 - sinorient * 0.5 * length*0.4
x2 = x0 - cosorient * 0.5 * length*0.4
y2 = y0 + sinorient * 0.5 * length*0.4
W1_pts = np.zeros((2,2))
W2_pts = np.zeros((2,2))
# now find the ends of the lines
# one side
W1_pts[0,1] = x1 - sinorient * 0.5 * region.minor_axis_length*amp_param
W1_pts[0,0] = y1 - cosorient * 0.5 * region.minor_axis_length*amp_param
W1_pts[1,1] = x2 - sinorient * 0.5 * region.minor_axis_length*amp_param
W1_pts[1,0] = y2 - cosorient * 0.5 * region.minor_axis_length*amp_param
# the other side
W2_pts[0,1] = x1 + sinorient * 0.5 * region.minor_axis_length*amp_param
W2_pts[0,0] = y1 + cosorient * 0.5 * region.minor_axis_length*amp_param
W2_pts[1,1] = x2 + sinorient * 0.5 * region.minor_axis_length*amp_param
W2_pts[1,0] = y2 + cosorient * 0.5 * region.minor_axis_length*amp_param
# calculate the minimal distance between the points at both ends of 3 lines
pt_W1 = np.zeros((2,2))
pt_W2 = np.zeros((2,2))
d_W = np.zeros((2,1))
i = 0
for W1_pt, W2_pt in zip(W1_pts, W2_pts):
# # find the points closest to the guide points
# pt_W1[i,0], pt_W1[i,1] = r_coords[np.argmin([np.sqrt(np.power(Pt[0]-W1_pt[0],2) + np.power(Pt[1]-W1_pt[1],2)) for Pt in r_coords])]
# pt_W2[i,0], pt_W2[i,1] = r_coords[np.argmin([np.sqrt(np.power(Pt[0]-W2_pt[0],2) + np.power(Pt[1]-W2_pt[1],2)) for Pt in r_coords])]
# find the points closest to the guide points
pt_W1[i,0], pt_W1[i,1] = W_coords[i][np.argmin([np.sqrt(np.power(Pt[0]-W1_pt[0],2) + np.power(Pt[1]-W1_pt[1],2)) for Pt in W_coords[i]])]
pt_W2[i,0], pt_W2[i,1] = W_coords[i][np.argmin([np.sqrt(np.power(Pt[0]-W2_pt[0],2) + np.power(Pt[1]-W2_pt[1],2)) for Pt in W_coords[i]])]
# calculate the actual width
d_W[i] = np.sqrt(np.power(pt_W1[i,0]-pt_W2[i,0],2) + np.power(pt_W1[i,1]-pt_W2[i,1],2))
i += 1
# take the average of the two at quarter positions
width = np.mean([d_W[0],d_W[1]])
return length, width
# take info and make string for cell id
def create_focus_id(region, t, peak, fov, experiment_name=None):
'''Make a unique focus id string for a new focus'''
if experiment_name is None:
focus_id = 'f{:0=2}p{:0=4}t{:0=4}r{:0=2}'.format(fov, peak, t, region.label)
else:
focus_id = '{}f{:0=2}p{:0=4}t{:0=4}r{:0=2}'.format(experiment_name, fov, peak, t, region.label)
return focus_id
# take info and make string for cell id
def create_cell_id(region, t, peak, fov, experiment_name=None):
'''Make a unique cell id string for a new cell'''
# cell_id = ['f', str(fov), 'p', str(peak), 't', str(t), 'r', str(region.label)]
if experiment_name is None:
cell_id = ['f', '%02d' % fov, 'p', '%04d' % peak, 't', '%04d' % t, 'r', '%02d' % region.label]
cell_id = ''.join(cell_id)
else:
cell_id = '{}f{:0=2}p{:0=4}t{:0=4}r{:0=2}'.format(experiment_name, fov, peak, t, region.label)
return cell_id
def create_detection_id(t, peak, fov, region_label, experiment_name=None, max_cell_number=6):
'''Make a unique cell id string for a new cell'''
# cell_id = ['f', str(fov), 'p', str(peak), 't', str(t), 'r', str(region.label)]
if experiment_name is None:
det_id = ['f', '%02d' % fov, 'p', '%04d' % peak, 't', '%04d' % t, 'r', '%02d' % region_label]
det_id = ''.join(det_id)
else:
det_id = '{}f{:0=2}p{:0=4}t{:0=4}r{:0=2}'.format(experiment_name, fov, peak, t, region_label)
return det_id
def initialize_track_graph(peak_id,
fov_id,
experiment_name,
predictions_dict,
regions_by_time,
max_cell_number=6,
born_threshold=0.75,
appear_threshold=0.75):
detection_dict = {}
frame_num = predictions_dict['migrate_model_predictions'].shape[0]
ebunch = []
G = nx.MultiDiGraph()
# create common start point
G.add_node('A')
# create common end point
G.add_node('B')
last_frame = False
node_id_list = []
timepoint_list = []
region_label_list = []
for frame_idx in range(frame_num):
timepoint = frame_idx + 1
paired_detection_time = timepoint+1
# get detections for this frame
frame_regions_list = regions_by_time[frame_idx]
# if we're at the end of the imaging, make all cells migrate to node 'B'
if timepoint == frame_num:
last_frame = True
else:
paired_frame_regions_list = regions_by_time[frame_idx+1]
# get state change probabilities (class predictions) for this frame
frame_prediction_dict = {key:val[frame_idx,...] for key,val in predictions_dict.items() if key != 'general_model_predictions'}
# for i in range(len(predictions_dict['general_model_predictions'])):
# frame_general_prediction = predictions_dict['general_model_predictions'][]
# create the "will be born" and "will appear" nodes for this frame
prior_born_state = 'born_{:0=4}'.format(timepoint-1)
born_state = 'born_{:0=4}'.format(timepoint)
G.add_node(born_state, visited=False, time=timepoint)
prior_appear_state = 'appear_{:0=4}'.format(timepoint-1)
appear_state = 'appear_{:0=4}'.format(timepoint)
G.add_node(appear_state, visited=False, time=timepoint)
if frame_idx == 0:
ebunch.append(('A', appear_state, 'start', {'weight':appear_threshold, 'score':1*np.log(appear_threshold)}))
ebunch.append(('A', born_state, 'start', {'weight':born_threshold, 'score':1*np.log(born_threshold)}))
# create the "Dies" and "Disappeared" nodes to link from prior frame
prior_dies_state = 'dies_{:0=4}'.format(timepoint-1)
dies_state = 'dies_{:0=4}'.format(timepoint)
next_dies_state = 'dies_{:0=4}'.format(timepoint+1)
G.add_node(dies_state, visited=False, time=timepoint)
prior_disappear_state = 'disappear_{:0=4}'.format(timepoint-1)
disappear_state = 'disappear_{:0=4}'.format(timepoint)
next_disappear_state = 'disappear_{:0=4}'.format(timepoint+1)
G.add_node(disappear_state, visited=False, time=timepoint)
node_id_list.extend([born_state, dies_state, appear_state, disappear_state])
timepoint_list.extend([timepoint, timepoint, timepoint, timepoint])
region_label_list.extend([0,0,0,0])
if frame_idx > 0:
ebunch.append((prior_dies_state, dies_state, 'die', {'weight':1.1, 'score':1*np.log(1.1)})) # impossible to move out of dies track
ebunch.append((prior_disappear_state, disappear_state, 'disappear', {'weight':1.1, 'score':1*np.log(1.1)})) # impossible to move out of disappear track
ebunch.append((prior_born_state, born_state, 'born', {'weight':born_threshold, 'score':1*np.log(born_threshold)}))
ebunch.append((prior_appear_state, appear_state, 'appear', {'weight':appear_threshold, 'score':1*np.log(appear_threshold)}))
if last_frame:
ebunch.append((appear_state, 'B', 'end', {'weight':1, 'score':1*np.log(1)}))
ebunch.append((disappear_state, 'B', 'end', {'weight':1, 'score':1*np.log(1)}))
ebunch.append((born_state, 'B', 'end', {'weight':1, 'score':1*np.log(1)}))
ebunch.append((dies_state, 'B', 'end', {'weight':1, 'score':1*np.log(1)}))
for region_idx in range(max_cell_number):
# the tracking models assume there are 6 detections in each frame, regardless of how many
# are actually there. Therefore, this try/except logic will catch cases where there
# were fewer than 6 detections in a frame.
try:
region = frame_regions_list[region_idx]
region_label = region.label
except IndexError:
region = None
region_label = region_idx + 1
# create the name for this detection
detection_id = create_detection_id(timepoint,
peak_id,
fov_id,
region_label,
experiment_name=experiment_name)
det = Detection(detection_id, region, timepoint)
detection_dict[det.id] = det
if det.area is not None:
# if the detection represents a segmentation from our imaging, add its ID,
# which is also its key in detection_dict, as a node in G
G.add_node(det.id, visited=False, cell_count=1, region=region, time=timepoint)
timepoint_list.append(timepoint)
node_id_list.append(detection_id)
region_label_list.append(region.label)
# also set up all edges for this detection's node in our ebunch
# loop through prediction types and add each to the ebunch
for key,val in frame_prediction_dict.items():
if frame_idx == 0:
ebunch.append(('A', detection_id, 'start', {'weight':1, 'score':1*np.log(1)}))
if last_frame:
ebunch.append((detection_id, 'B', 'end', {'weight':1, 'score':1*np.log(1)}))
if val.shape[0] == max_cell_number ** 2:
continue
else:
frame_predictions = val
detection_prediction = frame_predictions[region_idx]
if key == 'appear_model_predictions':
if frame_idx == 0:
continue
elem = (prior_appear_state, detection_id, 'appear', {'weight':detection_prediction, 'score':1*np.log(detection_prediction)})
elif 'born' in key:
if frame_idx == 0:
continue
elem = (prior_born_state, detection_id, 'born', {'weight':detection_prediction, 'score':1*np.log(detection_prediction)})
elif 'zero_cell' in key:
G.nodes[det.id]['zero_cell_weight'] = detection_prediction
G.nodes[det.id]['zero_cell_score'] = 1*np.log(detection_prediction)
elif 'one_cell' in key:
G.nodes[det.id]['one_cell_weight'] = detection_prediction
G.nodes[det.id]['zero_cell_score'] = 1*np.log(detection_prediction)
elif 'two_cell' in key:
G.nodes[det.id]['two_cell_weight'] = detection_prediction
G.nodes[det.id]['zero_cell_score'] = 1*np.log(detection_prediction)
ebunch.append(elem)
else:
# if the array is cell_number^2, reshape it to cell_number x cell_number
# Then slice our detection's row and iterate over paired_cells
if val.shape[0] == max_cell_number**2:
frame_predictions = val.reshape((max_cell_number,max_cell_number))
detection_predictions = frame_predictions[region_idx,:]
# loop through paired detection predictions, test whether paired detection exists
# then append the edge to our ebunch
for paired_cell_idx in range(detection_predictions.size):
# attempt to grab the paired detection. If we get an IndexError, it doesn't exist.
try:
paired_detection = paired_frame_regions_list[paired_cell_idx]
except IndexError:
continue
# create the paired detection's id for use in our ebunch
paired_detection_id = create_detection_id(paired_detection_time,
peak_id,
fov_id,
paired_detection.label,
experiment_name=experiment_name)
paired_prediction = detection_predictions[paired_cell_idx]
if 'child_' in key:
child_weight = paired_prediction
elem = (detection_id, paired_detection_id, 'child', {'child_weight':child_weight, 'score':1*np.log(child_weight)})
ebunch.append(elem)
if 'migrate_' in key:
migrate_weight = paired_prediction
elem = (detection_id, paired_detection_id, 'migrate', {'migrate_weight':migrate_weight, 'score':1*np.log(migrate_weight)})
ebunch.append(elem)
# if 'interaction_' in key:
# interaction_weight = paired_prediction
# elem = (detection_id, paired_detection_id, 'interaction', {'weight':interaction_weight, 'score':1*np.log(interaction_weight)})
# ebunch.append(elem)
# if the array is cell_number long, do similar stuff as above.
elif val.shape[0] == max_cell_number:
frame_predictions = val
detection_prediction = frame_predictions[region_idx]
if key == 'appear_model_predictions':
if frame_idx == 0:
continue
# print("Linking {} to {}.".format(prior_appear_state, detection_id))
elem = (prior_appear_state, detection_id, 'appear', {'weight':detection_prediction, 'score':1*np.log(detection_prediction)})
elif 'disappear_' in key:
if last_frame:
continue
# print("Linking {} to {}.".format(detection_id, next_disappear_state))
elem = (detection_id, next_disappear_state, 'disappear', {'weight':detection_prediction, 'score':1*np.log(detection_prediction)})
elif 'born_' in key:
if frame_idx == 0:
continue
# print("Linking {} to {}.".format(prior_born_state, detection_id))
elem = (prior_born_state, detection_id, 'born', {'weight':detection_prediction, 'score':1*np.log(detection_prediction)})
elif 'die_model' in key:
if last_frame:
continue
# print("Linking {} to {}.".format(detection_id, next_dies_state))
elem = (detection_id, next_dies_state, 'die', {'weight':detection_prediction, 'score':1*np.log(detection_prediction)})
# the following classes aren't yet implemented
elif 'zero_cell' in key:
G.nodes[det.id]['zero_cell_weight'] = detection_prediction
G.nodes[det.id]['zero_cell_score'] = 1*np.log(detection_prediction)
elif 'one_cell' in key:
G.nodes[det.id]['one_cell_weight'] = detection_prediction
G.nodes[det.id]['one_cell_score'] = 1*np.log(detection_prediction)
elif 'two_cell' in key:
G.nodes[det.id]['two_cell_weight'] = detection_prediction
G.nodes[det.id]['two_cell_score'] = 1*np.log(detection_prediction)
ebunch.append(elem)
G.add_edges_from(ebunch)
graph_df = pd.DataFrame(data={'timepoint':timepoint_list,
'node_id':node_id_list,
'region_label':region_label_list})
return(G, graph_df)
# function for a growing cell, used to calculate growth rate
def cell_growth_func(t, sb, elong_rate):
'''
Assumes you have taken log of the data.
It also allows the size at birth to be a free parameter, rather than fixed
at the actual size at birth (but still uses that as a guess)
Assumes natural log, not base 2 (though I think that makes less sense)
old form: sb*2**(alpha*t)
'''
return sb+elong_rate*t
# functions for checking if a cell has divided or not
# this function should also take the variable t to
# weight the allowed changes by the difference in time as well
def check_growth_by_region(cell, region):
'''Checks to see if it makes sense
to grow a cell by a particular region'''
# load parameters for checking
max_growth_length = params['track']['max_growth_length']
min_growth_length = params['track']['min_growth_length']
max_growth_area = params['track']['max_growth_area']
min_growth_area = params['track']['min_growth_area']
# check if length is not too much longer
if cell.lengths[-1]*max_growth_length < region.major_axis_length:
return False
# check if it is not too short (cell should not shrink really)
if cell.lengths[-1]*min_growth_length > region.major_axis_length:
return False
# check if area is not too great
if cell.areas[-1]*max_growth_area < region.area:
return False
# check if area is not too small
if cell.lengths[-1]*min_growth_area > region.area:
return False
# # check if y position of region is within
# # the quarter positions of the bounding box
# lower_quarter = cell.bboxes[-1][0] + (region.major_axis_length / 4)
# upper_quarter = cell.bboxes[-1][2] - (region.major_axis_length / 4)
# if lower_quarter > region.centroid[0] or upper_quarter < region.centroid[0]:
# return False
# check if y position of region is within the bounding box of previous region
lower_bound = cell.bboxes[-1][0]
upper_bound = cell.bboxes[-1][2]
if lower_bound > region.centroid[0] or upper_bound < region.centroid[0]:
return False
# return true if you get this far
return True
# see if a cell has reasonably divided
def check_division(cell, region1, region2):
'''Checks to see if it makes sense to divide a
cell into two new cells based on two regions.
Return 0 if nothing should happend and regions ignored
Return 1 if cell should grow by region 1
Return 2 if cell should grow by region 2
Return 3 if cell should divide into the regions.'''
# load in parameters
max_growth_length = params['track']['max_growth_length']
min_growth_length = params['track']['min_growth_length']
# see if either region just could be continued growth,
# if that is the case then just return
# these shouldn't return true if the cells are divided
# as they would be too small
if check_growth_by_region(cell, region1):
return 1
if check_growth_by_region(cell, region2):
return 2
# make sure combined size of daughters is not too big
combined_size = region1.major_axis_length + region2.major_axis_length
# check if length is not too much longer
if cell.lengths[-1]*max_growth_length < combined_size:
return 0
# and not too small
if cell.lengths[-1]*min_growth_length > combined_size:
return 0
# centroids of regions should be in the upper and lower half of the
# of the mother's bounding box, respectively
# top region within top half of mother bounding box
if cell.bboxes[-1][0] > region1.centroid[0] or cell.centroids[-1][0] < region1.centroid[0]:
return 0
# bottom region with bottom half of mother bounding box
if cell.centroids[-1][0] > region2.centroid[0] or cell.bboxes[-1][2] < region2.centroid[0]:
return 0
# if you got this far then divide the mother
return 3
### functions for pruning a dictionary of cells
# find cells with both a mother and two daughters
def find_complete_cells(Cells):
'''Go through a dictionary of cells and return another dictionary
that contains just those with a parent and daughters'''
Complete_Cells = {}
for cell_id in Cells:
if Cells[cell_id].daughters and Cells[cell_id].parent:
Complete_Cells[cell_id] = Cells[cell_id]
return Complete_Cells
# finds cells whose birth label is 1
def find_mother_cells(Cells):
'''Return only cells whose starting region label is 1.'''
Mother_Cells = {}
for cell_id in Cells:
if Cells[cell_id].birth_label == 1:
Mother_Cells[cell_id] = Cells[cell_id]
return Mother_Cells
def filter_foci(Foci, label, t, debug=False):
Filtered_Foci = {}
for focus_id, focus in Foci.items():
# copy the times list so as not to update it in-place
times = focus.times
if debug:
print(times)
match_inds = [i for i,time in enumerate(times) if time == t]
labels = [focus.labels[idx] for idx in match_inds]
if label in labels:
Filtered_Foci[focus_id] = focus
return Filtered_Foci
def filter_cells(Cells, attr, val, idx=None, debug=False):
'''Return only cells whose designated attribute equals "val".'''
Filtered_Cells = {}
for cell_id, cell in Cells.items():
at_val = getattr(cell, attr)
if debug:
print(at_val)
print("Times: ", cell.times)
if idx is not None:
at_val = at_val[idx]
if at_val == val:
Filtered_Cells[cell_id] = cell
return Filtered_Cells
def filter_cells_containing_val_in_attr(Cells, attr, val):
'''Return only cells that have val in list attribute, attr.'''
Filtered_Cells = {}
for cell_id, cell in Cells.items():
at_list = getattr(cell, attr)
if val in at_list:
Filtered_Cells[cell_id] = cell
return Filtered_Cells
### functions for additional cell centric analysis
def compile_cell_info_df(Cells):
# count the number of rows that will be in the long dataframe
quant_fluor = False
long_df_row_number = 0
for cell in Cells.values():
# first time through, evaluate whether we quantified cells' fluorescence
if long_df_row_number == 0:
if len(cell.area_mean_fluorescence.keys()) != 0:
quant_fluor = True
fluorescence_channels = [k for k in cell.area_mean_fluorescence.keys()]
long_df_row_number += len(cell.times)
# initialize some arrays for filling with data
data = {
# ids can be up to 100 characters long
'id': np.chararray(long_df_row_number, itemsize=100),
'times': np.zeros(long_df_row_number, dtype='uint16'),
'lengths': np.zeros(long_df_row_number),
'volumes': np.zeros(long_df_row_number),
'areas': np.zeros(long_df_row_number),
'abs_times': np.zeros(long_df_row_number, dtype='uint32')
}
if quant_fluor:
for fluorescence_channel in fluorescence_channels:
data['{}_area_mean_fluorescence'.format(fluorescence_channel)] = np.zeros(long_df_row_number)
data['{}_volume_mean_fluorescence'.format(fluorescence_channel)] = np.zeros(long_df_row_number)
data['{}_total_fluorescence'.format(fluorescence_channel)] = np.zeros(long_df_row_number)
data = populate_focus_arrays(Cells, data, cell_quants=True)
long_df = pd.DataFrame(data=data)
wide_df_row_number = len(Cells)
data = {
# ids can be up to 100 characters long
'id': np.chararray(wide_df_row_number, itemsize=100),
'fov': np.zeros(wide_df_row_number, dtype='uint8'),
'peak': np.zeros(wide_df_row_number, dtype='uint16'),
'parent_id': np.chararray(wide_df_row_number, itemsize=100),
'child1_id': np.chararray(wide_df_row_number, itemsize=100),
'child2_id': np.chararray(wide_df_row_number, itemsize=100),
'division_time': np.zeros(wide_df_row_number),
'birth_label': np.zeros(wide_df_row_number, dtype='uint8'),
'birth_time': np.zeros(wide_df_row_number, dtype='uint16'),
'sb': np.zeros(wide_df_row_number),
'sd': np.zeros(wide_df_row_number),
'delta': np.zeros(wide_df_row_number),
'tau': np.zeros(wide_df_row_number),
'elong_rate': np.zeros(wide_df_row_number),
'septum_position': np.zeros(wide_df_row_number),
'death': np.zeros(wide_df_row_number),
'disappear': np.zeros(wide_df_row_number)
}
data = populate_focus_arrays(Cells, data, cell_quants=True, wide=True)
# data['parent_id'] = data['parent_id'].decode()
# data['child1_id'] = data['child1_id'].decode()
# data['child2_id'] = data['child2_id'].decode()
wide_df = pd.DataFrame(data=data)
return(wide_df,long_df)
def populate_focus_arrays(Foci, data_dict, cell_quants=False, wide=False):
focus_counter = 0
focus_count = len(Foci)
end_idx = 0
for i,focus in enumerate(Foci.values()):
if wide:
start_idx = i
end_idx = i + 1
else:
start_idx = end_idx
end_idx = len(focus) + start_idx
if focus_counter % 100 == 0:
print("Generating focus information for focus {} out of {}.".format(focus_counter+1, focus_count))
# loop over keys in data dictionary, and set
# values in appropriate array, at appropriate indices
# to those we find in the focus.
for key in data_dict.keys():
if '_id' in key:
if key == 'parent_id':
if focus.parent is None:
data_dict[key][start_idx:end_idx] = ''
else:
data_dict[key][start_idx:end_idx] = focus.parent.id
if focus.daughters is None:
if key == 'child1_id' or key == 'child2_id':
data_dict[key][start_idx:end_idx] = ''
elif len(focus.daughters) == 1:
if key == 'child2_id':
data_dict[key][start_idx:end_idx] = ''
elif key == 'child1_id':
data_dict[key][start_idx:end_idx] = focus.daughters[0].id
elif key == 'child2_id':
data_dict[key][start_idx:end_idx] = focus.daughters[1].id
else:
attr_vals = getattr(focus, key)
if (cell_quants and key=='abs_times'):
if len(attr_vals) == end_idx-start_idx:
data_dict[key][start_idx:end_idx] = attr_vals
else:
data_dict[key][start_idx:end_idx] = attr_vals[:-1]
else:
# print(key)
# print(attr_vals)
data_dict[key][start_idx:end_idx] = attr_vals
focus_counter += 1
data_dict['id'] = data_dict['id'].decode()
return(data_dict)
def compile_foci_info_long_df(Foci):
'''
Parameters
----------------
Foci : dictionary, keys of which are focus_ids,
values of which are objects of class Focus
Returns
----------------------
A long DataFrame with
detailed information about each timepoint for each focus.
'''
# count the number of rows that will be in the long dataframe
long_df_row_number = 0
for focus in Foci.values():
long_df_row_number += len(focus)
# initialize some arrays for filling with data
data = {
# ids can be up to 100 characters long
'id': np.chararray(long_df_row_number, itemsize=100),
'times': np.zeros(long_df_row_number, dtype='uint16'),
'lengths': np.zeros(long_df_row_number),
'volumes': np.zeros(long_df_row_number),
'areas': np.zeros(long_df_row_number),
'abs_times': np.zeros(long_df_row_number, dtype='uint32'),
'area_mean_fluorescence': np.zeros(long_df_row_number),
'volume_mean_fluorescence': np.zeros(long_df_row_number),
'total_fluorescence': np.zeros(long_df_row_number),
'median_fluorescence': np.zeros(long_df_row_number),
'sd_fluorescence': np.zeros(long_df_row_number),
'disp_l': np.zeros(long_df_row_number),
'disp_w': np.zeros(long_df_row_number)
}
data = populate_focus_arrays(Foci, data)
long_df = pd.DataFrame(data=data)
return(long_df)
def find_all_cell_intensities(Cells,
specs, time_table, channel_name='sub_c2',
apply_background_correction=True):
'''
Finds fluorescenct information for cells. All the cells in Cells
should be from one fov/peak.
'''
# iterate over each fov in specs
for fov_id,fov_peaks in specs.items():
# iterate over each peak in fov
for peak_id,peak_value in fov_peaks.items():
# if peak_id's value is not 1, go to next peak
if peak_value != 1:
continue
print("Quantifying channel {} fluorescence in cells in fov {}, peak {}.".format(channel_name, fov_id, peak_id))
# Load fluorescent images and segmented images for this channel
fl_stack = load_stack(fov_id, peak_id, color=channel_name)
corrected_stack = np.zeros(fl_stack.shape)
for frame in range(fl_stack.shape[0]):
# median filter will be applied to every image
with warnings.catch_warnings():
warnings.simplefilter("ignore")
median_filtered = median(fl_stack[frame,...], selem=morphology.disk(1))
# subtract the gaussian-filtered image from true image to correct
# uneven background fluorescence
if apply_background_correction:
blurred = filters.gaussian(median_filtered, sigma=10, preserve_range=True)
corrected_stack[frame,:,:] = median_filtered-blurred
else:
corrected_stack[frame,:,:] = median_filtered
seg_stack = load_stack(fov_id, peak_id, color='seg_unet')
# evaluate whether each cell is in this fov/peak combination
for cell_id,cell in Cells.items():
cell_fov = cell.fov
if cell_fov != fov_id:
continue
cell_peak = cell.peak
if cell_peak != peak_id:
continue
cell_times = cell.times
cell_labels = cell.labels
cell.area_mean_fluorescence[channel_name] = []
cell.volume_mean_fluorescence[channel_name] = []
cell.total_fluorescence[channel_name] = []
# loop through cell's times
for i,t in enumerate(cell_times):
frame = t-1
cell_label = cell_labels[i]
total_fluor = np.sum(corrected_stack[frame, seg_stack[frame, :,:] == cell_label])
cell.area_mean_fluorescence[channel_name].append(total_fluor/cell.areas[i])
cell.volume_mean_fluorescence[channel_name].append(total_fluor/cell.volumes[i])
cell.total_fluorescence[channel_name].append(total_fluor)
# The cell objects in the original dictionary will be updated,
# no need to return anything specifically.
return
def find_cell_intensities_worker(fov_id, peak_id, Cells, midline=True, channel='sub_c3'):
'''
Finds fluorescenct information for cells. All the cells in Cells
should be from one fov/peak. See the function
organize_cells_by_channel()
This version is the same as find_cell_intensities but return the Cells object for collection by the pool.
The original find_cell_intensities is kept for compatibility.
'''
information('Processing peak {} in FOV {}'.format(peak_id, fov_id))
# Load fluorescent images and segmented images for this channel
fl_stack = load_stack(fov_id, peak_id, color=channel)
seg_stack = load_stack(fov_id, peak_id, color='seg_otsu')
# determine absolute time index
time_table = params['time_table']
times_all = []
for fov in params['time_table']:
times_all = np.append(times_all, [int(x) for x in time_table[fov].keys()])
times_all = np.unique(times_all)
times_all = np.sort(times_all)
times_all = np.array(times_all,np.int_)
t0 = times_all[0] # first time index
# Loop through cells
for Cell in Cells.values():
# give this cell two lists to hold new information
Cell.fl_tots = [] # total fluorescence per time point
Cell.fl_area_avgs = [] # avg fluorescence per unit area by timepoint
Cell.fl_vol_avgs = [] # avg fluorescence per unit volume by timepoint
if midline:
Cell.mid_fl = [] # avg fluorescence of midline
# and the time points that make up this cell's life
for n, t in enumerate(Cell.times):
# create fluorescent image only for this cell and timepoint.
fl_image_masked = np.copy(fl_stack[t-t0])
fl_image_masked[seg_stack[t-t0] != Cell.labels[n]] = 0
# append total flourescent image
Cell.fl_tots.append(np.sum(fl_image_masked))
# and the average fluorescence
Cell.fl_area_avgs.append(np.sum(fl_image_masked) / Cell.areas[n])
Cell.fl_vol_avgs.append(np.sum(fl_image_masked) / Cell.volumes[n])
if midline:
# add the midline average by first applying morphology transform
bin_mask = np.copy(seg_stack[t-t0])
bin_mask[bin_mask != Cell.labels[n]] = 0
med_mask, _ = morphology.medial_axis(bin_mask, return_distance=True)
# med_mask[med_dist < np.floor(cap_radius/2)] = 0
# print(img_fluo[med_mask])
if (np.shape(fl_image_masked[med_mask])[0] > 0):
Cell.mid_fl.append(np.nanmean(fl_image_masked[med_mask]))
else:
Cell.mid_fl.append(0)
# return the cell object to the pool initiated by mm3_Colors.
return Cells
def find_cell_intensities(fov_id, peak_id, Cells, midline=False, channel_name='sub_c2'):
'''
Finds fluorescenct information for cells. All the cells in Cells
should be from one fov/peak. See the function
organize_cells_by_channel()
'''
# Load fluorescent images and segmented images for this channel
fl_stack = load_stack(fov_id, peak_id, color=channel_name)
seg_stack = load_stack(fov_id, peak_id, color='seg_unet')
# determine absolute time index
times_all = []
for fov in params['time_table']:
times_all = np.append(times_all, time_table[fov].keys())
times_all = np.unique(times_all)
times_all = np.sort(times_all)
times_all = np.array(times_all,np.int_)
t0 = times_all[0] # first time index
# Loop through cells
for Cell in Cells.values():
# give this cell two lists to hold new information
Cell.fl_tots = [] # total fluorescence per time point
Cell.fl_area_avgs = [] # avg fluorescence per unit area by timepoint
Cell.fl_vol_avgs = [] # avg fluorescence per unit volume by timepoint
if midline:
Cell.mid_fl = [] # avg fluorescence of midline
# and the time points that make up this cell's life
for n, t in enumerate(Cell.times):
# create fluorescent image only for this cell and timepoint.
fl_image_masked = np.copy(fl_stack[t-t0])
fl_image_masked[seg_stack[t-t0] != Cell.labels[n]] = 0
# append total flourescent image
Cell.fl_tots.append(np.sum(fl_image_masked))
# and the average fluorescence
Cell.fl_area_avgs.append(np.sum(fl_image_masked) / Cell.areas[n])
Cell.fl_vol_avgs.append(np.sum(fl_image_masked) / Cell.volumes[n])
if midline:
# add the midline average by first applying morphology transform
bin_mask = np.copy(seg_stack[t-t0])
bin_mask[bin_mask != Cell.labels[n]] = 0
med_mask, _ = morphology.medial_axis(bin_mask, return_distance=True)
# med_mask[med_dist < np.floor(cap_radius/2)] = 0
# print(img_fluo[med_mask])
if (np.shape(fl_image_masked[med_mask])[0] > 0):
Cell.mid_fl.append(np.nanmean(fl_image_masked[med_mask]))
else:
Cell.mid_fl.append(0)
# The cell objects in the original dictionary will be updated,
# no need to return anything specifically.
return
# find foci using a difference of gaussians method
def foci_analysis(fov_id, peak_id, Cells):
'''Find foci in cells using a fluorescent image channel.
This function works on a single peak and all the cells therein.'''
# make directory for foci debug
# foci_dir = os.path.join(params['ana_dir'], 'overlay/')
# if not os.path.exists(foci_dir):
# os.makedirs(foci_dir)
# Import segmented and fluorescenct images
try:
image_data_seg = load_stack(fov_id, peak_id, color='seg_unet')
except IOError:
image_data_seg = load_stack(fov_id, peak_id, color='seg_otsu')
image_data_FL = load_stack(fov_id, peak_id,
color='sub_{}'.format(params['foci']['foci_plane']))
# determine absolute time index
times_all = []
for fov, times in params['time_table'].items():
times_all = np.append(times_all, list(times.keys()))
times_all = np.unique(times_all)
times_all = np.sort(times_all)
times_all = np.array(times_all, np.int_)
t0 = times_all[0] # first time index
for cell_id, cell in six.iteritems(Cells):
information('Extracting foci information for %s.' % (cell_id))
# declare lists holding information about foci.
disp_l = []
disp_w = []
foci_h = []
# foci_stack = np.zeros((np.size(cell.times),
# image_data_seg[0,:,:].shape[0], image_data_seg[0,:,:].shape[1]))
# Go through each time point of this cell
for t in cell.times:
# retrieve this timepoint and images.
image_data_temp = image_data_FL[t-t0,:,:]
image_data_temp_seg = image_data_seg[t-t0,:,:]
# find foci as long as there is information in the fluorescent image
if np.sum(image_data_temp) != 0:
disp_l_tmp, disp_w_tmp, foci_h_tmp = foci_lap(image_data_temp_seg,
image_data_temp, cell, t)
disp_l.append(disp_l_tmp)
disp_w.append(disp_w_tmp)
foci_h.append(foci_h_tmp)
# if there is no information, append an empty list.
# Should this be NaN?
else:
disp_l.append([])
disp_w.append([])
foci_h.append([])
# foci_stack[i] = image_data_temp_seg
# add information to the cell (will replace old data)
cell.disp_l = disp_l
cell.disp_w = disp_w
cell.foci_h = foci_h
# Create a stack of the segmented images with marked foci
# This should poentially be changed to the fluorescent images with marked foci
# foci_stack = np.uint16(foci_stack)
# foci_stack = np.stack(foci_stack, axis=0)
# # Export overlaid images
# foci_filename = params['experiment_name'] + 't%04d_xy%03d_p%04d_r%02d_overlay.tif' % (Cells[cell_id].birth_time, Cells[cell_id].fov, Cells[cell_id].peak, Cells[cell_id].birth_label)
# foci_filepath = foci_dir + foci_filename
#
# tiff.imsave(foci_filepath, foci_stack, compress=3) # save it
# test
# sys.exit()
return
# foci pool (for parallel analysis)
def foci_analysis_pool(fov_id, peak_id, Cells):
'''Find foci in cells using a fluorescent image channel.
This function works on a single peak and all the cells therein.'''
# make directory for foci debug
# foci_dir = os.path.join(params['ana_dir'], 'overlay/')
# if not os.path.exists(foci_dir):
# os.makedirs(foci_dir)
# Import segmented and fluorescenct images
image_data_seg = load_stack(fov_id, peak_id, color='seg_unet')
image_data_FL = load_stack(fov_id, peak_id,
color='sub_{}'.format(params['foci']['foci_plane']))
# Load time table to determine first image index.
times_all = np.array(np.sort(params['time_table'][fov_id].keys()), np.int_)
t0 = times_all[0] # first time index
tN = times_all[-1] # last time index
# call foci_cell for each cell object
pool = Pool(processes=params['num_analyzers'])
[pool.apply_async(foci_cell(cell_id, cell, t0, image_data_seg, image_data_FL)) for cell_id, cell in six.iteritems(Cells)]
pool.close()
pool.join()
# parralel function for each cell
def foci_cell(cell_id, cell, t0, image_data_seg, image_data_FL):
'''find foci in a cell, single instance to be called by the foci_analysis_pool for parallel processing.
'''
disp_l = []
disp_w = []
foci_h = []
# foci_stack = np.zeros((np.size(cell.times),
# image_data_seg[0,:,:].shape[0], image_data_seg[0,:,:].shape[1]))
# Go through each time point of this cell
for t in cell.times:
# retrieve this timepoint and images.
image_data_temp = image_data_FL[t-t0,:,:]
image_data_temp_seg = image_data_seg[t-t0,:,:]
# find foci as long as there is information in the fluorescent image
if np.sum(image_data_temp) != 0:
disp_l_tmp, disp_w_tmp, foci_h_tmp = foci_lap(image_data_temp_seg,
image_data_temp, cell, t)
disp_l.append(disp_l_tmp)
disp_w.append(disp_w_tmp)
foci_h.append(foci_h_tmp)
# if there is no information, append an empty list.
# Should this be NaN?
else:
disp_l.append(np.nan)
disp_w.append(np.nan)
foci_h.append(np.nan)
# foci_stack[i] = image_data_temp_seg
# add information to the cell (will replace old data)
cell.disp_l = disp_l
cell.disp_w = disp_w
cell.foci_h = foci_h
# actual worker function for foci detection
def foci_lap(img, img_foci, cell, t):
'''foci_lap finds foci using a laplacian convolution then fits a 2D
Gaussian.
The returned information are the parameters of this Gaussian.
All the information is returned in the form of np.arrays which are the
length of the number of found foci across all cells in the image.
Parameters
----------
img : 2D np.array
phase contrast or bright field image. Only used for debug
img_foci : 2D np.array
fluorescent image with foci.
cell : cell object
t : int
time point to which the images correspond
Returns
-------
disp_l : 1D np.array
displacement on long axis, in px, of a foci from the center of the cell
disp_w : 1D np.array
displacement on short axis, in px, of a foci from the center of the cell
foci_h : 1D np.array
Foci "height." Sum of the intensity of the gaussian fitting area.
'''
# pull out useful information for just this time point
i = cell.times.index(t) # find position of the time point in lists (time points may be missing)
bbox = cell.bboxes[i]
orientation = cell.orientations[i]
centroid = cell.centroids[i]
region = cell.labels[i]
# declare arrays which will hold foci data
disp_l = [] # displacement in length of foci from cell center
disp_w = [] # displacement in width of foci from cell center
foci_h = [] # foci total amount (from raw image)
# define parameters for foci finding
minsig = params['foci']['foci_log_minsig']
maxsig = params['foci']['foci_log_maxsig']
thresh = params['foci']['foci_log_thresh']
peak_med_ratio = params['foci']['foci_log_peak_med_ratio']
debug_foci = params['foci']['debug_foci']
# test
#print ("minsig={:d} maxsig={:d} thres={:.4g} peak_med_ratio={:.2g}".format(minsig,maxsig,thresh,peak_med_ratio))
# test
# calculate median cell intensity. Used to filter foci
img_foci_masked = np.copy(img_foci).astype(np.float)
img_foci_masked[img != region] = np.nan
cell_fl_median = np.nanmedian(img_foci_masked)
cell_fl_mean = np.nanmean(img_foci_masked)
img_foci_masked[img != region] = 0
# subtract this value from the cell
if False:
img_foci = img_foci.astype('int32') - cell_fl_median.astype('int32')
img_foci[img_foci < 0] = 0
img_foci = img_foci.astype('uint16')
# int_mask = np.zeros(img_foci.shape, np.uint8)
# avg_int = cv2.mean(img_foci, mask=int_mask)
# avg_int = avg_int[0]
# print('median', cell_fl_median)
# find blobs using difference of gaussian
over_lap = .95 # if two blobs overlap by more than this fraction, smaller blob is cut
numsig = (maxsig - minsig + 1) # number of division to consider between min ang max sig
blobs = blob_log(img_foci_masked, min_sigma=minsig, max_sigma=maxsig,
overlap=over_lap, num_sigma=numsig, threshold=thresh)
# these will hold information about foci position temporarily
x_blob, y_blob, r_blob = [], [], []
x_gaus, y_gaus, w_gaus = [], [], []
# loop through each potential foci
for blob in blobs:
yloc, xloc, sig = blob # x location, y location, and sigma of gaus
xloc = int(np.around(xloc)) # switch to int for slicing images
yloc = int(np.around(yloc))
radius = int(np.ceil(np.sqrt(2)*sig)) # will be used to slice out area around foci
# ensure blob is inside the bounding box
# this might be better to check if (xloc, yloc) is in regions.coords
if yloc > np.int16(bbox[0]) and yloc < np.int16(bbox[2]) and xloc > | np.int16(bbox[1]) | numpy.int16 |
import numpy as np
import onnx
from tests.tools import expect
class Tile:
@staticmethod
def export_tile(): # type: () -> None
node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])
x = np.random.rand(2, 3, 4, 5).astype(np.float32)
repeats = np.random.randint(low=1, high=10, size=(np.ndim(x),)).astype(np.int64)
z = np.tile(x, repeats)
expect(node, inputs=[x, repeats], outputs=[z], name='test_tile')
@staticmethod
def export_tile_precomputed(): # type: () -> None
node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])
x = | np.array([[0, 1], [2, 3]], dtype=np.float32) | numpy.array |
# Digital Signal Processing - Lab 1 - Part 4 (BONUS)
# <NAME> - 03117037
# <NAME> - 03117165
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
import librosa
import sounddevice as sd
plt.close('all')
counter = 0
# Part 4 (Bonus)
#4.1 Open .wav file of salsa music signal 1
salsa1, fs = librosa.load('salsa_excerpt1.mp3')
sd.play(salsa1, fs) #kommatara :)
Ts = 1/fs # fs = 22050Hz sampling frequency
segment = salsa1[10000:75536] #segment of 2^16=65536 samples
t = np.arange(0,np.size(segment)*Ts, Ts) #time index
counter = counter+1
plt.figure(counter)
plt.plot(t,segment, 'b', label = 'Samples L=2^16')
plt.xlabel('Time [sec]')
plt.ylabel('Amplitude')
plt.title('Segment of "salsa_excerpt1.mp3"')
plt.legend()
#4.2 Discrete Wavelet Transform
from pywt import wavedec
coeffs = wavedec(segment, 'db1', level=7)/np.sqrt(2)
ya7, yd7, yd6, yd5, yd4, yd3, yd2, yd1 = coeffs
#4.3 Envelope Detection
#(a) Absolute Value
absolutes = np.abs(coeffs)
za7 = absolutes[0]
zd7 = absolutes[1]
zd6 = absolutes[2]
zd5 = absolutes[3]
zd4 = absolutes[4]
zd3 = absolutes[5]
zd2 = absolutes[6]
zd1 = absolutes[7]
#(b) Lowpass Filter
a0 = 0.006
a = np.zeros(7)
for i in range(1,8):
a[i-1] = a0*(2**(i+1))
def envelope(signal, absolute, a):
x = np.zeros(np.size(signal))
x[0] = a*absolute[0]
for i in range(1,np.size(x)):
x[i] = (1-a)*x[i-1] + a*absolute[i]
x = x - np.mean(x)
return x
xa7 = envelope(ya7, za7, a[6])
xd7 = envelope(yd7, zd7, a[6])
xd6 = envelope(yd6, zd6, a[5])
xd5 = envelope(yd5, zd5, a[4])
xd4 = envelope(yd4, zd4, a[3])
xd3 = envelope(yd3, zd3, a[2])
xd2 = envelope(yd2, zd2, a[1])
xd1 = envelope(yd1, zd1, a[0])
n = np.arange(0,np.size(yd3),1) #number of samples
counter=counter+1
plt.figure(counter)
plt.plot(n, yd3, 'b', label = 'Detal yd3[n]')
plt.plot(n, xd3, 'r', label = 'Envelope xd3[n]')
plt.xlabel('Samples (2^13 = 8192)')
plt.ylabel('Amplitude')
plt.title('Envelope Detection of Detail yd3')
plt.show()
plt.legend()
counter=counter+1
plt.figure(counter)
n = np.arange(0,np.size(yd6),1) #number of samples
plt.plot(n, yd6, 'b', label = 'Detail yd6[n]')
plt.plot(n, xd6, 'r', label = 'Envelope xd6[n]')
plt.xlabel('Samples (2^10 = 1024)')
plt.ylabel('Amplitude')
plt.title('Envelope Detection of Detail yd6')
plt.show()
plt.legend()
#4.4 Sum of Envelopes and Autocorrelation
nvalues = np.arange(0, 32768, 1)
n = np.arange(0, 32768, 1)
xd1 = np.interp(nvalues, n, xd1)
n = np.arange(0, 16384, 1)
xd2 = np.interp(nvalues, n, xd2)
n = np.arange(0, 8192, 1)
xd3 = np.interp(nvalues, n, xd3)
n = np.arange(0, 4096, 1)
xd4 = np.interp(nvalues, n, xd4)
n = np.arange(0, 2048, 1)
xd5 = np.interp(nvalues, n, xd5)
n = np.arange(0, 1024, 1)
xd6 = np.interp(nvalues, n, xd6)
n = np.arange(0, 512, 1)
xd7 = np.interp(nvalues, n, xd7)
n = np.arange(0, 512, 1)
xa7 = np.interp(nvalues, n, xa7)
xsum = xd1+xd2+xd3+xd4+xd5+xd6+xd7+xa7
autocorrelation = np.correlate(xsum,xsum, 'full')[len(xsum)-1:]
autocorrelation = sp.ndimage.filters.gaussian_filter1d(autocorrelation,150)
counter = counter+1
plt.figure(counter)
t = np.arange(Ts,np.size(autocorrelation)*Ts*2, 2*Ts) #time index
plt.plot(t, autocorrelation)
plt.xlabel('Time [sec]')
plt.title('Autocorrelation of Salsa Excerpt 1')
#Find the maximums of Autocorrelation
maximums = np.array(sp.signal.argrelextrema(autocorrelation, np.greater))
#Keep every two of them - Maximums of great amplitude will show as the beat
maximums = maximums[0,::2]
#Calculate number of samples between every two peaks of autocorrelation
samplesbetween = np.zeros(np.size(maximums))
for i in range(1,np.size(maximums)):
samplesbetween[i] = maximums[i]-maximums[i-1]
samplesbetween = samplesbetween[1:(np.size(samplesbetween))]
#Find the mean number of samples between every two peaks of autocorrelation
samplebeat = np.mean(samplesbetween)
print('Salsa1: Autocorrelation peaks every %i samples.' %samplebeat)
#Convert to time
timebeat = samplebeat*2*Ts*1000 #msec
print('Salsa1: Autocorrelation peaks approximately every %d msec.' %timebeat)
#Calculate BPM os salsa1
bpm_rate = 60*(1000/(timebeat))
print('Salsa1: Beats Per Minute Rate = %d bpm.' %bpm_rate)
#Visualise BPM of salsa1 with help of plotting
counter = counter+1
plt.figure(counter)
plt.plot(60/t,autocorrelation)
plt.xlim(20, 180)
plt.xlabel('Beats Per Minute (BPM)')
plt.ylabel('Autocorrelation')
plt.title('BPM of Salsa Excerpt 1')
#################### SALSA 2 #####################
#4.1 Open .wav file of salsa music signal 2
salsa2, fs = librosa.load('salsa_excerpt2.mp3')
#sd.play(salsa2, fs)
Ts = 1/fs # fs = 22050Hz sampling frequency
segment = salsa2[60000:125536] #segment of 2^16=65536 samples
t = np.arange(0,np.size(segment)*Ts, Ts) #time index
counter = counter+1
plt.figure(counter)
plt.plot(t,segment, 'b', label = 'Samples L=2^16')
plt.xlabel('Time [sec]')
plt.ylabel('Amplitude')
plt.title('Segment of "salsa_excerpt2.mp3"')
plt.legend()
#4.2 Discrete Wavelet Transform
from pywt import wavedec
coeffs = wavedec(segment, 'db1', level=7)/np.sqrt(2)
ya7, yd7, yd6, yd5, yd4, yd3, yd2, yd1 = coeffs
#4.3 Envelope Detection
#(a) Absolute Value
absolutes = np.abs(coeffs)
za7 = absolutes[0]
zd7 = absolutes[1]
zd6 = absolutes[2]
zd5 = absolutes[3]
zd4 = absolutes[4]
zd3 = absolutes[5]
zd2 = absolutes[6]
zd1 = absolutes[7]
#(b) Lowpass Filter
a0 = 0.003
a = np.zeros(7)
for i in range(1,8):
a[i-1] = a0*(2**(i+1))
def envelope(signal, absolute, a):
x = np.zeros(np.size(signal))
x[0] = a*absolute[0]
for i in range(1,np.size(x)):
x[i] = (1-a)*x[i-1] + a*absolute[i]
x = x - np.mean(x)
return x
xa7 = envelope(ya7, za7, a[6])
xd7 = envelope(yd7, zd7, a[6])
xd6 = envelope(yd6, zd6, a[5])
xd5 = envelope(yd5, zd5, a[4])
xd4 = envelope(yd4, zd4, a[3])
xd3 = envelope(yd3, zd3, a[2])
xd2 = envelope(yd2, zd2, a[1])
xd1 = envelope(yd1, zd1, a[0])
n = np.arange(0,np.size(yd3),1) #number of samples
counter=counter+1
plt.figure(counter)
plt.plot(n, yd3, 'b', label = 'Detal yd3[n]')
plt.plot(n, xd3, 'r', label = 'Envelope xd3[n]')
plt.xlabel('Samples (2^13 = 8192)')
plt.ylabel('Amplitude')
plt.title('Envelope Detection of Detail yd3')
plt.show()
plt.legend()
counter=counter+1
plt.figure(counter)
n = np.arange(0,np.size(yd6),1) #number of samples
plt.plot(n, yd6, 'b', label = 'Detail yd6[n]')
plt.plot(n, xd6, 'r', label = 'Envelope xd6[n]')
plt.xlabel('Samples (2^10 = 1024)')
plt.ylabel('Amplitude')
plt.title('Envelope Detection of Detail yd6')
plt.show()
plt.legend()
#4.4 Sum of Envelopes and Autocorrelation
nvalues = np.arange(0, 32768, 1)
n = np.arange(0, 32768, 1)
xd1 = np.interp(nvalues, n, xd1)
n = np.arange(0, 16384, 1)
xd2 = np.interp(nvalues, n, xd2)
n = np.arange(0, 8192, 1)
xd3 = np.interp(nvalues, n, xd3)
n = np.arange(0, 4096, 1)
xd4 = np.interp(nvalues, n, xd4)
n = np.arange(0, 2048, 1)
xd5 = np.interp(nvalues, n, xd5)
n = np.arange(0, 1024, 1)
xd6 = np.interp(nvalues, n, xd6)
n = np.arange(0, 512, 1)
xd7 = np.interp(nvalues, n, xd7)
n = np.arange(0, 512, 1)
xa7 = | np.interp(nvalues, n, xa7) | numpy.interp |
import numpy as np
from numpy.linalg import norm
from functools import lru_cache
from tqdm import tqdm
from scipy.optimize import linprog
from sklearn.metrics import accuracy_score, f1_score
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams.update({'errorbar.capsize': 2})
def sq(a):
return np.dot(a, a)
def cluster_score(data, target, score_type='trace_w'):
# target 0...max
num_class = target.max() + 1
score = 0
for i in range(num_class):
s = 0
sub_data = data[target==i]
mean_vector = sub_data.mean(axis=0)
for x in sub_data:
s += sq(x-mean_vector)
if score_type != 'trace_w':
s /= len(sub_data)
score += s
return score
def get_weights_gap(code_matrix, dich_classifiers=None, weights_type=None):
l, N = code_matrix.shape
c = np.zeros(N+1)
c[-1] = -1
# размер A Nx (l*(l-1)/2)
A_ub = []
b_ub = np.zeros(l*(l-1)//2)
for nu in range(l):
for mu in range(nu+1, l):
A_arr = []
for j in range(N): # кол-во дихотомий
diff_munu = code_matrix[nu][j] - code_matrix[mu][j]
if weights_type is not None:
if weights_type == 'confusion_list':
score = dich_classifiers[j][weights_type][mu]#, nu].mean() #maybe dirty hack
else:
score = dich_classifiers[j][weights_type]
if diff_munu == 1:
diff_munu = score
else:
diff_munu = 1-score
A_arr.append(-np.abs(diff_munu))
A_arr.append(1)
A_ub.append(A_arr)
A_ub = np.array(A_ub)
A_ub = np.vstack([A_ub, -np.eye(N+1)[:-1]]) # x_i >= 0
b_ub = np.append(b_ub, np.zeros(N))
A_eq = np.ones(N+1).reshape((1, -1))
A_eq[0][-1] = 0
b_eq = np.array(N).reshape((-1))
opt_result = linprog(c, A_ub, b_ub, A_eq, b_eq, options={'disp': False})
return opt_result['x'][:-1] # last value is gap
def ex(arr, j, i):
return np.exp(-norm(arr[i] - arr[j])**2)
def p(arr, j, i):
a = ex(arr, j, i)
b = sum(ex(arr, k, i) for k in range(len(arr)) if k!=i)
return a / b
def d(arr, i, i1, i2):
# return np.abs(arr[i, i2] - arr[j, i2])
return 2*(arr[i1, i2] - arr[i, i2])
def norm1(i, j):
return norm(arr1[i] - arr1[j])**2
def cost(arr1, arr2):
@lru_cache(maxsize=None)
def norm1(i, j):
return norm(arr1[i] - arr1[j])**2
@lru_cache(maxsize=None)
def ex1(i, j):
return np.exp(-norm1(i, j))
@lru_cache(maxsize=None)
def p1(j, i):
a = ex1(j, i)
b = sum(ex1(k, i) for k in range(len(arr1)) if k!=i)
return a / b
@lru_cache(maxsize=None)
def norm2(i, j):
return norm(arr2[i] - arr2[j])**2
@lru_cache(maxsize=None)
def ex2(i, j):
return np.exp(-norm2(i, j))
@lru_cache(maxsize=None)
def p2(j, i):
a = ex2(j, i)
b = sum(ex2(k, i) for k in range(len(arr2)) if k!=i)
return a / b
s = 0
for i in range(len(arr1)):
for j in range(len(arr1)):
s += p1(j, i) * np.log(p1(j, i) / p2(j, i))
return s
def get_grad(arr1, arr2, i1, i2):
'''
arr1 - массив без пропусков(укороченный)
arr2 - массив с прочерками(удлиенный)
i1, i2 - координаты nan
'''
@lru_cache(maxsize=None)
def norm1(i, j):
return norm(arr1[i] - arr1[j])
@lru_cache(maxsize=None)
def ex1(i, j):
return np.exp(-norm1(i, j))
@lru_cache(maxsize=None)
def p1(j, i):
a = ex1(j, i)
b = sum(ex1(k, i) for k in range(len(arr1)) if k!=i)
return a / b
@lru_cache(maxsize=None)
def norm2(i, j):
return norm(arr2[i] - arr2[j])
@lru_cache(maxsize=None)
def ex2(i, j):
return np.exp(-norm2(i, j))
@lru_cache(maxsize=None)
def p2(j, i):
a = ex2(j, i)
b = sum(ex2(k, i) for k in range(len(arr2)) if k!=i)
return a / b
@lru_cache(maxsize=None)
def d(i, i1):
'''
"Дистанция после дифференцирования" - то же самое, только arr == arr2 и i2 == i2
'''
dist = 2*(arr2[i1, i2] - arr2[i, i2])
return dist
def get_i_part(i):
'''
считаем i часть суммы
'''
s = 0
s += p1(i1, i) + p1(i, i1)
s -= p2(i1, i)*(1 + p1(i, i))
s -= p2(i, i1)*(1 + p1(i1, i1))
return s * d(i, i1)
# if verbose:
# grad = sum(get_i_part(i) for i in tqdm(range(len(arr1))) if i!=i1)
# else:
grad = sum(get_i_part(i) for i in range(len(arr1)) if i!=i1)
return grad
def get_full_grad(arr1, arr2, nan_coords, verbose=False):
'''
arr1 - массив без пропусков(укороченный)
arr2 - массив с прочерками(удлиенный)
i1, i2 - координаты nan
'''
grads = []
if verbose:
for i1, i2 in tqdm(nan_coords):
grads.append(get_grad(arr1, arr2, i1, i2))
else:
for i1, i2 in nan_coords:
grads.append(get_grad(arr1, arr2, i1, i2))
return | np.array(grads) | numpy.array |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''oldpf.py - <NAME> (<EMAIL>) - Jan 2017
This contains deprecated and incomplete period-finding tools from periodbase.py:
- dworetsky period finder
- scipy LSP
- townsend LSP
Kept around just in case.
'''
#############
## LOGGING ##
#############
import logging
from datetime import datetime
from traceback import format_exc
# setup a logger
LOGGER = None
LOGMOD = __name__
DEBUG = False
def set_logger_parent(parent_name):
globals()['LOGGER'] = logging.getLogger('%s.%s' % (parent_name, LOGMOD))
def LOGDEBUG(message):
if LOGGER:
LOGGER.debug(message)
elif DEBUG:
print('[%s - DBUG] %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message)
)
def LOGINFO(message):
if LOGGER:
LOGGER.info(message)
else:
print('[%s - INFO] %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message)
)
def LOGERROR(message):
if LOGGER:
LOGGER.error(message)
else:
print('[%s - ERR!] %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message)
)
def LOGWARNING(message):
if LOGGER:
LOGGER.warning(message)
else:
print('[%s - WRN!] %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message)
)
def LOGEXCEPTION(message):
if LOGGER:
LOGGER.exception(message)
else:
print(
'[%s - EXC!] %s\nexception was: %s' % (
datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'),
message, format_exc()
)
)
#############
## IMPORTS ##
#############
from multiprocessing import Pool, cpu_count
import numpy as np
# import these to avoid lookup overhead
from numpy import nan as npnan, sum as npsum, abs as npabs, \
roll as nproll, isfinite as npisfinite, std as npstd, \
sign as npsign, sqrt as npsqrt, median as npmedian, \
array as nparray, percentile as nppercentile, \
polyfit as nppolyfit, var as npvar, max as npmax, min as npmin, \
log10 as nplog10, arange as nparange, pi as MPI, floor as npfloor, \
argsort as npargsort, cos as npcos, sin as npsin, tan as nptan, \
where as npwhere, linspace as nplinspace, \
zeros_like as npzeros_like, full_like as npfull_like, \
arctan as nparctan, nanargmax as npnanargmax, nanargmin as npnanargmin, \
empty as npempty, ceil as npceil, mean as npmean, \
digitize as npdigitize, unique as npunique, \
argmax as npargmax, argmin as npargmin
from scipy.signal import lombscargle, find_peaks_cwt
###################
## LOCAL IMPORTS ##
###################
from ..lcmath import phase_magseries, sigclip_magseries, time_bin_magseries, \
phase_bin_magseries
############
## CONFIG ##
############
NCPUS = cpu_count()
#######################
## UTILITY FUNCTIONS ##
#######################
def get_frequency_grid(times,
samplesperpeak=5,
nyquistfactor=5,
minfreq=None,
maxfreq=None,
returnf0dfnf=False):
'''This calculates a frequency grid for the period finding functions in this
module.
Based on the autofrequency function in astropy.stats.lombscargle.
http://docs.astropy.org/en/stable/_modules/astropy/stats/lombscargle/core.html#LombScargle.autofrequency
'''
baseline = times.max() - times.min()
nsamples = times.size
df = 1. / baseline / samplesperpeak
if minfreq is not None:
f0 = minfreq
else:
f0 = 0.5 * df
if maxfreq is not None:
Nf = int(npceil((maxfreq - f0) / df))
else:
Nf = int(0.5 * samplesperpeak * nyquistfactor * nsamples)
if returnf0dfnf:
return f0, df, Nf, f0 + df * nparange(Nf)
else:
return f0 + df * nparange(Nf)
###############################################
## DWORETSKY STRING LENGTH (Dworetsky+ 1983) ##
## (don't use this -- it's very slow) ##
###############################################
def dworetsky_period_find(time,
mag,
err,
init_p,
end_p,
f_step,
verbose=False):
'''
This is the super-slow naive version taken from my thesis work.
Uses the string length method in Dworetsky 1983 to calculate the period of a
time-series of magnitude measurements and associated magnitude
errors. Searches in linear frequency space (which obviously doesn't
correspond to a linear period space).
PARAMETERS:
time: series of times at which mags were measured (usually some form of JD)
mag: timeseries of magnitudes (np.array)
err: associated errs per magnitude measurement (np.array)
init_p, end_p: interval to search for periods between (both ends inclusive)
f_step: step in frequency [days^-1] to use
RETURNS:
tuple of the following form:
(periods (np.array),
string_lengths (np.array),
good_period_mask (boolean array))
'''
mod_mag = (mag - npmin(mag))/(2.0*(npmax(mag) - npmin(mag))) - 0.25
fold_time = npmin(time) # fold at the first time element
init_f = 1.0/end_p
end_f = 1.0/init_p
n_freqs = npceil((end_f - init_f)/f_step)
if verbose:
print('searching %s frequencies between %s and %s days^-1...' %
(n_freqs,init_f,end_f))
out_periods = npempty(n_freqs,dtype=np.float64)
out_strlens = npempty(n_freqs,dtype=np.float64)
p_goodflags = npempty(n_freqs,dtype=bool)
j_range = len(mag)-1
for i in range(int(n_freqs)):
period = 1.0/init_f
# print('P: %s, f: %s, i: %s, n_freqs: %s, maxf: %s' %
# (period, init_f, i, n_freqs, end_f))
phase = (time - fold_time)/period - npfloor((time - fold_time)/period)
phase_sort_ind = npargsort(phase)
phase_sorted = phase[phase_sort_ind]
mod_mag_sorted = mod_mag[phase_sort_ind]
strlen = 0.0
epsilon = 2.0 * npmean(err)
delta_l = 0.34 * (epsilon - 0.5*(epsilon**2)) * (len(time) -
npsqrt(10.0/epsilon))
keep_threshold_1 = 1.6 + 1.2*delta_l
l = 0.212*len(time)
sig_l = len(time)/37.5
keep_threshold_2 = l + 4.0*sig_l
# now calculate the string length
for j in range(j_range):
strlen += npsqrt( (mod_mag_sorted[j+1] - mod_mag_sorted[j])**2 +
(phase_sorted[j+1] - phase_sorted[j])**2 )
strlen += npsqrt( (mod_mag_sorted[0] - mod_mag_sorted[-1])**2 +
(phase_sorted[0] - phase_sorted[-1] + 1)**2 )
if ((strlen < keep_threshold_1) or (strlen < keep_threshold_2)):
p_goodflags[i] = True
out_periods[i] = period
out_strlens[i] = strlen
init_f += f_step
return (out_periods,out_strlens,p_goodflags)
def pwd_phasebin(phases, mags, binsize=0.002, minbin=9):
'''
This bins the phased mag series using the given binsize.
'''
bins = np.arange(0.0, 1.0, binsize)
binnedphaseinds = npdigitize(phases, bins)
binnedphases, binnedmags = [], []
for x in npunique(binnedphaseinds):
thisbin_inds = binnedphaseinds == x
thisbin_phases = phases[thisbin_inds]
thisbin_mags = mags[thisbin_inds]
if thisbin_inds.size > minbin:
binnedphases.append(npmedian(thisbin_phases))
binnedmags.append(npmedian(thisbin_mags))
return np.array(binnedphases), np.array(binnedmags)
def pdw_worker(task):
'''
This is the parallel worker for the function below.
task[0] = frequency for this worker
task[1] = times array
task[2] = mags array
task[3] = fold_time
task[4] = j_range
task[5] = keep_threshold_1
task[6] = keep_threshold_2
task[7] = phasebinsize
we don't need errs for the worker.
'''
frequency = task[0]
times, modmags = task[1], task[2]
fold_time = task[3]
j_range = range(task[4])
keep_threshold_1 = task[5]
keep_threshold_2 = task[6]
phasebinsize = task[7]
try:
period = 1.0/frequency
# use the common phaser to phase and sort the mag
phased = phase_magseries(times,
modmags,
period,
fold_time,
wrap=False,
sort=True)
# bin in phase if requested, this turns this into a sort of PDM method
if phasebinsize is not None and phasebinsize > 0:
bphased = pwd_phasebin(phased['phase'],
phased['mags'],
binsize=phasebinsize)
phase_sorted = bphased[0]
mod_mag_sorted = bphased[1]
j_range = range(len(mod_mag_sorted) - 1)
else:
phase_sorted = phased['phase']
mod_mag_sorted = phased['mags']
# now calculate the string length
rolledmags = nproll(mod_mag_sorted,1)
rolledphases = nproll(phase_sorted,1)
strings = (
(rolledmags - mod_mag_sorted)*(rolledmags - mod_mag_sorted) +
(rolledphases - phase_sorted)*(rolledphases - phase_sorted)
)
strings[0] = (
((mod_mag_sorted[0] - mod_mag_sorted[-1]) *
(mod_mag_sorted[0] - mod_mag_sorted[-1])) +
((phase_sorted[0] - phase_sorted[-1] + 1) *
(phase_sorted[0] - phase_sorted[-1] + 1))
)
strlen = npsum(npsqrt(strings))
if (keep_threshold_1 < strlen < keep_threshold_2):
p_goodflag = True
else:
p_goodflag = False
return (period, strlen, p_goodflag)
except Exception as e:
LOGEXCEPTION('error in DWP')
return(period, npnan, False)
def pdw_period_find(times,
mags,
errs,
autofreq=True,
init_p=None,
end_p=None,
f_step=1.0e-4,
phasebinsize=None,
sigclip=10.0,
nworkers=None,
verbose=False):
'''This is the parallel version of the function above.
Uses the string length method in Dworetsky 1983 to calculate the period of a
time-series of magnitude measurements and associated magnitude errors. This
can optionally bin in phase to try to speed up the calculation.
PARAMETERS:
time: series of times at which mags were measured (usually some form of JD)
mag: timeseries of magnitudes (np.array)
err: associated errs per magnitude measurement (np.array)
init_p, end_p: interval to search for periods between (both ends inclusive)
f_step: step in frequency [days^-1] to use
RETURNS:
tuple of the following form:
(periods (np.array),
string_lengths (np.array),
good_period_mask (boolean array))
'''
# remove nans
find = npisfinite(times) & npisfinite(mags) & npisfinite(errs)
ftimes, fmags, ferrs = times[find], mags[find], errs[find]
mod_mags = (fmags - npmin(fmags))/(2.0*(npmax(fmags) - | npmin(fmags) | numpy.min |
import time
import numpy as np
#from scipy.fftpack import fft,ifft,fft2,ifft2
import pyfftw
from numpy import cos,sin
from numpy.fft import fft, ifft,fft2,ifft2
from math import pi
#from pyfftw.interfaces.numpy_fft import fft
#from pyfftw.interfaces.numpy_fft import fft2
#from pyfftw.interfaces.numpy_fft import ifft
#from pyfftw.interfaces.numpy_fft import ifft2
import pdb
def unring_1d(data,nsh,minW,maxW):
n = data.shape[1]
numlines= data.shape[0]
shifts = | np.zeros([2*nsh+1],dtype=np.float64) | numpy.zeros |
"""
Tests for inequality.py
"""
import numpy as np
from numpy.testing import assert_allclose, assert_raises
from scipy.stats import linregress
from quantecon import lorenz_curve, gini_coefficient, \
shorrocks_index, rank_size
def test_lorenz_curve():
"""
Tests `lorenz` function, which calculates the lorenz curve
An income distribution where everyone has almost the same wealth should
be similar to a straight line
An income distribution where one person has almost the wealth should
be flat and then shoot straight up when it approaches one
"""
n = 3000
# Almost Equal distribution
y = np.repeat(1, n) + np.random.normal(scale=0.0001, size=n)
cum_people, cum_income = lorenz_curve(y)
assert_allclose(cum_people, cum_income, rtol=1e-03)
# Very uneven distribution
y = np.repeat(0.001, n)
y[4] = 100000
pop_cum, income_cum = lorenz_curve(y)
expected_income_cum = np.repeat(0., n + 1)
expected_income_cum[-1] = 1.
assert_allclose(expected_income_cum, income_cum, atol=1e-4)
def test_gini_coeff():
"""
Tests how the function `gini_coefficient` calculates the Gini coefficient
with the Pareto and the Weibull distribution.
Analytically, we know that Pareto with parameter `a` has
G = 1 / (2*a - 1)
Likewise, for the Weibull distribution with parameter `a` we know that
G = 1 - 2**(-1/a)
"""
n = 10000
# Tests Pareto: G = 1 / (2*a - 1)
a = np.random.randint(2, 15)
expected = 1 / (2 * a - 1)
y = (np.random.pareto(a, size=n) + 1) * 2
coeff = gini_coefficient(y)
assert_allclose(expected, coeff, rtol=1e-01)
# Tests Weibull: G = 1 - 2**(-1/a)
a = np.random.randint(2, 15)
expected = 1 - 2 ** (-1 / a)
y = np.random.weibull(a, size=n)
coeff = gini_coefficient(y)
assert_allclose(expected, coeff, rtol=1e-01)
def test_shorrocks_index():
"""
Test Shorrocks mobility index function against the example used in 'Wealth
distribution and social mobility in the US: A quantitative approach'
(Benhabib, <NAME>, 2017).''
https://www.econ.nyu.edu/user/bisina/RevisionAugust.pdf
"""
# Construct the mobility matrix from Benhabib et al.
P = [[0.222, 0.222, 0.215, 0.187, 0.081, 0.038, 0.029, 0.006],
[0.221, 0.220, 0.215, 0.188, 0.082, 0.039, 0.029, 0.006],
[0.207, 0.209, 0.210, 0.194, 0.090, 0.046, 0.036, 0.008],
[0.198, 0.201, 0.207, 0.198, 0.095, 0.052, 0.040, 0.009],
[0.175, 0.178, 0.197, 0.207, 0.110, 0.067, 0.054, 0.012],
[0.182, 0.184, 0.200, 0.205, 0.106, 0.062, 0.050, 0.011],
[0.123, 0.125, 0.166, 0.216, 0.141, 0.114, 0.094, 0.021],
[0.084, 0.084, 0.142, 0.228, 0.170, 0.143, 0.121, 0.028]]
expected = 0.98 # result from paper
index = shorrocks_index(P)
assert_allclose(expected, index, rtol=1e-2)
def test_rank_size():
"""
Tests `rank_size` function, which generates rank-size data for
a Pareto distribution.
The rank-size plot for a sample drawn from a Pareto distribution
should be a straight line.
The length of the `rank_data` array should be within (c x 100)%
of the size of the distribution.
"""
np.random.seed(15)
sample_size = 10000
c = 0.74
# Tests Pareto; r_squared ~ 1
pareto_draw = np.exp(np.random.exponential(scale=1.0, size=sample_size))
rank_data, size_data = rank_size(pareto_draw, c=c)
assert len(rank_data) == len(size_data)
assert_allclose(c*sample_size, len(rank_data), rtol=1e-3)
_, _, r_value, _, _ = linregress( | np.log(rank_data) | numpy.log |
import numpy as np
import cv2
import random
import threading
import os
import time
import logging
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
def fold(image):
rows,cols,channel = image.shape
new_row = int (rows/2)
dst = image[0:new_row, 0:cols]
return dst
def Rotation(image):
rows,cols,channel = image.shape
angle = np.random.uniform(low=-20.0, high=20.0)
M = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
dst = cv2.warpAffine(image, M, (cols,rows))
return dst
def Translate(image):
rows,cols,channel = image.shape
x_ = cols*0.15
y_ = rows*0.15
scale = np.random.uniform(0.80, 1.20)
x = np.random.uniform(-x_, x_)
y = np.random.uniform(-y_, y_)
M = np.float32([[scale, 0, x], [0, scale, y]])
dst = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))
return dst
def Affine(image):
img_info=image.shape
image_height=img_info[0]
image_weight=img_info[1]
mat_src=np.float32([[0,0],[0,image_height-1],[image_weight-1,0]])
x1 = np.random.uniform(0, 50)
y1 = np.random.uniform(0, 50)
x2 = np.random.uniform(200, 400)
y2 = np.random.uniform(300, 500)
x3 = np.random.uniform(200, 400)
y3 = np.random.uniform(300, 500)
mat_dst=np.float32([[x1,y1],[x2,image_height-y2],[image_weight-x3,y3]])
mat_Affine=cv2.getAffineTransform(mat_src,mat_dst)
dst=cv2.warpAffine(image,mat_Affine,(image_height,image_weight))
return dst
def Crop(image):
rows,cols,channel = image.shape
L_delta = int(np.random.uniform(1, cols*0.15))
R_delta = int(np.random.uniform(1, cols*0.15))
U_delta = int(np.random.uniform(1, rows*0.15))
D_delta = int(np.random.uniform(1, rows*0.15))
TOP = 0 + L_delta
DOWN = rows - R_delta
LEFT = 0 + U_delta
RIGHT = cols - D_delta
crop_img = image[TOP:DOWN, LEFT:RIGHT]
dst = cv2.copyMakeBorder(crop_img, L_delta, R_delta, U_delta , D_delta, cv2.BORDER_CONSTANT, value=(0, 0, 0, 0))
return dst
def Hsv(image):
hue_vari = 1
sat_vari = 0.5
val_vari = 0.5
hue_delta = np.random.randint(-hue_vari, hue_vari)
sat_mult = 1 + np.random.uniform(-sat_vari, sat_vari)
val_mult = 1 + np.random.uniform(-val_vari, val_vari)
img_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float)
img_hsv[:, :, 0] = (img_hsv[:, :, 0] + hue_delta) % 180
img_hsv[:, :, 1] *= sat_mult
img_hsv[:, :, 2] *= val_mult
img_hsv[img_hsv > 255] = 255
dst = cv2.cvtColor(np.round(img_hsv).astype(np.uint8), cv2.COLOR_HSV2BGR)
return dst
def Gamma(image):
gamma_vari = 0.15
log_gamma_vari = np.log(gamma_vari)
alpha = np.random.uniform(-log_gamma_vari, log_gamma_vari)
gamma = np.exp(alpha)
gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]
gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
dst = cv2.LUT(image, gamma_table)
return dst
def Motion_blur(image):
image = | np.array(image) | numpy.array |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = | N.array([1,1,2]) | numpy.array |
import sys
def get_mitk_sphere():
""" Return MITK compliant dipy Sphere object.
MITK stores ODFs as 252 values spherically sampled from the continuous ODF.
The sampling directions are generate by a 5-fold subdivisions of an icosahedron.
"""
xyz = np.array([
0.9756767549555488, 0.9977154378498742, 0.9738192119472443,
0.8915721200771204, 0.7646073555341725, 0.6231965669156312,
0.9817040172417226, 0.9870396762453547, 0.9325589150767597,
0.8173592116492303, 0.6708930871960926, 0.9399233672993689,
0.9144882783890762, 0.8267930935417315, 0.6931818659696647,
0.8407280774774689, 0.782394344826989, 0.6762337155773353,
0.7005607434301688, 0.6228579759074076, 0.5505632701289798,
0.4375940376503738, 0.3153040621970065, 0.1569517536476641,
-0.01984099037382634, -0.1857690950088067, -0.3200730131503601,
0.5232435944036425, 0.3889403678268736, 0.2135250052622625,
0.02420694871807206, -0.1448539951504302, 0.5971534158422009,
0.4482053228282282, 0.2597018771197477, 0.06677517278138323,
0.6404616222418184, 0.4782876117785159, 0.2868761951248767,
0.6459894362878276, 0.4789651252338281, 0.3200724178002418,
0.4973180497018747, 0.6793811951363423, 0.8323587928990375,
0.9308933612987835, 0.4036036036586492, 0.5984781165037405,
0.7817280923310203, 0.9140795130247613, 0.4809905907165384,
0.6759621154318279, 0.8390728924802671, 0.5347729120192694,
0.7094340284155564, 0.5560356639783846, 0.2502538949373057,
0.3171352000240629, 0.3793963897789465, 0.4231100429674418,
0.4410301813437042, 0.4357529867703999, 0.5208717223808415,
0.5850086433327374, 0.611055499882272, 0.6009463532173235,
0.6305067000562991, 0.7188806066405239, 0.7654898954879897,
0.7616477696596397, 0.7997756996573342, 0.8700831379830764,
0.8872031228985237, 0.9155019734809123, 0.9568003701205341,
-0.4375932291383153, -0.3153035222278598, -0.1569515927579475,
0.0198407706589918, 0.1857686171195431, -0.2644927501381796,
-0.1064219080255857, 0.07849995612144045, 0.2583107784678281,
-0.04938676750055992, 0.1358448755096817, 0.3243479900672576,
0.1811879481039926, 0.3692668145365748, 0.3890115016151001,
-0.6231952788307174, -0.4943551945928708, -0.319458133528771,
-0.1156489798772063, 0.08328895892415776, -0.4789641985801549,
-0.3127252940830145, -0.1059392282183739, 0.1077444781964869,
0.2912280153186658, -0.2868758523956744, -0.08856892011805101,
0.1287405357080231, 0.3245517154572714, -0.06677541204276306,
0.1413542883070481, 0.3408430926744944, 0.1448534358763926,
0.3374016489097037, -0.2502532651867688, -0.3171345072414974,
-0.3793956104585266, -0.4231091882680272, -0.4410293135613324,
-0.09929959410007272, -0.1535127609134815, -0.2052877394623771,
-0.2436963810571767, 0.08175409117371149, 0.04056025153798869,
-0.006048944565669369, 0.2686152102237028, 0.2319923070602857,
0.430309819720559, -0.975676581463901, -0.9977153903038788,
-0.9738191090293654, -0.8915716840571059, -0.7646064477130079,
-0.9568001079664734, -0.9598482725023617, -0.9044523389503778,
-0.7901672201648241, -0.6459882395962464, -0.8872027729137049,
-0.8582754834679532, -0.7705800268610806, -0.6404605781008121,
-0.7616472974254324, -0.7008201753656432, -0.5971525097007422,
-0.6009457148226922, -0.5232427588825813, 0.4943566966479628,
0.3194596781650836, 0.1156503154178581, -0.0832879858164388,
0.5222841738261358, 0.3225497922064885, 0.1018140973507329,
0.5217885230992481, 0.3044789836562512, 0.4873191346491355,
-0.4973183240635209, -0.6793811856410323, -0.8323586364840968,
-0.9308931819742911, -0.3374020539278631, -0.5261951664998159,
-0.7070125356849136, -0.8417962075837926, -0.9155017573317124,
-0.3408433114184408, -0.5265312606271311, -0.6896418460594331,
-0.7997755164970677, -0.3245517106425898, -0.4925847482169691,
-0.6305065080228541, -0.2912277152063287, -0.4357526334612896,
0.7901679726328494, 0.9044526665335126, 0.9598484396937114,
0.7705806468939737, 0.858275831469383, 0.7008207681995118,
-0.4036039458806759, -0.2583110138480089, -0.0784999126587471,
0.1064223584250461, 0.264493571710179, -0.4809907334514471,
-0.3243480295764106, -0.1358446002697818, 0.04938746901646566,
-0.5347730026038946, -0.3692667658371347, -0.1811875286592425,
-0.5560358190148772, -0.3890114324926668, -0.5505634949474449,
0.8417963565884857, 0.7070125813068046, 0.5261950179989611,
0.6896418985458221, 0.5265311900255359, 0.4925848265160583,
0.2436972866599269, 0.2052886581368649, 0.153513629451971,
0.09930039009433847, 0.006049691633511915, -0.04055950638179381,
-0.08175337578691833, -0.2319919155781195, -0.2686148310916902,
-0.430309819678344, -0.02420720081803753, -0.2135248270679241,
-0.3889397838050994, -0.2597016312374675, -0.4482046405142344,
-0.4782867918076852, -0.1018130528605821, -0.322548598821141,
-0.5222830294256716, -0.6708921376896406, -0.304478224282928,
-0.5217878437313506, -0.6931813485878851, -0.4873188675145023,
-0.6762335873429084, -0.6228580878699612, -0.6110548409057,
-0.5850080622199078, -0.5208712693637837, -0.7654894328832393,
-0.7188802647693375, -0.8700828159137221, -0.8173587433845655,
-0.9325588839421305, -0.9870397834787261, -0.9817039872478999,
-0.8267930492778305, -0.9144884914916022, -0.9399235077793813,
-0.7823945479956939, -0.8407283372889187, -0.7005610213599369,
-0.1077438933887955, 0.1059400956623477, 0.3127262866621893,
-0.1287403742204129, 0.08856921814263634, -0.1413545191115968,
-0.9140794058749131, -0.7817279594934516, -0.5984781448346268,
-0.8390728949381593, -0.6759620794963979, -0.709434131000089,
-0.1778161375899129, -0.06053925384414331, 0.07929679392711581,
0.222673458561735, 0.3458247516791153, 0.4366423972091846,
0.01030826616734189, 0.1591522280204451, 0.3173816763430465,
0.4549463955350546, 0.5521270265729551, 0.2292788658415479,
0.3973400932411465, 0.5502139834879405, 0.6594089221868847,
0.4476465561008348, 0.6096570464011057, 0.7343998566036512,
0.629214796874201, 0.7646693979379596, 0.7580253719184178,
-0.5980610514568761, -0.5101530988159087, -0.382225667160838,
-0.2244621267538426, -0.06301328229424107, 0.07805400320688782,
-0.4311039309963852, -0.3079662136138592, -0.1501157132113724,
0.01750888497279251, 0.1650825345160538, -0.2148810450151756,
-0.06090095222676627, 0.1073128739652992, 0.2584097661066967,
0.02655484252908358, 0.1901297170957776, 0.3420822257932489,
0.2531835106264871, 0.4022303494272352, -0.07805410188638827,
-0.1080255529483224, -0.1376217050758367, -0.1609000070073124,
-0.1740018618448228, 0.09827676798573926, 0.083291898217249,
0.06127443921955168, 0.03526739273256396, 0.2991139104294396,
0.2941068360088736, 0.2692865316145088, 0.4942032775296958,
0.4857723178878524, 0.6512069539966677, -0.9161616153729886,
-0.9396953110011561, -0.9204280785344878, -0.8462030522374957,
-0.7293237120999879, -0.8470541513588044, -0.8482966176587544,
-0.7977006542517769, -0.6951661565374421, -0.566558592627622,
-0.7243096319272092, -0.6931460376496088, -0.6140043047773551,
-0.5016343691560573, -0.5520254073275178, -0.4928644880867128,
-0.403575153350467, -0.3587591578566765, -0.2886351685087218,
0.5980613131647216, 0.5101532951859686, 0.382225843595672,
0.2244622808787926, 0.06301334452030186, 0.6944632949786616,
0.5955168212825119, 0.4473425940100297, 0.2700417838303327,
0.7724043956082883, 0.6553545192922715, 0.4871408620353512,
0.8097301284690857, 0.6725220182496192, 0.8002534097038426,
-0.4366431953633789, -0.5869882376922511, -0.7332080507197046,
-0.8450980113065225, -0.9041113586460733, -0.4022310083998925,
-0.554596445154436, -0.6925605687496104, -0.7854318984598006,
-0.8250621271173465, -0.3420827953668352, -0.4840440064641756,
-0.6033456975789954, -0.6777531805937266, -0.2584102557043402,
-0.3819753792546441, -0.4821906665520286, -0.1650828712784331,
-0.270790845781693, 0.9161619708326184, 0.9396956424389374,
0.9204283182965946, 0.8462032095340455, 0.7293238793541417,
0.9749588444840027, 0.9879501207294071, 0.942053498973333,
0.8348196077814718, 0.9950795014807369, 0.9818515654328379,
0.9027098746674149, 0.9581801446138297, 0.9118246030313639,
0.8703772282258925, 0.1778171059718252, 0.06053992567271226,
-0.07929659020903117, -0.2226737578340799, -0.345825401239635,
0.2886360377097776, 0.1672516508448342, 0.02000533874392893,
-0.1285435155191929, -0.2531843553864728, 0.403575906447316,
0.2774342678683828, 0.1245598363284875, -0.02655554762561945,
0.5016349858535857, 0.3695530582277636, 0.2148806720954671,
0.5665590425344393, 0.431103930292903, 0.5869876102086139,
0.7332077514676827, 0.845098078457225, 0.9041116580482536,
0.7182616282077119, 0.8617334421407644, 0.9490975365686583,
0.8223898048944452, 0.9416915744235097, 0.8729720010540123,
0.1080256414522809, 0.1376220280275969, 0.1609005865750696,
0.1740026689030255, 0.2707904196202965, 0.3196768235430837,
0.3552546724685221, 0.3677018240803483, 0.3587598208776521,
0.4821901792282771, 0.5389508449256169, 0.5637713635689835,
0.5520258363563475, 0.6777529577987501, 0.7231337276202411,
0.724309982145211, 0.8250622687013296, 0.8470545173149734,
0.1285429999155006, -0.02000532948058562, -0.1672511147059996,
-0.1245600244829796, -0.2774338902981233, -0.3695528631494325,
-0.09827641615811868, -0.2700412859530667, -0.4473420975374328,
-0.5955164071695848, -0.6944629164413806, -0.2991130971968019,
-0.4871400501186961, -0.6553538941234454, -0.7724039524031648,
-0.4942022299541438, -0.6725212074710563, -0.8097296395344389,
-0.6512059956089504, -0.8002528392148971, -0.7580246814516085,
-0.3677014077761052, -0.3552545716101517, -0.3196770257819652,
-0.5637712030900536, -0.5389510214534028, -0.7231336172569296,
-0.8348194119106425, -0.9420533966954356, -0.9879499956150448,
-0.9749586635216289, -0.9027097279159257, -0.9818515951566739,
-0.9950795477220543, -0.9118244750171576, -0.9581802235578871,
-0.8703770126934449, -0.0175091339170676, 0.1501155140512474,
0.3079660822386824, -0.1073133727582037, 0.06090046334304851,
-0.1901304002696938, -0.9490974969653682, -0.8617336589899791,
-0.7182621005240754, -0.5521276321758419, -0.941691783045487,
-0.8223901593137167, -0.6594093292610237, -0.872972144171723,
-0.7343999908188845, -0.7646691446910742, 0.6951665021597787,
0.7977009700656229, 0.8482969664746548, 0.6140047811934269,
0.6931464276818936, 0.4928650597255946, -0.4549467775084718,
-0.3173815862988101, -0.1591515620353438, -0.01030716362341688,
-0.5502140363721867, -0.3973395475484636, -0.2292777334167206,
-0.609656670182737, -0.4476455277450017, -0.6292139442700462,
0.7854319364049284, 0.6925603649758249, 0.5545959620739339,
0.6033453603619342, 0.4840435291285519, 0.3819748711371402,
-0.03526641653115874, -0.06127364342066123, -0.0832913202753871,
-0.2692854573778917, -0.2941058574917593, -0.4857712605383084,
-0.1282040992012934, 0.02998172476739921, 0.2130449739264662,
0.394354771181159, 0.5438573645627299, 0.6488215902264565,
-0.1901340637026595, -0.02057293935230464, 0.1720544722828635,
0.3534794142829396, 0.4950335464190314, -0.252933321812349,
-0.07636778766011496, 0.1169519253626288, 0.2909961752861106,
-0.304612640171253, -0.1271903099934383, 0.0580070042064605,
-0.3366056805211806, -0.1653138037361849, -0.3496821715684524,
0.6714420577705413, 0.8002044514563711, 0.9106424580428781,
0.9742808059046055, 0.9805708386415104, 0.9441720387917811,
0.7350956003099328, 0.8682639008659977, 0.9653353535299492,
0.9995536316680411, 0.9755844796257857, 0.7728091190204586,
0.8918537226509272, 0.9597077065970592, 0.9637247890765801,
0.767530944505584, 0.857374860312736, 0.8948082473172733,
0.7201359303293944, 0.7802583897718675, -0.9441722324566724,
-0.8608166107545396, -0.7207644955095487, -0.5303678229575245,
-0.3211867088850157, -0.9096404828216634, -0.7967975927156801,
-0.620601831095295, -0.4039985827676406, -0.8241231220089414,
-0.6757043639889994, -0.4726959329165278, -0.6854057579633669,
-0.5106159168102177, -0.5164821811548767, -0.3130828685601688,
-0.128054626578418, 0.09418349997750548, 0.3239109228229815,
0.523048087763098, -0.3043330399192493, -0.09531787499064681,
0.146419102006115, 0.3786227553496849, 0.5638039035645359,
-0.2789925774668332, -0.05252850546893189, 0.1924160430438771,
0.4101897544477446, -0.2358533016570041, -0.006318969895916147,
0.2236016867495729, -0.1820659309330632, 0.03496843200875603,
-0.6714423515894649, -0.8002045390283683, -0.9106424117173109,
-0.9742807748705438, -0.9805709251787237, -0.6691519386893557,
-0.79626257796142, -0.8909109722488041, -0.9275521423149625,
-0.6332080201962388, -0.7430051304270751, -0.8108589038018792,
-0.5581290590099237, -0.6413705283620924, -0.4563600901355626,
-0.648822290296783, -0.6411378559950974, -0.600293640880965,
-0.5219527418637842, -0.4191009430775375, -0.7802586188950914,
-0.7711197529973893, -0.713538182957094, -0.6094980396194888,
-0.4842093859996422, -0.8948081394501657, -0.8705497953564927,
-0.7870195954857328, -0.6597854273844109, -0.9637246412193355,
-0.9132982945459158, -0.8070428410352181, -0.975584505681221,
-0.9015722073987464, 0.3130823317650696, 0.1280539101236855,
-0.09418429615654819, -0.3239116283455282, -0.523048586255087,
0.1989845274738189, -0.01970764286946627, -0.2653151882168217,
-0.4936479477555078, 0.05597369301027853, -0.1852629737758222,
-0.4302072668465533, -0.09867461327158224, -0.3387557568094476,
-0.2393260112020272, 0.1282040764044601, -0.0299819504088954,
-0.2130455201840074, -0.3943555879655132, -0.5438582278251758,
-0.03496843048443223, -0.2252069693946209, -0.4261053308619027,
-0.5992598174372795, -0.720136706807033, -0.2236017161594696,
-0.4317330442416767, -0.6250530132529536, -0.7675317913865697,
-0.4101898771205939, -0.6101488498350025, -0.7728099228904255,
-0.5638041319099237, -0.7350961954485662, 0.6411372723067146,
0.6002931843810706, 0.5219523372221417, 0.4191004905746099,
0.4596949806286311, 0.3916338931244087, 0.2980734064957148,
0.226741584116328, 0.1432114770939381, -0.02097489882147943,
0.8608164411414747, 0.7207644427956729, 0.5303678926086439,
0.3211867913977836, 0.9015721838250796, 0.7879881821713033,
0.6114960278478284, 0.3951892122332402, 0.1820657113417612,
0.8070430398170311, 0.6574928275930984, 0.4544842943197335,
0.2358529185889448, 0.6597856586149884, 0.4841878538357612,
0.2789921022280572, 0.4842093252521232, 0.3043325272261384,
0.5992589358516202, 0.4261046359672609, 0.2252066549797059,
0.6250522113657903, 0.4317325950511361, 0.6101482870567641,
0.9096403689902206, 0.9275522217134882, 0.8909112253661301,
0.796262827475376, 0.6691520068054228, 0.8241233338640371,
0.810859375773786, 0.7430057321681839, 0.6332085061147845,
0.6854064426268304, 0.6413714065577412, 0.5581299045184589,
0.5164832226272315, 0.4563611494403301, 0.3496833143594963,
-0.3951892821849063, -0.6114960336943951, -0.787988199289983,
-0.4544844137443082, -0.657492739431111, -0.484187939006181,
0.4936478319326018, 0.2653148405479006, 0.01970714938077021,
-0.1989850169013517, 0.4302075642722875, 0.1852629793843341,
-0.0559739158243807, 0.3387563694841473, 0.09867487876932232,
0.2393267951217032, -0.999553621201999, -0.9653354239158236,
-0.8682642090770526, -0.9597077173597477, -0.8918540989344099,
-0.8573751662344773, -0.2980738893651726, -0.3916343988495664,
-0.4596955428592778, -0.4950341577852201, -0.1432117197792371,
-0.2267418620329016, -0.2909964852939082, 0.02097514873862574,
-0.05800679989935065, 0.1653145532988453, -0.3786231842883476,
-0.1464197032303796, 0.09531724619007391, -0.1924163631703616,
0.05252803743712917, 0.006318730357784829, -0.3534800054422614,
-0.1720548071373146, 0.02057294660420643, 0.190134278339324,
-0.1169519894866824, 0.07636807502743861, 0.2529338262925594,
0.1271908635410245, 0.3046134343217798, 0.3366066958443542,
0.6094980941008995, 0.7135382519498201, 0.7711196978950583,
0.7870198804193677, 0.8705500304441893, 0.9132984713369965,
0.403998910419839, 0.62060207699311, 0.7967976318501995,
0.4726965405256068, 0.6757048258462731, 0.5106167801856609])
n = int(xyz.shape[0] / 3)
x = xyz[:n]
y = xyz[n:2 * n]
z = xyz[2 * n:]
for i in range(n):
v = np.array([x[i], y[i], z[i]])
norm = | np.linalg.norm(v) | numpy.linalg.norm |
"""
This module contains functions related to orbit calculations
"""
# Standard library imports
from typing import Any,Dict,List,Tuple,Sequence
#https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html
# Third party imports
import pandas as pd
import numpy as np
from numpy import rad2deg, deg2rad
from numpy.linalg import norm
import toolz as tz
# Using Newton-Ramson method
from scipy.integrate import solve_ivp
from myastro import util as ut
from myastro import data_catalog as dc
from myastro import timeutil as tc
from myastro import coord as co
from myastro import orbit as ob
from myastro.orbit import EphemrisInput
from myastro.timeutil import PI_HALF, PI, TWOPI
from myastro.keplerian import KeplerianOrbit
from myastro.lagrange_coeff import rv_from_r0v0
from myastro.timeutil import epochformat2jd, jd2mjd, T, mjd2jd, jd2str_date, MDJ_J2000, JD_J2000
from myastro.planets import g_xyz_equat_sun_j2000, g_rlb_eclip_sun_eqxdate
from myastro.util import mu_by_name, mu_Sun
from myastro.orbit import calc_perturbed_accelaration
from myastro.log import get_logger
logger = get_logger(__file__.split('/')[-1])
def f1(vector):
# Utility function
return vector/pow(norm(vector),3)
def calc_F(a, b ,c):
# Function to compute the difference between nearly equal numbers
# Appendix F of Orbital Mechanics
q = a * (2*b-a)/pow(b,2)
return (pow(q,2)- 3*q +3 / (1+pow(1-q,1.5)))*q
def my_dfdt(t, y, r0, v0, t0):
"""
Computes the time derivative of the unknown function. Integrating this function, we obtain the unknown
function. We know the velocity and acceleration that is basically what this function returns so integrating we obtain
the position and velocity.
Args:
t : point in time (normally used in modified julian days) at which we want to calculate the derivative
y : The vector with the variables to solve the differential equation system
[0..3] delta_r
[3..6] delta_v (not used in this case)
r0 : Radio Vector of the object w.r.t. the Sun (AUs) at time t0
v0 : Velocity vector Elapsed time (AUs/days) at time t0
t0 : Initial point timme
Returns :
A vector vector of 6 positions with delta_v and delta_acc ()
"""
delta_r = y[0:3]
# The two-bodys orbit is calculated starting at r0,v0 and t-t0 as elapsed time
r_osc, _ = rv_from_r0v0(mu_Sun, r0, v0, t-t0)
# The radio vector perturbed is the two-bodys plus the delta_r
r_pert = r_osc + delta_r
F = 1 - pow(norm(r_osc)/norm(r_pert),3)
#TODO Check if this works, to avoid compute the difference between nearly equal numbers
#F = calc_F(norm(delta_r), norm(r_pert), norm(r_osc))
# The increment of accelration is calculated including the normal perturbed acceleartion
delta_acc = (-mu_Sun/pow(norm(r_osc),3))*(delta_r- F*r_pert)+calc_perturbed_accelaration(t, r_pert)
return np.concatenate((y[3:6],delta_acc))
def apply_enckes(eph, t_range, r0, v0):
"""
This is a utility function needed because the integration needs to be done in two intervals so this function
is called for each of these intervals. It applies the enckles's approach, i.e. calcualate the dr and dv
to modified the two bodys (osculating orbit)
Args:
eph : Ephemeris data (EphemrisInput)
t_range : A numpy vector with the time samples where each time sample defines a time interval.
The enckles method is applied in each one of this interval.
The time samples are modified julian days.
r0 : A numpy vector that indicates the initial radio vector (AUs)
v0 : A numpy vector that indicates the initial velocity vector (AUs/days)
r0 : Radio Vector of the object w.r.t. the Sun (AUs) at time t0
Returns :
A dictionary where the key is a time reference in days (modified julian days) and the
the value is the a tuple with two vectors, the radio vector r and the velocity vector at the time reference
"""
steps = | np.diff(t_range) | numpy.diff |
import numpy as np
def solve(A, x, min_sigma=1e-6):
'''
Parameters
----------
min_sigma : float, `1e-6` by default
Quality parameter of approximation. Lower `min_sigma` is better approximation.
'''
L = 5
max_iter = 10
c = 0.75
mu = 2
A_inv = np.linalg.pinv(A)
s_hat = np.dot(A_inv, x)
sigma = 4.0*np.max(np.abs(s_hat), axis=1)
sigma = sigma[:, np.newaxis]
for i in range(max_iter):
s = s_hat
for l in range(L):
delta = s * np.exp(-np.power(s, 2) / 2 / np.power(sigma, 2))
s = s - mu * delta
rhs = np.dot(A, s) - x
s = s - np.dot(A_inv, rhs)
s_hat = s
sigma *= c
if | np.all(sigma < min_sigma) | numpy.all |
#pyCGM
# Copyright (c) 2015 <NAME> <<EMAIL>>
# Core Developers: <NAME>, <NAME>
# Contributors <NAME>, <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#pyCGM
import sys
import os
from math import *
import math
import numpy as np
from .pycgmIO import *
# Lowerbody Coordinate System
def pelvisJointCenter(frame):
"""Make the Pelvis Axis function
Takes in a dictionary of x,y,z positions and marker names, as well as an index
Calculates the pelvis joint center and axis and returns both.
Markers used: RASI,LASI,RPSI,LPSI
Other landmarks used: origin, sacrum
Pelvis X_axis: Computed with a Gram-Schmidt orthogonalization procedure(ref. Kadaba 1990) and then normalized.
Pelvis Y_axis: LASI-RASI x,y,z positions, then normalized.
Pelvis Z_axis: Cross product of x_axis and y_axis.
Parameters
----------
frame : dict
Dictionaries of marker lists.
Returns
-------
pelvis : array
Returns an array that contains the pelvis origin in a 1x3 array of xyz values,
which is then followed by a 4x1x3 array composed of the pelvis x, y, z
axis components, and the sacrum x,y,z position.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import pelvisJointCenter
>>> frame = {'RASI': np.array([ 395.36532593, 428.09790039, 1036.82763672]),
... 'LASI': np.array([ 183.18504333, 422.78927612, 1033.07299805]),
... 'RPSI': np.array([ 341.41815186, 246.72117615, 1055.99145508]),
... 'LPSI': np.array([ 255.79994202, 241.42199707, 1057.30065918]) }
>>> pelvisJointCenter(frame) #doctest: +NORMALIZE_WHITESPACE
[array([ 289.27518463, 425.44358826, 1034.95031739]),
array([[ 289.25243803, 426.43632163, 1034.8321521 ],
[ 288.27565385, 425.41858059, 1034.93263018],
[ 289.25467091, 425.56129577, 1035.94315379]]),
array([ 298.60904694, 244.07158661, 1056.64605713])]
>>> frame = {'RASI': np.array([ 395.36532593, 428.09790039, 1036.82763672]),
... 'LASI': np.array([ 183.18504333, 422.78927612, 1033.07299805]),
... 'SACR': np.array([ 294.60904694, 242.07158661, 1049.64605713]) }
>>> pelvisJointCenter(frame) #doctest: +NORMALIZE_WHITESPACE
[array([ 289.27518463, 425.44358826, 1034.95031739]),
array([[ 289.25166321, 426.44012508, 1034.87056085],
[ 288.27565385, 425.41858059, 1034.93263018],
[ 289.25556415, 425.52289134, 1035.94697483]]),
array([ 294.60904694, 242.07158661, 1049.64605713])]
"""
# Get the Pelvis Joint Centre
#REQUIRED MARKERS:
# RASI
# LASI
# RPSI
# LPSI
RASI = frame['RASI']
LASI = frame['LASI']
try:
RPSI = frame['RPSI']
LPSI = frame['LPSI']
# If no sacrum, mean of posterior markers is used as the sacrum
sacrum = (RPSI+LPSI)/2.0
except:
pass #going to use sacrum marker
# If no sacrum, mean of posterior markers is used as the sacrum
if 'SACR' in frame:
sacrum = frame['SACR']
# REQUIRED LANDMARKS:
# origin
# sacrum
# Origin is Midpoint between RASI and LASI
origin = (RASI+LASI)/2.0
# This calculate the each axis
# beta1,2,3 is arbitrary name to help calculate.
beta1 = origin-sacrum
beta2 = LASI-RASI
# Y_axis is normalized beta2
y_axis = beta2/norm3d(beta2)
# X_axis computed with a Gram-Schmidt orthogonalization procedure(ref. Kadaba 1990)
# and then normalized.
beta3_cal = np.dot(beta1,y_axis)
beta3_cal2 = beta3_cal*y_axis
beta3 = beta1-beta3_cal2
x_axis = beta3/norm3d(beta3)
# Z-axis is cross product of x_axis and y_axis.
z_axis = cross(x_axis,y_axis)
# Add the origin back to the vector
y_axis = y_axis+origin
z_axis = z_axis+origin
x_axis = x_axis+origin
pelvis_axis = np.asarray([x_axis,y_axis,z_axis])
pelvis = [origin,pelvis_axis,sacrum] #probably don't need to return sacrum
return pelvis
def hipJointCenter(frame,pel_origin,pel_x,pel_y,pel_z,vsk=None):
"""Calculate the hip joint center function.
Takes in a dictionary of x,y,z positions and marker names, as well as an index.
Calculates the hip joint center and returns the hip joint center.
Other landmarks used: origin, sacrum
Subject Measurement values used: MeanLegLength, R_AsisToTrocanterMeasure, InterAsisDistance, L_AsisToTrocanterMeasure
Hip Joint Center: Computed using Hip Joint Center Calculation (ref. Davis_1991)
Parameters
----------
frame : dict
Dictionaries of marker lists.
pel_origin : array
An array of pel_origin, pel_x, pel_y, pel_z each x,y,z position.
[(),(),()]
pel_x, pel_y, pel_z : int
Respective axes of the pelvis.
vsk : dict, optional
A dictionary containing subject measurements from a VSK file.
Returns
-------
hip_JC : array
Returns a 2x3 array that contains the left hip joint center, a 1x3 array containing the x,y,z components
followed by the right hip joint center, another 1x3 array containing the x,y,z components.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import hipJointCenter
>>> frame = None
>>> vsk = {'MeanLegLength': 940.0, 'R_AsisToTrocanterMeasure': 72.512,
... 'L_AsisToTrocanterMeasure': 72.512, 'InterAsisDistance': 215.908996582031}
>>> pel_origin = [ 251.60830688, 391.74131775, 1032.89349365]
>>> pel_x = [251.74063624, 392.72694721, 1032.78850073]
>>> pel_y = [250.61711554, 391.87232862, 1032.8741063]
>>> pel_z = [251.60295336, 391.84795134, 1033.88777762]
>>> hipJointCenter(frame,pel_origin,pel_x,pel_y,pel_z,vsk)
array([[182.57097799, 339.43231799, 935.52900136],
[308.38050352, 322.80342433, 937.98979092]])
"""
#Get Global Values
# Requires
# pelvis axis
pel_origin=np.asarray(pel_origin)
pel_x=np.asarray(pel_x)
pel_y=np.asarray(pel_y)
pel_z=np.asarray(pel_z)
# Model's eigen value
#
# LegLength
# MeanLegLength
# mm (marker radius)
# interAsisMeasure
#Set the variables needed to calculate the joint angle
#Half of marker size
mm = 7.0
MeanLegLength = vsk['MeanLegLength']
R_AsisToTrocanterMeasure = vsk['R_AsisToTrocanterMeasure']
L_AsisToTrocanterMeasure = vsk['L_AsisToTrocanterMeasure']
interAsisMeasure = vsk['InterAsisDistance']
C = ( MeanLegLength * 0.115 ) - 15.3
theta = 0.500000178813934
beta = 0.314000427722931
aa = interAsisMeasure/2.0
S = -1
# Hip Joint Center Calculation (ref. Davis_1991)
# Left: Calculate the distance to translate along the pelvis axis
L_Xh = (-L_AsisToTrocanterMeasure - mm) * cos(beta) + C * cos(theta) * sin(beta)
L_Yh = S*(C*sin(theta)- aa)
L_Zh = (-L_AsisToTrocanterMeasure - mm) * sin(beta) - C * cos(theta) * cos(beta)
# Right: Calculate the distance to translate along the pelvis axis
R_Xh = (-R_AsisToTrocanterMeasure - mm) * cos(beta) + C * cos(theta) * sin(beta)
R_Yh = (C*sin(theta)- aa)
R_Zh = (-R_AsisToTrocanterMeasure - mm) * sin(beta) - C * cos(theta) * cos(beta)
# get the unit pelvis axis
pelvis_xaxis = pel_x-pel_origin
pelvis_yaxis = pel_y-pel_origin
pelvis_zaxis = pel_z-pel_origin
# multiply the distance to the unit pelvis axis
L_hipJCx = pelvis_xaxis*L_Xh
L_hipJCy = pelvis_yaxis*L_Yh
L_hipJCz = pelvis_zaxis*L_Zh
L_hipJC = np.asarray([ L_hipJCx[0]+L_hipJCy[0]+L_hipJCz[0],
L_hipJCx[1]+L_hipJCy[1]+L_hipJCz[1],
L_hipJCx[2]+L_hipJCy[2]+L_hipJCz[2]])
R_hipJCx = pelvis_xaxis*R_Xh
R_hipJCy = pelvis_yaxis*R_Yh
R_hipJCz = pelvis_zaxis*R_Zh
R_hipJC = np.asarray([ R_hipJCx[0]+R_hipJCy[0]+R_hipJCz[0],
R_hipJCx[1]+R_hipJCy[1]+R_hipJCz[1],
R_hipJCx[2]+R_hipJCy[2]+R_hipJCz[2]])
L_hipJC = L_hipJC+pel_origin
R_hipJC = R_hipJC+pel_origin
hip_JC = np.asarray([L_hipJC,R_hipJC])
return hip_JC
def hipAxisCenter(l_hip_jc,r_hip_jc,pelvis_axis):
"""Calculate the hip joint axis function.
Takes in a hip joint center of x,y,z positions as well as an index.
and takes the hip joint center and pelvis origin/axis from previous functions.
Calculates the hip axis and returns hip joint origin and axis.
Hip center axis: Computed by taking the mean at each x,y,z axis of the left and right hip joint center.
Hip axis: Computed by getting the summation of the pelvis and hip center axes.
Parameters
----------
l_hip_jc, r_hip_jc: array
Array of R_hip_jc and L_hip_jc each x,y,z position.
pelvis_axis : array
An array of pelvis origin and axis. The axis is also composed of 3 arrays,
each things are x axis, y axis, z axis.
Returns
-------
hipaxis_center, axis : array
Returns an array that contains the hip axis center in a 1x3 array of xyz values,
which is then followed by a 3x2x3 array composed of the hip axis center x, y, and z
axis components. The xyz axis components are 2x3 arrays consisting of the axis center
in the first dimension and the direction of the axis in the second dimension.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import hipAxisCenter
>>> r_hip_jc = [182.57097863, 339.43231855, 935.529000126]
>>> l_hip_jc = [308.38050472, 322.80342417, 937.98979061]
>>> pelvis_axis = [np.array([251.60830688, 391.74131775, 1032.89349365]),
... np.array([[251.74063624, 392.72694721, 1032.78850073],
... [250.61711554, 391.87232862, 1032.8741063],
... [251.60295336, 391.84795134, 1033.88777762]]),
... np.array([231.57849121, 210.25262451, 1052.24969482])]
>>> [np.around(arr,8) for arr in hipAxisCenter(l_hip_jc,r_hip_jc,pelvis_axis)] #doctest: +NORMALIZE_WHITESPACE
[array([245.47574168, 331.11787136, 936.75939537]),
array([[245.60807104, 332.10350082, 936.65440245],
[244.48455034, 331.24888223, 936.74000802],
[245.47038816, 331.22450495, 937.75367934]])]
"""
# Get shared hip axis, it is inbetween the two hip joint centers
hipaxis_center = [(r_hip_jc[0]+l_hip_jc[0])/2.0,(r_hip_jc[1]+l_hip_jc[1])/2.0,(r_hip_jc[2]+l_hip_jc[2])/2.0]
#convert pelvis_axis to x,y,z axis to use more easy
pelvis_x_axis = np.subtract(pelvis_axis[1][0],pelvis_axis[0])
pelvis_y_axis = np.subtract(pelvis_axis[1][1],pelvis_axis[0])
pelvis_z_axis = np.subtract(pelvis_axis[1][2],pelvis_axis[0])
#Translate pelvis axis to shared hip centre
# Add the origin back to the vector
y_axis = [pelvis_y_axis[0]+hipaxis_center[0],pelvis_y_axis[1]+hipaxis_center[1],pelvis_y_axis[2]+hipaxis_center[2]]
z_axis = [pelvis_z_axis[0]+hipaxis_center[0],pelvis_z_axis[1]+hipaxis_center[1],pelvis_z_axis[2]+hipaxis_center[2]]
x_axis = [pelvis_x_axis[0]+hipaxis_center[0],pelvis_x_axis[1]+hipaxis_center[1],pelvis_x_axis[2]+hipaxis_center[2]]
axis = [x_axis,y_axis,z_axis]
return [hipaxis_center,axis]
def kneeJointCenter(frame,hip_JC,delta,vsk=None):
"""Calculate the knee joint center and axis function.
Takes in a dictionary of xyz positions and marker names, as well as an index.
and takes the hip axis and pelvis axis.
Calculates the knee joint axis and returns the knee origin and axis
Markers used: RTHI, LTHI, RKNE, LKNE, hip_JC
Subject Measurement values used: RightKneeWidth, LeftKneeWidth
Knee joint center: Computed using Knee Axis Calculation(ref. Clinical Gait Analysis hand book, Baker2013)
Parameters
----------
frame : dict
dictionaries of marker lists.
hip_JC : array
An array of hip_JC containing the x,y,z axes marker positions of the hip joint center.
delta : float
The length from marker to joint center, retrieved from subject measurement file.
vsk : dict, optional
A dictionary containing subject measurements from a VSK file.
Returns
-------
R, L, axis : array
Returns an array that contains the knee axis center in a 1x3 array of xyz values,
which is then followed by a 2x3x3 array composed of the knee axis center x, y, and z
axis components. The xyz axis components are 2x3 arrays consisting of the axis center
in the first dimension and the direction of the axis in the second dimension.
Modifies
--------
delta is changed suitably to knee.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import kneeJointCenter
>>> vsk = { 'RightKneeWidth' : 105.0, 'LeftKneeWidth' : 105.0 }
>>> frame = { 'RTHI': np.array([426.50338745, 262.65310669, 673.66247559]),
... 'LTHI': np.array([51.93867874, 320.01849365, 723.03186035]),
... 'RKNE': np.array([416.98687744, 266.22558594, 524.04089355]),
... 'LKNE': np.array([84.62355804, 286.69122314, 529.39819336])}
>>> hip_JC = [[182.57097863, 339.43231855, 935.52900126],
... [309.38050472, 32280342417, 937.98979061]]
>>> delta = 0
>>> kneeJointCenter(frame,hip_JC,delta,vsk) #doctest: +NORMALIZE_WHITESPACE
[array([413.21007973, 266.22558784, 464.66088466]),
array([143.55478579, 279.90370346, 524.78408753]),
array([[[414.20806312, 266.22558785, 464.59740907],
[413.14660414, 266.22558786, 463.66290127],
[413.21007973, 267.22558784, 464.66088468]],
[[143.65611281, 280.88685896, 524.63197541],
[142.56434499, 280.01777942, 524.86163553],
[143.64837987, 280.0465038 , 525.76940383]]])]
"""
#Get Global Values
mm = 7.0
R_kneeWidth = vsk['RightKneeWidth']
L_kneeWidth = vsk['LeftKneeWidth']
R_delta = (R_kneeWidth/2.0)+mm
L_delta = (L_kneeWidth/2.0)+mm
#REQUIRED MARKERS:
# RTHI
# LTHI
# RKNE
# LKNE
# hip_JC
RTHI = frame['RTHI']
LTHI = frame['LTHI']
RKNE = frame['RKNE']
LKNE = frame['LKNE']
R_hip_JC = hip_JC[1]
L_hip_JC = hip_JC[0]
# Determine the position of kneeJointCenter using findJointC function
R = findJointC(RTHI,R_hip_JC,RKNE,R_delta)
L = findJointC(LTHI,L_hip_JC,LKNE,L_delta)
# Knee Axis Calculation(ref. Clinical Gait Analysis hand book, Baker2013)
#Right axis calculation
thi_kne_R = RTHI-RKNE
# Z axis is Thigh bone calculated by the hipJC and kneeJC
# the axis is then normalized
axis_z = R_hip_JC-R
# X axis is perpendicular to the points plane which is determined by KJC, HJC, KNE markers.
# and calculated by each point's vector cross vector.
# the axis is then normalized.
# axis_x = cross(axis_z,thi_kne_R)
axis_x = cross(axis_z,RKNE-R_hip_JC)
# Y axis is determined by cross product of axis_z and axis_x.
# the axis is then normalized.
axis_y = cross(axis_z,axis_x)
Raxis = np.asarray([axis_x,axis_y,axis_z])
#Left axis calculation
thi_kne_L = LTHI-LKNE
# Z axis is Thigh bone calculated by the hipJC and kneeJC
# the axis is then normalized
axis_z = L_hip_JC-L
# X axis is perpendicular to the points plane which is determined by KJC, HJC, KNE markers.
# and calculated by each point's vector cross vector.
# the axis is then normalized.
# axis_x = cross(thi_kne_L,axis_z)
#using hipjc instead of thigh marker
axis_x = cross(LKNE-L_hip_JC,axis_z)
# Y axis is determined by cross product of axis_z and axis_x.
# the axis is then normalized.
axis_y = cross(axis_z,axis_x)
Laxis = np.asarray([axis_x,axis_y,axis_z])
# Clear the name of axis and then nomalize it.
R_knee_x_axis = Raxis[0]
R_knee_x_axis = R_knee_x_axis/norm3d(R_knee_x_axis)
R_knee_y_axis = Raxis[1]
R_knee_y_axis = R_knee_y_axis/norm3d(R_knee_y_axis)
R_knee_z_axis = Raxis[2]
R_knee_z_axis = R_knee_z_axis/norm3d(R_knee_z_axis)
L_knee_x_axis = Laxis[0]
L_knee_x_axis = L_knee_x_axis/norm3d(L_knee_x_axis)
L_knee_y_axis = Laxis[1]
L_knee_y_axis = L_knee_y_axis/norm3d(L_knee_y_axis)
L_knee_z_axis = Laxis[2]
L_knee_z_axis = L_knee_z_axis/norm3d(L_knee_z_axis)
#Put both axis in array
# Add the origin back to the vector
y_axis = R_knee_y_axis+R
z_axis = R_knee_z_axis+R
x_axis = R_knee_x_axis+R
Raxis = np.asarray([x_axis,y_axis,z_axis])
# Add the origin back to the vector
y_axis = L_knee_y_axis+L
z_axis = L_knee_z_axis+L
x_axis = L_knee_x_axis+L
Laxis = np.asarray([x_axis,y_axis,z_axis])
axis = np.asarray([Raxis,Laxis])
return [R,L,axis]
def ankleJointCenter(frame,knee_JC,delta,vsk=None):
"""Calculate the ankle joint center and axis function.
Takes in a dictionary of xyz positions and marker names, as well as an index.
and takes the knee axis.
Calculates the ankle joint axis and returns the ankle origin and axis
Markers used: tib_R, tib_L, ank_R, ank_L, knee_JC
Subject Measurement values used: RightKneeWidth, LeftKneeWidth
Ankle Axis: Computed using Ankle Axis Calculation(ref. Clinical Gait Analysis hand book, Baker2013).
Parameters
----------
frame : dict
dictionaries of marker lists.
knee_JC : array
An array of knee_JC each x,y,z position.
delta : float
The length from marker to joint center, retrieved from subject measurement file
vsk : dict, optional
A dictionary containing subject measurements from a VSK file.
Returns
-------
R, L, axis : array
Returns an array that contains the ankle axis origin in a 1x3 array of xyz values,
which is then followed by a 3x2x3 array composed of the ankle origin, x, y, and z
axis components. The xyz axis components are 2x3 arrays consisting of the origin
in the first dimension and the direction of the axis in the second dimension.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import ankleJointCenter
>>> vsk = { 'RightAnkleWidth' : 70.0, 'LeftAnkleWidth' : 70.0,
... 'RightTibialTorsion': 0.0, 'LeftTibialTorsion' : 0.0}
>>> frame = { 'RTIB': np.array([433.97537231, 211.93408203, 273.3008728]),
... 'LTIB': np.array([50.04016495, 235.90718079, 364.32226562]),
... 'RANK': np.array([422.77005005, 217.74053955, 92.86152649]),
... 'LANK': np.array([58.57380676, 208.54806519, 86.16953278]) }
>>> knee_JC = [np.array([364.17774614, 292.17051722, 515.19181496]),
... np.array([143.55478579, 279.90370346, 524.78408753]),
... np.array([[[364.64959153, 293.06758353, 515.18513093],
... [363.29019771, 292.60656648, 515.04309095],
... [364.04724541, 292.24216264, 516.18067112]],
... [[143.65611282, 280.88685896, 524.63197541],
... [142.56434499, 280.01777943, 524.86163553],
... [143.64837987, 280.04650381, 525.76940383]]])]
>>> delta = 0
>>> ankleJointCenter(frame,knee_JC,delta,vsk) #doctest: +NORMALIZE_WHITESPACE
[array([393.76181609, 247.67829633, 87.73775041]),
array([ 98.74901939, 219.46930221, 80.63068161]),
[[array([394.48171575, 248.37201349, 87.715368 ]),
array([393.07114385, 248.39110006, 87.61575574]),
array([393.69314056, 247.78157916, 88.73002876])],
[array([ 98.47494966, 220.42553804, 80.52821783]),
array([ 97.79246671, 219.20927276, 80.76255902]),
array([ 98.84848169, 219.60345781, 81.61663776])]]]
"""
#Get Global Values
R_ankleWidth = vsk['RightAnkleWidth']
L_ankleWidth = vsk['LeftAnkleWidth']
R_torsion = vsk['RightTibialTorsion']
L_torsion = vsk['LeftTibialTorsion']
mm = 7.0
R_delta = ((R_ankleWidth)/2.0)+mm
L_delta = ((L_ankleWidth)/2.0)+mm
#REQUIRED MARKERS:
# tib_R
# tib_L
# ank_R
# ank_L
# knee_JC
tib_R = frame['RTIB']
tib_L = frame['LTIB']
ank_R = frame['RANK']
ank_L = frame['LANK']
knee_JC_R = knee_JC[0]
knee_JC_L = knee_JC[1]
# This is Torsioned Tibia and this describe the ankle angles
# Tibial frontal plane being defined by ANK,TIB and KJC
# Determine the position of ankleJointCenter using findJointC function
R = findJointC(tib_R, knee_JC_R, ank_R, R_delta)
L = findJointC(tib_L, knee_JC_L, ank_L, L_delta)
# Ankle Axis Calculation(ref. Clinical Gait Analysis hand book, Baker2013)
#Right axis calculation
# Z axis is shank bone calculated by the ankleJC and kneeJC
axis_z = knee_JC_R-R
# X axis is perpendicular to the points plane which is determined by ANK,TIB and KJC markers.
# and calculated by each point's vector cross vector.
# tib_ank_R vector is making a tibia plane to be assumed as rigid segment.
tib_ank_R = tib_R-ank_R
axis_x = cross(axis_z,tib_ank_R)
# Y axis is determined by cross product of axis_z and axis_x.
axis_y = cross(axis_z,axis_x)
Raxis = [axis_x,axis_y,axis_z]
#Left axis calculation
# Z axis is shank bone calculated by the ankleJC and kneeJC
axis_z = knee_JC_L-L
# X axis is perpendicular to the points plane which is determined by ANK,TIB and KJC markers.
# and calculated by each point's vector cross vector.
# tib_ank_L vector is making a tibia plane to be assumed as rigid segment.
tib_ank_L = tib_L-ank_L
axis_x = cross(tib_ank_L,axis_z)
# Y axis is determined by cross product of axis_z and axis_x.
axis_y = cross(axis_z,axis_x)
Laxis = [axis_x,axis_y,axis_z]
# Clear the name of axis and then normalize it.
R_ankle_x_axis = Raxis[0]
R_ankle_x_axis_div = norm2d(R_ankle_x_axis)
R_ankle_x_axis = [R_ankle_x_axis[0]/R_ankle_x_axis_div,R_ankle_x_axis[1]/R_ankle_x_axis_div,R_ankle_x_axis[2]/R_ankle_x_axis_div]
R_ankle_y_axis = Raxis[1]
R_ankle_y_axis_div = norm2d(R_ankle_y_axis)
R_ankle_y_axis = [R_ankle_y_axis[0]/R_ankle_y_axis_div,R_ankle_y_axis[1]/R_ankle_y_axis_div,R_ankle_y_axis[2]/R_ankle_y_axis_div]
R_ankle_z_axis = Raxis[2]
R_ankle_z_axis_div = norm2d(R_ankle_z_axis)
R_ankle_z_axis = [R_ankle_z_axis[0]/R_ankle_z_axis_div,R_ankle_z_axis[1]/R_ankle_z_axis_div,R_ankle_z_axis[2]/R_ankle_z_axis_div]
L_ankle_x_axis = Laxis[0]
L_ankle_x_axis_div = norm2d(L_ankle_x_axis)
L_ankle_x_axis = [L_ankle_x_axis[0]/L_ankle_x_axis_div,L_ankle_x_axis[1]/L_ankle_x_axis_div,L_ankle_x_axis[2]/L_ankle_x_axis_div]
L_ankle_y_axis = Laxis[1]
L_ankle_y_axis_div = norm2d(L_ankle_y_axis)
L_ankle_y_axis = [L_ankle_y_axis[0]/L_ankle_y_axis_div,L_ankle_y_axis[1]/L_ankle_y_axis_div,L_ankle_y_axis[2]/L_ankle_y_axis_div]
L_ankle_z_axis = Laxis[2]
L_ankle_z_axis_div = norm2d(L_ankle_z_axis)
L_ankle_z_axis = [L_ankle_z_axis[0]/L_ankle_z_axis_div,L_ankle_z_axis[1]/L_ankle_z_axis_div,L_ankle_z_axis[2]/L_ankle_z_axis_div]
#Put both axis in array
Raxis = [R_ankle_x_axis,R_ankle_y_axis,R_ankle_z_axis]
Laxis = [L_ankle_x_axis,L_ankle_y_axis,L_ankle_z_axis]
# Rotate the axes about the tibia torsion.
R_torsion = np.radians(R_torsion)
L_torsion = np.radians(L_torsion)
Raxis = [[math.cos(R_torsion)*Raxis[0][0]-math.sin(R_torsion)*Raxis[1][0],
math.cos(R_torsion)*Raxis[0][1]-math.sin(R_torsion)*Raxis[1][1],
math.cos(R_torsion)*Raxis[0][2]-math.sin(R_torsion)*Raxis[1][2]],
[math.sin(R_torsion)*Raxis[0][0]+math.cos(R_torsion)*Raxis[1][0],
math.sin(R_torsion)*Raxis[0][1]+math.cos(R_torsion)*Raxis[1][1],
math.sin(R_torsion)*Raxis[0][2]+math.cos(R_torsion)*Raxis[1][2]],
[Raxis[2][0],Raxis[2][1],Raxis[2][2]]]
Laxis = [[math.cos(L_torsion)*Laxis[0][0]-math.sin(L_torsion)*Laxis[1][0],
math.cos(L_torsion)*Laxis[0][1]-math.sin(L_torsion)*Laxis[1][1],
math.cos(L_torsion)*Laxis[0][2]-math.sin(L_torsion)*Laxis[1][2]],
[math.sin(L_torsion)*Laxis[0][0]+math.cos(L_torsion)*Laxis[1][0],
math.sin(L_torsion)*Laxis[0][1]+math.cos(L_torsion)*Laxis[1][1],
math.sin(L_torsion)*Laxis[0][2]+math.cos(L_torsion)*Laxis[1][2]],
[Laxis[2][0],Laxis[2][1],Laxis[2][2]]]
# Add the origin back to the vector
x_axis = Raxis[0]+R
y_axis = Raxis[1]+R
z_axis = Raxis[2]+R
Raxis = [x_axis,y_axis,z_axis]
x_axis = Laxis[0]+L
y_axis = Laxis[1]+L
z_axis = Laxis[2]+L
Laxis = [x_axis,y_axis,z_axis]
# Both of axis in array.
axis = [Raxis,Laxis]
return [R,L,axis]
def footJointCenter(frame,vsk,ankle_JC,knee_JC,delta):
"""Calculate the foot joint center and axis function.
Takes in a dictionary of xyz positions and marker names.
and takes the ankle axis and knee axis.
Calculate the foot joint axis by rotating incorrect foot joint axes about offset angle.
Returns the foot axis origin and axis.
In case of foot joint center, we've already make 2 kinds of axis for static offset angle.
and then, Call this static offset angle as an input of this function for dynamic trial.
Special Cases:
(anatomical uncorrect foot axis)
if foot flat is checked, make the reference markers instead of HEE marker which height is as same as TOE marker's height.
elif foot flat is not checked, use the HEE marker for making Z axis.
Markers used: RTOE, LTOE
Other landmarks used: ANKLE_FLEXION_AXIS
Subject Measurement values used: RightStaticRotOff, RightStaticPlantFlex, LeftStaticRotOff, LeftStaticPlantFlex
Parameters
----------
frame : dict
Dictionaries of marker lists.
vsk : dict
A dictionary containing subject measurements from a VSK file.
ankle_JC : array
An array of ankle_JC containing the x,y,z axes marker positions of the ankle joint center.
knee_JC : array
An array of knee_JC containing the x,y,z axes marker positions of the knee joint center.
delta
The length from marker to joint center, retrieved from subject measurement file.
Returns
-------
R, L, foot_axis : array
Returns an array that contains the foot axis center in a 1x3 array of xyz values,
which is then followed by a 2x3x3 array composed of the foot axis center x, y, and z
axis components. The xyz axis components are 2x3 arrays consisting of the axis center
in the first dimension and the direction of the axis in the second dimension.
This function also saves the static offset angle in a global variable.
Modifies
--------
Axis changes following to the static info.
you can set the static_info by the button. and this will calculate the offset angles
the first setting, the foot axis show foot uncorrected anatomical reference axis(Z_axis point to the AJC from TOE)
if press the static_info button so if static_info is not None,
and then the static offsets angles are applied to the reference axis.
the reference axis is Z axis point to HEE from TOE
Examples
--------
>>> import numpy as np
>>> from .pyCGM import footJointCenter
>>> vsk = { 'RightStaticRotOff' : 0.015683497632642047, 'LeftStaticRotOff': 0.009402910292403012,
... 'RightStaticPlantFlex' : 0.2702417907002758, 'LeftStaticPlantFlex': 0.20251085737834015}
>>> frame = { 'RHEE': np.array([374.01257324, 181.57929993, 49.50960922]),
... 'LHEE': np.array([105.30126953, 180.2130127, 47.15660858]),
... 'RTOE': np.array([442.81997681, 381.62280273, 42.66047668]),
... 'LTOE': np.array([39.43652725, 382.44522095, 41.78911591])}
>>> knee_JC = [np.array([364.17774614, 292.17051722, 515.19181496]),
... np.array([143.55478579, 279.90370346, 524.78408753]),
... np.array([[[364.64959153, 293.06758353, 515.18513093],
... [363.29019771, 292.60656648, 515.04309095],
... [364.04724541, 292.24216264, 516.18067112]],
... [[143.65611282, 280.88685896, 524.63197541],
... [142.56434499, 280.01777943, 524.86163553],
... [143.64837987, 280.04650381, 525.76940383]]])]
>>> ankle_JC = [np.array([393.76181608, 247.67829633, 87.73775041]),
... np.array([98.74901939, 219.46930221, 80.6306816]),
... [[np.array([394.4817575, 248.37201348, 87.715368]),
... np.array([393.07114384, 248.39110006, 87.61575574]),
... np.array([393.69314056, 247.78157916, 88.73002876])],
... [np.array([98.47494966, 220.42553803, 80.52821783]),
... np.array([97.79246671, 219.20927275, 80.76255901]),
... np.array([98.84848169, 219.60345781, 81.61663775])]]]
>>> delta = 0
>>> [np.around(arr,8) for arr in footJointCenter(frame,vsk,ankle_JC,knee_JC,delta)] #doctest: +NORMALIZE_WHITESPACE
[array([442.81997681, 381.62280273, 42.66047668]),
array([ 39.43652725, 382.44522095, 41.78911591]),
array([[[442.84624127, 381.6513024 , 43.65972537],
[441.87735057, 381.9563035 , 42.67574106],
[442.48716163, 380.68048378, 42.69610043]],
[[ 39.56652626, 382.50901001, 42.77857597],
[ 38.49313328, 382.14606841, 41.93234851],
[ 39.74166341, 381.4931502 , 41.81040459]]])]
"""
#REQUIRED MARKERS:
# RTOE
# LTOE
TOE_R = frame["RTOE"]
TOE_L = frame["LTOE"]
#REQUIRE JOINT CENTER & AXIS
#KNEE JOINT CENTER
#ANKLE JOINT CENTER
#ANKLE FLEXION AXIS
ankle_JC_R = ankle_JC[0]
ankle_JC_L = ankle_JC[1]
ankle_flexion_R = ankle_JC[2][0][1]
ankle_flexion_L = ankle_JC[2][1][1]
# Toe axis's origin is marker position of TOE
R = TOE_R
L = TOE_L
# HERE IS THE INCORRECT AXIS
# the first setting, the foot axis show foot uncorrected anatomical axis and static_info is None
ankle_JC_R = [ankle_JC_R[0],ankle_JC_R[1],ankle_JC_R[2]]
ankle_JC_L = [ankle_JC_L[0],ankle_JC_L[1],ankle_JC_L[2]]
# Right
# z axis is from TOE marker to AJC. and normalized it.
R_axis_z = [ankle_JC_R[0]-TOE_R[0],ankle_JC_R[1]-TOE_R[1],ankle_JC_R[2]-TOE_R[2]]
R_axis_z_div = norm2d(R_axis_z)
R_axis_z = [R_axis_z[0]/R_axis_z_div,R_axis_z[1]/R_axis_z_div,R_axis_z[2]/R_axis_z_div]
# bring the flexion axis of ankle axes from AnkleJointCenter function. and normalized it.
y_flex_R = [ankle_flexion_R[0]-ankle_JC_R[0],ankle_flexion_R[1]-ankle_JC_R[1],ankle_flexion_R[2]-ankle_JC_R[2]]
y_flex_R_div = norm2d(y_flex_R)
y_flex_R = [y_flex_R[0]/y_flex_R_div,y_flex_R[1]/y_flex_R_div,y_flex_R[2]/y_flex_R_div]
# x axis is calculated as a cross product of z axis and ankle flexion axis.
R_axis_x = cross(y_flex_R,R_axis_z)
R_axis_x_div = norm2d(R_axis_x)
R_axis_x = [R_axis_x[0]/R_axis_x_div,R_axis_x[1]/R_axis_x_div,R_axis_x[2]/R_axis_x_div]
# y axis is then perpendicularly calculated from z axis and x axis. and normalized.
R_axis_y = cross(R_axis_z,R_axis_x)
R_axis_y_div = norm2d(R_axis_y)
R_axis_y = [R_axis_y[0]/R_axis_y_div,R_axis_y[1]/R_axis_y_div,R_axis_y[2]/R_axis_y_div]
R_foot_axis = [R_axis_x,R_axis_y,R_axis_z]
# Left
# z axis is from TOE marker to AJC. and normalized it.
L_axis_z = [ankle_JC_L[0]-TOE_L[0],ankle_JC_L[1]-TOE_L[1],ankle_JC_L[2]-TOE_L[2]]
L_axis_z_div = norm2d(L_axis_z)
L_axis_z = [L_axis_z[0]/L_axis_z_div,L_axis_z[1]/L_axis_z_div,L_axis_z[2]/L_axis_z_div]
# bring the flexion axis of ankle axes from AnkleJointCenter function. and normalized it.
y_flex_L = [ankle_flexion_L[0]-ankle_JC_L[0],ankle_flexion_L[1]-ankle_JC_L[1],ankle_flexion_L[2]-ankle_JC_L[2]]
y_flex_L_div = norm2d(y_flex_L)
y_flex_L = [y_flex_L[0]/y_flex_L_div,y_flex_L[1]/y_flex_L_div,y_flex_L[2]/y_flex_L_div]
# x axis is calculated as a cross product of z axis and ankle flexion axis.
L_axis_x = cross(y_flex_L,L_axis_z)
L_axis_x_div = norm2d(L_axis_x)
L_axis_x = [L_axis_x[0]/L_axis_x_div,L_axis_x[1]/L_axis_x_div,L_axis_x[2]/L_axis_x_div]
# y axis is then perpendicularly calculated from z axis and x axis. and normalized.
L_axis_y = cross(L_axis_z,L_axis_x)
L_axis_y_div = norm2d(L_axis_y)
L_axis_y = [L_axis_y[0]/L_axis_y_div,L_axis_y[1]/L_axis_y_div,L_axis_y[2]/L_axis_y_div]
L_foot_axis = [L_axis_x,L_axis_y,L_axis_z]
foot_axis = [R_foot_axis,L_foot_axis]
# Apply static offset angle to the incorrect foot axes
# static offset angle are taken from static_info variable in radians.
R_alpha = vsk['RightStaticRotOff']
R_beta = vsk['RightStaticPlantFlex']
#R_gamma = static_info[0][2]
L_alpha = vsk['LeftStaticRotOff']
L_beta = vsk['LeftStaticPlantFlex']
#L_gamma = static_info[1][2]
R_alpha = np.around(math.degrees(R_alpha),decimals=5)
R_beta = np.around(math.degrees(R_beta),decimals=5)
#R_gamma = np.around(math.degrees(static_info[0][2]),decimals=5)
L_alpha = np.around(math.degrees(L_alpha),decimals=5)
L_beta = np.around(math.degrees(L_beta),decimals=5)
#L_gamma = np.around(math.degrees(static_info[1][2]),decimals=5)
R_alpha = -math.radians(R_alpha)
R_beta = math.radians(R_beta)
#R_gamma = 0
L_alpha = math.radians(L_alpha)
L_beta = math.radians(L_beta)
#L_gamma = 0
R_axis = [[(R_foot_axis[0][0]),(R_foot_axis[0][1]),(R_foot_axis[0][2])],
[(R_foot_axis[1][0]),(R_foot_axis[1][1]),(R_foot_axis[1][2])],
[(R_foot_axis[2][0]),(R_foot_axis[2][1]),(R_foot_axis[2][2])]]
L_axis = [[(L_foot_axis[0][0]),(L_foot_axis[0][1]),(L_foot_axis[0][2])],
[(L_foot_axis[1][0]),(L_foot_axis[1][1]),(L_foot_axis[1][2])],
[(L_foot_axis[2][0]),(L_foot_axis[2][1]),(L_foot_axis[2][2])]]
# rotate incorrect foot axis around y axis first.
# right
R_rotmat = [[(math.cos(R_beta)*R_axis[0][0]+math.sin(R_beta)*R_axis[2][0]),
(math.cos(R_beta)*R_axis[0][1]+math.sin(R_beta)*R_axis[2][1]),
(math.cos(R_beta)*R_axis[0][2]+math.sin(R_beta)*R_axis[2][2])],
[R_axis[1][0],R_axis[1][1],R_axis[1][2]],
[(-1*math.sin(R_beta)*R_axis[0][0]+math.cos(R_beta)*R_axis[2][0]),
(-1*math.sin(R_beta)*R_axis[0][1]+math.cos(R_beta)*R_axis[2][1]),
(-1*math.sin(R_beta)*R_axis[0][2]+math.cos(R_beta)*R_axis[2][2])]]
# left
L_rotmat = [[(math.cos(L_beta)*L_axis[0][0]+math.sin(L_beta)*L_axis[2][0]),
(math.cos(L_beta)*L_axis[0][1]+math.sin(L_beta)*L_axis[2][1]),
(math.cos(L_beta)*L_axis[0][2]+math.sin(L_beta)*L_axis[2][2])],
[L_axis[1][0],L_axis[1][1],L_axis[1][2]],
[(-1*math.sin(L_beta)*L_axis[0][0]+math.cos(L_beta)*L_axis[2][0]),
(-1*math.sin(L_beta)*L_axis[0][1]+math.cos(L_beta)*L_axis[2][1]),
(-1*math.sin(L_beta)*L_axis[0][2]+math.cos(L_beta)*L_axis[2][2])]]
# rotate incorrect foot axis around x axis next.
# right
R_rotmat = [[R_rotmat[0][0],R_rotmat[0][1],R_rotmat[0][2]],
[(math.cos(R_alpha)*R_rotmat[1][0]-math.sin(R_alpha)*R_rotmat[2][0]),
(math.cos(R_alpha)*R_rotmat[1][1]-math.sin(R_alpha)*R_rotmat[2][1]),
(math.cos(R_alpha)*R_rotmat[1][2]-math.sin(R_alpha)*R_rotmat[2][2])],
[(math.sin(R_alpha)*R_rotmat[1][0]+math.cos(R_alpha)*R_rotmat[2][0]),
(math.sin(R_alpha)*R_rotmat[1][1]+math.cos(R_alpha)*R_rotmat[2][1]),
(math.sin(R_alpha)*R_rotmat[1][2]+math.cos(R_alpha)*R_rotmat[2][2])]]
# left
L_rotmat = [[L_rotmat[0][0],L_rotmat[0][1],L_rotmat[0][2]],
[(math.cos(L_alpha)*L_rotmat[1][0]-math.sin(L_alpha)*L_rotmat[2][0]),
(math.cos(L_alpha)*L_rotmat[1][1]-math.sin(L_alpha)*L_rotmat[2][1]),
(math.cos(L_alpha)*L_rotmat[1][2]-math.sin(L_alpha)*L_rotmat[2][2])],
[(math.sin(L_alpha)*L_rotmat[1][0]+math.cos(L_alpha)*L_rotmat[2][0]),
(math.sin(L_alpha)*L_rotmat[1][1]+math.cos(L_alpha)*L_rotmat[2][1]),
(math.sin(L_alpha)*L_rotmat[1][2]+math.cos(L_alpha)*L_rotmat[2][2])]]
# Bring each x,y,z axis from rotation axes
R_axis_x = R_rotmat[0]
R_axis_y = R_rotmat[1]
R_axis_z = R_rotmat[2]
L_axis_x = L_rotmat[0]
L_axis_y = L_rotmat[1]
L_axis_z = L_rotmat[2]
# Attach each axis to the origin
R_axis_x = [R_axis_x[0]+R[0],R_axis_x[1]+R[1],R_axis_x[2]+R[2]]
R_axis_y = [R_axis_y[0]+R[0],R_axis_y[1]+R[1],R_axis_y[2]+R[2]]
R_axis_z = [R_axis_z[0]+R[0],R_axis_z[1]+R[1],R_axis_z[2]+R[2]]
R_foot_axis = [R_axis_x,R_axis_y,R_axis_z]
L_axis_x = [L_axis_x[0]+L[0],L_axis_x[1]+L[1],L_axis_x[2]+L[2]]
L_axis_y = [L_axis_y[0]+L[0],L_axis_y[1]+L[1],L_axis_y[2]+L[2]]
L_axis_z = [L_axis_z[0]+L[0],L_axis_z[1]+L[1],L_axis_z[2]+L[2]]
L_foot_axis = [L_axis_x,L_axis_y,L_axis_z]
foot_axis = [R_foot_axis,L_foot_axis]
return [R,L,foot_axis]
# Upperbody Coordinate System
def headJC(frame,vsk=None):
"""Calculate the head joint axis function.
Takes in a dictionary of x,y,z positions and marker names.
Calculates the head joint center and returns the head joint center and axis.
Markers used: LFHD, RFHD, LBHD, RBHD
Subject Measurement values used: HeadOffset
Parameters
----------
frame : dict
Dictionaries of marker lists.
vsk : dict, optional
A dictionary containing subject measurements from a VSK file.
Returns
-------
head_axis, origin : array
Returns an array containing a 1x3x3 array containing the x, y, z axis
components of the head joint center, and a 1x3 array containing the
head origin x, y, z position.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import headJC
>>> vsk = { 'HeadOffset': 0.2571990469310653 }
>>> frame = {'RFHD': np.array([325.82983398, 402.55450439, 1722.49816895]),
... 'LFHD': np.array([184.55158997, 409.68713379, 1721.34289551]),
... 'RBHD': np.array([304.39898682, 242.91339111, 1694.97497559]),
... 'LBHD': np.array([197.8621521, 251.28889465, 1696.90197754])}
>>> [np.around(arr,8) for arr in headJC(frame,vsk)] #doctest: +NORMALIZE_WHITESPACE
[array([[ 255.21685583, 407.11593888, 1721.82538439],
[ 254.19105385, 406.14680918, 1721.91767712],
[ 255.1903437 , 406.21600904, 1722.91599129]]),
array([ 255.19071198, 406.12081909, 1721.92053223])]
"""
#Get Global Values
head_off = vsk['HeadOffset']
head_off = -1*head_off
#Get the marker positions used for joint calculation
LFHD = frame['LFHD']
RFHD = frame['RFHD']
LBHD = frame['LBHD']
RBHD = frame['RBHD']
#get the midpoints of the head to define the sides
front = [(LFHD[0]+RFHD[0])/2.0, (LFHD[1]+RFHD[1])/2.0,(LFHD[2]+RFHD[2])/2.0]
back = [(LBHD[0]+RBHD[0])/2.0, (LBHD[1]+RBHD[1])/2.0,(LBHD[2]+RBHD[2])/2.0]
left = [(LFHD[0]+LBHD[0])/2.0, (LFHD[1]+LBHD[1])/2.0,(LFHD[2]+LBHD[2])/2.0]
right = [(RFHD[0]+RBHD[0])/2.0, (RFHD[1]+RBHD[1])/2.0,(RFHD[2]+RBHD[2])/2.0]
origin = front
#Get the vectors from the sides with primary x axis facing front
#First get the x direction
x_vec = [front[0]-back[0],front[1]-back[1],front[2]-back[2]]
x_vec_div = norm2d(x_vec)
x_vec = [x_vec[0]/x_vec_div,x_vec[1]/x_vec_div,x_vec[2]/x_vec_div]
#get the direction of the y axis
y_vec = [left[0]-right[0],left[1]-right[1],left[2]-right[2]]
y_vec_div = norm2d(y_vec)
y_vec = [y_vec[0]/y_vec_div,y_vec[1]/y_vec_div,y_vec[2]/y_vec_div]
# get z axis by cross-product of x axis and y axis.
z_vec = cross(x_vec,y_vec)
z_vec_div = norm2d(z_vec)
z_vec = [z_vec[0]/z_vec_div,z_vec[1]/z_vec_div,z_vec[2]/z_vec_div]
# make sure all x,y,z axis is orthogonal each other by cross-product
y_vec = cross(z_vec,x_vec)
y_vec_div = norm2d(y_vec)
y_vec = [y_vec[0]/y_vec_div,y_vec[1]/y_vec_div,y_vec[2]/y_vec_div]
x_vec = cross(y_vec,z_vec)
x_vec_div = norm2d(x_vec)
x_vec = [x_vec[0]/x_vec_div,x_vec[1]/x_vec_div,x_vec[2]/x_vec_div]
# rotate the head axis around y axis about head offset angle.
x_vec_rot = [x_vec[0]*math.cos(head_off)+z_vec[0]*math.sin(head_off),
x_vec[1]*math.cos(head_off)+z_vec[1]*math.sin(head_off),
x_vec[2]*math.cos(head_off)+z_vec[2]*math.sin(head_off)]
y_vec_rot = [y_vec[0],y_vec[1],y_vec[2]]
z_vec_rot = [x_vec[0]*-1*math.sin(head_off)+z_vec[0]*math.cos(head_off),
x_vec[1]*-1*math.sin(head_off)+z_vec[1]*math.cos(head_off),
x_vec[2]*-1*math.sin(head_off)+z_vec[2]*math.cos(head_off)]
#Add the origin back to the vector to get it in the right position
x_axis = [x_vec_rot[0]+origin[0],x_vec_rot[1]+origin[1],x_vec_rot[2]+origin[2]]
y_axis = [y_vec_rot[0]+origin[0],y_vec_rot[1]+origin[1],y_vec_rot[2]+origin[2]]
z_axis = [z_vec_rot[0]+origin[0],z_vec_rot[1]+origin[1],z_vec_rot[2]+origin[2]]
head_axis =[x_axis,y_axis,z_axis]
#Return the three axis and origin
return [head_axis,origin]
def thoraxJC(frame):
"""Calculate the thorax joint axis function.
Takes in a dictionary of x,y,z positions and marker names.
Calculates the thorax joint center and returns the thorax joint center and axis.
Markers used: CLAV, C7, STRN, T10
Parameters
----------
frame : dict
Dictionaries of marker lists.
Returns
-------
thorax_axis, origin : array
Returns an array which contains a 2x3 array representing the right thorax joint center (1x3)
and the left thorax joint center (1x3), which is then followed by a 6x3 array representing the
right thorax x, y, z axis components (3x3) followed by the the left thorax x, y, z axis components (3x3).
Examples
--------
>>> import numpy as np
>>> from .pyCGM import thoraxJC
>>> frame = {'C7': np.array([256.78051758, 371.28042603, 1459.70300293]),
... 'T10': np.array([228.64323425, 192.32041931, 1279.6418457]),
... 'CLAV': np.array([256.78051758, 371.28042603, 1459.70300293]),
... 'STRN': np.array([251.67492676, 414.10391235, 1292.08508301])}
>>> [np.around(arr,8) for arr in thoraxJC(frame)] #doctest: +NORMALIZE_WHITESPACE
[array([[ 256.34546332, 365.72239585, 1461.92089119],
[ 257.26637166, 364.696025 , 1462.23472346],
[ 256.18427318, 364.43288984, 1461.36304534]]),
array([ 256.27295428, 364.79605749, 1462.29053923])]
"""
#Set or get a marker size as mm
marker_size = (14.0) /2.0
#Get the marker positions used for joint calculation
CLAV = frame['CLAV']
C7 = frame['C7']
STRN = frame['STRN']
T10 = frame['T10']
#Temporary origin since the origin will be moved at the end
origin = CLAV
#Get the midpoints of the upper and lower sections, as well as the front and back sections
upper = [(CLAV[0]+C7[0])/2.0,(CLAV[1]+C7[1])/2.0,(CLAV[2]+C7[2])/2.0]
lower = [(STRN[0]+T10[0])/2.0,(STRN[1]+T10[1])/2.0,(STRN[2]+T10[2])/2.0]
front = [(CLAV[0]+STRN[0])/2.0,(CLAV[1]+STRN[1])/2.0,(CLAV[2]+STRN[2])/2.0]
back = [(T10[0]+C7[0])/2.0,(T10[1]+C7[1])/2.0,(T10[2]+C7[2])/2.0]
C7_CLAV = [C7[0]-CLAV[0],C7[1]-CLAV[1],C7[2]-CLAV[2]]
C7_CLAV = C7_CLAV/norm3d(C7_CLAV)
#Get the direction of the primary axis Z (facing down)
z_direc = [lower[0]-upper[0],lower[1]-upper[1],lower[2]-upper[2]]
z_vec = z_direc/norm3d(z_direc)
#The secondary axis X is from back to front
x_direc = [front[0]-back[0],front[1]-back[1],front[2]-back[2]]
x_vec = x_direc/norm3d(x_direc)
# make sure all the axes are orthogonal each othe by cross-product
y_direc = cross(z_vec,x_vec)
y_vec = y_direc/norm3d(y_direc)
x_direc = cross(y_vec,z_vec)
x_vec = x_direc/norm3d(x_direc)
z_direc = cross(x_vec,y_vec)
z_vec = z_direc/norm3d(z_direc)
# move the axes about offset along the x axis.
offset = [x_vec[0]*marker_size,x_vec[1]*marker_size,x_vec[2]*marker_size]
#Add the CLAV back to the vector to get it in the right position before translating it
origin = [CLAV[0]-offset[0],CLAV[1]-offset[1],CLAV[2]-offset[2]]
# Attach all the axes to the origin.
x_axis = [x_vec[0]+origin[0],x_vec[1]+origin[1],x_vec[2]+origin[2]]
y_axis = [y_vec[0]+origin[0],y_vec[1]+origin[1],y_vec[2]+origin[2]]
z_axis = [z_vec[0]+origin[0],z_vec[1]+origin[1],z_vec[2]+origin[2]]
thorax_axis = [x_axis,y_axis,z_axis]
return [thorax_axis,origin]
def findwandmarker(frame,thorax):
"""Calculate the wand marker function.
Takes in a dictionary of x,y,z positions and marker names.
and takes the thorax axis.
Calculates the wand marker for calculating the clavicle.
Markers used: RSHO, LSHO
Parameters
----------
frame : dict
Dictionaries of marker lists.
thorax : array
The x,y,z position of the thorax.
Returns
-------
wand : array
Returns wand marker position for calculating knee joint center later.
The wand marker position is returned as a 2x3 array containing the
right wand marker x,y,z positions (1x3) followed by the left
wand marker x,y,z positions (1x3).
Examples
--------
>>> import numpy as np
>>> from .pyCGM import findwandmarker
>>> frame = {'RSHO': np.array([428.88496562, 270.552948, 1500.73010254]),
... 'LSHO': np.array([68.24668121, 269.01049805, 1510.1072998])}
>>> thorax = [[[256.23991128535846, 365.30496976939753, 1459.662169500559],
... [257.1435863244796, 364.21960599061947, 1459.5889787129829],
... [256.08430536580352, 354.32180498523223, 1458.6575930699294]],
... [256.14981023656401, 364.30906039339868, 1459.6553639290375]]
>>> [np.around(arr,8) for arr in findwandmarker(frame,thorax)]
[array([ 255.92550246, 364.32269503, 1460.6297869 ]), array([ 256.42380097, 364.27770361, 1460.61658494])]
"""
thorax_origin = thorax[1]
tho_axis_x = thorax[0][0]
#REQUIRED MARKERS:
# RSHO
# LSHO
RSHO = frame['RSHO']
LSHO = frame['LSHO']
# Calculate for getting a wand marker
# bring x axis from thorax axis
axis_x_vec = [tho_axis_x[0]-thorax_origin[0],tho_axis_x[1]-thorax_origin[1],tho_axis_x[2]-thorax_origin[2]]
axis_x_vec = axis_x_vec/norm3d(axis_x_vec)
RSHO_vec = [RSHO[0]-thorax_origin[0],RSHO[1]-thorax_origin[1],RSHO[2]-thorax_origin[2]]
LSHO_vec = [LSHO[0]-thorax_origin[0],LSHO[1]-thorax_origin[1],LSHO[2]-thorax_origin[2]]
RSHO_vec = RSHO_vec/norm3d(RSHO_vec)
LSHO_vec = LSHO_vec/norm3d(LSHO_vec)
R_wand = cross(RSHO_vec,axis_x_vec)
R_wand = R_wand/norm3d(R_wand)
R_wand = [thorax_origin[0]+R_wand[0],
thorax_origin[1]+R_wand[1],
thorax_origin[2]+R_wand[2]]
L_wand = cross(axis_x_vec,LSHO_vec)
L_wand = L_wand/norm3d(L_wand)
L_wand = [thorax_origin[0]+L_wand[0],
thorax_origin[1]+L_wand[1],
thorax_origin[2]+L_wand[2]]
wand = [R_wand,L_wand]
return wand
def findshoulderJC(frame,thorax,wand,vsk=None):
"""Calculate the Shoulder joint center function.
Takes in a dictionary of x,y,z positions and marker names.
and takes the thorax axis and wand marker.
Calculate each shoulder joint center and returns it.
Markers used: RSHO, LSHO
Subject Measurement values used: RightShoulderOffset, LeftShoulderOffset
Parameters
----------
frame : dict
Dictionaries of marker lists.
thorax : array
Array containing several x,y,z markers for the thorax.
wand : array
Array containing two x,y,z markers for wand.
vsk : dict, optional
A dictionary containing subject measurements from a VSK file.
Returns
-------
Sho_JC : array
Returns a 2x3 array representing the right shoulder joint
center x, y, z, marker positions (1x3) followed by the left
shoulder joint center x, y, z, marker positions (1x3).
Examples
--------
>>> import numpy as np
>>> from .pyCGM import findshoulderJC
>>> vsk = { 'RightShoulderOffset' : 40.0, 'LeftShoulderOffset' : 40.0 }
>>> frame = {'RSHO': np.array([428.88496562, 270.552948, 1500.73010254]),
... 'LSHO': np.array([68.24668121, 269.01049805, 1510.1072998])}
>>> thorax = [[[256.23991128535846, 365.30496976939753, 1459.662169500559],
... [257.1435863244796, 364.21960599061947, 1459.5889787129829],
... [256.08430536580352, 354.32180498523223, 1458.6575930699294]],
... [256.14981023656401, 364.30906039339868, 1459.6553639290375]]
>>> wand = [[255.92550222678443, 364.32269504976051, 1460.6297868417887],
... [256.42380097331767, 364.27770361353487, 1460.6165849382387]]
>>> findshoulderJC(frame,thorax,wand,vsk)
[array([ 429.66971693, 275.06718208, 1453.95397769]), array([ 64.51952733, 274.93442161, 1463.63133339])]
"""
thorax_origin = thorax[1]
#Get Subject Measurement Values
R_shoulderoffset = vsk['RightShoulderOffset']
L_shoulderoffset = vsk['LeftShoulderOffset']
mm = 7.0
R_delta =( R_shoulderoffset + mm )
L_delta =( L_shoulderoffset + mm )
#REQUIRED MARKERS:
# RSHO
# LSHO
RSHO = frame['RSHO']
LSHO = frame['LSHO']
# Calculate the shoulder joint center first.
R_wand = wand[0]
L_wand = wand[1]
R_Sho_JC = findJointC(R_wand,thorax_origin,RSHO,R_delta)
L_Sho_JC = findJointC(L_wand,thorax_origin,LSHO,L_delta)
Sho_JC = [R_Sho_JC,L_Sho_JC]
return Sho_JC
def shoulderAxisCalc(frame,thorax,shoulderJC,wand):
"""Calculate the Shoulder joint axis ( Clavicle) function.
Takes in a dictionary of x,y,z positions and marker names, as well as an index.
and takes the thorax axis and wand marker and then, shoulder joint center.
Calculate each shoulder joint axis and returns it.
Parameters
----------
frame : dict
Dictionaries of marker lists.
thorax : array
The x,y,z position of the thorax.
thorax = [[R_thorax joint center x,y,z position],
[L_thorax_joint center x,y,z position],
[[R_thorax x axis x,y,z position],
[R_thorax,y axis x,y,z position],
[R_thorax z axis x,y,z position]]]
shoulderJC : array
The x,y,z position of the shoulder joint center.
shoulderJC = [[R shoulder joint center x,y,z position],
[L shoulder joint center x,y,z position]]
wand : array
The x,y,z position of the wand.
wand = [[R wand x,y,z, position],
[L wand x,y,z position]]
Returns
-------
shoulderJC, axis : array
Returns the Shoulder joint center and axis in three array
shoulder_JC = [[[[R_shoulder x axis, x,y,z position],
[R_shoulder y axis, x,y,z position],
[R_shoulder z axis, x,y,z position]],
[[L_shoulder x axis, x,y,z position],
[L_shoulder y axis, x,y,z position],
[L_shoulder z axis, x,y,z position]]],
[R_shoulderJC_x, R_shoulderJC_y, R_shoulderJC_z],
[L_shoulderJC_x,L_shoulderJC_y,L_shoulderJC_z]]
Examples
--------
>>> import numpy as np
>>> from .pyCGM import shoulderAxisCalc
>>> frame = None
>>> thorax = [[[256.23991128535846, 365.30496976939753, 1459.662169500559],
... [257.1435863244796, 364.21960599061947, 1459.5889787129829],
... [256.08430536580352, 354.32180498523223, 1458.6575930699294]],
... [256.14981023656401, 364.30906039339868, 1459.6553639290375]]
>>> shoulderJC = [np.array([429.66951995, 275.06718615, 1453.953978131]),
... np.array([64.51952734, 274.93442161, 1463.6313334])]
>>> wand = [[255.92550222678443, 364.32269504976051, 1460.6297868417887],
... [256.42380097331767, 364.27770361353487, 1460.6165849382387]]
>>> [np.around(arr,8) for arr in shoulderAxisCalc(frame,thorax,shoulderJC,wand)] #doctest: +NORMALIZE_WHITESPACE
[array([[ 429.66951995, 275.06718615, 1453.95397813],
[ 64.51952734, 274.93442161, 1463.6313334 ]]),
array([[[ 430.12731331, 275.95136619, 1454.04698829],
[ 429.68621685, 275.16323377, 1452.95874144],
[ 428.78061813, 275.52435188, 1453.98318503]],
[[ 64.10400325, 275.83192827, 1463.77905455],
[ 64.59882849, 274.80838068, 1464.62018375],
[ 65.42564602, 275.3570272 , 1463.61253313]]])]
"""
thorax_origin = thorax[1]
R_shoulderJC = shoulderJC[0]
L_shoulderJC = shoulderJC[1]
R_wand = wand[0]
L_wand = wand[1]
R_wand_direc = [R_wand[0]-thorax_origin[0],R_wand[1]-thorax_origin[1],R_wand[2]-thorax_origin[2]]
L_wand_direc = [L_wand[0]-thorax_origin[0],L_wand[1]-thorax_origin[1],L_wand[2]-thorax_origin[2]]
R_wand_direc = R_wand_direc/norm3d(R_wand_direc)
L_wand_direc = L_wand_direc/norm3d(L_wand_direc)
# Right
#Get the direction of the primary axis Z,X,Y
z_direc = [(thorax_origin[0]-R_shoulderJC[0]),
(thorax_origin[1]-R_shoulderJC[1]),
(thorax_origin[2]-R_shoulderJC[2])]
z_direc = z_direc/norm3d(z_direc)
y_direc = [R_wand_direc[0]*-1,R_wand_direc[1]*-1,R_wand_direc[2]*-1]
x_direc = cross(y_direc,z_direc)
x_direc = x_direc/norm3d(x_direc)
y_direc = cross(z_direc,x_direc)
y_direc = y_direc/norm3d(y_direc)
# backwards to account for marker size
x_axis = [x_direc[0]+R_shoulderJC[0],x_direc[1]+R_shoulderJC[1],x_direc[2]+R_shoulderJC[2]]
y_axis = [y_direc[0]+R_shoulderJC[0],y_direc[1]+R_shoulderJC[1],y_direc[2]+R_shoulderJC[2]]
z_axis = [z_direc[0]+R_shoulderJC[0],z_direc[1]+R_shoulderJC[1],z_direc[2]+R_shoulderJC[2]]
R_axis = [x_axis,y_axis,z_axis]
# Left
#Get the direction of the primary axis Z,X,Y
z_direc = [(thorax_origin[0]-L_shoulderJC[0]),
(thorax_origin[1]-L_shoulderJC[1]),
(thorax_origin[2]-L_shoulderJC[2])]
z_direc = z_direc/norm3d(z_direc)
y_direc = L_wand_direc
x_direc = cross(y_direc,z_direc)
x_direc = x_direc/norm3d(x_direc)
y_direc = cross(z_direc,x_direc)
y_direc = y_direc/norm3d(y_direc)
# backwards to account for marker size
x_axis = [x_direc[0]+L_shoulderJC[0],x_direc[1]+L_shoulderJC[1],x_direc[2]+L_shoulderJC[2]]
y_axis = [y_direc[0]+L_shoulderJC[0],y_direc[1]+L_shoulderJC[1],y_direc[2]+L_shoulderJC[2]]
z_axis = [z_direc[0]+L_shoulderJC[0],z_direc[1]+L_shoulderJC[1],z_direc[2]+L_shoulderJC[2]]
L_axis = [x_axis,y_axis,z_axis]
axis = [R_axis,L_axis]
return [shoulderJC,axis]
def elbowJointCenter(frame,thorax,shoulderJC,wand,vsk=None):
"""Calculate the Elbow joint axis ( Humerus) function.
Takes in a dictionary of x,y,z positions and marker names, as well as an index.
and takes the thorax axis and wand marker and then, shoulder joint center.
Calculate each elbow joint axis and returns it.
Markers used: RSHO, LSHO, RELB, LELB, RWRA ,RWRB, LWRA, LWRB
Subject Measurement values used: RightElbowWidth, LeftElbowWidth
Parameters
----------
frame
Dictionaries of marker lists.
thorax : array
The x,y,z position of the thorax.
shoulderJC : array
The x,y,z position of the shoulder joint center.
wand : array
The x,y,z position of the wand.
vsk : dict, optional
A dictionary containing subject measurements from a VSK file.
Returns
-------
origin, axis, wrist_O : array
Returns an array containing a 2x3 array containing the right
elbow x, y, z marker positions (1x3), and the left elbow x, y,
z marker positions (1x3), which is followed by a 2x3x3 array containing
right elbow x, y, z axis components (1x3x3) followed by the left x, y, z axis
components (1x3x3) which is then followed by the right wrist joint center
x, y, z marker positions (1x3), and the left wrist joint center x, y, z marker positions (1x3).
Examples
--------
>>> import numpy as np
>>> from .pyCGM import elbowJointCenter
>>> frame = {'RSHO': np.array([428.88496562, 270.552948, 1500.73010254]),
... 'LSHO': np.array([68.24668121, 269.01049805, 1510.1072998]),
... 'RELB': np.array([658.90338135, 326.07580566, 1285.28515625]),
... 'LELB': np.array([-156.32162476, 335.2593313, 1287.39916992]),
... 'RWRA': np.array([776.51898193,495.68103027, 1108.38464355]),
... 'RWRB': np.array([830.9072876, 436.75341797, 1119.11901855]),
... 'LWRA': np.array([-249.28146362, 525.32977295, 1117.09057617]),
... 'LWRB': np.array([-311.77532959, 477.22512817, 1125.1619873])}
>>> thorax = [[[256.23991128535846, 365.30496976939753, 1459.662169500559],
... [257.1435863244796, 364.21960599061947, 1459.5889787129829],
... [256.08430536580352, 354.32180498523223, 1458.6575930699294]],
... [256.14981023656401, 364.30906039339868, 1459.6553639290375]]
>>> shoulderJC = [np.array([429.66951995, 275.06718615, 1453.953978131]),
... np.array([64.51952734, 274.93442161, 1463.6313334])]
>>> wand = [[255.92550222678443, 364.32269504976051, 1460.6297868417887],
... [256.42380097331767, 364.27770361353487, 1460.6165849382387]]
>>> vsk = { 'RightElbowWidth': 74.0, 'LeftElbowWidth': 74.0,
... 'RightWristWidth': 55.0, 'LeftWristWidth': 55.0}
>>> [np.around(arr,8) for arr in elbowJointCenter(frame,thorax,shoulderJC,wand,vsk)] #doctest: +NORMALIZE_WHITESPACE
[array([[ 633.66707588, 304.95542115, 1256.07799541],
[-129.16966701, 316.86794653, 1258.06440971]]),
array([[[ 633.81070139, 303.96579005, 1256.07658507],
[ 634.35247992, 305.05386589, 1256.79947301],
[ 632.95321804, 304.8508319 , 1256.77043175]],
[[-129.32406616, 315.88151182, 1258.00866516],
[-128.45131692, 316.79460332, 1257.37260488],
[-128.4913352 , 316.72108835, 1258.78433931]]]),
array([[ 793.32814303, 451.29134788, 1084.4325513 ],
[-272.45939135, 485.80149026, 1091.36664789]])]
"""
RSHO = frame['RSHO']
LSHO = frame['LSHO']
RELB = frame['RELB']
LELB = frame['LELB']
RWRA = frame['RWRA']
RWRB = frame['RWRB']
LWRA = frame['LWRA']
LWRB = frame['LWRB']
R_elbowwidth = vsk['RightElbowWidth']
L_elbowwidth = vsk['LeftElbowWidth']
R_elbowwidth = R_elbowwidth * -1
L_elbowwidth = L_elbowwidth
mm = 7.0
R_delta =( (R_elbowwidth/2.0)-mm )
L_delta =( (L_elbowwidth/2.0)+mm )
RWRI = [(RWRA[0]+RWRB[0])/2.0,(RWRA[1]+RWRB[1])/2.0,(RWRA[2]+RWRB[2])/2.0]
LWRI = [(LWRA[0]+LWRB[0])/2.0,(LWRA[1]+LWRB[1])/2.0,(LWRA[2]+LWRB[2])/2.0]
# make humerus axis
tho_y_axis = np.subtract(thorax[0][1],thorax[1])
R_sho_mod = [(RSHO[0]-R_delta*tho_y_axis[0]-RELB[0]),
(RSHO[1]-R_delta*tho_y_axis[1]-RELB[1]),
(RSHO[2]-R_delta*tho_y_axis[2]-RELB[2])]
L_sho_mod = [(LSHO[0]+L_delta*tho_y_axis[0]-LELB[0]),
(LSHO[1]+L_delta*tho_y_axis[1]-LELB[1]),
(LSHO[2]+L_delta*tho_y_axis[2]-LELB[2])]
# right axis
z_axis = R_sho_mod
z_axis_div = norm2d(z_axis)
z_axis = [z_axis[0]/z_axis_div,z_axis[1]/z_axis_div,z_axis[2]/z_axis_div]
# this is reference axis
x_axis = np.subtract(RWRI,RELB)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
y_axis = cross(z_axis,x_axis)
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
x_axis = cross(y_axis,z_axis)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
R_axis = [x_axis,y_axis,z_axis]
# left axis
z_axis = np.subtract(L_sho_mod,LELB)
z_axis_div = norm2d(z_axis)
z_axis = [z_axis[0]/z_axis_div,z_axis[1]/z_axis_div,z_axis[2]/z_axis_div]
# this is reference axis
x_axis = L_sho_mod
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
y_axis = cross(z_axis,x_axis)
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
x_axis = cross(y_axis,z_axis)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
L_axis = [x_axis,y_axis,z_axis]
RSJC = shoulderJC[0]
LSJC = shoulderJC[1]
# make the construction vector for finding Elbow joint center
R_con_1 = np.subtract(RSJC,RELB)
R_con_1_div = norm2d(R_con_1)
R_con_1 = [R_con_1[0]/R_con_1_div,R_con_1[1]/R_con_1_div,R_con_1[2]/R_con_1_div]
R_con_2 = np.subtract(RWRI,RELB)
R_con_2_div = norm2d(R_con_2)
R_con_2 = [R_con_2[0]/R_con_2_div,R_con_2[1]/R_con_2_div,R_con_2[2]/R_con_2_div]
R_cons_vec = cross(R_con_1,R_con_2)
R_cons_vec_div = norm2d(R_cons_vec)
R_cons_vec = [R_cons_vec[0]/R_cons_vec_div,R_cons_vec[1]/R_cons_vec_div,R_cons_vec[2]/R_cons_vec_div]
R_cons_vec = [R_cons_vec[0]*500+RELB[0],R_cons_vec[1]*500+RELB[1],R_cons_vec[2]*500+RELB[2]]
L_con_1 = np.subtract(LSJC,LELB)
L_con_1_div = norm2d(L_con_1)
L_con_1 = [L_con_1[0]/L_con_1_div,L_con_1[1]/L_con_1_div,L_con_1[2]/L_con_1_div]
L_con_2 = np.subtract(LWRI,LELB)
L_con_2_div = norm2d(L_con_2)
L_con_2 = [L_con_2[0]/L_con_2_div,L_con_2[1]/L_con_2_div,L_con_2[2]/L_con_2_div]
L_cons_vec = cross(L_con_1,L_con_2)
L_cons_vec_div = norm2d(L_cons_vec)
L_cons_vec = [L_cons_vec[0]/L_cons_vec_div,L_cons_vec[1]/L_cons_vec_div,L_cons_vec[2]/L_cons_vec_div]
L_cons_vec = [L_cons_vec[0]*500+LELB[0],L_cons_vec[1]*500+LELB[1],L_cons_vec[2]*500+LELB[2]]
REJC = findJointC(R_cons_vec,RSJC,RELB,R_delta)
LEJC = findJointC(L_cons_vec,LSJC,LELB,L_delta)
# this is radius axis for humerus
# right
x_axis = np.subtract(RWRA,RWRB)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
z_axis = np.subtract(REJC,RWRI)
z_axis_div = norm2d(z_axis)
z_axis = [z_axis[0]/z_axis_div,z_axis[1]/z_axis_div,z_axis[2]/z_axis_div]
y_axis = cross(z_axis,x_axis)
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
x_axis = cross(y_axis,z_axis)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
R_radius = [x_axis,y_axis,z_axis]
# left
x_axis = np.subtract(LWRA,LWRB)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
z_axis = np.subtract(LEJC,LWRI)
z_axis_div = norm2d(z_axis)
z_axis = [z_axis[0]/z_axis_div,z_axis[1]/z_axis_div,z_axis[2]/z_axis_div]
y_axis = cross(z_axis,x_axis)
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
x_axis = cross(y_axis,z_axis)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
L_radius = [x_axis,y_axis,z_axis]
# calculate wrist joint center for humerus
R_wristThickness = vsk['RightWristWidth']
L_wristThickness = vsk['LeftWristWidth']
R_wristThickness = (R_wristThickness / 2.0 + mm )
L_wristThickness = (L_wristThickness / 2.0 + mm )
RWJC = [RWRI[0]+R_wristThickness*R_radius[1][0],RWRI[1]+R_wristThickness*R_radius[1][1],RWRI[2]+R_wristThickness*R_radius[1][2]]
LWJC = [LWRI[0]-L_wristThickness*L_radius[1][0],LWRI[1]-L_wristThickness*L_radius[1][1],LWRI[2]-L_wristThickness*L_radius[1][2]]
# recombine the humerus axis
#right
z_axis = np.subtract(RSJC,REJC)
z_axis_div = norm2d(z_axis)
z_axis = [z_axis[0]/z_axis_div,z_axis[1]/z_axis_div,z_axis[2]/z_axis_div]
x_axis = np.subtract(RWJC,REJC)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
y_axis = cross(x_axis,z_axis)
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
x_axis = cross(y_axis,z_axis)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
# attach each calulcated elbow axis to elbow joint center.
x_axis = [x_axis[0]+REJC[0],x_axis[1]+REJC[1],x_axis[2]+REJC[2]]
y_axis = [y_axis[0]+REJC[0],y_axis[1]+REJC[1],y_axis[2]+REJC[2]]
z_axis = [z_axis[0]+REJC[0],z_axis[1]+REJC[1],z_axis[2]+REJC[2]]
R_axis = [x_axis,y_axis,z_axis]
# left
z_axis = np.subtract(LSJC,LEJC)
z_axis_div = norm2d(z_axis)
z_axis = [z_axis[0]/z_axis_div,z_axis[1]/z_axis_div,z_axis[2]/z_axis_div]
x_axis = np.subtract(LWJC,LEJC)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
y_axis = cross(x_axis,z_axis)
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
x_axis = cross(y_axis,z_axis)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
# attach each calulcated elbow axis to elbow joint center.
x_axis = [x_axis[0]+LEJC[0],x_axis[1]+LEJC[1],x_axis[2]+LEJC[2]]
y_axis = [y_axis[0]+LEJC[0],y_axis[1]+LEJC[1],y_axis[2]+LEJC[2]]
z_axis = [z_axis[0]+LEJC[0],z_axis[1]+LEJC[1],z_axis[2]+LEJC[2]]
L_axis = [x_axis,y_axis,z_axis]
axis = [R_axis,L_axis]
origin = [REJC,LEJC]
wrist_O = [RWJC,LWJC]
return [origin,axis,wrist_O]
def wristJointCenter(frame,shoulderJC,wand,elbowJC):
"""Calculate the Wrist joint axis ( Radius) function.
Takes in a dictionary of x,y,z positions and marker names, as well as an index.
and takes the elbow axis and wand marker and then, shoulder joint center.
Calculate each wrist joint axis and returns it.
Markers used: RSHO, LSHO, RELB, LELB, RWRA ,RWRB, LWRA, LWRB
Parameters
----------
frame : dict
Dictionaries of marker lists.
shoulderJC : array
The x,y,z position of the shoulder joint center.
elbowJC : array
The x,y,z position of the elbow joint center.
wand : array
The x,y,z position of the wand.
Returns
--------
origin, axis : array
Returns the Shoulder joint center and axis in three array
return = [[R_wrist_JC_x, R_wrist_JC_y, R_wrist_JC_z],
[L_wrist_JC_x,L_wrist_JC_y,L_wrist_JC_z],
[[[R_wrist x axis, x,y,z position],
[R_wrist y axis, x,y,z position],
[R_wrist z axis, x,y,z position]],
[[L_wrist x axis, x,y,z position],
[L_wrist y axis, x,y,z position],
[L_wrist z axis, x,y,z position]]]]
Examples
--------
>>> import numpy as np
>>> from .pyCGM import wristJointCenter
>>> frame = {'RSHO': np.array([428.88496562, 270.552948, 1500.73010254]),
... 'LSHO': np.array([68.24668121, 269.01049805, 1510.1072998]),
... 'RELB': np.array([658.90338135, 326.07580566, 1285.28515625]),
... 'LELB': np.array([-156.32162476, 335.2593313, 1287.39916992]),
... 'RWRA': np.array([776.51898193,495.68103027, 1108.38464355]),
... 'RWRB': np.array([830.9072876, 436.75341797, 1119.11901855]),
... 'LWRA': np.array([-249.28146362, 525.32977295, 1117.09057617]),
... 'LWRB': np.array([-311.77532959, 477.22512817, 1125.1619873])}
>>> wand = [[255.92550222678443, 364.32269504976051, 1460.6297868417887],
... [256.42380097331767, 364.27770361353487, 1460.6165849382387]]
>>> shoulderJC = [np.array([429.66951995, 275.06718615, 1453.953978131]),
... np.array([64.51952734, 274.93442161, 1463.6313334])]
>>> elbowJC = [[np.array([633.66707587, 304.95542115, 1256.07799541]),
... np.array([-129.1695218, 316.8671644, 1258.06440717])],
... [[[633.81070138699954, 303.96579004975194, 1256.07658506845],
... [634.35247991784638, 305.05386589332528, 1256.7994730142241],
... [632.95321803901493, 304.85083190737765, 1256.7704317504911]],
... [[-129.32391792749493, 315.88072913249465, 1258.0086629318362],
... [-128.45117135279025, 316.79382333592832, 1257.37260287807],
... [-128.49119037560905, 316.7203088419364, 1258.783373067024]]],
... [[793.32814303250677, 451.29134788252043, 1084.4325513020426],
... [-272.4594189740742, 485.80152210947699, 1091.3666238350822]]]
>>> [np.around(arr,8) for arr in wristJointCenter(frame,shoulderJC,wand,elbowJC)] #doctest: +NORMALIZE_WHITESPACE
[array([[ 793.32814303, 451.29134788, 1084.4325513 ],
[-272.45941897, 485.80152211, 1091.36662384]]),
array([[[ 793.77133728, 450.44879187, 1084.12648231],
[ 794.01354708, 451.38979263, 1085.1540289 ],
[ 792.75038863, 450.76181223, 1085.05367274]],
[[-272.92507295, 485.01202419, 1090.9667996 ],
[-271.74106833, 485.72818103, 1090.67481935],
[-271.94256432, 485.19216661, 1091.96791174]]])]
"""
# Bring Elbow joint center, axes and Wrist Joint Center for calculating Radius Axes
REJC = elbowJC[0][0]
LEJC = elbowJC[0][1]
R_elbow_axis = elbowJC[1][0]
L_elbow_axis = elbowJC[1][1]
R_elbow_flex = [R_elbow_axis[1][0]-REJC[0],R_elbow_axis[1][1]-REJC[1],R_elbow_axis[1][2]-REJC[2]]
L_elbow_flex = [L_elbow_axis[1][0]-LEJC[0],L_elbow_axis[1][1]-LEJC[1],L_elbow_axis[1][2]-LEJC[2]]
RWJC = elbowJC[2][0]
LWJC = elbowJC[2][1]
# this is the axis of radius
# right
y_axis = R_elbow_flex
y_axis = y_axis/ norm3d(y_axis)
z_axis = np.subtract(REJC,RWJC)
z_axis = z_axis/ norm3d(z_axis)
x_axis = cross(y_axis,z_axis)
x_axis = x_axis/ norm3d(x_axis)
z_axis = cross(x_axis,y_axis)
z_axis = z_axis/ norm3d(z_axis)
# Attach all the axes to wrist joint center.
x_axis = [x_axis[0]+RWJC[0],x_axis[1]+RWJC[1],x_axis[2]+RWJC[2]]
y_axis = [y_axis[0]+RWJC[0],y_axis[1]+RWJC[1],y_axis[2]+RWJC[2]]
z_axis = [z_axis[0]+RWJC[0],z_axis[1]+RWJC[1],z_axis[2]+RWJC[2]]
R_axis = [x_axis,y_axis,z_axis]
# left
y_axis = L_elbow_flex
y_axis = y_axis/ norm3d(y_axis)
z_axis = np.subtract(LEJC,LWJC)
z_axis = z_axis/ norm3d(z_axis)
x_axis = cross(y_axis,z_axis)
x_axis = x_axis/ norm3d(x_axis)
z_axis = cross(x_axis,y_axis)
z_axis = z_axis/ norm3d(z_axis)
# Attach all the axes to wrist joint center.
x_axis = [x_axis[0]+LWJC[0],x_axis[1]+LWJC[1],x_axis[2]+LWJC[2]]
y_axis = [y_axis[0]+LWJC[0],y_axis[1]+LWJC[1],y_axis[2]+LWJC[2]]
z_axis = [z_axis[0]+LWJC[0],z_axis[1]+LWJC[1],z_axis[2]+LWJC[2]]
L_axis = [x_axis,y_axis,z_axis]
origin = [RWJC,LWJC]
axis = [R_axis,L_axis]
return [origin,axis]
def handJointCenter(frame,elbowJC,wristJC,vsk=None):
"""Calculate the Hand joint axis ( Hand) function.
Takes in a dictionary of x,y,z positions and marker names.
and takes the elbow axis and wrist axis.
Calculate each Hand joint axis and returns it.
Markers used: RWRA, RWRB, LWRA, LWRB, RFIN, LFIN
Subject Measurement values used: RightHandThickness, LeftHandThickness
Parameters
----------
frame
Dictionaries of marker lists.
elbowJC : array
The x,y,z position of the elbow joint center.
wristJC : array
The x,y,z position of the wrist joint center.
vsk : dict, optional
A dictionary containing subject measurements from a VSK file.
Returns
-------
origin, axis : array
Returns an array containing an array representing the right hand joint center
x, y, z marker positions (1x3), followed by an array containing the
left hand joint center x, y, z marker positions (1x3), followed by a 2x3x3 array
containing the right hand joint center x, y, z axis components (1x3x3),
followed by the left hand joint center x, y, z axis components (1x3x3).
Examples
--------
>>> import numpy as np
>>> from .pyCGM import handJointCenter
>>> frame = {'RWRA': np.array([776.51898193,495.68103027, 1108.38464355]),
... 'RWRB': np.array([830.9072876, 436.75341797, 1119.11901855]),
... 'LWRA': np.array([-249.28146362, 525.32977295, 1117.09057617]),
... 'LWRB': np.array([-311.77532959, 477.22512817, 1125.1619873]),
... 'RFIN': np.array([863.71374512, 524.4475708, 1074.54248047]),
... 'LFIN': np.array([-326.65890503, 558.34338379, 1091.04284668])}
>>> elbowJC = [[np.array([633.66707587, 304.95542115, 1256.07799541]),
... np.array([-129.1695218, 316.8671644, 1258.06440717])],
... [[[633.81070138699954, 303.96579004975194, 1256.07658506845],
... [634.35247991784638, 305.05386589332528, 1256.7994730142241],
... [632.95321803901493, 304.85083190737765, 1256.7704317504911]],
... [[-129.32391792749493, 315.88072913249465, 1258.0086629318362],
... [-128.45117135279025, 316.79382333592832, 1257.37260287807],
... [-128.49119037560905, 316.7203088419364, 1258.783373067024]]],
... [[793.32814303250677, 451.29134788252043, 1084.4325513020426],
... [-272.4594189740742, 485.80152210947699, 1091.3666238350822]]]
>>> wristJC = [[[793.32814303250677, 451.29134788252043, 1084.4325513020426],
... [-272.4594189740742, 485.80152210947699, 1091.3666238350822]],
... [[[793.77133727961598, 450.44879187190122, 1084.1264823093322],
... [794.01354707689597, 451.38979262469761, 1085.1540289034019],
... [792.7503886251119, 450761812234714, 1085.0536727414069]],
... [[-272.9250728167512, 485.01202418036871, 1090.9667994752267],
... [-271.74106814470946, 485.72818104689361, 1090.6748195459295],
... [-271.94256446383838, 485.1921666233502, 1091.967911874857]]]]
>>> vsk = { 'RightHandThickness': 34.0, 'LeftHandThickness': 34.0}
>>> [np.around(arr,8) for arr in handJointCenter(frame,elbowJC,wristJC,vsk)] #doctest: +NORMALIZE_WHITESPACE
[array([[ 859.80614366, 517.28239823, 1051.97278945],
[-324.53477798, 551.88744289, 1068.02526837]]),
array([[[ 859.95675979, 517.59241232, 1052.9115152 ],
[ 859.07975674, 517.96120459, 1051.86516062],
[ 859.1355642 , 516.61673075, 1052.30021881]],
[[-324.61994077, 552.15893309, 1068.9839343 ],
[-325.33293185, 551.29292486, 1068.12272964],
[-323.93837401, 551.13058004, 1068.29259013]]])]
"""
RWRA = frame['RWRA']
RWRB = frame['RWRB']
LWRA = frame['LWRA']
LWRB = frame['LWRB']
RFIN = frame['RFIN']
LFIN = frame['LFIN']
RWRI = [(RWRA[0]+RWRB[0])/2.0,(RWRA[1]+RWRB[1])/2.0,(RWRA[2]+RWRB[2])/2.0]
LWRI = [(LWRA[0]+LWRB[0])/2.0,(LWRA[1]+LWRB[1])/2.0,(LWRA[2]+LWRB[2])/2.0]
LWJC = wristJC[0][1]
RWJC = wristJC[0][0]
mm = 7.0
R_handThickness = vsk['RightHandThickness']
L_handThickness = vsk['LeftHandThickness']
R_delta =( R_handThickness/2.0 + mm )
L_delta =( L_handThickness/2.0 + mm )
LHND = findJointC(LWRI,LWJC,LFIN,L_delta)
RHND = findJointC(RWRI,RWJC,RFIN,R_delta)
# Left
z_axis = [LWJC[0]-LHND[0],LWJC[1]-LHND[1],LWJC[2]-LHND[2]]
z_axis_div = norm2d(z_axis)
z_axis = [z_axis[0]/z_axis_div,z_axis[1]/z_axis_div,z_axis[2]/z_axis_div]
y_axis = [LWRI[0]-LWRA[0],LWRI[1]-LWRA[1],LWRI[2]-LWRA[2]]
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
x_axis = cross(y_axis,z_axis)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
y_axis = cross(z_axis,x_axis)
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
L_axis = [x_axis,y_axis,z_axis]
# Right
z_axis = [RWJC[0]-RHND[0],RWJC[1]-RHND[1],RWJC[2]-RHND[2]]
z_axis_div = norm2d(z_axis)
z_axis = [z_axis[0]/z_axis_div,z_axis[1]/z_axis_div,z_axis[2]/z_axis_div]
y_axis = [RWRA[0]-RWRI[0],RWRA[1]-RWRI[1],RWRA[2]-RWRI[2]]
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
x_axis = cross(y_axis,z_axis)
x_axis_div = norm2d(x_axis)
x_axis = [x_axis[0]/x_axis_div,x_axis[1]/x_axis_div,x_axis[2]/x_axis_div]
y_axis = cross(z_axis,x_axis)
y_axis_div = norm2d(y_axis)
y_axis = [y_axis[0]/y_axis_div,y_axis[1]/y_axis_div,y_axis[2]/y_axis_div]
R_axis = [x_axis,y_axis,z_axis]
R_origin = RHND
L_origin = LHND
# Attach it to the origin.
L_axis = [[L_axis[0][0]+L_origin[0],L_axis[0][1]+L_origin[1],L_axis[0][2]+L_origin[2]],
[L_axis[1][0]+L_origin[0],L_axis[1][1]+L_origin[1],L_axis[1][2]+L_origin[2]],
[L_axis[2][0]+L_origin[0],L_axis[2][1]+L_origin[1],L_axis[2][2]+L_origin[2]]]
R_axis = [[R_axis[0][0]+R_origin[0],R_axis[0][1]+R_origin[1],R_axis[0][2]+R_origin[2]],
[R_axis[1][0]+R_origin[0],R_axis[1][1]+R_origin[1],R_axis[1][2]+R_origin[2]],
[R_axis[2][0]+R_origin[0],R_axis[2][1]+R_origin[1],R_axis[2][2]+R_origin[2]]]
origin = [R_origin, L_origin]
axis = [R_axis, L_axis]
return [origin,axis]
def findJointC(a, b, c, delta):
"""Calculate the Joint Center function.
This function is based on physical markers, a,b,c and joint center which will be calulcated in this function are all in the same plane.
Parameters
----------
a,b,c : list
Three markers x,y,z position of a, b, c.
delta : float
The length from marker to joint center, retrieved from subject measurement file.
Returns
-------
mr : array
Returns the Joint C x, y, z positions in a 1x3 array.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import findJointC
>>> a = [468.14532471, 325.09780884, 673.12591553]
>>> b = [355.90861996, 365.38260964, 940.6974861]
>>> c = [452.35180664, 329.0609436, 524.77893066]
>>> delta = 59.5
>>> findJointC(a,b,c,delta)
array([396.25286248, 347.91367254, 518.63620527])
"""
# make the two vector using 3 markers, which is on the same plane.
v1 = (a[0]-c[0],a[1]-c[1],a[2]-c[2])
v2 = (b[0]-c[0],b[1]-c[1],b[2]-c[2])
# v3 is cross vector of v1, v2
# and then it normalized.
# v3 = cross(v1,v2)
v3 = [v1[1]*v2[2] - v1[2]*v2[1],v1[2]*v2[0] - v1[0]*v2[2],v1[0]*v2[1] - v1[1]*v2[0]]
v3_div = norm2d(v3)
v3 = [v3[0]/v3_div,v3[1]/v3_div,v3[2]/v3_div]
m = [(b[0]+c[0])/2.0,(b[1]+c[1])/2.0,(b[2]+c[2])/2.0]
length = np.subtract(b,m)
length = norm2d(length)
theta = math.acos(delta/norm2d(v2))
cs = math.cos(theta*2)
sn = math.sin(theta*2)
ux = v3[0]
uy = v3[1]
uz = v3[2]
# this rotation matrix is called Rodriques' rotation formula.
# In order to make a plane, at least 3 number of markers is required which means three physical markers on the segment can make a plane.
# then the orthogonal vector of the plane will be rotating axis.
# joint center is determined by rotating the one vector of plane around rotating axis.
rot = np.matrix([[cs+ux**2.0*(1.0-cs),ux*uy*(1.0-cs)-uz*sn,ux*uz*(1.0-cs)+uy*sn],
[uy*ux*(1.0-cs)+uz*sn,cs+uy**2.0*(1.0-cs),uy*uz*(1.0-cs)-ux*sn],
[uz*ux*(1.0-cs)-uy*sn,uz*uy*(1.0-cs)+ux*sn,cs+uz**2.0*(1.0-cs)]])
r = rot*(np.matrix(v2).transpose())
r = r* length/np.linalg.norm(r)
r = [r[0,0],r[1,0],r[2,0]]
mr = np.array([r[0]+m[0],r[1]+m[1],r[2]+m[2]])
return mr
def cross(a, b):
"""Cross Product function
Given vectors a and b, calculate the cross product.
Parameters
----------
a : list
First 3D vector.
b : list
Second 3D vector.
Returns
-------
c : list
The cross product of vector a and vector b.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import cross
>>> a = [6.25286248, 7.91367254, 18.63620527]
>>> b = [3.49290439, 4.42038315, 19.23948238]
>>> np.around(cross(a, b),8)
array([ 6.98757956e+01, -5.52073543e+01, -1.65361000e-03])
"""
c = [a[1]*b[2] - a[2]*b[1],
a[2]*b[0] - a[0]*b[2],
a[0]*b[1] - a[1]*b[0]]
return c
def getPelangle(axisP,axisD):
"""Pelvis angle calculation function.
This function takes in two axis and returns three angles.
and It uses the inverse Euler rotation matrix in YXZ order.
the output shows the angle in degrees.
Parameters
----------
axisP : list
Shows the unit vector of axisP, the position of the proximal axis.
axisD : list
Shows the unit vector of axisD, the position of the distal axis.
Returns
-------
angle : list
Returns the gamma, beta, alpha angles in degrees in a 1x3 corresponding list.
Examples
-------
>>> import numpy as np
>>> from .pyCGM import getPelangle
>>> axisP = [[ 0.0464229, 0.99648672, 0.06970743],
... [ 0.99734011, -0.04231089, -0.05935067],
... [-0.05619277, 0.07227725, -0.99580037]]
>>> axisD = [[-0.18067218, -0.98329158, -0.02225371],
... [ 0.71383942, -0.1155303, -0.69071415],
... [ 0.67660243, -0.1406784, 0.7227854 ]]
>>> np.around(getPelangle(axisP,axisD),8)
array([-175.65183483, 39.63221918, -10.2668477 ])
"""
# this is the angle calculation which order is Y-X-Z
# alpha is abdcution angle.
# beta is flextion angle
# gamma is rotation angle
beta = np.arctan2(((axisD[2][0]*axisP[1][0])+(axisD[2][1]*axisP[1][1])+(axisD[2][2]*axisP[1][2])),
np.sqrt(pow(axisD[2][0]*axisP[0][0]+axisD[2][1]*axisP[0][1]+axisD[2][2]*axisP[0][2],2)+pow((axisD[2][0]*axisP[2][0]+axisD[2][1]*axisP[2][1]+axisD[2][2]*axisP[2][2]),2)))
alpha = np.arctan2(((axisD[2][0]*axisP[0][0])+(axisD[2][1]*axisP[0][1])+(axisD[2][2]*axisP[0][2])),((axisD[2][0]*axisP[2][0])+(axisD[2][1]*axisP[2][1])+(axisD[2][2]*axisP[2][2])))
gamma = np.arctan2(((axisD[0][0]*axisP[1][0])+(axisD[0][1]*axisP[1][1])+(axisD[0][2]*axisP[1][2])),((axisD[1][0]*axisP[1][0])+(axisD[1][1]*axisP[1][1])+(axisD[1][2]*axisP[1][2])))
alpha = 180.0 * alpha/ pi
beta = 180.0 * beta/ pi
gamma = 180.0 * gamma/ pi
angle = [alpha, beta, gamma]
return angle
def getHeadangle(axisP,axisD):
"""Head angle calculation function.
This function takes in two axis and returns three angles.
and It uses the inverse Euler rotation matrix in YXZ order.
the output shows the angle in degrees.
Parameters
----------
axisP : list
Shows the unit vector of axisP, the position of the proximal axis.
axisD : list
Shows the unit vector of axisD, the position of the distal axis.
Returns
-------
angle : list
Returns the gamma, beta, alpha angles in degrees in a 1x3 corresponding list.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import getHeadangle
>>> axisP = [[ 0.0464229, 0.99648672, 0.06970743],
... [ 0.99734011, -0.04231089, -0.05935067],
... [-0.05619277, 0.07227725, -0.99580037]]
>>> axisD = [[-0.18067218, -0.98329158, -0.02225371],
... [ 0.71383942, -0.1155303, -0.69071415],
... [ 0.67660243, -0.1406784, 0.7227854 ]]
>>> np.around(getHeadangle(axisP,axisD),8)
array([ 184.34816517, -39.63221894, -190.2668477 ])
"""
# this is the angle calculation which order is Y-X-Z
# alpha is abdcution angle.
ang=((-1*axisD[2][0]*axisP[1][0])+(-1*axisD[2][1]*axisP[1][1])+(-1*axisD[2][2]*axisP[1][2]))
alpha = np.nan
if -1<=ang<=1:
alpha = np.arcsin(ang)
# check the abduction angle is in the area between -pi/2 and pi/2
# beta is flextion angle
# gamma is rotation angle
beta = np.arctan2(((axisD[2][0]*axisP[1][0])+(axisD[2][1]*axisP[1][1])+(axisD[2][2]*axisP[1][2])),
np.sqrt(pow(axisD[0][0]*axisP[1][0]+axisD[0][1]*axisP[1][1]+axisD[0][2]*axisP[1][2],2)+pow((axisD[1][0]*axisP[1][0]+axisD[1][1]*axisP[1][1]+axisD[1][2]*axisP[1][2]),2)))
alpha = np.arctan2(-1*((axisD[2][0]*axisP[0][0])+(axisD[2][1]*axisP[0][1])+(axisD[2][2]*axisP[0][2])),((axisD[2][0]*axisP[2][0])+(axisD[2][1]*axisP[2][1])+(axisD[2][2]*axisP[2][2])))
gamma = np.arctan2(-1*((axisD[0][0]*axisP[1][0])+(axisD[0][1]*axisP[1][1])+(axisD[0][2]*axisP[1][2])),((axisD[1][0]*axisP[1][0])+(axisD[1][1]*axisP[1][1])+(axisD[1][2]*axisP[1][2])))
alpha = 180.0 * alpha/ pi
beta = 180.0 * beta/ pi
gamma = 180.0 * gamma/ pi
beta = -1*beta
if alpha <0:
alpha = alpha *-1
else:
if 0<alpha < 180:
alpha = 180+(180-alpha)
if gamma > 90.0:
if gamma >120:
gamma = (gamma - 180)*-1
else:
gamma = (gamma + 180)*-1
else:
if gamma <0:
gamma = (gamma + 180)*-1
else:
gamma = (gamma*-1)-180.0
angle = [alpha, beta, gamma]
return angle
def getangle_sho(axisP,axisD):
"""Shoulder angle calculation function.
This function takes in two axis and returns three angles.
and It use inverse Euler rotation matrix in XYZ order.
the output shows the angle in degrees.
Parameters
----------
axisP : list
Shows the unit vector of axisP, the position of the proximal axis.
axisD : list
Shows the unit vector of axisD, the position of the distal axis.
Returns
-------
angle : list
Returns the gamma, beta, alpha angles in degrees in a 1x3 corresponding list.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import getangle_sho
>>> axisP = [[ 0.0464229, 0.99648672, 0.06970743],
... [ 0.99734011, -0.04231089, -0.05935067],
... [-0.05619277, 0.07227725, -0.99580037]]
>>> axisD = [[-0.18067218, -0.98329158, -0.02225371],
... [ 0.71383942, -0.1155303, -0.69071415],
... [ 0.67660243, -0.1406784, 0.7227854 ]]
>>> np.around(getangle_sho(axisP,axisD),8)
array([ -3.3474503 , -140.28662977, 172.50982168])
"""
# beta is flexion /extension
# gamma is adduction / abduction
# alpha is internal / external rotation
# this is shoulder angle calculation
alpha = np.arcsin(((axisD[2][0]*axisP[0][0])+(axisD[2][1]*axisP[0][1])+(axisD[2][2]*axisP[0][2])))
beta = np.arctan2(-1*((axisD[2][0]*axisP[1][0])+(axisD[2][1]*axisP[1][1])+(axisD[2][2]*axisP[1][2])) , ((axisD[2][0]*axisP[2][0])+(axisD[2][1]*axisP[2][1])+(axisD[2][2]*axisP[2][2])))
gamma = np.arctan2(-1*((axisD[1][0]*axisP[0][0])+(axisD[1][1]*axisP[0][1])+(axisD[1][2]*axisP[0][2])) , ((axisD[0][0]*axisP[0][0])+(axisD[0][1]*axisP[0][1])+(axisD[0][2]*axisP[0][2])))
angle = [180.0 * alpha/ pi, 180.0 *beta/ pi, 180.0 * gamma/ pi]
return angle
def getangle_spi(axisP,axisD):
"""Spine angle calculation function.
This function takes in two axis and returns three angles.
and It use inverse Euler rotation matrix in XZX order.
the output shows the angle in degrees.
Parameters
----------
axisP : list
Shows the unit vector of axisP, the position of the proximal axis.
axisD : list
Shows the unit vector of axisD, the position of the distal axis.
Returns
-------
angle : list
Returns the gamma, beta, alpha angles in degrees in a 1x3 corresponding list.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import getangle_spi
>>> axisP = [[ 0.0464229, 0.99648672, 0.06970743],
... [ 0.99734011, -0.04231089, -0.05935067],
... [-0.05619277, 0.07227725, -0.99580037]]
>>> axisD = [[-0.18067218, -0.98329158,-0.02225371],
... [ 0.71383942, -0.1155303, -0.69071415],
... [ 0.67660243, -0.1406784, 0.7227854 ]]
>>> np.around(getangle_spi(axisP,axisD),8)
array([ 2.8891964 , 9.7438295 , 39.74341087])
"""
# this angle calculation is for spine angle.
alpha = np.arcsin(((axisD[1][0]*axisP[2][0])+(axisD[1][1]*axisP[2][1])+(axisD[1][2]*axisP[2][2])))
gamma = np.arcsin(((-1*axisD[1][0]*axisP[0][0])+(-1*axisD[1][1]*axisP[0][1])+(-1*axisD[1][2]*axisP[0][2])) / np.cos(alpha))
beta = np.arcsin(((-1*axisD[0][0]*axisP[2][0])+(-1*axisD[0][1]*axisP[2][1])+(-1*axisD[0][2]*axisP[2][2])) / np.cos(alpha))
angle = [180.0 * beta/ pi, 180.0 *gamma/ pi, 180.0 * alpha/ pi]
return angle
def getangle(axisP,axisD):
"""Normal angle calculation function.
This function takes in two axis and returns three angles.
and It use inverse Euler rotation matrix in YXZ order.
the output shows the angle in degrees.
As we use arc sin we have to care about if the angle is in area between -pi/2 to pi/2
Parameters
----------
axisP : list
Shows the unit vector of axisP, the position of the proximal axis.
axisD : list
Shows the unit vector of axisD, the position of the distal axis.
Returns
-------
angle : list
Returns the gamma, beta, alpha angles in degrees in a 1x3 corresponding list.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import getangle
>>> axisP = [[ 0.0464229, 0.99648672, 0.06970743],
... [ 0.99734011, -0.04231089, -0.05935067],
... [-0.05619277, 0.07227725, -0.99580037]]
>>> axisD = [[-0.18067218, -0.98329158, -0.02225371],
... [ 0.71383942, -0.1155303, -0.69071415],
... [ 0.67660243, -0.1406784, 0.7227854 ]]
>>> np.around(getangle(axisP,axisD),8)
array([-175.65183483, -39.6322192 , 100.2668477 ])
"""
# this is the angle calculation which order is Y-X-Z
# alpha is abdcution angle.
ang=((-1*axisD[2][0]*axisP[1][0])+(-1*axisD[2][1]*axisP[1][1])+(-1*axisD[2][2]*axisP[1][2]))
alpha = np.nan
if -1<=ang<=1:
# alpha = np.arcsin(ang)
alpha = np.arcsin(ang)
# check the abduction angle is in the area between -pi/2 and pi/2
# beta is flextion angle
# gamma is rotation angle
if -1.57079633<alpha<1.57079633:
beta = np.arctan2(((axisD[2][0]*axisP[0][0])+(axisD[2][1]*axisP[0][1])+(axisD[2][2]*axisP[0][2])) , ((axisD[2][0]*axisP[2][0])+(axisD[2][1]*axisP[2][1])+(axisD[2][2]*axisP[2][2])))
gamma = np.arctan2(((axisD[1][0]*axisP[1][0])+(axisD[1][1]*axisP[1][1])+(axisD[1][2]*axisP[1][2])) , ((axisD[0][0]*axisP[1][0])+(axisD[0][1]*axisP[1][1])+(axisD[0][2]*axisP[1][2])))
else:
beta = np.arctan2(-1*((axisD[2][0]*axisP[0][0])+(axisD[2][1]*axisP[0][1])+(axisD[2][2]*axisP[0][2])) , ((axisD[2][0]*axisP[2][0])+(axisD[2][1]*axisP[2][1])+(axisD[2][2]*axisP[2][2])))
gamma = np.arctan2(-1*((axisD[1][0]*axisP[1][0])+(axisD[1][1]*axisP[1][1])+(axisD[1][2]*axisP[1][2])) , ((axisD[0][0]*axisP[1][0])+(axisD[0][1]*axisP[1][1])+(axisD[0][2]*axisP[1][2])))
angle = [180.0 * beta/ pi, 180.0 *alpha/ pi, 180.0 * gamma / pi ]
return angle
def norm2d(v):
"""2D Vector normalization function
This function calculates the normalization of a 3-dimensional vector.
Parameters
----------
v : list
A 3D vector.
Returns
-------
float
The normalization of the vector as a float.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import norm2d
>>> v = [105.141121037153, 101.890788777524, 326.7710280245359]
>>> np.around(norm2d(v),8)
358.07218955
"""
try:
return sqrt((v[0]*v[0]+v[1]*v[1]+v[2]*v[2]))
except:
return np.nan
def norm3d(v):
"""3D Vector normalization function
This function calculates the normalization of a 3-dimensional vector.
Parameters
----------
v : list
A 3D vector.
Returns
-------
list
The normalization of the vector returned as a float in an array.
Examples
--------
>>> from .pyCGM import norm3d
>>> v = [125.44928201, 143.94301493, 213.49204956]
>>> norm3d(v)
array(286.4192192)
"""
try:
return np.asarray(sqrt((v[0]*v[0]+v[1]*v[1]+v[2]*v[2])))
except:
return np.nan
def normDiv(v):
"""Normalized divison function
This function calculates the normalization division of a 3-dimensional vector.
Parameters
----------
v : list
A 3D vector.
Returns
-------
array
The divison normalization of the vector returned as a float in an array.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import normDiv
>>> v = [1.44928201, 1.94301493, 2.49204956]
>>> np.around(normDiv(v),8)
array([0.11991376, 0.16076527, 0.20619246])
"""
try:
vec = sqrt((v[0]*v[0]+v[1]*v[1]+v[2]*v[2]))
v = [v[0]/vec,v[1]/vec,v[2]/vec]
except:
vec = np.nan
return [v[0]/vec,v[1]/vec,v[2]/vec]
def matrixmult (A, B):
"""Matrix multiplication function
This function returns the product of a matrix multiplication given two matrices.
Let the dimension of the matrix A be: m by n,
let the dimension of the matrix B be: p by q,
multiplication will only possible if n = p,
creating a matrix of m by q size.
Parameters
----------
A : list
First matrix, in a 2D array format.
B : list
Second matrix, in a 2D array format.
Returns
-------
C : list
The product of the matrix multiplication.
Examples
--------
>>> from .pyCGM import matrixmult
>>> A = [[11,12,13],[14,15,16]]
>>> B = [[1,2],[3,4],[5,6]]
>>> matrixmult(A, B)
[[112, 148], [139, 184]]
"""
C = [[0 for row in range(len(A))] for col in range(len(B[0]))]
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
C[i][j] += A[i][k]*B[k][j]
return C
def rotmat(x=0,y=0,z=0):
"""Rotation Matrix function
This function creates and returns a rotation matrix.
Parameters
----------
x,y,z : float, optional
Angle, which will be converted to radians, in
each respective axis to describe the rotations.
The default is 0 for each unspecified angle.
Returns
-------
Rxyz : list
The product of the matrix multiplication.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import rotmat
>>> x = 0.5
>>> y = 0.3
>>> z = 0.8
>>> np.around(rotmat(x,y,z),8)
array([[ 0.99988882, -0.01396199, 0.00523596],
[ 0.01400734, 0.99986381, -0.00872642],
[-0.00511341, 0.00879879, 0.99994822]])
>>> x = 0.5
>>> np.around(rotmat(x),8)
array([[ 1. , 0. , 0. ],
[ 0. , 0.99996192, -0.00872654],
[ 0. , 0.00872654, 0.99996192]])
>>> x = 1
>>> y = 1
>>> np.around(rotmat(x,y),8)
array([[ 9.9984770e-01, 0.0000000e+00, 1.7452410e-02],
[ 3.0459000e-04, 9.9984770e-01, -1.7449750e-02],
[-1.7449750e-02, 1.7452410e-02, 9.9969541e-01]])
"""
x = math.radians(x)
y = math.radians(y)
z = math.radians(z)
Rx = [ [1,0,0],[0,math.cos(x),math.sin(x)*-1],[0,math.sin(x),math.cos(x)] ]
Ry = [ [math.cos(y),0,math.sin(y)],[0,1,0],[math.sin(y)*-1,0,math.cos(y)] ]
Rz = [ [math.cos(z),math.sin(z)*-1,0],[math.sin(z),math.cos(z),0],[0,0,1] ]
Rxy = matrixmult(Rx,Ry)
Rxyz = matrixmult(Rxy,Rz)
Ryx = matrixmult(Ry,Rx)
Ryxz = matrixmult(Ryx,Rz)
return Rxyz
def JointAngleCalc(frame,vsk):
""" Joint Angle Calculation function
Calculates the Joint angles of plugingait and stores the data in array
Stores
RPel_angle = []
LPel_angle = []
RHip_angle = []
LHip_angle = []
RKnee_angle = []
LKnee_angle = []
RAnkle_angle = []
LAnkle_angle = []
Joint Axis store like below form
Basically, the axis form is like [[origin],[axis]]
So, there's origin which define the position of axis
and there's Unit vector of each axis which is attach to the origin.
If it is just single one (Pelvis, Hip, Head, Thorax)
Axis = [[origin_x, origin_y, origin_z],[[Xaxis_x,Xaxis_y,Xaxis_z],
[Yaxis_x,Yaxis_y,Yaxis_z],
[Zaxis_x,Zaxis_y,Zaxis_z]]]
If it has both of Right and Left ( knee, angle, foot, clavicle, humerus, radius, hand)
Axis = [[[R_origin_x,R_origin_y,R_origin_z],
[L_origin_x,L_origin_y,L_origin_z]],[[[R_Xaxis_x,R_Xaxis_y,R_Xaxis_z],
[R_Yaxis_x,R_Yaxis_y,R_Yaxis_z],
[R_Zaxis_x,R_Zaxis_y,R_Zaxis_z]],
[[L_Xaxis_x,L_Xaxis_y,L_Xaxis_z],
[L_Yaxis_x,L_Yaxis_y,L_Yaxis_z],
[L_Zaxis_x,L_Zaxis_y,L_Zaxis_z]]]]
Parameters
----------
frame : dict
Dictionaries of marker lists.
vsk : dict, optional
A dictionary containing subject measurements from a VSK file.
Returns
-------
r, jc : tuple
Returns a tuple containing an array that holds the result of all the joint calculations,
followed by a dictionary for joint center marker positions.
Examples
--------
>>> import numpy as np
>>> from .pyCGM import JointAngleCalc
>>> from .pycgmIO import loadC3D, loadVSK
>>> from .pycgmStatic import getStatic
>>> from .pyCGM_Helpers import getfilenames
>>> import os
>>> fileNames=getfilenames(2)
>>> c3dFile = fileNames[1]
>>> vskFile = fileNames[2]
>>> result = loadC3D(c3dFile)
>>> data = result[0]
>>> frame = result[0][0]
>>> vskData = loadVSK(vskFile, False)
>>> vsk = getStatic(data,vskData,flat_foot=False)
>>> results = JointAngleCalc(frame, vsk)[1]
>>> np.around(results['Pelvis'],8)
array([ 246.152565 , 353.26243591, 1031.71362305])
>>> np.around(results['Thorax'],8)
array([ 250.56159618, 303.23273922, 1461.17230698])
>>> np.around(results['Head'],8)
array([ 244.89547729, 325.05789185, 1730.1619873 ])
>>> np.around(results['RHand'],8)
array([ 770.93339376, 591.04557736, 1079.04817118])
"""
# THIS IS FOOT PROGRESS ANGLE
rfoot_prox,rfoot_proy,rfoot_proz,lfoot_prox,lfoot_proy,lfoot_proz = [None]*6
#First Calculate Pelvis
pelvis_axis = pelvisJointCenter(frame)
kin_Pelvis_axis = pelvis_axis
kin_Pelvis_JC = pelvis_axis[0] #quick fix for storing JC
#change to same format
Pelvis_vectors = pelvis_axis[1]
Pelvis_origin = pelvis_axis[0]
#need to update this based on the file
global_Axis = vsk['GCS']
#make the array which will be the input of findangle function
pelvis_Axis_mod = np.vstack([np.subtract(Pelvis_vectors[0],Pelvis_origin),
np.subtract(Pelvis_vectors[1],Pelvis_origin),
np.subtract(Pelvis_vectors[2],Pelvis_origin)])
global_pelvis_angle = getangle(global_Axis,pelvis_Axis_mod)
pelx=global_pelvis_angle[0]
pely=global_pelvis_angle[1]
pelz=global_pelvis_angle[2]
# and then find hip JC
hip_JC = hipJointCenter(frame,pelvis_axis[0],pelvis_axis[1][0],pelvis_axis[1][1],pelvis_axis[1][2],vsk=vsk)
kin_L_Hip_JC = hip_JC[0] #quick fix for storing JC
kin_R_Hip_JC = hip_JC[1] #quick fix for storing JC
hip_axis = hipAxisCenter(hip_JC[0],hip_JC[1],pelvis_axis)
knee_JC = kneeJointCenter(frame,hip_JC,0,vsk=vsk)
kin_R_Knee_JC = knee_JC[0] #quick fix for storing JC
kin_L_Knee_JC = knee_JC[1] #quick fix for storing JC
#change to same format
Hip_axis_form = hip_axis[1]
Hip_center_form = hip_axis[0]
R_Knee_axis_form = knee_JC[2][0]
R_Knee_center_form = knee_JC[0]
L_Knee_axis_form = knee_JC[2][1]
L_Knee_center_form = knee_JC[1]
#make the array which will be the input of findangle function
hip_Axis = np.vstack([np.subtract(Hip_axis_form[0],Hip_center_form),
np.subtract(Hip_axis_form[1],Hip_center_form),
np.subtract(Hip_axis_form[2],Hip_center_form)])
R_knee_Axis = np.vstack([np.subtract(R_Knee_axis_form[0],R_Knee_center_form),
np.subtract(R_Knee_axis_form[1],R_Knee_center_form),
np.subtract(R_Knee_axis_form[2],R_Knee_center_form)])
L_knee_Axis = np.vstack([np.subtract(L_Knee_axis_form[0],L_Knee_center_form),
np.subtract(L_Knee_axis_form[1],L_Knee_center_form),
np.subtract(L_Knee_axis_form[2],L_Knee_center_form)])
R_pelvis_knee_angle = getangle(hip_Axis,R_knee_Axis)
L_pelvis_knee_angle = getangle(hip_Axis,L_knee_Axis)
rhipx=R_pelvis_knee_angle[0]*-1
rhipy=R_pelvis_knee_angle[1]
rhipz=R_pelvis_knee_angle[2]*-1+90
lhipx=L_pelvis_knee_angle[0]*-1
lhipy=L_pelvis_knee_angle[1]*-1
lhipz=L_pelvis_knee_angle[2]-90
ankle_JC = ankleJointCenter(frame,knee_JC,0,vsk=vsk)
kin_R_Ankle_JC = ankle_JC[0] #quick fix for storing JC
kin_L_Ankle_JC = ankle_JC[1] #quick fix for storing JC
#change to same format
R_Ankle_axis_form = ankle_JC[2][0]
R_Ankle_center_form = ankle_JC[0]
L_Ankle_axis_form = ankle_JC[2][1]
L_Ankle_center_form = ankle_JC[1]
#make the array which will be the input of findangle function
# In case of knee axis I mentioned it before as R_knee_Axis and L_knee_Axis
R_ankle_Axis = np.vstack([np.subtract(R_Ankle_axis_form[0],R_Ankle_center_form),
np.subtract(R_Ankle_axis_form[1],R_Ankle_center_form),
np.subtract(R_Ankle_axis_form[2],R_Ankle_center_form)])
L_ankle_Axis = np.vstack([np.subtract(L_Ankle_axis_form[0],L_Ankle_center_form),
np.subtract(L_Ankle_axis_form[1],L_Ankle_center_form),
np.subtract(L_Ankle_axis_form[2],L_Ankle_center_form)])
R_knee_ankle_angle = getangle(R_knee_Axis,R_ankle_Axis)
L_knee_ankle_angle = getangle(L_knee_Axis,L_ankle_Axis)
rkneex=R_knee_ankle_angle[0]
rkneey=R_knee_ankle_angle[1]
rkneez=R_knee_ankle_angle[2]*-1+90
lkneex=L_knee_ankle_angle[0]
lkneey=L_knee_ankle_angle[1]*-1
lkneez=L_knee_ankle_angle[2] - 90
# ANKLE ANGLE
offset = 0
foot_JC = footJointCenter(frame,vsk,ankle_JC,knee_JC,offset)
kin_R_Foot_JC = foot_JC[0] #quick fix for storing JC
kin_L_Foot_JC = foot_JC[1] #quick fix for storing JC
kin_RHEE = frame['RHEE']
kin_LHEE = frame['LHEE']
# Change to same format
R_Foot_axis_form = foot_JC[2][0]
R_Foot_center_form = foot_JC[0]
L_Foot_axis_form = foot_JC[2][1]
L_Foot_center_form = foot_JC[1]
R_foot_Axis = np.vstack([np.subtract(R_Foot_axis_form[0],R_Foot_center_form),
np.subtract(R_Foot_axis_form[1],R_Foot_center_form),
np.subtract(R_Foot_axis_form[2],R_Foot_center_form)])
L_foot_Axis = np.vstack([np.subtract(L_Foot_axis_form[0],L_Foot_center_form),
np.subtract(L_Foot_axis_form[1],L_Foot_center_form),
np.subtract(L_Foot_axis_form[2],L_Foot_center_form)])
R_ankle_foot_angle = getangle(R_ankle_Axis,R_foot_Axis)
L_ankle_foot_angle = getangle(L_ankle_Axis,L_foot_Axis)
ranklex=R_ankle_foot_angle[0]*(-1)-90
rankley=R_ankle_foot_angle[2]*(-1)+90
ranklez=R_ankle_foot_angle[1]
lanklex=L_ankle_foot_angle[0]*(-1)-90
lankley=L_ankle_foot_angle[2]-90
lanklez=L_ankle_foot_angle[1]*(-1)
# ABSOLUTE FOOT ANGLE
R_global_foot_angle = getangle(global_Axis,R_foot_Axis)
L_global_foot_angle = getangle(global_Axis,L_foot_Axis)
rfootx=R_global_foot_angle[0]
rfooty=R_global_foot_angle[2]-90
rfootz=R_global_foot_angle[1]
lfootx=L_global_foot_angle[0]
lfooty=(L_global_foot_angle[2]-90)*-1
lfootz=L_global_foot_angle[1]*-1
#First Calculate HEAD
head_axis = headJC(frame,vsk=vsk)
kin_Head_JC = head_axis[1] #quick fix for storing JC
LFHD = frame['LFHD'] #as above
RFHD = frame['RFHD']
LBHD = frame['LBHD']
RBHD = frame['RBHD']
kin_Head_Front = np.array((LFHD+RFHD)/2)
kin_Head_Back = np.array((LBHD+RBHD)/2)
#change to same format
Head_axis_form = head_axis[0]
Head_center_form = head_axis[1]
#Global_axis_form = [[0,1,0],[-1,0,0],[0,0,1]]
Global_center_form = [0,0,0]
#***********************************************************
Global_axis_form = vsk['GCS']
#Global_axis_form = rotmat(x=0,y=0,z=180) #this is some weird fix to global axis
#make the array which will be the input of findangle function
head_Axis_mod = np.vstack([np.subtract(Head_axis_form[0],Head_center_form),
np.subtract(Head_axis_form[1],Head_center_form),
np.subtract(Head_axis_form[2],Head_center_form)])
global_Axis = np.vstack([np.subtract(Global_axis_form[0],Global_center_form),
| np.subtract(Global_axis_form[1],Global_center_form) | numpy.subtract |
import logging
import numpy as np
import matplotlib.pyplot as plt
from numpy import imag, real, where
from scipy import linalg
from .dmd import get_dmd, get_amplitude_spectrum, find_possible_ranks
logger = logging.getLogger(__name__)
class Postprocessor:
"""Postprocessor of the simulation results.
Parameters
----------
t : ndarray
Values of time.
d : ndarray
Values of the perturbation of detonation velocity.
growth_rate_tol : float, optional
Tolerance for the growth rate (default is 1e-3).
When the growth rate is within the tolerance in absolute value,
then the corresponding mode is considered neutrally stable.
plot : bool, optional
If True, then plotting will be done for spectrum, etc.
Default is False.
"""
def __init__(self, t, d, growth_rate_tol=1e-3, plot=False):
self.t = t.copy()
self.d = d.copy()
self._plot = plot
self._plot_sigma = plot
self._re_lower = growth_rate_tol
# Number of rows in Hankel matrix of inputs.
self._L = 1000
self._dt = (self.t[-1] - self.t[0]) / (len(self.t) - 1.0)
self.d_tmp = np.copy(self.d)
logger.info('Mean of time series: {:.1e}'.format(self.d_tmp.mean()))
if t[-1] <= 10.0:
t_cutoff = 1.0
else:
t_cutoff = 10.0
logger.info('t_cutoff: {}'.format(t_cutoff))
self.t_tmp = self.t[(t >= t_cutoff)]
self.d_tmp = self.d_tmp[(t >= t_cutoff)]
self.tol_rank = 1e-10
def extract_stability_info(self):
# Handle situation when time series is short.
if self._L >= len(self.d_tmp):
msg = 'Cannot construct input Hankel matrix'
logger.error(msg)
raise CannotConstructHankelMatrix(msg)
X, Y = build_input_matrices(self.d_tmp, self._L, noise_amp=0.0)
ranks = find_possible_ranks(X, threshold=self.tol_rank)
U2, s2, Vh2 = linalg.svd(X, full_matrices=False)
svd_result = (U2, s2, Vh2)
lamdas_list, Phi_list, Psi_list, b_list = [], [], [], []
res_list, fit_list = [], []
for r in ranks:
phys_lamdas, Phi, Psi, b, error_res, error_fit = \
get_lamdas_amps_errors(
self.t_tmp, self.d_tmp, X, Y, svd_result,
L=self._L, target_rank=r,
tol_rank=self.tol_rank, plot=self._plot,
plot_sigma=self._plot_sigma)
logger.info('r={:3d}, err_res={:8.2e}, err_fit={:8.2e}'.format(
r, error_res, error_fit))
lamdas_list.append(phys_lamdas)
Phi_list.append(Phi)
Psi_list.append(Psi)
b_list.append(b)
res_list.append(error_res)
fit_list.append(error_fit)
# Finding minimum error_fit
error_fit_array = np.array(fit_list)
idx = np.argsort(error_fit_array)
if len(idx) == 1:
min_idx = idx[0]
else:
candidate_1 = idx[0]
candidate_2 = idx[1]
error_1 = error_fit_array[candidate_1]
error_2 = error_fit_array[candidate_2]
if 0.5 <= error_1 / error_2 <= 1:
if res_list[candidate_1] < res_list[candidate_2]:
min_idx = candidate_1
else:
min_idx = candidate_2
else:
min_idx = candidate_1
logger.info('Minimum error_fit with rank={}'.format(ranks[min_idx]))
phys_lamdas = lamdas_list[min_idx]
Phi = Phi_list[min_idx]
Psi = Psi_list[min_idx]
b = b_list[min_idx]
error_res = res_list[min_idx]
error_fit = fit_list[min_idx]
if error_fit > 1e-2:
msg = 'Fit error is too large'
logger.info(msg)
raise PostprocessingError(msg)
idx_pos_freqs = []
for i, im_part in enumerate(np.imag(phys_lamdas)):
if im_part > 0.0:
idx_pos_freqs.append(i)
idx_neg_freqs = []
for i, im_part in enumerate(imag(phys_lamdas)):
if im_part < 0.0:
idx_neg_freqs.append(i)
total_amps = []
for i in range(Psi.shape[0]):
total_amps.append(linalg.norm(Psi[i, :]))
total_amps = np.array(total_amps)
total_amps[idx_pos_freqs] = 2*total_amps[idx_pos_freqs]
total_amps[idx_neg_freqs] = 2*total_amps[idx_neg_freqs]
max_total_amp = total_amps.max()
total_amps = total_amps / max_total_amp
# Plot amplitude spectrum.
if self._plot:
plt.figure()
plt.plot(real(phys_lamdas), imag(phys_lamdas),
'p', markersize=12, markeredgecolor='k')
plt.xlabel('Real part of eigenvalue')
plt.ylabel('Imag part of eigenvalue')
plt.tight_layout(pad=0.1)
plt.show()
idx = np.where(real(phys_lamdas) > -self._re_lower)[0]
freq, amps = get_amplitude_spectrum(phys_lamdas, b, self._L)
plt.figure()
plt.semilogy(freq, total_amps, 'o')
plt.semilogy(freq[idx], total_amps[idx], 'ro')
plt.xlabel('Linear frequency (like in FFT)')
plt.ylabel('Amplitude, scaled by eigenvalue')
plt.tight_layout(pad=0.1)
plt.show()
# Plot DMD modes.
plt.figure()
for i in range(Phi.shape[1]):
plt.plot(self.t_tmp, Psi[i, :], label=str(i))
logger.info('{0:3d} {1:20f} {2:6.2e}'.format(
i, phys_lamdas[i], total_amps[i]))
plt.xlabel('Time')
plt.ylabel('DMD modes')
plt.legend(loc='best')
plt.tight_layout(pad=0.1)
plt.show()
# Removal of spurious modes.
unstable_eigvals_idx = where(real(phys_lamdas) >= -self._re_lower)[0]
stable_eigvals_idx = where(real(phys_lamdas) < -self._re_lower)[0]
spurious_idx = []
for i in unstable_eigvals_idx:
cond_1 = np.any(total_amps[i] < total_amps[stable_eigvals_idx])
cond_2 = total_amps[i] < 1e-4
if cond_1 and cond_2:
spurious_idx.append(i)
phys_lamdas_new = []
total_amps_new = []
b_new = []
for i in range(len(phys_lamdas)):
if i in spurious_idx:
logger.info('Remove spurious unstable mode {}'.format(i))
continue
phys_lamdas_new.append(phys_lamdas[i])
total_amps_new.append(total_amps[i])
b_new.append(b[i])
phys_lamdas = np.array(phys_lamdas_new)
total_amps = np.array(total_amps_new)
b = np.array(b_new)
# Check for false unstable mode (see Exp. 44):
pos_idx = where(real(phys_lamdas) > 0)[0]
if len(pos_idx) == 1:
d_ = self.d_tmp
mid = len(d_) // 2
norm_1, norm_2 = linalg.norm(d_[:mid], 2), linalg.norm(d_[mid:], 2)
# If norm_1 is larger than norm_2 than it's stable detonation,
# and unstable mode is false.
if norm_1 > norm_2:
logger.info('Remove spurious unstable eigenvalue')
idx = np.where(np.real(phys_lamdas) <= 0)[0]
phys_lamdas = phys_lamdas[idx]
b = b[idx]
total_amps = total_amps[idx]
assert len(phys_lamdas) >= 1
lamdas, amps = get_discrete_physical_eigenvalues_and_amplitudes(
phys_lamdas, total_amps, re_lower=self._re_lower)
assert len(lamdas) >= 1
# TODO: stop returning results here.
# Client should read the below properties instead.
self.modes = np.array(lamdas)
self.error_res = error_res
self.error_fit = error_fit
return lamdas, error_res, error_fit
def get_lamdas_amps_errors(t, d, X, Y, svd_result, L=1000, target_rank=None,
tol_rank=None, plot=False, plot_sigma=False,
alg='exact'):
lamda, Phi, Psi, amplitudes, d_hat, error_res = get_dmd(
t, X, Y, svd_result,
target_rank=target_rank, tol=tol_rank, plot_sigma=plot_sigma, alg=alg)
# Compute fit error
error_fit = np.linalg.norm(d_hat - d, 2) / np.linalg.norm(d, 2)
if plot:
plt.figure()
plt.plot(t, d, '-')
plt.plot(t, d_hat, '--')
plt.show()
return lamda, Phi, Psi, amplitudes, error_res, error_fit
def build_input_matrices(z, L, noise_amp=0.0):
A = linalg.hankel(c=z[0:L], r=z[L-1:])
if noise_amp != 0.0:
m, n = A.shape
A = A + noise_amp*np.random.randn(m, n)
return A[:, :-1], A[:, 1:]
def get_physical_eigenvalues(lamdas, tol=None):
"""Find only physical eigenvalues.
Parameters
----------
lamdas : ndarray
Array of eigenvalues from which physical ones will be chosen.
tol : float
Tolerance of eigenvalues.
printed to the screen.
Returns
-------
x : ndarray
Array of physical eigenvalues.
"""
assert len(lamdas) == 2, \
'Two sets of eigenvalues are required to find physical eigenvalues.'
default_tol = 1
if tol is None:
# print('Using default tol={}.'.format(default_tol))
tol = default_tol
phys_lamdas = []
for i, lam_root in enumerate(lamdas[1]):
min_dist = np.min(np.abs(lam_root - lamdas[0])) / np.abs(lam_root)
if min_dist <= tol:
phys_lamdas.append(lam_root)
if len(phys_lamdas) == 0:
msg = ('Cannot find physical eigenvalues that shifted with distance '
'less than {}'.format(tol))
logger.info(msg)
raise CannotFindPhysicalEigenvalues(msg)
return | np.asarray(phys_lamdas) | numpy.asarray |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import tensorflow as tf
from scipy import misc
app_path = os.environ['APP_PATH']
for p in app_path.split(';'):
sys.path.append(p)
import os
import copy
import facenet
import align.detect_face
from common import config_fetcher
from kafka import KafkaConsumer
from kafka import KafkaProducer
import json
from bean import event
servers = config_fetcher.bootstrap_hosts
group_id = config_fetcher.group_id
compare_topic = config_fetcher.compare_topic
aggregate_topic = config_fetcher.aggregate_topic
model = config_fetcher.model
# To consume latest messages and auto-commit offsets
consumer = KafkaConsumer(compare_topic,
group_id = group_id,
bootstrap_servers = servers,
value_deserializer=lambda m: json.loads(m.decode('ascii')))
producer = KafkaProducer(value_serializer=lambda v:json.dumps(v).encode('utf-8'), bootstrap_servers = servers)
def execute():
# images = load_and_align_data(image_files, image_size, margin, gpu_memory_fraction)
with tf.Graph().as_default():
with tf.Session() as sess:
# Load the model
facenet.load_model(model)
#########################################################################################################
############################################# Split Line ################################################
#########################################################################################################
print('load model done...')
for message in consumer:
try:
request = message.value
image_files = request['face_extract_path']
target_extract_path = request['target_extract_path']
image_files.insert(0, target_extract_path)
print("get a request")
images = load_and_align_data(image_files, config_fetcher.compare_is, config_fetcher.compare_margin, config_fetcher.compare_gmf)
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
# Run forward pass to calculate embeddings
feed_dict = {images_placeholder: images, phase_train_placeholder: False}
emb = sess.run(embeddings, feed_dict=feed_dict)
nrof_images = len(image_files)
print_target_images(nrof_images, image_files)
print_result_matrix(np, nrof_images, emb)
fr = extract_final_result(np, nrof_images, emb)
result = False
for r in fr:
if r < 1:
result = True
break
next_request = build_next_request(request, result, '')
print('-----------------------------------')
print(event.convert_to_dict(next_request))
producer.send(aggregate_topic, next_request)
print('-----------------------------------')
print("process one request done...")
except Exception as e:
print(e)
def extract_final_result(np, nrof_images, emb):
final_result = []
for j in range(1, nrof_images):
dist = np.sqrt(np.sum(np.square(np.subtract(emb[0, :], emb[j, :]))))
final_result.append(dist)
return final_result
def print_target_images(nrof_images, image_files):
print('Images:')
for i in range(nrof_images):
print('%1d: %s' % (i, image_files[i]))
print('')
def print_result_matrix(np, nrof_images, emb):
# Print distance matrix
print('Distance matrix')
print(' ', end='')
for i in range(nrof_images):
print(' %1d ' % i, end='')
print('')
for i in range(nrof_images):
print('%1d ' % i, end='')
for j in range(nrof_images):
dist = np.sqrt(np.sum(np.square(np.subtract(emb[i, :], emb[j, :]))))
print(' %1.4f ' % dist, end='')
print('')
def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction):
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)
tmp_image_paths = copy.copy(image_paths)
img_list = []
for image in tmp_image_paths:
img = misc.imread(os.path.expanduser(image), mode='RGB')
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
if len(bounding_boxes) < 1:
image_paths.remove(image)
print("can't detect face, remove ", image)
continue
det = np.squeeze(bounding_boxes[0, 0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0] - margin / 2, 0)
bb[1] = | np.maximum(det[1] - margin / 2, 0) | numpy.maximum |
"""
Various low-dimensional dynamical systems in Python.
For flows that occur on unbounded intervals (eg non-autonomous systems),
coordinates are transformed to a basis where the domain remains bounded
Requirements:
+ numpy
+ scipy
+ sdeint (for integration with noise)
+ numba (optional, for faster integration)
"""
import numpy as np
from .base import DynSys, DynSysDelay, staticjit
class Lorenz(DynSys):
@staticjit
def _rhs(x, y, z, t, beta, rho, sigma):
xdot = sigma * (y - x)
ydot = x * (rho - z) - y
zdot = x * y - beta * z
return xdot, ydot, zdot
@staticjit
def _jac(x, y, z, t, beta, rho, sigma):
row1 = [-sigma, sigma, 0]
row2 = [rho - z, -1, -x]
row3 = [y, x, -beta]
return [row1, row2, row3]
class LorenzBounded(DynSys):
@staticjit
def _rhs(x, y, z, t, beta, r, rho, sigma):
f = 1 - (x ** 2 + y ** 2 + z ** 2) / r ** 2
xdot = sigma * (y - x) * f
ydot = (x * (rho - z) - y) * f
zdot = (x * y - beta * z) * f
return xdot, ydot, zdot
class LorenzCoupled(DynSys):
@staticjit
def _rhs(x1, y1, z1, x2, y2, z2, t, beta, eps, rho, rho1, rho2, sigma):
x1dot = sigma * (y1 - x1)
y1dot = x1 * (rho1 - z1) - y1
z1dot = x1 * y1 - beta * z1
x2dot = sigma * (y2 - x2) + eps * (x1 - x2)
y2dot = x2 * (rho2 - z2) - y2
z2dot = x2 * y2 - beta * z2
return x1dot, y1dot, z1dot, x2dot, y2dot, z2dot
class Lorenz96(DynSys):
def rhs(self, X, t):
Xdot = np.zeros_like(X)
Xdot[0] = (X[1] - X[-2]) * X[-1] - X[0] + self.f
Xdot[1] = (X[2] - X[-1]) * X[0] - X[1] + self.f
Xdot[-1] = (X[0] - X[-3]) * X[-2] - X[-1] + self.f
Xdot[2:-1] = (X[3:] - X[:-3]) * X[1:-2] - X[2:-1] + self.f
return Xdot
class Lorenz84(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, f, g):
xdot = -a * x - y ** 2 - z ** 2 + a * f
ydot = -y + x * y - b * x * z + g
zdot = -z + b * x * y + x * z
return xdot, ydot, zdot
class Rossler(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
xdot = -y - z
ydot = x + a * y
zdot = b + z * (x - c)
return xdot, ydot, zdot
class Thomas(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b):
xdot = -a * x + b * np.sin(y)
ydot = -a * y + b * np.sin(z)
zdot = -a * z + b * np.sin(x)
return xdot, ydot, zdot
class ThomasLabyrinth(Thomas):
pass
class DoublePendulum(DynSys):
@staticjit
def _rhs(th1, th2, p1, p2, t, d, m):
g = 9.82
pre = 6 / (m * d ** 2)
denom = 16 - 9 * np.cos(th1 - th2) ** 2
th1_dot = pre * (2 * p1 - 3 * np.cos(th1 - th2) * p2) / denom
th2_dot = pre * (8 * p2 - 3 * np.cos(th1 - th2) * p1) / denom
p1_dot = (
-0.5
* (m * d ** 2)
* (th1_dot * th2_dot * np.sin(th1 - th2) + 3 * (g / d) * np.sin(th1))
)
p2_dot = (
-0.5
* (m * d ** 2)
* (-th1_dot * th2_dot * np.sin(th1 - th2) + 3 * (g / d) * np.sin(th2))
)
return th1_dot, th2_dot, p1_dot, p2_dot
@staticjit
def _postprocessing(th1, th2, p1, p2):
return np.sin(th1), np.sin(th2), p1, p2
class SwingingAtwood(DynSys):
@staticjit
def _rhs(r, th, pr, pth, t, m1, m2):
g = 9.82
rdot = pr / (m1 + m2)
thdot = pth / (m1 * r ** 2)
prdot = pth ** 2 / (m1 * r ** 3) - m2 * g + m1 * g * np.cos(th)
pthdot = -m1 * g * r * np.sin(th)
return rdot, thdot, prdot, pthdot
@staticjit
def _postprocessing(r, th, pr, pth):
return r, np.sin(th), pr, pth
class GuckenheimerHolmes(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, d, e, f):
xdot = a * x - b * y + c * z * x + d * z * (x ** 2 + y ** 2)
ydot = a * y + b * x + c * z * y
zdot = e - z ** 2 - f * (x ** 2 + y ** 2) - a * z ** 3
return xdot, ydot, zdot
class HenonHeiles(DynSys):
@staticjit
def _rhs(x, y, px, py, t, lam):
xdot = px
ydot = py
pxdot = -x - 2 * lam * x * y
pydot = -y - lam * (x ** 2 - y ** 2)
return xdot, ydot, pxdot, pydot
class Halvorsen(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b):
xdot = -a * x - b * (y + z) - y ** 2
ydot = -a * y - b * (z + x) - z ** 2
zdot = -a * z - b * (x + y) - x ** 2
return xdot, ydot, zdot
class Chua(DynSys):
@staticjit
def _rhs(x, y, z, t, alpha, beta, m0, m1):
ramp_x = m1 * x + 0.5 * (m0 - m1) * (np.abs(x + 1) - np.abs(x - 1))
xdot = alpha * (y - x - ramp_x)
ydot = x - y + z
zdot = -beta * y
return xdot, ydot, zdot
class MultiChua(DynSys):
def diode(self, x):
m, c = self.m, self.c
total = m[-1] * x
for i in range(1, 6):
total += 0.5 * (m[i - 1] - m[i]) * (np.abs(x + c[i]) - np.abs(x - c[i]))
return total
def rhs(self, X, t):
x, y, z = X
xdot = self.a * (y - self.diode(x))
ydot = x - y + z
zdot = -self.b * y
return (xdot, ydot, zdot)
class Duffing(DynSys):
@staticjit
def _rhs(x, y, z, t, alpha, beta, delta, gamma, omega):
xdot = y
ydot = -delta * y - beta * x - alpha * x ** 3 + gamma * np.cos(z)
zdot = omega
return xdot, ydot, zdot
@staticjit
def _postprocessing(x, y, z):
return x, y, np.cos(z)
class MackeyGlass(DynSysDelay):
@staticjit
def _rhs(x, xt, t, beta, gamma, n, tau):
xdot = beta * (xt / (1 + xt ** n)) - gamma * x
return xdot
class IkedaDelay(DynSysDelay):
@staticjit
def _rhs(x, xt, t, c, mu, tau, x0):
xdot = mu * np.sin(xt - x0) - c * x
return xdot
class SprottDelay(IkedaDelay):
pass
class VossDelay(DynSysDelay):
@staticjit
def _rhs(x, xt, t, alpha, tau):
f = -10.44 * xt ** 3 - 13.95 * xt ** 2 - 3.63 * xt + 0.85
xdot = -alpha * x + f
return xdot
class ScrollDelay(DynSysDelay):
@staticjit
def _rhs(x, xt, t, alpha, beta, tau):
f = np.tanh(10 * xt)
xdot = -alpha * xt + beta * f
return xdot
class PiecewiseCircuit(DynSysDelay):
@staticjit
def _rhs(x, xt, t, alpha, beta, c, tau):
f = -((xt / c) ** 3) + 3 * xt / c
xdot = -alpha * xt + beta * f
return xdot
# ## this was not chaotic
# class ENSODelay(DynSysDelay):
# @staticjit
# def _rhs(x, xt, t, alpha, beta, tau):
# xdot = x - x**3 - alpha * xt + beta
# return xdot
class DoubleGyre(DynSys):
@staticjit
def _rhs(x, y, z, t, alpha, eps, omega):
a = eps * np.sin(z)
b = 1 - 2 * eps * np.sin(z)
f = a * x ** 2 + b * x
dx = -alpha * np.pi * np.sin(np.pi * f) * np.cos(np.pi * y)
dy = alpha * np.pi * np.cos(np.pi * f) * np.sin(np.pi * y) * (2 * a * x + b)
dz = omega
return dx, dy, dz
@staticjit
def _postprocessing(x, y, z):
return x, y, np.sin(z)
class BlinkingRotlet(DynSys):
@staticjit
def _rotlet(r, theta, a, b, bc):
"""A rotlet velocity field"""
kappa = a ** 2 + (b ** 2 * r ** 2) / a ** 2 - 2 * b * r * np.cos(theta)
gamma = (1 - r ** 2 / a ** 2) * (a ** 2 - (b ** 2 * r ** 2) / a ** 2)
iota = (b ** 2 * r) / a ** 2 - b * np.cos(theta)
zeta = b ** 2 + r ** 2 - 2 * b * r * np.cos(theta)
nu = a ** 2 + b ** 2 - (2 * b ** 2 * r ** 2) / a ** 2
vr = b * np.sin(theta) * (-bc * (gamma / kappa ** 2) - 1 / kappa + 1 / zeta)
vth = (
bc * (gamma * iota) / kappa ** 2
+ bc * r * nu / (a ** 2 * kappa)
+ iota / kappa
- (r - b * np.cos(theta)) / zeta
)
return vr, vth
@staticjit
def _protocol(t, tau, stiffness=20):
return 0.5 + 0.5 * np.tanh(tau * stiffness * np.sin(2 * np.pi * t / tau))
def rhs(self, X, t):
r, theta, tt = X
weight = self._protocol(tt, self.tau)
dr1, dth1 = self._rotlet(r, theta, self.a, self.b, self.bc)
dr2, dth2 = self._rotlet(r, theta, self.a, -self.b, self.bc)
dr = weight * dr1 + (1 - weight) * dr2
dth = (weight * dth1 + (1 - weight) * dth2) / r
dtt = 1
return self.sigma * dr, self.sigma * dth, dtt
def _postprocessing(self, r, th, tt):
return r * np.cos(th), r * np.sin(th), np.sin(2 * np.pi * tt / self.tau)
class BlinkingVortex(BlinkingRotlet):
pass
class OscillatingFlow(DynSys):
@staticjit
def _rhs(x, y, z, t, b, k, omega, u):
f = x + b * np.sin(z)
dx = u * np.cos(k * y) * np.sin(k * f)
dy = -u * np.sin(k * y) * np.cos(k * f)
dz = omega
return dx, dy, dz
def _postprocessing(self, x, y, z):
return np.cos(self.k * x), y, np.sin(z)
class BickleyJet(DynSys):
@staticjit
def _rhs(y, x, z, t, ell, eps, k, omega, sigma, u):
sechy = 1 / np.cosh(y / ell)
inds = np.arange(3)
un = k[inds] * (x - z * sigma[inds])
dx = u * sechy ** 2 * (-1 - 2 * np.dot(np.cos(un), eps) * np.tanh(y / ell))
dy = ell * u * sechy ** 2 * np.dot(eps * k, np.sin(un))
dz = omega
return dy, dx, dz
def _postprocessing(self, x, y, z):
km = np.min(self.k)
sm = np.min(self.sigma)
return x, np.sin(km * y), np.sin(self.omega * z * km * sm)
class ArnoldBeltramiChildress(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
dx = a * np.sin(z) + c * np.cos(y)
dy = b * np.sin(x) + a * np.cos(z)
dz = c * np.sin(y) + b * np.cos(x)
return dx, dy, dz
@staticjit
def _postprocessing(x, y, z):
return np.sin(x), np.cos(y), np.sin(z)
class JerkCircuit(DynSys):
@staticjit
def _rhs(x, y, z, t, eps, y0):
xdot = y
ydot = z
zdot = -z - x - eps * (np.exp(y / y0) - 1)
return xdot, ydot, zdot
class ForcedBrusselator(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, f, w):
xdot = a + x ** 2 * y - (b + 1) * x + f * np.cos(z)
ydot = b * x - x ** 2 * y
zdot = w
return xdot, ydot, zdot
@staticjit
def _postprocessing(x, y, z):
return x, y, np.sin(z)
class WindmiReduced(DynSys):
@staticjit
def _rhs(i, v, p, t, a1, b1, b2, b3, d1, vsw):
idot = a1 * (vsw - v)
vdot = b1 * i - b2 * p ** 1 / 2 - b3 * v
pdot = (
vsw ** 2 - p ** (5 / 4) * vsw ** (1 / 2) * (1 + np.tanh(d1 * (i - 1))) / 2
)
return idot, vdot, pdot
class MooreSpiegel(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, eps):
xdot = y
ydot = a * z
zdot = -z + eps * y - y * x ** 2 - b * x
return xdot, ydot, zdot
class CoevolvingPredatorPrey(DynSys):
@staticjit
def _rhs(x, y, alpha, t, a1, a2, a3, b1, b2, d1, d2, delta, k1, k2, k4, vv):
xdot = x * (
-((a3 * y) / (1 + b2 * x))
+ (a1 * alpha * (1 - k1 * x * (-alpha + alpha * delta))) / (1 + b1 * alpha)
- d1
* (
1
- k2 * (-(alpha ** 2) + (alpha * delta) ** 2)
+ k4 * (-(alpha ** 4) + (alpha * delta) ** 4)
)
)
ydot = (-d2 + (a2 * x) / (1 + b2 * x)) * y
alphadot = vv * (
-((a1 * k1 * x * alpha * delta) / (1 + b1 * alpha))
- d1 * (-2 * k2 * alpha * delta ** 2 + 4 * k4 * alpha ** 3 * delta ** 4)
)
return xdot, ydot, alphadot
class KawczynskiStrizhak(DynSys):
@staticjit
def _rhs(x, y, z, t, beta, gamma, kappa, mu):
xdot = gamma * (y - x ** 3 + 3 * mu * x)
ydot = -2 * mu * x - y - z + beta
zdot = kappa * (x - z)
return xdot, ydot, zdot
class BelousovZhabotinsky(DynSys):
@staticjit
def _rhs(
x,
z,
v,
t,
c1,
c10,
c11,
c12,
c13,
c2,
c3,
c4,
c5,
c6,
c7,
c8,
c9,
ci,
kf,
t0,
y0,
yb1,
yb2,
yb3,
z0,
):
ybar = (1 / y0) * yb1 * z * v / (yb2 * x + yb3 + kf)
if x < 0.0:
x = 0
rf = (ci - z0 * z) * np.sqrt(x)
xdot = c1 * x * ybar + c2 * ybar + c3 * x ** 2 + c4 * rf + c5 * x * z - kf * x
zdot = (c6 / z0) * rf + c7 * x * z + c8 * z * v + c9 * z - kf * z
vdot = c10 * x * ybar + c11 * ybar + c12 * x ** 2 + c13 * z * v - kf * v
return xdot * t0, zdot * t0, vdot * t0
class IsothermalChemical(DynSys):
@staticmethod
def _rhs(alpha, beta, gamma, t, delta, kappa, mu, sigma):
alphadot = mu * (kappa + gamma) - alpha * beta ** 2 - alpha
betadot = (alpha * beta ** 2 + alpha - beta) / sigma
gammadot = (beta - gamma) / delta
return alphadot, betadot, gammadot
class VallisElNino(DynSys):
@staticmethod
def _rhs(x, y, z, t, b, c, p):
xdot = b * y - c * (x + p)
ydot = -y + x * z
zdot = -z - x * y + 1
return xdot, ydot, zdot
class RabinovichFabrikant(DynSys):
@staticjit
def _rhs(x, y, z, t, a, g):
xdot = y * (z - 1 + x ** 2) + g * x
ydot = x * (3 * z + 1 - x ** 2) + g * y
zdot = -2 * z * (a + x * y)
return (xdot, ydot, zdot)
class NoseHoover(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = y
ydot = -x + y * z
zdot = a - y ** 2
return xdot, ydot, zdot
class Dadras(DynSys):
@staticjit
def _rhs(x, y, z, t, c, e, o, p, r):
xdot = y - p * x + o * y * z
ydot = r * y - x * z + z
zdot = c * x * y - e * z
return xdot, ydot, zdot
class RikitakeDynamo(DynSys):
@staticjit
def _rhs(x, y, z, t, a, mu):
xdot = -mu * x + y * z
ydot = -mu * y + x * (z - a)
zdot = 1 - x * y
return xdot, ydot, zdot
class NuclearQuadrupole(DynSys):
@staticjit
def _rhs(q1, q2, p1, p2, t, a, b, d):
q1dot = a * p1
q2dot = a * p2
p1dot = (
-(a * q1)
+ (3 * b * (q1 ** 2 - q2 ** 2)) / np.sqrt(2)
- d * q1 * (q1 ** 2 + q2 ** 2)
)
p2dot = -(q2 * (a + 3 * np.sqrt(2) * b * q1 + d * (q1 ** 2 + q2 ** 2)))
return q1dot, q2dot, p1dot, p2dot
class PehlivanWei(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = y - y * z
ydot = y + y * z - 2 * x
zdot = 2 - x * y - y ** 2
return xdot, ydot, zdot
class SprottTorus(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = y + 2 * x * y + x * z
ydot = 1 - 2 * x ** 2 + y * z
zdot = x - x ** 2 - y ** 2
return xdot, ydot, zdot
class SprottJerk(DynSys):
@staticjit
def _rhs(x, y, z, t, mu):
xdot = y
ydot = z
zdot = -x + y ** 2 - mu * z
return xdot, ydot, zdot
## Not chaotic
# class JerkCircuit(DynSys):
# def rhs(self, X, t):
# x, y, z = X
# xdot = y
# ydot = z
# zdot = -z - x - self.eps*(np.exp(y/self.y0) - 1)
# return (xdot, ydot, zdot)
class SprottA(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = y
ydot = -x + y * z
zdot = 1 - y ** 2
return xdot, ydot, zdot
class SprottB(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = y * z
ydot = x - y
zdot = 1 - x * y
return xdot, ydot, zdot
class SprottC(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = y * z
ydot = x - y
zdot = 1 - x ** 2
return xdot, ydot, zdot
class SprottD(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = -y
ydot = x + z
zdot = x * z + 3 * y ** 2
return xdot, ydot, zdot
class SprottE(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = y * z
ydot = x ** 2 - y
zdot = 1 - 4 * x
return xdot, ydot, zdot
class SprottF(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = y + z
ydot = -x + a * y
zdot = x ** 2 - z
return xdot, ydot, zdot
class SprottG(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = a * x + z
ydot = x * z - y
zdot = -x + y
return xdot, ydot, zdot
class SprottH(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = -y + z ** 2
ydot = x + a * y
zdot = x - z
return xdot, ydot, zdot
class SprottI(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = -a * y
ydot = x + z
zdot = x + y ** 2 - z
return xdot, ydot, zdot
class SprottJ(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = 2 * z
ydot = -2 * y + z
zdot = -x + y + y ** 2
return (xdot, ydot, zdot)
class SprottK(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = x * y - z
ydot = x - y
zdot = x + a * z
return xdot, ydot, zdot
class SprottL(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b):
xdot = y + b * z
ydot = a * x ** 2 - y
zdot = 1 - x
return xdot, ydot, zdot
class SprottM(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = -z
ydot = -(x ** 2) - y
zdot = a * (1 + x) + y
return xdot, ydot, zdot
class SprottN(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = -2 * y
ydot = x + z ** 2
zdot = 1 + y - 2 * z
return xdot, ydot, zdot
class SprottO(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = y
ydot = x - z
zdot = x + x * z + a * y
return xdot, ydot, zdot
class SprottP(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = a * y + z
ydot = -x + y ** 2
zdot = x + y
return xdot, ydot, zdot
class SprottQ(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b):
xdot = -z
ydot = x - y
zdot = a * x + y ** 2 + b * z
return (xdot, ydot, zdot)
class SprottR(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b):
xdot = a - y
ydot = b + z
zdot = x * y - z
return xdot, ydot, zdot
class SprottS(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = -x - 4 * y
ydot = x + z ** 2
zdot = 1 + x
return xdot, ydot, zdot
class SprottMore(DynSys):
@staticjit
def _rhs(x, y, z, t):
xdot = y
ydot = -x - np.sign(z) * y
zdot = y ** 2 - np.exp(-(x ** 2))
return xdot, ydot, zdot
class Arneodo(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, d):
xdot = y
ydot = z
zdot = -a * x - b * y - c * z + d * x ** 3
return xdot, ydot, zdot
class Coullet(Arneodo):
pass
class Rucklidge(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b):
xdot = -a * x + b * y - y * z
ydot = x
zdot = -z + y ** 2
return xdot, ydot, zdot
class Sakarya(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, h, p, q, r, s):
xdot = a * x + h * y + s * y * z
ydot = -b * y - p * x + q * x * z
zdot = c * z - r * x * y
return xdot, ydot, zdot
class LiuChen(Sakarya):
pass
class RayleighBenard(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, r):
xdot = a * (y - x)
ydot = r * y - x * z
zdot = x * y - b * z
return xdot, ydot, zdot
class Finance(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
xdot = (1 / b - a) * x + z + x * y
ydot = -b * y - x ** 2
zdot = -x - c * z
return xdot, ydot, zdot
class Bouali2(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, bb, c, g, m, y0):
xdot = a * x * (y0 - y) - b * z
ydot = -g * y * (1 - x ** 2)
zdot = -m * x * (1.5 - bb * z) - c * z
return xdot, ydot, zdot
class Bouali(Bouali2):
pass
class LuChenCheng(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
xdot = -(a * b) / (a + b) * x - y * z + c
ydot = a * y + x * z
zdot = b * z + x * y
return xdot, ydot, zdot
class LuChen(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
xdot = a * (y - x)
ydot = -x * z + c * y
zdot = x * y - b * z
return xdot, ydot, zdot
class QiChen(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
xdot = a * (y - x) + y * z
ydot = c * x + y - x * z
zdot = x * y - b * z
return xdot, ydot, zdot
class ZhouChen(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, d, e):
xdot = a * x + b * y + y * z
ydot = c * y - x * z + d * y * z
zdot = e * z - x * y
return xdot, ydot, zdot
class BurkeShaw(DynSys):
@staticjit
def _rhs(x, y, z, t, e, n):
xdot = -n * (x + y)
ydot = y - n * x * z
zdot = n * x * y + e
return xdot, ydot, zdot
class Chen(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
xdot = a * (y - x)
ydot = (c - a) * x - x * z + c * y
zdot = x * y - b * z
return xdot, ydot, zdot
class ChenLee(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
xdot = a * x - y * z
ydot = b * y + x * z
zdot = c * z + x * y / 3
return xdot, ydot, zdot
class WangSun(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, d, e, f, q):
xdot = a * x + q * y * z
ydot = b * x + d * y - x * z
zdot = e * z + f * x * y
return xdot, ydot, zdot
class YuWang(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, d):
xdot = a * (y - x)
ydot = b * x - c * x * z
zdot = np.exp(x * y) - d * z
return xdot, ydot, zdot
class YuWang2(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, d):
xdot = a * (y - x)
ydot = b * x - c * x * z
zdot = np.cosh(x * y) - d * z
return xdot, ydot, zdot
class SanUmSrisuchinwong(DynSys):
@staticjit
def _rhs(x, y, z, t, a):
xdot = y - x
ydot = -z * np.tanh(x)
zdot = -a + x * y + np.abs(y)
return xdot, ydot, zdot
class DequanLi(DynSys):
@staticjit
def _rhs(x, y, z, t, a, c, d, eps, f, k):
xdot = a * (y - x) + d * x * z
ydot = k * x + f * y - x * z
zdot = c * z + x * y - eps * x ** 2
return xdot, ydot, zdot
class PanXuZhou(DequanLi):
pass
class Tsucs2(DequanLi):
pass
class ArnoldWeb(DynSys):
@staticjit
def _rhs(p1, p2, x1, x2, z, t, mu, w):
denom = 4 + np.cos(z) + np.cos(x1) + np.cos(x2)
p1dot = -mu * np.sin(x1) / denom ** 2
p2dot = -mu * np.sin(x2) / denom ** 2
x1dot = p1
x2dot = p2
zdot = w
return p1dot, p2dot, x1dot, x2dot, zdot
@staticjit
def _postprocessing(p1, p2, x1, x2, z):
return p1, p2, np.sin(x1), np.sin(x2), np.cos(z)
class NewtonLiepnik(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b):
xdot = -a * x + y + 10 * y * z
ydot = -x - 0.4 * y + 5 * x * z
zdot = b * z - 5 * x * y
return xdot, ydot, zdot
class HyperRossler(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a, b, c, d):
xdot = -y - z
ydot = x + a * y + w
zdot = b + x * z
wdot = -c * z + d * w
return xdot, ydot, zdot, wdot
class HyperLorenz(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a, b, c, d):
xdot = a * (y - x) + w
ydot = -x * z + c * x - y
zdot = -b * z + x * y
wdot = d * w - x * z
return xdot, ydot, zdot, wdot
class HyperCai(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a, b, c, d, e):
xdot = a * (y - x)
ydot = b * x + c * y - x * z + w
zdot = -d * z + y ** 2
wdot = -e * x
return xdot, ydot, zdot, wdot
class HyperBao(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a, b, c, d, e):
xdot = a * (y - x) + w
ydot = c * y - x * z
zdot = x * y - b * z
wdot = e * x + d * y * z
return xdot, ydot, zdot, wdot
class HyperJha(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a, b, c, d):
xdot = a * (y - x) + w
ydot = -x * z + b * x - y
zdot = x * y - c * z
wdot = -x * z + d * w
return xdot, ydot, zdot, wdot
class HyperQi(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a, b, c, d, e, f):
xdot = a * (y - x) + y * z
ydot = b * (x + y) - x * z
zdot = -c * z - e * w + x * y
wdot = -d * w + f * z + x * y
return xdot, ydot, zdot, wdot
class Qi(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a, b, c, d):
xdot = a * (y - x) + y * z * w
ydot = b * (x + y) - x * z * w
zdot = -c * z + x * y * w
wdot = -d * w + x * y * z
return xdot, ydot, zdot, wdot
class LorenzStenflo(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a, b, c, d):
xdot = a * (y - x) + d * w
ydot = x * (c - z) - y
zdot = x * y - b * z
wdot = -x - a * w
return xdot, ydot, zdot, wdot
class HyperYangChen(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a=30, b=3, c=35, d=8):
xdot = a * (y - x)
ydot = c * x - x * z + w
zdot = -b * z + x * y
wdot = -d * x
return xdot, ydot, zdot, wdot
class HyperYan(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a=37, b=3, c=26, d=38):
xdot = a * (y - x)
ydot = (c - a) * x - x * z + c * y
zdot = -b * z + x * y - y * z + x * z - w
wdot = -d * w + y * z - x * z
return xdot, ydot, zdot, wdot
class HyperXu(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a=10, b=40, c=2.5, d=2, e=16):
xdot = a * (y - x) + w
ydot = b * x + e * x * z
zdot = -c * z - x * y
wdot = x * z - d * y
return xdot, ydot, zdot, wdot
class HyperWang(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a=10, b=40, c=2.5, d=10.6, e=4):
xdot = a * (y - x)
ydot = -x * z + b * x + w
zdot = -c * z + e * x ** 2
wdot = -d * x
return xdot, ydot, zdot, wdot
class HyperPang(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a=36, b=3, c=20, d=2):
xdot = a * (y - x)
ydot = -x * z + c * y + w
zdot = x * y - b * z
wdot = -d * (x + y)
return xdot, ydot, zdot, wdot
class HyperLu(DynSys):
@staticjit
def _rhs(x, y, z, w, t, a=36, b=3, c=20, d=1.3):
xdot = a * (y - x) + w
ydot = -x * z + c * y
zdot = x * y - b * z
wdot = d * w + x * z
return xdot, ydot, zdot, wdot
class SaltonSea(DynSys):
@staticjit
def _rhs(x, y, z, t, a, d, k, lam, m, mu, r, th):
xdot = r * x * (1 - (x + y) / k) - lam * x * y
ydot = lam * x * y - m * y * z / (y + a) - mu * y
zdot = th * y * z / (y + a) - d * z
return xdot, ydot, zdot
class ExcitableCell(DynSys):
def rhs(self, X, t):
v, n, c = X
alpham = 0.1 * (25 + v) / (1 - np.exp(-0.1 * v - 2.5))
betam = 4 * np.exp(-(v + 50) / 18)
minf = alpham / (alpham + betam)
alphah = 0.07 * np.exp(-0.05 * v - 2.5)
betah = 1 / (1 + np.exp(-0.1 * v - 2))
hinf = alphah / (alphah + betah)
alphan = 0.01 * (20 + v) / (1 - np.exp(-0.1 * v - 2))
betan = 0.125 * np.exp(-(v + 30) / 80)
ninf = alphan / (alphan + betan)
tau = 1 / (230 * (alphan + betan))
ca = c / (1 + c)
vdot = (
self.gi * minf ** 3 * hinf * (self.vi - v)
+ self.gkv * n ** 4 * (self.vk - v)
+ self.gkc * ca * (self.vk - v)
+ self.gl * (self.vl - v)
)
ndot = (ninf - n) / tau
cdot = self.rho * (minf ** 3 * hinf * (self.vc - v) - self.kc * c)
return vdot, ndot, cdot
class CaTwoPlus(DynSys):
def rhs(self, X, t):
z, y, a = X
Vin = self.V0 + self.V1 * self.beta
V2 = self.Vm2 * (z ** 2) / (self.K2 ** 2 + z ** 2)
V3 = (
(self.Vm3 * (z ** self.m) / (self.Kz ** self.m + z ** self.m))
* (y ** 2 / (self.Ky ** 2 + y ** 2))
* (a ** 4 / (self.Ka ** 4 + a ** 4))
)
V5 = (
self.Vm5
* (a ** self.p / (self.K5 ** self.p + a ** self.p))
* (z ** self.n / (self.Kd ** self.n + z ** self.n))
)
zdot = Vin - V2 + V3 + self.kf * y - self.k * z
ydot = V2 - V3 - self.kf * y
adot = self.beta * self.V4 - V5 - self.eps * a
return (zdot, ydot, adot)
class CellCycle(DynSys):
def rhs(self, X, t):
c1, m1, x1, c2, m2, x2 = X
Vm1, Um1 = 2 * [self.Vm1]
vi1, vi2 = 2 * [self.vi]
H1, H2, H3, H4 = 4 * [self.K]
K1, K2, K3, K4 = 4 * [self.K]
V2, U2 = 2 * [self.V2]
Vm3, Um3 = 2 * [self.Vm3]
V4, U4 = 2 * [self.V4]
Kc1, Kc2 = 2 * [self.Kc]
vd1, vd2 = 2 * [self.vd]
Kd1, Kd2 = 2 * [self.Kd1]
kd1, kd2 = 2 * [self.kd1]
Kim1, Kim2 = 2 * [self.Kim]
V1 = Vm1 * c1 / (Kc1 + c1)
U1 = Um1 * c2 / (Kc2 + c2)
V3 = m1 * Vm3
U3 = m2 * Um3
c1dot = vi1 * Kim1 / (Kim1 + m2) - vd1 * x1 * c1 / (Kd1 + c1) - kd1 * c1
c2dot = vi2 * Kim2 / (Kim2 + m1) - vd2 * x2 * c2 / (Kd2 + c2) - kd2 * c2
m1dot = V1 * (1 - m1) / (K1 + (1 - m1)) - V2 * m1 / (K2 + m1)
m2dot = U1 * (1 - m2) / (H1 + (1 - m2)) - U2 * m2 / (H2 + m2)
x1dot = V3 * (1 - x1) / (K3 + (1 - x1)) - V4 * x1 / (K4 + x1)
x2dot = U3 * (1 - x2) / (H3 + (1 - x2)) - U4 * x2 / (H4 + x2)
return c1dot, m1dot, x1dot, c2dot, m2dot, x2dot
class CircadianRhythm(DynSys):
@staticjit
def _rhs(
m,
fc,
fs,
fn,
th,
t,
Ki,
k,
k1,
k2,
kd,
kdn,
km,
ks,
n,
vd,
vdn,
vm,
vmax,
vmin,
v,
):
vs = 2.5 * ((0.5 + 0.5 * np.cos(th)) + vmin) * (vmax - vmin)
mdot = vs * (Ki ** n) / (Ki ** n + fn ** n) - vm * m / (km + m)
fcdot = ks * m - k1 * fc + k2 * fn - k * fc
fsdot = k * fc - vd * fs / (kd + fs)
fndot = k1 * fc - k2 * fn - vdn * fn / (kdn + fn)
thdot = 2 * np.pi / 24
return mdot, fcdot, fsdot, fndot, thdot
@staticjit
def _postprocessing(m, fc, fs, fn, th):
return m, fc, fs, fn, np.cos(th)
class FluidTrampoline(DynSys):
@staticmethod
def _rhs(x, y, th, t, gamma, psi, w):
xdot = y
ydot = -1 - np.heaviside(-x, 0) * (x + psi * y * np.abs(y)) + gamma * np.cos(th)
thdot = w
return (xdot, ydot, thdot)
@staticjit
def _postprocessing(x, y, th):
return x, y, np.cos(th)
class Aizawa(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, d, e, f):
xdot = (z - b) * x - d * y
ydot = d * x + (z - b) * y
zdot = c + a * z - z ** 3 / 3 - (x ** 2 + y ** 2) * (1 + e * z) + f * z * x ** 3
return xdot, ydot, zdot
class AnishchenkoAstakhov(DynSys):
def rhs(self, X, t):
x, y, z = X
mu, eta = self.mu, self.eta
xdot = mu * x + y - x * z
ydot = -x
zdot = -eta * z + eta * np.heaviside(x, 0) * x ** 2
return (xdot, ydot, zdot)
class ShimizuMorioka(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b):
xdot = y
ydot = x - a * y - x * z
zdot = -b * z + x ** 2
return xdot, ydot, zdot
class GenesioTesi(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c):
xdot = y
ydot = z
zdot = -c * x - b * y - a * z + x ** 2
return xdot, ydot, zdot
class AtmosphericRegime(DynSys):
@staticjit
def _rhs(
x, y, z, t, alpha, beta, mu1, mu2, omega, sigma
):
xdot = mu1 * x + sigma * x * y
ydot = mu2 * y + (omega + alpha * y + beta * z) * z - sigma * x ** 2
zdot = mu2 * z - (omega + alpha * y + beta * z) * y
return xdot, ydot, zdot
class Hadley(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, f, g):
xdot = -(y ** 2) - z ** 2 - a * x + a * f
ydot = x * y - b * x * z - y + g
zdot = b * x * y + x * z - z
return xdot, ydot, zdot
class ForcedVanDerPol(DynSys):
@staticjit
def _rhs(x, y, z, t, a, mu, w):
ydot = mu * (1 - x ** 2) * y - x + a * np.sin(z)
xdot = y
zdot = w
return xdot, ydot, zdot
@staticjit
def _postprocessing(x, y, z):
return x, y, np.sin(z)
class ForcedFitzHughNagumo(DynSys):
@staticjit
def _rhs(v, w, z, t, a, b, curr, f, gamma, omega):
vdot = v - v ** 3 / 3 - w + curr + f * np.sin(z)
wdot = gamma * (v + a - b * w)
zdot = omega
return vdot, wdot, zdot
@staticjit
def _postprocessing(x, y, z):
return x, y, np.sin(z)
class HindmarshRose(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, d, s, tx, tz):
xdot = -tx * x + y - a * x ** 3 + b * x ** 2 + z
ydot = -a * x ** 3 - (d - b) * x ** 2 + z
zdot = -s * x - z + c
return xdot / tx, ydot, zdot / tz
class Colpitts(DynSys):
def rhs(self, X, t):
x, y, z = X
u = z - (self.e - 1)
fz = -u * (1 - np.heaviside(u, 0))
xdot = y - self.a * fz
ydot = self.c - x - self.b * y - z
zdot = y - self.d * z
return (xdot, ydot, zdot)
class Laser(DynSys):
@staticjit
def _rhs(x, y, z, t, a, b, c, d, h, k):
xdot = a * (y - x) + b * y * z ** 2
ydot = c * x + d * x * z ** 2
zdot = h * z + k * x ** 2
return xdot, ydot, zdot
class Blasius(DynSys):
@staticjit
def _rhs(x, y, z, t, a, alpha1, alpha2, b, c, k1, k2, zs):
xdot = a * x - alpha1 * x * y / (1 + k1 * x)
ydot = -b * y + alpha1 * x * y / (1 + k1 * x) - alpha2 * y * z / (1 + k2 * y)
zdot = -c * (z - zs) + alpha2 * y * z / (1 + k2 * y)
return xdot, ydot, zdot
class TurchinHanski(DynSys):
@staticjit
def _rhs(n, p, z, t, a, d, e, g, h, r, s):
ndot = (
r * (1 - e * np.sin(z)) * n
- r * (n ** 2)
- g * (n ** 2) / (n ** 2 + h ** 2)
- a * n * p / (n + d)
)
pdot = s * (1 - e * np.sin(z)) * p - s * (p ** 2) / n
zdot = 2 * np.pi
return ndot, pdot, zdot
@staticjit
def _postprocessing(x, y, z):
return x, y, np.sin(z)
class StickSlipOscillator(DynSys):
def _t(self, v):
return self.t0 * np.sign(v) - self.alpha * v + self.beta * v ** 3
@staticjit
def _rhs(x, v, th, t, a, alpha, b, beta, eps, gamma, t0, vs, w):
tq = t0 * np.sign(v - vs) - alpha * v + beta * (v - vs) ** 3
xdot = v
vdot = eps * (gamma * np.cos(th) - tq) + a * x - b * x ** 3
thdot = w
return xdot, vdot, thdot
@staticjit
def _postprocessing(x, v, th):
return x, v, np.cos(th)
class HastingsPowell(DynSys):
@staticjit
def _rhs(x, y, z, t, a1, a2, b1, b2, d1, d2):
xdot = x * (1 - x) - y * a1 * x / (1 + b1 * x)
ydot = y * a1 * x / (1 + b1 * x) - z * a2 * y / (1 + b2 * y) - d1 * y
zdot = z * a2 * y / (1 + b2 * y) - d2 * z
return xdot, ydot, zdot
class CellularNeuralNetwork(DynSys):
@staticjit
def f(x):
return 0.5 * (np.abs(x + 1) - np.abs(x - 1))
def rhs(self, X, t):
x, y, z = X
xdot = -x + self.d * self.f(x) - self.b * self.f(y) - self.b * self.f(z)
ydot = -y - self.b * self.f(x) + self.c * self.f(y) - self.a * self.f(z)
zdot = -z - self.b * self.f(x) + self.a * self.f(y) + self.f(z)
return (xdot, ydot, zdot)
class BeerRNN(DynSys):
@staticjit
def _sig(x):
return 1.0 / (1.0 + | np.exp(-x) | numpy.exp |
import json
import numpy as np
from scipy import sparse
from io import BytesIO
from nilearn._utils import rename_parameters, check_niimg_4d, check_niimg_3d
from nilearn._utils.niimg import _safe_get_data
from nilearn.image.resampling import coord_transform
from .. import datasets
from . import cm
from .html_stat_map import _bytesIO_to_base64
from .js_plotting_utils import (add_js_lib, mesh_to_plotly,
encode, colorscale, get_html_template,
to_color_strings)
from nilearn.reporting import HTMLDocument
class ConnectomeView(HTMLDocument):
pass
def _prepare_line(edges, nodes):
path_edges = np.zeros(len(edges) * 3, dtype=int)
path_edges[::3] = edges
path_edges[1::3] = edges
path_nodes = np.zeros(len(nodes) * 3, dtype=int)
path_nodes[::3] = nodes[:, 0]
path_nodes[1::3] = nodes[:, 1]
return path_edges, path_nodes
def _get_connectome(adjacency_matrix, coords, threshold=None,
marker_size=None, cmap=cm.blue_red, symmetric_cmap=True):
connectome = {}
coords = np.asarray(coords, dtype='<f4')
adjacency_matrix = np.nan_to_num(adjacency_matrix, copy=True)
colors = colorscale(
cmap, adjacency_matrix.ravel(), threshold=threshold,
symmetric_cmap=symmetric_cmap)
connectome['colorscale'] = colors['colors']
connectome['cmin'] = float(colors['vmin'])
connectome['cmax'] = float(colors['vmax'])
if threshold is not None:
adjacency_matrix[
np.abs(adjacency_matrix) <= colors['abs_threshold']] = 0
s = sparse.coo_matrix(adjacency_matrix)
nodes = np.asarray([s.row, s.col], dtype=int).T
edges = np.arange(len(nodes))
path_edges, path_nodes = _prepare_line(edges, nodes)
connectome["_con_w"] = encode(np.asarray(s.data, dtype='<f4')[path_edges])
c = coords[path_nodes]
if np.ndim(marker_size) > 0:
marker_size = np.asarray(marker_size)
marker_size = marker_size[path_nodes]
x, y, z = c.T
for coord, cname in [(x, "x"), (y, "y"), (z, "z")]:
connectome["_con_{}".format(cname)] = encode(
np.asarray(coord, dtype='<f4'))
connectome["markers_only"] = False
if hasattr(marker_size, 'tolist'):
marker_size = marker_size.tolist()
connectome['marker_size'] = marker_size
return connectome
def _get_volume(img, threshold=0, atlas=None, stride=1, t_start=0, t_end=-1, n_t=50, t_r=None,
marker_size=3, cmap=cm.cold_hot, symmetric_cmap=True, vmax=None, vmin=None):
connectome = {}
img = check_niimg_4d(img)
t_unit = "" if not t_r else " s"
if not t_r:
t_r = 1
if t_end < 0:
t_end = img.shape[3] + t_end
if not n_t:
n_t = t_end-t_start
t_idx = np.round(np.linspace(t_start, t_end, n_t)).astype(int)
t_labels = [str(t_r*t)+t_unit for t in t_idx]
data = _safe_get_data(img)[::stride,::stride,::stride,t_idx]
mask = np.abs(data[:,:,:,0]) > threshold
i, j, k = mask.nonzero()
x, y, z = coord_transform(i*stride, j*stride, k*stride, img.affine)
for coord, cname in [(x, "x"), (y, "y"), (z, "z")]:
connectome["_con_{}".format(cname)] = encode(
np.asarray(coord, dtype='<f4'))
colors = colorscale(cmap, data.ravel(),
symmetric_cmap=symmetric_cmap, vmax=vmax, vmin=vmin)
if atlas:
atlas = check_niimg_3d(atlas)
atlas_data = _safe_get_data(atlas)[::stride,::stride,::stride]
connectome['atlas'] = encode(np.asarray(atlas_data[i,j,k], dtype='<f4'))
connectome['atlas_nb'] = int(np.max(atlas_data))
connectome['colorscale'] = colors['colors']
connectome['cmin'] = float(colors['vmin'])
connectome['cmax'] = float(colors['vmax'])
connectome['n_time'] = n_t
connectome['t_labels'] = t_labels
values = [encode(np.asarray(data[i,j,k,t], dtype='<f4')) for t in range(data.shape[3])]
connectome['values'] = values
return connectome
def _get_markers(coords, colors):
connectome = {}
coords = np.asarray(coords, dtype='<f4')
x, y, z = coords.T
for coord, cname in [(x, "x"), (y, "y"), (z, "z")]:
connectome["_con_{}".format(cname)] = encode(
| np.asarray(coord, dtype='<f4') | numpy.asarray |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 8 20:03:35 2019
@author: siddhesh
"""
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
import numpy as np
import pandas as pd
import os
import torch
from albumentations import (
RandomBrightnessContrast,
HueSaturationValue,
RandomGamma,
GaussNoise,
GaussianBlur,
HorizontalFlip,
VerticalFlip,
Compose,
Normalize,
)
import time
from openslide import OpenSlide
from tqdm import tqdm
class GenClassDataset(Dataset):
def __init__(self, csv_file, ref_file, params, valid=False):
self.csv_file = csv_file
self.ref_file = ref_file
self.df = pd.read_csv(csv_file)
self.params = params
self.valid = valid
self.openslide_obs = {}
self.train_transforms = Compose(
[
RandomBrightnessContrast(brightness_limit=0.4, contrast_limit=0.4),
HueSaturationValue(
hue_shift_limit=30, sat_shift_limit=45, val_shift_limit=30
),
RandomGamma(gamma_limit=(80, 120)),
GaussNoise(var_limit=(10, 200)),
GaussianBlur(blur_limit=11),
VerticalFlip(p=0.5),
HorizontalFlip(p=0.5),
Normalize(
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), always_apply=True, p=1.0
),
]
)
self.validation_transforms = Compose(
[
Normalize(
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), always_apply=True, p=1.0
)
]
)
self.reset_slideobjects()
def reset_slideobjects(self):
print("Resetting")
temp_df = pd.read_csv(self.ref_file)
for i in tqdm(range(temp_df.shape[0])):
pid = temp_df.iloc[i, 0]
path = temp_df.iloc[i, 1]
self.openslide_obs[pid] = OpenSlide(path)
def __len__(self):
return len(self.df)
def __getitem__(self, patient_id):
pid = self.df.loc[patient_id, "PID"]
x = int(self.df.loc[patient_id, "x_loc"])
y = int(self.df.loc[patient_id, "y_loc"])
slide_ob = self.openslide_obs[pid]
patch = np.array(slide_ob.read_region((x, y), 0, (1024, 1024)).convert("RGB"))
label = self.df.loc[patient_id, "label"]
if self.valid:
image = self.train_transforms(image=patch)
else:
image = self.validation_transforms(image=patch)
patch = image["image"]
patch = | np.transpose(patch, (2, 0, 1)) | numpy.transpose |
import numpy as np
import torch
from torch.utils.data import Dataset
def sigmoid(x):
return 1. / (1 + np.exp(-x))
def gen_synth_causal_dat(nObs=100, causalFunc='nueralnet_l1', noise_dist='laplace'):
"""
generate causal data where one variable causes another
Inputs:
- nObs: number of observations
- causalFunc: specify causal function
"""
causalFuncDict = {'linear': lambda x, n: 1 * x + n,
'hoyer2009': lambda x, n: x + (.5) * x * x * x + (n),
'nueralnet_l1': lambda x, n: sigmoid(sigmoid(np.random.normal(loc=1) * x) + n),
'mnm': lambda x, n: sigmoid(np.random.normal(loc=1) * x) + .5 * x ** 2
+ sigmoid(np.random.normal(loc=1) * x) * n
}
# scale divided by np.sqrt(2) to ensure std of 1
if noise_dist == 'laplace':
N = np.random.laplace(loc=0, scale=1. / np.sqrt(2), size=(nObs, 2))
elif noise_dist == 'gaussian':
N = np.random.normal(loc=0, scale=1., size=(nObs, 2))
elif noise_dist == 'cauchy':
N = np.random.standard_cauchy(size=(nObs, 2))
elif noise_dist == 'student':
N = np.random.standard_t(df=5, size=(nObs, 2))
else:
raise ValueError(noise_dist)
X = np.zeros((nObs, 2))
X[:, 0] = N[:, 0]
X[:, 1] = causalFuncDict[causalFunc](X[:, 0], N[:, 1])
if np.random.uniform() < .5:
mod_dir = 'y->x'
X = X[:, [1, 0]]
else:
mod_dir = 'x->y'
return X, mod_dir
def intervention_sem(n_obs, dim=4, seed=0, noise_dist='laplace',
random=True, shuffle=False, nonlin='poly', multiplicative=False, iidx=None, value=0):
np.random.seed(seed)
if dim == 3:
if noise_dist == 'laplace':
X_1, U_2, U_3 = np.random.laplace(loc=0, scale=1. / np.sqrt(2), size=(n_obs, dim)).T
elif noise_dist == 'gaussian':
X_1, U_2, U_3 = np.random.normal(loc=0, scale=1., size=(n_obs, dim)).T
elif noise_dist == 'cauchy':
X_1, U_2, U_3 = np.random.standard_cauchy(size=(n_obs, dim)).T
elif noise_dist == 'student':
X_1, U_2, U_3 = np.random.standard_t(df=5, size=(n_obs, dim)).T
else:
raise ValueError(noise_dist)
# effects
if nonlin == 'lin':
# np.random.uniform(low, high, size)
# coeffs = np.random.uniform(.1, .9, 3) if random else [-1, 0.05, 0.25]
coeffs = [-1, 2, 0.25]
if iidx is not None:
if iidx == 0:
X_1 = np.ones_like(X_1)*value
X_2 = coeffs[0] * X_1 + U_2
X_3 = coeffs[1] * X_1 + coeffs[2] * X_2 + U_3
elif iidx == 1:
X_2 = np.ones_like(U_2)*value
X_3 = coeffs[1] * X_1 + coeffs[2] * X_2 + U_3
elif iidx ==2:
X_2 = coeffs[0] * X_1 + U_2
X_3 = np.ones_like(U_3)*value
else:
X_2 = coeffs[0] * X_1 + U_2
X_3 = coeffs[1] * X_1 + coeffs[2] * X_2 + U_3
elif nonlin == 'poly':
# np.random.uniform(low, high, size)
coeffs = np.random.uniform(.1, .9, 2) if random else [.5, .5]
X_3 = X_1 + coeffs[0] * (X_2 * X_2 * X_2)
X_4 = -X_2 + coeffs[1] * (X_1 * X_1)
if multiplicative:
X_3 *= np.random.laplace(0, 1 / np.sqrt(2), size=n_obs)
X_4 *= np.random.laplace(0, 1 / np.sqrt(2), size=n_obs)
else:
X_3 += np.random.laplace(0, 1 / np.sqrt(2), size=n_obs)
X_4 += np.random.laplace(0, 1 / np.sqrt(2), size=n_obs)
elif nonlin == 'sigmoid':
N_3 = np.random.laplace(0, 1 / np.sqrt(2), size=n_obs)
N_4 = np.random.laplace(0, 1 / | np.sqrt(2) | numpy.sqrt |
from typing import Tuple
import cv2
import numpy as np
from torchvision.models import squeezenet1_1
from .psroi_pooling.psroi_pool import PsRoIPool2D as Pool
from utils import image as imagelib
from utils.network import *
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
self.epoch, self.lr = 0, .01
self.scale = 1.
self.score = None
self.stride = 4
self.shape = [64, 128, 256, 512]
# Network
squeeze = squeezenet1_1(pretrained=True)
self.conv1 = nn.Sequential(
squeeze.features[0],
squeeze.features[1],
)
self.conv2 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
squeeze.features[3],
squeeze.features[4],
)
self.conv3 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
squeeze.features[6],
squeeze.features[7],
)
self.conv4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
squeeze.features[9],
squeeze.features[10],
squeeze.features[11],
squeeze.features[12],
)
self.conv1[0].padding = (1, 1)
self.stage_0 = nn.Sequential(
nn.Dropout2d(inplace=True),
nn.Conv2d(in_channels=self.shape[-1], out_channels=256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
)
feature_size = self.shape[1:]
in_channels = 256
out_shape = [128, 256]
for i in range(1, len(feature_size)):
out_channels = out_shape[-i]
setattr(self, 'upconv_{}'.format(i),
nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1, bias=True),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
Interpolate(scale_factor=2, mode='bilinear', align_corners=False),
))
feat_channels = feature_size[-1-i]
setattr(self, 'proj_{}'.format(i), nn.Sequential(
ConcatTable(
DilationLayer(feat_channels, out_channels // 2, 3, dilation=1),
DilationLayer(feat_channels, out_channels // 2, 5, dilation=1),
),
nn.Conv2d(out_channels // 2, out_channels // 2, 1),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU(inplace=True)
))
in_channels = out_channels + out_channels // 2
roi_size = 7
self.cls_conv = nn.Sequential(
nn.Conv2d(in_channels, in_channels, 3, padding=1),
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, roi_size * roi_size, 1, padding=1)
)
self.roi_pool = Pool(roi_size, roi_size, 1. / self.stride)
self.avg_pool = nn.AvgPool2d(roi_size, roi_size)
# TODO: Check CUDA available
self.cuda()
self.eval()
@staticmethod
def transform(image: np.ndarray) \
-> Tuple[np.ndarray, np.ndarray, tuple, float]:
size = 640 if min(image.shape[0:2]) > 720 else 368
padded, scale, shape = imagelib.factor_crop(image, size, factor=16, padding=0, based='min')
cropped = cv2.cvtColor(padded, cv2.COLOR_BGR2RGB)
cropped = cropped.astype(np.float32) / 255. - .5
return cropped, padded, shape, scale
def forward(self, x: torch.Tensor):
x2 = self.conv1(x)
x4 = self.conv2(x2)
x8 = self.conv3(x4)
x16 = self.conv4(x8)
features = [x2, x4, x8, x16]
inputs = self.stage_0(features[-1])
for i in range(1, len(self.shape[1:])):
inputs = torch.cat((
getattr(self, 'upconv_{}'.format(i))(inputs), # depth
getattr(self, 'proj_{}'.format(i))(features[-1 - i]), # project
), 1)
return self.cls_conv(inputs)
def update(self, image: np.ndarray):
cropped, padded, shape, scale = self.transform(image)
self.scale = scale
with torch.no_grad():
self.score = self(
torch.autograd.Variable(
torch.from_numpy(cropped.astype(np.float32)).permute(2, 0, 1).unsqueeze(0)
).cuda()
)
return shape, scale
def predict(self, rois: np.ndarray):
rois = rois * self.scale
size = | np.size(rois, 0) | numpy.size |
import numpy as np
import scipy.constants as const
import json
import os
from matplotlib import pyplot as plt
import ckvpy.tools.photon_yield as photon_yield
import ckvpy.tools.effective as effective
class dataAnalysis(object):
"""Class to handle wavelength cuts, sorting, angle finding etc."""
def __init__(self, data):
self.data_dict = data
self._get_num_bands()
self._rm_nan()
def _get_num_bands(self):
self.num_bands = {}
for root in self.data_dict:
i = 0
for bands in self.data_dict[root]:
i += 1
self.num_bands[root] = i
def _rm_nan(self):
"""Remove NaNs in data using a mask"""
for root in self.data_dict:
for band in self.data_dict[root]:
final_mask = None
for param in self.data_dict[root][band]:
data = self.data_dict[root][band][param]
band_len = len(self.data_dict[root][band]['band'])
if type(data) is list and len(data) == band_len:
nan_array = np.isnan(data)
# print(nan_array[-1])
# nan_list = [val is not 'nan' for val in data]
if final_mask is None:
final_mask = nan_array
final_mask = np.logical_or(final_mask, nan_array)
final_mask = np.logical_not(final_mask)
for param in self.data_dict[root][band]:
# do elementwise pop() instead of this strange conversion?
band_len = len(self.data_dict[root][band]['band'])
data = self.data_dict[root][band][param]
if type(data) is list and len(data) == band_len:
data = np.array(data)[final_mask].tolist()
def save(self, name):
with open(name, 'w') as f:
json.dump(self.data_dict, f)
def find_angle(self, wl_range=[250.0e-9, 500.0e-9], filename=None):
"""Get Cherenkov angles/chromatic error for wavelength range wl_range
Params:
wl_range list[float]: wavelength range that Cherenkov angle and
chromatic error is calculated over
Returns:
tuple(float): Cherenkov angle average and range
"""
for a in self.data_dict:
for band in self.data_dict[a]:
print("Finding angle for a =", a, "band", band)
wl1, wl2, average, rnge = self.calc_err(wl_range, a=a, band=band)
try:
a_ = float(a)
except ValueError:
a_ = 0.
array = np.array([wl1, wl2, average, rnge, float(a_)])
self.data_dict[a][band]['cherenkov'] = array.tolist() # json friendly
# self.data_dict[a][band][str(wl1)+'-']
# print(average, rnge)
return average, rnge
# dont return average and range if computed
# for multiple values of 'a', these are stored in file.
def calculate_n_eff(self, method='gradient'):
"""method is 'gradient' or 'angle', TODO: may remove, redundant"""
for root in self.data_dict:
for band in self.data_dict[root]:
data = self.data_dict[root][band]
if 'n' in data:
print('refractive index already in data')
continue
if 'kx' in data and 'ky' in data and 'ky' in data:
kx = np.array(data['kx'])
ky = np.array(data['ky'])
kz = np.array(data['kz'])
kabs = np.sqrt(kx*kx+ky*ky+kz*kz)
th_in = np.arctan(kz/np.sqrt(kx*kx+ky*ky))
elif 'kz' in data and 'k_rho' in data: # 3D
kz = np.array(data['kz'])
k_rho = np.array(data['k_rho'])
kabs = np.sqrt(k_rho*k_rho+kz*kz)
d_rho, dz = self.data_dict['default'][band]['direction']
if dz == 1:
k_parallel = k_rho
k_perp = kz
elif d_rho == 1:
k_parallel = kz
k_perp = k_rho
th_in = np.arctan(k_parallel/(k_perp+1e-20))
else:
raise ValueError("No kx, ky and kz in dataset")
f = np.array(data['frequency'])
k0 = 2*np.pi*f/const.c # omega/c
neff = kabs/k0
wl_in = 2*np.pi/kabs
wl_nan = np.isnan(wl_in) # deal with NaNs
th_nan = np.isnan(th_in)
neff_nan = np.isnan(neff)
nan_mask = | np.logical_or(wl_nan, th_nan, neff_nan) | numpy.logical_or |
from functools import partial
import numpy as np
from scipy.stats import boxcox
from sklearn.datasets import make_blobs
from sklearn.preprocessing import minmax_scale
from clustermatch.cluster import run_quantile_clustering
def blobs_data_generator01():
"""
Blobs. n_samples=100, n_features=20, centers=3, cluster_std=0.10, center_box=(-1.0, 1.0)
"""
return make_blobs(
n_samples=100,
centers=3,
n_features=20,
cluster_std=0.10,
shuffle=True,
center_box=(-1.0, 1.0)
)
def blobs_data_generator02(seed=None, n_samples=100, n_features=1000):
"""
Blobs. n_samples=100, n_features=1000, centers=3, cluster_std=0.10, center_box=(-1.0, 1.0)
"""
return make_blobs(
n_samples=n_samples,
centers=3,
n_features=n_features,
cluster_std=0.10,
shuffle=True,
center_box=(-1.0, 1.0),
random_state=seed,
)
def _get_array_chunks(data, chunk_size):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(data), chunk_size):
sl = slice(i, i + chunk_size)
yield sl, data[sl]
def _apply_noise(data, data_noise):
data_n_objects = data.shape[1]
data_n_measures = data.shape[0]
if len(data_noise) == 0:
return data
percentage_objects = data_noise.get('percentage_objects', 0.1)
percentage_measures = data_noise.get('percentage_measures', 0.0)
magnitude = data_noise.get('magnitude', 0.0)
selected_rows = np.random.choice(
data_n_measures,
size=int(data_n_measures * percentage_measures),
replace=False
)
selected_cols = np.random.choice(
data_n_objects,
size=int(data_n_objects * percentage_objects),
replace=False
)
noisy_data = data.copy()
if np.issubdtype(data.dtype, np.number) or all([np.isreal(x) for row in data for x in row]):
if not np.issubdtype(data.dtype, np.number):
data = data.astype(float)
if len(selected_rows) > 0:
noisy_points = np.random.rand(len(selected_rows), data_n_objects)
noisy_points = minmax_scale(noisy_points, axis=1, feature_range=(data.min(), data.max()))
noisy_points = noisy_points * magnitude
noisy_data[selected_rows, :] += noisy_points
if len(selected_cols) > 0:
noisy_points = np.random.rand(data_n_measures, len(selected_cols))
noisy_points = minmax_scale(noisy_points, axis=1, feature_range=(data.min(), data.max()))
noisy_data[:, selected_cols] = noisy_points
else:
assert all([not np.isreal(x) for row in data for x in row])
unique_cat = np.unique(data)
if len(selected_cols) > 0:
# noisy_points = np.random.rand(data_n_measures, len(selected_cols))
noisy_points = np.random.choice(unique_cat, (data_n_measures, len(selected_cols)))
# noisy_points = minmax_scale(noisy_points, axis=1, feature_range=(data.min(), data.max()))
noisy_data[:, selected_cols] = noisy_points
# for i in range(data.shape[0]):
# for j in range(data.shape[1]):
# if np.random.rand() < magnitude:
# noisy_data[i, j] = np.random.choice(unique_cat)
return noisy_data
def _generic_data_transformation(data, sources_transformers, dtype=None, **kwargs):
if len(sources_transformers) == 0:
return data
n_data = data.shape[0]
n_sim_sources = len(sources_transformers)
data_step = int(n_data / n_sim_sources)
t_data = np.empty(data.shape, dtype=data.dtype if dtype is None else dtype)
i = 0
for sl, data_chunk in _get_array_chunks(data, data_step):
transformer = sources_transformers[i % n_sim_sources]
# transform
if callable(transformer):
t_data_chunk = transformer(data_chunk)
else:
t_data_chunk = data_chunk * transformer
t_data[sl] = t_data_chunk
# if not np.issubdtype(t_data_chunk.dtype, np.number):
# is_data_object = True
# data noise
if 'data_noise' in kwargs:
data_noise = kwargs['data_noise']
t_data[sl] = _apply_noise(t_data[sl], data_noise)
i += 1
return t_data
def _create_categorical(data, cats):
n_cats = len(cats)
t_data = np.empty(data.shape, dtype=object)
for data_row_idx, data_row in enumerate(data):
data_row_part = run_quantile_clustering(data_row, n_cats)
t_data[data_row_idx] = np.array([cats[int(x)] for x in data_row_part])
return t_data
def transform_rows_nonlinear_and_categorical01(data, **kwargs):
"""
Nonlinear and categorical row transformation 01. 7 numerical data sources (x^4, log, exp2, 100, x^5, 10000, 0.0001) and 3 categorical (10, 4 and 2 categories).
"""
sources_transformers = [
lambda x: np.power(x, 4),
lambda x: np.log(np.abs(x)),
lambda x: np.exp2(x),
100.0,
lambda x: _create_categorical(x, cats=[
'cat01', 'cat02', 'cat03', 'cat04',
'cat05', 'cat06', 'cat07', 'cat08',
'cat09', 'cat10',
]),
lambda x: np.power(x, 5),
10000.0,
lambda x: _create_categorical(x, cats=['cat01', 'cat02', 'cat03', 'cat04']),
0.0001,
lambda x: _create_categorical(x, cats=['cat01', 'cat02']),
]
return _generic_data_transformation(data, sources_transformers, dtype=object, **kwargs)
def transform_rows_nonlinear_and_categorical02(data, **kwargs):
"""
Nonlinear and categorical row transformation 02. 7 numerical data sources (x^4, log, exp2, log1p, x^5, log10, log2) and 3 categorical (8, 4 and 2 categories).
"""
sources_transformers = [
lambda x: np.power(x, 4),
lambda x: np.log(np.abs(x)),
lambda x: np.exp2(x),
lambda x: _create_categorical(x, cats=[
'cat01', 'cat02', 'cat03', 'cat04',
'cat05', 'cat06', 'cat07', 'cat08',
'cat09', 'cat10',
]),
lambda x: np.log1p(np.abs(x)),
lambda x: np.power(x, 5),
lambda x: _create_categorical(x, cats=['cat01', 'cat02', 'cat03', 'cat04']),
lambda x: np.log10(np.abs(x)),
lambda x: _create_categorical(x, cats=['cat01', 'cat02']),
lambda x: np.log2(np.abs(x)),
]
return _generic_data_transformation(data, sources_transformers, dtype=object, **kwargs)
def transform_rows_full_scaled01(data):
"""
Full row scale. 5 simulated data sources; values: 0.01, 0.1, 10, 100, 1000
"""
sources_transformers = [0.01, 0.1, 10.0, 100.0, 1000.0]
return _generic_data_transformation(data, sources_transformers)
def transform_rows_nonlinear01(data, **kwargs):
"""
Nonlinear row transformation 01. 5 simulated data sources; Functions: exp, x^2, log, expm1, log10
"""
sources_transformers = [
np.exp,
lambda x: np.power(x, 2),
lambda x: np.log(np.abs(x)),
np.expm1,
lambda x: np.log10(np.abs(x)),
]
return _generic_data_transformation(data, sources_transformers, **kwargs)
def transform_rows_nonlinear02(data, **kwargs):
"""
Nonlinear row transformation 02. 4 simulated data sources; Functions: x^3, log, log1p, exp2
"""
sources_transformers = [
lambda x: np.power(x, 3),
lambda x: np.log(np.abs(x)),
lambda x: np.log1p(np.abs(x)),
np.exp2,
]
return _generic_data_transformation(data, sources_transformers, **kwargs)
def transform_rows_nonlinear03(data, **kwargs):
"""
Nonlinear row transformation 03. 10 simulated data sources; Functions: x^4, log, exp2, 100, log1p, x^5, 10000, log10, 0.0001, log2
"""
sources_transformers = [
lambda x: np.power(x, 4),
lambda x: np.log(np.abs(x)),
lambda x: np.exp2(x),
100.0,
lambda x: np.log1p(np.abs(x)),
lambda x: np.power(x, 5),
10000.0,
lambda x: np.log10(np.abs(x)),
0.0001,
lambda x: np.log2(np.abs(x)),
]
return _generic_data_transformation(data, sources_transformers, **kwargs)
def transform_rows_nonlinear03_01(data, **kwargs):
"""
Nonlinear row transformation 03_01. 10 simulated data sources; Functions: x^2, log, exp2, 100, log1p, x^3, 10000, log10, 0.0001, log2
"""
sources_transformers = [
lambda x: np.power(x, 2),
lambda x: np.log(np.abs(x)),
lambda x: np.exp2(x),
100.0,
lambda x: np.log1p(np.abs(x)),
lambda x: np.power(x, 3),
10000.0,
lambda x: np.log10(np.abs(x)),
0.0001,
lambda x: np.log2(np.abs(x)),
]
return _generic_data_transformation(data, sources_transformers, **kwargs)
def transform_rows_nonlinear04(data, **kwargs):
"""
Nonlinear row transformation 04. 10 simulated data sources; Functions: 1.0, 0.5*(x+1)^2, sin(pi*x), cos(pi*x), x^5, exp2, log10, boxcox(2), boxcox(4), boxcox(6).
"""
sources_transformers = [
1.0,
lambda x: 0.5 * np.power((x+1), 2),
lambda x: np.sin(np.pi * x),
lambda x: np.cos(np.pi * x),
lambda x: np.power(x, 5),
lambda x: np.exp2(x),
lambda x: np.log10(np.abs(x)),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 2.00),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 4.00),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 6.00),
]
return _generic_data_transformation(data, sources_transformers, **kwargs)
def transform_rows_nonlinear05(data, **kwargs):
"""
Nonlinear row transformation 05. 10 simulated data sources; Functions: 1.0, 0.5*(x+1)^2, sin(pi*x), cos(pi*x), x^5, exp2, log10(x-x.min()), boxcox(2), boxcox(4), boxcox(6).
"""
sources_transformers = [
1.0,
lambda x: 0.5 * np.power((x+1), 2),
lambda x: np.sin(np.pi * x),
lambda x: np.cos(np.pi * x),
lambda x: np.power(x, 5),
lambda x: np.exp2(x),
lambda x: np.log10(x + (-1.0 * x.min()) + 0.01),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 2.00),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 4.00),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 6.00),
]
return _generic_data_transformation(data, sources_transformers, **kwargs)
def transform_rows_nonlinear06(data, **kwargs):
"""
Nonlinear row transformation 06. 12 simulated data sources; Functions: 1.0, 0.5*(x+1)^2, sin(pi*x), sin(2*pi*x), cos(pi*x), cos(2*pi*x), x^5, exp2, log10(x-x.min()), boxcox(2), boxcox(4), boxcox(6).
"""
sources_transformers = [
1.0,
lambda x: 0.5 * np.power((x+1), 2),
lambda x: np.sin(np.pi * x),
lambda x: np.sin(2.0 * np.pi * x),
lambda x: np.cos(np.pi * x),
lambda x: np.cos(2.0 * np.pi * x),
lambda x: np.power(x, 5),
lambda x: np.exp2(x),
lambda x: np.log10(x + (-1.0 * x.min()) + 0.01),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 2.00),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 4.00),
lambda x: boxcox(x + (-1.0 * x.min()) + 0.01, 6.00),
]
return _generic_data_transformation(data, sources_transformers, **kwargs)
def transform_rows_nonlinear07(data, **kwargs):
"""
Nonlinear row transformation 07. 12 simulated data sources; Functions: 1.0, 0.5*(x+1)^2, sin(pi*x), -100, cos(pi*x), 0.0001, x^5, exp2, log10(x-x.min()), boxcox(2), boxcox(4), boxcox(6).
"""
sources_transformers = [
1.0,
lambda x: 0.5 * np.power((x+1), 2),
lambda x: | np.sin(np.pi * x) | numpy.sin |
import math
import numpy as np
from PIL import Image
from skimage import io
from skimage.color import rgb2gray, rgb2lab, rgb2hsv
def load(image_path):
"""Loads an image from a file path.
HINT: Look up `skimage.io.imread()` function.
Args:
image_path: file path to the image.
Returns:
out: numpy array of shape(image_height, image_width, 3).
"""
# YOUR CODE HERE
# Use skimage io.imread
out = io.imread(image_path)
print(out)
# END YOUR CODE
# Let's convert the image to be between the correct range.
out = out.astype(np.float64) / 255
return out
def dim_image(image):
"""Change the value of every pixel by following
x_n = 0.5*x_p^2
where x_n is the new value and x_p is the original value.
Args:
image: numpy array of shape(image_height, image_width, 3).
Returns:
out: numpy array of shape(image_height, image_width, 3).
"""
out = None
# YOUR CODE HERE
out = 0.5 * np.square(image)
# END YOUR CODE
return out
def convert_to_grey_scale(image):
"""Change image to gray scale.
HINT: Look at `skimage.color` library to see if there is a function
there you can use.
Args:
image: numpy array of shape(image_height, image_width, 3).
Returns:
out: numpy array of shape(image_height, image_width).
"""
# YOUR CODE HERE
out = rgb2gray(image)
# END YOUR CODE
return out
def rgb_exclusion(image, channel):
"""Return image **excluding** the rgb channel specified
Args:
image: numpy array of shape(image_height, image_width, 3).
channel: str specifying the channel. Can be either "R", "G" or "B".
Returns:
out: numpy array of shape(image_height, image_width, 3).
"""
# YOUR CODE HERE
RGB = ['R', 'G', 'B']
out = image.copy()
out[..., RGB.index(channel)] = 0
# END YOUR CODE
return out
def lab_decomposition(image, channel):
"""Decomposes the image into LAB and only returns the channel specified.
Args:
image: numpy array of shape(image_height, image_width, 3).
channel: str specifying the channel. Can be either "L", "A" or "B".
Returns:
out: numpy array of shape(image_height, image_width).
"""
lab = rgb2lab(image)
# YOUR CODE HERE
LAB = ['L', 'A', 'B']
out = lab[..., LAB.index(channel)]
# END YOUR CODE
return out
def hsv_decomposition(image, channel):
"""Decomposes the image into HSV and only returns the channel specified.
Args:
image: numpy array of shape(image_height, image_width, 3).
channel: str specifying the channel. Can be either "H", "S" or "V".
Returns:
out: numpy array of shape(image_height, image_width).
"""
hsv = rgb2hsv(image)
# YOUR CODE HERE
HSV = ['H', 'S', 'V']
out = hsv[..., HSV.index(channel)]
# END YOUR CODE
return out
def mix_images(image1, image2, channel1, channel2):
"""Combines image1 and image2 by taking the left half of image1
and the right half of image2. The final combination also excludes
channel1 from image1 and channel2 from image2 for each image.
HINTS: Use `rgb_exclusion()` you implemented earlier as a helper
function. Also look up `np.concatenate()` to help you combine images.
Args:
image1: numpy array of shape(image_height, image_width, 3).
image2: numpy array of shape(image_height, image_width, 3).
channel1: str specifying channel used for image1.
channel2: str specifying channel used for image2.
Returns:
out: numpy array of shape(image_height, image_width, 3).
"""
# YOUR CODE HERE
image1 = rgb_exclusion(image1, channel1)
image2 = rgb_exclusion(image2, channel2)
height, width, _ = image1.shape
cut = width // 2
s1 = image1[:, :cut]
s2 = image2[:, cut:]
out = | np.concatenate((s1, s2), axis=1) | numpy.concatenate |
# Coded by Marafi
# To Do List:
# Add Concrete Wall Weight
# Add Basement Floors
# Add Using 2.5' Deep by 6' Coupling Beams
# Distribute Forces using MRSA, include 0.85 factor for 2008 designs
####################################################################################
#region Defining Classes
####################################################################################
from __future__ import absolute_import
import numpy as np
import ATCWallArchetypeHelpers as ATCWallHelper
from ATCWallArchetypeObjects import ArchetypeData
from ATCWallArchetypeObjects import CouplingBeam
from ATCWallArchetypeObjects import PlanarWallSection
from ATCWallArchetypeObjects import TWallSection
from ATCWallArchetypeObjects import IWallSection
from six.moves import filter
class Basement:
def __init__(self, FloorStiffnesses, WallStiffnesses, BasementMass, **kwargs):
self.FloorStiffnesses = list(FloorStiffnesses)
self.WallStiffnesses = list(WallStiffnesses)
self.BasementMass = list(BasementMass)
self.__dict__.update(kwargs)
####################################################################################
# endregion
####################################################################################
####################################################################################
#region Defining Functions
####################################################################################
####################################################################################
# endregion
####################################################################################
def GetSeattle2008Hazard(Height, R=6, Period = None, IgnoreMinBaseShear = False, Overstrength=1.0):
Sds = 0.91 * Overstrength
S1 = 0.529 * Overstrength
Sd1 = 0.458 * Overstrength
TL = 6
I = 1.0
Cd = 5
if Period == None:
CuTa = 1.4 * ASCEHelper.ComputeCuTa((Height / 12.), 0.02, 0.75)
else:
CuTa = Period
Periods = [0.01 ,0.1 ,0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.75 ,1 ,2 ,3 ,4 ,5 ,7 ,8 ,9 ,10]
BasinFactors = [1.235, 1.231, 1.249, 1.340, 1.351, 1.428, 1.477, 1.551, 1.557, 1.583, 1.541, 1.576, 1.581, 1.728, 1.744, 1.703, 1.662]
# if Height / 12. > 240:
# FactorS = np.exp(np.interp(np.log(0.2), np.log(Periods), np.log(BasinFactors))) # Add basin effects
# Factor1 = np.exp(np.interp(np.log(1.0), np.log(Periods), np.log(BasinFactors))) # Add basin effects
# else:
# FactorS = 1.0
# Factor1 = 1.0
FactorS = 1.0
Factor1 = 1.0
SaDesign = ASCEHelper.GetDesignSa(CuTa, S1 * Factor1, Sds * FactorS, Sd1 * Factor1, TL, R, I, IgnoreMinBaseShear)
return SaDesign, Sds, CuTa
def GetSeattle2014Hazard(Height, R=6, Period = None, IgnoreMinBaseShear = False, Overstrength=1.0):
Sds = 1.12 * Overstrength
S1 = 0.488 * Overstrength
Sd1 = 0.488 * Overstrength
TL = 6
I = 1.0
Cd = 5
if Period == None:
CuTa = 1.4 * ASCEHelper.ComputeCuTa((Height / 12.), 0.02, 0.75)
else:
CuTa = Period
Periods = [0.01 ,0.1 ,0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.75 ,1 ,2 ,3 ,4 ,5 ,7 ,8 ,9 ,10]
BasinFactors = [1.235, 1.231, 1.249, 1.340, 1.351, 1.428, 1.477, 1.551, 1.557, 1.583, 1.541, 1.576, 1.581, 1.728, 1.744, 1.703, 1.662]
# if Height / 12. > 240:
# FactorS = np.exp(np.interp(np.log(0.2), np.log(Periods), np.log(BasinFactors))) # Add basin effects
# Factor1 = np.exp(np.interp(np.log(1.0), np.log(Periods), np.log(BasinFactors))) # Add basin effects
# else:
# FactorS = 1.0
# Factor1 = 1.0
FactorS = 1.0
Factor1 = 1.0
SaDesign = ASCEHelper.GetDesignSa(CuTa, S1 * Factor1, Sds * FactorS, Sd1 * Factor1, TL, R, I, IgnoreMinBaseShear)
return SaDesign, Sds, CuTa
# Global Variables
# Loading
# DL 150psf Floors #### All Floors have the same load
# LL 65psf Floors and 20psf Roof
DL_Basements = [155, 155, 155, 230] # Include Basement Wall Loads
LL_Basements = [40, 40, 40, 100] # Check LL
DL = 130 # psf
LL = 50 # psf
DL_Roof = 200 # psf
LL_Roof = 20 # psf
BasementFloorArea = 160. * 160. / 2.
FloorArea = 100. * 100. / 2.
PercentageFloorAreaResistedByWall = 0.5
FirstFloorHeight = 10 * 12.
FloorHeights = 10 * 12.
BasementFloorHeights = 10 * 12.
# Pick Out Prelim. Section Size using Shear
fy = 60.; fu = 105.
fpc_core = 8.
fpc_slabs = 5.
ConcreteDensity = 150.
def CreateArchetype(Basement=None, Use2008Maps = True, Overstrength = 1.0):
# Defining Story Levels
YGrids = [0] + np.array(np.arange(0, (NoOfStories) * FloorHeights, FloorHeights) + FloorHeights).tolist()
# Defining Gravity Loads
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
# Computing Mass of Wall
WallSelfWeight = []
i = -1
for section in Sections:
i += 1
if isinstance(section, IWallSection):
CoreVolume = (section.b_w * section.t_w * 2. + (section.l_w - section.t_w * 2.) * section.t_w) * (
YGrids[i + 1] - YGrids[i]) / 12. ** 3.
EquivalentDL = CoreVolume * ConcreteDensity / 1000.
WallSelfWeight.append(EquivalentDL)
elif isinstance(section, PlanarWallSection):
CoreVolume = section.l_w * section.t_w * (
YGrids[i + 1] - YGrids[i]) / 12. ** 3.
EquivalentDL = CoreVolume * ConcreteDensity / 1000.
WallSelfWeight.append(EquivalentDL)
# Defining Mass
Mass = ( DeadLoads + 0.5 * LiveLoads ) * FloorArea # Compute
Mass = Mass + np.array(WallSelfWeight) # Adding Wall Self Weight
WallTribArea = FloorArea * PercentageFloorAreaResistedByWall
WallGravityLoad = WallTribArea * DeadLoads + np.array(WallSelfWeight)
WallDeadLoads = DeadLoads * FloorArea + np.array(WallSelfWeight)
WallLiveLoads = LiveLoads * FloorArea
PDeltaGravityLoad = Mass - WallGravityLoad
if Basement is not None:
Height = YGrids[-1] - YGrids[len(Basement.FloorStiffnesses)]
else:
Height = YGrids[-1]
# Seismic Hazard
R = 6; Cd = 5
if Use2008Maps:
SaDesign, Sds, CuTa = GetSeattle2008Hazard(Height, R=R, Overstrength = Overstrength)
else:
SaDesign, Sds, CuTa = GetSeattle2014Hazard(Height, R=R, Overstrength = Overstrength)
if Basement is not None:
archetypename = ArchetypeData(Name, YGrids, R, CuTa, Length, Thickness, None, None, None,
fpc_core, fy, fu, PDeltaGravityLoad, Mass, WallGravityLoad,
None, None, None, Sections, CuTa=CuTa, SaDesign=SaDesign,
Cd=Cd, BasementProperties=Basement,
WallDeadLoads = list(WallDeadLoads), WallLiveLoads = list(WallLiveLoads), Sds = Sds)
else:
archetypename = ArchetypeData(Name, YGrids, R, CuTa, Length, Thickness, None, None, None,
fpc_core, fy, fu, PDeltaGravityLoad, Mass, WallGravityLoad,
None, None, None, Sections, CuTa=CuTa, SaDesign=SaDesign,
Cd=Cd, WallDeadLoads = list(WallDeadLoads), WallLiveLoads = list(WallLiveLoads), Sds = Sds)
return archetypename
BasementFloorStiffnesses = np.array([8200, 8200, 8200, 10100]) * 0.5
BasementWallStiffnesses = np.array([0.0496e9, 0.0496e9, 0.0496e9, 0.0496e9, ]) * 0.5
BasementMass = (np.array(DL_Basements) + 0.5 * np.array(LL_Basements)) * ( BasementFloorArea - FloorArea ) / 1000.
Basements = Basement(BasementFloorStiffnesses, BasementWallStiffnesses, BasementMass)
BasementFloorStiffnesses = np.array([8200, 8200, 10100]) * 0.5
BasementWallStiffnesses = np.array([0.0496e9, 0.0496e9, 0.0496e9, ]) * 0.5
BasementMass = (np.array(DL_Basements[1:]) + 0.5 * np.array(LL_Basements[1:])) * ( BasementFloorArea - FloorArea ) / 1000.
Basements3Levels = Basement(BasementFloorStiffnesses, BasementWallStiffnesses, BasementMass)
BasementFloorStiffnesses = np.array([8200, 10100]) * 0.5
BasementWallStiffnesses = np.array([0.0496e9, 0.0496e9 ]) * 0.5
BasementMass = (np.array(DL_Basements[2:]) + 0.5 * np.array(LL_Basements[2:])) * ( BasementFloorArea - FloorArea ) / 1000.
Basements2Levels = Basement(BasementFloorStiffnesses, BasementWallStiffnesses, BasementMass)
####################################################################################
#region Defining Archetype
####################################################################################
Archetypes = []
import ASCEHelper
############################### Performance Group #1 ###############################
# 2008 Maps
#region Archetype S4H08SEA and S4H08SEAWB
Name = 'S4H08SEA'
# print 'Importing Archetype: ' + Name
# Compute Seismic Weight
NoOfStories = 4
YGrids = [0] + np.array(np.arange(0,(NoOfStories)*13*12, 13*12)+15*12).tolist()
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
MassPerSqFt = DL / 1000.
Mass = np.ones(NoOfStories) * MassPerSqFt * FloorArea
Mass[-1] = FloorArea * DL_Roof / 1000. # Adjust for Roof Weight
WallTribArea = FloorArea * 0.5
WeightPerSqFt = DL
BuildingWeight = np.ones(NoOfStories) * WeightPerSqFt * FloorArea
BuildingWeight[-1] = 152. / 1000. * FloorArea # Adjust for Roof Weight
# Seismic Hazard
R = 6; Cd = 5
SaDesign, Sds, CuTa = GetSeattle2008Hazard(YGrids[-1], R=R)
Thickness = 14.
Length = 14. * 12.
Long_Spacing = 4
NoOfCols = 10
BarSize = 8.
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section1 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., NoOfCols, 3)
NoOfCols = 6
BarSize = 8.0
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section2 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., 8, 3)
Section3 = PlanarWallSection(Length, Thickness, 0, 0, 10.173,
[],
[],
0.255, 4.037, fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section2, Section2]
S4H08SEA = CreateArchetype()
Archetypes.append(S4H08SEA)
Name = 'S4H08SEAWB'
NoOfStories = 6
Sections = [
Section1, Section1,
Section1, Section1, Section2, Section2
]
S4H08SEAWB = CreateArchetype(Basements2Levels)
Archetypes.append(S4H08SEAWB)
#endregion
#region Archetype S8H08SEA and S8H08SEAWB
Name = 'S8H08SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 8
Thickness = 14.
Length = 16. * 12.
Flange_Thickness = 8*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.9 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 5.0
Rho = 0.55 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H08SEA = CreateArchetype()
Archetypes.append(S8H08SEA)
Name = 'S8H08SEAWB'
NoOfStories = 11
Sections = [
Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H08SEAWB = CreateArchetype(Basements3Levels)
Archetypes.append(S8H08SEAWB)
#endregion
#region Archetype S12H08SEA and S12H08SEAWB
Name = 'S12H08SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 12
Thickness = 14.
Length = 20. * 12.
Flange_Thickness = 10.0*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 5.0
Rho = 0.50 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 5.0
Rho = 0.50 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 14.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.35 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H08SEA = CreateArchetype()
Archetypes.append(S12H08SEA)
Name = 'S12H08SEAWB'
NoOfStories = 16
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H08SEAWB = CreateArchetype(Basements)
Archetypes.append(S12H08SEAWB)
#endregion
#region Archetype S16H08SEA and S16H08SEAWB
Name = 'S16H08SEA'
#### Input Variables
NoOfStories = 16
Thickness = 14.
Length = 22. * 12.
Flange_Thickness = 11.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 6.0
Rho = 0.5 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 14.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H08SEA = CreateArchetype()
Archetypes.append(S16H08SEA)
Name = 'S16H08SEAWB'
NoOfStories = 20 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H08SEAWB = CreateArchetype(Basements)
Archetypes.append(S16H08SEAWB)
#endregion
#region Archetype S20H08SEA and S20H08SEAWB
Name = 'S20H08SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 20
Thickness = 14.
Length = 24. * 12.
Flange_Thickness = 12*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 6.0
Rho = 0.5 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 14.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho =0.35 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 14.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H08SEA = CreateArchetype()
Archetypes.append(S20H08SEA)
Name = 'S20H08SEAWB'
NoOfStories = 24 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H08SEAWB = CreateArchetype(Basements)
Archetypes.append(S20H08SEAWB)
#endregion
#region Archetype S24H08SEA and S24H08SEAWB
Name = 'S24H08SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 24
Thickness = 18
Length = 26. * 12.
Flange_Thickness = 13.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 1.0 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 6.0
Rho = 0.75 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.60 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
BarSize = 5.0
Rho = 0.50 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 14.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.50 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
BarSize = 5.0
Rho = 0.50 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H08SEA = CreateArchetype()
Archetypes.append(S24H08SEA)
Name = 'S24H08SEAWB'
NoOfStories = 28
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H08SEAWB = CreateArchetype(Basements)
Archetypes.append(S24H08SEAWB)
#endregion
#region Archetype S28H08SEA and S28H08SEAWB
Name = 'S28H08SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 28
Thickness = 18.
Length = 28. * 12.
Flange_Thickness = 14*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.85 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 6.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 16.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 16.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section7 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
]
S28H08SEA = CreateArchetype()
Archetypes.append(S28H08SEA)
Name = 'S28H08SEAWB'
NoOfStories = 32
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
]
S28H08SEAWB = CreateArchetype(Basements)
Archetypes.append(S28H08SEAWB)
#endregion
#region Archetype S32H08SEA and S32H08SEAWB
Name = 'S32H08SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 32
Thickness = 20.
Length = 30. * 12.
Flange_Thickness = 15*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 6.0
Rho = 0.75 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 20.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section7 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section8 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
]
S32H08SEA = CreateArchetype()
Archetypes.append(S32H08SEA)
Name = 'S32H08SEAWB'
NoOfStories = 36
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
]
S32H08SEAWB = CreateArchetype(Basements)
Archetypes.append(S32H08SEAWB)
#endregion
#region Archetype S36H08SEA and S36H08SEAWB
Name = 'S36H08SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 36
Thickness = 22.
Length = 32. * 12.
Flange_Thickness = 16*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 6.0
Rho = 0.6 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 16.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 16.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section7 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section8 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 16.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section9 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
Section9, Section9, Section9, Section9,
]
S36H08SEA = CreateArchetype()
Archetypes.append(S36H08SEA)
Name = 'S36H08SEAWB'
NoOfStories = 40
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
Section9, Section9, Section9, Section9,
]
S36H08SEAWB = CreateArchetype(Basements)
Archetypes.append(S36H08SEAWB)
#endregion
#region Archetype S40H08SEA and S40H08SEAWB
Name = 'S40H08SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 40
Thickness = 24.
Length = 34. * 12.
Flange_Thickness = 17.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 6.0
Rho = 0.6 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 6.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 24.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section7 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section8 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 16.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section9 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section10 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
Section9, Section9, Section9, Section9,
Section10, Section10, Section10, Section10,
]
S40H08SEA = CreateArchetype()
Archetypes.append(S40H08SEA)
Name = 'S40H08SEAWB'
NoOfStories = 44
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
Section9, Section9, Section9, Section9,
Section10, Section10, Section10, Section10,
]
S40H08SEAWB = CreateArchetype(Basements)
Archetypes.append(S40H08SEAWB)
#endregion
# 2014 Maps
#region Archetype S4H14SEA and S4H14SEAWB
Name = 'S4H14SEA'
# print 'Importing Archetype: ' + Name
# Compute Seismic Weight
NoOfStories = 4
YGrids = [0] + np.array(np.arange(0,(NoOfStories)*13*12, 13*12)+15*12).tolist()
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
MassPerSqFt = DL / 1000.
Mass = np.ones(NoOfStories) * MassPerSqFt * FloorArea
Mass[-1] = FloorArea * DL_Roof / 1000. # Adjust for Roof Weight
WallTribArea = FloorArea * 0.5
WeightPerSqFt = DL
BuildingWeight = np.ones(NoOfStories) * WeightPerSqFt * FloorArea
BuildingWeight[-1] = 152. / 1000. * FloorArea # Adjust for Roof Weight
# Seismic Hazard
R = 6; Cd = 5
SaDesign, Sds, CuTa = GetSeattle2008Hazard(YGrids[-1], R=R)
Thickness = 18.
Length = 16. * 12.
Long_Spacing = 4
NoOfCols = 13
BarSize = 8.
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section1 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., NoOfCols, 3)
NoOfCols = 8
BarSize = 8.0
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section2 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., 8, 3)
Section3 = PlanarWallSection(Length, Thickness, 0, 0, 10.173,
[],
[],
0.255, 4.037, fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section2, Section2]
S4H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S4H14SEA)
Name = 'S4H14SEAWB'
NoOfStories = 6
Sections = [
Section1, Section1,
Section1, Section1, Section2, Section2
]
S4H14SEAWB = CreateArchetype(Basements2Levels, Use2008Maps = False)
Archetypes.append(S4H14SEAWB)
#endregion
#region Archetype S8H14SEA and S8H14SEAWB
Name = 'S8H14SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 8
Thickness = 16.
Length = 18. * 12.
Flange_Thickness = 9.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.95 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 5.0
Rho = 0.70 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S8H14SEA)
Name = 'S8H14SEAWB'
NoOfStories = 11
Sections = [
Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAWB = CreateArchetype(Basements3Levels, Use2008Maps = False)
Archetypes.append(S8H14SEAWB)
#endregion
#region Archetype S12H14SEA and S12H14SEAWB
Name = 'S12H14SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 12
Thickness = 18.
Length = 20. * 12.
Flange_Thickness = 10.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 6.0
Rho = 0.85 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 6.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.40 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S12H14SEA)
Name = 'S12H14SEAWB'
NoOfStories = 16
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAWB = CreateArchetype(Basements, Use2008Maps = False)
Archetypes.append(S12H14SEAWB)
#endregion
#region Archetype S16H14SEA and S16H14SEAWB
Name = 'S16H14SEA'
#### Input Variables
NoOfStories = 16
Thickness = 22.
Length = 24. * 12.
Flange_Thickness = 12.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.6 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.40 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S16H14SEA)
Name = 'S16H14SEAWB'
NoOfStories = 20 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAWB = CreateArchetype(Basements, False)
Archetypes.append(S16H14SEAWB)
#endregion
#region Archetype S20H14SEA and S20H14SEAWB
Name = 'S20H14SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 20
Thickness = 24.
Length = 26. * 12.
Flange_Thickness = 13*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.55 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 24.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho =0.45 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 20.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S20H14SEA)
Name = 'S20H14SEAWB'
NoOfStories = 24 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAWB = CreateArchetype(Basements, False)
Archetypes.append(S20H14SEAWB)
#endregion
#region Archetype S24H14SEA and S24H14SEAWB
Name = 'S24H14SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 24
Thickness = 26.
Length = 28. * 12.
Flange_Thickness = 14.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.1 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.75 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S24H14SEA)
Name = 'S24H14SEAWB'
NoOfStories = 28
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAWB = CreateArchetype(Basements, False)
Archetypes.append(S24H14SEAWB)
#endregion
#region Archetype S28H14SEA and S28H14SEAWB
Name = 'S28H14SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 28
Thickness = 28.
Length = 30. * 12.
Flange_Thickness = 15*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.95 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.7 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 28.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 24.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section7 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
]
S28H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S28H14SEA)
Name = 'S28H14SEAWB'
NoOfStories = 32
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
]
S28H14SEAWB = CreateArchetype(Basements, False)
Archetypes.append(S28H14SEAWB)
#endregion
#region Archetype S32H14SEA and S32H14SEAWB
Name = 'S32H14SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 32
Thickness = 30.
Length = 32. * 12.
Flange_Thickness = 16.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.95 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.8 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 30.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 7.0
Rho = 0.7 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section7 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section8 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
]
S32H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S32H14SEA)
Name = 'S32H14SEAWB'
NoOfStories = 36
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
]
S32H14SEAWB = CreateArchetype(Basements, False)
Archetypes.append(S32H14SEAWB)
#endregion
#region Archetype S36H14SEA and S36H14SEAWB
Name = 'S36H14SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 36
Thickness = 32.
Length = 34. * 12.
Flange_Thickness = 17.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.1 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 0.8 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 32.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 7.0
Rho = 0.7 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 7.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 28.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 28.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section7 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section8 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section9 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
Section9, Section9, Section9, Section9,
]
S36H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S36H14SEA)
Name = 'S36H14SEAWB'
NoOfStories = 40
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
Section9, Section9, Section9, Section9,
]
S36H14SEAWB = CreateArchetype(Basements, False)
Archetypes.append(S36H14SEAWB)
#endregion
#region Archetype S40H14SEA and S40H14SEAWB
Name = 'S40H14SEA'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 40
Thickness = 34.
Length = 36. * 12.
Flange_Thickness = 18.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.2 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.0 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 34.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 7.0
Rho = 0.8 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.8 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 28.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.7 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 28.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section7 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section8 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 24.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section9 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 6.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section10 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
Sections = [
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
Section9, Section9, Section9, Section9,
Section10, Section10, Section10, Section10,
]
S40H14SEA = CreateArchetype(Use2008Maps = False)
Archetypes.append(S40H14SEA)
Name = 'S40H14SEAWB'
NoOfStories = 44
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
Section7, Section7, Section7, Section7,
Section8, Section8, Section8, Section8,
Section9, Section9, Section9, Section9,
Section10, Section10, Section10, Section10,
]
S40H14SEAWB = CreateArchetype(Basements, False)
Archetypes.append(S40H14SEAWB)
#endregion
############################### Performance Group #2 ###############################
##### 2008 Maps ######
#region Archetype S4H08SEAPG2 and S4H08SEAWBPG2
Name = 'S4H08SEAPG2'
# print 'Importing Archetype: ' + Name
# Compute Seismic Weight
NoOfStories = 4
YGrids = [0] + np.array(np.arange(0,(NoOfStories)*13*12, 13*12)+15*12).tolist()
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
MassPerSqFt = DL / 1000.
Mass = np.ones(NoOfStories) * MassPerSqFt * FloorArea
Mass[-1] = FloorArea * DL_Roof / 1000. # Adjust for Roof Weight
WallTribArea = FloorArea * 0.5
WeightPerSqFt = DL
BuildingWeight = np.ones(NoOfStories) * WeightPerSqFt * FloorArea
BuildingWeight[-1] = 152. / 1000. * FloorArea # Adjust for Roof Weight
# Seismic Hazard
R = 6; Cd = 5
SaDesign, Sds, CuTa = GetSeattle2008Hazard(YGrids[-1], R=R)
Thickness = 14.
Length = 10. * 12.
Long_Spacing = 4
NoOfCols = 14
BarSize = 8.
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section1 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., NoOfCols, 3)
NoOfCols = 6
BarSize = 8.0
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section2 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., 8, 3)
Section3 = PlanarWallSection(Length, Thickness, 0, 0, 10.173,
[],
[],
0.255, 4.037, fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section2, Section2]
S4H08SEAPG2 = CreateArchetype()
Archetypes.append(S4H08SEAPG2)
Name = 'S4H08SEAWBPG2'
NoOfStories = 6
Sections = [
Section1, Section1,
Section1, Section1, Section2, Section2
]
S4H08SEAWBPG2 = CreateArchetype(Basements2Levels)
Archetypes.append(S4H08SEAWBPG2)
#endregion
#region Archetype S8H08SEAPG2 and S8H08SEAWBPG2
Name = 'S8H08SEAPG2'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 8
Thickness = 20.
Length = 11. * 12.
Flange_Thickness = 5.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 2.0 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.1 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H08SEAPG2 = CreateArchetype()
Archetypes.append(S8H08SEAPG2)
Name = 'S8H08SEAWBPG2'
NoOfStories = 11
Sections = [
Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H08SEAWBPG2 = CreateArchetype(Basements3Levels)
Archetypes.append(S8H08SEAWBPG2)
#endregion
#region Archetype S12H08SEAPG2 and S12H08SEAWBPG2
Name = 'S12H08SEAPG2'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 12
Thickness = 20.
Length = 14. * 12.
Flange_Thickness = 7*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.6 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.0 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 16.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.45 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H08SEAPG2 = CreateArchetype()
Archetypes.append(S12H08SEAPG2)
Name = 'S12H08SEAWBPG2'
NoOfStories = 16
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H08SEAWBPG2 = CreateArchetype(Basements)
Archetypes.append(S12H08SEAWBPG2)
#endregion
#region Archetype S16H08SEAPG2 and S16H08SEAWBPG2
Name = 'S16H08SEAPG2'
#### Input Variables
NoOfStories = 16
Thickness = 22.
Length = 16. * 12.
Flange_Thickness = 8.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.4 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.0 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 16.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.35 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H08SEAPG2 = CreateArchetype()
Archetypes.append(S16H08SEAPG2)
Name = 'S16H08SEAWBPG2'
NoOfStories = 20 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H08SEAWBPG2 = CreateArchetype(Basements)
Archetypes.append(S16H08SEAWBPG2)
#endregion
#region Archetype S20H08SEAPG2 and S20H08SEAWBPG2
Name = 'S20H08SEAPG2'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 20
Thickness = 24.
Length = 18. * 12.
Flange_Thickness = 9*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.2 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 0.9 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H08SEA = CreateArchetype()
Archetypes.append(S20H08SEA)
Name = 'S20H08SEAWBPG2'
NoOfStories = 24 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H08SEAWBPG2 = CreateArchetype(Basements)
Archetypes.append(S20H08SEAWBPG2)
#endregion
#region Archetype S24H08SEAPG2 and S24H08SEAWBPG2
Name = 'S24H08SEAPG2'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 24
Thickness = 28
Length = 21. * 12.
Flange_Thickness = 10.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 5.0
Rho = 0.7 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 5.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H08SEAPG2 = CreateArchetype()
Archetypes.append(S24H08SEAPG2)
Name = 'S24H08SEAWBPG2'
NoOfStories = 28
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H08SEAWBPG2 = CreateArchetype(Basements)
Archetypes.append(S24H08SEAWBPG2)
#endregion
##### 2014 Maps ######
#region Archetype S4H14SEAPG2 and S4H14SEAWBPG2
Name = 'S4H14SEAPG2'
# print 'Importing Archetype: ' + Name
# Compute Seismic Weight
NoOfStories = 4
YGrids = [0] + np.array(np.arange(0,(NoOfStories)*13*12, 13*12)+15*12).tolist()
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
MassPerSqFt = DL / 1000.
Mass = np.ones(NoOfStories) * MassPerSqFt * FloorArea
Mass[-1] = FloorArea * DL_Roof / 1000. # Adjust for Roof Weight
WallTribArea = FloorArea * 0.5
WeightPerSqFt = DL
BuildingWeight = np.ones(NoOfStories) * WeightPerSqFt * FloorArea
BuildingWeight[-1] = 152. / 1000. * FloorArea # Adjust for Roof Weight
# Seismic Hazard
R = 6; Cd = 5
SaDesign, Sds, CuTa = GetSeattle2008Hazard(YGrids[-1], R=R)
Thickness = 18.
Length = 12. * 12.
Long_Spacing = 4
NoOfCols = 12
BarSize = 10.
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section1 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., NoOfCols, 3)
NoOfCols = 10
BarSize = 8.0
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section2 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., 8, 3)
Section3 = PlanarWallSection(Length, Thickness, 0, 0, 10.173,
[],
[],
0.255, 4.037, fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section2, Section2]
S4H14SEAPG2 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S4H14SEAPG2)
Name = 'S4H14SEAWBPG2'
NoOfStories = 6
Sections = [
Section1, Section1,
Section1, Section1, Section2, Section2
]
S4H14SEAWBPG2 = CreateArchetype(Basements2Levels, Use2008Maps = False)
Archetypes.append(S4H14SEAWBPG2)
#endregion
#region Archetype S8H14SEAPG2 and S8H14SEAWBPG2
Name = 'S8H14SEAPG2'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 8
Thickness = 24.
Length = 12. * 12.
Flange_Thickness = 6*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 2.0 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.0 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAPG2 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S8H14SEAPG2)
Name = 'S8H14SEAWBPG2'
NoOfStories = 11
Sections = [
Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAWBPG2 = CreateArchetype(Basements3Levels, Use2008Maps = False)
Archetypes.append(S8H14SEAWBPG2)
#endregion
#region Archetype S12H14SEAPG2 and S12H14SEAWBPG2
Name = 'S12H14SEAPG2'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 12
Thickness = 24.
Length = 15. * 12.
Flange_Thickness = 7.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.6 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.2 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.7 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAPG2 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S12H14SEAPG2)
Name = 'S12H14SEAWBPG2'
NoOfStories = 16
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAWBPG2 = CreateArchetype(Basements, Use2008Maps = False)
Archetypes.append(S12H14SEAWBPG2)
#endregion
#region Archetype S16H14SEAPG2 and S16H14SEAWBPG2
Name = 'S16H14SEAPG2'
#### Input Variables
NoOfStories = 16
Thickness = 28.
Length = 17. * 12.
Flange_Thickness = 8.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.5 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.0 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 20.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.60 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAPG2 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S16H14SEAPG2)
Name = 'S16H14SEAWBPG2'
NoOfStories = 20 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAWBPG2 = CreateArchetype(Basements, False)
Archetypes.append(S16H14SEAWBPG2)
#endregion
#region Archetype S20H14SEAPG2 and S20H14SEAWBPG2
Name = 'S20H14SEAPG2'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 20
Thickness = 30.
Length = 19. * 12.
Flange_Thickness = 9.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 9.0
Rho = 1.4 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 0.95 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho =0.7 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAPG2 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S20H14SEAPG2)
Name = 'S20H14SEAWBPG2'
NoOfStories = 24 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAWBPG2 = CreateArchetype(Basements, False)
Archetypes.append(S20H14SEAWBPG2)
#endregion
#region Archetype S24H14SEAPG2 and S24H14SEAWBPG2
Name = 'S24H14SEAPG2'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 24
Thickness = 32.
Length = 21. * 12.
Flange_Thickness = 10.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 9.0
Rho = 1.3 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.1 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 7.0
Rho = 0.8 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
BarSize = 4.0
Rho = 0.35 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAPG2 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S24H14SEAPG2)
Name = 'S24H14SEAWBPG2'
NoOfStories = 28
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAWBPG2 = CreateArchetype(Basements, False)
Archetypes.append(S24H14SEAWBPG2)
#endregion
#region Archetype S24H14SEAPG2 and S24H14SEAWBPG2
Name = 'S24H14SEAPG2TEST'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 24
Thickness = 32.
Length = 21. * 12.
Flange_Thickness = 10.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 9.0
Rho = 1.3 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.1 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 7.0
Rho = 0.8 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
BarSize = 4.0
Rho = 0.35 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
]
S24H14SEAPG2TEST = CreateArchetype(Use2008Maps = False)
Archetypes.append(S24H14SEAPG2TEST)
Name = 'S24H14SEAWBPG2TEST'
NoOfStories = 28
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
]
S24H14SEAWBPG2TEST = CreateArchetype(Basements, False)
Archetypes.append(S24H14SEAWBPG2TEST)
#endregion
##### 2014 Maps ######
# PG3 : 25% Over-strength on ASCE 7 loads
#region Archetype S4H14SEAPG3 and S4H14SEAWBPG3
Name = 'S4H14SEAPG3'
# print 'Importing Archetype: ' + Name
# Compute Seismic Weight
NoOfStories = 4
YGrids = [0] + np.array(np.arange(0,(NoOfStories)*13*12, 13*12)+15*12).tolist()
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
MassPerSqFt = DL / 1000.
Mass = np.ones(NoOfStories) * MassPerSqFt * FloorArea
Mass[-1] = FloorArea * DL_Roof / 1000. # Adjust for Roof Weight
WallTribArea = FloorArea * 0.5
WeightPerSqFt = DL
BuildingWeight = np.ones(NoOfStories) * WeightPerSqFt * FloorArea
BuildingWeight[-1] = 152. / 1000. * FloorArea # Adjust for Roof Weight
# Seismic Hazard
R = 6; Cd = 5
SaDesign, Sds, CuTa = GetSeattle2014Hazard(YGrids[-1], R=R, Overstrength = 1.25)
Thickness = 20.
Length = 13. * 12.
Long_Spacing = 4
NoOfCols = 16
BarSize = 10.
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section1 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., NoOfCols, 3)
NoOfCols = 16
BarSize = 8.0
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section2 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., 8, 3)
Section3 = PlanarWallSection(Length, Thickness, 0, 0, 10.173,
[],
[],
0.255, 4.037, fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section2, Section2]
S4H14SEAPG3 = CreateArchetype(Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S4H14SEAPG3)
Name = 'S4H14SEAWBPG3'
NoOfStories = 6
Sections = [
Section1, Section1,
Section1, Section1, Section2, Section2
]
S4H14SEAWBPG3 = CreateArchetype(Basements2Levels, Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S4H14SEAWBPG3)
#endregion
#region Archetype S8H14SEAPG3 and S8H14SEAWBPG3
Name = 'S8H14SEAPG3'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 8
Thickness = 24.
Length = 14. * 12.
Flange_Thickness = 7*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 2.0 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.1 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.30 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAPG3 = CreateArchetype(Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S8H14SEAPG3)
Name = 'S8H14SEAWBPG3'
NoOfStories = 11
Sections = [
Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAWBPG3 = CreateArchetype(Basements3Levels, Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S8H14SEAWBPG3)
#endregion
#region Archetype S12H14SEAPG3 and S12H14SEAWBPG3
Name = 'S12H14SEAPG3'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 12
Thickness = 24.
Length = 18. * 12.
Flange_Thickness = 9*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.55 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.75 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAPG3 = CreateArchetype(Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S12H14SEAPG3)
Name = 'S12H14SEAWBPG3'
NoOfStories = 16
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAWBPG3 = CreateArchetype(Basements, Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S12H14SEAWBPG3)
#endregion
#region Archetype S16H14SEAPG3 and S16H14SEAWBPG3
Name = 'S16H14SEAPG3'
#### Input Variables
NoOfStories = 16
Thickness = 34.
Length = 22. * 12.
Flange_Thickness = 11*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 0.9 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.8 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 24.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.60 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAPG3 = CreateArchetype(Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S16H14SEAPG3)
Name = 'S16H14SEAWBPG3'
NoOfStories = 20 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAWBPG3 = CreateArchetype(Basements, False, Overstrength = 1.25)
Archetypes.append(S16H14SEAWBPG3)
#endregion
#region Archetype S20H14SEAPG3 and S20H14SEAWBPG3
Name = 'S20H14SEAPG3'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 20
Thickness = 40.
Length = 26. * 12.
Flange_Thickness = 13.*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 0.675 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho =0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAPG3 = CreateArchetype(Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S20H14SEAPG3)
Name = 'S20H14SEAWBPG3'
NoOfStories = 24 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAWBPG3 = CreateArchetype(Basements, False, Overstrength = 1.25)
Archetypes.append(S20H14SEAWBPG3)
#endregion
#region Archetype S24H14SEAPG3 and S24H14SEAWBPG3
Name = 'S24H14SEAPG3'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 24
Thickness = 44.
Length = 30. * 12.
Flange_Thickness = 15*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.525
#In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.525 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 30.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.55 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
BarSize = 4.0
Rho = 0.30 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 24.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAPG3 = CreateArchetype(Use2008Maps = False, Overstrength = 1.25)
Archetypes.append(S24H14SEAPG3)
Name = 'S24H14SEAWBPG3'
NoOfStories = 28
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAWBPG3 = CreateArchetype(Basements, False, Overstrength = 1.25)
Archetypes.append(S24H14SEAWBPG3)
#endregion
# PG4 : 50% Over-strength on ASCE 7 loads
#region Archetype S4H14SEAPG4 and S4H14SEAWBPG4
Name = 'S4H14SEAPG4'
# print 'Importing Archetype: ' + Name
# Compute Seismic Weight
NoOfStories = 4
YGrids = [0] + np.array(np.arange(0,(NoOfStories)*13*12, 13*12)+15*12).tolist()
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
MassPerSqFt = DL / 1000.
Mass = np.ones(NoOfStories) * MassPerSqFt * FloorArea
Mass[-1] = FloorArea * DL_Roof / 1000. # Adjust for Roof Weight
WallTribArea = FloorArea * 0.5
WeightPerSqFt = DL
BuildingWeight = np.ones(NoOfStories) * WeightPerSqFt * FloorArea
BuildingWeight[-1] = 152. / 1000. * FloorArea # Adjust for Roof Weight
# Seismic Hazard
R = 6; Cd = 5
SaDesign, Sds, CuTa = GetSeattle2014Hazard(YGrids[-1], R=R, Overstrength = 1.50)
Thickness = 22.
Length = 15. * 12.
Long_Spacing = 4
NoOfCols = 18
BarSize = 10.
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section1 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., NoOfCols, 3)
NoOfCols = 18
BarSize = 8.0
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section2 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., 8, 3)
Section3 = PlanarWallSection(Length, Thickness, 0, 0, 10.173,
[],
[],
0.255, 4.037, fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section2, Section2]
S4H14SEAPG4 = CreateArchetype(Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S4H14SEAPG4)
Name = 'S4H14SEAWBPG4'
NoOfStories = 6
Sections = [
Section1, Section1,
Section1, Section1, Section2, Section2
]
S4H14SEAWBPG4 = CreateArchetype(Basements2Levels, Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S4H14SEAWBPG4)
#endregion
#region Archetype S8H14SEAPG4 and S8H14SEAWBPG4
Name = 'S8H14SEAPG4'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 8
Thickness = 26.
Length = 15. * 12.
Flange_Thickness = 7.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 10.0
Rho = 2.0 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 9.0
Rho = 1.3 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 5.0
Rho = 0.40 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAPG4 = CreateArchetype(Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S8H14SEAPG4)
Name = 'S8H14SEAWBPG4'
NoOfStories = 11
Sections = [
Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAWBPG4 = CreateArchetype(Basements3Levels, Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S8H14SEAWBPG4)
#endregion
#region Archetype S12H14SEAPG4 and S12H14SEAWBPG4
Name = 'S12H14SEAPG4'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 12
Thickness = 30.
Length = 18. * 12.
Flange_Thickness = 9.0*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 9.0
Rho = 1.70 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 1.35 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho = 0.9 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.35 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAPG4 = CreateArchetype(Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S12H14SEAPG4)
Name = 'S12H14SEAWBPG4'
NoOfStories = 16
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAWBPG4 = CreateArchetype(Basements, Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S12H14SEAWBPG4)
#endregion
#region Archetype S16H14SEAPG4 and S16H14SEAWBPG4
Name = 'S16H14SEAPG4'
#### Input Variables
NoOfStories = 16
Thickness = 34.
Length = 23. * 12.
Flange_Thickness = 11.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 9.0
Rho = 1.2 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 0.9 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.65 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAPG4 = CreateArchetype(Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S16H14SEAPG4)
Name = 'S16H14SEAWBPG4'
NoOfStories = 20 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAWBPG4 = CreateArchetype(Basements, False, Overstrength = 1.50)
Archetypes.append(S16H14SEAWBPG4)
#endregion
#region Archetype S20H14SEAPG4 and S20H14SEAWBPG4
Name = 'S20H14SEAPG4'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 20
Thickness = 44.
Length = 27. * 12.
Flange_Thickness = 13.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 0.825 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 0.7 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 30.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 8.0
Rho =0.70 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 5.0
Rho = 0.4 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAPG4 = CreateArchetype(Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S20H14SEAPG4)
Name = 'S20H14SEAWBPG4'
NoOfStories = 24 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAWBPG4 = CreateArchetype(Basements, False, Overstrength = 1.50)
Archetypes.append(S20H14SEAWBPG4)
#endregion
#region Archetype S24H14SEAPG4 and S24H14SEAWBPG4
Name = 'S24H14SEAPG4'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 24
Thickness = 50.
Length = 31. * 12.
Flange_Thickness = 15.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 0.7
#In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 36.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 7.0
Rho = 0.65 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
BarSize = 5.0
Rho = 0.40 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAPG4 = CreateArchetype(Use2008Maps = False, Overstrength = 1.50)
Archetypes.append(S24H14SEAPG4)
Name = 'S24H14SEAWBPG4'
NoOfStories = 28
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAWBPG4 = CreateArchetype(Basements, False, Overstrength = 1.50)
Archetypes.append(S24H14SEAWBPG4)
#endregion
# PG5: 1.5% Drift Limit
#region Archetype S4H14SEAPG5 and S4H14SEAWBPG5
Name = 'S4H14SEAPG5'
# print 'Importing Archetype: ' + Name
# Compute Seismic Weight
NoOfStories = 4
YGrids = [0] + np.array(np.arange(0,(NoOfStories)*13*12, 13*12)+15*12).tolist()
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
MassPerSqFt = DL / 1000.
Mass = np.ones(NoOfStories) * MassPerSqFt * FloorArea
Mass[-1] = FloorArea * DL_Roof / 1000. # Adjust for Roof Weight
WallTribArea = FloorArea * 0.5
WeightPerSqFt = DL
BuildingWeight = np.ones(NoOfStories) * WeightPerSqFt * FloorArea
BuildingWeight[-1] = 152. / 1000. * FloorArea # Adjust for Roof Weight
# Seismic Hazard
R = 6; Cd = 5
SaDesign, Sds, CuTa = GetSeattle2008Hazard(YGrids[-1], R=R)
Thickness = 24.
Length = 13. * 12.
Long_Spacing = 4
NoOfCols = 9
BarSize = 10.
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section1 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., NoOfCols, 3)
NoOfCols = 9
BarSize = 8.0
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section2 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., 8, 3)
Section3 = PlanarWallSection(Length, Thickness, 0, 0, 10.173,
[],
[],
0.255, 4.037, fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section2, Section2]
S4H14SEAPG5 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S4H14SEAPG5)
Name = 'S4H14SEAWBPG5'
NoOfStories = 6
Sections = [
Section1, Section1,
Section1, Section1, Section2, Section2
]
S4H14SEAWBPG5 = CreateArchetype(Basements2Levels, Use2008Maps = False)
Archetypes.append(S4H14SEAWBPG5)
#endregion
#region Archetype S8H14SEAPG5 and S8H14SEAWBPG5
Name = 'S8H14SEAPG5'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 8
Thickness = 24.
Length = 14. * 12.
Flange_Thickness = 7*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.25 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 0.8 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAPG5 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S8H14SEAPG5)
Name = 'S8H14SEAWBPG5'
NoOfStories = 11
Sections = [
Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3,
]
S8H14SEAWBPG5 = CreateArchetype(Basements3Levels, Use2008Maps = False)
Archetypes.append(S8H14SEAWBPG5)
#endregion
#region Archetype S12H14SEAPG5 and S12H14SEAWBPG5
Name = 'S12H14SEAPG5'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 12
Thickness = 26.
Length = 17. * 12.
Flange_Thickness = 8.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 1.025 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.80 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.60 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAPG5 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S12H14SEAPG5)
Name = 'S12H14SEAWBPG5'
NoOfStories = 16
Sections = [
Section1, Section1, Section1, Section1,
Section1, Section1, Section1,
Section2, Section2, Section2,
Section3, Section3, Section3,
Section4, Section4, Section4,
]
S12H14SEAWBPG5 = CreateArchetype(Basements, Use2008Maps = False)
Archetypes.append(S12H14SEAWBPG5)
#endregion
#region Archetype S16H14SEAPG5 and S16H14SEAWBPG5
Name = 'S16H14SEAPG5'
#### Input Variables
NoOfStories = 16
Thickness = 32.
Length = 20. * 12.
Flange_Thickness = 10*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 8.0
Rho = 0.725 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 8.0
Rho = 0.6 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 18.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 5.0
Rho = 0.50 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAPG5 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S16H14SEAPG5)
Name = 'S16H14SEAWBPG5'
NoOfStories = 20 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
]
S16H14SEAWBPG5 = CreateArchetype(Basements, False)
Archetypes.append(S16H14SEAWBPG5)
#endregion
#region Archetype S20H14SEAPG5 and S20H14SEAWBPG5
Name = 'S20H14SEAPG5'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 20
Thickness = 36.
Length = 23. * 12.
Flange_Thickness = 11.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.525 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.525 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 20.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 6.0
Rho =0.5 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2, Thickness - 3.5)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 22.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAPG5 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S20H14SEAPG5)
Name = 'S20H14SEAWBPG5'
NoOfStories = 24 # Include Basement Floors Here
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
]
S20H14SEAWBPG5 = CreateArchetype(Basements, False)
Archetypes.append(S20H14SEAWBPG5)
#endregion
#region Archetype S24H14SEAPG5 and S24H14SEAWBPG5
Name = 'S24H14SEAPG5'
# print 'Importing Archetype: ' + Name
#### Input Variables
NoOfStories = 24
Thickness = 40.
Length = 25. * 12.
Flange_Thickness = 12.5*12. # Assume 6' Long Core
Long_Spacing = 4
BarSize = 7.0
Rho = 0.50 #In Fraction
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section1 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing, Thickness - 3.5)
BarSize = 7.0
Rho = 0.501 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section2 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
ThicknessBelow = float(Thickness)
Thickness = 26.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 7.0
Rho = 0.55 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section3 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, 3., 4., Spacing*2., Thickness - 3.5)
BarSize = 4.0
Rho = 0.35 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section4 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
ThicknessBelow = float(Thickness)
Thickness = 20.
Length = Length - (ThicknessBelow - Thickness) * 2.
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section5 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
BarSize = 4.0
Rho = 0.25 #In percentages
Abar = np.pi*(BarSize / 8. / 2.)**2.
Spacing = Abar * 2. / Thickness / Rho * 100
Section6 = IWallSection(Length, Flange_Thickness, Thickness, Rho, BarSize,
fpc_core, fy, fu, None, None, None, None)
Sections = [Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAPG5 = CreateArchetype(Use2008Maps = False)
Archetypes.append(S24H14SEAPG5)
Name = 'S24H14SEAWBPG5'
NoOfStories = 28
Sections = [Section1, Section1, Section1, Section1,
Section1, Section1, Section1, Section1,
Section2, Section2, Section2, Section2,
Section3, Section3, Section3, Section3,
Section4, Section4, Section4, Section4,
Section5, Section5, Section5, Section5,
Section6, Section6, Section6, Section6,
]
S24H14SEAWBPG5 = CreateArchetype(Basements, False)
Archetypes.append(S24H14SEAWBPG5)
#endregion
# PG6: 1.25% Drift Limit
#region Archetype S4H14SEAPG6 and S4H14SEAWBPG6
Name = 'S4H14SEAPG6'
# print 'Importing Archetype: ' + Name
# Compute Seismic Weight
NoOfStories = 4
YGrids = [0] + np.array(np.arange(0,(NoOfStories)*13*12, 13*12)+15*12).tolist()
DeadLoads = np.ones(NoOfStories) * DL / 1000.
DeadLoads[-1] = DeadLoads[-1] * DL_Roof / DL
LiveLoads = np.ones(NoOfStories) * LL / 1000.
LiveLoads[-1] = LiveLoads[-1] * LL_Roof / LL
MassPerSqFt = DL / 1000.
Mass = np.ones(NoOfStories) * MassPerSqFt * FloorArea
Mass[-1] = FloorArea * DL_Roof / 1000. # Adjust for Roof Weight
WallTribArea = FloorArea * 0.5
WeightPerSqFt = DL
BuildingWeight = np.ones(NoOfStories) * WeightPerSqFt * FloorArea
BuildingWeight[-1] = 152. / 1000. * FloorArea # Adjust for Roof Weight
# Seismic Hazard
R = 6; Cd = 5
SaDesign, Sds, CuTa = GetSeattle2008Hazard(YGrids[-1], R=R)
Thickness = 28.
Length = 14. * 12.
Long_Spacing = 4
NoOfCols = 10
BarSize = 9.
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section1 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
[3] + (np.ones(NoOfCols - 2) * 2.).tolist() + [3],
0.255, 4.037, fpc_core, fy, fu, 3, 4., NoOfCols, 3)
NoOfCols = 8
BarSize = 8.0
Ag = ( (NoOfCols - 1) * Long_Spacing + 6 ) * Thickness
Rho = ( NoOfCols * 2 + 2 ) * np.pi * ( BarSize / 2. / 8.) ** 2. / Ag
# print Rho
Section2 = PlanarWallSection(Length, Thickness,
(NoOfCols - 1) * Long_Spacing + 6,
(NoOfCols - 1) * Long_Spacing + 6, BarSize,
[3] + ( | np.ones(NoOfCols - 2) | numpy.ones |
import numpy as np
from datetime import timedelta
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import matplotlib.colors as colors
from pyadlml.dataset import DEVICE
from pyadlml.dataset.stats.devices import duration_correlation, \
trigger_time_diff, device_tcorr, device_triggers_one_day, \
devices_trigger_count, devices_on_off_stats
from pyadlml.dataset.plot.util import heatmap_square, func_formatter_seconds2time,\
heatmap, annotate_heatmap, savefig, _num_bars_2_figsize, \
_num_items_2_heatmap_square_figsize, _num_boxes_2_figsize, \
_num_items_2_heatmap_one_day_figsize, _num_items_2_heatmap_square_figsize_ver2
from pyadlml.dataset.devices import _is_dev_rep2, device_rep1_2_rep2
from pyadlml.util import get_sequential_color, get_secondary_color, get_primary_color, get_diverging_color
def hist_trigger_time_diff(df_devs=None, x=None, n_bins=50, figsize=(10, 6), color=None, file_path=None):
"""
Plot a histogram of the differences between succeeding device triggers.
Parameters
----------
df_devs : pd.DataFrame, optional
Recorded devices from a dataset. Fore more information refer to the
:ref:`user guide<device_dataframe>`.
x : ndarray, optional
Array of time deltas used to plot the histogram
n_bins : int, default=50
the number of bins for the histogram.
color : str, optional
sets the color of the plot. When not set, the primary theming color is used.
Learn more about theming in the :ref:`user guide <theming>`
figsize : (float, float), default: None
width, height in inches. If not provided, the figsize is inferred by automatically.
file_path : str, optional
If set, saves the plot under the given file path and return *None* instead
of returning the figure.
Examples
--------
>>> from pyadlml.plot import plot_trigger_time_dev
>>> plot_trigger_time_dev_todo(data.df_devs)
.. image:: ../_static/images/plots/dev_hist_trigger_td.png
:height: 300px
:width: 500 px
:scale: 100 %
:alt: alternate text
:align: center
Returns
-------
res : fig or None
Either a figure if file_path is not specified or nothing.
"""
assert not (df_devs is None and x is None)
title='Time difference between succeeding device'
log_sec_col = 'total_log_secs'
sec_col = 'total_secs'
ylabel='count'
ax2label = 'cummulative percentage'
ax1label = 'timedeltas count '
xlabel = 'log seconds'
color = (get_primary_color() if color is None else color)
color2 = get_secondary_color()
if x is None:
X = trigger_time_diff(df_devs.copy())
else:
X = x
# make equal bin size from max to min
bins = np.logspace(min(np.log10(X)), max(np.log10(X)), n_bins)
# make data ready for hist
hist, _ = np.histogram(X, bins=bins)
cum_percentage = hist.cumsum()/hist.sum()
cum_percentage = | np.concatenate(([0], cum_percentage)) | numpy.concatenate |
# -*- coding: utf-8 -*-
# ======================================================================================================================
# Copyright (©) 2015-2021 LCS - Laboratoire Catalyse et Spectrochimie, Caen, France.
# =
# CeCILL-B FREE SOFTWARE LICENSE AGREEMENT - See full LICENSE agreement in the root directory
# =
# ======================================================================================================================
"""
This module implements the `BaselineCorrection` class for baseline corrections.
"""
__all__ = ['BaselineCorrection', 'ab', 'abc', 'dc', 'basc']
__dataset_methods__ = ['ab', 'abc', 'dc', 'basc']
import numpy as np
import scipy.interpolate
from traitlets import Int, Instance, HasTraits, Float, Unicode, Tuple, List
from matplotlib.widgets import SpanSelector
import matplotlib.pyplot as plt
from ..dataset.coordrange import trim_ranges
from ..plotters.multiplot import multiplot
from ..dataset.nddataset import NDDataset
from ...utils import TYPE_INTEGER, TYPE_FLOAT
from .smooth import smooth
from .. import debug_, warning_
from spectrochempy.core.processors.utils import _units_agnostic_method
class BaselineCorrection(HasTraits):
"""
Baseline Correction processor.
2 methods are proposed :
* ``sequential`` (default) = classical polynom fit or spline
interpolation with separate fitting of each row (spectrum)
* ``multivariate`` = SVD modeling of baseline, polynomial fit of PC's
and calculation of the modelled baseline spectra.
Interactive mode is proposed using the interactive function : :meth:`run`.
Parameters
----------
dataset : |NDDataset|
The dataset to be transformed.
See Also
--------
abc : Automatic baseline correction.
Examples
--------
.. plot::
:include-source:
from spectrochempy import *
nd = NDDataset.read_omnic(os.path.join('irdata',
'nh4y-activation.spg'))
ndp = nd[:, 1291.0:5999.0]
bc = BaselineCorrection(ndp)
ranges=[[5996., 5998.], [1290., 1300.],
[2205., 2301.], [5380., 5979.],
[3736., 5125.]]
span = bc.compute(*ranges,method='multivariate',
interpolation='pchip', npc=8)
_ = bc.corrected.plot_stack()
show()
"""
dataset = Instance(NDDataset)
corrected = Instance(NDDataset)
method = Unicode('sequential')
interpolation = Unicode('pchip')
axis = Int(-1)
dim = Unicode('')
order = Int(6, min=1, allow_none=True)
npc = Int(5, min=1, allow_none=True)
zoompreview = Float(1.)
figsize = Tuple((7, 5))
sps = List()
# ..................................................................................................................
def __init__(self, dataset, *args, **kwargs):
self.dataset = dataset
self.corrected = self.dataset.copy()
if args or kwargs:
warning_("DEPRECATION WARNING: Pass all arguments such range, and method definition in the "
"``compute`` method, not during the initialisation of the BaselineCorrection instance.\n"
"Here they are ignored.")
# ..................................................................................................................
def _extendranges(self, *ranges, **kwargs):
if not ranges:
# look in the kwargs
ranges = kwargs.pop('ranges', ())
if isinstance(ranges, tuple) and len(ranges) == 1:
ranges = ranges[0] # probably passed with no start to the compute function
if not isinstance(ranges, (list, tuple)):
ranges = list(ranges)
if not ranges:
return
if len(ranges) == 2:
if (isinstance(ranges[0], TYPE_INTEGER + TYPE_FLOAT) and isinstance(ranges[1], TYPE_INTEGER + TYPE_FLOAT)):
# a pair a values, we intepret this as a single range
ranges = [[ranges[0], ranges[1]]]
# find the single values
for item in ranges:
if isinstance(item, TYPE_INTEGER + TYPE_FLOAT):
# a single numerical value: intepret this as a single range
item = [item, item]
self.ranges.append(item)
# ..................................................................................................................
def _setup(self, **kwargs):
self.method = kwargs.get('method', self.method)
self.interpolation = kwargs.get('interpolation', self.interpolation)
if self.interpolation == 'polynomial':
self.order = int(kwargs.get('order', self.order))
if self.method == 'multivariate':
self.npc = int(kwargs.get('npc', self.npc))
self.zoompreview = kwargs.get('zoompreview', self.zoompreview)
self.figsize = kwargs.get('figsize', self.figsize)
# ..................................................................................................................
def __call__(self, *ranges, **kwargs):
return self.compute(*ranges, **kwargs)
# ..................................................................................................................
def compute(self, *ranges, **kwargs):
"""
Base function for dataset baseline correction.
Parameters
----------
*ranges : a variable number of pair-tuples
The regions taken into account for the manual baseline correction.
**kwargs : dict
See other parameters.
Other Parameters
----------------
dim : str or int, keyword parameter, optional, default='x'.
Specify on which dimension to apply the apodization method. If `dim` is specified as an integer
it is equivalent to the usual `axis` numpy parameter.
method : str, keyword parameter, optional, default='sequential'
Correction method among ['multivariate','sequential']
interpolation : string, keyword parameter, optional, default='polynomial'
Interpolation method for the computation of the baseline, among ['polynomial','pchip']
order : int, keyword parameter, optional, default=6
If the correction method polynomial, this give the polynomial order to use.
npc : int, keyword parameter, optional, default=5
Number of components to keep for the ``multivariate`` method
zoompreview : float, keyword parameter, optional, default=1.0
The zoom factor for the preview in interactive mode
figsize : tuple, keyword parameter, optional, default=(8, 6)
Size of the figure to display in inch
"""
self._setup(**kwargs)
# output dataset
new = self.corrected
# we assume that the last dimension if always the dimension to which we want to subtract the baseline.
# Swap the axes to be sure to be in this situation
axis, dim = new.get_axis(**kwargs, negative_axis=True)
swaped = False
if axis != -1:
new.swapdims(axis, -1, inplace=True)
swaped = True
lastcoord = new.coordset[dim]
# most of the time we need sorted axis, so let's do it now
is_descendant = False
if lastcoord.descendant:
new.sort(dim=dim, inplace=True, descend=False)
is_descendant = True
lastcoord = new.coordset[dim]
x = lastcoord.data
self.ranges = [[x[0], x[2]], [x[-3], x[-1]]]
self._extendranges(*ranges, **kwargs)
self.ranges = ranges = trim_ranges(*self.ranges)
baseline = np.zeros_like(new)
# Extract: Sbase: the matrix of data corresponding to ranges
# xbase: the xaxis values corresponding to ranges
s = []
for pair in ranges:
# determine the slices
sl = slice(*pair)
sect = new[..., sl]
if sect is None:
continue
s.append(sect)
sbase = NDDataset.concatenate(s, axis=-1)
# TODO: probably we could use masked data instead of concatenating - could be faster
xbase = sbase.coordset(dim)
if self.method == 'sequential':
if self.interpolation == 'polynomial':
# # bad fit when NaN values => are replaced by 0 # NO reason we have Nan -> suppressed
# if np.any(np.isnan(sbase)):
# sbase[np.isnan(sbase)] = 0
polycoef = np.polynomial.polynomial.polyfit(xbase.data, sbase.data.T, deg=self.order, rcond=None,
full=False)
baseline = np.polynomial.polynomial.polyval(x, polycoef)
elif self.interpolation == 'pchip':
for i in range(new.shape[0]):
interp = scipy.interpolate.PchipInterpolator(xbase.data, sbase.data[i])
baseline[i] = interp(x)
elif self.method == 'multivariate':
# SVD of Sbase
U, s, Vt = np.linalg.svd(sbase.data, full_matrices=False, compute_uv=True)
# npc cannot be higher than the size of s
npc = min(self.npc, s.shape[0])
# select npc loadings & compute scores
Pt = (Vt[0:npc])
T = np.dot(U[:, 0:npc], np.diag(s)[0:npc, 0:npc])
baseline_loadings = np.zeros((npc, new.shape[-1]))
if self.interpolation == 'pchip':
for i in range(npc):
interp = scipy.interpolate.PchipInterpolator(xbase.data, Pt[i])
baseline_loadings[i] = interp(x)
elif self.interpolation == 'polynomial':
polycoef = np.polynomial.polynomial.polyfit(xbase.data, Pt.T, deg=self.order, rcond=None, full=False)
baseline_loadings = np.polynomial.polynomial.polyval(x, polycoef)
baseline = np.dot(T, baseline_loadings)
new.data = new.data - baseline
# eventually sort back to the original order
if is_descendant:
new.sort(axis=-1, inplace=True, descend=True)
new.history = str(new.modified) + ': ' + 'Baseline correction.' + ' Method: '
if self.method == 'Multivariate':
new.history = 'Multivariate (' + str(self.npc) + ' PCs).'
else:
new.history = 'Sequential.'
if self.interpolation == 'polynomial':
new.history = 'Interpolation: Polynomial, order=' + str(self.order) + '.\n'
else:
new.history = 'Interpolation: Pchip. \n'
if swaped:
new = new.swapdims(axis, -1)
self.corrected = new
return new
# ..................................................................................................................
def show_regions(self, ax):
if self.sps:
for sp in self.sps:
sp.remove()
self.sps = []
self.ranges = list(trim_ranges(*self.ranges))
for x in self.ranges:
x.sort()
sp = ax.axvspan(x[0], x[1], facecolor='#2ca02c', alpha=0.5)
self.sps.append(sp)
# ..................................................................................................................
def run(self, *ranges, **kwargs):
"""
Interactive version of the baseline correction.
Parameters
----------
*ranges : a variable number of pair-tuples
The regions taken into account for the manual baseline correction.
**kwargs : dict
See other parameter of method compute.
"""
self._setup(**kwargs)
self.sps = []
# output dataset
new = self.corrected
origin = self.dataset.copy()
# we assume that the last dimension if always the dimension to which we want to subtract the baseline.
# Swap the axes to be sure to be in this situation
axis, dim = new.get_axis(**kwargs, negative_axis=True)
# swaped = False
if axis != -1:
new.swapdims(axis, -1, inplace=True)
origin.swapdims(axis, -1, inplace=True)
# swaped = True
lastcoord = new.coordset[dim]
# most of the time we need sorted axis, so let's do it now
if lastcoord.reversed:
new.sort(dim=dim, inplace=True, descend=False)
lastcoord = new.coordset[dim]
x = lastcoord.data
self.ranges = [[x[0], x[2]], [x[-3], x[-1]]]
self._extendranges(*ranges, **kwargs)
self.ranges = ranges = trim_ranges(*self.ranges)
new = self.compute(*ranges, **kwargs)
# display
datasets = [origin, new]
labels = ['Click on left button & Span to set regions. Click on right button on a region to remove it.',
'Baseline corrected dataset preview']
axes = multiplot(datasets, labels, method='stack', sharex=True, nrow=2, ncol=1, figsize=self.figsize,
suptitle='INTERACTIVE BASELINE CORRECTION')
fig = plt.gcf()
fig.canvas.draw()
ax1 = axes['axe11']
ax2 = axes['axe21']
self.show_regions(ax1)
def show_basecor(ax2):
corrected = self.compute(*ranges, **kwargs)
ax2.clear()
ax2.set_title('Baseline corrected dataset preview', fontweight='bold', fontsize=8)
if self.zoompreview > 1:
zb = 1. # self.zoompreview
zlim = [corrected.data.min() / zb, corrected.data.max() / zb]
_ = corrected.plot_stack(ax=ax2, colorbar=False, zlim=zlim, clear=False)
else:
_ = corrected.plot_stack(ax=ax2, colorbar=False, clear=False)
show_basecor(ax2)
def onselect(xmin, xmax):
self.ranges.append([xmin, xmax])
self.show_regions(ax1)
show_basecor(ax2)
fig.canvas.draw()
def onclick(event):
if event.button == 3:
for i, r in enumerate(self.ranges):
if r[0] > event.xdata or r[1] < event.xdata:
continue
else:
self.ranges.remove(r)
self.show_regions(ax1)
show_basecor(ax2)
fig.canvas.draw() # _idle
_ = fig.canvas.mpl_connect('button_press_event', onclick)
_ = SpanSelector(ax1, onselect, 'horizontal', minspan=5, button=[1], useblit=True,
rectprops=dict(alpha=0.5, facecolor='blue'))
fig.canvas.draw()
return
# ......................................................................................................................
def basc(dataset, *ranges, **kwargs):
"""
Compute a baseline correction using the BaselineCorrection processor.
2 methods are proposed :
* ``sequential`` (default) = classical polynom fit or spline
interpolation with separate fitting of each row (spectrum)
* ``multivariate`` = SVD modeling of baseline, polynomial fit of PC's
and calculation of the modelled baseline spectra.
Parameters
----------
dataset : a [NDDataset| instance
The dataset where to calculate the baseline.
*ranges : a variable number of pair-tuples
The regions taken into account for the manual baseline correction.
**kwargs : dict
See other parameters.
Other Parameters
----------------
dim : str or int, keyword parameter, optional, default='x'.
Specify on which dimension to apply the apodization method. If `dim` is specified as an integer
it is equivalent to the usual `axis` numpy parameter.
method : str, keyword parameter, optional, default='sequential'
Correction method among ['multivariate','sequential']
interpolation : string, keyword parameter, optional, default='polynomial'
Interpolation method for the computation of the baseline, among ['polynomial','pchip']
order : int, keyword parameter, optional, default=6
If the correction method polynomial, this give the polynomial order to use.
npc : int, keyword parameter, optional, default=5
Number of components to keep for the ``multivariate`` method
See Also
--------
BaselineCorrection : Manual baseline corrections.
abc : Automatic baseline correction.
Notes
-----
For more flexibility and functionality, it is advised to use the BaselineCorrection processor instead.
Examples
--------
.. plot::
:include-source:
import spectrochempy as scp
nd = scp.read('irdata/nh4y-activation.spg')
ndp = nd[:, 1291.0:5999.0]
ranges=[[5996., 5998.], [1290., 1300.],
[2205., 2301.], [5380., 5979.],
[3736., 5125.]]
ndcorr = spc.basc(ndp, *ranges,method='multivariate', interpolation='pchip', npc=8)
ndcorr.plot()
spc.show()
"""
blc = BaselineCorrection(dataset)
if not ranges and dataset.meta.regions is not None:
# use the range stored in metadata
ranges = dataset.meta.regions['baseline']
return blc.compute(*ranges, **kwargs)
# ======================================================================================================================
# abc # TODO: some work to perform on this
# ======================================================================================================================
def abc(dataset, dim=-1, **kwargs):
"""
Automatic baseline correction.
Various algorithms are provided to calculate the baseline automatically.
Parameters
----------
dataset : a [NDDataset| instance
The dataset where to calculate the baseline.
dim : str or int, optional
The dataset dimentsion where to calculate the baseline. Default is -1.
**kwargs : dict
See other parameters.
Returns
-------
baseline_corrected
A baseline corrected dataset.
baseline_only
Only the baseline (apply must be set to False).
baseline_points
Points where the baseline is calculated (return_points must be set to True).
Other Parameters
----------------
basetype : string, optional, default: 'linear'
See notes - available = linear, basf, ...
window : float/int, optional, default is 0.05
If float <1 then the corresponding percentage ot the axis size is taken as window.
nbzone : int, optional, default is 32
Number of zones. We will divide the size of the last axis by this number
to determine the number of points in each zone (nw).
mult : int
A multiplicator. determine the number of point for the database calculation (nw*mult<n base points).
nstd : int, optional, default is 2 times the standard error
Another multiplicator. Multiply the standard error to determine the region in which points are from the
baseline.
polynom : bool, optional, default is True
If True a polynom is computed for the base line, else an interpolation is achieved betwwen points.
porder : int, default is 6
Order of the polynom to fit on the baseline points
return_points : bool, optional, default is False
If True, the points abscissa used to determine the baseline are returned.
apply : bool, optional, default is True
If apply is False, the data are not modified only the baseline is returned.
return_pts : bool, optional, default is False
If True, the baseline reference points are returned.
See Also
--------
BaselineCorrection : Manual baseline corrections.
basc : Manual baseline correction.
Notes
-----
#TODO: description of these algorithms
* linear -
* basf -
Examples
--------
To be done
"""
# # options evaluation
# parser = argparse.ArgumentParser(description='BC processing.', usage="""
# ab [-h] [--mode {linear,poly, svd}] [--dryrun]
# [--window WINDOW] [--step STEP] [--nbzone NBZONE]
# [--mult MULT] [--order ORDER] [--verbose]
# """)
# # positional arguments
# parser.add_argument('--mode', '-mo', default='linear',
# choices=['linear', 'poly', 'svd'], help="mode of correction")
# parser.add_argument('--dryrun', action='store_true', help='dry flag')
#
# parser.add_argument('--window', '-wi', default=0.05, type=float, help='selected window for linear and svd bc')
# parser.add_argument('--step', '-st', default=5, type=int, help='step for svd bc')
# parser.add_argument('--nbzone', '-nz', default=32, type=int, help='number of zone for poly')
# parser.add_argument('--mult', '-mt', default=4, type=int, help='multiplicator of zone for poly')
# parser.add_argument('--order', '-or', default=5, type=int, help='polynom order for poly')
#
# parser.add_argument('--verbose', action='store_true', help='verbose flag')
# args = parser.parse_args(options.split())
#
# source.history.append('baseline correction mode:%s' % args.mode)
inplace = kwargs.pop('inplace', False)
dryrun = kwargs.pop('dryrun', False)
# output dataset inplace or not
if not inplace or dryrun: # default
new = dataset.copy()
else:
new = dataset
axis, dim = new.get_axis(dim, negative_axis=True)
swaped = False
if axis != -1:
new.swapdims(axis, -1, inplace=True) # must be done in place
swaped = True
base = _basecor(new.data.real, **kwargs)
if not dryrun:
new.data -= base # return the corrected spectra
else:
new.data = base # return the baseline
# restore original data order if it was swaped
if swaped:
new.swapdims(axis, -1, inplace=True) # must be done inplace
new.history = '`abc` Baseline correction applied.'
return new
# ......................................................................................................................
def ab(dataset, dim=-1, **kwargs):
"""
Alias of `abc`
"""
return abs(dataset, dim, **kwargs)
# ......................................................................................................................
@_units_agnostic_method
def dc(dataset, **kwargs):
"""
Time domain baseline correction
Parameters
----------
dataset : nddataset
The time domain daatset to be corrected.
kwargs : dict, optional
additional parameters.
Returns
-------
dc
DC corrected array.
Other Parameters
----------------
len : float, optional
Proportion in percent of the data at the end of the dataset to take into account. By default, 25%.
"""
len = int(kwargs.pop('len', .25) * dataset.shape[-1])
dc = np.mean(np.atleast_2d(dataset)[..., -len:])
dataset -= dc
return dataset
# =======================================================================================================================
# private functions
# =======================================================================================================================
def _basecor(data, **kwargs):
mode = kwargs.pop('mode', 'linear')
if mode == 'linear':
return _linearbase(data, **kwargs)
if mode == 'svd':
return _svdbase(data, **kwargs)
if mode == 'poly':
return _polybase(data, **kwargs)
else:
raise ValueError(f'`ab` mode = `{mode}` not known')
#
# _linear mode
#
def _linearbase(data, **kwargs):
# Apply a linear baseline correction
# Very simple and naive procedure that compute a straight baseline from side to the other
# (averging on a window given by the window parameters : 5% of the total width on each side by default)
window = kwargs.pop('window', 0.05)
if window <= 1.0:
# percent
window = int(data.shape[-1] * window)
if len(data.shape) == 1:
npts = float(data.shape[-1])
a = (data[-window:].mean() - data[:window].mean()) / (npts - 1.)
b = data[:window].mean()
baseline = a * np.arange(npts) + b
else:
npts = float(data.shape[-1])
a = (data[:, -window:].mean(axis=-1) - data[:, :window].mean(axis=-1)) / (npts - 1.)
b = data[:, :window].mean(axis=-1)
baseline = ((( | np.ones_like(data) | numpy.ones_like |
"""Deviation preserving reduction"""
import numpy as np
from gameanalysis import paygame
from gameanalysis import restrict
from gameanalysis import rsgame
from gameanalysis import utils
from gameanalysis.reduction import _common
from gameanalysis.reduction import hierarchical
def _devs(game, num_profs):
"""Return an array of the player counts after deviation"""
return np.tile(
np.repeat(
game.num_role_players - np.eye(game.num_roles, dtype=int),
game.num_role_strats,
0,
),
(num_profs, 1),
)
def reduce_game(full_game, red_players): # pylint: disable=too-many-locals
"""Reduce a game using deviation preserving reduction
Parameters
----------
full_game : Game
The game to reduce.
red_players : ndarray-like
The reduced number of players for each role. This will be coerced
into the proper shape if necessary.
"""
red_game = rsgame.empty_names(
full_game.role_names, red_players, full_game.strat_names
)
utils.check(
np.all((red_game.num_role_players > 1) | (full_game.num_role_players == 1)),
"all reduced players must be greater than zero",
)
utils.check(
np.all(full_game.num_role_players >= red_game.num_role_players),
"all full counts must not be less than reduced counts",
)
if full_game.is_empty():
return red_game
elif full_game.num_profiles < red_game.num_all_dpr_profiles:
full_profiles = full_game.profiles()
full_payoffs = full_game.payoffs()
else:
full_profiles = expand_profiles(full_game, red_game.all_profiles())
full_payoffs = full_game.get_payoffs(full_profiles)
valid = ~np.all(np.isnan(full_payoffs) | (full_profiles == 0), 1)
full_profiles = full_profiles[valid]
full_payoffs = full_payoffs[valid]
# Reduce
red_profiles, red_inds, full_inds, strat_inds = _reduce_profiles(
red_game, full_profiles, True
)
if red_profiles.size == 0: # Empty reduction
return red_game
# Build mapping from payoffs to reduced profiles, and use bincount
# to count the number of payoffs mapped to a specific location, and
# sum the number of payoffs mapped to a specific location
cum_inds = red_inds * full_game.num_strats + strat_inds
payoff_vals = full_payoffs[full_inds, strat_inds]
red_payoffs = np.bincount(cum_inds, payoff_vals, red_profiles.size).reshape(
red_profiles.shape
)
red_payoff_counts = np.bincount(cum_inds, minlength=red_profiles.size).reshape(
red_profiles.shape
)
mask = red_payoff_counts > 1
red_payoffs[mask] /= red_payoff_counts[mask]
unknown = (red_profiles > 0) & (red_payoff_counts == 0)
red_payoffs[unknown] = np.nan
valid = ~np.all((red_profiles == 0) | np.isnan(red_payoffs), 1)
return paygame.game_replace(red_game, red_profiles[valid], red_payoffs[valid])
def expand_profiles(full_game, profiles): # pylint: disable=too-many-locals
"""Expand profiles using dpr
Parameters
----------
full_game : Game
Game that expanded profiles will be valid for.
profiles : ndarray-like
The profiles to expand
return_contributions : bool, optional
If specified, returns a boolean array matching the shape is
returned indicating the payoffs that are needed for the initial
profiles.
"""
profiles = np.asarray(profiles, int)
utils.check(
profiles.shape[-1] == full_game.num_strats, "profiles not a valid shape"
)
if not profiles.size:
return np.empty((0, full_game.num_strats), int)
profiles = profiles.reshape((-1, full_game.num_strats))
all_red_players = np.add.reduceat(profiles, full_game.role_starts, 1)
red_players = all_red_players[0]
utils.check(np.all(all_red_players == red_players), "profiles must be valid")
num_profs = profiles.shape[0]
dev_profs = profiles[:, None] - | np.eye(full_game.num_strats, dtype=int) | numpy.eye |
import numpy as np
import quaternion
from shapes import *
def test_pentatope_centered():
for vertices in [pentatope(), pentatope_v2()]:
assert (np.isclose(0, abs(sum(vertices))))
def test_pentatope_equidistance():
for vertices in [pentatope(), pentatope_v2()]:
for v1 in vertices:
for v2 in vertices:
d = abs(v1 - v2)
assert (d == 0 or np.isclose(d, np.sqrt(2.5)))
def test_pentatope_symmetry():
symmetry = pentatope_rotors()
assert (len(symmetry) == 120)
vertices = pentatope()
for v in vertices:
for left, right in symmetry:
assert (contains(vertices, left*v*right))
def test_orthoplex_closed():
vertices = orthoplex(False)
for v1 in vertices:
for v2 in vertices:
assert (contains(vertices, v1*v2))
def test_tesseract_symmetry():
vertices = tesseract(False)
symmetry = orthoplex(False)
twist = [1, | np.quaternion(0.5**0.5, 0.5**0.5, 0, 0) | numpy.quaternion |
import numpy as np
import pytest
from sklearn.datasets import load_iris
from libifbtsvm import iFBTSVM
from libifbtsvm.models.ifbtsvm import (
FuzzyMembership,
Hyperparameters,
Hyperplane,
)
def test_generate_sub_samples(dataset_3_classes):
parameters = Hyperparameters()
model = iFBTSVM(parameters=parameters)
sub_data_sets = model._generate_sub_sets(X=dataset_3_classes.X, y=dataset_3_classes.y)
dag_1 = next(sub_data_sets)
truth_1 = [np.array([0.9, 1.0, 1.1]), np.array(['1', '1', '1']),
np.array([10.9, 11.0, 11.1]), np.array(['2', '2', '2'])]
for i in range(len(truth_1)):
assert np.array_equal(dag_1[i], truth_1[i])
dag_2 = next(sub_data_sets)
truth_2 = [np.array([0.9, 1.0, 1.1]), np.array(['1', '1', '1']),
np.array([110.9, 111.0, 111.1]), np.array(['3', '3', '3'])]
for i in range(len(truth_2)):
assert np.array_equal(dag_2[i], truth_2[i])
dag_3 = next(sub_data_sets)
truth_3 = [np.array([10.9, 11.0, 11.1]), np.array(['2', '2', '2']),
np.array([110.9, 111.0, 111.1]), | np.array(['3', '3', '3']) | numpy.array |
import logging
log = logging.getLogger(__name__)
from fractions import math
from math import gcd
import numpy as np
import pandas as pd
from scipy import signal
def as_numeric(x):
if not isinstance(x, (np.ndarray, pd.DataFrame, pd.Series)):
x = np.asanyarray(x)
return x
def db(target, reference=1):
target = as_numeric(target)
reference = as_numeric(reference)
return 20*np.log10(target/reference)
def dbi(db, reference=1):
db = as_numeric(db)
return (10**(db/20))*reference
def dbtopa(db):
'''
Convert dB SPL to Pascal
.. math:: 10^{dB/20.0}/(20\cdot10^{-6})
>>> round(dbtopa(94), 4)
1.0024
>>> dbtopa(100)
2.0
>>> dbtopa(120)
20.0
>>> patodb(dbtopa(94.0))
94.0
Will also take sequences:
>>> print(dbtopa([80, 100, 120]))
[ 0.2 2. 20. ]
'''
return dbi(db, 20e-6)
def patodb(pa):
'''
Convert Pascal to dB SPL
.. math:: 20*log10(pa/20e-6)
>>> round(patodb(1))
94
>>> patodb(2)
100.0
>>> patodb(0.2)
80.0
Will also take sequences:
>>> print(patodb([0.2, 2.0, 20.0]))
[ 80. 100. 120.]
'''
return db(pa, 20e-6)
def normalize_rms(waveform, out=None):
'''
Normalize RMS power to 1 (typically used when generating a noise waveform
that will be scaled by a calibration factor)
waveform : array_like
Input array.
out : array_like
An array to store the output. Must be the same shape as `waveform`.
'''
return np.divide(waveform, rms(waveform), out)
def csd(s, window=None, waveform_averages=None, detrend='linear'):
if waveform_averages is not None and waveform_averages != 1:
new_shape = (waveform_averages, -1) + s.shape[1:]
s = s.reshape(new_shape).mean(axis=0)
if detrend is not None:
s = signal.detrend(s, type=detrend, axis=-1)
n = s.shape[-1]
if window is not None:
w = signal.get_window(window, n)
s = w/w.mean()*s
scale = 2 / n / np.sqrt(2)
return np.fft.rfft(s, axis=-1) * scale
def csd_to_signal(csd):
n = 2 * (len(csd) - 1)
scale = 2 / n / np.sqrt(2)
return np.fft.irfft(csd, axis=-1) / scale
def _phase(csd, unwrap=True):
p = np.angle(csd)
if unwrap:
p = np.unwrap(p)
if isinstance(csd, pd.DataFrame):
p = pd.DataFrame(p, index=csd.index, columns=csd.columns)
elif isinstance(csd, pd.Series):
p = pd.Series(p, index=csd.index)
return p
def phase(s, fs, window=None, waveform_averages=None, unwrap=True):
c = csd(s, window, waveform_averages)
return _phase(c, unwrap)
def psd(s, fs, window=None, waveform_averages=None, trim_samples=True):
if waveform_averages is None:
waveform_averages = 1
if trim_samples:
n = (s.shape[-1] // waveform_averages) * waveform_averages
s = s[..., :n]
new_shape = (waveform_averages, -1) + s.shape[1:]
s = s.reshape(new_shape)
c = csd(s, window)
return np.abs(c).mean(axis=0)
def psd_freq(s, fs):
return np.fft.rfftfreq(s.shape[-1], 1.0/fs)
def csd_df(s, fs, *args, **kw):
c = csd(s, *args, **kw)
freqs = pd.Index(psd_freq(s, fs), name='frequency')
if c.ndim == 1:
name = s.name if isinstance(s, pd.Series) else 'psd'
return pd.Series(c, index=freqs, name=name)
else:
index = s.index if isinstance(s, pd.DataFrame) else None
return pd.DataFrame(c, columns=freqs, index=index)
def psd_df(s, fs, *args, waveform_averages=None, **kw):
p = psd(s, fs, *args, waveform_averages=waveform_averages, **kw)
n = s.shape[-1]
if waveform_averages is not None:
n = n // waveform_averages
freqs = pd.Index(np.fft.rfftfreq(n, 1/fs), name='frequency')
if p.ndim == 1:
name = s.name if isinstance(s, pd.Series) else 'psd'
return pd.Series(p, index=freqs, name=name)
else:
index = s.index if isinstance(s, pd.DataFrame) else None
return pd.DataFrame(p, columns=freqs, index=index)
def tone_conv(s, fs, frequency, window=None):
frequency_shape = tuple([Ellipsis] + [np.newaxis]*s.ndim)
frequency = np.asarray(frequency)[frequency_shape]
s = signal.detrend(s, type='linear', axis=-1)
n = s.shape[-1]
if window is not None:
w = signal.get_window(window, n)
s = w/w.mean()*s
t = np.arange(n)/fs
r = 2.0*s*np.exp(-1.0j*(2.0*np.pi*t*frequency))
return np.mean(r, axis=-1)
def tone_power_conv(s, fs, frequency, window=None):
r = tone_conv(s, fs, frequency, window)
return np.abs(r)/np.sqrt(2.0)
def tone_phase_conv(s, fs, frequency, window=None):
r = tone_conv(s, fs, frequency, window)
return np.angle(r)
def tone_power_fft(s, fs, frequency, window=None):
power = psd(s, fs, window)
freqs = psd_freq(s, fs)
flb, fub = freqs*0.9, freqs*1.1
mask = (freqs >= flb) & (freqs < fub)
return power[..., mask].max(axis=-1)
def tone_phase_fft(s, fs, frequency, window=None):
p = phase(s, fs, window, unwrap=False)
freqs = psd_freq(s, fs)
flb, fub = freqs*0.9, freqs*1.1
mask = (freqs >= flb) & (freqs < fub)
return p[..., mask].max(axis=-1)
def tone_power_conv_nf(s, fs, frequency, window=None):
samples = s.shape[-1]
resolution = fs/samples
frequencies = frequency+np.arange(-2, 3)*resolution
magnitude = tone_power_conv(s, fs, frequencies, window)
nf_rms = magnitude[(0, 1, 3, 4), ...].mean(axis=0)
tone_rms = magnitude[2]
return nf_rms, tone_rms
def analyze_mic_sens(ref_waveforms, exp_waveforms, vrms, ref_mic_gain,
exp_mic_gain, output_gain, ref_mic_sens, **kwargs):
ref_data = analyze_tone(ref_waveforms, mic_gain=ref_mic_gain, **kwargs)
exp_data = analyze_tone(exp_waveforms, mic_gain=exp_mic_gain, **kwargs)
# Actual output SPL
output_spl = ref_data['mic_rms']-ref_mic_sens-db(20e-6)
# Output SPL assuming 0 dB gain and 1 VRMS
norm_output_spl = output_spl-output_gain-db(vrms)
# Exp mic sensitivity in dB(V/Pa)
exp_mic_sens = exp_data['mic_rms']+ref_mic_sens-ref_data['mic_rms']
result = {
'output_spl': output_spl,
'norm_output_spl': norm_output_spl,
'exp_mic_sens': exp_mic_sens,
'output_gain': output_gain,
}
shared = ('time', 'frequency')
result.update({k: ref_data[k] for k in shared})
t = {'ref_'+k: ref_data[k] for k, v in ref_data.items() if k not in shared}
result.update(t)
t = {'exp_'+k: exp_data[k] for k, v in exp_data.items() if k not in shared}
result.update(t)
return result
def thd(s, fs, frequency, harmonics=3, window=None):
ph = np.array([tone_power_conv(s, fs, frequency*(i+1), window)[np.newaxis] \
for i in range(harmonics)])
ph = np.concatenate(ph, axis=0)
return (np.sum(ph[1:]**2, axis=0)**0.5)/ph[0]
def analyze_tone(waveforms, frequency, fs, mic_gain, trim=0, thd_harmonics=3):
trim_n = int(trim*fs)
waveforms = waveforms[:, trim_n:-trim_n]
# Get average tone power across channels
power = tone_power_conv(waveforms, fs, frequency, window='flattop')
power = db(power).mean(axis=0)
average_waveform = waveforms.mean(axis=0)
time = np.arange(len(average_waveform))/fs
# Correct for gains (i.e. we want to know the *actual* Vrms at 0 dB input
# and 0 dB output gain).
power -= mic_gain
#max_harmonic = np.min(int(np.floor((fs/2.0)/frequency)), thd_harmonics)
harmonics = []
for i in range(thd_harmonics):
f_harmonic = frequency*(i+1)
p = tone_power_conv(waveforms, fs, f_harmonic, window='flattop')
p_harmonic = db(p).mean(axis=0)
harmonics.append({
'harmonic': i+1,
'frequency': f_harmonic,
'mic_rms': p_harmonic,
})
harmonic_v = []
for h_info in harmonics:
harmonic_v.append(dbi(h_info['mic_rms']))
harmonic_v = np.asarray(harmonic_v)[:thd_harmonics]
thd = (np.sum(harmonic_v[1:]**2)**0.5)/harmonic_v[0]
return {
'frequency': frequency,
'time': time,
'mic_rms': power,
'thd': thd,
'mic_waveform': average_waveform,
'harmonics': harmonics,
}
def spectrum_to_band_level(spectrum_db, flb, fub):
'''
Convert overall band level to spectrum level
'''
return spectrum_db + 10 * np.log10(fub - flb)
def band_to_spectrum_level(band_db, flb, fub):
'''
Convert overall band level to spectrum level
'''
return band_db - 10 * np.log10(fub - flb)
def rms(s, detrend=False):
if detrend:
s = signal.detrend(s, axis=-1)
return np.mean(s**2, axis=-1)**0.5
def rms_rfft(x):
return np.sqrt(np.sum(np.abs(x) ** 2))
def golay_pair(n=15):
'''
Generate pair of Golay sequences
'''
a0 = np.array([1, 1])
b0 = np.array([1, -1])
for i in range(n):
a = np.concatenate([a0, b0])
b = np.concatenate([a0, -b0])
a0, b0 = a, b
return a.astype(np.float32), b.astype(np.float32)
def transfer_function(stimulus, response, fs):
response = response[:len(stimulus)]
h_response = np.fft.rfft(response, axis=-1)
h_stimulus = np.fft.rfft(stimulus, axis=-1)
freq = psd_freq(response, fs)
return freq, 2*np.abs(h_response*np.conj(h_stimulus))
def golay_tf(a, b, a_signal, b_signal, fs):
'''
Estimate system transfer function from Golay sequence
Implements algorithm as described in Zhou et al. 1992.
'''
a_signal = a_signal[..., :len(a)]
b_signal = b_signal[..., :len(b)]
ah_psd = np.fft.rfft(a_signal, axis=-1)
bh_psd = np.fft.rfft(b_signal, axis=-1)
a_psd = np.fft.rfft(a)
b_psd = np.fft.rfft(b)
h_omega = (ah_psd*np.conj(a_psd) + bh_psd*np.conj(b_psd))/(2*len(a))
freq = psd_freq(a, fs)
h_psd = np.abs(h_omega)
h_phase = np.unwrap(np.angle(h_omega))
return freq, h_psd, h_phase
def golay_ir(n, a, b, a_signal, b_signal):
'''
Estimate system impulse response from Golay sequence
Implements algorithm described in Zhou et al. 1992
'''
a_signal = a_signal.mean(axis=0)
b_signal = b_signal.mean(axis=0)
a_conv = np.apply_along_axis(np.convolve, 1, a_signal, a[::-1], 'full')
b_conv = np.apply_along_axis(np.convolve, 1, b_signal, b[::-1], 'full')
return 1.0/(2.0*n)*(a_conv+b_conv)[..., -len(a):]
def summarize_golay(fs, a, b, a_response, b_response, waveform_averages=None):
if waveform_averages is not None:
n_epochs, n_time = a_response.shape
new_shape = (waveform_averages, -1, n_time)
a_response = a_response.reshape(new_shape).mean(axis=0)
b_response = b_response.reshape(new_shape).mean(axis=0)
time = np.arange(a_response.shape[-1])/fs
freq, tf_psd, tf_phase = golay_tf(a, b, a_response, b_response, fs)
tf_psd = tf_psd.mean(axis=0)
tf_phase = tf_phase.mean(axis=0)
return {
'psd': tf_psd,
'phase': tf_phase,
'frequency': freq,
}
def freq_smooth(frequency, power, bandwidth=20):
'''
Uses Konno & Ohmachi (1998) algorithm
'''
smoothed = []
old = np.seterr(all='ignore')
for f in frequency:
if f == 0:
# Special case for divide by 0
k = np.zeros_like(frequency)
else:
r = bandwidth*np.log10(frequency/f)
k = (np.sin(r)/r)**4
# Special case for np.log10(0/frequency)
k[0] = 0
# Special case where ratio is 1 (log of ratio is set to 0)
k[frequency == f] = 1
# Equalize weights
k /= k.sum(axis=0)
smoothed.append(np.sum(power*k))
| np.seterr(**old) | numpy.seterr |
"""
Most of codes are "COPIED" from saliconeval.auc, etc.
just because, the salicon interfaces sucks :-(
and https://github.com/herrlich10/saliency/blob/master/benchmark/metrics.py
"""
import numpy as np
from skimage.transform import resize
import numpy.random as random
from functools import partial
import scipy.sparse
def normalize_range(x):
res = (x - np.min(x)) / (np.max(x) - np.min(x))
return res
def resize_onehot_tensor_sparse(x, target_shape):
assert len(target_shape) == 2
H1, W1 = x.shape[-2:]
H2, W2 = target_shape
if len(x.shape) == 2:
ret = np.zeros((H2, W2), dtype=np.bool)
for y, x in zip(*np.where(x > 0)):
y_ = y * (H2 - 1.0) / (H1 - 1.0)
x_ = x * (W2 - 1.0) / (W1 - 1.0)
y_ = int(np.round(y_) + 1e-9)
x_ = int(np.round(x_) + 1e-9)
#print t, y, x, '=>', y_, x_
ret[y_, x_] = 1
else:
raise ValueError('x.shape : %s' % x.shape)
return ret
def AUC_Judd(fixation_map, saliency_map, jitter=True):
'''
AUC stands for Area Under ROC Curve.
This measures how well the saliency map of an image predicts the ground truth human fixations on the image.
ROC curve is created by sweeping through threshold values
determined by range of saliency map values at fixation locations.
True positive (tp) rate correspond to the ratio of saliency map values above threshold
at fixation locations to the total number of fixation locations.
False positive (fp) rate correspond to the ratio of saliency map values above threshold
at all other locations to the total number of possible other locations (non-fixated image pixels).
AUC=0.5 is chance level.
Parameters
----------
saliency_map : real-valued matrix
fixation_map : binary matrix
Human fixation map.
jitter : boolean, optional
If True (default), a small random number would be added to each pixel of the saliency map.
Jitter saliency maps that come from saliency models that have a lot of zero values.
If the saliency map is made with a Gaussian then it does not need to be jittered
as the values vary and there is not a large patch of the same value.
In fact, jittering breaks the ordering in the small values!
Returns
-------
AUC : float, between [0,1]
'''
saliency_map = np.array(saliency_map, copy=False)
fixation_map = np.array(fixation_map, copy=False) > 0.5
# If there are no fixation to predict, return NaN
if not np.any(fixation_map):
print('no fixation to predict')
return np.nan
# Make the saliency_map the size of the fixation_map
if saliency_map.shape != fixation_map.shape:
saliency_map = resize(saliency_map, fixation_map.shape, order=3, mode='nearest')
# Jitter the saliency map slightly to disrupt ties of the same saliency value
if jitter:
saliency_map += random.rand(*saliency_map.shape) * 1e-7
# Normalize saliency map to have values between [0,1]
saliency_map = normalize_range(saliency_map)
S = saliency_map.ravel()
F = fixation_map.ravel()
S_fix = S[F] # Saliency map values at fixation locations
n_fix = len(S_fix)
n_pixels = len(S)
# Calculate AUC
thresholds = sorted(S_fix, reverse=True)
tp = np.zeros(len(thresholds)+2)
fp = np.zeros(len(thresholds)+2)
tp[0] = 0; tp[-1] = 1
fp[0] = 0; fp[-1] = 1
for k, thresh in enumerate(thresholds):
above_th = np.sum(S >= thresh) # Total number of saliency map values above threshold
tp[k+1] = (k + 1) / float(n_fix) # Ratio saliency map values at fixation locations above threshold
fp[k+1] = (above_th - k - 1) / float(n_pixels - n_fix) # Ratio other saliency map values above threshold
return np.trapz(tp, fp) # y, x
def AUC_Borji(fixation_map, saliency_map, n_rep=100, step_size=0.1, rand_sampler=None):
'''
This measures how well the saliency map of an image predicts the ground truth human fixations on the image.
ROC curve created by sweeping through threshold values at fixed step size
until the maximum saliency map value.
True positive (tp) rate correspond to the ratio of saliency map values above threshold
at fixation locations to the total number of fixation locations.
False positive (fp) rate correspond to the ratio of saliency map values above threshold
at random locations to the total number of random locations
(as many random locations as fixations, sampled uniformly from fixation_map ALL IMAGE PIXELS),
averaging over n_rep number of selections of random locations.
Parameters
----------
saliency_map : real-valued matrix
fixation_map : binary matrix
Human fixation map.
n_rep : int, optional
Number of repeats for random sampling of non-fixated locations.
step_size : int, optional
Step size for sweeping through saliency map.
rand_sampler : callable
S_rand = rand_sampler(S, F, n_rep, n_fix)
Sample the saliency map at random locations to estimate false positive.
Return the sampled saliency values, S_rand.shape=(n_fix,n_rep)
Returns
-------
AUC : float, between [0,1]
'''
saliency_map = np.array(saliency_map, copy=False)
fixation_map = np.array(fixation_map, copy=False) > 0.5
# If there are no fixation to predict, return NaN
if not np.any(fixation_map):
print('no fixation to predict')
return np.nan
# Make the saliency_map the size of the fixation_map
if saliency_map.shape != fixation_map.shape:
saliency_map = resize(saliency_map, fixation_map.shape, order=3, mode='nearest')
# Normalize saliency map to have values between [0,1]
saliency_map = normalize_range(saliency_map)
S = saliency_map.ravel()
F = fixation_map.ravel()
S_fix = S[F] # Saliency map values at fixation locations
n_fix = len(S_fix)
n_pixels = len(S)
# For each fixation, sample n_rep values from anywhere on the saliency map
if rand_sampler is None:
r = random.randint(0, n_pixels, [n_fix, n_rep])
S_rand = S[r] # Saliency map values at random locations (including fixated locations!? underestimated)
else:
S_rand = rand_sampler(S, F, n_rep, n_fix)
# Calculate AUC per random split (set of random locations)
auc = np.zeros(n_rep) * np.nan
for rep in range(n_rep):
thresholds = np.r_[0:np.max(np.r_[S_fix, S_rand[:,rep]]):step_size][::-1]
tp = np.zeros(len(thresholds)+2)
fp = np.zeros(len(thresholds)+2)
tp[0] = 0; tp[-1] = 1
fp[0] = 0; fp[-1] = 1
for k, thresh in enumerate(thresholds):
tp[k+1] = np.sum(S_fix >= thresh) / float(n_fix)
fp[k+1] = np.sum(S_rand[:,rep] >= thresh) / float(n_fix)
auc[rep] = np.trapz(tp, fp)
return np.mean(auc) # Average across random splits
def AUC_shuffled(fixation_map, saliency_map, other_map, n_rep=100, step_size=0.1):
'''
This measures how well the saliency map of an image predicts the ground truth human fixations on the image.
ROC curve created by sweeping through threshold values at fixed step size
until the maximum saliency map value.
True positive (tp) rate correspond to the ratio of saliency map values above threshold
at fixation locations to the total number of fixation locations.
False positive (fp) rate correspond to the ratio of saliency map values above threshold
at random locations to the total number of random locations
(as many random locations as fixations, sampled uniformly from fixation_map ON OTHER IMAGES),
averaging over n_rep number of selections of random locations.
Parameters
----------
saliency_map : real-valued matrix
fixation_map : binary matrix
Human fixation map.
other_map : binary matrix, same shape as fixation_map
A binary fixation map (like fixation_map) by taking the union of fixations from M other random images
(Borji uses M=10).
n_rep : int, optional
Number of repeats for random sampling of non-fixated locations.
step_size : int, optional
Step size for sweeping through saliency map.
Returns
-------
AUC : float, between [0,1]
'''
other_map = np.array(other_map, copy=False) > 0.5
if other_map.shape != fixation_map.shape:
raise ValueError('other_map.shape != fixation_map.shape')
# For each fixation, sample n_rep values (from fixated locations on other_map) on the saliency map
def sample_other(other, S, F, n_rep, n_fix):
fixated = np.nonzero(other)[0]
indexer = map(lambda x: random.permutation(x)[:n_fix], np.tile(range(len(fixated)), [n_rep, 1]))
r = fixated[np.transpose(indexer)]
S_rand = S[r] # Saliency map values at random locations (including fixated locations!? underestimated)
return S_rand
return AUC_Borji(fixation_map, saliency_map, n_rep, step_size, partial(sample_other, other_map.ravel()))
def similarity(gtsAnn, resAnn):
"""
Compute Sim score.
For detailed explanation, refer to the DeepFix (2015) paper.
"""
# normalize
gtsAnnNorm = gtsAnn / gtsAnn.sum()
resAnnNorm = resAnn / resAnn.sum()
simMap = np.minimum(gtsAnnNorm, resAnnNorm)
return simMap.sum()
def cc(gtsAnn, resAnn):
"""
Compute CC score. A simple implementation
:param gtsAnn: ground-truth fixation map (X by X)
:param resAnn: predicted saliency map (X by X)
:return score: float : score
"""
fixationMap = gtsAnn - np.mean(gtsAnn)
if np.max(fixationMap) > 0:
fixationMap = fixationMap / np.std(fixationMap)
salMap = resAnn - | np.mean(resAnn) | numpy.mean |
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import scipy.integrate as integrate
from scipy.optimize import brentq as root
import math
import numpy as np
import scipy.special as scp
from scipy.special import iv
# In[2]:
def rvonmises(n, mu, kappa):
vm = np.zeros(n)
a = 1 + (1 + 4 * (kappa**2))**0.5
b = (a - (2 * a)**0.5)/(2 * kappa)
r = (1 + b**2)/(2 * b)
obs = 0
while (obs < n):
U1 = np.random.uniform(0, 1, 1)
z = np.cos(np.pi * U1)
f = (1 + r * z)/(r + z)
c = kappa * (r - f)
U2 = np.random.uniform(0, 1, 1)
if (c * (2 - c) - U2 > 0):
U3 = | np.random.uniform(0, 1, 1) | numpy.random.uniform |
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
structure a statsmodel table
@author: udacity, ucaiado
Created on 10/07/2018
"""
import numpy as np
from statsmodels.iolib.table import SimpleTable
from statsmodels.compat.python import zip_longest
from statsmodels.iolib.tableformatting import fmt_2cols
def convert_table_to_dict(table):
'''
convert statsmodel table to dict
:param table: StatsModel table. Parameters of the agent
'''
l_aux = [y.strip() for y in | np.array(table.data) | numpy.array |
import scipy.io.wavfile as scwav
import numpy as np
import pylab
import librosa
import pyworld as pw
import os
import scipy.io as scio
from glob import glob
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor
from functools import partial
from sklearn.manifold import TSNE
def _power_to_db(S):
return 20*np.log10(S)
def _get_spect(filename, dim=8, mfcc=True):
sr, data = scwav.read(filename=filename)
data = np.asarray(data, np.float64)
_, spect, _ = pw.wav2world(data, sr, frame_period=5)
if spect.shape[0] > 128:
q = np.random.randint(0, spect.shape[0] - 128)
spect = spect[q:q+128]
u_mat, s_mat, v_mat = np.linalg.svd(spect)
rank1_appx = s_mat[0] * np.dot(u_mat[:,0:1], v_mat[0:1,:])
rank2_appx = rank1_appx + (s_mat[1] * np.dot(u_mat[:,1:2], v_mat[1:2,:]))
rank3_appx = rank2_appx + (s_mat[2] * np.dot(u_mat[:,2:3], v_mat[2:3,:]))
rank4_appx = rank3_appx + (s_mat[3] * np.dot(u_mat[:,3:4], v_mat[3:4,:]))
rank5_appx = rank4_appx + (s_mat[4] * np.dot(u_mat[:,4:5], v_mat[4:5,:]))
rank6_appx = rank5_appx + (s_mat[5] * np.dot(u_mat[:,5:6], v_mat[5:6,:]))
rank7_appx = rank6_appx + (s_mat[6] * np.dot(u_mat[:,6:7], v_mat[6:7,:]))
rank8_appx = rank7_appx + (s_mat[7] * np.dot(u_mat[:,7:8], v_mat[7:8,:]))
if mfcc:
mfc1 = pw.code_spectral_envelope(np.abs(rank1_appx), sr, dim)
mfc2 = pw.code_spectral_envelope(np.abs(rank2_appx), sr, dim)
mfc3 = pw.code_spectral_envelope(np.abs(rank3_appx), sr, dim)
mfc4 = pw.code_spectral_envelope(np.abs(rank4_appx), sr, dim)
mfc5 = pw.code_spectral_envelope(np.abs(rank5_appx), sr, dim)
mfc6 = pw.code_spectral_envelope(np.abs(rank6_appx), sr, dim)
mfc7 = pw.code_spectral_envelope(np.abs(rank7_appx), sr, dim)
mfc8 = pw.code_spectral_envelope(np.abs(rank8_appx), sr, dim)
else:
mfc1 = rank1_appx
mfc2 = None
mfc3 = None
mfc4 = None
mfc5 = None
mfc6 = None
mfc7 = None
mfc8 = None
return [mfc1, mfc2, mfc3, mfc4, mfc5, mfc6, mfc7, mfc8]
else:
return None
def _get_spect_no_abs(filename, dim=8, mfcc=True):
sr, data = scwav.read(filename=filename)
data = np.asarray(data, np.float64)
_, spect, _ = pw.wav2world(data, sr, frame_period=5)
if spect.shape[0] > 128:
q = np.random.randint(0, spect.shape[0] - 128)
spect = spect[q:q+128]
u_mat, s_mat, v_mat = np.linalg.svd(spect)
rank1_appx = s_mat[0] * np.dot(u_mat[:,0:1], v_mat[0:1,:])
rank2_appx = rank1_appx + (s_mat[1] * np.dot(u_mat[:,1:2], v_mat[1:2,:]))
rank3_appx = rank2_appx + (s_mat[2] * np.dot(u_mat[:,2:3], v_mat[2:3,:]))
rank4_appx = rank3_appx + (s_mat[3] * np.dot(u_mat[:,3:4], v_mat[3:4,:]))
rank5_appx = rank4_appx + (s_mat[4] * np.dot(u_mat[:,4:5], v_mat[4:5,:]))
rank6_appx = rank5_appx + (s_mat[5] * np.dot(u_mat[:,5:6], v_mat[5:6,:]))
rank7_appx = rank6_appx + (s_mat[6] * np.dot(u_mat[:,6:7], v_mat[6:7,:]))
rank8_appx = rank7_appx + (s_mat[7] * np.dot(u_mat[:,7:8], v_mat[7:8,:]))
if mfcc:
mfc1 = pw.code_spectral_envelope(rank1_appx, sr, dim)
mfc2 = pw.code_spectral_envelope(rank2_appx, sr, dim)
mfc3 = pw.code_spectral_envelope(rank3_appx, sr, dim)
mfc4 = pw.code_spectral_envelope(rank4_appx, sr, dim)
mfc5 = pw.code_spectral_envelope(rank5_appx, sr, dim)
mfc6 = pw.code_spectral_envelope(rank6_appx, sr, dim)
mfc7 = pw.code_spectral_envelope(rank7_appx, sr, dim)
mfc8 = pw.code_spectral_envelope(rank8_appx, sr, dim)
else:
mfc1 = rank1_appx
mfc2 = None
mfc3 = None
mfc4 = None
mfc5 = None
mfc6 = None
mfc7 = None
mfc8 = None
return [mfc1, mfc2, mfc3, mfc4, mfc5, mfc6, mfc7, mfc8]
else:
return None
if __name__ == '__main__':
# sample_rate = 16000
# window_len = 0.005
# wav_file = '38.wav'
# files = sorted(glob(os.path.join('/home/ravi/Downloads/Emo-Conv/neutral-angry/train/neutral', '*.wav')))
# wav_files = [os.path.basename(f) for f in files]
#
# min_val = []
# max_val = []
# for w in wav_files:
# src = scwav.read(os.path.join('/home/ravi/Downloads/Emo-Conv/neutral-angry/train/neutral', w))
# src = np.asarray(src[1], np.float64)
# f0_src, sp_src, ap_src = pw.wav2world(src, 16000, frame_period=5)
# mfc_src = pw.code_spectral_envelope(sp_src, 16000, 23)
#
# tar = scwav.read(os.path.join('/home/ravi/Downloads/Emo-Conv/neutral-angry/train/angry', w))
# tar = np.asarray(tar[1], np.float64)
# f0_tar, sp_tar, ap_tar = pw.wav2world(tar, 16000, frame_period=5)
# mfc_tar = pw.code_spectral_envelope(sp_tar, 16000, 23)
#
# src_mfcc = librosa.feature.mfcc(y=src, sr=sample_rate, \
# hop_length=int(sample_rate*window_len), \
# win_length=int(sample_rate*window_len), \
# n_fft=1024, n_mels=128)
#
# tar_mfcc = librosa.feature.mfcc(y=tar, sr=sample_rate, \
# hop_length=int(sample_rate*window_len), \
# win_length=int(sample_rate*window_len), \
# n_fft=1024, n_mels=128)
#
# _, cords = librosa.sequence.dtw(X=src_mfcc, Y=tar_mfcc, metric='cosine')
# cords = np.flipud(cords)
# sp_src = sp_src[cords[:,0],:]
# sp_tar = sp_tar[cords[:,1],:]
# for i in range(10):
# q = np.random.randint(0, len(cords))
# pylab.figure(), pylab.subplot(211)
# pylab.plot(sp_src[cords[q,0],:], label='neutral')
# pylab.plot(sp_tar[cords[q,1],:], label='angry')
# pylab.grid(), pylab.title('Slice %d' % q), pylab.legend(loc=1)
#
# pylab.subplot(212)
# pylab.plot(mfc_src[cords[q,0],:], label='neutral')
# pylab.plot(mfc_tar[cords[q,1],:], label='angry')
# pylab.grid(), pylab.title('Slice %d' % q), pylab.legend(loc=1)
# u_src, sigma_src, v_src = np.linalg.svd(sp_src)
# u_tar, sigma_tar, v_tar = np.linalg.svd(sp_tar)
#
# s_mat = np.zeros(sp_src.shape)
# t_mat = np.zeros(sp_tar.shape)
# s_mat_array = []
# t_mat_array = []
# for i in range(min([u_src.shape[0], v_src.shape[0]])):
# x = np.dot(u_src[:,i:i+1], v_src[i:i+1,:])
# s_mat += sigma_src[i]*x
# s_mat_array.append(s_mat)
# pylab.figure(figsize=(15,15)), pylab.imshow(_power_to_db(s_mat.T ** 2))
# pylab.suptitle('#Components %d' % (i+1))
# pylab.savefig('/home/ravi/Desktop/svd_recon/src_'+str(i)+'.png')
# pylab.close()
#
# for i in range(min([u_tar.shape[0], v_tar.shape[0]])):
# y = np.dot(u_tar[:,i:i+1], v_tar[i:i+1,:])
# t_mat += sigma_tar[i]*y
# t_mat_array.append(t_mat)
# pylab.figure(figsize=(15,15)), pylab.imshow(_power_to_db(s_mat.T ** 2))
# pylab.suptitle('#Components %d' % (i+1))
# pylab.savefig('/home/ravi/Desktop/svd_recon/tar_'+str(i)+'.png')
# pylab.close()
#
# break
# s_mfc_array = np.asarray([pw.code_spectral_envelope(s, 16000, 4) for s in s_mat_array])
# t_mfc_array = np.asarray([pw.code_spectral_envelope(t, 16000, 4) for t in t_mat_array])
#
# print(w)
# min_val.append((np.min(s_mfc_array) ,np.min(t_mfc_array)))
# max_val.append((np.max(s_mfc_array) ,np.max(t_mfc_array)))
"""
Cohort analysis
"""
src_list = sorted(glob(os.path.join('/home/ravi/Downloads/Emo-Conv/neutral-angry/train/neutral', '*.wav')))
tar_list = sorted(glob(os.path.join('/home/ravi/Downloads/Emo-Conv/neutral-angry/train/angry', '*.wav')))
executor = ProcessPoolExecutor(max_workers=8)
src_futures = []
tar_futures = []
src_results = []
tar_results = []
dim = 8
times_sampling = 2
for sampling in range(times_sampling):
for i in src_list:
src_futures.append(executor.submit(partial(_get_spect_no_abs, i, dim, False)))
# src_results.append(_get_spect_no_abs(i, dim))
# print(i)
src_results = [src_future.result() for src_future in tqdm(src_futures)]
for sampling in range(times_sampling):
for i in tar_list:
tar_futures.append(executor.submit(partial(_get_spect_no_abs, i, dim, False)))
# tar_results.append(_get_spect_no_abs(i, dim))
# print(i)
tar_results = [tar_future.result() for tar_future in tqdm(tar_futures)]
src_mfcc = [i for i,j in zip(src_results, tar_results) if i!=None and j!=None]
tar_mfcc = [j for i,j in zip(src_results, tar_results) if i!=None and j!=None]
src_rank1 = np.asarray([i[0] for i in src_mfcc])
src_rank2 = np.asarray([i[1] for i in src_mfcc])
src_rank3 = | np.asarray([i[2] for i in src_mfcc]) | numpy.asarray |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 24 09:18:44 2020
@author: <NAME> <EMAIL>
@author: matheustorquato <EMAIL>
"""
import functools, os
import matplotlib.pyplot as plt
import numpy as np
import datetime as dt
import pandas as pd
import logging
from functools import reduce
import scipy.integrate as spi
from platypus import NSGAII, Problem, Real
#from pyswarms.single.global_best import GlobalBestPSO
import pyswarms as ps
from pyswarms.backend.topology import Star
from pyswarms.utils.plotters import plot_cost_history
from itertools import repeat
import multiprocessing as mp
class SEIRHUD:
''' SEIRHU Model'''
def __init__(self,tamanhoPop,numeroProcessadores=None):
self.N = tamanhoPop
self.numeroProcessadores = numeroProcessadores
def __cal_EDO(self,x,beta,gammaH,gammaU,delta,h,ia0,is0,e0):
ND = len(x)-1
t_start = 0.0
t_end = ND
t_inc = 1
t_range = np.arange(t_start, t_end + t_inc, t_inc)
beta = | np.array(beta) | numpy.array |
import numpy as np
import random as rand
import csv
import pandas as pd
# Set a seed for reproducibility
SEED = 500; rand.seed(SEED)
mu = 0
sigma = 1
length = 1000 # Number of params affecting model 50,000 SNP chip
# Create linear model with parameter weights drawn randomly from a gaussian distribution
effects = | np.ones(length) | numpy.ones |
import pandas as pd
import numpy as np
import lightgbm as lgb
from sklearn.model_selection import KFold
from catboost import CatBoostRegressor
from utils import *
import argparse
from sklearn import preprocessing
import wordbatch
from wordbatch.extractors import WordBag
from wordbatch.models import FM_FTRL
class TargetEncoder:
# Adapted from https://www.kaggle.com/ogrellier/python-target-encoding-for-categorical-features
def __repr__(self):
return 'TargetEncoder'
def __init__(self, cols, smoothing=1, min_samples_leaf=1, noise_level=0, keep_original=False):
self.cols = cols
self.smoothing = smoothing
self.min_samples_leaf = min_samples_leaf
self.noise_level = noise_level
self.keep_original = keep_original
@staticmethod
def add_noise(series, noise_level):
return series * (1 + noise_level * np.random.randn(len(series)))
def encode(self, train, test, target):
for col in self.cols:
if self.keep_original:
train[col + '_te'], test[col + '_te'] = self.encode_column(train[col], test[col], target)
else:
train[col], test[col] = self.encode_column(train[col], test[col], target)
return train, test
def encode_column(self, trn_series, tst_series, target):
temp = pd.concat([trn_series, target], axis=1)
# Compute target mean
averages = temp.groupby(by=trn_series.name)[target.name].agg(["mean", "count"])
# Compute smoothing
smoothing = 1 / (1 + np.exp(-(averages["count"] - self.min_samples_leaf) / self.smoothing))
# Apply average function to all target data
prior = target.mean()
# The bigger the count the less full_avg is taken into account
averages[target.name] = prior * (1 - smoothing) + averages["mean"] * smoothing
averages.drop(['mean', 'count'], axis=1, inplace=True)
# Apply averages to trn and tst series
ft_trn_series = pd.merge(
trn_series.to_frame(trn_series.name),
averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}),
on=trn_series.name,
how='left')['average'].rename(trn_series.name + '_mean').fillna(prior)
# pd.merge does not keep the index so restore it
ft_trn_series.index = trn_series.index
ft_tst_series = pd.merge(
tst_series.to_frame(tst_series.name),
averages.reset_index().rename(columns={'index': target.name, target.name: 'average'}),
on=tst_series.name,
how='left')['average'].rename(trn_series.name + '_mean').fillna(prior)
# pd.merge does not keep the index so restore it
ft_tst_series.index = tst_series.index
return self.add_noise(ft_trn_series, self.noise_level), self.add_noise(ft_tst_series, self.noise_level)
def rmse(y, y0):
assert len(y) == len(y0)
return np.sqrt(np.mean(np.power((y - y0), 2)))
stopwords = {x: 1 for x in stopwords.words('russian')}
non_alphanums = re.compile(u'[^A-Za-z0-9]+')
non_alphanumpunct = re.compile(u'[^A-Za-z0-9\.?!,; \(\)\[\]\'\"\$]+')
RE_PUNCTUATION = '|'.join([re.escape(x) for x in string.punctuation])
train = pd.read_csv('../input/train.csv', index_col = "item_id", parse_dates = ["activation_date"])
test = pd.read_csv('../input/test.csv', index_col = "item_id", parse_dates = ["activation_date"])
import string
def normalize_text(text):
text = text.lower().strip()
for s in string.punctuation:
text = text.replace(s, ' ')
text = text.strip().split(' ')
return u' '.join(x for x in text if len(x) > 1 and x not in stopwords)
print(train.description[0])
print(normalize_text(train.description[0]))
train['is_train'] = 1
test['is_train'] = 0
print('[{}] Compiled train / test'.format(time.time() - start_time))
print('Train shape: ', train.shape)
print('Test shape: ', test.shape)
y = train.deal_probability.copy()
nrow_train = train.shape[0]
merge = pd.concat([train, test])
submission = pd.DataFrame(test.index)
print('[{}] Compiled merge'.format(time.time() - start_time))
print('Merge shape: ', merge.shape)
del train
del test
gc.collect()
print('[{}] Garbage collection'.format(time.time() - start_time))
print("Feature Engineering - Part 1")
merge["price"] = np.log(merge["price"]+0.001)
merge["price"].fillna(-999,inplace=True)
merge["image_top_1"].fillna(-999,inplace=True)
print("\nCreate Time Variables")
merge["activation_weekday"] = merge['activation_date'].dt.weekday
print(merge.head(5))
gc.collect()
training_index = merge.loc[merge.activation_date<=pd.to_datetime('2017-04-07')].index
validation_index = merge.loc[merge.activation_date>=pd.to_datetime('2017-04-08')].index
merge.drop(["activation_date","image"],axis=1,inplace=True)
#Drop user_id
merge.drop(["user_id"], axis=1,inplace=True)
print("\nText Features")
textfeats = ["description", "title"]
for cols in textfeats:
merge[cols] = merge[cols].astype(str)
merge[cols] = merge[cols].astype(str).fillna('missing') # FILL NA
merge[cols] = merge[cols].str.lower() # Lowercase all text, so that capitalized words dont get treated differently
merge[cols + '_num_stopwords'] = merge[cols].apply(lambda x: len([w for w in x.split() if w in stopwords])) # Count number of Stopwords
merge[cols + '_num_punctuations'] = merge[cols].apply(lambda comment: (comment.count(RE_PUNCTUATION))) # Count number of Punctuations
merge[cols + '_num_alphabets'] = merge[cols].apply(lambda comment: len([c for c in comment if c.isupper()])) # Count number of Alphabets
merge[cols + '_num_digits'] = merge[cols].apply(lambda comment: (comment.count('[0-9]'))) # Count number of Digits
merge[cols + '_num_letters'] = merge[cols].apply(lambda comment: len(comment)) # Count number of Letters
merge[cols + '_num_words'] = merge[cols].apply(lambda comment: len(comment.split())) # Count number of Words
merge[cols + '_num_unique_words'] = merge[cols].apply(lambda comment: len(set(w for w in comment.split())))
merge[cols + '_words_vs_unique'] = merge[cols+'_num_unique_words'] / merge[cols+'_num_words'] # Count Unique Words
merge[cols + '_letters_per_word'] = merge[cols+'_num_letters'] / merge[cols+'_num_words'] # Letters per Word
merge[cols + '_punctuations_by_letters'] = merge[cols+'_num_punctuations'] / merge[cols+'_num_letters'] # Punctuations by Letters
merge[cols + '_punctuations_by_words'] = merge[cols+'_num_punctuations'] / merge[cols+'_num_words'] # Punctuations by Words
merge[cols + '_digits_by_letters'] = merge[cols+'_num_digits'] / merge[cols+'_num_letters'] # Digits by Letters
merge[cols + '_alphabets_by_letters'] = merge[cols+'_num_alphabets'] / merge[cols+'_num_letters'] # Alphabets by Letters
merge[cols + '_stopwords_by_words'] = merge[cols+'_num_stopwords'] / merge[cols+'_num_words'] # Stopwords by Letters
merge[cols + '_mean'] = merge[cols].apply(lambda x: 0 if len(x) == 0 else float(len(x.split())) / len(x)) * 10 # Mean
# Extra Feature Engineering
merge['title_desc_len_ratio'] = merge['title_num_letters']/merge['description_num_letters']
df_test = merge.loc[merge['is_train'] == 0]
df_train = merge.loc[merge['is_train'] == 1]
del merge
gc.collect()
df_test = df_test.drop(['is_train'], axis=1)
df_train = df_train.drop(['is_train'], axis=1)
print(df_train.shape)
print(y.shape)
if SUBMIT_MODE:
y_train = y
del y
gc.collect()
else:
df_train, df_test, y_train, y_test = train_test_split(df_train, y, test_size=0.2, random_state=144)
print('[{}] Splitting completed.'.format(time.time() - start_time))
wb = wordbatch.WordBatch(normalize_text, extractor=(WordBag, {"hash_ngrams": 2,
"hash_ngrams_weights": [1.5, 1.0],
"hash_size": 2 ** 29,
"norm": None,
"tf": 'binary',
"idf": None,
}), procs=8)
wb.dictionary_freeze = True
X_name_train = wb.fit_transform(df_train['title'])
print(X_name_train.shape)
X_name_test = wb.transform(df_test['title'])
print(X_name_test.shape)
del(wb)
gc.collect()
mask = np.where(X_name_train.getnnz(axis=0) > 3)[0]
X_name_train = X_name_train[:, mask]
print(X_name_train.shape)
X_name_test = X_name_test[:, mask]
print(X_name_test.shape)
print('[{}] Vectorize `title` completed.'.format(time.time() - start_time))
X_train_1, X_train_2, y_train_1, y_train_2 = train_test_split(X_name_train, y_train,
test_size = 0.5,
shuffle = False)
print('[{}] Finished splitting'.format(time.time() - start_time))
model = Ridge(solver="sag", fit_intercept=True, random_state=42, alpha=5)
model.fit(X_train_1, y_train_1)
print('[{}] Finished to train name ridge (1)'.format(time.time() - start_time))
name_ridge_preds1 = model.predict(X_train_2)
name_ridge_preds1f = model.predict(X_name_test)
print('[{}] Finished to predict name ridge (1)'.format(time.time() - start_time))
model = Ridge(solver="sag", fit_intercept=True, random_state=42, alpha=5)
model.fit(X_train_2, y_train_2)
print('[{}] Finished to train name ridge (2)'.format(time.time() - start_time))
name_ridge_preds2 = model.predict(X_train_1)
name_ridge_preds2f = model.predict(X_name_test)
print('[{}] Finished to predict name ridge (2)'.format(time.time() - start_time))
name_ridge_preds_oof = | np.concatenate((name_ridge_preds2, name_ridge_preds1), axis=0) | numpy.concatenate |
import numpy as np
#import matplotlib.pyplot as plt
from skimage.measure import label,find_contours
#from PIL import Image
#from scipy.ndimage.morphology import distance_transform_edt
import csv
import sys
#from scipy.interpolate import Rbf,interp2d
from skimage.morphology import binary_opening
#from scipy import ndimage
from sklearn.linear_model import RANSACRegressor
def get_contour(rad,thresh):
"""
Find the edge in the input radiograph.
Parameters:
rad (numpy.ndarray): Radiograph of a sharp edge sample
thresh (float): The value at which a iso-valued contour (contour is the edge) is drawn
Returns:
numpy.ndarray: Coordinates along the longest detected contour
"""
contours = find_contours(rad,thresh)
best_contour = contours[0]
for contour in contours:
if(len(contour)>len(best_contour)):
best_contour = contour
return(best_contour)
def get_trans(rad,best_contour,trans_min,trans_max,thresh):
"""
Compute the ideal transmission image.
Parameters:
rad (numpy.ndarray): Radiograph of a sharp edge sample
best_contour (numpy.ndarray): Coordinates of the longest contour that is assumed to be the edge
trans_min (float): Minimum transmission value
trans_max (float): Maximum transmission value
thresh (float): Transmission value for the edge
Returns:
numpy.ndarray: Ideal transmission image
"""
window_interp = 5 #for interpolation. must be odd
edge_thick = np.ones(rad.shape) #edge pixel will be labeled as 0
for row,col in best_contour:
row_floor,col_floor = int(np.floor(row)),int(np.floor(col))
row_ceil,col_ceil = int(np.ceil(row)),int(np.ceil(col))
edge_thick[row_floor,col_floor],edge_thick[row_floor,col_ceil] = 0,0
edge_thick[row_ceil,col_floor],edge_thick[row_ceil,col_ceil] = 0,0
edge_thick = binary_opening(edge_thick) #erosion followed by dilation. Rids of bright pixels in edge voxels
rows_edge,cols_edge = np.nonzero(edge_thick==0) #Get edge pixel locations
labels,num = label(edge_thick,background=0,return_num=True)
if(num != 2):
raise ValueError("ERROR: Number of regions detected is {}. Two types of regions must be present in radiographs.".format(num))
val1 = np.mean(rad[labels==1])
val2 = np.mean(rad[labels==2])
trans = np.zeros(rad.shape) #Sample's pixel locations will be labeled as 1
trans[labels==0] = np.nan
trans[labels==1] = trans_min if val1<=val2 else trans_max
trans[labels==2] = trans_max if val1<=val2 else trans_min
for row,col in best_contour:
trans[int(round(row)),int(round(col))] = thresh
ideal_trans = trans.copy()
for row,col in zip(rows_edge,cols_edge):
if(np.isnan(trans[row,col])):
norm,ival = 0,0
for i in range(-int((window_interp-1)/2),int((window_interp-1)/2)+1):
for j in range(-int((window_interp-1)/2),int((window_interp-1)/2)+1):
row_new = row+i
col_new = col+j
if(i!=0 and j!=0 and row_new>=0 and row_new<trans.shape[0] and col_new>=0 and col_new<trans.shape[1]):
if(np.isnan(trans[row_new,col_new]) == False):
weight = 1.0/np.sqrt(i*i+j*j)
ival += weight*trans[row_new,col_new]
norm += weight
ideal_trans[row,col] = ival/norm if norm != 0 else thresh
if(norm == 0):
print("WARNING: No valid value within window for interpolation")
return(ideal_trans)
def get_padded_trans(ideal_trans,bdary_mask_perc,pad_factor,rad_mask):
"""
Appropriately pad the ideal transmission image and the masks.
Parameters:
ideal_trans (numpy.ndarray): Ideal transmission image
bdary_mask_perc (float): Percentage of image region that must be masked, i.e., excluded from blur estimation, close to the radiograph edges on each side (left, right, top, and bottom). Expressed as a percentage of the radiograph size.
pad_factor (list [float,float]): Pad factor as expressed in multiples of input radiograph size
rad_mask (numpy.ndarray): Boolean mask array over the radiograph where blur estimation is done.
"""
bdary_mask_perc /= 100
#Solves hw-(h-2*delta)(w-2*delta)=phw where h,w are idea_trans shape, p is bdary_mask_perc, and delta is delta_mask
a = 4
b = -2*(ideal_trans.shape[0]+ideal_trans.shape[1])
c = bdary_mask_perc*ideal_trans.shape[0]*ideal_trans.shape[1]
delta_mask = (-b-np.sqrt(b*b-4*a*c))/(2*a)
if delta_mask < 0:
raise ValueError("ERROR: delta_mask is negative. This should not occur. Contact the author of this python package.")
# print("Delta mask is ",delta_mask)
mask = np.zeros(ideal_trans.shape).astype(bool)
row_min = int(round(delta_mask))
row_max = int(round(mask.shape[0]-delta_mask))
col_min = int(round(delta_mask))
col_max = int(round(mask.shape[1]-delta_mask))
mask[row_min:row_max,col_min:col_max] = True
if rad_mask is not None:
mask = np.bitwise_and(mask,rad_mask)
norm_rad_mask = mask.copy()
#pad_width0 = int(ideal_trans.shape[0]*(pad_factor[0]-1)/2.0-bdary_mask_perc*mask.shape[0])
#pad_width1 = int(ideal_trans.shape[1]*(pad_factor[1]-1)/2.0-bdary_mask_perc*mask.shape[1])
pad_width0 = int(ideal_trans.shape[0]*(pad_factor[0]-1)/2.0)
pad_width1 = int(ideal_trans.shape[1]*(pad_factor[1]-1)/2.0)
colidx,rowidx = np.meshgrid(np.arange(-pad_width1,ideal_trans.shape[1]+pad_width1),np.arange(-pad_width0,ideal_trans.shape[0]+pad_width0))
ideal_trans = | np.pad(ideal_trans,((pad_width0,pad_width0),(pad_width1,pad_width1)),mode='constant',constant_values=-1) | numpy.pad |
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import re
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import TruncatedSVD
from sklearn import preprocessing, model_selection, metrics
import lightgbm as lgb
import gc
train_df = pd.read_csv('../input/train.csv', parse_dates=["activation_date"])
test_df = pd.read_csv('../input/test.csv', parse_dates=["activation_date"])
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
import random
import nltk
nltk.data.path.append("/media/sayantan/Personal/nltk_data")
from nltk.stem.snowball import RussianStemmer
from fuzzywuzzy import fuzz
from nltk.corpus import stopwords
from tqdm import tqdm
from scipy.stats import skew, kurtosis
from scipy.spatial.distance import cosine, cityblock, jaccard, canberra, euclidean, minkowski, braycurtis
from nltk import word_tokenize
stopwords = stopwords.words('russian')
def genFeatures(x):
x["activation_weekday"] = x["activation_date"].dt.weekday
x["monthday"] = x["activation_date"].dt.day
x["weekinmonday"] = x["monthday"] // 7
##################Added in set 1 - 0.01 Improvement
x['price_new'] = np.log1p(x.price) # log transform improves co-relation with deal_price
x['count_null_in_row'] = x.isnull().sum(axis=1)# works
x['has_description'] = x.description.isnull().astype(int)
x['has_image'] = x.image.isnull().astype(int)
x['has_image_top'] = x.image_top_1.isnull().astype(int)
x['has_param1'] = x.param_1.isnull().astype(int)
x['has_param2'] = x.param_2.isnull().astype(int)
x['has_param3'] = x.param_3.isnull().astype(int)
x['has_price'] = x.price.isnull().astype(int)
#################Added in set 2 - 0.00x Improvement
x["description"].fillna("NA", inplace=True)
x["desc_nwords"] = x["description"].apply(lambda x: len(x.split()))
x['len_description'] = x['description'].apply(lambda x: len(x))
x["title_nwords"] = x["title"].apply(lambda x: len(x.split()))
x['len_title'] = x['title'].apply(lambda x: len(x))
x['params'] = x['param_1'].fillna('') + ' ' + x['param_2'].fillna('') + ' ' + x['param_3'].fillna('')
x['params'] = x['params'].str.strip()
x['len_params'] = x['params'].apply(lambda x: len(x))
x['words_params'] = x['params'].apply(lambda x: len(x.split()))
x['symbol1_count'] = x['description'].str.count('↓')
x['symbol2_count'] = x['description'].str.count('\*')
x['symbol3_count'] = x['description'].str.count('✔')
x['symbol4_count'] = x['description'].str.count('❀')
x['symbol5_count'] = x['description'].str.count('➚')
x['symbol6_count'] = x['description'].str.count('ஜ')
x['symbol7_count'] = x['description'].str.count('.')
x['symbol8_count'] = x['description'].str.count('!')
x['symbol9_count'] = x['description'].str.count('\?')
x['symbol10_count'] = x['description'].str.count(' ')
x['symbol11_count'] = x['description'].str.count('-')
x['symbol12_count'] = x['description'].str.count(',')
####################
return x
train_df = genFeatures(train_df)
test_df = genFeatures(test_df)
test_df['deal_probability']=10.0
############################
english_stemmer = nltk.stem.SnowballStemmer('russian')
def clean_text(text):
#text = re.sub(r'(\d+),(\d+)', r'\1.\2', text)
text = text.replace(u'²', '2')
text = text.lower()
text = re.sub(u'[^a-zа-я0-9]', ' ', text)
text = re.sub('\s+', ' ', text)
return text.strip()
def stem_tokens(tokens, stemmer):
stemmed = []
for token in tokens:
#stemmed.append(stemmer.lemmatize(token))
stemmed.append(stemmer.stem(token))
return stemmed
def preprocess_data(line,
exclude_stopword=True,
encode_digit=False):
## tokenize
line = clean_text(line)
tokens = [x.lower() for x in nltk.word_tokenize(line)]
## stem
tokens_stemmed = stem_tokens(tokens, english_stemmer)#english_stemmer
if exclude_stopword:
tokens_stemmed = [x for x in tokens_stemmed if x not in stopwords]
return ' '.join(tokens_stemmed)
train_test = pd.concat((train_df, test_df), axis = 'rows')
## After cleaning => then find intersection
train_test["title_clean"]= list(train_test[["title"]].apply(lambda x: preprocess_data(x["title"]), axis=1))
train_test["desc_clean"]= list(train_test[["description"]].apply(lambda x: preprocess_data(x["description"]), axis=1))
train_test["params_clean"]= list(train_test[["params"]].apply(lambda x: preprocess_data(x["params"]), axis=1))
train_test['count_common_words_title_desc'] = train_test.apply(lambda x: len(set(str(x['title_clean']).lower().split()).intersection(set(str(x['desc_clean']).lower().split()))), axis=1)
train_test['count_common_words_title_params'] = train_test.apply(lambda x: len(set(str(x['title_clean']).lower().split()).intersection(set(str(x['params_clean']).lower().split()))), axis=1)
train_test['count_common_words_params_desc'] = train_test.apply(lambda x: len(set(str(x['params_clean']).lower().split()).intersection(set(str(x['desc_clean']).lower().split()))), axis=1)
print("Cleaned texts..")
###################
# Count Nouns
import pymorphy2
morph = pymorphy2.MorphAnalyzer(result_type=None)
from fastcache import clru_cache as lru_cache
@lru_cache(maxsize=1000000)
def lemmatize_pos(word):
_, tag, norm_form, _, _ = morph.parse(word)[0]
return norm_form, tag.POS
def getPOS(x, pos1 = 'NOUN'):
lemmatized = []
x = clean_text(x)
#x = re.sub(u'[.]', ' ', x)
for s in x.split():
s, pos = lemmatize_pos(s)
if pos != None:
if pos1 in pos:
lemmatized.append(s)
return ' '.join(lemmatized)
train_test['get_nouns_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'NOUN'), axis=1))
train_test['get_nouns_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'NOUN'), axis=1))
train_test['get_adj_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'ADJ'), axis=1))
train_test['get_adj_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'ADJ'), axis=1))
train_test['get_verb_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'VERB'), axis=1))
train_test['get_verb_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'VERB'), axis=1))
# Count digits
def count_digit(x):
x = clean_text(x)
return len(re.findall(r'\b\d+\b', x))
train_test['count_of_digit_in_title'] = list(train_test.apply(lambda x: count_digit(x['title']), axis=1))
train_test['count_of_digit_in_desc'] = list(train_test.apply(lambda x: count_digit(x['description']), axis=1))
train_test['count_of_digit_in_params'] = list(train_test.apply(lambda x: count_digit(x['params']), axis=1))
## get unicode features
count_unicode = lambda x: len([c for c in x if ord(c) > 1105])
count_distunicode = lambda x: len({c for c in x if ord(c) > 1105})
train_test['count_of_unicode_in_title'] = list(train_test.apply(lambda x: count_unicode(x['title']), axis=1))
train_test['count_of_unicode_in_desc'] = list(train_test.apply(lambda x: count_distunicode(x['description']), axis=1))
train_test['count_of_distuni_in_title'] = list(train_test.apply(lambda x: count_unicode(x['title']), axis=1))
train_test['count_of_distuni_in_desc'] = list(train_test.apply(lambda x: count_distunicode(x['description']), axis=1))
###
count_caps = lambda x: len([c for c in x if c.isupper()])
train_test['count_caps_in_title'] = list(train_test.apply(lambda x: count_caps(x['title']), axis=1))
train_test['count_caps_in_desc'] = list(train_test.apply(lambda x: count_caps(x['description']), axis=1))
import string
count_punct = lambda x: len([c for c in x if c in string.punctuation])
train_test['count_punct_in_title'] = list(train_test.apply(lambda x: count_punct(x['title']), axis=1))
train_test['count_punct_in_desc'] = list(train_test.apply(lambda x: count_punct(x['description']), axis=1))
print("Computed POS Features and others..")
train_test['count_common_nouns'] = train_test.apply(lambda x: len(set(str(x['get_nouns_title']).lower().split()).intersection(set(str(x['get_nouns_desc']).lower().split()))), axis=1)
train_test['count_common_adj'] = train_test.apply(lambda x: len(set(str(x['get_adj_title']).lower().split()).intersection(set(str(x['get_adj_desc']).lower().split()))), axis=1)
train_test['ratio_of_unicode_in_title'] = train_test['count_of_unicode_in_title'] / train_test['len_title']
train_test['ratio_of_unicode_in_desc'] = train_test['count_of_unicode_in_desc'] / train_test['len_description']
train_test['ratio_of_punct_in_title'] = train_test['count_punct_in_title'] / train_test['len_title']
train_test['ratio_of_punct_in_desc'] = train_test['count_punct_in_desc'] / train_test['len_description']
train_test['ratio_of_cap_in_title'] = train_test['count_caps_in_title'] / train_test['len_title']
train_test['ratio_of_cap_in_desc'] = train_test['count_caps_in_desc'] / train_test['len_description']
train_test['count_nouns_in_title'] = train_test["get_nouns_title"].apply(lambda x: len(x.split()))
train_test['count_nouns_in_desc'] = train_test['get_nouns_desc'].apply(lambda x: len(x.split()))
train_test['count_adj_in_title'] = train_test["get_adj_title"].apply(lambda x: len(x.split()))
train_test['count_adj_in_desc'] = train_test['get_adj_desc'].apply(lambda x: len(x.split()))
train_test['count_verb_title'] = train_test['get_verb_title'].apply(lambda x: len(x.split()))
train_test['count_verb_desc'] = train_test['get_verb_desc'].apply(lambda x: len(x.split()))
train_test['ratio_nouns_in_title'] = train_test["count_nouns_in_title"] / train_test["title_nwords"]
train_test['ratio_nouns_in_desc'] = train_test["count_nouns_in_desc"] / train_test["desc_nwords"]
train_test['ratio_adj_in_title'] = train_test["count_adj_in_title"] / train_test["title_nwords"]
train_test['ratio_adj_in_desc'] = train_test["count_adj_in_desc"] / train_test["desc_nwords"]
train_test['ratio_vrb_in_title'] = train_test["count_verb_title"] / train_test["title_nwords"]
train_test['ratio_vrb_in_desc'] = train_test["count_verb_desc"] / train_test["desc_nwords"]
train_test["title"]= list(train_test[["title"]].apply(lambda x: clean_text(x["title"]), axis=1))
train_test["description"]= list(train_test[["description"]].apply(lambda x: clean_text(x["description"]), axis=1))
train_test["params"]= list(train_test[["params"]].apply(lambda x: clean_text(x["params"]), axis=1))
#######################
### Save
#######################
train_df = train_test.loc[train_test.deal_probability != 10].reset_index(drop = True)
test_df = train_test.loc[train_test.deal_probability == 10].reset_index(drop = True)
for c in train_df.columns:
if train_df[c].dtype == 'float64':
train_df[c] = train_df[c].astype('float32')
test_df[c] = test_df[c].astype('float32')
train_df.to_feather('../train_basic_features.pkl')
test_df.to_feather('../test__basic_features.pkl')
#######################
### Label Enc
#######################
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler
cat_vars = ["user_id", "region", "city", "parent_category_name", "category_name", "user_type", "param_1", "param_2", "param_3"]
for col in cat_vars:
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train_df[col].values.astype('str')) + list(test_df[col].values.astype('str')))
train_df[col] = lbl.transform(list(train_df[col].values.astype('str')))
test_df[col] = lbl.transform(list(test_df[col].values.astype('str')))
train_df.to_feather('../train_basic_features_lblencCats.pkl')
test_df.to_feather('../test__basic_features_lblencCats.pkl')
#######################
### One hots
#######################
train_df=pd.read_feather('../train_basic_features_lblencCats.pkl')
test_df=pd.read_feather('../test__basic_features_lblencCats.pkl')
from sklearn.externals import joblib
le = OneHotEncoder()
X = le.fit_transform(np.array(train_df.user_id.values.tolist() + test_df.user_id.values.tolist()).reshape(-1,1))
joblib.dump(X, "../user_id_onehot.pkl")
X = le.fit_transform(np.array(train_df.region.values.tolist() + test_df.region.values.tolist()).reshape(-1,1))
joblib.dump(X, "../region_onehot.pkl")
X = le.fit_transform(np.array(train_df.city.values.tolist() + test_df.city.values.tolist()).reshape(-1,1))
joblib.dump(X, "../city_onehot.pkl")
X = le.fit_transform(np.array(train_df.parent_category_name.values.tolist() + test_df.parent_category_name.values.tolist()).reshape(-1,1))
joblib.dump(X, "../parent_category_name_onehot.pkl")
X = le.fit_transform(np.array(train_df.category_name.values.tolist() + test_df.category_name.values.tolist()).reshape(-1,1))
joblib.dump(X, "../category_name_onehot.pkl")
X = le.fit_transform(np.array(train_df.user_type.values.tolist() + test_df.user_type.values.tolist()).reshape(-1,1))
joblib.dump(X, "../user_type_onehot.pkl")
X = le.fit_transform(np.array(train_df.param_1.values.tolist() + test_df.param_1.values.tolist()).reshape(-1,1))
joblib.dump(X, "../param_1_onehot.pkl")
X = le.fit_transform(np.array(train_df.param_2.values.tolist() + test_df.param_2.values.tolist()).reshape(-1,1))
joblib.dump(X, "../param_2_onehot.pkl")
X = le.fit_transform(np.array(train_df.param_3.values.tolist() + test_df.param_3.values.tolist()).reshape(-1,1))
joblib.dump(X, "../param_3_onehot.pkl")
train_df.drop(cat_vars, inplace = True, axis = 'columns')
test_df.drop(cat_vars, inplace = True, axis = 'columns')
train_df.to_feather('../train_basic_features_woCats.pkl')
test_df.to_feather('../test__basic_features_woCats.pkl')
#######################
### Tfidf
#######################
train_df=pd.read_feather('../train_basic_features_woCats.pkl')
test_df=pd.read_feather('../test__basic_features_woCats.pkl')
from sklearn.externals import joblib
### TFIDF Vectorizer ###
train_df['params'] = train_df['params'].fillna('NA')
test_df['params'] = test_df['params'].fillna('NA')
tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000,#min_df=3, max_df=.85,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
#TfidfVectorizer(ngram_range=(1,2))
full_tfidf = tfidf_vec.fit_transform(train_df['params'].values.tolist() + test_df['params'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist())
del full_tfidf
print("TDIDF Params UNCLEAN..")
joblib.dump([train_tfidf, test_tfidf], "../params_tfidf.pkl")
### TFIDF Vectorizer ###
train_df['title_clean'] = train_df['title_clean'].fillna('NA')
test_df['title_clean'] = test_df['title_clean'].fillna('NA')
tfidf_vec = TfidfVectorizer(ngram_range=(1,2),max_features = 20000,#,min_df=3, max_df=.85,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
full_tfidf = tfidf_vec.fit_transform(train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../title_tfidf.pkl")
del full_tfidf
print("TDIDF TITLE CLEAN..")
### TFIDF Vectorizer ###
train_df['desc_clean'] = train_df['desc_clean'].fillna(' ')
test_df['desc_clean'] = test_df['desc_clean'].fillna(' ')
tfidf_vec = TfidfVectorizer(ngram_range=(1,2), max_features = 20000, #,min_df=3, max_df=.85,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
full_tfidf = tfidf_vec.fit_transform(train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf.pkl")
del full_tfidf
print("TDIDF DESC CLEAN..")
### TFIDF Vectorizer ###
train_df['get_nouns_title'] = train_df['get_nouns_title'].fillna(' ')
test_df['get_nouns_title'] = test_df['get_nouns_title'].fillna(' ')
tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000)
full_tfidf = tfidf_vec.fit_transform(train_df['get_nouns_title'].values.tolist() + test_df['get_nouns_title'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['get_nouns_title'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['get_nouns_title'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../nouns_title_tfidf.pkl")
del full_tfidf
print("TDIDF Title Noun..")
### TFIDF Vectorizer ###
train_df['get_nouns_desc'] = train_df['get_nouns_desc'].fillna(' ')
test_df['get_nouns_desc'] = test_df['get_nouns_desc'].fillna(' ')
tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000)
full_tfidf = tfidf_vec.fit_transform(train_df['get_nouns_desc'].values.tolist() + test_df['get_nouns_desc'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['get_nouns_desc'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['get_nouns_desc'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../nouns_desc_tfidf.pkl")
del full_tfidf
print("TDIDF Desc Noun..")
### TFIDF Vectorizer ###
train_df['get_adj_title'] = train_df['get_adj_title'].fillna(' ')
test_df['get_adj_title'] = test_df['get_adj_title'].fillna(' ')
tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000)
full_tfidf = tfidf_vec.fit_transform(train_df['get_adj_title'].values.tolist() + test_df['get_adj_title'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['get_adj_title'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['get_adj_title'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../adj_title_tfidf.pkl")
del full_tfidf
print("TDIDF TITLE Adj..")
### TFIDF Vectorizer ###
train_df['get_adj_desc'] = train_df['get_adj_desc'].fillna(' ')
test_df['get_adj_desc'] = test_df['get_adj_desc'].fillna(' ')
tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000)
full_tfidf = tfidf_vec.fit_transform(train_df['get_adj_desc'].values.tolist() + test_df['get_adj_desc'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['get_adj_desc'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['get_adj_desc'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../adj_desc_tfidf.pkl")
del full_tfidf
print("TDIDF Desc Adj..")
### TFIDF Vectorizer ###
train_df['get_verb_title'] = train_df['get_verb_title'].fillna(' ')
test_df['get_verb_title'] = test_df['get_verb_title'].fillna(' ')
tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000)
full_tfidf = tfidf_vec.fit_transform(train_df['get_verb_title'].values.tolist() + test_df['get_verb_title'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['get_verb_title'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['get_verb_title'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../verb_title_tfidf.pkl")
del full_tfidf
print("TDIDF TITLE Verb..")
### TFIDF Vectorizer ###
train_df['get_verb_desc'] = train_df['get_verb_desc'].fillna(' ')
test_df['get_verb_desc'] = test_df['get_verb_desc'].fillna(' ')
tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000)
full_tfidf = tfidf_vec.fit_transform(train_df['get_verb_desc'].values.tolist() + test_df['get_verb_desc'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['get_verb_desc'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['get_verb_desc'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../verb_desc_tfidf.pkl")
del full_tfidf
print("TDIDF Desc Verb..")
###############################
# Sentence to seq
###############################
print('Generate Word Sequences')
train_df=pd.read_feather('../train_basic_features_woCats.pkl')
test_df=pd.read_feather('../test__basic_features_woCats.pkl')
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
MAX_NUM_OF_WORDS = 100000
TIT_MAX_SEQUENCE_LENGTH = 100
df = pd.concat((train_df, test_df), axis = 'rows')
tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS)
tokenizer.fit_on_texts(df['title'].tolist())
sequences = tokenizer.texts_to_sequences(df['title'].tolist())
titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH)
joblib.dump(titleSequences, "../titleSequences.pkl")
MAX_NUM_OF_WORDS = 10000
TIT_MAX_SEQUENCE_LENGTH = 20
tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS)
tokenizer.fit_on_texts(df['params'].tolist())
sequences = tokenizer.texts_to_sequences(df['params'].tolist())
titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH)
joblib.dump(titleSequences, "../paramSequences.pkl")
MAX_NUM_OF_WORDS = 100000
TIT_MAX_SEQUENCE_LENGTH = 100
tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS)
tokenizer.fit_on_texts(df['description'].tolist())
sequences = tokenizer.texts_to_sequences(df['description'].tolist())
titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH)
joblib.dump(titleSequences, "../descSequences.pkl")
#######OHC WeekDay
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler
le = OneHotEncoder()
X = le.fit_transform(np.array(train_df.activation_weekday.values.tolist() + test_df.activation_weekday.values.tolist()).reshape(-1,1))
################################################
# Cat encoding
################################################
train_df=pd.read_feather('../train_basic_features.pkl')
test_df=pd.read_feather('../test__basic_features.pkl')
def catEncode(train_char, test_char, y, colLst = [], nbag = 10, nfold = 20, minCount = 3, postfix = ''):
train_df = train_char.copy()
test_df = test_char.copy()
if not colLst:
print("Empty ColLst")
for c in train_char.columns:
data = train_char[[c]].copy()
data['y'] = y
enc_mat = np.zeros((y.shape[0],4))
enc_mat_test = np.zeros((test_char.shape[0],4))
for bag in np.arange(nbag):
kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag)
for dev_index, val_index in kf.split(range(data['y'].shape[0])):
dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:]
datax = dev_X.groupby([c]).agg([len,np.mean,np.std, np.median])
datax.columns = ['_'.join(col).strip() for col in datax.columns.values]
# datax = datax.loc[datax.y_len > minCount]
ind = c + postfix
datax.rename(columns = {'y_mean': ('y_mean_' + ind), 'y_std': ('y_std_' + ind),
'y_len_': ('y_len' + ind), 'y_median_': ('y_median' + ind),}, inplace = True)
# datax[c+'_medshftenc'] = datax['y_median']-med_y
# datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True)
datatst = test_char[[c]].copy()
val_X = val_X.join(datax,on=[c], how='left').fillna(np.mean(y))
datatst = datatst.join(datax,on=[c], how='left').fillna(np.mean(y))
enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))]
enc_mat_test += datatst[list(set(datax.columns)-set([c]))]
enc_mat_test /= (nfold * nbag)
enc_mat /= (nbag)
enc_mat = pd.DataFrame(enc_mat)
enc_mat.columns=[ind + str(x) for x in list(set(datax.columns)-set([c]))]
enc_mat_test = pd.DataFrame(enc_mat_test)
enc_mat_test.columns=enc_mat.columns
train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1)
test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1)
else:
print("Not Empty ColLst")
data = train_char[colLst].copy()
data['y'] = y
enc_mat = np.zeros((y.shape[0],4))
enc_mat_test = np.zeros((test_char.shape[0],4))
for bag in np.arange(nbag):
kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag)
for dev_index, val_index in kf.split(range(data['y'].shape[0])):
dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:]
datax = dev_X.groupby(colLst).agg([len,np.mean,np.std, np.median])
datax.columns = ['_'.join(col).strip() for col in datax.columns.values]
# datax = datax.loc[datax.y_len > minCount]
ind = '_'.join(colLst) + postfix
datax.rename(columns = {'y_mean': ('y_mean_' + ind), 'y_std': ('y_std_' + ind),
'y_len': ('y_len_' + ind), 'y_median': ('y_median_' + ind),}, inplace = True)
datatst = test_char[colLst].copy()
val_X = val_X.join(datax,on=colLst, how='left').fillna(np.mean(y))
datatst = datatst.join(datax,on=colLst, how='left').fillna(np.mean(y))
print(val_X[list(set(datax.columns)-set(colLst))].columns)
enc_mat[val_index,...] += val_X[list(set(datax.columns)-set(colLst))]
enc_mat_test += datatst[list(set(datax.columns)-set(colLst))]
enc_mat_test /= (nfold * nbag)
enc_mat /= (nbag)
enc_mat = pd.DataFrame(enc_mat)
enc_mat.columns=[ind + str(x) for x in list(set(datax.columns)-set([c]))]
enc_mat_test = pd.DataFrame(enc_mat_test)
enc_mat_test.columns=enc_mat.columns
train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1)
test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1)
print(train_df.columns)
print(test_df.columns)
for c in train_df.columns:
if train_df[c].dtype == 'float64':
train_df[c] = train_df[c].astype('float32')
test_df[c] = test_df[c].astype('float32')
return train_df, test_df
catCols = ['user_id', 'region', 'city', 'parent_category_name',
'category_name', 'user_type']
train_df, test_df = catEncode(train_df[catCols].copy(), test_df[catCols].copy(), train_df.deal_probability.values, nbag = 10, nfold = 10, minCount = 0)
train_df.to_feather('../train_cat_targetenc.pkl')
test_df.to_feather('../test_cat_targetenc.pkl')
################################################################
# Tfidf - part 2
################################################################
import os; os.environ['OMP_NUM_THREADS'] = '1'
from sklearn.decomposition import TruncatedSVD
import nltk
nltk.data.path.append("/media/sayantan/Personal/nltk_data")
from nltk.stem.snowball import RussianStemmer
from nltk.corpus import stopwords
import time
from typing import List, Dict
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer as Tfidf
from sklearn.model_selection import KFold
from sklearn.externals import joblib
from scipy.sparse import hstack, csr_matrix
import pandas as pd
import numpy as np
import gc
from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler
from sklearn import model_selection
english_stemmer = nltk.stem.SnowballStemmer('russian')
def clean_text(text):
#text = re.sub(r'(\d+),(\d+)', r'\1.\2', text)
text = text.replace(u'²', '2')
text = text.lower()
text = re.sub(u'[^a-zа-я0-9]', ' ', text)
text = re.sub('\s+', ' ', text)
return text.strip()
def stem_tokens(tokens, stemmer):
stemmed = []
for token in tokens:
#stemmed.append(stemmer.lemmatize(token))
stemmed.append(stemmer.stem(token))
return stemmed
def preprocess_data(line,
exclude_stopword=True,
encode_digit=False):
## tokenize
line = clean_text(line)
tokens = [x.lower() for x in nltk.word_tokenize(line)]
## stem
tokens_stemmed = stem_tokens(tokens, english_stemmer)#english_stemmer
if exclude_stopword:
tokens_stemmed = [x for x in tokens_stemmed if x not in stopwords]
return ' '.join(tokens_stemmed)
stopwords = stopwords.words('russian')
train_per=pd.read_csv('../input/train_active.csv', usecols = ['param_1', 'param_2', 'param_3'])#,'title','description'])
test_per=pd.read_csv('../input/test_active.csv', usecols = ['param_1', 'param_2', 'param_3'])#,'title','description'])
train_test = pd.concat((train_per, test_per), axis = 'rows')
del train_per, test_per; gc.collect()
train_test['params'] = train_test['param_1'].fillna('') + ' ' + train_test['param_2'].fillna('') + ' ' + train_test['param_3'].fillna('')
import re
train_test.drop(['param_1', 'param_2', 'param_3'], axis = 'columns', inplace=True)
train_test["params"]= list(train_test[["params"]].apply(lambda x: clean_text(x["params"]), axis=1))
import re
train_df=pd.read_feather('../train_basic_features_woCats.pkl')
test_df=pd.read_feather('../test__basic_features_woCats.pkl')
from sklearn.externals import joblib
### TFIDF Vectorizer ###
train_df['params'] = train_df['params'].fillna('NA')
test_df['params'] = test_df['params'].fillna('NA')
tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000,#min_df=3, max_df=.85,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
#TfidfVectorizer(ngram_range=(1,2))
full_tfidf = tfidf_vec.fit_transform(train_test['params'].values.tolist() + train_df['params'].values.tolist() + test_df['params'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist())
del full_tfidf
print("TDIDF Params UNCLEAN..")
joblib.dump([train_tfidf, test_tfidf], "../params_tfidf2.pkl")
tfidf_vec = TfidfVectorizer(ngram_range=(1,1),max_features = 10000,max_df=.4,#min_df=3,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
#TfidfVectorizer(ngram_range=(1,2))
full_tfidf = tfidf_vec.fit_transform(train_test['params'].values.tolist() + train_df['params'].values.tolist() + test_df['params'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist())
del full_tfidf
print("TDIDF Params UNCLEAN..")
joblib.dump([train_tfidf, test_tfidf], "../params_tfidf3.pkl")
del(train_test); gc.collect()
train_per=pd.read_csv('../input/train_active.csv', usecols = ['title'])#,'title','description'])
test_per=pd.read_csv('../input/test_active.csv', usecols = ['title'])#,'title','description'])
train_test = pd.concat((train_per, test_per), axis = 'rows')
del train_per, test_per; gc.collect()
train_test.fillna('NA', inplace=True)
train_test["title_clean"]= list(train_test[["title"]].apply(lambda x: preprocess_data(x["title"]), axis=1))
train_df['title_clean'] = train_df['title_clean'].fillna('NA')
test_df['title_clean'] = test_df['title_clean'].fillna('NA')
tfidf_vec = TfidfVectorizer(ngram_range=(1,2),max_features = 20000,#,min_df=3, max_df=.85,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
full_tfidf = tfidf_vec.fit_transform(train_test['title_clean'].values.tolist()+train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../title_tfidf2.pkl")
del full_tfidf
print("TDIDF TITLE CLEAN..")
train_df['title_clean'] = train_df['title_clean'].fillna('NA')
test_df['title_clean'] = test_df['title_clean'].fillna('NA')
tfidf_vec = TfidfVectorizer(ngram_range=(1,1),max_features = 20000, max_df=.4,#,min_df=3,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
full_tfidf = tfidf_vec.fit_transform(train_test['title_clean'].values.tolist()+train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../title_tfidf3.pkl")
del full_tfidf
print("TDIDF TITLE CLEAN..")
del(train_test); gc.collect()
###Too slow###
'''
train_per=pd.read_csv('../input/train_active.csv', usecols = ['description'])#,'title','description'])
test_per=pd.read_csv('../input/test_active.csv', usecols = ['description'])#,'title','description'])
train_per.fillna(' ', inplace=True)
test_per.fillna(' ', inplace=True)
train_test["desc_clean"]= list(train_test[["description"]].apply(lambda x: preprocess_data(x["description"]), axis=1))
### TFIDF Vectorizer ###
train_df['desc_clean'] = train_df['desc_clean'].fillna(' ')
test_df['desc_clean'] = test_df['desc_clean'].fillna(' ')
tfidf_vec = TfidfVectorizer(ngram_range=(1,2), max_features = 20000, stop_words = stopwords#,min_df=3,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
full_tfidf = tfidf_vec.fit_transform(train_test['desc_clean'].values.tolist()+train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf2.pkl")
del full_tfidf
print("TDIDF DESC CLEAN..")
tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 20000, max_df=.4,#,min_df=3,
analyzer='word', token_pattern= r'\w{1,}',
use_idf=1, smooth_idf=0, sublinear_tf=1,)
full_tfidf = tfidf_vec.fit_transform(train_test['desc_clean'].values.tolist()+train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist())
joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf3.pkl")
del full_tfidf
print("TDIDF DESC CLEAN..")
'''
##########################################
# 13. Chargram -- too slow
##########################################
from collections import Counter
train_df=pd.read_feather('../train_basic_features_woCats.pkl')
test_df=pd.read_feather('../test__basic_features_woCats.pkl')
def char_ngrams(s):
s = s.lower()
s = s.replace(u' ', '')
result = Counter()
len_s = len(s)
for n in [3, 4, 5]:
result.update(s[i:i+n] for i in range(len_s - n + 1))
return ' '.join(list(result))
data = pd.concat((train_df, test_df), axis = 'rows')
data['param_chargram'] = list(data[['params']].apply(lambda x: char_ngrams(x['params']), axis=1))
data['title_chargram'] = list(data[['title']].apply(lambda x: char_ngrams(x['title']), axis=1))
#data['desc_chargram'] = list(data[['description']].apply(lambda x: char_ngrams(x['description']), axis=1))
#data['count_common_chargram'] = data.apply(lambda x: len(set(str(x['title_chargram']).lower().split()).intersection(set(str(x['desc_chargram']).lower().split()))), axis=1)
train_df = data.loc[data.deal_probability != 10].reset_index(drop = True)
test_df = data.loc[data.deal_probability == 10].reset_index(drop = True)
del(data); gc.collect()
#####Chargram -TFIDF
tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000, min_df=3, max_df=.75)
full_tfidf = tfidf_vec.fit_transform(train_df['title_chargram'].values.tolist() + test_df['title_chargram'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['title_chargram'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['title_chargram'].values.tolist())
from sklearn.externals import joblib
joblib.dump([train_tfidf, test_tfidf], '../title_chargram_tfidf.pkl')
tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000, min_df=3, max_df=.75)
full_tfidf = tfidf_vec.fit_transform(train_df['param_chargram'].values.tolist() + test_df['param_chargram'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['param_chargram'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['param_chargram'].values.tolist())
from sklearn.externals import joblib
joblib.dump([train_tfidf, test_tfidf], '../param_chargram_tfidf.pkl')
#######Chargram of Cat and Parent cat
def clean_text(text):
#text = re.sub(r'(\d+),(\d+)', r'\1.\2', text)
text = text.replace(u'²', '2')
text = text.lower()
text = re.sub(u'[^a-zа-я0-9]', ' ', text)
text = re.sub('\s+', ' ', text)
return text.strip()
train_df = pd.read_feather('../train_basic_features.pkl')
test_df = pd.read_feather('../test__basic_features.pkl')
data = pd.concat([train_df, test_df], axis= 'rows')
data['categories'] = data["parent_category_name"].fillna(' ') + data["category_name"].fillna(' ')
data['cat_chargram'] = list(data[['categories']].apply(lambda x: char_ngrams(x['categories']), axis=1))
train_df = data.loc[data.deal_probability != 10].reset_index(drop = True)
test_df = data.loc[data.deal_probability == 10].reset_index(drop = True)
del(data); gc.collect()
tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 1000, min_df=3, max_df=.75)
full_tfidf = tfidf_vec.fit_transform(train_df['cat_chargram'].values.tolist() + test_df['cat_chargram'].values.tolist())
train_tfidf = tfidf_vec.transform(train_df['cat_chargram'].values.tolist())
test_tfidf = tfidf_vec.transform(test_df['cat_chargram'].values.tolist())
from sklearn.externals import joblib
joblib.dump([train_tfidf, test_tfidf], '../cat_chargram_tfidf.pkl')
##############################
## New Kaggle Ftr
##############################
import pandas as pd
import gc
used_cols = ['item_id', 'user_id']
train = pd.read_csv('../input/train.csv', usecols=used_cols)
train_active = pd.read_csv('../input/train_active.csv', usecols=used_cols)
test = pd.read_csv('../input/test.csv', usecols=used_cols)
test_active = pd.read_csv('../input/test_active.csv', usecols=used_cols)
train_periods = pd.read_csv('../input/periods_train.csv', parse_dates=['date_from', 'date_to'])
test_periods = pd.read_csv('../input/periods_test.csv', parse_dates=['date_from', 'date_to'])
train.head()
all_samples = pd.concat([
train,
train_active,
test,
test_active
]).reset_index(drop=True)
all_samples.drop_duplicates(['item_id'], inplace=True)
del train_active
del test_active
gc.collect()
all_periods = pd.concat([
train_periods,
test_periods
])
del train_periods
del test_periods
gc.collect()
all_periods.head()
all_periods['days_up'] = (all_periods['date_to'] - all_periods['date_from']).dt.days
gp = all_periods.groupby(['item_id'])[['days_up']]
gp_df = pd.DataFrame()
gp_df['days_up_sum'] = gp.sum()['days_up']
gp_df['times_put_up'] = gp.count()['days_up']
gp_df.reset_index(inplace=True)
gp_df.rename(index=str, columns={'index': 'item_id'})
gp_df.head()
all_periods.drop_duplicates(['item_id'], inplace=True)
all_periods = all_periods.merge(gp_df, on='item_id', how='left')
all_periods.head()
del gp
del gp_df
gc.collect()
all_periods = all_periods.merge(all_samples, on='item_id', how='left')
all_periods.head()
gp = all_periods.groupby(['user_id'])[['days_up_sum', 'times_put_up']].mean().reset_index() \
.rename(index=str, columns={
'days_up_sum': 'avg_days_up_user',
'times_put_up': 'avg_times_up_user'
})
gp.head()
n_user_items = all_samples.groupby(['user_id'])[['item_id']].count().reset_index() \
.rename(index=str, columns={
'item_id': 'n_user_items'
})
gp = gp.merge(n_user_items, on='user_id', how='left')
gp.head()
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
train = train.merge(gp, on='user_id', how='left')
test = test.merge(gp, on='user_id', how='left')
agg_cols = list(gp.columns)[1:]
del gp
gc.collect()
train.head()
train = train[['avg_days_up_user','avg_times_up_user','n_user_items']]
test = test[['avg_days_up_user','avg_times_up_user','n_user_items']]
train.to_feather('../train_kag_agg_ftr.ftr')
test.to_feather('../test_kag_agg_ftr.ftr')
def catEncode(train_char, test_char, y, colLst = [], nbag = 10, nfold = 20, minCount = 3, postfix = ''):
train_df = train_char.copy()
test_df = test_char.copy()
if not colLst:
print("Empty ColLst")
for c in train_char.columns:
data = train_char[[c]].copy()
data['y'] = y
enc_mat = np.zeros((y.shape[0],4))
enc_mat_test = np.zeros((test_char.shape[0],4))
for bag in | np.arange(nbag) | numpy.arange |
import numpy as np
import pandas as pd
import pytest
from pydantic import ValidationError
from napari.layers.utils.string_encoding import (
ConstantStringEncoding,
FormatStringEncoding,
ManualStringEncoding,
)
from napari.layers.utils.text_manager import TextManager
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
def test_empty_text_manager_property():
"""Test creating an empty text manager in property mode.
This is for creating an empty layer with text initialized.
"""
properties = {'confidence': np.empty(0, dtype=float)}
text_manager = TextManager(
text='confidence', n_text=0, properties=properties
)
assert text_manager.values.size == 0
# add a text element
new_properties = {'confidence': np.array([0.5])}
text_manager.add(new_properties, 1)
np.testing.assert_equal(text_manager.values, ['0.5'])
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
def test_add_many_text_property():
properties = {'confidence': np.empty(0, dtype=float)}
text_manager = TextManager(
text='confidence',
n_text=0,
properties=properties,
)
text_manager.add({'confidence': np.array([0.5])}, 2)
np.testing.assert_equal(text_manager.values, ['0.5'] * 2)
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
def test_empty_text_manager_format():
"""Test creating an empty text manager in formatted mode.
This is for creating an empty layer with text initialized.
"""
properties = {'confidence': np.empty(0, dtype=float)}
text = 'confidence: {confidence:.2f}'
text_manager = TextManager(text=text, n_text=0, properties=properties)
assert text_manager.values.size == 0
# add a text element
new_properties = {'confidence': np.array([0.5])}
text_manager.add(new_properties, 1)
np.testing.assert_equal(text_manager.values, ['confidence: 0.50'])
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
def test_add_many_text_formatted():
properties = {'confidence': np.empty(0, dtype=float)}
text_manager = TextManager(
text='confidence: {confidence:.2f}',
n_text=0,
properties=properties,
)
text_manager.add({'confidence': np.array([0.5])}, 2)
np.testing.assert_equal(text_manager.values, ['confidence: 0.50'] * 2)
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
def test_text_manager_property():
n_text = 3
text = 'class'
classes = np.array(['A', 'B', 'C'])
properties = {'class': classes, 'confidence': np.array([0.5, 0.3, 1])}
text_manager = TextManager(text=text, n_text=n_text, properties=properties)
np.testing.assert_equal(text_manager.values, classes)
# add new text with properties
new_properties = {'class': np.array(['A']), 'confidence': np.array([0.5])}
text_manager.add(new_properties, 1)
expected_text_2 = np.concatenate([classes, ['A']])
np.testing.assert_equal(text_manager.values, expected_text_2)
# remove the first text element
text_manager.remove({0})
np.testing.assert_equal(text_manager.values, expected_text_2[1::])
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
def test_text_manager_format():
n_text = 3
text = 'confidence: {confidence:.2f}'
classes = | np.array(['A', 'B', 'C']) | numpy.array |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2011 <NAME> <<EMAIL>>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
Automated tests for similarity algorithms (the similarities package).
"""
import logging
import unittest
import math
import os
import numpy
import scipy
from gensim import utils
from gensim.corpora import Dictionary
from gensim.models import word2vec
from gensim.models import doc2vec
from gensim.models import KeyedVectors
from gensim.models import TfidfModel
from gensim import matutils, similarities
from gensim.models import Word2Vec, FastText
from gensim.test.utils import (
datapath, get_tmpfile,
common_texts as TEXTS, common_dictionary as DICTIONARY, common_corpus as CORPUS,
)
from gensim.similarities import UniformTermSimilarityIndex
from gensim.similarities import WordEmbeddingSimilarityIndex
from gensim.similarities import SparseTermSimilarityMatrix
from gensim.similarities import LevenshteinSimilarityIndex
from gensim.similarities.docsim import _nlargest
from gensim.similarities.levenshtein import levdist, levsim
try:
from pyemd import emd # noqa:F401
PYEMD_EXT = True
except (ImportError, ValueError):
PYEMD_EXT = False
SENTENCES = [doc2vec.TaggedDocument(words, [i]) for i, words in enumerate(TEXTS)]
@unittest.skip("skipping abstract base class")
class _TestSimilarityABC(unittest.TestCase):
"""
Base class for SparseMatrixSimilarity and MatrixSimilarity unit tests.
"""
def factoryMethod(self):
"""Creates a SimilarityABC instance."""
return self.cls(CORPUS, num_features=len(DICTIONARY))
def test_full(self, num_best=None, shardsize=100):
if self.cls == similarities.Similarity:
index = self.cls(None, CORPUS, num_features=len(DICTIONARY), shardsize=shardsize)
else:
index = self.cls(CORPUS, num_features=len(DICTIONARY))
if isinstance(index, similarities.MatrixSimilarity):
expected = numpy.array([
[0.57735026, 0.57735026, 0.57735026, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.40824831, 0.0, 0.40824831, 0.40824831, 0.40824831, 0.40824831, 0.40824831, 0.0, 0.0, 0.0, 0.0],
[0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.40824831, 0.0, 0.0, 0.0, 0.81649661, 0.0, 0.40824831, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.57735026, 0.57735026, 0.0, 0.0, 0.57735026, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1., 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.70710677, 0.70710677, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.57735026, 0.57735026],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.57735026],
], dtype=numpy.float32)
# HACK: dictionary can be in different order, so compare in sorted order
self.assertTrue(numpy.allclose(sorted(expected.flat), sorted(index.index.flat)))
index.num_best = num_best
query = CORPUS[0]
sims = index[query]
expected = [(0, 0.99999994), (2, 0.28867513), (3, 0.23570226), (1, 0.23570226)][: num_best]
# convert sims to full numpy arrays, so we can use allclose() and ignore
# ordering of items with the same similarity value
expected = matutils.sparse2full(expected, len(index))
if num_best is not None: # when num_best is None, sims is already a numpy array
sims = matutils.sparse2full(sims, len(index))
self.assertTrue(numpy.allclose(expected, sims))
if self.cls == similarities.Similarity:
index.destroy()
def test_num_best(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
self.skipTest("pyemd not installed")
for num_best in [None, 0, 1, 9, 1000]:
self.testFull(num_best=num_best)
def test_full2sparse_clipped(self):
vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15]
expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)]
self.assertTrue(matutils.full2sparse_clipped(vec, topn=3), expected)
def test_scipy2scipy_clipped(self):
# Test for scipy vector/row
vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15]
expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)]
vec_scipy = scipy.sparse.csr_matrix(vec)
vec_scipy_clipped = matutils.scipy2scipy_clipped(vec_scipy, topn=3)
self.assertTrue(scipy.sparse.issparse(vec_scipy_clipped))
self.assertTrue(matutils.scipy2sparse(vec_scipy_clipped), expected)
# Test for scipy matrix
vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15]
expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)]
matrix_scipy = scipy.sparse.csr_matrix([vec] * 3)
matrix_scipy_clipped = matutils.scipy2scipy_clipped(matrix_scipy, topn=3)
self.assertTrue(scipy.sparse.issparse(matrix_scipy_clipped))
self.assertTrue([matutils.scipy2sparse(x) for x in matrix_scipy_clipped], [expected] * 3)
def test_empty_query(self):
index = self.factoryMethod()
if isinstance(index, similarities.WmdSimilarity) and not PYEMD_EXT:
self.skipTest("pyemd not installed")
query = []
try:
sims = index[query]
self.assertTrue(sims is not None)
except IndexError:
self.assertTrue(False)
def test_chunking(self):
if self.cls == similarities.Similarity:
index = self.cls(None, CORPUS, num_features=len(DICTIONARY), shardsize=5)
else:
index = self.cls(CORPUS, num_features=len(DICTIONARY))
query = CORPUS[:3]
sims = index[query]
expected = numpy.array([
[0.99999994, 0.23570226, 0.28867513, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.23570226, 1.0, 0.40824831, 0.33333334, 0.70710677, 0.0, 0.0, 0.0, 0.23570226],
[0.28867513, 0.40824831, 1.0, 0.61237246, 0.28867513, 0.0, 0.0, 0.0, 0.0]
], dtype=numpy.float32)
self.assertTrue(numpy.allclose(expected, sims))
# test the same thing but with num_best
index.num_best = 3
sims = index[query]
expected = [
[(0, 0.99999994), (2, 0.28867513), (1, 0.23570226)],
[(1, 1.0), (4, 0.70710677), (2, 0.40824831)],
[(2, 1.0), (3, 0.61237246), (1, 0.40824831)]
]
self.assertTrue(numpy.allclose(expected, sims))
if self.cls == similarities.Similarity:
index.destroy()
def test_iter(self):
if self.cls == similarities.Similarity:
index = self.cls(None, CORPUS, num_features=len(DICTIONARY), shardsize=5)
else:
index = self.cls(CORPUS, num_features=len(DICTIONARY))
sims = [sim for sim in index]
expected = numpy.array([
[0.99999994, 0.23570226, 0.28867513, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.23570226, 1.0, 0.40824831, 0.33333334, 0.70710677, 0.0, 0.0, 0.0, 0.23570226],
[0.28867513, 0.40824831, 1.0, 0.61237246, 0.28867513, 0.0, 0.0, 0.0, 0.0],
[0.23570226, 0.33333334, 0.61237246, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.70710677, 0.28867513, 0.0, 0.99999994, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.70710677, 0.57735026, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.70710677, 0.99999994, 0.81649655, 0.40824828],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.81649655, 0.99999994, 0.66666663],
[0.0, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.40824828, 0.66666663, 0.99999994]
], dtype=numpy.float32)
self.assertTrue(numpy.allclose(expected, sims))
if self.cls == similarities.Similarity:
index.destroy()
def test_persistency(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
self.skipTest("pyemd not installed")
fname = get_tmpfile('gensim_similarities.tst.pkl')
index = self.factoryMethod()
index.save(fname)
index2 = self.cls.load(fname)
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def test_persistency_compressed(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
self.skipTest("pyemd not installed")
fname = get_tmpfile('gensim_similarities.tst.pkl.gz')
index = self.factoryMethod()
index.save(fname)
index2 = self.cls.load(fname)
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def test_large(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
self.skipTest("pyemd not installed")
fname = get_tmpfile('gensim_similarities.tst.pkl')
index = self.factoryMethod()
# store all arrays separately
index.save(fname, sep_limit=0)
index2 = self.cls.load(fname)
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def test_large_compressed(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
self.skipTest("pyemd not installed")
fname = get_tmpfile('gensim_similarities.tst.pkl.gz')
index = self.factoryMethod()
# store all arrays separately
index.save(fname, sep_limit=0)
index2 = self.cls.load(fname, mmap=None)
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def test_mmap(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
self.skipTest("pyemd not installed")
fname = get_tmpfile('gensim_similarities.tst.pkl')
index = self.factoryMethod()
# store all arrays separately
index.save(fname, sep_limit=0)
# same thing, but use mmap to load arrays
index2 = self.cls.load(fname, mmap='r')
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def test_mmap_compressed(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
self.skipTest("pyemd not installed")
fname = get_tmpfile('gensim_similarities.tst.pkl.gz')
index = self.factoryMethod()
# store all arrays separately
index.save(fname, sep_limit=0)
# same thing, but use mmap to load arrays
self.assertRaises(IOError, self.cls.load, fname, mmap='r')
class TestMatrixSimilarity(_TestSimilarityABC):
def setUp(self):
self.cls = similarities.MatrixSimilarity
class TestWmdSimilarity(_TestSimilarityABC):
def setUp(self):
self.cls = similarities.WmdSimilarity
self.w2v_model = Word2Vec(TEXTS, min_count=1).wv
def factoryMethod(self):
# Override factoryMethod.
return self.cls(TEXTS, self.w2v_model)
@unittest.skipIf(PYEMD_EXT is False, "pyemd not installed")
def test_full(self, num_best=None):
# Override testFull.
index = self.cls(TEXTS, self.w2v_model)
index.num_best = num_best
query = TEXTS[0]
sims = index[query]
if num_best is not None:
# Sparse array.
for i, sim in sims:
# Note that similarities are bigger than zero, as they are the 1/ 1 + distances.
self.assertTrue(numpy.alltrue(sim > 0.0))
else:
self.assertTrue(sims[0] == 1.0) # Similarity of a document with itself is 0.0.
self.assertTrue(numpy.alltrue(sims[1:] > 0.0))
self.assertTrue(numpy.alltrue(sims[1:] < 1.0))
@unittest.skipIf(PYEMD_EXT is False, "pyemd not installed")
def test_non_increasing(self):
''' Check that similarities are non-increasing when `num_best` is not
`None`.'''
# NOTE: this could be implemented for other similarities as well (i.e.
# in _TestSimilarityABC).
index = self.cls(TEXTS, self.w2v_model, num_best=3)
query = TEXTS[0]
sims = index[query]
sims2 = numpy.asarray(sims)[:, 1] # Just the similarities themselves.
# The difference of adjacent elements should be negative.
cond = sum(numpy.diff(sims2) < 0) == len(sims2) - 1
self.assertTrue(cond)
@unittest.skipIf(PYEMD_EXT is False, "pyemd not installed")
def test_chunking(self):
# Override testChunking.
index = self.cls(TEXTS, self.w2v_model)
query = TEXTS[:3]
sims = index[query]
for i in range(3):
self.assertTrue(numpy.alltrue(sims[i, i] == 1.0)) # Similarity of a document with itself is 0.0.
# test the same thing but with num_best
index.num_best = 3
sims = index[query]
for sims_temp in sims:
for i, sim in sims_temp:
self.assertTrue(numpy.alltrue(sim > 0.0))
self.assertTrue(numpy.alltrue(sim <= 1.0))
@unittest.skipIf(PYEMD_EXT is False, "pyemd not installed")
def test_iter(self):
# Override testIter.
index = self.cls(TEXTS, self.w2v_model)
for sims in index:
self.assertTrue(numpy.alltrue(sims >= 0.0))
self.assertTrue(numpy.alltrue(sims <= 1.0))
class TestSoftCosineSimilarity(_TestSimilarityABC):
def setUp(self):
self.cls = similarities.SoftCosineSimilarity
self.tfidf = TfidfModel(dictionary=DICTIONARY)
similarity_matrix = scipy.sparse.identity(12, format="lil")
similarity_matrix[DICTIONARY.token2id["user"], DICTIONARY.token2id["human"]] = 0.5
similarity_matrix[DICTIONARY.token2id["human"], DICTIONARY.token2id["user"]] = 0.5
self.similarity_matrix = SparseTermSimilarityMatrix(similarity_matrix)
def factoryMethod(self):
return self.cls(CORPUS, self.similarity_matrix)
def test_full(self, num_best=None):
# Single query
index = self.cls(CORPUS, self.similarity_matrix, num_best=num_best)
query = DICTIONARY.doc2bow(TEXTS[0])
sims = index[query]
if num_best is not None:
# Sparse array.
for i, sim in sims:
self.assertTrue(numpy.alltrue(sim <= 1.0))
self.assertTrue(numpy.alltrue(sim >= 0.0))
else:
self.assertAlmostEqual(1.0, sims[0]) # Similarity of a document with itself is 1.0.
self.assertTrue(numpy.alltrue(sims[1:] >= 0.0))
self.assertTrue(numpy.alltrue(sims[1:] < 1.0))
# Corpora
for query in (
CORPUS, # Basic text corpus.
self.tfidf[CORPUS]): # Transformed corpus without slicing support.
index = self.cls(query, self.similarity_matrix, num_best=num_best)
sims = index[query]
if num_best is not None:
# Sparse array.
for result in sims:
for i, sim in result:
self.assertTrue(numpy.alltrue(sim <= 1.0))
self.assertTrue(numpy.alltrue(sim >= 0.0))
else:
for i, result in enumerate(sims):
self.assertAlmostEqual(1.0, result[i]) # Similarity of a document with itself is 1.0.
self.assertTrue(numpy.alltrue(result[:i] >= 0.0))
self.assertTrue(numpy.alltrue(result[:i] < 1.0))
self.assertTrue(numpy.alltrue(result[i + 1:] >= 0.0))
self.assertTrue(numpy.alltrue(result[i + 1:] < 1.0))
def test_non_increasing(self):
""" Check that similarities are non-increasing when `num_best` is not `None`."""
# NOTE: this could be implemented for other similarities as well (i.e. in _TestSimilarityABC).
index = self.cls(CORPUS, self.similarity_matrix, num_best=5)
query = DICTIONARY.doc2bow(TEXTS[0])
sims = index[query]
sims2 = numpy.asarray(sims)[:, 1] # Just the similarities themselves.
# The difference of adjacent elements should be less than or equal to zero.
cond = sum(numpy.diff(sims2) <= 0) == len(sims2) - 1
self.assertTrue(cond)
def test_chunking(self):
index = self.cls(CORPUS, self.similarity_matrix)
query = [DICTIONARY.doc2bow(document) for document in TEXTS[:3]]
sims = index[query]
for i in range(3):
self.assertTrue(numpy.alltrue(sims[i, i] == 1.0)) # Similarity of a document with itself is 1.0.
# test the same thing but with num_best
index.num_best = 5
sims = index[query]
for i, chunk in enumerate(sims):
expected = i
self.assertAlmostEqual(expected, chunk[0][0], places=2)
expected = 1.0
self.assertAlmostEqual(expected, chunk[0][1], places=2)
def test_iter(self):
index = self.cls(CORPUS, self.similarity_matrix)
for sims in index:
self.assertTrue(numpy.alltrue(sims >= 0.0))
self.assertTrue(numpy.alltrue(sims <= 1.0))
class TestSparseMatrixSimilarity(_TestSimilarityABC):
def setUp(self):
self.cls = similarities.SparseMatrixSimilarity
def test_maintain_sparsity(self):
"""Sparsity is correctly maintained when maintain_sparsity=True"""
num_features = len(DICTIONARY)
index = self.cls(CORPUS, num_features=num_features)
dense_sims = index[CORPUS]
index = self.cls(CORPUS, num_features=num_features, maintain_sparsity=True)
sparse_sims = index[CORPUS]
self.assertFalse(scipy.sparse.issparse(dense_sims))
self.assertTrue(scipy.sparse.issparse(sparse_sims))
numpy.testing.assert_array_equal(dense_sims, sparse_sims.todense())
def test_maintain_sparsity_with_num_best(self):
"""Tests that sparsity is correctly maintained when maintain_sparsity=True and num_best is not None"""
num_features = len(DICTIONARY)
index = self.cls(CORPUS, num_features=num_features, maintain_sparsity=False, num_best=3)
dense_topn_sims = index[CORPUS]
index = self.cls(CORPUS, num_features=num_features, maintain_sparsity=True, num_best=3)
scipy_topn_sims = index[CORPUS]
self.assertFalse(scipy.sparse.issparse(dense_topn_sims))
self.assertTrue(scipy.sparse.issparse(scipy_topn_sims))
self.assertEqual(dense_topn_sims, [matutils.scipy2sparse(v) for v in scipy_topn_sims])
class TestSimilarity(_TestSimilarityABC):
def setUp(self):
self.cls = similarities.Similarity
def factoryMethod(self):
# Override factoryMethod.
return self.cls(None, CORPUS, num_features=len(DICTIONARY), shardsize=5)
def test_sharding(self):
for num_best in [None, 0, 1, 9, 1000]:
for shardsize in [1, 2, 9, 1000]:
self.testFull(num_best=num_best, shardsize=shardsize)
def test_reopen(self):
"""test re-opening partially full shards"""
index = similarities.Similarity(None, CORPUS[:5], num_features=len(DICTIONARY), shardsize=9)
_ = index[CORPUS[0]] # noqa:F841 forces shard close
index.add_documents(CORPUS[5:])
query = CORPUS[0]
sims = index[query]
expected = [(0, 0.99999994), (2, 0.28867513), (3, 0.23570226), (1, 0.23570226)]
expected = matutils.sparse2full(expected, len(index))
self.assertTrue(numpy.allclose(expected, sims))
index.destroy()
def test_mmap_compressed(self):
pass
# turns out this test doesn't exercise this because there are no arrays
# to be mmaped!
def test_chunksize(self):
index = self.cls(None, CORPUS, num_features=len(DICTIONARY), shardsize=5)
expected = [sim for sim in index]
index.chunksize = len(index) - 1
sims = [sim for sim in index]
self.assertTrue(numpy.allclose(expected, sims))
index.destroy()
def test_nlargest(self):
sims = ([(0, 0.8), (1, 0.2), (2, 0.0), (3, 0.0), (4, -0.1), (5, -0.15)],)
expected = [(0, 0.8), (1, 0.2), (5, -0.15)]
self.assertTrue(_nlargest(3, sims), expected)
class TestWord2VecAnnoyIndexer(unittest.TestCase):
def setUp(self):
try:
import annoy # noqa:F401
except ImportError as e:
raise unittest.SkipTest("Annoy library is not available: %s" % e)
from gensim.similarities.annoy import AnnoyIndexer
self.indexer = AnnoyIndexer
def test_word2vec(self):
model = word2vec.Word2Vec(TEXTS, min_count=1)
index = self.indexer(model, 10)
self.assertVectorIsSimilarToItself(model.wv, index)
self.assertApproxNeighborsMatchExact(model.wv, model.wv, index)
self.assertIndexSaved(index)
self.assertLoadedIndexEqual(index, model)
def test_fast_text(self):
class LeeReader:
def __init__(self, fn):
self.fn = fn
def __iter__(self):
with utils.open(self.fn, 'r', encoding="latin_1") as infile:
for line in infile:
yield line.lower().strip().split()
model = FastText(LeeReader(datapath('lee.cor')), bucket=5000)
index = self.indexer(model, 10)
self.assertVectorIsSimilarToItself(model.wv, index)
self.assertApproxNeighborsMatchExact(model.wv, model.wv, index)
self.assertIndexSaved(index)
self.assertLoadedIndexEqual(index, model)
def test_annoy_indexing_of_keyed_vectors(self):
from gensim.similarities.annoy import AnnoyIndexer
keyVectors_file = datapath('lee_fasttext.vec')
model = KeyedVectors.load_word2vec_format(keyVectors_file)
index = AnnoyIndexer(model, 10)
self.assertEqual(index.num_trees, 10)
self.assertVectorIsSimilarToItself(model, index)
self.assertApproxNeighborsMatchExact(model, model, index)
def test_load_missing_raises_error(self):
from gensim.similarities.annoy import AnnoyIndexer
test_index = AnnoyIndexer()
self.assertRaises(IOError, test_index.load, fname='test-index')
def assertVectorIsSimilarToItself(self, wv, index):
vector = wv.get_normed_vectors()[0]
label = wv.index_to_key[0]
approx_neighbors = index.most_similar(vector, 1)
word, similarity = approx_neighbors[0]
self.assertEqual(word, label)
self.assertAlmostEqual(similarity, 1.0, places=2)
def assertApproxNeighborsMatchExact(self, model, wv, index):
vector = wv.get_normed_vectors()[0]
approx_neighbors = model.most_similar([vector], topn=5, indexer=index)
exact_neighbors = model.most_similar(positive=[vector], topn=5)
approx_words = [neighbor[0] for neighbor in approx_neighbors]
exact_words = [neighbor[0] for neighbor in exact_neighbors]
self.assertEqual(approx_words, exact_words)
def assertAllSimilaritiesDisableIndexer(self, model, wv, index):
vector = wv.get_normed_vectors()[0]
approx_similarities = model.most_similar([vector], topn=None, indexer=index)
exact_similarities = model.most_similar(positive=[vector], topn=None)
self.assertEqual(approx_similarities, exact_similarities)
self.assertEqual(len(approx_similarities), len(wv.vectors))
def assertIndexSaved(self, index):
fname = get_tmpfile('gensim_similarities.tst.pkl')
index.save(fname)
self.assertTrue(os.path.exists(fname))
self.assertTrue(os.path.exists(fname + '.d'))
def assertLoadedIndexEqual(self, index, model):
from gensim.similarities.annoy import AnnoyIndexer
fname = get_tmpfile('gensim_similarities.tst.pkl')
index.save(fname)
index2 = AnnoyIndexer()
index2.load(fname)
index2.model = model
self.assertEqual(index.index.f, index2.index.f)
self.assertEqual(index.labels, index2.labels)
self.assertEqual(index.num_trees, index2.num_trees)
class TestDoc2VecAnnoyIndexer(unittest.TestCase):
def setUp(self):
try:
import annoy # noqa:F401
except ImportError as e:
raise unittest.SkipTest("Annoy library is not available: %s" % e)
from gensim.similarities.annoy import AnnoyIndexer
self.model = doc2vec.Doc2Vec(SENTENCES, min_count=1)
self.index = AnnoyIndexer(self.model, 300)
self.vector = self.model.dv.get_normed_vectors()[0]
def test_document_is_similar_to_itself(self):
approx_neighbors = self.index.most_similar(self.vector, 1)
doc, similarity = approx_neighbors[0]
self.assertEqual(doc, 0)
self.assertAlmostEqual(similarity, 1.0, places=2)
def test_approx_neighbors_match_exact(self):
approx_neighbors = self.model.dv.most_similar([self.vector], topn=5, indexer=self.index)
exact_neighbors = self.model.dv.most_similar([self.vector], topn=5)
approx_words = [neighbor[0] for neighbor in approx_neighbors]
exact_words = [neighbor[0] for neighbor in exact_neighbors]
self.assertEqual(approx_words, exact_words)
def test_save(self):
fname = get_tmpfile('gensim_similarities.tst.pkl')
self.index.save(fname)
self.assertTrue(os.path.exists(fname))
self.assertTrue(os.path.exists(fname + '.d'))
def test_load_not_exist(self):
from gensim.similarities.annoy import AnnoyIndexer
self.test_index = AnnoyIndexer()
self.assertRaises(IOError, self.test_index.load, fname='test-index')
def test_save_load(self):
from gensim.similarities.annoy import AnnoyIndexer
fname = get_tmpfile('gensim_similarities.tst.pkl')
self.index.save(fname)
self.index2 = AnnoyIndexer()
self.index2.load(fname)
self.index2.model = self.model
self.assertEqual(self.index.index.f, self.index2.index.f)
self.assertEqual(self.index.labels, self.index2.labels)
self.assertEqual(self.index.num_trees, self.index2.num_trees)
class TestWord2VecNmslibIndexer(unittest.TestCase):
def setUp(self):
try:
import nmslib # noqa:F401
except ImportError as e:
raise unittest.SkipTest("NMSLIB library is not available: %s" % e)
from gensim.similarities.nmslib import NmslibIndexer
self.indexer = NmslibIndexer
def test_word2vec(self):
model = word2vec.Word2Vec(TEXTS, min_count=1)
index = self.indexer(model)
self.assertVectorIsSimilarToItself(model.wv, index)
self.assertApproxNeighborsMatchExact(model.wv, model.wv, index)
self.assertIndexSaved(index)
self.assertLoadedIndexEqual(index, model)
def test_fasttext(self):
class LeeReader:
def __init__(self, fn):
self.fn = fn
def __iter__(self):
with utils.open(self.fn, 'r', encoding="latin_1") as infile:
for line in infile:
yield line.lower().strip().split()
model = FastText(LeeReader(datapath('lee.cor')), bucket=5000)
index = self.indexer(model)
self.assertVectorIsSimilarToItself(model.wv, index)
self.assertApproxNeighborsMatchExact(model.wv, model.wv, index)
self.assertIndexSaved(index)
self.assertLoadedIndexEqual(index, model)
def test_indexing_keyedvectors(self):
from gensim.similarities.nmslib import NmslibIndexer
keyVectors_file = datapath('lee_fasttext.vec')
model = KeyedVectors.load_word2vec_format(keyVectors_file)
index = NmslibIndexer(model)
self.assertVectorIsSimilarToItself(model, index)
self.assertApproxNeighborsMatchExact(model, model, index)
def test_load_missing_raises_error(self):
from gensim.similarities.nmslib import NmslibIndexer
self.assertRaises(IOError, NmslibIndexer.load, fname='test-index')
def assertVectorIsSimilarToItself(self, wv, index):
vector = wv.get_normed_vectors()[0]
label = wv.index_to_key[0]
approx_neighbors = index.most_similar(vector, 1)
word, similarity = approx_neighbors[0]
self.assertEqual(word, label)
self.assertAlmostEqual(similarity, 1.0, places=2)
def assertApproxNeighborsMatchExact(self, model, wv, index):
vector = wv.get_normed_vectors()[0]
approx_neighbors = model.most_similar([vector], topn=5, indexer=index)
exact_neighbors = model.most_similar([vector], topn=5)
approx_words = [word_id for word_id, similarity in approx_neighbors]
exact_words = [word_id for word_id, similarity in exact_neighbors]
self.assertEqual(approx_words, exact_words)
def assertIndexSaved(self, index):
fname = get_tmpfile('gensim_similarities.tst.pkl')
index.save(fname)
self.assertTrue(os.path.exists(fname))
self.assertTrue(os.path.exists(fname + '.d'))
def assertLoadedIndexEqual(self, index, model):
from gensim.similarities.nmslib import NmslibIndexer
fname = get_tmpfile('gensim_similarities.tst.pkl')
index.save(fname)
index2 = NmslibIndexer.load(fname)
index2.model = model
self.assertEqual(index.labels, index2.labels)
self.assertEqual(index.index_params, index2.index_params)
self.assertEqual(index.query_time_params, index2.query_time_params)
class TestDoc2VecNmslibIndexer(unittest.TestCase):
def setUp(self):
try:
import nmslib # noqa:F401
except ImportError as e:
raise unittest.SkipTest("NMSLIB library is not available: %s" % e)
from gensim.similarities.nmslib import NmslibIndexer
self.model = doc2vec.Doc2Vec(SENTENCES, min_count=1)
self.index = NmslibIndexer(self.model)
self.vector = self.model.dv.get_normed_vectors()[0]
def test_document_is_similar_to_itself(self):
approx_neighbors = self.index.most_similar(self.vector, 1)
doc, similarity = approx_neighbors[0]
self.assertEqual(doc, 0)
self.assertAlmostEqual(similarity, 1.0, places=2)
def test_approx_neighbors_match_exact(self):
approx_neighbors = self.model.dv.most_similar([self.vector], topn=5, indexer=self.index)
exact_neighbors = self.model.dv.most_similar([self.vector], topn=5)
approx_tags = [tag for tag, similarity in approx_neighbors]
exact_tags = [tag for tag, similarity in exact_neighbors]
self.assertEqual(approx_tags, exact_tags)
def test_save(self):
fname = get_tmpfile('gensim_similarities.tst.pkl')
self.index.save(fname)
self.assertTrue(os.path.exists(fname))
self.assertTrue(os.path.exists(fname + '.d'))
def test_load_not_exist(self):
from gensim.similarities.nmslib import NmslibIndexer
self.assertRaises(IOError, NmslibIndexer.load, fname='test-index')
def test_save_load(self):
from gensim.similarities.nmslib import NmslibIndexer
fname = get_tmpfile('gensim_similarities.tst.pkl')
self.index.save(fname)
self.index2 = NmslibIndexer.load(fname)
self.index2.model = self.model
self.assertEqual(self.index.labels, self.index2.labels)
self.assertEqual(self.index.index_params, self.index2.index_params)
self.assertEqual(self.index.query_time_params, self.index2.query_time_params)
class TestUniformTermSimilarityIndex(unittest.TestCase):
def setUp(self):
self.documents = [[u"government", u"denied", u"holiday"], [u"holiday", u"slowing", u"hollingworth"]]
self.dictionary = Dictionary(self.documents)
def test_most_similar(self):
"""Test most_similar returns expected results."""
# check that the topn works as expected
index = UniformTermSimilarityIndex(self.dictionary)
results = list(index.most_similar(u"holiday", topn=1))
self.assertLess(0, len(results))
self.assertGreaterEqual(1, len(results))
results = list(index.most_similar(u"holiday", topn=4))
self.assertLess(1, len(results))
self.assertGreaterEqual(4, len(results))
# check that the term itself is not returned
index = UniformTermSimilarityIndex(self.dictionary)
terms = [term for term, similarity in index.most_similar(u"holiday", topn=len(self.dictionary))]
self.assertFalse(u"holiday" in terms)
# check that the term_similarity works as expected
index = UniformTermSimilarityIndex(self.dictionary, term_similarity=0.2)
similarities = numpy.array([
similarity for term, similarity in index.most_similar(u"holiday", topn=len(self.dictionary))])
self.assertTrue(numpy.all(similarities == 0.2))
class TestSparseTermSimilarityMatrix(unittest.TestCase):
def setUp(self):
self.documents = [
[u"government", u"denied", u"holiday"],
[u"government", u"denied", u"holiday", u"slowing", u"hollingworth"]]
self.dictionary = Dictionary(self.documents)
self.tfidf = TfidfModel(dictionary=self.dictionary)
zero_index = UniformTermSimilarityIndex(self.dictionary, term_similarity=0.0)
self.index = UniformTermSimilarityIndex(self.dictionary, term_similarity=0.5)
self.identity_matrix = SparseTermSimilarityMatrix(zero_index, self.dictionary)
self.uniform_matrix = SparseTermSimilarityMatrix(self.index, self.dictionary)
self.vec1 = self.dictionary.doc2bow([u"government", u"government", u"denied"])
self.vec2 = self.dictionary.doc2bow([u"government", u"holiday"])
def test_empty_dictionary(self):
with self.assertRaises(ValueError):
SparseTermSimilarityMatrix(self.index, [])
def test_type(self):
"""Test the type of the produced matrix."""
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary).matrix
self.assertTrue(isinstance(matrix, scipy.sparse.csc_matrix))
def test_diagonal(self):
"""Test the existence of ones on the main diagonal."""
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary).matrix.todense()
self.assertTrue(numpy.all(numpy.diag(matrix) == numpy.ones(matrix.shape[0])))
def test_order(self):
"""Test the matrix order."""
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary).matrix.todense()
self.assertEqual(matrix.shape[0], len(self.dictionary))
self.assertEqual(matrix.shape[1], len(self.dictionary))
def test_dtype(self):
"""Test the dtype parameter of the matrix constructor."""
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary, dtype=numpy.float32).matrix.todense()
self.assertEqual(numpy.float32, matrix.dtype)
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary, dtype=numpy.float64).matrix.todense()
self.assertEqual(numpy.float64, matrix.dtype)
def test_nonzero_limit(self):
"""Test the nonzero_limit parameter of the matrix constructor."""
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary, nonzero_limit=100).matrix.todense()
self.assertGreaterEqual(101, numpy.max(numpy.sum(matrix != 0, axis=0)))
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary, nonzero_limit=4).matrix.todense()
self.assertGreaterEqual(5, numpy.max(numpy.sum(matrix != 0, axis=0)))
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary, nonzero_limit=1).matrix.todense()
self.assertGreaterEqual(2, numpy.max(numpy.sum(matrix != 0, axis=0)))
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary, nonzero_limit=0).matrix.todense()
self.assertEqual(1, numpy.max(numpy.sum(matrix != 0, axis=0)))
self.assertTrue(numpy.all(matrix == numpy.eye(matrix.shape[0])))
def test_symmetric(self):
"""Test the symmetric parameter of the matrix constructor."""
matrix = SparseTermSimilarityMatrix(self.index, self.dictionary).matrix.todense()
self.assertTrue(numpy.all(matrix == matrix.T))
matrix = SparseTermSimilarityMatrix(
self.index, self.dictionary, nonzero_limit=1).matrix.todense()
expected_matrix = numpy.array([
[1.0, 0.5, 0.0, 0.0, 0.0],
[0.5, 1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 1.0]])
self.assertTrue(numpy.all(expected_matrix == matrix))
matrix = SparseTermSimilarityMatrix(
self.index, self.dictionary, nonzero_limit=1, symmetric=False).matrix.todense()
expected_matrix = numpy.array([
[1.0, 0.5, 0.5, 0.5, 0.5],
[0.5, 1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 1.0]])
self.assertTrue( | numpy.all(expected_matrix == matrix) | numpy.all |
import numpy as np
import h5py
# data file type h5py
import time
import copy
import matplotlib.pyplot as plt
from cfg import loadConfig
def load_mnist(filename):
"""load MNIST data"""
MNIST_data = h5py.File(filename, 'r')
x_train = np.float32(MNIST_data['x_train'][:])
y_train = np.int32(np.array(MNIST_data['y_train'][:,0]))
x_test = | np.float32(MNIST_data['x_test'][:]) | numpy.float32 |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = | N.array([0,0,0]) | numpy.array |
import torch
import numpy as np
import os
import sys
# sys.path.append(os.path.dirname(os.path.abspath(__file__))) # noqa: E402
# from utils.reranking import re_ranking
def euclidean_distance(qf, gf):
m = qf.shape[0]
n = gf.shape[0]
dist_mat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
dist_mat.addmm_(qf, gf.t(), beta=1, alpha=-2)
return dist_mat.cpu().numpy()
def cosine_similarity(qf, gf):
epsilon = 0.00001
dist_mat = qf.mm(gf.t())
qf_norm = torch.norm(qf, p=2, dim=1, keepdim=True) # mx1
gf_norm = torch.norm(gf, p=2, dim=1, keepdim=True) # nx1
qg_normdot = qf_norm.mm(gf_norm.t())
dist_mat = dist_mat.mul(1 / qg_normdot).cpu().numpy()
dist_mat = np.clip(dist_mat, -1 + epsilon, 1 - epsilon)
dist_mat = np.arccos(dist_mat)
return dist_mat
def eval_func(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50):
"""Evaluation with market1501 metric
Key: for each query identity, its gallery images from the same camera view are discarded.
"""
num_q, num_g = distmat.shape
# distmat g
# q 1 3 2 4
# 4 1 2 3
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
indices = np.argsort(distmat, axis=1)
# 0 2 1 3
# 1 2 3 0
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
all_cmc = []
all_AP = []
num_valid_q = 0. # number of valid query
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx] # select one row
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
keep = np.invert(remove)
# compute cmc curve
# binary vector, positions with value 1 are correct matches
orig_cmc = matches[q_idx][keep]
if not np.any(orig_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = orig_cmc.cumsum()
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
tmp_cmc = orig_cmc.cumsum()
#tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
y = np.arange(1, tmp_cmc.shape[0] + 1) * 1.0
tmp_cmc = tmp_cmc / y
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
return all_cmc, mAP
class R1_mAP_eval():
def __init__(self, num_query, max_rank=50, feat_norm=True, reranking=False):
super(R1_mAP_eval, self).__init__()
self.num_query = num_query
self.max_rank = max_rank
self.feat_norm = feat_norm
self.reranking = reranking
def reset(self):
self.feats = []
self.pids = []
self.camids = []
def update(self, output): # called once for each batch
feat, pid, camid = output
self.feats.append(feat.cpu())
self.pids.extend(np.asarray(pid))
self.camids.extend(np.asarray(camid))
def compute(self): # called after each epoch
feats = torch.cat(self.feats, dim=0)
if self.feat_norm:
print("The test feature is normalized")
feats = torch.nn.functional.normalize(
feats, dim=1, p=2) # along channel
# query
qf = feats[:self.num_query]
q_pids = np.asarray(self.pids[:self.num_query])
q_camids = np.asarray(self.camids[:self.num_query])
# gallery
gf = feats[self.num_query:]
g_pids = np.asarray(self.pids[self.num_query:])
g_camids = | np.asarray(self.camids[self.num_query:]) | numpy.asarray |
"""This module provides the basic functions about deep learning"""
# -*- coding: utf-8 -*-
# date: 2021
# author: AllChooseC
import numpy as np
import torch
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from tqdm import tqdm
class_distribution = [59.68, 8.68, 28.55, 3.08]
# 2017
class_distribution = [59.22, 8.65, 28.80, 3.33]
def split_indices(n, vld_pct, labels, compensation_factor, random_state=None):
"""This function is used to split the data into train and validation.
Args:
n: the number of train data
vld_pct: the percentage of validation data
random_state: keep the random results same each time calling the function
Returns:
the indexes of 2 divided datasets(train indices, validation indices).
"""
n_vld = int(vld_pct*n) # Determine size of validation set
if random_state:
np.random.seed(random_state) # Set the random seed(for reproducibility)
idxs = np.random.permutation(n) # Create random permutation of 0 to n-1
split_sets = [idxs[:n_vld], idxs[n_vld:2*n_vld], idxs[2*n_vld:3*n_vld], idxs[3*n_vld:4*n_vld], idxs[4*n_vld:]]
train_sets = []
vld_sets = []
for k in range(5):
train_set = np.concatenate((split_sets[k], split_sets[(k+1)%5], split_sets[(k+2)%5], split_sets[(k+3)%5]))
masks = [labels[train_set, i].astype(bool) for i in range(labels.shape[1])]
sets = [train_set[mask] for mask in masks]
lst = []
for idx, set_ in enumerate(sets):
scale = int(100 * compensation_factor / class_distribution[idx]) + 1
set_ = np.tile(set_, scale)
set_ = set_.reshape([-1, 1])
lst.append(set_)
train_set = np.vstack(lst)
train_set = train_set.squeeze()
| np.random.shuffle(train_set) | numpy.random.shuffle |
import moderngl
import numpy as np
ctx = moderngl.create_standalone_context()
prog = ctx.program(
vertex_shader='''
#version 330
in vec2 in_vert;
in vec3 in_color;
out vec3 v_color;
void main() {
v_color = in_color;
gl_Position = vec4(in_vert, 0.0, 1.0);
}
''',
fragment_shader='''
#version 330
in vec3 v_color;
out vec3 f_color;
void main() {
f_color = v_color;
}
''',
)
x = np.linspace(-1.0, 1.0, 50)
y = np.random.rand(50) - 0.5
r = np.ones(50)
g = np.zeros(50)
b = | np.zeros(50) | numpy.zeros |
import cftime
import numpy as np
import pandas as pd
import xarray as xr
from xclim.indices import generic
class TestSelectResampleOp:
def test_month(self, q_series):
q = q_series(np.arange(1000))
o = generic.select_resample_op(q, "count", freq="YS", month=3)
np.testing.assert_array_equal(o, 31)
def test_season_default(self, q_series):
# Will use freq='YS', so count J, F and D of each year.
q = q_series(np.arange(1000))
o = generic.select_resample_op(q, "min", season="DJF")
assert o[0] == 0
assert o[1] == 366
def test_season(self, q_series):
q = q_series(np.arange(1000))
o = generic.select_resample_op(q, "count", freq="AS-DEC", season="DJF")
assert o[0] == 31 + 29
class TestThresholdCount:
def test_simple(self, tas_series):
ts = tas_series(np.arange(365))
out = generic.threshold_count(ts, "<", 50, "Y")
np.testing.assert_array_equal(out, [50, 0])
class TestDomainCount:
def test_simple(self, tas_series):
ts = tas_series( | np.arange(365) | numpy.arange |
import numpy as np
import math
# This implementation of the rock pickup maneuver is based on
# https://github.com/jojobilly/Rover-Simulation
def yaw_to_target(Rover):
if (len(Rover.rock_target_pos) != 2):
return Rover.rock_target_yaw
direction = np.array(Rover.rock_target_pos) - np.array(Rover.pos)
norm = math.sqrt(direction[0] * direction[0] + direction[1] * direction[1])
if (norm > 0):
direction /= norm
if (direction[0] > 0):
target_yaw = math.atan(direction[1]/direction[0])
elif (direction[0] < 0):
target_yaw = math.atan(direction[1]/direction[0]) + np.pi
elif direction[1] > 0:
target_yaw = np.pi / 2
else:
target_yaw = -np.pi / 2
if target_yaw < 0:
target_yaw += np.pi * 2
return target_yaw * 180/np.pi
def rock_pickup(Rover):
# There could be no rocks visible from this position. But if we saw it
# before we need to continue rotating to the target angle.
if (len(Rover.rock_ang) == 0):
Rover.no_rock_counter += 1
# In case we have not seen the rock for too long - give up trying.
if Rover.no_rock_counter > Rover.no_rock_counter_threshold:
Rover.rock_pickup_flag = False
Rover.no_rock_counter = 0
# We have reached the target angle. Stop rotating and approach slowly.
if np.abs(Rover.yaw - yaw_to_target(Rover)) < 10:
Rover.steer = 0
Rover.throttle = .5
else:
Rover.brake = 0
# The rock might be not visible now. But keep rotating to the
# previously selected direction
if np.abs(Rover.steer) < 3:
Rover.steer = -4
return Rover
else:
# We see the rock, so set a flag which would result in calling this
# function on the next iteration.
Rover.rock_pickup_flag = True
Rover.no_rock_counter = 0
Rover.rock_target_yaw = (int)(Rover.yaw + | np.mean(Rover.rock_ang * 180/np.pi) | numpy.mean |
from __future__ import division
import numpy as NP
import multiprocessing as MP
import itertools as IT
import progressbar as PGB
# import aipy as AP
import astropy
from astropy.io import fits
import astropy.cosmology as CP
import scipy.constants as FCNST
import healpy as HP
from distutils.version import LooseVersion
import yaml, h5py
from astroutils import writer_module as WM
from astroutils import constants as CNST
from astroutils import DSP_modules as DSP
from astroutils import mathops as OPS
from astroutils import geometry as GEOM
from astroutils import lookup_operations as LKP
import prisim
from prisim import primary_beams as PB
from prisim import interferometry as RI
from prisim import baseline_delay_horizon as DLY
try:
from pyuvdata import UVBeam
except ImportError:
uvbeam_module_found = False
else:
uvbeam_module_found = True
prisim_path = prisim.__path__[0]+'/'
# cosmo100 = CP.FlatLambdaCDM(H0=100.0, Om0=0.27) # Using H0 = 100 km/s/Mpc
cosmoPlanck15 = CP.Planck15 # Planck 2015 cosmology
cosmo100 = cosmoPlanck15.clone(name='Modified Planck 2015 cosmology with h=1.0', H0=100.0) # Modified Planck 2015 cosmology with h=1.0, H= 100 km/s/Mpc
#################################################################################
def _astropy_columns(cols, tabtype='BinTableHDU'):
"""
----------------------------------------------------------------------------
!!! FOR INTERNAL USE ONLY !!!
This internal routine checks for Astropy version and produces the FITS
columns based on the version
Inputs:
cols [list of Astropy FITS columns] These are a list of Astropy FITS
columns
tabtype [string] specifies table type - 'BinTableHDU' (default) for binary
tables and 'TableHDU' for ASCII tables
Outputs:
columns [Astropy FITS column data]
----------------------------------------------------------------------------
"""
try:
cols
except NameError:
raise NameError('Input cols not specified')
if tabtype not in ['BinTableHDU', 'TableHDU']:
raise ValueError('tabtype specified is invalid.')
use_ascii = False
if tabtype == 'TableHDU':
use_ascii = True
if astropy.__version__ == '0.4':
columns = fits.ColDefs(cols, tbtype=tabtype)
elif LooseVersion(astropy.__version__)>=LooseVersion('0.4.2'):
columns = fits.ColDefs(cols, ascii=use_ascii)
return columns
################################################################################
# def _gentle_clean(dd, _w, tol=1e-1, area=None, stop_if_div=True, maxiter=100,
# verbose=False, autoscale=True):
# if verbose:
# print("Performing gentle clean...")
# scale_factor = 1.0
# if autoscale:
# scale_factor = NP.nanmax(NP.abs(_w))
# dd /= scale_factor
# _w /= scale_factor
# cc, info = AP.deconv.clean(dd, _w, tol=tol, area=area, stop_if_div=False,
# maxiter=maxiter, verbose=verbose)
# #dd = info['res']
# cc = NP.zeros_like(dd)
# inside_res = NP.std(dd[area!=0])
# outside_res = NP.std(dd[area==0])
# initial_res = inside_res
# #print(inside_res,'->',)
# ncycle=0
# if verbose:
# print("inside_res outside_res")
# print(inside_res, outside_res)
# inside_res = 2*outside_res #just artifically bump up the inside res so the loop runs at least once
# while(inside_res>outside_res and maxiter>0):
# if verbose: print('.',)
# _d_cl, info = AP.deconv.clean(dd, _w, tol=tol, area=area, stop_if_div=stop_if_div, maxiter=maxiter, verbose=verbose, pos_def=True)
# res = info['res']
# inside_res = NP.std(res[area!=0])
# outside_res = NP.std(res[area==0])
# dd = info['res']
# cc += _d_cl
# ncycle += 1
# if verbose: print(inside_res*scale_factor, outside_res*scale_factor)
# if ncycle>1000: break
# info['ncycle'] = ncycle-1
# dd *= scale_factor
# _w *= scale_factor
# cc *= scale_factor
# info['initial_residual'] = initial_res * scale_factor
# info['final_residual'] = inside_res * scale_factor
# return cc, info
#################################################################################
def complex1dClean_arg_splitter(args, **kwargs):
return complex1dClean(*args, **kwargs)
def complex1dClean(inp, kernel, cbox=None, gain=0.1, maxiter=10000,
threshold=5e-3, threshold_type='relative', verbose=False,
progressbar=False, pid=None, progressbar_yloc=0):
"""
----------------------------------------------------------------------------
Hogbom CLEAN algorithm applicable to 1D complex array
Inputs:
inp [numpy vector] input 1D array to be cleaned. Can be complex.
kernel [numpy vector] 1D array that acts as the deconvolving kernel. Can
be complex. Must be of same size as inp
cbox [boolean array] 1D boolean array that acts as a mask for pixels
which should be cleaned. Same size as inp. Only pixels with values
True are to be searched for maxima in residuals for cleaning and
the rest are not searched for. Default=None (means all pixels are
to be searched for maxima while cleaning)
gain [scalar] gain factor to be applied while subtracting clean
component from residuals. This is the fraction of the maximum in
the residuals that will be subtracted. Must lie between 0 and 1.
A lower value will have a smoother convergence but take a longer
time to converge. Default=0.1
maxiter [scalar] maximum number of iterations for cleaning process. Will
terminate if the number of iterations exceed maxiter. Default=10000
threshold
[scalar] represents the cleaning depth either as a fraction of the
maximum in the input (when thershold_type is set to 'relative') or
the absolute value (when threshold_type is set to 'absolute') in
same units of input down to which inp should be cleaned. Value must
always be positive. When threshold_type is set to 'relative',
threshold mu st lie between 0 and 1. Default=5e-3 (found to work
well and converge fast) assuming threshold_type is set to 'relative'
threshold_type
[string] represents the type of threshold specified by value in
input threshold. Accepted values are 'relative' and 'absolute'. If
set to 'relative' the threshold value is the fraction (between 0
and 1) of maximum in input down to which it should be cleaned. If
set to 'asbolute' it is the actual value down to which inp should
be cleaned. Default='relative'
verbose [boolean] If set to True (default), print diagnostic and progress
messages. If set to False, no such messages are printed.
progressbar
[boolean] If set to False (default), no progress bar is displayed
pid [string or integer] process identifier (optional) relevant only in
case of parallel processing and if progressbar is set to True. If
pid is not specified, it defaults to the Pool process id
progressbar_yloc
[integer] row number where the progressbar is displayed on the
terminal. Default=0
Output:
outdict [dictionary] It consists of the following keys and values at
termination:
'termination' [dictionary] consists of information on the
conditions for termination with the following keys
and values:
'threshold' [boolean] If True, the cleaning process
terminated because the threshold was
reached
'maxiter' [boolean] If True, the cleaning process
terminated because the number of
iterations reached maxiter
'inrms<outrms'
[boolean] If True, the cleaning process
terminated because the rms inside the
clean box is below the rms outside of it
'iter' [scalar] number of iterations performed before
termination
'rms' [numpy vector] rms of the residuals as a function of
iteration
'inrms' [numpy vector] rms of the residuals inside the clean
box as a function of iteration
'outrms' [numpy vector] rms of the residuals outside the clean
box as a function of iteration
'res' [numpy array] uncleaned residuals at the end of the
cleaning process. Complex valued and same size as
inp
'cc' [numpy array] clean components at the end of the
cleaning process. Complex valued and same size as
inp
----------------------------------------------------------------------------
"""
try:
inp, kernel
except NameError:
raise NameError('Inputs inp and kernel not specified')
if not isinstance(inp, NP.ndarray):
raise TypeError('inp must be a numpy array')
if not isinstance(kernel, NP.ndarray):
raise TypeError('kernel must be a numpy array')
if threshold_type not in ['relative', 'absolute']:
raise ValueError('invalid specification for threshold_type')
if not isinstance(threshold, (int,float)):
raise TypeError('input threshold must be a scalar')
else:
threshold = float(threshold)
if threshold <= 0.0:
raise ValueError('input threshold must be positive')
inp = inp.flatten()
kernel = kernel.flatten()
kernel /= NP.abs(kernel).max()
kmaxind = NP.argmax(NP.abs(kernel))
if inp.size != kernel.size:
raise ValueError('inp and kernel must have same size')
if cbox is None:
cbox = NP.ones(inp.size, dtype=NP.bool)
elif isinstance(cbox, NP.ndarray):
cbox = cbox.flatten()
if cbox.size != inp.size:
raise ValueError('Clean box must be of same size as input')
cbox = NP.where(cbox > 0.0, True, False)
# cbox = cbox.astype(NP.int)
else:
raise TypeError('cbox must be a numpy array')
cbox = cbox.astype(NP.bool)
if threshold_type == 'relative':
lolim = threshold
else:
lolim = threshold / NP.abs(inp).max()
if lolim >= 1.0:
raise ValueError('incompatible value specified for threshold')
# inrms = [NP.std(inp[cbox])]
inrms = [NP.median(NP.abs(inp[cbox] - NP.median(inp[cbox])))]
if inp.size - NP.sum(cbox) <= 2:
outrms = None
else:
# outrms = [NP.std(inp[NP.invert(cbox)])]
outrms = [NP.median(NP.abs(inp[NP.invert(cbox)] - NP.median(inp[NP.invert(cbox)])))]
if not isinstance(gain, float):
raise TypeError('gain must be a floating point number')
else:
if (gain <= 0.0) or (gain >= 1.0):
raise TypeError('gain must lie between 0 and 1')
if not isinstance(maxiter, int):
raise TypeError('maxiter must be an integer')
else:
if maxiter <= 0:
raise ValueError('maxiter must be positive')
cc = NP.zeros_like(inp)
res = NP.copy(inp)
cond4 = False
# prevrms = NP.std(res)
# currentrms = [NP.std(res)]
prevrms = NP.median(NP.abs(res - NP.median(res)))
currentrms = [NP.median(NP.abs(res - NP.median(res)))]
itr = 0
terminate = False
if progressbar:
if pid is None:
pid = MP.current_process().name
else:
pid = '{0:0d}'.format(pid)
progressbar_loc = (0, progressbar_yloc)
writer=WM.Writer(progressbar_loc)
progress = PGB.ProgressBar(widgets=[pid+' ', PGB.Percentage(), PGB.Bar(marker='-', left=' |', right='| '), PGB.Counter(), '/{0:0d} Iterations '.format(maxiter), PGB.ETA()], maxval=maxiter, fd=writer).start()
while not terminate:
itr += 1
indmaxres = NP.argmax(NP.abs(res*cbox))
maxres = res[indmaxres]
ccval = gain * maxres
cc[indmaxres] += ccval
res = res - ccval * NP.roll(kernel, indmaxres-kmaxind)
prevrms = NP.copy(currentrms[-1])
# currentrms += [NP.std(res)]
currentrms += [NP.median(NP.abs(res - NP.median(res)))]
# inrms += [NP.std(res[cbox])]
inrms += [NP.median(NP.abs(res[cbox] - NP.median(res[cbox])))]
# cond1 = NP.abs(maxres) <= inrms[-1]
cond1 = NP.abs(maxres) <= lolim * | NP.abs(inp) | numpy.abs |
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved.
# This work is licensed under the NVIDIA Source Code License - Non-commercial. Full
# text can be found in LICENSE.md
from __future__ import division
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import os
import datetime
import re
import matplotlib.pyplot as plt
import time
from transforms3d.quaternions import *
from transforms3d.euler import *
from transforms3d.axangles import *
import scipy
from ycb_render.ycb_renderer import *
from decimal import *
import cv2
from shutil import copyfile
from networks.aae_models import *
from config.config import cfg
import matplotlib.patches as patches
from mpl_toolkits.mplot3d import axes3d, Axes3D
import gc
class aae_trainer(nn.Module):
def __init__(self, cfg_path, object_names, modality, config_new=None,
aae_capacity=1, aae_code_dim=128, ckpt_path=None, obj_ctg='ycb', lr=0.0002):
super(aae_trainer, self).__init__()
self.cfg_path = cfg_path
if config_new != None:
self.cfg_all = config_new
else:
self.cfg_all = cfg
self.obj_ctg = obj_ctg
self.modality = modality
if not os.path.exists('./checkpoints'):
os.mkdir('./checkpoints')
self.ckpt_dir = './checkpoints'
self.AAE = AAE(object_names=object_names,
modality=modality,
capacity=aae_capacity,
code_dim=aae_code_dim,
model_path=ckpt_path)
self.object_names = object_names
self.use_GPU = (torch.cuda.device_count() > 0)
self.code_dim = aae_code_dim
if self.modality == 'rgbd':
self.optimizer = optim.Adam(list(self.AAE.encoder.parameters()) + \
list(self.AAE.decoder.parameters()) + \
list(self.AAE.depth_decoder.parameters()),
lr=lr)
else:
self.optimizer = optim.Adam(list(self.AAE.encoder.parameters()) + \
list(self.AAE.decoder.parameters()),
lr=lr)
self.mseloss = nn.MSELoss()
self.l1_loss = nn.L1Loss()
self.l1_recon_loss = nn.L1Loss(reduction='mean')
if self.use_GPU:
self.mseloss = self.mseloss.cuda()
self.l1_loss = self.l1_loss.cuda()
self.l1_recon_loss = self.l1_recon_loss.cuda()
self.loss_history_recon = []
self.val_loss_history_recon = []
self.batch_size_train = self.cfg_all.TRAIN.BATCH_SIZE
self.batch_size_val = self.cfg_all.TRAIN.VAL_BATCH_SIZE
self.start_epoch = 1
self.codebook_dir = None
self.log_dir = None
self.checkpoint_path = None
self.lb_shift = self.cfg_all.TRAIN.SHIFT_MIN
self.ub_shift = self.cfg_all.TRAIN.SHIFT_MAX
self.lb_scale = self.cfg_all.TRAIN.SCALE_MIN
self.ub_scale = self.cfg_all.TRAIN.SCALE_MAX
if ckpt_path is not None:
self.load_ckpt(ckpt_path=ckpt_path)
def set_log_dir(self, dataset_name='', model_path=None, now=None, ):
# Set date and epoch counter as if starting a new model
self.epoch = 0
if now == None:
now = datetime.datetime.now()
# If we have a model path with date and epochs use them
if model_path:
regex = r".*/\w+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})(\d{2})/trans\_\w+(\d{4})\.pth"
m = re.match(regex, model_path)
if m:
now = datetime.datetime(int(m.group(1)), int(m.group(2)), int(m.group(3)),
int(m.group(4)), int(m.group(5)), int(m.group(6)))
# Directory for training logs
self.log_dir = os.path.join(self.ckpt_dir, "{}_{}_{}_{:%Y%m%dT%H%M%S}".format(
dataset_name, self.object_names[0], self.cfg_all.EXP_NAME, now))
# Path to save after each epoch. Include placeholders that get filled by Keras.
self.checkpoint_path = os.path.join(self.log_dir, "ckpt_{}_*epoch*.pth".format(
self.obj_ctg))
self.checkpoint_path = self.checkpoint_path.replace(
"*epoch*", "{:04d}")
def save_ckpt(self, epoch):
print('=> Saving checkpoint to {} ...'.format(self.checkpoint_path.format(epoch)))
torch.save({
'epoch': epoch,
'log_dir': self.log_dir,
'checkpoint_path': self.checkpoint_path,
'aae_state_dict': self.AAE.state_dict(),
'optimizer': self.optimizer.state_dict(),
'loss_history_recon': self.loss_history_recon,
'val_loss_history_recon': self.val_loss_history_recon,
}, self.checkpoint_path.format(epoch))
print('=> Finished saving checkpoint to {} ! '.format(self.checkpoint_path.format(epoch)))
def load_ckpt(self, ckpt_path):
if os.path.isfile(ckpt_path):
print("=> Loading checkpoint from {} ...".format(ckpt_path))
checkpoint = torch.load(ckpt_path)
self.start_epoch = checkpoint['epoch'] + 1
self.log_dir = checkpoint['log_dir']
self.checkpoint_path = checkpoint['checkpoint_path']
self.AAE.load_ckpt_weights(checkpoint['aae_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.loss_history_recon = checkpoint['loss_history_recon']
self.val_loss_history_recon = checkpoint['val_loss_history_recon']
print("=> Finished loading checkpoint from {} (epoch {})"
.format(ckpt_path, checkpoint['epoch']))
else:
print('=> Cannot find checkpoint file in {} !'.format(ckpt_path))
def plot_loss(self, loss, title, save=True, log_dir=None):
loss = np.array(loss)
plt.figure(title)
plt.gcf().clear()
plt.plot(loss, label='train')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
if save:
save_path = os.path.join(log_dir, "{}.png".format(title))
plt.savefig(save_path)
plt.close()
else:
plt.show(block=False)
plt.pause(0.1)
def train_model(self, train_dataset, epochs, dstr_dataset=None, save_frequency=5):
self.AAE.encoder.train()
self.AAE.decoder.train()
if self.modality == 'rgbd':
self.AAE.depth_decoder.train()
train_set = train_dataset
print('train set size {}'.format(len(train_set)))
if self.log_dir == None:
self.set_log_dir(dataset_name=train_dataset._name)
if not os.path.exists(self.log_dir) and save_frequency > 0:
print('Create folder at {}'.format(self.log_dir))
os.makedirs(self.log_dir)
copyfile(self.cfg_path, self.log_dir + '/config.yml')
print('dataset workers %d' % (self.cfg_all.TRAIN.WORKERS))
train_generator = torch.utils.data.DataLoader(train_set, batch_size=self.batch_size_train,
shuffle=True, num_workers=self.cfg_all.TRAIN.WORKERS)
if dstr_dataset != None:
print('background workers %d' % (self.cfg_all.TRAIN.DISTRACTOR_WORKERS))
train_dstr_generator = torch.utils.data.DataLoader(dstr_dataset, batch_size=self.batch_size_train,
shuffle=True, num_workers=self.cfg_all.TRAIN.DISTRACTOR_WORKERS)
else:
train_dstr_generator = None
train_steps = np.floor(len(train_set)/self.batch_size_train)
train_steps = np.floor(train_steps/4)
for epoch in np.arange(start=self.start_epoch, stop=(self.start_epoch+epochs)):
print("Epoch {}/{}.".format(epoch, (self.start_epoch+epochs)-1))
if self.modality == 'rgbd':
recon_loss_rgb, recon_loss_train = self.train_epoch_rgbd(train_generator, self.optimizer,
train_steps, epoch, self.start_epoch + epochs - 1,
dstrgenerator=train_dstr_generator)
self.loss_history_recon.append(recon_loss_rgb + recon_loss_train)
else:
recon_loss_rgb, recon_loss_train = self.train_epoch_rgb(train_generator, self.optimizer,
train_steps, epoch, self.start_epoch+epochs-1,
dstrgenerator=train_dstr_generator)
self.loss_history_recon.append(recon_loss_rgb + recon_loss_train)
self.plot_loss(self.loss_history_recon, 'recon loss', save=True, log_dir=self.log_dir)
if save_frequency > 0 and epoch % save_frequency == 0:
self.save_ckpt(epoch)
def train_epoch_rgbd(self, datagenerator, optimizer, steps, epoch, total_epoch, dstrgenerator=None):
loss_sum_rgb = 0
loss_sum_depth = 0
step = 0
optimizer.zero_grad()
if dstrgenerator != None:
enum_dstrgenerator = enumerate(dstrgenerator)
for inputs in datagenerator:
# receiving data from the renderer
images, images_target, pose_cam, mask,\
translation_target, scale_target, \
affine_target, roi_center, roi_size, roi_affine, depths, depths_target = inputs
if self.use_GPU:
images = images.cuda()
images_target = images_target.cuda()
mask = mask.cuda()
roi_affine = roi_affine.cuda()
roi_center = roi_center.cuda().float()
roi_size = roi_size.cuda().float()
# warp the images according to the center and size of rois
grids = F.affine_grid(roi_affine, images.size())
images = F.grid_sample(images, grids)
depths = F.grid_sample(depths, grids)
mask = F.grid_sample(mask, grids)
mask = 1 - mask
# add random background and gaussian noise
if dstrgenerator != None:
_, images_dstr = next(enum_dstrgenerator)
if images_dstr.size(0) != images.size(0):
enum_dstrgenerator = enumerate(dstrgenerator)
_, images_dstr = next(enum_dstrgenerator)
if self.use_GPU:
images_dstr = images_dstr.cuda()
images = images + mask * images_dstr
noise_level = np.random.uniform(0, 0.05)
images += torch.randn_like(images) * noise_level
# add random background to depth image
_, depth_dstr = next(enum_dstrgenerator)
if depth_dstr.size(0) != depths.size(0):
enum_dstrgenerator = enumerate(dstrgenerator)
_, depth_dstr = next(enum_dstrgenerator)
if self.use_GPU:
depth_dstr = depth_dstr.cuda()
depths_background = torch.sum(mask * depth_dstr, dim=1, keepdim=True) / np.random.uniform(0.5, 2.0)
depths = depths + depths_background
depths += torch.rand_like(depths) * np.random.uniform(0, 0.05)
depths = torch.clamp(depths, 0, 1)
# construct tensor for roi information
roi_info = torch.zeros(images.size(0), 5).float().cuda()
roi_center += torch.from_numpy(np.random.uniform(self.cfg_all.TRAIN.SHIFT_MIN,
self.cfg_all.TRAIN.SHIFT_MAX,
size=(roi_info.size(0), 2))).float().cuda()
roi_size = roi_size * torch.from_numpy(np.random.uniform(self.cfg_all.TRAIN.SCALE_MIN,
self.cfg_all.TRAIN.SCALE_MAX,
size=(roi_info.size(0), ))).float().cuda()
roi_info[:, 0] = torch.arange(images.size(0))
roi_info[:, 1] = roi_center[:, 0] - roi_size / 2
roi_info[:, 2] = roi_center[:, 1] - roi_size / 2
roi_info[:, 3] = roi_center[:, 0] + roi_size / 2
roi_info[:, 4] = roi_center[:, 1] + roi_size / 2
roi_info_copy = roi_info.clone()
roi_info_copy_depth = roi_info.clone()
# # visualization for debugging
# roi_info_copy2 = roi_info.clone()
# images_roi = ROIAlign((128, 128), 1.0, 0)(images, roi_info_copy)
# images_roi_disp = images_roi[0].permute(1, 2, 0).cpu().numpy()
# depth_roi = ROIAlign((128, 128), 1.0, 0)(depths, roi_info_copy2)
# depth_roi_disp = depth_roi[0, 0].cpu().numpy()
# image_disp = images[0].permute(1, 2, 0).cpu().numpy()
# depth_disp = depths[0, 0].cpu().numpy()
# depth_target_disp = depths_target[0, 0].cpu().numpy()
# mask_disp = mask[0].permute(1, 2, 0).repeat(1, 1, 3).cpu().numpy()
# plt.figure()
# plt.subplot(2, 3, 1)
# plt.imshow(np.concatenate((image_disp, mask_disp), axis=1))
# plt.subplot(2, 3, 2)
# plt.imshow(images_roi_disp)
# plt.subplot(2, 3, 3)
# plt.imshow(images_target[0].permute(1, 2, 0).cpu().numpy())
# plt.subplot(2, 3, 4)
# plt.imshow(depth_disp)
# plt.subplot(2, 3, 5)
# plt.imshow(depth_roi_disp)
# plt.subplot(2, 3, 6)
# plt.imshow(depth_target_disp)
# plt.show()
# AAE forward pass
images_input = torch.cat((images, depths), dim=1)
outputs = self.AAE.forward_rgbd(images_input, roi_info)
images_recnst = outputs[0]
loss_reconstr = self.AAE.B_loss(images_recnst[:, :3, :, :], images_target.detach())
loss_depth = self.AAE.B_loss(images_recnst[:, [3], :, :], depths_target)
loss = loss_reconstr + loss_depth
loss_aae_rgb_data = loss_reconstr.data.cpu().item()
loss_aae_depth_data = loss_depth.data.cpu().item()
# AAE backward pass
optimizer.zero_grad()
try:
loss.backward()
except:
pass
optimizer.step()
print("{}/{}: {}/{}, loss_rgb: {:.4f}, loss depth: {:.4f}".format(epoch, total_epoch, step + 1, int(steps),
loss_aae_rgb_data, loss_aae_depth_data))
loss_sum_rgb += loss_aae_rgb_data / steps
loss_sum_depth += loss_aae_depth_data / steps
# display
plot_n_comparison = 20
if step < plot_n_comparison:
images_roi = ROIAlign((128, 128), 1.0, 0)(images, roi_info_copy)
image = images_roi[0].detach().permute(1, 2, 0).cpu().numpy()
image_target = images_target[0].permute(1, 2, 0).cpu().numpy()
depths_roi = ROIAlign((128, 128), 1.0, 0)(depths, roi_info_copy_depth)
depth = depths_roi[0, 0].detach().cpu().numpy()
depth_target = depths_target[0, 0].cpu().numpy()
depth_recon = images_recnst[0, 3].detach().cpu().numpy()
image_recon = images_recnst[0, :3].detach().permute(1, 2, 0).cpu().numpy()
disp = (image, image_target, image_recon, depth, depth_target, depth_recon)
self.plot_comparison(disp, str(step))
if step==steps-1:
break
step += 1
return loss_sum_rgb, loss_sum_depth
def train_epoch_rgb(self, datagenerator, optimizer, steps, epoch, total_epoch, dstrgenerator=None, visualize=False):
loss_sum_rgb = 0
loss_sum_depth = 0
step = 0
optimizer.zero_grad()
if dstrgenerator != None:
enum_dstrgenerator = enumerate(dstrgenerator)
for inputs in datagenerator:
# receiving data from the renderer
images, images_target, pose_cam, mask,\
translation_target, scale_target, \
affine_target, roi_center, roi_size, roi_affine, depths, depths_target = inputs
if self.use_GPU:
images = images.cuda()
images_target = images_target.cuda()
mask = mask.cuda()
roi_affine = roi_affine.cuda()
roi_center = roi_center.cuda().float()
roi_size = roi_size.cuda().float()
# warp the images according to the center and size of rois
grids = F.affine_grid(roi_affine, images.size())
images = F.grid_sample(images, grids)
depths = F.grid_sample(depths, grids)
mask = F.grid_sample(mask, grids)
mask = 1 - mask
# add random background and gaussian noise
if dstrgenerator != None:
_, images_dstr = next(enum_dstrgenerator)
if images_dstr.size(0) != images.size(0):
enum_dstrgenerator = enumerate(dstrgenerator)
_, images_dstr = next(enum_dstrgenerator)
if self.use_GPU:
images_dstr = images_dstr.cuda()
images = images + mask * images_dstr
noise_level = np.random.uniform(0, 0.05)
images += torch.randn_like(images) * noise_level
class_info = torch.ones((images.size(0), 1, 128, 128), dtype=torch.float32).cuda()
# visualization
if visualize:
image_disp = images[0].permute(1, 2, 0).cpu().numpy()
image_target_disp = images_target[0].permute(1, 2, 0).cpu().numpy()
depth_disp = depths[0, 0].cpu().numpy()
depth_target_disp = depths_target[0, 0].cpu().numpy()
mask_disp = mask[0].permute(1, 2, 0).repeat(1, 1, 3).cpu().numpy()
plt.figure()
plt.subplot(2, 2, 1)
im = np.concatenate((image_disp, mask_disp), axis=1)
im = | np.clip(im * 255, 0, 255) | numpy.clip |
# Copyright (C) 2020 NumS Development Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import numpy as np
from nums.core.array.application import ArrayApplication
def test_quantile_percentile(app_inst: ArrayApplication):
# see https://github.com/dask/dask/blob/main/dask/array/tests/test_percentiles.py
qs = [0, 50, 100]
methods = ["tdigest"]
interpolations = ["linear"]
np_x = np.ones((10,))
ba_x = app_inst.ones(shape=(10,), block_shape=(2,))
for q, method, interpolation in itertools.product(qs, methods, interpolations):
assert app_inst.quantile(
ba_x, q / 100, method=method, interpolation=interpolation
).get() == np.quantile(np_x, q / 100)
assert app_inst.percentile(
ba_x, q, method=method, interpolation=interpolation
).get() == np.percentile(np_x, q)
np_x = np.array([0, 0, 5, 5, 5, 5, 20, 20])
ba_x = app_inst.array(np_x, block_shape=(3,))
for q, method, interpolation in itertools.product(qs, methods, interpolations):
assert app_inst.quantile(
ba_x, q / 100, method=method, interpolation=interpolation
).get() == np.quantile(np_x, q / 100)
assert app_inst.percentile(
ba_x, q, method=method, interpolation=interpolation
).get() == np.percentile(np_x, q)
def test_quickselect(app_inst: ArrayApplication):
# pylint: disable=protected-access
# Simple tests
np_x = np.array([3, 7, 2, 4, 5, 1, 5, 6])
ba_x = app_inst.array(np_x, block_shape=(3,))
ba_oids = ba_x.flattened_oids()
correct = [7, 6, 5, 5, 4, 3, 2, 1]
for i in range(-8, 8):
value_oid = app_inst._quickselect(ba_oids, i)
value = app_inst.cm.get(value_oid)
assert value == correct[i]
# Randomized tests
shapes = [(50,), (437,), (1000,)]
block_shapes = [(10,), (23,), (50,)]
kth = [-50, -42, -25, -13, 0, 8, 25, 36, 49]
for shape, block_shape, k in itertools.product(shapes, block_shapes, kth):
ba_x = app_inst.random.random(shape=shape, block_shape=block_shape)
ba_oids = ba_x.flattened_oids()
value_oid = app_inst._quickselect(ba_oids, k)
value = app_inst.cm.get(value_oid)
assert value == np.partition(ba_x.get(), -k - 1)[-k - 1]
def test_median(app_inst: ArrayApplication):
# Simple tests
np_x = np.array([7, 2, 4, 5, 1, 5, 6])
ba_x = app_inst.array(np_x, block_shape=(3,))
assert app_inst.median(ba_x).get() == np.median(np_x)
np_x = np.array([3, 7, 2, 4, 5, 1, 5, 6])
ba_x = app_inst.array(np_x, block_shape=(3,))
assert app_inst.median(ba_x).get() == np.median(np_x)
# Randomized tests
shapes = [(50,), (437,), (1000,)]
block_shapes = [(10,), (23,), (50,)]
for shape, block_shape in itertools.product(shapes, block_shapes):
ba_x = app_inst.random.random(shape=shape, block_shape=block_shape)
assert app_inst.median(ba_x).get() == np.median(ba_x.get())
def test_top_k(app_inst: ArrayApplication):
# Simple tests
np_x = np.array([3, 7, 2, 4, 5, 1, 5, 6])
ba_x = app_inst.array(np_x, block_shape=(3,))
for k in range(1, len(np_x) + 1):
# Largest
ba_v, ba_i = app_inst.top_k(ba_x, k)
np_v = np.partition(np_x, -k)[-k:]
assert len(ba_v.get()) == k and len(ba_i.get()) == k
for v, i in zip(ba_v.get(), ba_i.get()):
assert v in np_v
assert np_x[i] == v
# Smallest
ba_v, ba_i = app_inst.top_k(ba_x, k, largest=False)
np_v = | np.partition(np_x, k - 1) | numpy.partition |
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license. See LICENSE.md file in the project root
# for full license information.
# ==============================================================================
import pytest
import numpy as np
from cntk import *
def test_outputs():
fwd_state = placeholder("placeholder")
prev_state = past_value(fwd_state, name="prev_state")
z = abs(prev_state, "abs")
output = z.output
z = z.replace_placeholders({fwd_state: z.output})
fwd_state = None
prev_state = None
z = None
for arg in output.owner.arguments:
print("Argument name: {}, argument owner name {}".format(arg.name, arg.owner.name))
def test_0d_data_1d_sample_shape():
x = input(shape=(1,))
op = x + x
with pytest.raises(ValueError):
op.eval({x : [np.asarray(2)]})
def test_1d_NDArrayView_copy():
x = input(shape=(1,))
op = x + 1
result = op.eval({x : [ | np.asarray([1]) | numpy.asarray |
import copy
import gym
from gym.spaces import Box, Discrete
import numpy as np
import random
class SimpleContextualBandit(gym.Env):
"""Simple env w/ 2 states and 3 actions (arms): 0, 1, and 2.
Episodes last only for one timestep, possible observations are:
[-1.0, 1.0] and [1.0, -1.0], where the first element is the "current context".
The highest reward (+10.0) is received for selecting arm 0 for context=1.0
and arm 2 for context=-1.0. Action 1 always yields 0.0 reward.
"""
def __init__(self, config=None):
self.action_space = Discrete(3)
self.observation_space = Box(low=-1.0, high=1.0, shape=(2,))
self.cur_context = None
def reset(self):
self.cur_context = random.choice([-1.0, 1.0])
return np.array([self.cur_context, -self.cur_context])
def step(self, action):
rewards_for_context = {
-1.0: [-10, 0, 10],
1.0: [10, 0, -10],
}
reward = rewards_for_context[self.cur_context][action]
return (
np.array([-self.cur_context, self.cur_context]),
reward,
True,
{"regret": 10 - reward},
)
class LinearDiscreteEnv(gym.Env):
"""Samples data from linearly parameterized arms.
The reward for context X and arm i is given by X^T * theta_i, for some
latent set of parameters {theta_i : i = 1, ..., k}.
The thetas are sampled uniformly at random, the contexts are Gaussian,
and Gaussian noise is added to the rewards.
"""
DEFAULT_CONFIG_LINEAR = {
"feature_dim": 8,
"num_actions": 4,
"reward_noise_std": 0.01,
}
def __init__(self, config=None):
self.config = copy.copy(self.DEFAULT_CONFIG_LINEAR)
if config is not None and type(config) == dict:
self.config.update(config)
self.feature_dim = self.config["feature_dim"]
self.num_actions = self.config["num_actions"]
self.sigma = self.config["reward_noise_std"]
self.action_space = Discrete(self.num_actions)
self.observation_space = Box(low=-10, high=10, shape=(self.feature_dim,))
self.thetas = np.random.uniform(-1, 1, (self.num_actions, self.feature_dim))
self.thetas /= | np.linalg.norm(self.thetas, axis=1, keepdims=True) | numpy.linalg.norm |
import random
import os
import time
import sys
from PIL import Image
import numpy as np
import pandas as pd
import scipy
from sklearn import datasets, linear_model, preprocessing, model_selection
from sklearn.metrics import mean_squared_error, r2_score, roc_curve, auc
from scipy.interpolate import interp1d
from multiprocessing import Pool
import pickle
# compiled functions for metric calculation
from metrics import compute_metrics
# include io functions and initialize "metaseg"
# NOTE: please check "metaseg_io.py", in particular "probs_gt_save"
# for instructions on how to prepare your input data for MetaSeg.
# Furthermore, please adjust the variables and paths in "global_defs.py"
from metaseg_io import probs_gt_save, probs_gt_load, \
metrics_dump, metrics_load, \
components_dump, components_load, \
get_save_path_probs_i, \
get_save_path_metrics_i, get_save_path_components_i, \
get_iou_seg_vis_path_i, get_save_path_stats, \
get_img_path_fname, metaseg
from metaseg_plot import add_scatterplot_vs_iou, make_scatterplots, \
plot_roc_curve, name_to_latex, generate_lasso_plots, \
plot_regression
# NOTE:
# "cs_labels" is included for the segmentations color code, this is only required for visualization.
# Replace this if necessary and modify the lines in "visualize_metrics_i()" that contain "cs_labels"
# accordingly.
sys.path.append(metaseg.get("DEEPLAB_PARENT_DIR"))
from deeplab import cs_labels
np.random.seed( 0 )
def main():
metaseg.set_from_argv( sys.argv )
metaseg.print_attr()
if metaseg.get("COMPUTE_METRICS"):
compute_metrics_per_image()
if metaseg.get("VISUALIZE_METRICS"):
visualize_metrics()
if metaseg.get("ANALYZE_METRICS"):
analyze_metrics()
def label_as_onehot(label, num_classes, shift_range=0):
y = np.zeros((num_classes, label.shape[0], label.shape[1]))
for c in range(shift_range,num_classes+shift_range):
y[c-shift_range][label==c] = 1
y = np.transpose(y,(1,2,0)) # shape is (height, width, num_classes)
return y.astype('uint8')
def classes_to_categorical( classes, nc = None ):
classes = np.squeeze( np.asarray(classes) )
if nc == None:
nc = np.max(classes)
classes = label_as_onehot( classes.reshape( (classes.shape[0],1) ), nc ).reshape( (classes.shape[0], nc) )
names = [ "C_"+str(i) for i in range(nc) ]
return classes, names
def visualize_segments( comp, metric ):
R = np.asarray( metric )
R = 1-0.5*R
G = np.asarray( metric )
B = 0.3+0.35*np.asarray( metric )
R = np.concatenate( (R, np.asarray([0,1])) )
G = np.concatenate( (G, np.asarray([0,1])) )
B = np.concatenate( (B, np.asarray([0,1])) )
components = np.asarray(comp.copy(), dtype='int16')
components[components < 0] = len(R)-1
components[components == 0] = len(R)
img = np.zeros( components.shape+(3,) )
for x in range(img.shape[0]):
for y in range(img.shape[1]):
img[x,y,0] = R[components[x,y]-1]
img[x,y,1] = G[components[x,y]-1]
img[x,y,2] = B[components[x,y]-1]
img = np.asarray( 255*img ).astype('uint8')
return img
def metrics_to_nparray( metrics, names, normalize=False, non_empty=False, all_metrics=[] ):
I = range(len(metrics['S_in']))
if non_empty == True:
I = np.asarray(metrics['S_in']) > 0
M = np.asarray( [ np.asarray(metrics[ m ])[I] for m in names ] )
MM = []
if all_metrics == []:
MM = M.copy()
else:
MM = np.asarray( [ np.asarray(all_metrics[ m ])[I] for m in names ] )
if normalize == True:
for i in range(M.shape[0]):
if names[i] != "class":
M[i] = ( | np.asarray(M[i]) | numpy.asarray |
if __name__ == '__main__':
# This is a terrible hack just to be able to execute this file directly
import sys
sys.path.insert(0, '../')
from worlds.game_objects import Actions
import random, math, os, pickle
import numpy as np
"""
Auxiliary class with the configuration parameters that the Game class needs
"""
class WaterWorldParams:
def __init__(self, state_file = None, max_x = 1000, max_y = 700, b_num_colors = 6,
b_radius = 20, b_velocity = 30, b_num_per_color = 10,
use_velocities = True, ball_disappear = True):
self.max_x = max_x
self.max_y = max_y
self.b_num_colors = b_num_colors
self.b_radius = b_radius
self.b_velocity = b_velocity
self.a_vel_delta = b_velocity
self.a_vel_max = 3*b_velocity
self.b_num_per_color = b_num_per_color
self.state_file = state_file
self.use_velocities = use_velocities
self.ball_disappear = ball_disappear
class WaterWorld:
def __init__(self, params):
self.params = params
self.use_velocities = params.use_velocities
self._load_map()
if params.state_file is not None:
self.load_state(params.state_file)
self.env_game_over = False
# Setting up event detectors
self.current_collisions_old = set()
self._update_events()
def _get_current_collision(self):
ret = set()
for b in self.balls:
if self.agent.is_colliding(b):
ret.add(b)
return ret
def _update_events(self):
self.true_props = ""
current_collisions = self._get_current_collision()
for b in current_collisions - self.current_collisions_old:
self.true_props += b.color
self.current_collisions_old = current_collisions
def execute_action(self, a, elapsedTime=0.1):
action = Actions(a)
# computing events
self._update_events()
# if balls disappear, then relocate balls that the agent is colliding before the action
if self.params.ball_disappear:
for b in self.balls:
if self.agent.is_colliding(b):
pos, vel = self._get_pos_vel_new_ball()
b.update(pos, vel)
# updating the agents velocity
self.agent.execute_action(action)
balls_all = [self.agent] + self.balls
max_x, max_y = self.params.max_x, self.params.max_y
# updating position
for b in balls_all:
b.update_position(elapsedTime)
# handling collisions
for i in range(len(balls_all)):
b = balls_all[i]
# walls
if b.pos[0] - b.radius < 0 or b.pos[0] + b.radius > max_x:
# Place ball against edge
if b.pos[0] - b.radius < 0: b.pos[0] = b.radius
else: b.pos[0] = max_x - b.radius
# Reverse direction
b.vel = b.vel * np.array([-1.0,1.0])
if b.pos[1] - b.radius < 0 or b.pos[1] + b.radius > max_y:
# Place ball against edge
if b.pos[1] - b.radius < 0: b.pos[1] = b.radius
else: b.pos[1] = max_y - b.radius
# Reverse directio
b.vel = b.vel * np.array([1.0,-1.0])
def get_actions(self):
"""
Returns the list with the actions that the agent can perform
"""
return self.agent.get_actions()
def get_state(self):
return None # we are only using "simple reward machines" for the craft domain
def get_true_propositions(self):
"""
Returns the string with the propositions that are True in this state
"""
return self.true_props
# The following methods return different feature representations of the map ------------
def get_features(self):
#_,features = self._get_features_Vis()
_,features = self._get_features_HER()
return features
def _get_features_Vis(self):
vel_max = float(self.params.a_vel_max)
range_max = (self.params.max_x**2+self.params.max_y**2)**0.5
max_x = self.params.max_x
max_y = self.params.max_y
radius = self.params.b_radius
agent = self.agent
a_x, a_y = agent.pos[0], agent.pos[1]
# The state space is even larger and continuous:
# The agent has 30 eye sensors pointing in all
# directions and in each direction is observes
# 5 variables: the range, the type of sensed object (green, red),
# and the velocity of the sensed object.
# The agent's proprioception includes two additional sensors for
# its own speed in both x and y directions.
# This is a total of 152-dimensional state space.
# map from object classes to numbers
num_eyes = 16 # in practice, each eye goes to both sides
num_classes = self.params.b_num_colors + 1 # I'm including the walls here
# adding walls
contact_points = {}
for i in range(num_eyes):
# features per eye: range, type, v_x, v_y
angle_pos = i * 180 / num_eyes
angle_neg = angle_pos + 180
# walls collisions
col_pos = []
col_neg = []
if angle_pos == 0:
col_pos.append(np.array([max_x, a_y]))
col_neg.append(np.array([0, a_y]))
elif angle_pos == 90:
col_pos.append(np.array([a_x, max_y]))
col_neg.append(np.array([a_x, 0]))
else:
m = math.tan(math.radians(angle_pos))
c = a_y - m * a_x
w_n = np.array([(max_y - c)/m, max_y])
w_e = np.array([max_x, m*max_x + c])
w_w = np.array([0.0, c])
w_s = np.array([-c/m, 0.0])
if angle_pos < 90:
col_pos.extend([w_n, w_e])
col_neg.extend([w_s, w_w])
else:
col_pos.extend([w_n, w_w])
col_neg.extend([w_s, w_e])
# adding the points
for p in col_pos: add_contact_point(contact_points, angle_pos, (dist(agent.pos,p),p,'W'))
for p in col_neg: add_contact_point(contact_points, angle_neg, (dist(agent.pos,p),p,'W'))
# Adding balls
for b in self.balls:
if agent.is_colliding(b):
continue
# computing the eyes that collide with this ball
dd = dist(agent.pos, b.pos)
theta = math.degrees(math.asin(b.radius/dd))
dx, dy = b.pos[0] - a_x, b.pos[1] - a_y
alpha = normalize_angle(math.degrees(math.atan2(dy, dx)))
alpha_plus = alpha + theta
alpha_minus = alpha - theta
if alpha_minus < 0:
alpha_minus += 360
alpha_plus += 360
i = math.ceil((num_eyes * alpha_minus)/180)
angle = i * 180 / num_eyes
while angle <= alpha_plus:
angle_real = normalize_angle(angle)
# checking that the ball is in the rigth range
if dd-b.radius < contact_points[angle_real][0]:
p, q, r = b.pos[0], b.pos[1], b.radius
if angle_real in [90, 270]:
dis = r**2 - (a_x-p)**2
if dis < 0: # the line misses the ball
print("It missed the ball?")
else: # the line intersects the circle (in one or two points)
for case in [-1,1]:
x_p = a_x
y_p = q+case*dis**0.5
c_p = np.array([x_p,y_p])
add_contact_point(contact_points, angle_real, (dist(agent.pos,c_p),c_p,b))
else:
m = math.tan(math.radians(angle_real))
c = a_y - m * a_x
A = m**2+1
B = 2*(m*c-m*q-p)
C = q**2-r**2+p**2-2*c*q+c**2
dis = B**2-4*A*C
if dis < 0: # the line misses the ball
print("It missed the ball?", alpha, theta, alpha_minus, angle, alpha_plus)
else: # the line intersects the circle (in one or two points)
for case in [-1,1]:
x_p = (-B+case*dis**0.5)/(2*A)
y_p = m*x_p+c
c_p = np.array([x_p,y_p])
add_contact_point(contact_points, angle_real, (dist(agent.pos,c_p),c_p,b))
i += 1
angle = i * 180 / num_eyes
# range, type, v_x, v_y
n_features_per_eye = 3+num_classes
n_features = n_features_per_eye*2*num_eyes+2
features = np.zeros(n_features,dtype=np.float)
colliding_points = []
for i in range(2*num_eyes):
# features per eye: range, type, v_x, v_y
dd, p, obj = contact_points[i * 180 / num_eyes]
colliding_points.append(p)
features[i*n_features_per_eye:(i+1)*n_features_per_eye] = get_eye_features(dd, obj, num_classes, range_max, vel_max)
# adding the agents velocity
features[n_features-2:n_features] = agent.vel / vel_max
return colliding_points, features
def _get_features_HER(self):
# Absolute position and velocity of the anget + relative positions and velocities of the other balls
# with respect to the agent
if self.use_velocities:
agent, balls = self.agent, self.balls
n_features = 4 + len(balls) * 4
features = np.zeros(n_features,dtype=np.float)
pos_max = np.array([float(self.params.max_x), float(self.params.max_y)])
vel_max = float(self.params.b_velocity + self.params.a_vel_max)
features[0:2] = agent.pos/pos_max
features[2:4] = agent.vel/float(self.params.a_vel_max)
for i in range(len(balls)):
# If the balls are colliding, I'll not include them
# (because there us nothing that the agent can do about it)
b = balls[i]
if not self.params.ball_disappear or not agent.is_colliding(b):
init = 4*(i+1)
features[init:init+2] = (b.pos - agent.pos)/pos_max
features[init+2:init+4] = (b.vel - agent.vel)/vel_max
else:
agent, balls = self.agent, self.balls
n_features = 4 + len(balls) * 2
features = np.zeros(n_features,dtype=np.float)
pos_max = np.array([float(self.params.max_x), float(self.params.max_y)])
vel_max = float(self.params.b_velocity + self.params.a_vel_max)
features[0:2] = agent.pos/pos_max
features[2:4] = agent.vel/float(self.params.a_vel_max)
for i in range(len(balls)):
# If the balls are colliding, I'll not include them
# (because there us nothing that the agent can do about it)
b = balls[i]
if not self.params.ball_disappear or not agent.is_colliding(b):
init = 2*i + 4
features[init:init+2] = (b.pos - agent.pos)/pos_max
return [], features
#return [b.pos for b in balls if not agent.is_colliding(b)], features
def _is_collising(self, pos):
for b in self.balls + [self.agent]:
if np.linalg.norm(b.pos - np.array(pos), ord=2) < 2*self.params.b_radius:
return True
return False
def _get_pos_vel_new_ball(self):
max_x = self.params.max_x
max_y = self.params.max_y
radius = self.params.b_radius
b_vel = self.params.b_velocity
angle = random.random()*2*math.pi
if self.use_velocities:
vel = b_vel*math.sin(angle),b_vel*math.cos(angle)
else:
vel = 0.0, 0.0
while True:
pos = 2*radius + random.random()*(max_x - 2*radius), 2*radius + random.random()*(max_y - 2*radius)
if not self._is_collising(pos) and np.linalg.norm(self.agent.pos - np.array(pos), ord=2) > 4*radius:
break
return pos, vel
# The following methods create the map ----------------------------------------------
def _load_map(self):
# contains all the actions that the agent can perform
actions = [Actions.up.value, Actions.left.value, Actions.right.value, Actions.down.value, Actions.none.value]
max_x = self.params.max_x
max_y = self.params.max_y
radius = self.params.b_radius
b_vel = self.params.b_velocity
vel_delta = self.params.a_vel_delta
vel_max = self.params.a_vel_max
# Adding the agent
pos_a = [2*radius + random.random()*(max_x - 2*radius), 2*radius + random.random()*(max_y - 2*radius)]
self.agent = BallAgent("A", radius, pos_a, [0.0,0.0], actions, vel_delta, vel_max)
# Adding the balls
self.balls = []
colors = "abcdefghijklmnopqrstuvwxyz"
for c in range(self.params.b_num_colors):
for _ in range(self.params.b_num_per_color):
color = colors[c]
pos, vel = self._get_pos_vel_new_ball()
ball = Ball(color, radius, pos, vel)
self.balls.append(ball)
def save_state(self, filename):
# Saves the agent and balls positions and velocities
with open(filename, 'wb') as output:
pickle.dump(self.agent, output, pickle.HIGHEST_PROTOCOL)
pickle.dump(self.balls, output, pickle.HIGHEST_PROTOCOL)
def load_state(self, filename):
# Load the agent and balls positions and velocities
with open(filename, 'rb') as input:
self.agent = pickle.load(input)
self.balls = pickle.load(input)
if not self.use_velocities:
# Removing balls velocities
for b in self.balls:
b.vel = | np.array([0.0,0.0], dtype=np.float) | numpy.array |
# Copyright (c) 2003-2019 by <NAME>
#
# TreeCorr is free software: redistribution and use in source and binary forms,
# with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions, and the disclaimer given in the accompanying LICENSE
# file.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions, and the disclaimer given in the documentation
# and/or other materials provided with the distribution.
from __future__ import print_function
import numpy as np
import os
import coord
import time
import fitsio
import treecorr
from test_helper import assert_raises, do_pickle, timer, get_from_wiki, CaptureLog, clear_save
from test_helper import profile
def generate_shear_field(npos, nhalo, rng=None):
# We do something completely different here than we did for 2pt patch tests.
# A straight Gaussian field with a given power spectrum has no significant 3pt power,
# so it's not a great choice for simulating a field for 3pt tests.
# Instead we place N SIS "halos" randomly in the grid.
# Then we translate that to a shear field via FFT.
if rng is None:
rng = np.random.RandomState()
# Generate x,y values for the real-space field
x = rng.uniform(0,1000, size=npos)
y = rng.uniform(0,1000, size=npos)
nh = rng.poisson(nhalo)
# Fill the kappa values with SIS halo profiles.
xc = rng.uniform(0,1000, size=nh)
yc = rng.uniform(0,1000, size=nh)
scale = rng.uniform(20,50, size=nh)
mass = rng.uniform(0.01, 0.05, size=nh)
# Avoid making huge nhalo * nsource arrays. Loop in blocks of 64 halos
nblock = (nh-1) // 64 + 1
kappa = np.zeros_like(x)
gamma = np.zeros_like(x, dtype=complex)
for iblock in range(nblock):
i = iblock*64
j = (iblock+1)*64
dx = x[:,np.newaxis]-xc[np.newaxis,i:j]
dy = y[:,np.newaxis]-yc[np.newaxis,i:j]
dx[dx==0] = 1 # Avoid division by zero.
dy[dy==0] = 1
dx /= scale[i:j]
dy /= scale[i:j]
rsq = dx**2 + dy**2
r = rsq**0.5
k = mass[i:j] / r # "Mass" here is really just a dimensionless normalization propto mass.
kappa += np.sum(k, axis=1)
# gamma_t = kappa for SIS.
g = -k * (dx + 1j*dy)**2 / rsq
gamma += np.sum(g, axis=1)
return x, y, np.real(gamma), np.imag(gamma), kappa
@timer
def test_kkk_jk():
# Test jackknife and other covariance estimates for kkk correlations.
# Note: This test takes a while!
# The main version I think is a pretty decent test of the code correctness.
# It shows that bootstrap in particular easily gets to within 50% of the right variance.
# Sometimes within 20%, but because of the randomness there, it varies a bit.
# Jackknife isn't much worse. Just a little below 50%. But still pretty good.
# Sample and Marked are not great for this test. I think they will work ok when the
# triangles of interest are mostly within single patches, but that's not the case we
# have here, and it would take a lot more points to get to that regime. So the
# accuracy tests for those two are pretty loose.
if __name__ == '__main__':
# This setup takes about 740 sec to run.
nhalo = 3000
nsource = 5000
npatch = 32
tol_factor = 1
elif False:
# This setup takes about 180 sec to run.
nhalo = 2000
nsource = 2000
npatch = 16
tol_factor = 2
elif False:
# This setup takes about 51 sec to run.
nhalo = 1000
nsource = 1000
npatch = 16
tol_factor = 3
else:
# This setup takes about 20 sec to run.
# So we use this one for regular unit test runs.
# It's pretty terrible in terms of testing the accuracy, but it works for code coverage.
# But whenever actually working on this part of the code, definitely need to switch
# to one of the above setups. Preferably run the name==main version to get a good
# test of the code correctness.
nhalo = 500
nsource = 500
npatch = 16
tol_factor = 4
file_name = 'data/test_kkk_jk_{}.npz'.format(nsource)
print(file_name)
if not os.path.isfile(file_name):
nruns = 1000
all_kkks = []
rng1 = np.random.RandomState()
for run in range(nruns):
x, y, _, _, k = generate_shear_field(nsource, nhalo, rng1)
print(run,': ',np.mean(k),np.std(k))
cat = treecorr.Catalog(x=x, y=y, k=k)
kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100.,
min_u=0.9, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.1, nvbins=1)
kkk.process(cat)
print(kkk.ntri.ravel().tolist())
print(kkk.zeta.ravel().tolist())
all_kkks.append(kkk)
mean_kkk = np.mean([kkk.zeta.ravel() for kkk in all_kkks], axis=0)
var_kkk = np.var([kkk.zeta.ravel() for kkk in all_kkks], axis=0)
np.savez(file_name, all_kkk=np.array([kkk.zeta.ravel() for kkk in all_kkks]),
mean_kkk=mean_kkk, var_kkk=var_kkk)
data = np.load(file_name)
mean_kkk = data['mean_kkk']
var_kkk = data['var_kkk']
print('mean = ',mean_kkk)
print('var = ',var_kkk)
rng = np.random.RandomState(12345)
x, y, _, _, k = generate_shear_field(nsource, nhalo, rng)
cat = treecorr.Catalog(x=x, y=y, k=k)
kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100.,
min_u=0.9, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.1, nvbins=1, rng=rng)
kkk.process(cat)
print(kkk.ntri.ravel())
print(kkk.zeta.ravel())
print(kkk.varzeta.ravel())
kkkp = kkk.copy()
catp = treecorr.Catalog(x=x, y=y, k=k, npatch=npatch)
# Do the same thing with patches.
kkkp.process(catp)
print('with patches:')
print(kkkp.ntri.ravel())
print(kkkp.zeta.ravel())
print(kkkp.varzeta.ravel())
np.testing.assert_allclose(kkkp.ntri, kkk.ntri, rtol=0.05 * tol_factor)
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
np.testing.assert_allclose(kkkp.varzeta, kkk.varzeta, rtol=0.05 * tol_factor, atol=3.e-6)
print('jackknife:')
cov = kkkp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.6 * tol_factor)
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor)
print('sample:')
cov = kkkp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor)
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor)
print('marked:')
cov = kkkp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor)
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor)
print('bootstrap:')
cov = kkkp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.5 * tol_factor)
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor)
# Now as a cross correlation with all 3 using the same patch catalog.
print('with 3 patched catalogs:')
kkkp.process(catp, catp, catp)
print(kkkp.zeta.ravel())
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
print('jackknife:')
cov = kkkp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor)
print('sample:')
cov = kkkp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('marked:')
cov = kkkp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('bootstrap:')
cov = kkkp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor)
# Repeat this test with different combinations of patch with non-patch catalogs:
# All the methods work best when the patches are used for all 3 catalogs. But there
# are probably cases where this kind of cross correlation with only some catalogs having
# patches could be desired. So this mostly just checks that the code runs properly.
# Patch on 1 only:
print('with patches on 1 only:')
kkkp.process(catp, cat)
print(kkkp.zeta.ravel())
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
print('jackknife:')
cov = kkkp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('sample:')
cov = kkkp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('marked:')
cov = kkkp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('bootstrap:')
cov = kkkp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
# Patch on 2 only:
print('with patches on 2 only:')
kkkp.process(cat, catp, cat)
print(kkkp.zeta.ravel())
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
print('jackknife:')
cov = kkkp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.9 * tol_factor)
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('sample:')
cov = kkkp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('marked:')
cov = kkkp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('bootstrap:')
cov = kkkp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
# Patch on 3 only:
print('with patches on 3 only:')
kkkp.process(cat, cat, catp)
print(kkkp.zeta.ravel())
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
print('jackknife:')
cov = kkkp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('sample:')
cov = kkkp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('marked:')
cov = kkkp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('bootstrap:')
cov = kkkp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
# Patch on 1,2
print('with patches on 1,2:')
kkkp.process(catp, catp, cat)
print(kkkp.zeta.ravel())
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
print('jackknife:')
cov = kkkp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor)
print('sample:')
cov = kkkp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('marked:')
cov = kkkp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('bootstrap:')
cov = kkkp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.4*tol_factor)
# Patch on 2,3
print('with patches on 2,3:')
kkkp.process(cat, catp)
print(kkkp.zeta.ravel())
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
print('jackknife:')
cov = kkkp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor)
print('sample:')
cov = kkkp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor)
print('marked:')
cov = kkkp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('bootstrap:')
cov = kkkp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor)
# Patch on 1,3
print('with patches on 1,3:')
kkkp.process(catp, cat, catp)
print(kkkp.zeta.ravel())
np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
print('jackknife:')
cov = kkkp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor)
print('sample:')
cov = kkkp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('marked:')
cov = kkkp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor)
print('bootstrap:')
cov = kkkp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor)
# Finally a set (with all patches) using the KKKCrossCorrelation class.
kkkc = treecorr.KKKCrossCorrelation(nbins=3, min_sep=30., max_sep=100.,
min_u=0.9, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.1, nvbins=1, rng=rng)
print('CrossCorrelation:')
kkkc.process(catp, catp, catp)
for k1 in kkkc._all:
print(k1.ntri.ravel())
print(k1.zeta.ravel())
print(k1.varzeta.ravel())
np.testing.assert_allclose(k1.ntri, kkk.ntri, rtol=0.05 * tol_factor)
np.testing.assert_allclose(k1.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor)
np.testing.assert_allclose(k1.varzeta, kkk.varzeta, rtol=0.05 * tol_factor, atol=3.e-6)
print('jackknife:')
cov = kkkc.estimate_cov('jackknife')
print(np.diagonal(cov))
for i in range(6):
v = np.diagonal(cov)[i*6:(i+1)*6]
print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk))))
np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.5*tol_factor)
print('sample:')
cov = kkkc.estimate_cov('sample')
print(np.diagonal(cov))
for i in range(6):
v = np.diagonal(cov)[i*6:(i+1)*6]
print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk))))
np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.8*tol_factor)
print('marked:')
cov = kkkc.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
for i in range(6):
v = np.diagonal(cov)[i*6:(i+1)*6]
print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk))))
np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.8*tol_factor)
print('bootstrap:')
cov = kkkc.estimate_cov('bootstrap')
print(np.diagonal(cov))
for i in range(6):
v = np.diagonal(cov)[i*6:(i+1)*6]
print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_kkk))))
np.testing.assert_allclose(np.log(v), np.log(var_kkk), atol=0.5*tol_factor)
# All catalogs need to have the same number of patches
catq = treecorr.Catalog(x=x, y=y, k=k, npatch=2*npatch)
with assert_raises(RuntimeError):
kkkp.process(catp, catq)
with assert_raises(RuntimeError):
kkkp.process(catp, catq, catq)
with assert_raises(RuntimeError):
kkkp.process(catq, catp, catq)
with assert_raises(RuntimeError):
kkkp.process(catq, catq, catp)
@timer
def test_ggg_jk():
# Test jackknife and other covariance estimates for ggg correlations.
if __name__ == '__main__':
# This setup takes about 590 sec to run.
nhalo = 5000
nsource = 5000
npatch = 32
tol_factor = 1
elif False:
# This setup takes about 160 sec to run.
nhalo = 2000
nsource = 2000
npatch = 16
tol_factor = 2
elif False:
# This setup takes about 50 sec to run.
nhalo = 1000
nsource = 1000
npatch = 16
tol_factor = 3
else:
# This setup takes about 13 sec to run.
nhalo = 500
nsource = 500
npatch = 8
tol_factor = 3
# I couldn't figure out a way to get reasonable S/N in the shear field. I thought doing
# discrete halos would give some significant 3pt shear pattern, at least for equilateral
# triangles, but the signal here is still consistent with zero. :(
# The point is the variance, which is still calculated ok, but I would have rathered
# have something with S/N > 0.
# For these tests, I set up the binning to just accumulate all roughly equilateral triangles
# in a small separation range. The binning always uses two bins for each to get + and - v
# bins. So this function averages these two values to produce 1 value for each gamma.
f = lambda g: np.array([np.mean(g.gam0), np.mean(g.gam1), np.mean(g.gam2), np.mean(g.gam3)])
file_name = 'data/test_ggg_jk_{}.npz'.format(nsource)
print(file_name)
if not os.path.isfile(file_name):
nruns = 1000
all_gggs = []
rng1 = np.random.RandomState()
for run in range(nruns):
x, y, g1, g2, _ = generate_shear_field(nsource, nhalo, rng1)
# For some reason std(g2) is coming out about 1.5x larger than std(g1).
# Probably a sign of some error in the generate function, but I don't see it.
# For this purpose I think it doesn't really matter, but it's a bit odd.
print(run,': ',np.mean(g1),np.std(g1),np.mean(g2),np.std(g2))
cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2)
ggg = treecorr.GGGCorrelation(nbins=1, min_sep=20., max_sep=40.,
min_u=0.6, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.6, nvbins=1)
ggg.process(cat)
print(ggg.ntri.ravel())
print(f(ggg))
all_gggs.append(ggg)
all_ggg = np.array([f(ggg) for ggg in all_gggs])
mean_ggg = np.mean(all_ggg, axis=0)
var_ggg = np.var(all_ggg, axis=0)
np.savez(file_name, mean_ggg=mean_ggg, var_ggg=var_ggg)
data = np.load(file_name)
mean_ggg = data['mean_ggg']
var_ggg = data['var_ggg']
print('mean = ',mean_ggg)
print('var = ',var_ggg)
rng = np.random.RandomState(12345)
x, y, g1, g2, _ = generate_shear_field(nsource, nhalo, rng)
cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2)
ggg = treecorr.GGGCorrelation(nbins=1, min_sep=20., max_sep=40.,
min_u=0.6, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.6, nvbins=1, rng=rng)
ggg.process(cat)
print(ggg.ntri.ravel())
print(ggg.gam0.ravel())
print(ggg.gam1.ravel())
print(ggg.gam2.ravel())
print(ggg.gam3.ravel())
gggp = ggg.copy()
catp = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2, npatch=npatch)
# Do the same thing with patches.
gggp.process(catp)
print('with patches:')
print(gggp.ntri.ravel())
print(gggp.vargam0.ravel())
print(gggp.vargam1.ravel())
print(gggp.vargam2.ravel())
print(gggp.vargam3.ravel())
print(gggp.gam0.ravel())
print(gggp.gam1.ravel())
print(gggp.gam2.ravel())
print(gggp.gam3.ravel())
np.testing.assert_allclose(gggp.ntri, ggg.ntri, rtol=0.05 * tol_factor)
np.testing.assert_allclose(gggp.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(gggp.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(gggp.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(gggp.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(gggp.vargam0, ggg.vargam0, rtol=0.1 * tol_factor)
np.testing.assert_allclose(gggp.vargam1, ggg.vargam1, rtol=0.1 * tol_factor)
np.testing.assert_allclose(gggp.vargam2, ggg.vargam2, rtol=0.1 * tol_factor)
np.testing.assert_allclose(gggp.vargam3, ggg.vargam3, rtol=0.1 * tol_factor)
print('jackknife:')
cov = gggp.estimate_cov('jackknife', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor)
print('sample:')
cov = gggp.estimate_cov('sample', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('marked:')
cov = gggp.estimate_cov('marked_bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.9*tol_factor)
print('bootstrap:')
cov = gggp.estimate_cov('bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.3*tol_factor)
# Now as a cross correlation with all 3 using the same patch catalog.
print('with 3 patched catalogs:')
gggp.process(catp, catp, catp)
print(gggp.gam0.ravel())
np.testing.assert_allclose(gggp.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(gggp.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(gggp.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(gggp.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
print('jackknife:')
cov = gggp.estimate_cov('jackknife', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor)
print('sample:')
cov = gggp.estimate_cov('sample', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor)
print('marked:')
cov = gggp.estimate_cov('marked_bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('bootstrap:')
cov = gggp.estimate_cov('bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.4*tol_factor)
# The separate patch/non-patch combinations aren't that interesting, so skip them
# for GGG unless running from main.
if __name__ == '__main__':
# Patch on 1 only:
print('with patches on 1 only:')
gggp.process(catp, cat)
print('jackknife:')
cov = gggp.estimate_cov('jackknife', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('sample:')
cov = gggp.estimate_cov('sample', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor)
print('marked:')
cov = gggp.estimate_cov('marked_bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('bootstrap:')
cov = gggp.estimate_cov('bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
# Patch on 2 only:
print('with patches on 2 only:')
gggp.process(cat, catp, cat)
print('jackknife:')
cov = gggp.estimate_cov('jackknife', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('sample:')
cov = gggp.estimate_cov('sample', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor)
print('marked:')
cov = gggp.estimate_cov('marked_bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('bootstrap:')
cov = gggp.estimate_cov('bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
# Patch on 3 only:
print('with patches on 3 only:')
gggp.process(cat, cat, catp)
print('jackknife:')
cov = gggp.estimate_cov('jackknife', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('sample:')
cov = gggp.estimate_cov('sample', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor)
print('marked:')
cov = gggp.estimate_cov('marked_bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('bootstrap:')
cov = gggp.estimate_cov('bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.9*tol_factor)
# Patch on 1,2
print('with patches on 1,2:')
gggp.process(catp, catp, cat)
print('jackknife:')
cov = gggp.estimate_cov('jackknife', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor)
print('sample:')
cov = gggp.estimate_cov('sample', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor)
print('marked:')
cov = gggp.estimate_cov('marked_bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('bootstrap:')
cov = gggp.estimate_cov('bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.5*tol_factor)
# Patch on 2,3
print('with patches on 2,3:')
gggp.process(cat, catp)
print('jackknife:')
cov = gggp.estimate_cov('jackknife', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor)
print('sample:')
cov = gggp.estimate_cov('sample', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.8*tol_factor)
print('marked:')
cov = gggp.estimate_cov('marked_bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=1.0*tol_factor)
print('bootstrap:')
cov = gggp.estimate_cov('bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.3*tol_factor)
# Patch on 1,3
print('with patches on 1,3:')
gggp.process(catp, cat, catp)
print('jackknife:')
cov = gggp.estimate_cov('jackknife', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor)
print('sample:')
cov = gggp.estimate_cov('sample', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.6*tol_factor)
print('marked:')
cov = gggp.estimate_cov('marked_bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.7*tol_factor)
print('bootstrap:')
cov = gggp.estimate_cov('bootstrap', func=f)
print(np.diagonal(cov).real)
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.5*tol_factor)
# Finally a set (with all patches) using the GGGCrossCorrelation class.
gggc = treecorr.GGGCrossCorrelation(nbins=1, min_sep=20., max_sep=40.,
min_u=0.6, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.6, nvbins=1, rng=rng)
print('CrossCorrelation:')
gggc.process(catp, catp, catp)
for g in gggc._all:
print(g.ntri.ravel())
print(g.gam0.ravel())
print(g.vargam0.ravel())
np.testing.assert_allclose(g.ntri, ggg.ntri, rtol=0.05 * tol_factor)
np.testing.assert_allclose(g.gam0, ggg.gam0, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(g.vargam0, ggg.vargam0, rtol=0.05 * tol_factor)
np.testing.assert_allclose(g.gam1, ggg.gam1, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(g.vargam1, ggg.vargam1, rtol=0.05 * tol_factor)
np.testing.assert_allclose(g.gam2, ggg.gam2, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(g.vargam2, ggg.vargam2, rtol=0.05 * tol_factor)
np.testing.assert_allclose(g.gam3, ggg.gam3, rtol=0.3 * tol_factor, atol=0.3 * tol_factor)
np.testing.assert_allclose(g.vargam3, ggg.vargam3, rtol=0.05 * tol_factor)
fc = lambda gggc: np.concatenate([
[np.mean(g.gam0), np.mean(g.gam1), np.mean(g.gam2), np.mean(g.gam3)]
for g in gggc._all])
print('jackknife:')
cov = gggc.estimate_cov('jackknife', func=fc)
print(np.diagonal(cov).real)
for i in range(6):
v = np.diagonal(cov)[i*4:(i+1)*4]
print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg))))
np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.4*tol_factor)
print('sample:')
cov = gggc.estimate_cov('sample', func=fc)
print(np.diagonal(cov).real)
for i in range(6):
v = np.diagonal(cov)[i*4:(i+1)*4]
print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg))))
np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.6*tol_factor)
print('marked:')
cov = gggc.estimate_cov('marked_bootstrap', func=fc)
print(np.diagonal(cov).real)
for i in range(6):
v = np.diagonal(cov)[i*4:(i+1)*4]
print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg))))
np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.8*tol_factor)
print('bootstrap:')
cov = gggc.estimate_cov('bootstrap', func=fc)
print(np.diagonal(cov).real)
for i in range(6):
v = np.diagonal(cov)[i*4:(i+1)*4]
print('max log(ratio) = ',np.max(np.abs(np.log(v)-np.log(var_ggg))))
np.testing.assert_allclose(np.log(v), np.log(var_ggg), atol=0.3*tol_factor)
# Without func, don't check the accuracy, but make sure it returns something the right shape.
cov = gggc.estimate_cov('jackknife')
assert cov.shape == (48, 48)
@timer
def test_nnn_jk():
# Test jackknife and other covariance estimates for nnn correlations.
if __name__ == '__main__':
# This setup takes about 1200 sec to run.
nhalo = 300
nsource = 2000
npatch = 16
source_factor = 50
rand_factor = 3
tol_factor = 1
elif False:
# This setup takes about 250 sec to run.
nhalo = 200
nsource = 1000
npatch = 16
source_factor = 50
rand_factor = 2
tol_factor = 2
else:
# This setup takes about 44 sec to run.
nhalo = 100
nsource = 500
npatch = 8
source_factor = 30
rand_factor = 1
tol_factor = 3
file_name = 'data/test_nnn_jk_{}.npz'.format(nsource)
print(file_name)
if not os.path.isfile(file_name):
rng = np.random.RandomState()
nruns = 1000
all_nnns = []
all_nnnc = []
t0 = time.time()
for run in range(nruns):
t2 = time.time()
x, y, _, _, k = generate_shear_field(nsource * source_factor, nhalo, rng)
p = k**3
p /= np.sum(p)
ns = rng.poisson(nsource)
select = rng.choice(range(len(x)), size=ns, replace=False, p=p)
print(run,': ',np.mean(k),np.std(k),np.min(k),np.max(k))
cat = treecorr.Catalog(x=x[select], y=y[select])
ddd = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2,
min_u=0.8, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.2, nvbins=1)
rx = rng.uniform(0,1000, rand_factor*nsource)
ry = rng.uniform(0,1000, rand_factor*nsource)
rand_cat = treecorr.Catalog(x=rx, y=ry)
rrr = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2,
min_u=0.8, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.2, nvbins=1)
rrr.process(rand_cat)
rdd = ddd.copy()
drr = ddd.copy()
ddd.process(cat)
rdd.process(rand_cat, cat)
drr.process(cat, rand_cat)
zeta_s, _ = ddd.calculateZeta(rrr)
zeta_c, _ = ddd.calculateZeta(rrr, drr, rdd)
print('simple: ',zeta_s.ravel())
print('compensated: ',zeta_c.ravel())
all_nnns.append(zeta_s.ravel())
all_nnnc.append(zeta_c.ravel())
t3 = time.time()
print('time: ',round(t3-t2),round((t3-t0)/60),round((t3-t0)*(nruns/(run+1)-1)/60))
mean_nnns = np.mean(all_nnns, axis=0)
var_nnns = np.var(all_nnns, axis=0)
mean_nnnc = np.mean(all_nnnc, axis=0)
var_nnnc = np.var(all_nnnc, axis=0)
np.savez(file_name, mean_nnns=mean_nnns, var_nnns=var_nnns,
mean_nnnc=mean_nnnc, var_nnnc=var_nnnc)
data = np.load(file_name)
mean_nnns = data['mean_nnns']
var_nnns = data['var_nnns']
mean_nnnc = data['mean_nnnc']
var_nnnc = data['var_nnnc']
print('mean simple = ',mean_nnns)
print('var simple = ',var_nnns)
print('mean compensated = ',mean_nnnc)
print('var compensated = ',var_nnnc)
# Make a random catalog with 2x as many sources, randomly distributed .
rng = np.random.RandomState(1234)
rx = rng.uniform(0,1000, rand_factor*nsource)
ry = rng.uniform(0,1000, rand_factor*nsource)
rand_cat = treecorr.Catalog(x=rx, y=ry)
rrr = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2,
min_u=0.8, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.2, nvbins=1)
t0 = time.time()
rrr.process(rand_cat)
t1 = time.time()
print('Time to process rand cat = ',t1-t0)
print('RRR:',rrr.tot)
print(rrr.ntri.ravel())
# Make the data catalog
x, y, _, _, k = generate_shear_field(nsource * source_factor, nhalo, rng=rng)
print('mean k = ',np.mean(k))
print('min,max = ',np.min(k),np.max(k))
p = k**3
p /= np.sum(p)
select = rng.choice(range(len(x)), size=nsource, replace=False, p=p)
cat = treecorr.Catalog(x=x[select], y=y[select])
ddd = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2,
min_u=0.8, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.2, nvbins=1, rng=rng)
rdd = ddd.copy()
drr = ddd.copy()
ddd.process(cat)
rdd.process(rand_cat, cat)
drr.process(cat, rand_cat)
zeta_s1, var_zeta_s1 = ddd.calculateZeta(rrr)
zeta_c1, var_zeta_c1 = ddd.calculateZeta(rrr, drr, rdd)
print('DDD:',ddd.tot)
print(ddd.ntri.ravel())
print('simple: ')
print(zeta_s1.ravel())
print(var_zeta_s1.ravel())
print('DRR:',drr.tot)
print(drr.ntri.ravel())
print('RDD:',rdd.tot)
print(rdd.ntri.ravel())
print('compensated: ')
print(zeta_c1.ravel())
print(var_zeta_c1.ravel())
# Make the patches with a large random catalog to make sure the patches are uniform area.
big_rx = rng.uniform(0,1000, 100*nsource)
big_ry = rng.uniform(0,1000, 100*nsource)
big_catp = treecorr.Catalog(x=big_rx, y=big_ry, npatch=npatch, rng=rng)
patch_centers = big_catp.patch_centers
# Do the same thing with patches on D, but not yet on R.
dddp = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2,
min_u=0.8, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.2, nvbins=1, rng=rng)
rddp = dddp.copy()
drrp = dddp.copy()
catp = treecorr.Catalog(x=x[select], y=y[select], patch_centers=patch_centers)
print('Patch\tNtot')
for p in catp.patches:
print(p.patch,'\t',p.ntot,'\t',patch_centers[p.patch])
print('with patches on D:')
dddp.process(catp)
rddp.process(rand_cat, catp)
drrp.process(catp, rand_cat)
# Need to run calculateZeta to get patch-based covariance
with assert_raises(RuntimeError):
dddp.estimate_cov('jackknife')
zeta_s2, var_zeta_s2 = dddp.calculateZeta(rrr)
print('DDD:',dddp.tot)
print(dddp.ntri.ravel())
print('simple: ')
print(zeta_s2.ravel())
print(var_zeta_s2.ravel())
np.testing.assert_allclose(zeta_s2, zeta_s1, rtol=0.05 * tol_factor)
np.testing.assert_allclose(var_zeta_s2, var_zeta_s1, rtol=0.05 * tol_factor)
# Check the _calculate_xi_from_pairs function. Using all pairs, should get total xi.
ddd1 = dddp.copy()
ddd1._calculate_xi_from_pairs(dddp.results.keys())
np.testing.assert_allclose(ddd1.zeta, dddp.zeta)
# None of these are very good without the random using patches.
# I think this is basically just that the approximations used for estimating the area_frac
# to figure out the appropriate altered RRR counts isn't accurate enough when the total
# counts are as low as this. I think (hope) that it should be semi-ok when N is much larger,
# but this is probably saying that for 3pt using patches for R is even more important than
# for 2pt.
# Ofc, it could also be that this is telling me I still have a bug somewhere that I haven't
# managed to find... :(
print('jackknife:')
cov = dddp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=2.3*tol_factor)
print('sample:')
cov = dddp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.2*tol_factor)
print('marked:')
cov = dddp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.3*tol_factor)
print('bootstrap:')
cov = dddp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=2.2*tol_factor)
zeta_c2, var_zeta_c2 = dddp.calculateZeta(rrr, drrp, rddp)
print('compensated: ')
print('DRR:',drrp.tot)
print(drrp.ntri.ravel())
print('RDD:',rddp.tot)
print(rddp.ntri.ravel())
print(zeta_c2.ravel())
print(var_zeta_c2.ravel())
np.testing.assert_allclose(zeta_c2, zeta_c1, rtol=0.05 * tol_factor, atol=1.e-3 * tol_factor)
np.testing.assert_allclose(var_zeta_c2, var_zeta_c1, rtol=0.05 * tol_factor)
print('jackknife:')
cov = dddp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.6*tol_factor)
print('sample:')
cov = dddp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=3.8*tol_factor)
print('marked:')
cov = dddp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.3*tol_factor)
print('bootstrap:')
cov = dddp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=2.6*tol_factor)
# Now with the random also using patches
# These are a lot better than the above tests. But still not nearly as good as we were able
# to get in 2pt. I'm pretty sure this is just due to the fact that we need to have much
# smaller catalogs to make it feasible to run this in a reasonable amount of time. I don't
# think this is a sign of any bug in the code.
print('with patched random catalog:')
rand_catp = treecorr.Catalog(x=rx, y=ry, patch_centers=patch_centers)
rrrp = rrr.copy()
rrrp.process(rand_catp)
drrp.process(catp, rand_catp)
rddp.process(rand_catp, catp)
print('simple: ')
zeta_s2, var_zeta_s2 = dddp.calculateZeta(rrrp)
print('DDD:',dddp.tot)
print(dddp.ntri.ravel())
print(zeta_s2.ravel())
print(var_zeta_s2.ravel())
np.testing.assert_allclose(zeta_s2, zeta_s1, rtol=0.05 * tol_factor)
np.testing.assert_allclose(var_zeta_s2, var_zeta_s1, rtol=0.05 * tol_factor)
ddd1 = dddp.copy()
ddd1._calculate_xi_from_pairs(dddp.results.keys())
np.testing.assert_allclose(ddd1.zeta, dddp.zeta)
t0 = time.time()
print('jackknife:')
cov = dddp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor)
t1 = time.time()
print('t = ',t1-t0)
t0 = time.time()
print('sample:')
cov = dddp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.7*tol_factor)
t1 = time.time()
print('t = ',t1-t0)
t0 = time.time()
print('marked:')
cov = dddp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.8*tol_factor)
t1 = time.time()
print('t = ',t1-t0)
t0 = time.time()
print('bootstrap:')
cov = dddp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.0*tol_factor)
t1 = time.time()
print('t = ',t1-t0)
t0 = time.time()
print('compensated: ')
zeta_c2, var_zeta_c2 = dddp.calculateZeta(rrrp, drrp, rddp)
print('DRR:',drrp.tot)
print(drrp.ntri.ravel())
print('RDD:',rddp.tot)
print(rddp.ntri.ravel())
print(zeta_c2.ravel())
print(var_zeta_c2.ravel())
np.testing.assert_allclose(zeta_c2, zeta_c1, rtol=0.05 * tol_factor, atol=1.e-3 * tol_factor)
np.testing.assert_allclose(var_zeta_c2, var_zeta_c1, rtol=0.05 * tol_factor)
t0 = time.time()
print('jackknife:')
cov = dddp.estimate_cov('jackknife')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor)
t1 = time.time()
print('t = ',t1-t0)
t0 = time.time()
print('sample:')
cov = dddp.estimate_cov('sample')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor)
t1 = time.time()
print('t = ',t1-t0)
t0 = time.time()
print('marked:')
cov = dddp.estimate_cov('marked_bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor)
t1 = time.time()
print('t = ',t1-t0)
t0 = time.time()
print('bootstrap:')
cov = dddp.estimate_cov('bootstrap')
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnnc))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnnc), atol=0.8*tol_factor)
t1 = time.time()
print('t = ',t1-t0)
t0 = time.time()
# I haven't implemented calculateZeta for the NNNCrossCorrelation class, because I'm not
# actually sure what the right thing to do here is for calculating a single zeta vectors.
# Do we do a different one for each of the 6 permutations? Or one overall one?
# So rather than just do something, I'll wait until someone has a coherent use case where
# they want this and can explain exactly what the right thing to compute is.
# So to just exercise the machinery with NNNCrossCorrelation, I'm using a func parameter
# to compute something equivalent to the simple zeta calculation.
dddc = treecorr.NNNCrossCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2,
min_u=0.8, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.2, nvbins=1, rng=rng)
rrrc = treecorr.NNNCrossCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2,
min_u=0.8, max_u=1.0, nubins=1,
min_v=0.0, max_v=0.2, nvbins=1)
print('CrossCorrelation:')
dddc.process(catp, catp, catp)
rrrc.process(rand_catp, rand_catp, rand_catp)
def cc_zeta(corrs):
d, r = corrs
d1 = d.n1n2n3.copy()
d1._sum(d._all)
r1 = r.n1n2n3.copy()
r1._sum(r._all)
zeta, _ = d1.calculateZeta(r1)
return zeta.ravel()
print('simple: ')
zeta_s3 = cc_zeta([dddc, rrrc])
print(zeta_s3)
np.testing.assert_allclose(zeta_s3, zeta_s1.ravel(), rtol=0.05 * tol_factor)
print('jackknife:')
cov = treecorr.estimate_multi_cov([dddc,rrrc], 'jackknife', cc_zeta)
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor)
print('sample:')
cov = treecorr.estimate_multi_cov([dddc,rrrc], 'sample', cc_zeta)
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.2*tol_factor)
print('marked:')
cov = treecorr.estimate_multi_cov([dddc,rrrc], 'marked_bootstrap', cc_zeta)
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=1.5*tol_factor)
print('bootstrap:')
cov = treecorr.estimate_multi_cov([dddc,rrrc], 'bootstrap', cc_zeta)
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.6*tol_factor)
# Repeat with a 1-2 cross-correlation
print('CrossCorrelation 1-2:')
dddc.process(catp, catp)
rrrc.process(rand_catp, rand_catp)
print('simple: ')
zeta_s3 = cc_zeta([dddc, rrrc])
print(zeta_s3)
np.testing.assert_allclose(zeta_s3, zeta_s1.ravel(), rtol=0.05 * tol_factor)
print('jackknife:')
cov = treecorr.estimate_multi_cov([dddc,rrrc], 'jackknife', cc_zeta)
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_nnns))))
np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_nnns), atol=0.9*tol_factor)
print('sample:')
cov = treecorr.estimate_multi_cov([dddc,rrrc], 'sample', cc_zeta)
print(np.diagonal(cov))
print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))- | np.log(var_nnns) | numpy.log |
#------------------------------------------Single Rectangle dection-------------------------------------------#
## Adapted from https://github.com/jrieke/shape-detection by <NAME>
# Import libraries:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import time
import os
# Import tensorflow to use GPUs on keras:
import tensorflow as tf
# Set keras with GPUs
import keras
config = tf.ConfigProto( device_count = {'GPU': 1 , 'CPU': 12} )
sess = tf.Session(config=config)
keras.backend.set_session(sess)
# Import keras tools:
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
# Create images with random rectangles and bounding boxes:
num_imgs = 50000
img_size = 8
min_object_size = 1
max_object_size = 4
num_objects = 1
bboxes = np.zeros((num_imgs, num_objects, 4))
imgs = np.zeros((num_imgs, img_size, img_size)) # set background to
# Generating random images and bounding boxes:
for i_img in range(num_imgs):
for i_object in range(num_objects):
w, h = np.random.randint(min_object_size, max_object_size, size=2) # bbox width (w) and height (h)
x = np.random.randint(0, img_size - w) # bbox x lower left corner coordinate
y = np.random.randint(0, img_size - h) # bbox y lower left corner coordinate
imgs[i_img, x:x+w, y:y+h] = 1. # set rectangle to 1
bboxes[i_img, i_object] = [x, y, w, h] # store coordinates
# Lets plot one example of generated image:
i = 0
plt.imshow(imgs[i].T, cmap='Greys', interpolation='none', origin='lower', extent=[0, img_size, 0, img_size])
for bbox in bboxes[i]:
plt.gca().add_patch(matplotlib.patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], ec='r', fc='none'))
## Obs:
# - The transpose was done for using properly both plt functions
# - extent is the size of the image
# - ec is the color of the border of the bounding box
# - fc is to avoid any coloured background of the bounding box
# Display plot:
# plt.show()
# Reshape (stack rows horizontally) and normalize the image data to mean 0 and std 1:
X = (imgs.reshape(num_imgs, -1) - np.mean(imgs)) / np.std(imgs)
X.shape, np.mean(X), np.std(X)
# Normalize x, y, w, h by img_size, so that all values are between 0 and 1:
# Important: Do not shift to negative values (e.g. by setting to mean 0)
#----------- because the IOU calculation needs positive w and h
y = bboxes.reshape(num_imgs, -1) / img_size
y.shape, np.mean(y), np.std(y)
# Split training and test:
i = int(0.8 * num_imgs)
train_X = X[:i]
test_X = X[i:]
train_y = y[:i]
test_y = y[i:]
test_imgs = imgs[i:]
test_bboxes = bboxes[i:]
# Build the model:
model = Sequential([Dense(200, input_dim=X.shape[-1]),
Activation('relu'),
Dropout(0.2),
Dense(y.shape[-1])])
model.compile('adadelta', 'mse')
# Fit the model:
tic = time.time()
model.fit(train_X, train_y,nb_epoch=30, validation_data=(test_X, test_y), verbose=2)
toc = time.time() - tic
print(toc)
# Predict bounding boxes on the test images:
pred_y = model.predict(test_X)
pred_bboxes = pred_y * img_size
pred_bboxes = pred_bboxes.reshape(len(pred_bboxes), num_objects, -1)
pred_bboxes.shape
# Function to define the intersection over the union of the bounding boxes pair:
def IOU(bbox1, bbox2):
'''Calculate overlap between two bounding boxes [x, y, w, h]
as the area of intersection over the area of unity'''
x1, y1, w1, h1 = bbox1[0], bbox1[1], bbox1[2], bbox1[3]
x2, y2, w2, h2 = bbox2[0], bbox2[1], bbox2[2], bbox2[3]
w_I = min(x1 + w1, x2 + w2) - max(x1, x2)
h_I = min(y1 + h1, y2 + h2) - max(y1, y2)
if w_I <= 0 or h_I <= 0: # no overlap
return 0
else:
I = w_I * h_I
U = w1 * h1 + w2 * h2 - I
return I / U
# Show a few images and predicted bounding boxes from the test dataset.
os.chdir('/workdir/jp2476/repo/diversity-proj/files')
plt.figure(figsize=(12, 3))
for i_subplot in range(1, 5):
plt.subplot(1, 4, i_subplot)
i = np.random.randint(len(test_imgs))
plt.imshow(test_imgs[i].T, cmap='Greys',
interpolation='none',
origin='lower',
extent=[0, img_size, 0, img_size])
for pred_bbox, train_bbox in zip(pred_bboxes[i], test_bboxes[i]):
plt.gca().add_patch(matplotlib.patches.Rectangle((pred_bbox[0],
pred_bbox[1]),
pred_bbox[2],
pred_bbox[3],
ec='r', fc='none'))
plt.annotate('IOU: {:.2f}'.format(IOU(pred_bbox, train_bbox)),
(pred_bbox[0], pred_bbox[1]+pred_bbox[3]+0.2),
color='r')
# plt.savefig("simple_detection.pdf", dpi=150)
# plt.savefig("simple_detection.png", dpi=150)
plt.show()
plt.clf()
# Calculate the mean IOU (overlap) between the predicted and expected bounding boxes on the test dataset:
summed_IOU = 0.
for pred_bbox, test_bbox in zip(pred_bboxes.reshape(-1, 4), test_bboxes.reshape(-1, 4)):
summed_IOU += IOU(pred_bbox, test_bbox)
mean_IOU = summed_IOU / len(pred_bboxes)
mean_IOU
#-------------------------------------------Two Rectangle dection---------------------------------------------#
## Adapted from https://github.com/jrieke/shape-detection by <NAME>
# Import libraries:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import time
import os
# Import tensorflow to use GPUs on keras:
import tensorflow as tf
# Set keras with GPUs
import keras
config = tf.ConfigProto( device_count = {'GPU': 1 , 'CPU': 12} )
sess = tf.Session(config=config)
keras.backend.set_session(sess)
# Import keras tools:
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
# Create images with random rectangles and bounding boxes:
num_imgs = 50000
# Image parameters for simulation:
img_size = 8
min_rect_size = 1
max_rect_size = 4
num_objects = 2
# Initialize objects:
bboxes = np.zeros((num_imgs, num_objects, 4))
imgs = np.zeros((num_imgs, img_size, img_size))
# Generate images and bounding boxes:
for i_img in range(num_imgs):
for i_object in range(num_objects):
w, h = np.random.randint(min_rect_size, max_rect_size, size=2)
x = np.random.randint(0, img_size - w)
y = np.random.randint(0, img_size - h)
imgs[i_img, x:x+w, y:y+h] = 1.
bboxes[i_img, i_object] = [x, y, w, h]
# Get shapes:
imgs.shape, bboxes.shape
# Plot one example of generated images:
i = 0
plt.imshow(imgs[i].T, cmap='Greys', interpolation='none', origin='lower', extent=[0, img_size, 0, img_size])
for bbox in bboxes[i]:
plt.gca().add_patch(matplotlib.patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], ec='r', fc='none'))
# plt.show()
# Reshape and normalize the data to mean 0 and std 1:
X = (imgs.reshape(num_imgs, -1) - np.mean(imgs)) / np.std(imgs)
X.shape, np.mean(X), np.std(X)
# Normalize x, y, w, h by img_size, so that all values are between 0 and 1:
# Important: Do not shift to negative values (e.g. by setting to mean 0),
#---------- because the IOU calculation needs positive w and h
y = bboxes.reshape(num_imgs, -1) / img_size
y.shape, np.mean(y), np.std(y)
# Function to define the intersection over the union of the bounding boxes pair:
def IOU(bbox1, bbox2):
'''Calculate overlap between two bounding boxes [x, y, w, h]
as the area of intersection over the area of unity'''
x1, y1, w1, h1 = bbox1[0], bbox1[1], bbox1[2], bbox1[3]
x2, y2, w2, h2 = bbox2[0], bbox2[1], bbox2[2], bbox2[3]
w_I = min(x1 + w1, x2 + w2) - max(x1, x2)
h_I = min(y1 + h1, y2 + h2) - max(y1, y2)
if w_I <= 0 or h_I <= 0: # no overlap
return 0
else:
I = w_I * h_I
U = w1 * h1 + w2 * h2 - I
return I / U
# Split training and test.
i = int(0.8 * num_imgs)
train_X = X[:i]
test_X = X[i:]
train_y = y[:i]
test_y = y[i:]
test_imgs = imgs[i:]
test_bboxes = bboxes[i:]
# Build the model.
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
model = Sequential([
Dense(256, input_dim=X.shape[-1]),
Activation('relu'),
Dropout(0.4),
Dense(y.shape[-1])
])
model.compile('adadelta', 'mse')
# Flip bboxes during training:
# Note: The validation loss is always quite big here because we don't flip the bounding boxes for
#------ the validation data
# Define the distance between the two bounding boxes:
def distance(bbox1, bbox2):
return np.sqrt(np.sum(np.square(bbox1[:2] - bbox2[:2])))
# Parameters to fit the model:
num_epochs = 50
flipped = np.zeros((len(train_y), num_epochs))
ious_epoch = np.zeros((len(train_y), num_epochs))
dists_epoch = np.zeros((len(train_y), num_epochs))
mses_epoch = np.zeros((len(train_y), num_epochs))
# Training the model:
for epoch in range(num_epochs):
# Print the current epoch:
print('Epoch', epoch)
# Fit the model:
model.fit(train_X, train_y, nb_epoch=1, validation_data=(test_X, test_y), verbose=2)
# Get the output from the neural net:
hat_y = model.predict(train_X)
for i, (hat_bboxes, train_bboxes) in enumerate(zip(hat_y, train_y)):
# Flip the training data:
flipped_train_bboxes = np.concatenate([train_bboxes[4:], train_bboxes[:4]])
# Compute the mean-squared error for non-flipped and flipped data points:
mse = np.mean(np.square(hat_bboxes - train_bboxes))
mse_flipped = np.mean(np.square(hat_bboxes - flipped_train_bboxes))
# Compute the IOU for each variation:
iou = IOU(hat_bboxes[:4], train_bboxes[:4]) + IOU(hat_bboxes[4:], train_bboxes[4:])
iou_flipped = IOU(hat_bboxes[:4], flipped_train_bboxes[:4]) + IOU(hat_bboxes[4:], flipped_train_bboxes[4:])
# Compute the distance for each variation:
dist = distance(hat_bboxes[:4], train_bboxes[:4]) + distance(hat_bboxes[4:], train_bboxes[4:])
dist_flipped = distance(hat_bboxes[:4], flipped_train_bboxes[:4]) + distance(hat_bboxes[4:], flipped_train_bboxes[4:])
# Store stats:
if mse_flipped < mse: # you can also use iou or dist here
train_y[i] = flipped_train_bboxes
flipped[i, epoch] = 1
mses_epoch[i, epoch] = mse_flipped
ious_epoch[i, epoch] = iou_flipped / 2.
dists_epoch[i, epoch] = dist_flipped / 2.
else:
mses_epoch[i, epoch] = mse
ious_epoch[i, epoch] = iou / 2.
dists_epoch[i, epoch] = dist / 2.
print('Flipped {} training samples ({} %)'.format(np.sum(flipped[:, epoch]), np.mean(flipped[:, epoch]) * 100.))
print('Mean IOU: {}'.format(np.mean(ious_epoch[:, epoch])))
print('Mean dist: {}'.format(np.mean(dists_epoch[:, epoch])))
print('Mean mse: {}'.format(np.mean(mses_epoch[:, epoch])))
# Show flippings for a few training samples:
plt.figure(figsize=(12, 12))
plt.pcolor(flipped[:300], cmap='Greys')
plt.xlabel('Epoch')
plt.ylabel('Training sample')
plt.show()
# Plot metrics on the training data:
mean_ious_epoch = np.mean(ious_epoch, axis=0)
mean_dists_epoch = np.mean(dists_epoch, axis=0)
mean_mses_epoch = np.mean(mses_epoch, axis=0)
plt.plot(mean_ious_epoch, label='Mean IoU') # between predicted and assigned true bboxes
plt.plot(mean_dists_epoch, label='Mean distance') # relative to image size
plt.plot(mean_mses_epoch, label='Mean MSE')
plt.annotate(np.round(np.max(mean_ious_epoch), 3), (len(mean_ious_epoch)-1, mean_ious_epoch[-1]+0.03),
horizontalalignment='right',
color='b')
plt.annotate(np.round(np.min(mean_dists_epoch), 3), (len(mean_dists_epoch)-1, mean_dists_epoch[-1]+0.03),
horizontalalignment='right', color='g')
plt.annotate(np.round(np.min(mean_mses_epoch), 3), (len(mean_mses_epoch)-1, mean_mses_epoch[-1]+0.03),
horizontalalignment='right', color='r')
plt.ylabel('IoU')
plt.xlabel('Epoch')
plt.legend()
plt.ylim(0, 1)
plt.show()
# Predict bounding boxes on the test images.
pred_y = model.predict(test_X)
pred_bboxes = pred_y * img_size
pred_bboxes = pred_bboxes.reshape(len(pred_bboxes), num_objects, -1)
pred_bboxes.shape
# Show a few images and predicted bounding boxes from the test dataset:
plt.figure(figsize=(12, 3))
for i_subplot in range(1, 5):
plt.subplot(1, 4, i_subplot)
i = np.random.randint(len(test_X))
plt.imshow(test_imgs[i].T, cmap='Greys',
interpolation='none',
origin='lower',
extent=[0, img_size, 0, img_size])
for pred_bbox, exp_bbox in zip(pred_bboxes[i], test_bboxes[i]):
plt.gca().add_patch(matplotlib.patches.Rectangle((pred_bbox[0], pred_bbox[1]),
pred_bbox[2], pred_bbox[3],
ec='r', fc='none'))
plt.show()
#--------------------------------Multiple rectangles or triangles---------------------------------------------#
## Adapted from https://github.com/jrieke/shape-detection by <NAME>
# Import libraries:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import time
import os
# Import tensorflow to use GPUs on keras:
import tensorflow as tf
# Set keras with GPUs
import keras
config = tf.ConfigProto( device_count = {'GPU': 1 , 'CPU': 12} )
sess = tf.Session(config=config)
keras.backend.set_session(sess)
# Import keras tools:
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
# Create images with random rectangles and bounding boxes:
num_imgs = 50000
# Image parameters for simulation:
img_size = 16
min_rect_size = 3
max_rect_size = 8
num_objects = 2
# Initialize objects:
bboxes = np.zeros((num_imgs, num_objects, 4))
imgs = np.zeros((num_imgs, img_size, img_size))
shapes = np.zeros((num_imgs, num_objects, 1))
# Generate images and bounding boxes:
for i_img in range(num_imgs):
for i_object in range(num_objects):
if np.random.choice([True, False]):
width, height = np.random.randint(min_rect_size, max_rect_size, size=2)
x = np.random.randint(0, img_size - width)
y = | np.random.randint(0, img_size - height) | numpy.random.randint |
#! /usr/bin/ python
# -*- coding: utf-8 -*-
#------------------------------------------------------------------------------
# PROGRAM: worldlines.py
#------------------------------------------------------------------------------
# Version 0.11
# 9 July, 2020
# Dr <NAME>
# https://patternizer.github.io
# patternizer AT gmail DOT com
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# SETTINGS
#------------------------------------------------------------------------------
generate_anyons = True
generate_variants = True
generate_networkx_edges = True
generate_qubits = False
generate_erdos_parameter = False
generate_erdos_equivalence = False
generate_adjacency = False
qubit_logic = False
plot_branchpoint_table = True
plot_networkx_connections = True
plot_networkx_non_circular = True
plot_networkx_erdos_parameter = False
plot_networkx_erdos_equivalence = False
plot_networkx_connections_branchpoints = True
plot_networkx_connections_dags = True
plot_variants = True
machine_learning = False
write_log = True
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# IMPORT PYTHON LIBRARIES
#------------------------------------------------------------------------------
import numpy as np
import pandas as pd
import scipy as sp
# import math
# math.log(N,2) for entropy calculations
import random
from random import randint
from random import randrange
# Text Parsing libraries:
import re
from collections import Counter
# Network Graph libraries:
import networkx as nx
from networkx.algorithms import approximation as aprx
# Plotting libraries:
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib import colors as mcol
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
import plotly.express as px
import plotly.graph_objects as go
import plotly.figure_factory as ff
from plotly.subplots import make_subplots
from skimage import io
import glob
from PIL import Image
# Silence library version notifications
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# NLP Libraries
# ML Libraries
# App Deployment Libraries
# import dash
# import dash_core_components as dcc
# import dash_html_components as html
# import dash_bootstrap_components as dbc
# from dash.dependencies import Input, Output, State
# from flask import Flask
# import json
# import os
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# METHODS
#------------------------------------------------------------------------------
def word_in_line(word, line):
"""
Check if word is in line
word, line - str
returns - True if word in line, False if not
"""
pattern = r'(^|[^\w]){}([^\w]|$)'.format(word)
pattern = re.compile(pattern, re.IGNORECASE)
matches = re.search(pattern, text)
return bool(matches)
def discrete_colorscale(values, colors):
"""
values - categorical values
colors - rgb or hex colorcodes for len(values)-1
eeturn - discrete colorscale, tickvals, ticktext
"""
if len(values) != len(colors)+1:
raise ValueError('len(values) should be = len(colors)+1')
values = sorted(values)
nvalues = [(v-values[0])/(values[-1]-values[0]) for v in values] #normalized values
colorscale = []
for k in range(len(colors)):
colorscale.extend([[nvalues[k], colors[k]], [nvalues[k+1], colors[k]]])
tickvals = [((values[k]+values[k+1])/2.0) for k in range(len(values)-1)]
ticktext = [f'{int(values[k])}' for k in range(len(values)-1)]
return colorscale, tickvals, ticktext
def rgb2hex(colorin):
"""
Convert (r,g,b) to hex
"""
r = int(colorin.split('(')[1].split(')')[0].split(',')[0])
g = int(colorin.split('(')[1].split(')')[0].split(',')[1])
b = int(colorin.split('(')[1].split(')')[0].split(',')[2])
return "#{:02x}{:02x}{:02x}".format(r,g,b)
def parse_poem(input_file):
"""
Text parsing of poem and construction of branchpoint array
"""
print('parsing poem ...')
# Store lines in a list
linelist = []
with open (input_file, 'rt') as f:
for line in f:
if len(line)>1: # ignore empty lines
linelist.append(line.strip())
else:
continue
# Store text as a single string
textstr = ''
for i in range(len(linelist)):
if i < len(linelist) - 1:
textstr = textstr + linelist[i] + ' '
else:
textstr = textstr + linelist[i]
# extract sentences into list
# (ignore last entry which is '' due to final full stop)
sentencelist = textstr.split('.')[0:-1]
# Clean text and lower case all words
str = textstr
for char in '-.,\n':
str = str.replace(char,' ')
str = str.lower()
wordlist = str.split()
# Store unique words in an array
uniquewordlist = []
for word in wordlist:
if word not in uniquewordlist:
uniquewordlist.append(word)
# Word frequencies
wordfreq = Counter(wordlist).most_common() # --> wordfreq[0][0] = 'the' and wordfreq[0][1] = '13'
# Find branchpoints having word frequency > 1
branchpointlist = []
for word in range(len(wordfreq)-1):
if wordfreq[word][1] > 1:
branchpointlist.append(wordfreq[word][0])
else:
continue
# Branchpoint index array
maxbranches = wordfreq[0][1]
branchpointarray = np.zeros((len(branchpointlist), maxbranches), dtype='int')
for k in range(len(branchpointlist)):
index = []
for i, j in enumerate(wordlist):
if j == branchpointlist[k]:
index.append(i)
branchpointarray[k,0:len(index)] = index
# Filter out multiple branchpoint in single line only occurences
# using word indices of branchpoints and line start and end indices
lineindices = []
wordcount = 0
for i in range(len(linelist)):
linelen = len(linelist[i].split())
lineindices.append([i, wordcount, wordcount+linelen-1])
wordcount += linelen
mask = []
branchlinearray = []
for i in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints
branchpointindices = branchpointarray[i,:][branchpointarray[i,:]>0]
linecounter = 0
for j in range(len(linelist)):
branchpointcounter = 0
for k in range(len(branchpointindices)):
if branchpointindices[k] in np.arange(lineindices[j][1],lineindices[j][2]+1):
branchpointcounter += 1
branchlinearray.append([j,i,lineindices[j][1],branchpointindices[k],lineindices[j][2]])
if branchpointcounter > 0:
linecounter += 1
if linecounter < 2:
mask.append(i)
a = np.array(branchpointarray)
b = branchpointlist
for i in range(len(mask)):
a = np.delete(a,mask[i]-i,0)
b = np.delete(b,mask[i]-i,0)
branchpointarray = a
branchpointlist = list(b)
db = pd.DataFrame(branchpointarray)
db.to_csv('branchpointarray.csv', sep=',', index=False, header=False, encoding='utf-8')
return textstr, sentencelist, linelist, wordlist, uniquewordlist, wordfreq, branchpointlist, branchpointarray
def generate_branchpoint_colormap(wordfreq, nbranchpoints, nwords, branchpointarray):
"""
Generate colormap using hexcolors for all branchpoints
"""
print('generating branchpoint_colormap ...')
freq = [ wordfreq[i][1] for i in range(len(wordfreq)) ]
nlabels = nbranchpoints
cmap = px.colors.diverging.Spectral
cmap_idx = np.linspace(0,len(cmap)-1, nlabels, dtype=int)
colors = [cmap[i] for i in cmap_idx]
hexcolors = [ rgb2hex(colors[i]) for i in range(len(colors)) ]
branchpoint_colormap = []
for k in range(nwords):
branchpoint_colormap.append('lightgrey')
for j in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints
for i in range(np.size(branchpointarray, axis=1)): # i.e. maxfreq
branchpoint_colormap[branchpointarray[j,i]] = hexcolors[j]
return branchpoint_colormap, hexcolors
def compute_networkx_edges(nwords, wordlist, branchpointarray):
print('computing_networkx_edges ...')
# Construct edgelist, labellist
edgelist = [(i,i+1) for i in range(nwords-1)]
labellist = [{i : wordlist[i]} for i in range(nwords)]
df = pd.DataFrame()
G = nx.Graph()
G.add_edges_from(edgelist)
for node in G.nodes():
G.nodes[node]['label'] = labellist[node]
edge_colormap = []
for k in range(nwords-1):
edge_colormap.append('lightgrey')
for j in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints
branchpointedges = []
for i in range(np.size(branchpointarray, axis=1)): # i.e. maxfreq
branchpointindices = branchpointarray[j,:]
connections = branchpointindices[(branchpointindices != branchpointindices[i]) & (branchpointindices > 0)]
for k in range(len(connections)):
if branchpointindices[i] > 0:
branchpointedges.append([branchpointindices[i], connections[k]])
G.add_edges_from(branchpointedges)
# for l in range(int(len(branchpointedges)/2)): # NB 2-driectional edges
# edge_colormap.append(hexcolors[j])
nedges = len(G.edges)
# Generate non-circular form of the networkx graph
N = nx.Graph()
N.add_edges_from(edgelist)
for j in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints
branchpointedges = []
for i in range(np.size(branchpointarray, axis=1)): # i.e. maxfreq
branchpointindices = branchpointarray[j,:]
connections = branchpointindices[(branchpointindices != branchpointindices[i]) & (branchpointindices > 0)]
for k in range(len(connections)):
if branchpointindices[i] > 0:
branchpointedges.append([branchpointindices[i], connections[k]])
N.add_edges_from(branchpointedges)
N.remove_edges_from(edgelist)
N_degrees = [degree for node,degree in dict(N.degree()).items()] # degree of nodes
notbranchpoints = [ node for node,degree in dict(N.degree()).items() if degree == 0 ] # each node in circular graph has 2 neighbours at start
return nedges, notbranchpoints, G, N
def compute_erdos_parameter(nwords, nedges):
"""
Compute Erdos-Renyi parameter estimate
"""
print('computing_erdos_parameter ...')
edgelist = [(i,i+1) for i in range(nwords-1)]
for connectivity in np.linspace(0,1,1000001):
random.seed(42)
E = nx.erdos_renyi_graph(nwords, connectivity)
erdosedges = len(E.edges)
if erdosedges == (nedges-len(edgelist)):
# print("{0:.6f}".format(connectivity))
# print("{0:.6f}".format(erdosedges))
nerdosedges = len(E.edges)
return nerdosedges, connectivity, E
# break
nerdosedges = len(E.edges)
return nerdosedges, connectivity, E
def compute_erdos_equivalence(nwords, nedges, N, notbranchpoints):
"""
Compute Erdos-Renyi equivalence probability
"""
print('computing_erdos_equivalence ...')
# Compare Erdos-Renyi graph edges in reduced networks (branchpoint network)
N.remove_nodes_from(notbranchpoints)
mapping = { np.array(N.nodes)[i]:i for i in range(len(N.nodes)) }
H = nx.relabel_nodes(N,mapping)
maxdiff = len(H.edges)
iterations = 100000
for i in range(iterations+1):
E = nx.erdos_renyi_graph(len(H.nodes), connectivity)
diff = H.edges - E.edges
if len(diff) < maxdiff:
maxdiff = len(diff)
commonedges = H.edges - diff
pEquivalence = i/iterations
Equivalence = E
return commonedges, pEquivalence, Equivalence
def compute_anyons(linelist, wordlist, branchpointarray):
"""
Anyon construction: braiding
"""
print('generating_anyons ...')
# Compute start and end word indices for each line of the poem
lineindices = []
wordcount = 0
for i in range(len(linelist)):
linelen = len(linelist[i].split())
lineindices.append([i, wordcount, wordcount+linelen-1])
wordcount += linelen
# For each branchpoint find line index and word indices of line start, branchpoint and line end
# branchlinearray: [line, branchpoint, wordstart, wordbranchpoint, wordend]
branchlinearray = []
for i in range(np.size(branchpointarray, axis=0)): # i.e. nbranchpoints
branchpointindices = branchpointarray[i,:][branchpointarray[i,:]>0]
for j in range(len(linelist)):
for k in range(len(branchpointindices)):
if branchpointindices[k] in np.arange(lineindices[j][1],lineindices[j][2]+1):
branchlinearray.append([j,i,lineindices[j][1],branchpointindices[k],lineindices[j][2]])
# Filter out multiple branchpoint in single line only occurences
a = np.array(branchlinearray)
mask = []
for i in range(len(branchlinearray)-2):
if (a[i,0] == a[i+1,0]) & (a[i,1] == a[i+1,1]) & (a[i+2,1]!=a[i,1]):
mask.append(i)
mask.append(i+1)
for i in range(len(mask)):
a = np.delete(a,mask[i]-i,0)
branchlinearray = a[a[:,0].argsort()]
# Filter out start of line and end of line occurring branchpoints
a = np.array(branchlinearray)
mask = []
for i in range(len(branchlinearray)):
if ((a[i,2] == a[i,3]) | (a[i,3] == a[i,4])):
mask.append(i)
for i in range(len(mask)):
a = np.delete(a,mask[i]-i,0)
branchlinearray = a[a[:,0].argsort()]
# Anyons
anyonarray = []
for i in range(len(linelist)):
a = branchlinearray[branchlinearray[:,0]==i]
if len(a) == 0:
break
for j in range(len(a)):
anyon_pre = wordlist[a[j,2]:a[j,3]+1]
b = branchlinearray[(branchlinearray[:,1]==a[j,1]) & (branchlinearray[:,0]!=a[j,0])]
#######################################################
# For > 1 swaps, add additional anyon segment code here
# + consider case of forward in 'time' constraint
# + consider return to start line occurrence
#######################################################
if len(b) == 0:
break
for k in range(len(b)):
anyon_post = wordlist[b[k,3]+1:b[k,4]+1]
anyon = anyon_pre + anyon_post
anyonarray.append( [i, b[k,0], branchpointlist[a[j,1]], anyon, a[j,2], a[j,3], a[j,4] ])
df = pd.DataFrame(anyonarray)
df.to_csv('anyonarray.csv', sep=',', index=False, header=False, encoding='utf-8')
return anyonarray
def compute_variants(linelist, anyonarray):
"""
Variant construction
"""
print('generating_variants ...')
# generate variants of the poem
df = pd.DataFrame(anyonarray)
allpoemsidx = []
allpoems = []
allidx = []
nvariants = 0
for i in range(len(linelist)):
a = df[df[0]==i]
for j in range(len(a)):
poem = []
lineidx = []
lines = np.arange(len(linelist))
while len(lines)>0:
print(nvariants,i,j)
if len(lines) == len(linelist):
linestart = a[0].values[j]
lineend = a[1].values[j]
branchpoint = a[2].values[j]
else:
b = df[df[0]==lines[0]]
linestart = b[0].values[0]
lineend = np.setdiff1d( np.unique(b[1].values), lineidx )[0]
branchpoint = df[ (df[0]==linestart) & (df[1]==lineend) ][2].values[0]
lineidx.append(linestart)
lineidx.append(lineend)
branchpointstartpre = df[ (df[0]==linestart) & (df[1]==lineend) & (df[2]==branchpoint) ][4].values[0]
branchpointstart = df[ (df[0]==linestart) & (df[1]==lineend) & (df[2]==branchpoint) ][5].values[0]
branchpointstartpro = df[ (df[0]==linestart) & (df[1]==lineend) & (df[2]==branchpoint) ][6].values[0]
branchpointendpre = df[ (df[0]==lineend) & (df[1]==linestart) & (df[2]==branchpoint) ][4].values[0]
branchpointend = df[ (df[0]==lineend) & (df[1]==linestart) & (df[2]==branchpoint) ][5].values[0]
branchpointendpro = df[ (df[0]==lineend) & (df[1]==linestart) & (df[2]==branchpoint) ][6].values[0]
allidx.append([nvariants, linestart, lineend, branchpoint, branchpointstartpre, branchpointstart, branchpointstartpro])
allidx.append([nvariants, lineend, linestart, branchpoint, branchpointendpre, branchpointend, branchpointendpro])
poem.append(df[ (df[0]==linestart) & (df[1]==lineend) & (df[2]==branchpoint) ][3].values[0])
poem.append(df[ (df[0]==lineend) & (df[1]==linestart) & (df[2]==branchpoint) ][3].values[0])
lines = np.setdiff1d(lines,lineidx)
nvariants += 1
poemsorted = []
for k in range(len(lineidx)):
poemsorted.append(poem[lineidx.index(k)])
allpoems.append(poemsorted)
allpoemsidx.append(lineidx)
dp = pd.DataFrame(poemsorted)
dp.to_csv('poem'+'_'+"{0:.0f}".format(nvariants-1).zfill(3)+'.csv', sep=',', index=False, header=False, encoding='utf-8')
di = pd.DataFrame(allpoemsidx)
di.to_csv('poem_allidx.csv', sep=',', index=False, header=False, encoding='utf-8')
da = pd.DataFrame(allpoems)
da.to_csv('poem_all.csv', sep=',', index=False, header=False, encoding='utf-8')
dl = pd.DataFrame(allidx)
dl.to_csv('allidx.csv', sep=',', index=False, header=False, encoding='utf-8')
return nvariants, allpoemsidx, allpoems, allidx
def generate_qubits():
"""
Qubit contruction
"""
print('generating_qubits ...')
def qubit_logic():
"""
Apply gates to Bell states
"""
print('applying logic gates ...')
def machine_learning():
"""
Feature extraction
"""
print('extracting features ...')
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# LOAD POEM
#------------------------------------------------------------------------------
"""
Poem to generate quantum variants from
"""
#input_file = 'poem.txt'
input_file = 'poem-v1.txt'
textstr, sentencelist, linelist, wordlist, uniquewordlist, wordfreq, branchpointlist, branchpointarray = parse_poem(input_file)
# Counts
nsentences = len(sentencelist) # --> 4
nlines = len(linelist) # --> 8
nwords = len(wordlist) # --> 98
nunique = len(uniquewordlist) # --> 59
nbranchpoints = len(branchpointlist) # --> 20
if generate_networkx_edges == True:
nedges, notbranchpoints, G, N = compute_networkx_edges(nwords, wordlist, branchpointarray)
if generate_anyons == True:
anyonarray = compute_anyons(linelist, wordlist, branchpointarray)
if generate_variants == True:
nvariants, allpoemsidx, allpoems, allidx = compute_variants(linelist, anyonarray)
if generate_qubits == True:
print('generating_qubits ...')
if generate_erdos_parameter == True:
nerdosedges, connectivity, E = compute_erdos_parameter(nwords, nedges)
if generate_erdos_equivalence == True:
commonedges, pEquivalence, Equivalence = compute_erdos_equivalence(nwords, nedges, N, notbranchpoints)
if qubit_logic == True:
print('applying logic gates ...')
if machine_learning == True:
print('extracting features ...')
# -----------------------------------------------------------------------------
branchpoint_colormap, hexcolors = generate_branchpoint_colormap(wordfreq, nbranchpoints, nwords, branchpointarray)
# -----------------------------------------------------------------------------
if plot_branchpoint_table == True:
print('plotting_branchpoint_table ...')
fig, ax = plt.subplots(figsize=(15,10))
plt.plot(np.arange(0,len(wordlist)), np.zeros(len(wordlist)))
for k in range(len(branchpointlist)):
plt.plot(np.arange(0,len(wordlist)), np.ones(len(wordlist))*k, color='black')
a = branchpointarray[k,:]
vals = a[a>0]
plt.scatter(vals, np.ones(len(vals))*k, label=branchpointlist[k], s=100, facecolors=hexcolors[k], edgecolors='black')
xticks = np.arange(0, len(wordlist)+0, step=10)
xlabels = np.array(np.arange(0, len(wordlist), step=10).astype('str'))
yticks = np.arange(0, len(branchpointlist), step=1)
ylabels = np.array(np.arange(0, len(branchpointlist), step=1).astype('str'))
plt.xticks(ticks=xticks, labels=xlabels) # Set label locations
plt.yticks(ticks=yticks, labels=ylabels) # Set label locations
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.xlabel('word n in text', fontsize=20)
plt.ylabel('branchpoint k in text (>1 connection)', fontsize=20)
plt.title('Branch Analysis Plot', fontsize=20)
plt.gca().invert_yaxis()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=12)
plt.savefig('branchplot.png')
plt.close(fig)
if plot_networkx_connections == True:
print('plotting_networkx_connections ...')
fig, ax = plt.subplots(figsize=(15,10))
nx.draw_circular(G, node_color=branchpoint_colormap, node_size=300, linewidths=0.5, font_size=12, font_weight='normal', with_labels=True)
plt.title('Networkx (circularly connected): N(edges)=' + "{0:.0f}".format(len(G.edges)), fontsize=20)
plt.savefig('networkx.png')
plt.close(fig)
if plot_networkx_non_circular == True:
print('plotting_networkx_non_circular ...')
fig, ax = plt.subplots(figsize=(15,10))
nx.draw_circular(N, node_color=branchpoint_colormap, node_size=300, linewidths=0.5, font_size=12, font_weight='normal', with_labels=True)
plt.title('Networkx (non-circularly connected): N(edges)=' + "{0:.0f}".format(len(N.edges)), fontsize=20)
plt.savefig('networkx_non_circular.png')
if plot_networkx_erdos_parameter == True:
print('plotting_networkx_erdos ...')
fig, ax = plt.subplots(figsize=(15,10))
nx.draw_circular(E, node_color=branchpoint_colormap, node_size=300, linewidths=0.5, font_size=12, font_weight='normal', with_labels=True)
plt.title('Erdős-Rényi Model: p=' + "{0:.6f}".format(connectivity) + ', N(edges)=' + "{0:.0f}".format(nerdosedges), fontsize=20)
plt.savefig('networkx_erdos.png')
plt.close(fig)
if plot_networkx_erdos_equivalence == True:
print('plotting_networkx_erdos_equivalence ...')
fig, ax = plt.subplots(figsize=(15,10))
nx.draw_circular(Eequivalence, node_color='lightgrey', node_size=300, linewidths=0.5, font_size=12, font_weight='normal', with_labels=True)
plt.title('Erdős-Rényi Model (equivalent): N(common edges)=' + "{0:.0f}".format(len(N.edges)-len(diff)), fontsize=20)
plt.savefig('networkx_erdos_equivalence.png')
if plot_variants == True:
print('plotting_variants ...')
di = pd.DataFrame(allpoemsidx)
da = pd.DataFrame(allpoems)
dl = pd.DataFrame(allidx)
for i in range(nvariants):
connectorstart = []
connectorend = []
fig, ax = plt.subplots(figsize=(15,10))
for k in range(len(linelist)):
branchpoint = dl[(dl[0]==i)&(dl[1]==k)][3].values[0]
linestart = dl[(dl[0]==i)&(dl[1]==k)][1].values[0]
lineend = dl[(dl[0]==i)&(dl[1]==k)][2].values[0]
plt.scatter(np.arange(0,len(linelist[k].split())), np.ones(len(linelist[k].split()))*k, color='black')
if linestart < lineend:
x1 = | np.arange(0, dl[(dl[0]==i)&(dl[1]==k)][5].values[0] - dl[(dl[0]==i)&(dl[1]==k)][4].values[0]+1) | numpy.arange |
import glob
import numpy as np
import pandas as pd
from shapely.geometry import LineString,MultiLineString,Point,MultiPoint
from shapely.ops import linemerge
import pyproj
from sklearn.ensemble import RandomForestClassifier,ExtraTreesClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.svm import SVC
import xgboost
from tqdm import tqdm
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix,accuracy_score
import pickle
import os
import argparse
| np.random.seed(10) | numpy.random.seed |
'''A module for field'''
from typing import Optional, List, Union, Iterator, Tuple, Any, Dict
from itertools import chain
import logging
import hashlib
import numpy as np
from .._utils import trim_before_target, chain_sessions, restore_sessions, is_build_private_docs
from .._utils.metaclass import DocStringInheritor, LoadClassInterface, copy_func, copy_property
from .._utils.unordered_hash import UnorderedSha256, dumps
from .tokenizer import SimpleTokenizer, Tokenizer, PretrainedTokenizer
from .vocab import Vocab, GeneralVocab, PretrainedVocab, SimpleVocab
from .context import FieldContext
RawSentenceType = str
TokenizedSentenceType = List[str]
RawSessionType = List[RawSentenceType]
TokenizedSessionType = List[TokenizedSentenceType]
class Field(LoadClassInterface, metaclass=DocStringInheritor):
'''A base class of data field, which specify the format of the dataset.
See :ref:`Field<field_ref>` and :ref:`building a dataloader of customized task<customized_tasks_ref>` for usages.
Notice :class:`Field` object may be shared between different fields, data sets or dataloader.
Thus it only defines settings and do NOT stores data.
'''
NOT_SPECIFIED_DOCS = r'''
If any argument is not specified,
the value will be first retrieved from :class:`FieldContext`. If still ``None``, default
value will be used.
'''
if is_build_private_docs():
__doc__ += r"""The data is exactly stored in :class:`_FieldContent`."""
DEFAULT_VOCAB_FROM_MAPPINGS = {
"train": "train",
"training": "train",
"dev": "test",
"development": "test",
"valid": "test",
"validation": "test",
"test": "test",
"evaluation": "test"
}
'''Dict[str, str]:
Infer the set type (train, test, or extra)
from the set name. For example, ``DEFAULT_VOCAB_FROM_MAPPINGS["dev"] == "test"`` means that the words from the "dev" set
is used for test.
'''
def get_vocab(self) -> Optional[Vocab]:
'''Get :class:`Vocab` object for the field. ``None`` if the field do not have a :class:`Vocab`.
'''
return None
def get_tokenizer(self) -> Optional[Tokenizer]:
'''Get :class:`Tokenizer` object for the field. ``None`` if the field do not have a :class:`Tokenizer`.
'''
return None
def _create(self, set_name: str) -> "_FieldContent":
'''Create a :class:`_FieldContent` to store data which have been read.
Arguments:
set_name (str): specify the set name for the :class:`_FieldContent`, which may affect the vocab type.
'''
raise NotImplementedError
def _get_setting_hash(self, vocabs) -> str:
'''Get setting hash for the field. ``vocabs`` are provided by :class:`LanguageProcessing`.
This function only encode index of vocab, and other settings. It only encode index because
encode the setting hash of vocabs cannot explain whether a :class:`Vocab` is shared between different vocabs or not.
Arguments:
vocabs (list): list of :class:`Vocab`.
'''
raise NotImplementedError
_GET_BATCH_DATA_DOCSTRING = '''data (Any): the data stored in dataloader.'''
if is_build_private_docs():
_GET_BATCH_DATA_DOCSTRING = "data (Any): the data returned by :meth:`_FieldContent.get_data`."
_GET_BATCH_RETURN_VALUE = ''
_GET_BATCH_EXAMPLE = ''
def get_batch(self, name: str, data: Dict[str, Any], indexes: List[int]) -> Dict[str, Any]:
'''Invoked by :meth:`LanguageProcessing.get_batch`, return the batched data specified by this field.
This function is for INTERNAL USE only, but it shows the data format of the returned batch.
{_GET_BATCH_RETURN_VALUE}
Arguments:
name (str): name of the field.
{_GET_BATCH_DATA_DOCSTRING}
indexes (List[int]): the indexes of the data in this batch
{_GET_BATCH_EXAMPLE}
'''
raise NotImplementedError
class _FieldContent(metaclass=DocStringInheritor):
'''Store the content data of a field.
Different from :class:`Field`, it won't be shared between fields or dataloader,
and it can save data.
'''
def __init__(self):
self._original_data: List[Any] = []
self._raw_data_hash: str
self._data_hash: str
_GET_NEXT_ARG = r"""
dataset (Iterator[str]): An iterator of the data file content.
Generally, each element is a string, that ends with '\n'.
"""
def _get_next(self, dataset: Iterator[str]) -> Tuple[Any, int]:
'''Read the next data from ``dataset`` and returns a 2-tuple (the data, and the number of elements it read from `dataset`).
Arguments:{_GET_NEXT_ARG}
'''
raise NotImplementedError
def read_next(self, dataset: Iterator[str]) -> int:
'''Read the next element from ``dataloader`` and store the elements.
Returns the number of lines read.
Arguments:
dataset (Iterator[str]): An iterator of the data file.
'''
if not isinstance(self._original_data, list):
raise RuntimeError("read_next must be called before get_data")
sent, lines = self._get_next(dataset)
if lines != 0:
self._original_data.append(sent)
return lines
def process_before_vocab(self):
'''This function is called after all elements read, but before building vocabulary.
'''
raise NotImplementedError
def get_data_number(self) -> int:
'''Get the number of elements in this field.
'''
return len(self._original_data)
def get_data(self) -> Any:
'''Get the data, which will be stored in the :class:`LanguageProcessing`.
'''
raise NotImplementedError
def get_raw_data_hash(self) -> str:
'''Return the raw data hash of this field content.
'''
return self._raw_data_hash
def get_data_hash(self) -> str:
'''Return the data hash of this field content.
'''
return self._data_hash
class _SentenceContent(_FieldContent):
'''Store the content data of :class:`Sentence` field.
Different from :class:`Field`, it won't be shared between fields or dataloader,
and it can save data.
Arguments:
field (Sentence): The corresponding field of this content.
vocab_from (str): The type of vocab, must be one of ["train", "test", "extra", "default"]
'''
def __init__(self, field: "Sentence", vocab_from: str):
self.field = field
self.vocab_from = vocab_from
self._tmp_tokenized_data: Any = None
super().__init__()
def _get_next(self, dataset: Iterator[str]) -> Tuple[str, int]:
"""read the next sentence and returns a 2-tuple (the sentence and number of elements it reads from `dataset`).
Note that it may raise StopIteration.
Arguments:{_FieldContent._GET_NEXT_ARG}
Examples:
>>> dataset = iter(["I love NLP.\\n", "Yes I do\\n", "I love deep learning\\n"])
>>> field_content = _SentenceContent("Sentence", "test")
>>> field_content._get_next(dataset)
"I love NLP", 1
>>> field_content._get_next(dataset)
"Yes I do", 1
>>> field_content._get_next(dataset)
"I love deep learning", 1
"""
return next(dataset).rstrip(), 1
def process_before_vocab(self):
raw_data_hash = UnorderedSha256()
for data in self._original_data:
raw_data_hash.update_data(dumps(data))
self._raw_data_hash = raw_data_hash.hexdigest()
self._tmp_tokenized_data = tokenized_sents = self.field.tokenize_sentences(self._original_data)
data_hash = UnorderedSha256()
for tokenized_sent in tokenized_sents:
data_hash.update_data(dumps(tokenized_sent))
self._data_hash = data_hash.hexdigest()
self.field.get_vocab().add_tokens(list(chain(*tokenized_sents)), self.vocab_from)
def get_data(self):
# allvocabs
id_data = self.field.process_sentences(self._tmp_tokenized_data)
return {"id": id_data, "str": self._original_data}
if is_build_private_docs():
_GET_BATCH_DATA_DOCSTRING = 'data (Dict[str, Any]): the object returned by :meth:`_SentenceContent.get_data`. '\
"data['str'] is raw sentences. data['id'] is the ids of tokenized sentences."
class _InfiniteLength:
"""Infinite length. A special value for `max_sent_length` and `max_turn_length`, which means that the sent_length
and turn_length is unlimited.
"""
__instance = None
def __new__(cls, *args, **kwargs):
# Singleton
if cls.__instance is None:
obj = cls.__instance = object.__new__(cls)
else:
obj = cls.__instance
return obj
def __repr__(self):
return 'INFINITE_LENGTH'
__str__ = __repr__
class Sentence(Field):
'''Bases: :class:`.dataloader.Field`
A field for sentence. This class is a virtual class and the base of
:class:`Sentence`, :class:`SentenceGPT2` and :class:`SentenceBERT`.
{INIT_DOCSTRING}
{SENTENCE_INPUT_FORMAT}
'''
INIT_DOCSTRING = r'''
{Field.NOT_SPECIFIED_DOCS}
Arguments:
{Sentence.TOKENIZER_DOCS} {Sentence.TOKENIZER_DEFAULT}
{Sentence.VOCAB_DOCS} {Sentence.VOCAB_DEFAULT}
{Sentence.VOCAB_FROM_MAPPINGS_DOCS} {Sentence.VOCAB_FROM_MAPPINGS_DEFAULT}
{Sentence.MAX_SENT_LENGTH_DOCS} {Sentence.MAX_SENT_LENGTH_DEFAULT}
{Sentence.CONVERT_TO_LOWER_LETTER_DOCS} {Sentence.CONVERT_TO_LOWER_LETTER_DEFAULT}
'''
SENTENCE_INPUT_FORMAT = r"""
Input Formats
This field read one line of sentence per sample.
"""
TOKENIZER_DOCS = r"""
tokenizer (:class:`Tokenizer`, str, optional): How to tokenize sentence. if ``str``, see :ref:`tokenizer<tokenizer_ref>` for
possible value."""
TOKENIZER_DEFAULT = r'''No default value, ``KeyError`` will be raised.'''
VOCAB_DOCS = r"""
vocab (:class:`Vocab`, optional):The vocabulary used for this field. Sharing this object between fields can
build vocabulary together. """
VOCAB_DEFAULT = r'''No default value, ``KeyError`` will be raised.'''
VOCAB_FROM_MAPPINGS_DOCS = r"""
vocab_from_mappings (Dict[str, str], optional): Infer the set type (train, test, or extra) from the set name.
For example, ``DEFAULT_VOCAB_FROM_MAPPINGS["dev"] == "test"`` means that the words from the "dev" set
is used for test."""
VOCAB_FROM_MAPPINGS_DEFAULT = r"""Default: See :ref:`the table<vocab_from_ref>` for default value."""
MAX_SENT_LENGTH_DOCS = r'''
max_sent_length (int, _InfiniteLength, optional): All sentences longer than ``max_sent_length`` will be shortened
to first ``max_sent_length`` tokens. If it's ``None`` or ``Sentence.INFINITE_LENGTH``, sentences won't be
shortened no matter how long they are.'''
MAX_SENT_LENGTH_DEFAULT = r'''Default: ``None``.'''
CONVERT_TO_LOWER_LETTER_DOCS = r'''
convert_to_lower_letter (bool, optional): Whether convert all the tokens to lower case after tokenization.'''
CONVERT_TO_LOWER_LETTER_DEFAULT = r'''Default: ``False``.'''
INFINITE_LENGTH = _InfiniteLength()
def __init__(self, tokenizer: Union[None, Tokenizer, str] = None, \
vocab: Optional[Vocab] = None, \
vocab_from_mappings: Optional[Dict[str, str]] = None, \
max_sent_length: Union[int, _InfiniteLength, None] = None, \
convert_to_lower_letter: Optional[bool] = None):
if self.__class__.__name__ == "Sentence":
raise NotImplementedError("Sentence is an abstract class, use SentenceDefault instead.")
with FieldContext.set_parameters(\
tokenizer=tokenizer,\
vocab=vocab,\
vocab_from_mappings=vocab_from_mappings,\
max_sent_length=max_sent_length,\
convert_to_lower_letter=convert_to_lower_letter):
filled_tokenizer: Union[Tokenizer, str] = FieldContext.get("tokenizer", no_default=True)
self.vocab: Vocab = FieldContext.get("vocab", no_default=True)
self.vocab_from_mappings: Dict[str, str] = FieldContext.get("vocab_from_mappings", Field.DEFAULT_VOCAB_FROM_MAPPINGS)
self.max_sent_length: int = FieldContext.get("max_sent_length", None)
self.convert_to_lower_letter: bool = FieldContext.get("convert_to_lower_letter", False)
if self.max_sent_length == Sentence.INFINITE_LENGTH:
self.max_sent_length = None # max_sent_length is used for slice. So, None means that sent_length is unlimited.
self.tokenizer: Tokenizer
if isinstance(filled_tokenizer, str):
self.tokenizer = SimpleTokenizer(filled_tokenizer)
elif isinstance(filled_tokenizer, Tokenizer):
self.tokenizer = filled_tokenizer
else:
raise TypeError("Unknown tokenizer type")
def _create(self, set_name) -> _SentenceContent:
try:
return _SentenceContent(self, self.vocab_from_mappings[set_name])
except KeyError:
raise KeyError("Unknown set_name %s, do not specify in the vocab_from_mappings" % set_name) from None
@classmethod
def get_pretrained_class(cls, pretrained):
return {
"gpt2": SentenceGPT2,
"bert": SentenceBERT
}[pretrained]
def get_tokenizer(self):
return self.tokenizer
def get_vocab(self):
return self.vocab
def _get_setting_hash(self, vocabs) -> str:
return hashlib.sha256(dumps(
[self.__class__.__name__, \
#tokenizer_id, \
self.tokenizer.get_setting_hash(), \
vocabs.index(self.vocab), \
#self.vocab.get_setting_hash(), \
self.vocab_from_mappings, \
self.max_sent_length, \
self.convert_to_lower_letter \
])).hexdigest()
_SENTENCE_MORE_DOCSTRING = ""
def tokenize_sentences(self, sentences: List[str]) -> List[List[str]]:
'''Tokenize ``sentences``.
{_SENTENCE_MORE_DOCSTRING}
* Convert tokens to lower case if ``self.convert_to_lower_letter`` is ``True``.
Arguments:
sentences (List[str]): The list of sentence to be tokenized.
'''
tokenized_sentences = self.tokenizer.tokenize_sentences(sentences)
if self.convert_to_lower_letter:
return [[token.lower() for token in tokens] for tokens in tokenized_sentences]
else:
return tokenized_sentences
def tokenize(self, sentence: str) -> List[str]:
'''Tokenize ``sentence``.
{_SENTENCE_MORE_DOCSTRING}
* Convert tokens to lower case if ``self.convert_to_lower_letter`` is ``True``.
Arguments:
sentence (str): The sentence to be tokenized.
'''
tokenized_sentence = self.tokenizer.tokenize(sentence)
if self.convert_to_lower_letter:
return [token.lower() for token in tokenized_sentence]
else:
return tokenized_sentence
CONVERT_TO_ID_ARG = r"""
add_special (bool, optional): If ``True``, special tokens (e.g. ``go``, ``eos``) are added. Default: ``False``.
only_frequent_word (bool, optional): If ``True``, rare vocabs will be replaced by ``unk_id``. Default: ``False``."""
def convert_tokens_to_ids(self, tokens: List[str], add_special=False, only_frequent_word=False) -> List[int]:
'''Convert list of tokens to list of ids. {_SENTENCE_MORE_DOCSTRING}
Arguments:
tokens (List[str]): The tokens to be converted.{CONVERT_TO_ID_ARG}
'''
ids = self.vocab.convert_tokens_to_ids(tokens, only_frequent_word=only_frequent_word)
if add_special:
ids = self.add_special_to_ids(ids)
return ids
CONVERT_FROM_ID_ARG = r"""
remove_special (bool, optional): If ``True``, detect and try to do a reverse operation of ``add_special`` in :meth:`convert_tokens_to_ids`.
It will not remove ``unk`` or special tokens in the middle of sentences.
Default: ``True``.
trim (bool, optional): If ``True``, use :meth:`trim_in_ids` to remove trailing ``pad`` and ``eos``. Default: ``True``."""
def convert_ids_to_tokens(self, ids: List[int], remove_special=True, trim=True) -> List[str]:
'''Convert list of ids to list of tokens. {_SENTENCE_MORE_DOCSTRING}
Arguments:
ids (List[int]): The ids to be converted.{CONVERT_FROM_ID_ARG}
'''
return self.vocab.convert_ids_to_tokens(\
self.remove_special_in_ids(ids, remove_special=remove_special, trim=trim))
def convert_ids_to_sentence(self, ids: List[int], remove_special=True, trim=True) -> str:
'''Convert list of tokens to a sentence. {_SENTENCE_MORE_DOCSTRING}
Arguments:
ids (List[int]): The ids to be converted.{CONVERT_FROM_ID_ARG}
'''
tokens = self.convert_ids_to_tokens(ids, remove_special=remove_special, trim=trim)
return self.tokenizer.convert_tokens_to_sentence(tokens)
def convert_sentence_to_ids(self, sentence: str, add_special=False, only_frequent_word=False) -> List[int]:
'''Convert a sentence to a list of ids. {_SENTENCE_MORE_DOCSTRING}
Arguments:
sentence (str): The sentence to be converted.{CONVERT_TO_ID_ARG}
'''
return self.process_sentences([sentence], add_special=add_special, \
only_frequent_word=only_frequent_word, cut=False)[0]
def add_special_to_ids(self, ids: List[int]) -> List[int]:
'''Add special tokens, such as ``go_id`` or ``eos_id`` to the input ``ids``. {_SENTENCE_MORE_DOCSTRING}
Arguments:
ids (List[int]): The input ids.
'''
raise NotImplementedError
REMOVE_SPECIAL_ARG = CONVERT_FROM_ID_ARG.replace(":meth:`convert_tokens_to_ids()`", ":meth:`add_special_to_ids`")
def remove_special_in_ids(self, ids: List[int], remove_special=True, trim=True) -> List[int]:
'''Remove special ids in input `ids`. {_SENTENCE_MORE_DOCSTRING}
Arguments:
ids (List[int]): Input ids.{CONVERT_FROM_ID_ARG}
'''
raise NotImplementedError
PROCESS_ARG = r"""
add_special (bool, optional): If ``True``, special tokens (e.g. ``go``, ``eos``) are added. Default: ``True``.
only_frequent_word (bool, optional): If ``True``, rare vocabs will be replaced by ``unk_id``. Default: ``False``."""
def process_sentences(self, sentences: Union[List[str], List[List[str]]],
add_special=True,
only_frequent_word=False,
cut=True) -> List[List[int]]:
'''Process input sentences.
{_SENTENCE_MORE_DOCSTRING}
* If sentences haven't been tokenized, tokenize them by invoking :meth:`Sentence.tokenize_sentences`.
* Then, convert the list of tokens to a list of ids.
* If ``self.max_sent_length`` is not ``None`` and ``cut`` is ``True``,
sentences, whose length are more than ``self.max_sent_length``, are
shorten to first ``self.max_sent_length`` tokens.
Arguments:
sentences (List[str], List[List[str]]): `sentences` can be a list of sentences or a list of lists of tokens.
{PROCESS_ARG}
cut (bool, optional): Whether to cut sentences with too many tokens. Default: ``True``.
'''
# sentences: : Union[List[str], List[List[str]]]
if not sentences:
raise ValueError("sentences must not be empty.")
# list of sentences
if isinstance(sentences[0], str):
sentences = self.tokenize_sentences(sentences)
elif not sentences[0]:
raise ValueError("sentences[0] must not be an empty string.")
# list of list of str
sentences = [self.convert_tokens_to_ids(tokens, add_special=add_special, only_frequent_word=only_frequent_word) for tokens in sentences]
# list of list of id
if cut and self.max_sent_length is not None:
before_lengths = [len(sentence) for sentence in sentences]
sentences = [sentence[:self.max_sent_length] for sentence in sentences]
after_lengths = [len(sentence) for sentence in sentences]
if len(sentences) > 1:
logging.info("max length before cut: %d, cut percent: %.2f%%" % (
max(before_lengths),
(sum(before_lengths) - sum(after_lengths)) / sum(before_lengths) * 100)
)
# sentence cut
return sentences
if is_build_private_docs():
_GET_BATCH_DATA_DOCSTRING = '''data (Any): the object returned by :meth:`_SentenceContent.get_data`'''
def get_batch(self, name: str, data: Dict[str, Any], indexes: List[int]) -> Dict[str, Any]:
raise NotImplementedError
def trim_in_ids(self, ids: List[int]) -> List[int]:
'''Find the first special token indicating the sentence is over and remove all the tokens after it (included).
Then remove all trailing ``pad``. {_SENTENCE_MORE_DOCSTRING}
Arguments:
ids (List[int]): The input ids.
'''
raise NotImplementedError
def _remove_special_in_ids(self, ids: List[int], go_id: int, eos_id: int) -> List[int]:
'''Try to remove special token (``go_id`` at the beginning and the ``eos_id`` at the end) in ``ids``.
{_SENTENCE_MORE_DOCSTRING}
Arguments:
ids (List[int]): the original ids
go_id (int): go token
eos_id (int): eos token
'''
if not ids:
return ids
st, ed = 0, None
if ids[0] == go_id:
st = 1
if ids[-1] == eos_id:
ed = -1
return ids[st:ed]
# copy some functions from vocab
_VOCAB_MORE_DOCSTRING = '''It calls the method with the identical name of the :class:`Vocab` instance, \
from ``self.get_vocab()``.'''
frequent_vocab_size = copy_property(get_vocab, Vocab, "frequent_vocab_size")
all_vocab_size = copy_property(get_vocab, Vocab, "all_vocab_size")
frequent_vocab_list = copy_property(get_vocab, Vocab, "frequent_vocab_list")
all_vocab_list = copy_property(get_vocab, Vocab, "all_vocab_list")
get_special_tokens_mapping = copy_func(get_vocab, Vocab, "get_special_tokens_mapping")
get_special_tokens_id = copy_func(get_vocab, Vocab, "get_special_tokens_id")
pad_id = copy_property(get_vocab, Vocab, "pad_id")
unk_id = copy_property(get_vocab, Vocab, "unk_id")
go_id = copy_property(get_vocab, Vocab, "go_id")
eos_id = copy_property(get_vocab, Vocab, "eos_id")
class SentenceDefault(Sentence):
'''Bases: :class:`.dataloader.Sentence`, :class:`.dataloader.Field`
A common use field for sentence.
{INIT_DOCSTRING}
{SENTENCE_INPUT_FORMAT}
'''
INIT_DOCSTRING = Sentence.INIT_DOCSTRING.replace(":class:Vocab", ":class:GeneralVocab")
def __init__(self, tokenizer: Union[None, Tokenizer, str] = None, \
vocab: Optional[Vocab] = None, \
vocab_from_mappings: Optional[Dict[str, str]] = None, \
max_sent_length: Union[int, None, _InfiniteLength] = None, \
convert_to_lower_letter: Optional[bool] = None):
super().__init__(tokenizer=tokenizer, \
vocab=vocab, vocab_from_mappings=vocab_from_mappings, max_sent_length=max_sent_length, \
convert_to_lower_letter=convert_to_lower_letter)
self.vocab: Vocab
def add_special_to_ids(self, ids: List[int]) -> List[int]:
return [self.vocab.go_id] + ids + [self.vocab.eos_id]
def remove_special_in_ids(self, ids: List[int], remove_special=True, trim=True) -> List[int]:
if trim:
ids = self.trim_in_ids(ids)
if remove_special:
ids = self._remove_special_in_ids(ids, self.vocab.go_id, self.vocab.eos_id)
return ids
_GET_BATCH_RETURN_VALUE = """
The function will return a dict, containing:
* ``FIELDNAME`` (``np.ndarray[batch_size, max_sent_length_in_batch]``):
Padded sentences in id formats. It only contains frequent vocabs, and rare words are replaced by ``unk_id``.
* ``FIELDNAME_allvocabs`` (``np.ndarray[batch_size, max_sent_length_in_batch]``):
Padded sentences in id formats. It contains frequent vocabs and rare vocabs.
* ``FIELDNAME_length`` (``np.ndarray[batch_size]``): The length of sentences.
* ``FIELDNAME_str`` (``List[str]``): The raw sentences.
where
* ``FIELDNAME`` is the name of the field.
* ``batch_size`` is ``len(indexes)``.
* ``max_sent_length_in_batch`` is the maximum length of sentences in the batch.
"""
_GET_BATCH_EXAMPLE = """
Examples:
>>> # all_vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "Life", "is", "short", ".",
>>> # "PHP", "the", "best", "language", "in", "world"]
>>> # frequent_vocab_size = 11
>>> # frequent_vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "Life", "is", "short", ".",
>>> # "PHP", "the", "best"]
>>> field.get_batch('sent', data, [0, 1])
{
"sent": numpy.array([
[2, 4, 5, 6, 7, 3, 0, 0, 0, 0, 0], # <go> Life is short . <eos> <pad> <pad> <pad> <pad> <pad>
[2, 8, 5, 9, 10, 1, 1, 9, 1, 7, 3], # <go> PHP is the best <unk> <unk> the <unk> . <eos>
]),
"sent_length": numpy.array([6, 11]), # length of sentences
"sent_allvocabs": numpy.array([
[2, 4, 5, 6, 7, 3, 0, 0, 0, 0, 0], # <go> Life is short . <eos> <pad> <pad> <pad> <pad> <pad>
[2, 8, 5, 9, 10, 11, 12, 9, 13, 7, 3], # <go> PHP is the best language in the world . <eos>
]),
"sent_str": [
"Life is short.",
"PHP is the best language in the world.",
],
}
"""
def get_batch(self, name: str, data: Dict[str, Any], indexes: List[int]) -> Dict[str, Any]:
if not isinstance(self.vocab, GeneralVocab):
raise RuntimeError("Subclass must override get_batch if self.vocab is not a GeneralVocab.")
res: Dict[str, Any] = {}
data_id, data_str = data["id"], data["str"]
batch_size = len(indexes)
res[name + "_length"] = np.array([len(data_id[i]) for i in indexes], dtype=int)
res_sent = res[name] = np.ones((batch_size, np.max(res[name + "_length"])), dtype=int) * self.vocab.pad_id
for i, j in enumerate(indexes):
sent = data_id[j]
res_sent[i, :len(sent)] = sent
res[name + "_allvocabs"] = res_sent.copy()
res_sent[res_sent >= self.vocab.frequent_vocab_size] = self.vocab.unk_id
res[name + "_str"] = [data_str[i] for i in indexes]
return res
def trim_in_ids(self, ids: List[int]) -> List[int]:
ids = trim_before_target(list(ids), self.vocab.eos_id)
idx = len(ids)
while idx > 0 and ids[idx - 1] == self.vocab.pad_id:
idx -= 1
ids = ids[:idx]
return ids
class SentenceGPT2(Sentence):
'''Bases: :class:`.dataloader.Sentence`, :class:`.dataloader.Field`
A field for sentence in the format of GPT2.
{INIT_DOCSTRING}
{SENTENCE_INPUT_FORMAT}
'''
INIT_DOCSTRING = Sentence.INIT_DOCSTRING.replace(":class:Vocab", ":class:PretrainedVocab")
def __init__(self, tokenizer: Union[None, PretrainedTokenizer] = None, \
vocab: Optional[PretrainedVocab] = None, \
vocab_from_mappings: Optional[Dict[str, str]] = None, \
max_sent_length: Union[int, None, _InfiniteLength] = None, \
convert_to_lower_letter: Optional[bool] = None):
super().__init__(tokenizer=tokenizer, \
vocab=vocab, vocab_from_mappings=vocab_from_mappings,\
max_sent_length=max_sent_length, \
convert_to_lower_letter=convert_to_lower_letter)
if not isinstance(self.tokenizer, PretrainedTokenizer) or self.tokenizer.get_tokenizer_class() != "GPT2Tokenizer":
raise ValueError("You have to specify a pretrained tokenizer compatible with gpt2")
self.inner_tokenizer = self.tokenizer.tokenizer
if not isinstance(self.vocab, PretrainedVocab):
raise ValueError("You have to specify a PretrainedVocab for SentenceGPT2 field")
self.vocab: PretrainedVocab
def add_special_to_ids(self, ids: List[int]) -> List[int]:
return [self.vocab.eos_id] + ids + [self.vocab.eos_id]
def remove_special_in_ids(self, ids: List[int], remove_special=True, trim=True) -> List[int]:
if trim:
ids = self.trim_in_ids(ids)
if remove_special:
ids = self._remove_special_in_ids(ids, self.vocab.eos_id, self.vocab.eos_id)
return ids
_GET_BATCH_RETURN_VALUE = SentenceDefault._GET_BATCH_RETURN_VALUE
_GET_BATCH_EXAMPLE = """
Examples:
>>> # This example is based on GPT2Tokenizer. The vocab files are in ./tests/dummy_gpt2vocab.
>>> # field.eos_id = 413 # <|endoftext|>, also used for <pad>, <unk>, <go>
>>> field.get_batch('sent', data, [0, 2])
{
"sent": numpy.array([
[413, 6, 134, 321, 407, 107, 157, 121, 372, 201, 402, 105, 413, 413, 413, 413],
# ['<|endoftext|>', 'A', 'Ġbicycle', 'Ġreplica', 'Ġwith', 'Ġa', 'Ġclock', 'Ġas', 'Ġthe',
# 'Ġfront', 'Ġwheel', 'Ġ.', '<|endoftext|>', '<|endoftext|>', '<|endoftext|>', '<|endoftext|>']
[413, 6, 149, 370, 330, 384, 126, 298, 236, 130, 107, 255, 298, 149, 105, 413],
# ['<|endoftext|>', 'A', 'Ġcar', 'Ġthat', 'Ġseems', 'Ġto', 'Ġbe', 'Ġparked', 'Ġillegally',
# 'Ġbehind', 'Ġa', 'Ġlegally', 'Ġparked', 'Ġcar', 'Ġ.', '<|endoftext|>']
]),
"sent_length": numpy.array([13, 16]), # length of sentences
"sent_allvocabs": numpy.array([
[413, 6, 134, 321, 407, 107, 157, 121, 372, 201, 402, 105, 413, 413, 413, 413],
# ['<|endoftext|>', 'A', 'Ġbicycle', 'Ġreplica', 'Ġwith', 'Ġa', 'Ġclock', 'Ġas', 'Ġthe',
# 'Ġfront', 'Ġwheel', 'Ġ.', '<|endoftext|>', '<|endoftext|>', '<|endoftext|>', '<|endoftext|>']
[413, 6, 149, 370, 330, 384, 126, 298, 236, 130, 107, 255, 298, 149, 105, 413],
# ['<|endoftext|>', 'A', 'Ġcar', 'Ġthat', 'Ġseems', 'Ġto', 'Ġbe', 'Ġparked', 'Ġillegally',
# 'Ġbehind', 'Ġa', 'Ġlegally', 'Ġparked', 'Ġcar', 'Ġ.', '<|endoftext|>']
]),
"sent_str": [
"A bicycle replica with a clock as the front wheel .",
"A car that seems to be parked illegally behind a legally parked car .",
],
}
"""
def get_batch(self, name: str, data: Dict[str, Any], indexes: List[int]) -> Dict[str, Any]:
res: Dict[str, Any] = {}
data_id, data_str = data["id"], data["str"]
batch_size = len(indexes)
res[name + "_length"] = np.array([len(data_id[i]) for i in indexes], dtype=int)
res_sent = res[name] = np.ones((batch_size, np.max(res[name + "_length"])), dtype=int) * self.vocab.eos_id
#res_attn = res[name + "_attnmask"] = np.zeros((batch_size, np.max(res[name + "_length"])), dtype=int)
for i, j in enumerate(indexes):
sent = data_id[j]
res_sent[i, :len(sent)] = sent
# res_attn[i, :len(sent)] = 1
res[name + "_allvocabs"] = res_sent.copy()
res[name + "_str"] = [data_str[i] for i in indexes]
return res
def trim_in_ids(self, ids: List[int]) -> List[int]:
if ids[0] == self.vocab.eos_id:
ids = [self.vocab.eos_id] + trim_before_target(list(ids[1:]), self.vocab.eos_id)
else:
ids = trim_before_target(list(ids), self.vocab.eos_id)
return ids
class SentenceBERT(Sentence):
'''Bases: :class:`.dataloader.Sentence`, :class:`.dataloader.Field`
A field for sentence in the format of BERT.
{INIT_DOCSTRING}
{SENTENCE_INPUT_FORMAT}
'''
INIT_DOCSTRING = Sentence.INIT_DOCSTRING.replace(":class:Vocab", ":class:PretrainedVocab")
def __init__(self, tokenizer: Union[None, PretrainedTokenizer] = None, \
vocab: Optional[PretrainedVocab] = None, \
vocab_from_mappings: Optional[Dict[str, str]] = None, \
max_sent_length: Union[int, None, _InfiniteLength] = None, \
convert_to_lower_letter: Optional[bool] = None):
super().__init__(tokenizer=tokenizer, \
vocab=vocab, vocab_from_mappings=vocab_from_mappings,\
max_sent_length=max_sent_length, \
convert_to_lower_letter=convert_to_lower_letter)
if not isinstance(self.tokenizer, PretrainedTokenizer) or self.tokenizer.get_tokenizer_class() != "BertTokenizer":
raise ValueError("You have to specify a pretrained tokenizer compatible with BERT")
self.inner_tokenizer = self.tokenizer.tokenizer
if not isinstance(self.vocab, PretrainedVocab):
raise ValueError("You have to specify a PretrainedVocab for SentenceBERT field")
self.vocab: PretrainedVocab
def add_special_to_ids(self, ids: List[int]) -> List[int]:
return [self.vocab.get_special_tokens_id("cls")] + ids + [self.vocab.get_special_tokens_id("sep")]
def remove_special_in_ids(self, ids: List[int], remove_special=True, trim=True) -> List[int]:
if trim:
ids = self.trim_in_ids(ids)
if remove_special:
ids = self._remove_special_in_ids(ids, self.vocab.get_special_tokens_id("cls"), self.vocab.get_special_tokens_id("sep"))
return ids
_GET_BATCH_RETURN_VALUE = SentenceDefault._GET_BATCH_RETURN_VALUE
_GET_BATCH_EXAMPLE = """
Examples:
>>> # This example is based on BertTokenizer. The vocab files are in ./tests/dummy_bertvocab.
>>> field.get_batch('sent', data, [0, 1])
{
"sent": numpy.array([
[101, 147, 37, 29, 359, 102, 0, 0, 0, 0, 0, 0, 0],
# ['<cls>', 'How', 'are', 'you', '?', '<sep>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
[101, 375, 334, 379, 127, 341, 350, 29, 328, 9, 29, 359, 102]
# ['<cls>', 'i', ''', 'm', 'fine', '.', 'thank', 'you', '!', 'and', 'you', '?', '<sep>']
]),
"sent_length": numpy.array([6, 13]), # length of sentences,
"sent_allvocabs": numpy.array([
[101, 147, 37, 29, 359, 102, 0, 0, 0, 0, 0, 0, 0],
# ['<cls>', 'how', 'are', 'you', '?', '<sep>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>', '<pad>']
[101, 375, 334, 379, 127, 341, 350, 29, 328, 9, 29, 359, 102]
# ['<cls>', 'i', ''', 'm', 'fine', '.', 'thank', 'you', '!', 'and', 'you', '?', '<sep>']
]),
"sent_str": [
"How are you?",
"I'm fine. Thank you! And you?"
],
}
"""
def get_batch(self, name: str, data: Dict[str, Any], indexes: List[int]) -> Dict[str, Any]:
res: Dict[str, Any] = {}
data_id, data_str = data["id"], data["str"]
batch_size = len(indexes)
res[name + "_length"] = np.array([len(data_id[i]) for i in indexes], dtype=int)
res_sent = res[name] = np.ones((batch_size, np.max(res[name + "_length"])), dtype=int) * self.vocab.pad_id
#res_attn = res[name + "_attnmask"] = np.zeros((batch_size, np.max(res[name + "_length"])), dtype=int)
for i, j in enumerate(indexes):
sent = data_id[j]
res_sent[i, :len(sent)] = sent
# res_attn[i, :len(sent)] = 1
res[name + "_allvocabs"] = res_sent.copy()
res[name + "_str"] = [data_str[i] for i in indexes]
return res
def trim_in_ids(self, ids: List[int]) -> List[int]:
# The first token can't be the sep token
ids = trim_before_target(list(ids), self.vocab.get_special_tokens_id("sep"))
return ids
class _SessionContent(_FieldContent):
'''Store the content data of :class:`Session` Field.
Different from :class:`Field`, it won't be shared between fields or dataloader,
and it can save data.
'''
def __init__(self, field: "Session", vocab_from: str):
self.field = field
self.vocab_from = vocab_from
self._tmp_tokenized_data: Any = None
super().__init__()
def _get_next(self, dataset: Iterator[str]) -> Tuple[List[str], int]:
r"""read **several(one or more)** elements and returns a 2-tuple (the next session, and the number of elements it reads).
The first several non-space elements in `dataset`, followed by a '\\n', are regarded as a session.
The first element must not be empty string or '\\n'.
Note that it may raise StopIteration.
Arguments:
{_FieldContent._GET_NEXT_ARG}
Examples:
>>> dataset = iter(["a\n", "b\n", "\n", "c\n", "d\e", "e\n", '\n'])
>>> session_field = "Session" # For simplicity, `session_field` is a string, rather than a Session object.
>>> field_content = _SessionContent(session_field, "test")
>>> field_content._get_next(dataset)
(['a', 'b'], 2) # The first session. '\n' separates sessions.
>>> field_content._get_next(dataset)
(['c', 'd', 'e'], 3) # The second(last) session. For the last session, it doesn't matter whether it's followed by '\n'.
"""
session: List[str] = []
lineno = 0
while True:
try:
line = next(dataset)
lineno += 1
if line == '\n':
break
session.append(line.rstrip())
except StopIteration:
break
if not session:
raise StopIteration
return session, lineno
def process_before_vocab(self):
raw_data_hash = UnorderedSha256()
for data in self._original_data:
raw_data_hash.update_data(dumps(data))
self._raw_data_hash = raw_data_hash.hexdigest()
self._tmp_tokenized_data = tokenized_sessions = self.field.tokenize_sessions(self._original_data)
data_hash = UnorderedSha256()
for tokenized_data in self._tmp_tokenized_data:
data_hash.update_data(dumps(tokenized_data))
self._data_hash = data_hash.hexdigest()
self.field.get_vocab().add_tokens(list(chain(*chain(*tokenized_sessions))), self.vocab_from)
def get_data(self) -> Dict[str, list]:
id_data = self.field.process_sessions(self._tmp_tokenized_data)
return {"id": id_data, "str": self._original_data}
class Session(Sentence):
"""Bases: :class:`.dataloader.Field`
A field for session. Each session is a list of sentences.
{Sentence.INIT_DOCSTRING}
{MAX_TURN_LENGTH_DOCS} {MAX_TURN_LENGTH_DEFAULT}
{SESSION_INPUT_FORMAT}
"""
SESSION_INPUT_FORMAT = r"""
Input Format
This field read multiple line of sentences per sample, until a blank line.
"""
MAX_TURN_LENGTH_DOCS = r"""
max_turn_length (int, _InfiniteLength, optional): Set the maximum turn length of a session.
If it's an integer, any session, whose turn length is more than ``max_turn_length`` is shortened to
first ``max_sent_length`` turns. The left turns are ignored.
If it's ``None`` or ``Sentence.INFINITE_LENGTH``, sessions won't be shortened and all turns are remained."""
MAX_TURN_LENGTH_DEFAULT = """Default: ``None``."""
def __init__(self, tokenizer: Union[None, Tokenizer, str] = None,
vocab: Optional[Vocab] = None,
vocab_from_mappings: Optional[Dict[str, str]] = None,
max_sent_length: Union[int, None, _InfiniteLength] = None,
convert_to_lower_letter: Optional[bool] = None,
max_turn_length: Union[int, None, _InfiniteLength] = None,):
if type(self) == Session:
raise NotImplementedError(
"%s is an abstract class. Please use %s instead." % (Session.__name__, SessionDefault.__name__))
super().__init__(tokenizer, vocab, vocab_from_mappings, max_sent_length, convert_to_lower_letter)
with FieldContext.set_parameters(max_turn_length=max_turn_length):
max_turn_length = FieldContext.get('max_turn_length', None)
if max_turn_length == Sentence.INFINITE_LENGTH:
max_turn_length = None # max_turn_length is used for slice. So, None means that turn_length is unlimited.
if max_turn_length is not None:
msg = "max_turn_length must be None or a positive integer"
if not isinstance(max_turn_length, int):
raise TypeError(msg)
elif max_turn_length <= 0:
raise ValueError(msg)
self.max_turn_length = max_turn_length
_SESSION_MORE_DOCSTRING = ""
def tokenize_sessions(self, sessions: List[RawSessionType]) -> List[TokenizedSessionType]:
'''Tokenize ``sessions``.
{_SESSION_MORE_DOCSTRING}
* Convert the tokens to lower case if ``self.convert_to_lower_letter`` is ``True``.
Arguments:
sessions (List[List[str]]): The list of sessions to be tokenized.
'''
return [self.tokenize_sentences(session) for session in sessions]
PROCESS_ARG = Sentence.PROCESS_ARG
def process_sessions(self, sessions: List[TokenizedSessionType], add_special=True,
only_frequent_word=False, cut=True):
"""Process input sessions.
{_SESSION_MORE_DOCSTRING}
* If ``self.max_turn_length`` is not ``None`` and ``cut`` is ``True``,
sessions, whose length are more than ``self.max_turn_length``, are
shorten to first ``self.max_turn_length`` sentences.
* If sessions haven’t been tokenized, tokenize them by invoking :meth:`self.tokenize_sessions`
* Then, convert the list of tokens to a list of ids.
* If ``self.max_sent_length`` is not ``None`` and ``cut`` is ``True``,
sentences, whose length are more than ``self.max_sent_length``, are
shorten to first ``self.max_sent_length`` tokens.
Arguments:
sessions (List[List[str], List[List[str]]]):
sentences in a session can be a str or a list of tokens.
{PROCESS_ARG}
cut (bool, optional): Whether to cut sessions/sentences with too many sentences/tokens. Default: ``True``.
"""
# Cut sessions.
# If a session's turn length > `self.max_turn_length`, retain the first `self.max_turn_length` sentences and discard the rest.
if cut and self.max_turn_length is not None:
turn_length_before_cut = list(map(len, sessions))
max_turn_length_before_cut = max(turn_length_before_cut)
sessions = [session[:self.max_turn_length] for session in sessions]
turn_length_after_cut = list(map(len, sessions))
if len(sessions) > 1:
logging.info("max turn length before cut: %d, cut percent: %.2f%%" % (
max_turn_length_before_cut,
100 * (1 - sum(turn_length_after_cut) / sum(turn_length_before_cut)))
)
sentences: List[TokenizedSentenceType]
session_length: List[int]
sentences, session_lengths = chain_sessions(sessions)
processed_sessions = self.process_sentences(sentences, add_special=add_special, only_frequent_word=only_frequent_word, cut=cut)
processed_sessions = restore_sessions(processed_sessions, session_lengths)
return processed_sessions
def _create(self, set_name) -> _SessionContent:
try:
return _SessionContent(self, self.vocab_from_mappings[set_name])
except KeyError:
raise KeyError("Unknown set_name %s, do not specify in the vocab_from_mappings" % set_name) from None
def convert_multi_turn_tokens_to_ids(self, session: List[List[str]], add_special=False, only_frequent_word=False) -> \
List[List[int]]:
'''Convert list of tokenized sentences to list of sentence ids. {_SESSION_MORE_DOCSTRING}
Arguments:
session (List[List[str]]): The tokenized sentences to be converted.{CONVERT_TO_ID_ARG}
'''
return [self.convert_tokens_to_ids(sent, add_special, only_frequent_word) for sent in session]
def convert_multi_turn_ids_to_tokens(self, session_ids, remove_special=True, trim=True):
'''Convert list of sentence ids to list of sentences. {_SESSION_MORE_DOCSTRING}
Arguments:
session_ids (List[List[int]]): The sentence ids to be converted.{CONVERT_FROM_ID_ARG}
'''
return [self.convert_ids_to_tokens(sent_ids, remove_special, trim) for sent_ids in session_ids]
def multi_turn_trim_in_ids(self, session_ids: List[List[int]]) -> List[List[int]]:
'''For each sentence ids in session,
find the first special token indicating the sentence is over and remove all the tokens after it (included).
Then remove all trailing ``pad``. {_SESSION_MORE_DOCSTRING}
Arguments:
session_ids (List[List[int]]): The input ids of session.
'''
return [self.trim_in_ids(sent_ids) for sent_ids in session_ids]
@classmethod
def get_pretrained_class(cls, pretrained):
return {
"gpt2": SessionGPT2,
"bert": SessionBERT
}[pretrained]
@classmethod
def get_candidate_pretrained_class(cls, pretrained):
return {
"gpt2": SentenceCandidateGPT2,
"bert": SentenceCandidateBERT
}[pretrained]
class SessionDefault(Session):
'''Bases: :class:`.dataloader.Session`, :class:`.dataloader.Field`
A common use field for sessions.
{INIT_DOCSTRING}
{SESSION_INPUT_FORMAT}
'''
INIT_DOCSTRING = Sentence.INIT_DOCSTRING.replace(":class:Vocab", ":class:GeneralVocab")
add_special_to_ids = SentenceDefault.add_special_to_ids
remove_special_in_ids = SentenceDefault.remove_special_in_ids
trim_in_ids = SentenceDefault.trim_in_ids
_GET_BATCH_DATA_DOCSTRING = SentenceDefault._GET_BATCH_DATA_DOCSTRING.replace(_SentenceContent.__name__, _SessionContent.__name__).replace('sentences', 'sessions')
_GET_BATCH_RETURN_VALUE = """
The function will return a dict, containing:
* ``FIELDNAME`` (``np.ndarray[batch_size, max_turn_length_in_batch, max_sent_length_in_batch]``):
Padded sessions in id formats. It only contains frequent vocabs, and rare words are replaced by ``unk_id``.
* ``FIELDNAME_allvocabs`` (``np.ndarray[batch_size, max_turn_length_in_batch, max_sent_length_in_batch]``):
Padded sessions in id formats. It contains frequent vocabs and rare vocabs.
* ``FIELDNAME_turn_length`` (``np.ndarray[batch_size]``): The turn numbers of sessions.
* ``FIELDNAME_sent_length`` (``List[List[int]]``): The length of sentences of sessions.
* ``FIELDNAME_str`` (``List[str]``): The raw sessions.
where
* ``FIELDNAME`` is the name of the field.
* ``batch_size`` is ``len(indexes)``.
* ``max_turn_length_in_batch`` is the maximum turn number of sessions in the batch.
* ``max_sent_length_in_batch`` is the maximum length of sentences in the batch.
"""
_GET_BATCH_EXAMPLE = r"""
Examples:
>>> # dataset = iter(['How are you?\n', "I'm fine. And you?\n", "I'm fine, too.\n", "\n",
>>> # "How to install cotk?\n", "pip install cotk.\n", "\n"])
>>> # min_frequent_vocab_times = 2
>>> # all_vocab_list = ['<pad>', '<unk>', '<go>', '<eos>', '.', '?', "'", 'How', 'I',
>>> # 'cotk', 'fine', 'install', 'm', 'you', ',', 'And', 'are', 'pip', 'to', 'too']
>>> # frequent_vocab_size = 14
>>> # frequent_vocab_list = ['<pad>', '<unk>', '<go>', '<eos>', '.', '?', "'", 'How', 'I',
>>> # 'cotk', 'fine', 'install', 'm', 'you']
>>> # data = {
>>> # 'id': [
>>> # [
>>> # [2, 7, 16, 13, 5, 3],
>>> # [2, 8, 6, 12, 10, 4, 15, 13, 5, 3],
>>> # [2, 8, 6, 12, 10, 14, 19, 4, 3],
>>> # ],
>>> # [
>>> # [2, 7, 18, 11, 9, 5, 3],
>>> # [2, 17, 11, 9, 4, 3],
>>> # ]
>>> # ],
>>> # 'str': [
>>> # [
>>> # 'How are you?',
>>> # "I'm fine. And you?",
>>> # "I'm fine, too."
>>> # ],
>>> # [
>>> # 'How to install cotk?',
>>> # 'pip install cotk.'
>>> # ]
>>> #
>>> # }
>>> field.get_batch('session', data, [0, 1])
{
'session_turn_length': numpy.array([3, 2]),
'session_sent_length': [
[6, 10, 9],
[7, 6]
],
'session': numpy.array([
[
[ 2, 7, 1, 13, 5, 3, 0, 0, 0, 0], # <go> How <unk> you? <eos> <pad> <pad> <pad> <pad>
[ 2, 8, 6, 12, 10, 4, 1, 13, 5, 3], # <go> I'm fine. <unk> you? <eos>
[ 2, 8, 6, 12, 10, 1, 1, 4, 3, 0] # <go> I'm fine <unk> <unk>. <eos> <pad>
],
[
[ 2, 7, 1, 11, 9, 5, 3, 0, 0, 0], # <go> How <unk> install cotk? <eos> <pad> <pad> <pad>
[ 2, 1, 11, 9, 4, 3, 0, 0, 0, 0], # <go> <unk> install cotk. <eos> <pad> <pad> <pad> <pad>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # all <pad>
]
]),
'session_allvocabs': numpy.array([
[
[ 2, 7, 16, 13, 5, 3, 0, 0, 0, 0], # <go> How are you? <eos> <pad> <pad> <pad> <pad>
[ 2, 8, 6, 12, 10, 4, 15, 13, 5, 3], # <go> I'm fine. And you? <eos>
[ 2, 8, 6, 12, 10, 14, 19, 4, 3, 0] # <go> I'm fine, too. <eos> <pad>
],
[
[ 2, 7, 18, 11, 9, 5, 3, 0, 0, 0], # <go> How to install cotk? <eos> <pad> <pad> <pad>
[ 2, 17, 11, 9, 4, 3, 0, 0, 0, 0], # <go> pip install cotk. <eos> <pad> <pad> <pad> <pad>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # all <pad>
]
]),
'session_str': [
[
'How are you?',
"I'm fine. And you?",
"I'm fine, too."
],
[
'How to install cotk?',
'pip install cotk.'
]
]
}
"""
def get_batch(self, name: str, data: Dict[str, Any], indexes: List[int]) -> Dict[str, Any]:
if not isinstance(self.vocab, GeneralVocab):
raise RuntimeError("Subclass must override get_batch if self.vocab is not a GeneralVocab.")
res = {}
data_id, data_str = data['id'], data['str']
batch_size = len(indexes)
turn_lengths = res[name + "_turn_length"] = np.array([len(data_id[i]) for i in indexes], dtype=int)
res[name + "_sent_length"] = [[len(sent) for sent in data_id[i]] for i in indexes]
max_sent_length = max(map(max, res[name + "_sent_length"]))
res_session = res[name] = np.zeros((batch_size, turn_lengths.max(), max_sent_length), dtype=int)
for i, j in enumerate(indexes):
session = data_id[j]
session = [list(sent) + [0] * (max_sent_length-len(sent)) for sent in session]
res_session[i, :len(session)] = np.array(session, dtype=int)
res[name + "_allvocabs"] = res_session.copy()
res_session[res_session >= self.vocab.frequent_vocab_size] = self.vocab.unk_id
res[name + "_str"] = [data_str[i] for i in indexes]
return res
class SessionGPT2(Session):
'''Bases: :class:`.dataloader.Session`, :class:`.dataloader.Field`
A field for session in the format of GPT2.
{INIT_DOCSTRING}
{SESSION_INPUT_FORMAT}
'''
INIT_DOCSTRING = Sentence.INIT_DOCSTRING.replace(":class:Vocab", ":class:PretrainedVocab")
def __init__(self, tokenizer: Union[None, PretrainedTokenizer] = None,
vocab: Optional[PretrainedVocab] = None,
vocab_from_mappings: Optional[Dict[str, str]] = None,
max_sent_length: Union[int, None, _InfiniteLength] = None,
convert_to_lower_letter: Optional[bool] = None,
max_turn_length: Union[int, None, _InfiniteLength] = None,):
super().__init__(tokenizer, vocab, vocab_from_mappings, max_sent_length, convert_to_lower_letter, max_turn_length)
if not isinstance(self.tokenizer, PretrainedTokenizer) or self.tokenizer.get_tokenizer_class() != "GPT2Tokenizer":
raise ValueError("You have to specify a pretrained tokenizer compatible with gpt2")
self.inner_tokenizer = self.tokenizer.tokenizer
if not isinstance(self.vocab, PretrainedVocab):
raise ValueError("You have to specify a PretrainedVocab for SentenceGPT2 field")
self.vocab: PretrainedVocab
add_special_to_ids = SentenceGPT2.add_special_to_ids
remove_special_in_ids = SentenceGPT2.remove_special_in_ids
trim_in_ids = SentenceGPT2.trim_in_ids
_GET_BATCH_DATA_DOCSTRING = SessionDefault._GET_BATCH_DATA_DOCSTRING
# TODO: update return value of get_batch. I have trouble with `GPT2Tokenizer.from_pretrained('gpt2')`
# the following codes in Examples haven't been run.
_GET_BATCH_EXAMPLE = r"""
# NOTE: We only show the structure of return value of get_batch. The real value of each entry may depends on the loaded vocab.
Examples:
>>> from transformers.tokenization_gpt2 import GPT2Tokenizer
>>> from cotk.dataloader.tokenizer import PretrainedTokenizer
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> field = SessionGPT2(PretrainedTokenizer(tokenizer))
>>> field_content = field._create('train')
>>> dataset = iter(['How are you?\n', "I'm fine. Thank you! And you?\n", "I'm fine, too.\n", "\n", "How to install CoTk?\n", "pip install cotk.\n", "\n"])
>>> while True:
... try:
... field_content.read_next(dataset)
... except StopIteration:
... break
>>> field_content.process_before_vocab()
>>> field.vocab.build_vocab()
>>> data = field_content.get_data()
>>> data
{'id': [[[2, 8, 18, 6, 5, 3],
[2, 9, 7, 12, 10, 4, 17, 6, 13, 15, 6, 5, 3],
[2, 9, 7, 12, 10, 14, 22, 4, 3]],
[[2, 8, 21, 11, 16, 5, 3], [2, 20, 11, 19, 4, 3]]],
'str': [['How are you?', "I'm fine. Thank you! And you?", "I'm fine, too."],
['How to install CoTk?', 'pip install cotk.']]}
>>> batch_data = field.get_batch('session', data, [1])
>>> batch_data
{'session_turn_length': array([2]),
'session_sent_length': [[7, 6]],
'session': array([[[ 2, 8, 21, 11, 16, 5, 3],
[ 2, 20, 11, 19, 4, 3, 0]]]),
'session_allvocabs': array([[[ 2, 8, 21, 11, 16, 5, 3],
[ 2, 20, 11, 19, 4, 3, 0]]]),
'session_str': [['How to install CoTk?', 'pip install cotk.']]}
>>> # 'session_turn_length' (`name` + '_turn_length') is a :class:`np.ndarray` object with shape == (batch size, ). Each element is the length of corresponding sssion.
>>> # 'session_sent_length' (`name` + '_sent_length') is List[List[int]]. Each integer is the length of corresponding sentence.
>>> # 'session' (`name`) is a :class:`np.ndarray` object with shape == (batch size, max turn length, max sentence length).
>>> # batch_data['session'][i, j] is a sentence. batch_data['session'][i, j, k] is an id.
>>> # If `self.max_turn_length` is not None and j >= `self.max_turn_length` or `self.max_sent_length` is not None and k >= `self.max_sent_length`,
>>> # batch_data['session'][i, j, k] is `self.eos_id`.
>>> # 'session_allvocabs' (`name` + '_allvocabs') is the same with 'session'."""
def get_batch(self, name: str, data: Dict[str, Any], indexes: List[int]) -> Dict[str, Any]:
res = {}
data_id, data_str = data['id'], data['str']
batch_size = len(indexes)
turn_lengths = res[name + "_turn_length"] = np.array([len(data_id[i]) for i in indexes], dtype=int)
res[name + "_sent_length"] = [[len(sent) for sent in data_id[i]] for i in indexes]
max_sent_length = max(map(max, res[name + "_sent_length"]))
res_session = res[name] = np.ones((batch_size, turn_lengths.max(), max_sent_length), dtype=int) * self.vocab.eos_id
for i, j in enumerate(indexes):
session = data_id[j]
session = [list(sent) + [self.vocab.eos_id] * (max_sent_length - len(sent)) for sent in session]
res_session[i, :len(session)] = np.array(session, dtype=int)
res[name + "_allvocabs"] = res_session.copy()
res[name + "_str"] = [data_str[i] for i in indexes]
return res
class SessionBERT(Session):
'''Bases: :class:`.dataloader.Session`, :class:`.dataloader.Field`
A field for session in the format of BERT.
{INIT_DOCSTRING}
{SESSION_INPUT_FORMAT}
'''
INIT_DOCSTRING = Sentence.INIT_DOCSTRING.replace(":class:Vocab", ":class:PretrainedVocab")
def __init__(self, tokenizer: Union[None, PretrainedTokenizer] = None,
vocab: Optional[PretrainedVocab] = None,
vocab_from_mappings: Optional[Dict[str, str]] = None,
max_sent_length: Union[int, None, _InfiniteLength] = None,
convert_to_lower_letter: Optional[bool] = None,
max_turn_length: Union[int, None, _InfiniteLength] = None,):
super().__init__(tokenizer, vocab, vocab_from_mappings, max_sent_length, convert_to_lower_letter, max_turn_length)
if not isinstance(self.tokenizer, PretrainedTokenizer) or self.tokenizer.get_tokenizer_class() != "BertTokenizer":
raise ValueError("You have to specify a pretrained tokenizer compatible with bert")
self.inner_tokenizer = self.tokenizer.tokenizer
if not isinstance(self.vocab, PretrainedVocab):
raise ValueError("You have to specify a PretrainedVocab for SentenceBERT field")
self.vocab: PretrainedVocab
add_special_to_ids = SentenceBERT.add_special_to_ids
remove_special_in_ids = SentenceBERT.remove_special_in_ids
trim_in_ids = SentenceBERT.trim_in_ids
_GET_BATCH_DATA_DOCSTRING = SessionDefault._GET_BATCH_DATA_DOCSTRING
# TODO: update return value of get_batch. I have trouble with `BertTokenizer.from_pretrained('bert')`
# the following codes in Examples haven't been run.
_GET_BATCH_EXAMPLE = r"""
# NOTE: We only show the structure of return value of get_batch. The real value of each entry may depends on the loaded vocab.
Examples:
>>> from transformers.tokenization_bert import BertTokenizer
>>> from cotk.dataloader.tokenizer import PretrainedTokenizer
>>> tokenizer = BertTokenizer.from_pretrained('bert')
>>> field = SessionBERT(PretrainedTokenizer(tokenizer))
>>> field_content = field._create('train')
>>> dataset = iter(['How are you?\n', "I'm fine. Thank you! And you?\n", "I'm fine, too.\n", "\n", "How to install CoTk?\n", "pip install cotk.\n", "\n"])
>>> while True:
... try:
... field_content.read_next(dataset)
... except StopIteration:
... break
>>> field_content.process_before_vocab()
>>> field.vocab.build_vocab()
>>> data = field_content.get_data()
>>> data
{'id': [[[2, 8, 18, 6, 5, 3],
[2, 9, 7, 12, 10, 4, 17, 6, 13, 15, 6, 5, 3],
[2, 9, 7, 12, 10, 14, 22, 4, 3]],
[[2, 8, 21, 11, 16, 5, 3], [2, 20, 11, 19, 4, 3]]],
'str': [['How are you?', "I'm fine. Thank you! And you?", "I'm fine, too."],
['How to install CoTk?', 'pip install cotk.']]}
>>> batch_data = field.get_batch('session', data, [1])
>>> batch_data
{'session_turn_length': array([2]),
'session_sent_length': [[7, 6]],
'session': array([[[ 2, 8, 21, 11, 16, 5, 3],
[ 2, 20, 11, 19, 4, 3, 0]]]),
'session_allvocabs': array([[[ 2, 8, 21, 11, 16, 5, 3],
[ 2, 20, 11, 19, 4, 3, 0]]]),
'session_str': [['How to install CoTk?', 'pip install cotk.']]}
>>> # 'session_turn_length' (`name` + '_turn_length') is a :class:`np.ndarray` object with shape == (batch size, ). Each element is the length of corresponding sssion.
>>> # 'session_sent_length' (`name` + '_sent_length') is List[List[int]]. Each integer is the length of corresponding sentence.
>>> # 'session' (`name`) is a :class:`np.ndarray` object with shape == (batch size, max turn length, max sentence length).
>>> # batch_data['session'][i, j] is a sentence. batch_data['session'][i, j, k] is an id.
>>> # If `self.max_turn_length` is not None and j >= `self.max_turn_length` or `self.max_sent_length` is not None and k >= `self.max_sent_length`,
>>> # batch_data['session'][i, j, k] is `self.pad_id`.
>>> # 'session_allvocabs' (`name` + '_allvocabs') is the same with 'session'."""
def get_batch(self, name: str, data: Dict[str, Any], indexes: List[int]) -> Dict[str, Any]:
res = {}
data_id, data_str = data['id'], data['str']
batch_size = len(indexes)
turn_lengths = res[name + "_turn_length"] = np.array([len(data_id[i]) for i in indexes], dtype=int)
res[name + "_sent_length"] = [[len(sent) for sent in data_id[i]] for i in indexes]
max_sent_length = max(map(max, res[name + "_sent_length"]))
res_session = res[name] = np.ones((batch_size, turn_lengths.max(), max_sent_length), dtype=int) * self.vocab.pad_id
for i, j in enumerate(indexes):
session = data_id[j]
session = [list(sent) + [self.vocab.pad_id] * (max_sent_length - len(sent)) for sent in session]
res_session[i, :len(session)] = | np.array(session, dtype=int) | numpy.array |
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Lovasz-Softmax and Jaccard hinge loss in PaddlePaddle"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
import numpy as np
from utils.config import cfg
def _cumsum(x):
y = | np.array(x) | numpy.array |
import unittest
import numpy as np
from tests import DataGenerator
from sparseklearn.fastLA import dist_both_comp
from sparseklearn.fastLA import dist_one_comp_one_full
from sparseklearn.fastLA import pairwise_l2_distances_with_self
from sparseklearn.fastLA import pairwise_l2_distances_with_full
from sparseklearn.fastLA import mahalanobis_distance_spherical
from sparseklearn.fastLA import mahalanobis_distance_diagonal
from sparseklearn.fastLA import pairwise_mahalanobis_distances_spherical
from sparseklearn.fastLA import pairwise_mahalanobis_distances_diagonal
from sparseklearn.fastLA import update_weighted_first_moment
from sparseklearn.fastLA import update_weighted_first_moment_array
from sparseklearn.fastLA import compute_weighted_first_moment_array
from sparseklearn.fastLA import update_weighted_first_and_second_moment
from sparseklearn.fastLA import update_weighted_first_and_second_moment_array
from sparseklearn.fastLA import compute_weighted_first_and_second_moment_array
from sparseklearn.fastLA import apply_mask_to_full_sample
from sparseklearn.fastLA import logdet_cov_diag
class TestFastLAMethods(unittest.TestCase):
def assertArrayEqual(self, x, y):
self.assertTrue(np.allclose(x, y, rtol=1e-6))
def setUp(self):
self.td = DataGenerator()
def test_dist_both_comp(self):
""" Distance between RHDX[1] and RHDX[3]. """
result = dist_both_comp(
self.td.RHDX[1],
self.td.RHDX[3],
self.td.mask[1],
self.td.mask[3],
self.td.Q,
self.td.P
)
correct = np.sqrt(5/2. * 37)
self.assertAlmostEqual(correct,result,places=6)
def test_dist_one_comp_one_full(self):
""" Distance between RHDX[1] and U[2]. """
result = dist_one_comp_one_full(self.td.RHDX[1],
self.td.U[2],
self.td.mask[1],
self.td.Q,
self.td.P)
correct = np.sqrt(5/3. * 50)
self.assertAlmostEqual(correct,result,places=6)
def test_pairwise_l2_distances_with_self(self):
""" Pairwise distances between rows of RHDX."""
result = np.zeros((self.td.N, self.td.N))
pairwise_l2_distances_with_self(result,
self.td.RHDX,
self.td.mask,
self.td.N,
self.td.Q,
self.td.P)
correct = self.td.correct_pairwise_l2_distances_with_self
self.assertArrayEqual(correct, result)
def test_pairwise_l2_distances_with_full(self):
"""Pairwise distances between rows of RHDX and rows of U."""
result = np.zeros((self.td.N, self.td.K))
pairwise_l2_distances_with_full(result,
self.td.RHDX,
self.td.U,
self.td.mask,
self.td.N,
self.td.K,
self.td.Q,
self.td.P)
correct = self.td.correct_pairwise_l2_distances_with_full
self.assertArrayEqual(correct, result)
def test_mahalanobis_distance_spherical(self):
""" Mahalanobis distance ||RHDX[1] - U[2]|| with spherical covariance
sigmasquared = 2.2. """
result = mahalanobis_distance_spherical(self.td.RHDX[1],
self.td.U[2],
self.td.mask[1],
2.2,
self.td.Q,
self.td.P)
correct = np.sqrt(50 * 5/3 / 2.2)
self.assertAlmostEqual(correct, result, places=6)
def test_mahalanobis_distance_diagonal(self):
""" Mahalanobis distance ||RHDX[1] - U[2]|| with diagonal covariance
diagonal_covariances[2]. """
result = mahalanobis_distance_diagonal(self.td.RHDX[1],
self.td.U[2],
self.td.mask[1],
self.td.diagonal_covariances[2],
self.td.Q,
self.td.P)
correct = np.sqrt(57/8 * 5/3)
self.assertAlmostEqual(correct, result, places=6)
def test_pairwise_mahalanobis_distances_spherical(self):
""" Mahalanobis distances ||RHDX - U|| with spherical_covariances.
"""
result = np.zeros((self.td.N,self.td.K))
pairwise_mahalanobis_distances_spherical(result,
self.td.RHDX,
self.td.U,
self.td.mask,
self.td.spherical_covariances,
self.td.N,
self.td.K,
self.td.Q,
self.td.P)
correct = self.td.correct_pairwise_mahalanobis_distances_spherical
self.assertArrayEqual(correct, result)
def test_pairwise_mahalanobis_distances_diagonal(self):
""" Mahalanobis distances ||RHDX - U|| with diagonal_covariances.
"""
result = np.zeros((self.td.N,self.td.K))
pairwise_mahalanobis_distances_diagonal(result,
self.td.RHDX,
self.td.U,
self.td.mask,
self.td.diagonal_covariances,
self.td.N,
self.td.K,
self.td.Q,
self.td.P)
correct = self.td.correct_pairwise_mahalanobis_distances_diagonal
self.assertArrayEqual(correct, result)
def test_update_weighted_first_moment(self):
""" Update a (init to zero) weighted mean and normalizer using
HDX[1], W[1,0]. """
first_moment_to_update = np.zeros(self.td.P)
normalizer_to_update = np.zeros(self.td.P)
update_weighted_first_moment(first_moment_to_update,
normalizer_to_update,
self.td.RHDX[1],
self.td.mask[1],
self.td.W[1,0],
self.td.Q,
self.td.P)
correct_moment = np.array([0, 0, 28, 16, 12], dtype = np.float64)
correct_normalizer = np.array([0, 0, 4, 4, 4], dtype = np.float64)
self.assertArrayEqual(correct_moment, first_moment_to_update)
self.assertArrayEqual(correct_normalizer, normalizer_to_update)
def test_update_weighted_first_and_second_moment(self):
""" Update a (init to zero) weighted mean and normalizer using
HDX[1], W[1,0]. """
first_moment_to_update = np.zeros(self.td.P)
second_moment_to_update = np.zeros(self.td.P)
normalizer_to_update = np.zeros(self.td.P)
update_weighted_first_and_second_moment(first_moment_to_update,
second_moment_to_update,
normalizer_to_update,
self.td.RHDX[1],
self.td.mask[1],
self.td.W[1,0],
self.td.Q,
self.td.P)
correct_first_moment = np.array([0, 0, 28, 16, 12], dtype = np.float64)
correct_second_moment = np.array([0, 0, 196, 64, 36])
correct_normalizer = np.array([0, 0, 4, 4, 4], dtype = np.float64)
self.assertArrayEqual(correct_first_moment, first_moment_to_update)
self.assertArrayEqual(correct_second_moment, second_moment_to_update)
self.assertArrayEqual(correct_normalizer, normalizer_to_update)
def test_update_weighted_first_moment_array(self):
""" Update a set of 3 zero-initialized means using HDX[2], W[2,:]."""
first_moment_array = np.zeros((self.td.K, self.td.P))
normalizer_array = np.zeros((self.td.K, self.td.P))
update_weighted_first_moment_array(first_moment_array,
normalizer_array,
self.td.RHDX[2],
self.td.mask[2],
self.td.W[2,:],
self.td.K,
self.td.Q,
self.td.P)
correct_first_moment_array = np.array([[ 2, 0, 8, 0, 7],
[ 12, 0, 48, 0, 42],
[ 8, 0, 32, 0, 28]],
dtype = np.float64)
correct_normalizer_array = np.array([[1,0,1,0,1],
[6,0,6,0,6],
[4,0,4,0,4]],
dtype = np.float64)
self.assertArrayEqual(correct_first_moment_array, first_moment_array)
self.assertArrayEqual(correct_normalizer_array, normalizer_array)
def test_update_weighted_first_and_second_moment_array(self):
""" Update a set of 3 zero-initialized means using HDX[2], W[2,:]."""
first_moment_array = np.zeros((self.td.K, self.td.P))
second_moment_array = np.zeros((self.td.K, self.td.P))
normalizer_array = np.zeros((self.td.K, self.td.P))
update_weighted_first_and_second_moment_array(first_moment_array,
second_moment_array,
normalizer_array,
self.td.RHDX[2],
self.td.mask[2],
self.td.W[2,:],
self.td.K,
self.td.Q,
self.td.P)
correct_first_moment_array = np.array([[ 2, 0, 8, 0, 7],
[ 12, 0, 48, 0, 42],
[ 8, 0, 32, 0, 28]],
dtype = np.float64)
correct_second_moment_array = np.array([[ 4, 0, 64, 0, 49],
[ 24, 0, 384, 0, 294],
[ 16, 0, 256, 0, 196]],
dtype = np.float64)
correct_normalizer_array = np.array([[1,0,1,0,1],
[6,0,6,0,6],
[4,0,4,0,4]],
dtype = np.float64)
self.assertArrayEqual(correct_first_moment_array, first_moment_array)
self.assertArrayEqual(correct_second_moment_array, second_moment_array)
self.assertArrayEqual(correct_normalizer_array, normalizer_array)
def test_compute_weighted_first_moment_array(self):
""" Weighted first moments, one moment per col of W."""
first_moment_array = np.zeros((self.td.K, self.td.P))
compute_weighted_first_moment_array(first_moment_array,
self.td.RHDX,
self.td.mask,
self.td.W,
self.td.N,
self.td.K,
self.td.Q,
self.td.P)
correct_first_moment_array = np.dot(self.td.W.T, self.td.RRTHDX) / \
np.dot(self.td.W.T, (self.td.RRTHDX!=0).astype(int))
self.assertArrayEqual(first_moment_array, correct_first_moment_array)
def test_compute_weighted_first_and_second_moment_array(self):
""" Weighted first and second moments, one moment per col of W."""
first_moment_array = np.zeros((self.td.K, self.td.P))
second_moment_array = np.zeros((self.td.K, self.td.P))
compute_weighted_first_and_second_moment_array(first_moment_array,
second_moment_array,
self.td.RHDX,
self.td.mask,
self.td.W,
self.td.N,
self.td.K,
self.td.Q,
self.td.P)
correct_first_moment_array = np.dot(self.td.W.T, self.td.RRTHDX) / \
np.dot(self.td.W.T, (self.td.RRTHDX!=0).astype(int))
correct_second_moment_array = | np.dot(self.td.W.T, self.td.RRTHDX**2) | numpy.dot |
# @Date: 2019-05-13
# @Email: <EMAIL> <NAME>
# @Last modified time: 2020-10-07
import sys
#sys.path.insert(0, '/work/qiu/data4Keran/code/modelPredict')
sys.path.insert(0, '/home/xx02tmp/code3/modelPredict')
from img2mapC05 import img2mapC
import numpy as np
import time
sys.path.insert(0, '/home/xx02tmp/code3/dataPrepare')
import basic4dataPre
import h5py
import os
import glob2
import scipy.io as sio
from scipy import stats
import scipy.ndimage
import numpy.matlib
from numpy import argmax
from keras.utils import to_categorical
import skimage.measure
#image folder
imgFile_s2='/home/xx02tmp/image/to run49/'
#gt file folder
foldRef_LCZ=imgFile_s2
#class number
num_lcz=3
#stride to cut patches
step=24
patch_shape = (48, 48, 6)
#new line
img_shape = (48, 48)
#save folder
foldS='/home/xx02tmp/patch/patch50_11_02_48/'
params = {'dim_x': patch_shape[0],
'dim_y': patch_shape[1],
'dim_z': patch_shape[2],
'step': step,
'Bands': [0,1,2,3,4,5],
'scale':1.0,
'ratio':1,
'isSeg':0,
'nanValu':0,
'dim_x_img': img_shape[0],#the actuall extracted image patch
'dim_y_img': img_shape[1]}
#name of images
cities = ['summerrs2014_segA150sd']
#names of gt files
cities_ = ['class14_segA5530vp02n1_tra']
citiesval = ['summerrs2014_segA150sd']
cities_val = ['class14_segA5530vp02n1_val']
#tra and vali patch numbers of each images
patchNum = np.zeros((2,len(cities)), dtype= np.int64) ;
#class number of each class
classNum = np.zeros((len(cities),3), dtype= np.int64) ; #change here
if not os.path.exists(foldS+'vali/'):
os.makedirs(foldS+'vali/')
if not os.path.exists(foldS+'trai/'):
os.makedirs(foldS+'trai/')
###########training patch#################
for idCity in np.arange(len(cities)):
params['Bands'] = [0]
params['scale'] = 1
img2mapCLass=img2mapC(**params);
###lcz to patches
#load file
prj0, trans0, ref0= img2mapCLass.loadImgMat(foldRef_LCZ+cities_[idCity]+'.tif')
print('ref0 size', ref0.shape)
ref = np.int8(ref0)
#print('lcz file size', ref.shape, trans0, ref.dtype)
# to patches
patchLCZ, R, C = img2mapCLass.label2patches_all(ref, 1)
print('lcz patches, beginning', patchLCZ.shape, patchLCZ.dtype)
#load img
file =imgFile_s2 + cities[idCity] + '.tif'
params['Bands'] = [0,1,2,3,4,5]
params['scale'] = 1.0#!!!!!!!!!!!!!!!!!!!
img2mapCLass=img2mapC(**params);
prj0, trans0, img_= img2mapCLass.loadImgMat(file)
print('img size', img_.shape)
#image to patches
patch_summer, R, C, idxNan = img2mapCLass.Bands2patches(img_, 1)
print('image patches', patch_summer.shape, patch_summer.dtype)
#try not delete idxNan (by Karen)
print('lcz patches, before delete idxNan', patchLCZ.shape, patchLCZ.dtype)
patchLCZ = np.delete(patchLCZ, idxNan, axis=0)
print('lcz patches, after delete idxNan', patchLCZ.shape, patchLCZ.dtype)
############manupulate the patches############
#delete patches without lcz
#change here, try 0.5
c3Idx=basic4dataPre.patch2labelInx_lt(patchLCZ, 0, patchLCZ.shape[1], patchLCZ.shape[2]*patchLCZ.shape[1]*0.044*1)
patchLCZ = | np.delete(patchLCZ, c3Idx, axis=0) | numpy.delete |
import argparse
import sys
import os
import shutil
import time
import math
import h5py
import torch
import torch.nn as nn
import torch.optim
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.nn.parallel
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
import matplotlib.pyplot as plt
sys.path.append('../ResNet')
import ResNet1d as rn
sys.path.append('../')
import Model_Util
import Utilities
from Dataset_Management import Artificial_DataLoader
sys.path.append('./models')
from backbone import build_backbone
from transformer import build_transformer
import detr as DT
import matcher as mtchr
sys.path.append('./mAP')
from Scalable_mean_avg_precision import mean_average_precision
def parse():
model_names = ['ResNet10', 'ResNet18', 'ResNet34', 'ResNet50', 'ResNet101', 'ResNet152']
optimizers = ['sgd', 'adam', 'adamw']
parser = argparse.ArgumentParser(description='Nanopore Translocation Detector Training')
parser.add_argument('data', metavar='DIR', nargs='*',
help='path(s) to dataset (if one path is provided, it is assumed\n' +
'to have subdirectories named "train" and "val"; alternatively,\n' +
'train and val paths can be specified directly by providing both paths as arguments)')
parser.add_argument('counter', metavar='COUNTER', type=str,
help='path to translocation counter')
parser.add_argument('predictor', metavar='PREDICTOR', type=str,
help='path to translocation feature predictor')
parser.add_argument('--feature_predictor_arch', '-fpa', metavar='FEATURE_PREDICTOR_ARCH', default='ResNet18',
choices=model_names,
help='This is the architecture of the feature_predictor section in the backbone: ' +
' | '.join(model_names) +
' (default: ResNet18_Custom)')
parser.add_argument('--pulse_counter_arch', '-pca', metavar='PULSE_COUNTER_ARCH', default='ResNet18',
choices=model_names,
help='This is the architecture of the pulse_counter section in the backbone: ' +
' | '.join(model_names) +
' (default: ResNet18_Counter)')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=6, type=int,
metavar='N', help='mini-batch size per process (default: 6)')
parser.add_argument('--lr-backbone', default=1e-5, type=float,
metavar='LR', help='Backbone learning rate.')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='Initial learning rate. Will be scaled by the value 1/learning rate modulator every learning-rate-scheduler-period epochs.')
parser.add_argument('--lrs', '--learning-rate-scaling', default='linear', type=str,
metavar='LRS', help='Function to scale the learning rate value (default: \'linear\').')
parser.add_argument('--lrm', '--learning-rate-modulator', default=0.1, type=float, metavar='MOD',
help='In the learning rate schedule, this is the value by which the learning rate will be multiplied every learning-rate-scheduler-period epochs (default: 0.1)')
parser.add_argument('--lrsp', '--learning-rate-scheduler-period', default=100, type=int, metavar='PERIOD',
help='In the learning rate schedule, this is the number of epochs that has to pass in order to modulate the learning rate (default: 100)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--warmup_epochs', default=10, type=int, metavar='W',
help='Number of warmup epochs (default: 10)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--val-freq', '-vf', default=5, type=int,
metavar='VF', help='validation frequency in epochs (default: 5)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('-stats', '--statistics', dest='statistics', action='store_true',
help='Compute statistics about errors of a trained model on validation set')
parser.add_argument('-r', '--run', dest='run', action='store_true',
help='Run a trained model and plots a batch of predictions in noisy signals')
parser.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--cpu', action='store_true',
help='Runs CPU based version of the workflow.')
parser.add_argument('-v', '--verbose', action='store_true',
help='provides additional details as to what the program is doing')
parser.add_argument('--optimizer', default='adamw', type=str, metavar='OPTIM',
choices=optimizers,
help='optimizer for training the network\n' +
'Choices are: ' +
' | '.join(optimizers) +
' (default: adamw)')
parser.add_argument('-t', '--test', action='store_true',
help='Launch test mode with preset arguments')
parser.add_argument('-pth', '--plot-training-history', action='store_true',
help='Only plots the training history of a trained model: Loss and validation errors')
parser.add_argument('--transformer-hidden-dim', default=512, type=int, metavar='TRANSFORMER-HIDDEN-DIM',
help='Hidden dimension of transformer on DETR model (default: 512)')
parser.add_argument('--transformer-dropout', default=0.1, type=float, metavar='TRANSFORMER_DROPOUT',
help='Dropout of transformer on DETR model (default: 0.1)')
parser.add_argument('--transformer-num-heads', default=8, type=int, metavar='TRANSFORMER_NUM_HEADS',
help='Number of heads of transformer on DETR model (default: 8)')
parser.add_argument('--transformer-dim-feedforward', default=2048, type=int, metavar='TRANSFORMER_DIM_FEEDFORWARD',
help='Feedforward dimension inside transformer on DETR model (default: 2048)')
parser.add_argument('--transformer-num-enc-layers', default=6, type=int, metavar='TRANSFORMER_NUM_ENC_LAYERS',
help='Number of encoder layers inside transformer on DETR model (default: 6)')
parser.add_argument('--transformer-num-dec-layers', default=6, type=int, metavar='TRANSFORMER_NUM_DEC_LAYERS',
help='Number of decoder layers inside transformer on DETR model (default: 6)')
parser.add_argument('--transformer-pre-norm', dest='transformer-pre-norm', action='store_true',
help='Configurization of transformer on DETR model (default: False)')
parser.add_argument('--num-classes', default=1, type=int, metavar='NUM_CLASSES',
help='The number of different translocation classes that DETR has to classify (default: 1)')
parser.add_argument('--num-queries', default=75, type=int, metavar='NUM_QUERIES',
help='The maximum number of translocations that DETR considers could exist in a window (default: 75)')
parser.add_argument('--cost-class', default=1.0, type=float, metavar='COST_CLASS',
help='This is the relative weight of the classification error in the Hungarian matching cost (default: 1.0)')
parser.add_argument('--cost-bsegment', default=1.0, type=float, metavar='COST_BSEGMENT',
help='This is the relative weight of the L1 error of the bounding segment coordinates in the Hungarian matching cost (default: 1.0)')
parser.add_argument('--cost-giou', default=0.0, type=float, metavar='COST_GIOU',
help='This is the relative weight of the giou loss of the bounding segment in the Hungarian matching cost (default: 0.0)')
parser.add_argument('--loss_ce', default=1.0, type=float, metavar='LOSS_CE',
help='This is the relative weight of the classification error in loss (default: 1.0)')
parser.add_argument('--loss_bsegment', default=1.0, type=float, metavar='LOSS_BSEGMENT',
help='This is the relative weight of the L1 error of the bounding segment coordinates in loss (default: 1.0)')
parser.add_argument('--loss_giou', default=0.0, type=float, metavar='LOSS_GIOU',
help='This is the relative weight of the giou loss of the bounding segment in the loss (default: 0.0)')
parser.add_argument('--eos-coef', default=0.1, type=float, metavar='EOS_COEF',
help='This is relative classification weight applied to the no-translocation category in the loss (default: 0.1)')
args = parser.parse_args()
return args
def main():
global best_precision, args
best_precision = 0
args = parse()
if not len(args.data):
raise Exception("error: No data set provided")
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
args.gpu = 0
args.world_size = 1
if args.distributed:
args.gpu = args.local_rank
if not args.cpu:
torch.cuda.set_device(args.gpu)
torch.distributed.init_process_group(backend='gloo',
init_method='env://')
args.world_size = torch.distributed.get_world_size()
args.total_batch_size = args.world_size * args.batch_size
# Set the device
device = torch.device('cpu' if args.cpu else 'cuda:' + str(args.gpu))
#######################################################################
# Start DETR contruction
#######################################################################
# create DETR backbone
# create backbone pulse counter
if args.test:
args.pulse_counter_arch = 'ResNet10'
if args.local_rank==0 and args.verbose:
print("=> creating backbone pulse counter '{}'".format(args.pulse_counter_arch))
if args.pulse_counter_arch == 'ResNet18':
backbone_pulse_counter = rn.ResNet18_Counter()
elif args.pulse_counter_arch == 'ResNet34':
backbone_pulse_counter = rn.ResNet34_Counter()
elif args.pulse_counter_arch == 'ResNet50':
backbone_pulse_counter = rn.ResNet50_Counter()
elif args.pulse_counter_arch == 'ResNet101':
backbone_pulse_counter = rn.ResNet101_Counter()
elif args.pulse_counter_arch == 'ResNet152':
backbone_pulse_counter = rn.ResNet152_Counter()
elif args.pulse_counter_arch == 'ResNet10':
backbone_pulse_counter = rn.ResNet10_Counter()
else:
print("Unrecognized {} architecture for the backbone pulse counter" .format(args.pulse_counter_arch))
backbone_pulse_counter = backbone_pulse_counter.to(device)
# create backbone feature predictor
if args.test:
args.feature_predictor_arch = 'ResNet10'
if args.local_rank==0 and args.verbose:
print("=> creating backbone feature predictor '{}'".format(args.feature_predictor_arch))
if args.feature_predictor_arch == 'ResNet18':
backbone_feature_predictor = rn.ResNet18_Custom()
elif args.feature_predictor_arch == 'ResNet34':
backbone_feature_predictor = rn.ResNet34_Custom()
elif args.feature_predictor_arch == 'ResNet50':
backbone_feature_predictor = rn.ResNet50_Custom()
elif args.feature_predictor_arch == 'ResNet101':
backbone_feature_predictor = rn.ResNet101_Custom()
elif args.feature_predictor_arch == 'ResNet152':
backbone_feature_predictor = rn.ResNet152_Custom()
elif args.feature_predictor_arch == 'ResNet10':
backbone_feature_predictor = rn.ResNet10_Custom()
else:
print("Unrecognized {} architecture for the backbone feature predictor" .format(args.feature_predictor_arch))
backbone_feature_predictor = backbone_feature_predictor.to(device)
# For distributed training, wrap the model with torch.nn.parallel.DistributedDataParallel.
if args.distributed:
if args.cpu:
backbone_pulse_counter = DDP(backbone_pulse_counter)
backbone_feature_predictor = DDP(backbone_feature_predictor)
else:
backbone_pulse_counter = DDP(backbone_pulse_counter, device_ids=[args.gpu], output_device=args.gpu)
backbone_feature_predictor = DDP(backbone_feature_predictor, device_ids=[args.gpu], output_device=args.gpu)
if args.verbose:
print('Since we are in a distributed setting the backbone componets are replicated here in local rank {}'
.format(args.local_rank))
# bring counter from a checkpoint
if args.counter:
# Use a local scope to avoid dangling references
def bring_counter():
if os.path.isfile(args.counter):
print("=> loading backbone pulse counter '{}'" .format(args.counter))
if args.cpu:
checkpoint = torch.load(args.counter, map_location='cpu')
else:
checkpoint = torch.load(args.counter, map_location = lambda storage, loc: storage.cuda(args.gpu))
loss_history_1 = checkpoint['loss_history']
counter_error_history = checkpoint['Counter_error_history']
best_error_1 = checkpoint['best_error']
backbone_pulse_counter.load_state_dict(checkpoint['state_dict'])
total_time_1 = checkpoint['total_time']
print("=> loaded counter '{}' (epoch {})"
.format(args.counter, checkpoint['epoch']))
print("Counter best precision saved was {}" .format(best_error_1))
return best_error_1, backbone_pulse_counter, loss_history_1, counter_error_history, total_time_1
else:
print("=> no counter found at '{}'" .format(args.counter))
best_error_1, backbone_pulse_counter, loss_history_1, counter_error_history, total_time_1 = bring_counter()
else:
raise Exception("error: No counter path provided")
# bring predictor from a checkpoint
if args.predictor:
# Use a local scope to avoid dangling references
def bring_predictor():
if os.path.isfile(args.predictor):
print("=> loading backbone feature predictor '{}'" .format(args.predictor))
if args.cpu:
checkpoint = torch.load(args.predictor, map_location='cpu')
else:
checkpoint = torch.load(args.predictor, map_location = lambda storage, loc: storage.cuda(args.gpu))
loss_history_2 = checkpoint['loss_history']
duration_error_history = checkpoint['duration_error_history']
amplitude_error_history = checkpoint['amplitude_error_history']
best_error_2 = checkpoint['best_error']
backbone_feature_predictor.load_state_dict(checkpoint['state_dict'])
total_time_2 = checkpoint['total_time']
print("=> loaded predictor '{}' (epoch {})"
.format(args.predictor, checkpoint['epoch']))
print("Predictor best precision saved was {}" .format(best_error_2))
return best_error_2, backbone_feature_predictor, loss_history_2, duration_error_history, amplitude_error_history, total_time_2
else:
print("=> no predictor found at '{}'" .format(args.predictor))
best_error_2, backbone_feature_predictor, loss_history_2, duration_error_history, amplitude_error_history, total_time_2 = bring_predictor()
else:
raise Exception("error: No predictor path provided")
# create backbone
if args.local_rank==0 and args.verbose:
print("=> creating backbone")
if args.feature_predictor_arch == 'ResNet18':
backbone=build_backbone(pulse_counter=backbone_pulse_counter,
feature_predictor=backbone_feature_predictor,
num_channels=512)
elif args.feature_predictor_arch == 'ResNet34':
backbone=build_backbone(pulse_counter=backbone_pulse_counter,
feature_predictor=backbone_feature_predictor,
num_channels=512)
elif args.feature_predictor_arch == 'ResNet50':
backbone=build_backbone(pulse_counter=backbone_pulse_counter,
feature_predictor=backbone_feature_predictor,
num_channels=2048)
elif args.feature_predictor_arch == 'ResNet101':
backbone=build_backbone(pulse_counter=backbone_pulse_counter,
feature_predictor=backbone_feature_predictor,
num_channels=2048)
elif args.feature_predictor_arch == 'ResNet152':
backbone=build_backbone(pulse_counter=backbone_pulse_counter,
feature_predictor=backbone_feature_predictor,
num_channels=2048)
elif args.feature_predictor_arch == 'ResNet10':
backbone=build_backbone(pulse_counter=backbone_pulse_counter,
feature_predictor=backbone_feature_predictor,
num_channels=512)
else:
print("Unrecognized {} architecture for the backbone feature predictor" .format(args.feature_predictor_arch))
backbone = backbone.to(device)
# create DETR transformer
if args.local_rank==0 and args.verbose:
print("=> creating transformer")
if args.test:
args.transformer_hidden_dim = 64
args.transformer_num_heads = 2
args.transformer_dim_feedforward = 256
args.transformer_num_enc_layers = 2
args.transformer_num_dec_layers = 2
args.transformer_pre_norm = True
transformer = build_transformer(hidden_dim=args.transformer_hidden_dim,
dropout=args.transformer_dropout,
nheads=args.transformer_num_heads,
dim_feedforward=args.transformer_dim_feedforward,
enc_layers=args.transformer_num_enc_layers,
dec_layers=args.transformer_num_dec_layers,
pre_norm=args.transformer_pre_norm)
# create DETR in itself
if args.local_rank==0 and args.verbose:
print("=> creating DETR")
detr = DT.DETR(backbone=backbone,
transformer=transformer,
num_classes=args.num_classes,
num_queries=args.num_queries)
detr = detr.to(device)
# For distributed training, wrap the model with torch.nn.parallel.DistributedDataParallel.
if args.distributed:
if args.cpu:
detr = DDP(detr)
else:
detr = DDP(detr, device_ids=[args.gpu], output_device=args.gpu)
if args.verbose:
print('Since we are in a distributed setting DETR model is replicated here in local rank {}'
.format(args.local_rank))
# Set matcher
if args.local_rank==0 and args.verbose:
print("=> set Hungarian Matcher")
matcher = mtchr.HungarianMatcher(cost_class=args.cost_class,
cost_bsegment=args.cost_bsegment,
cost_giou=args.cost_giou)
# Set criterion
if args.local_rank==0 and args.verbose:
print("=> set criterion for the loss")
weight_dict = {'loss_ce': args.loss_ce,
'loss_bsegment': args.loss_bsegment,
'loss_giou': args.loss_giou}
losses = ['labels', 'segments', 'cardinality']
criterion = DT.SetCriterion(num_classes=args.num_classes,
matcher=matcher,
weight_dict=weight_dict,
eos_coef=args.eos_coef,
losses=losses)
criterion = criterion.to(device)
# Set optimizer
optimizer = Model_Util.get_DETR_optimizer(detr, args)
if args.local_rank==0 and args.verbose:
print('Optimizer used for this run is {}'.format(args.optimizer))
# Set learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lrsp,
args.lrm)
total_time = Utilities.AverageMeter()
loss_history = []
precision_history = []
# Optionally resume from a checkpoint
if args.resume:
# Use a local scope to avoid dangling references
def resume():
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'" .format(args.resume))
if args.cpu:
checkpoint = torch.load(args.resume, map_location='cpu')
else:
checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
loss_history = checkpoint['loss_history']
precision_history = checkpoint['precision_history']
start_epoch = checkpoint['epoch']
best_precision = checkpoint['best_precision']
detr.load_state_dict(checkpoint['state_dict'])
criterion.load_state_dict(checkpoint['criterion'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
total_time = checkpoint['total_time']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
return start_epoch, detr, criterion, optimizer, lr_scheduler, loss_history, precision_history, total_time, best_precision
else:
print("=> no checkpoint found at '{}'" .format(args.resume))
args.start_epoch, detr, criterion, optimizer, lr_scheduler, loss_history, precision_history, total_time, best_precision = resume()
# Data loading code
if len(args.data) == 1:
traindir = os.path.join(args.data[0], 'train')
valdir = os.path.join(args.data[0], 'val')
else:
traindir = args.data[0]
valdir= args.data[1]
if args.test:
training_f = h5py.File(traindir + '/train_toy.h5', 'r')
validation_f = h5py.File(valdir + '/validation_toy.h5', 'r')
else:
training_f = h5py.File(traindir + '/train.h5', 'r')
validation_f = h5py.File(valdir + '/validation.h5', 'r')
# this is the dataset for training
sampling_rate = 10000 # This is the number of samples per second of the signals in the dataset
if args.test:
number_of_concentrations = 2 # This is the number of different concentrations in the dataset
number_of_durations = 2 # This is the number of different translocation durations per concentration in the dataset
number_of_diameters = 4 # This is the number of different translocation durations per concentration in the dataset
window = 0.5 # This is the time window in seconds
length = 20 # This is the time of a complete signal for certain concentration and duration
else:
number_of_concentrations = 20 # This is the number of different concentrations in the dataset
number_of_durations = 5 # This is the number of different translocation durations per concentration in the dataset
number_of_diameters = 15 # This is the number of different translocation durations per concentration in the dataset
window = 0.5 # This is the time window in seconds
length = 20 # This is the time of a complete signal for certain concentration and duration
# Training Artificial Data Loader
TADL = Artificial_DataLoader(args.world_size, args.local_rank, device, training_f, sampling_rate,
number_of_concentrations, number_of_durations, number_of_diameters,
window, length, args.batch_size)
# this is the dataset for validating
if args.test:
number_of_concentrations = 2 # This is the number of different concentrations in the dataset
number_of_durations = 2 # This is the number of different translocation durations per concentration in the dataset
number_of_diameters = 4 # This is the number of different translocation durations per concentration in the dataset
window = 0.5 # This is the time window in seconds
length = 10 # This is the time of a complete signal for certain concentration and duration
else:
number_of_concentrations = 20 # This is the number of different concentrations in the dataset
number_of_durations = 5 # This is the number of different translocation durations per concentration in the dataset
number_of_diameters = 15 # This is the number of different translocation durations per concentration in the dataset
window = 0.5 # This is the time window in seconds
length = 10 # This is the time of a complete signal for certain concentration and duration
# Validating Artificial Data Loader
VADL = Artificial_DataLoader(args.world_size, args.local_rank, device, validation_f, sampling_rate,
number_of_concentrations, number_of_durations, number_of_diameters,
window, length, args.batch_size)
if args.verbose:
print('From rank {} training shard size is {}'. format(args.local_rank, TADL.get_number_of_avail_windows()))
print('From rank {} validation shard size is {}'. format(args.local_rank, VADL.get_number_of_avail_windows()))
if args.run:
arguments = {'model': detr,
'device': device,
'epoch': 0,
'VADL': VADL}
if args.local_rank == 0:
run_model(args, arguments)
return
#if args.statistics:
#arguments = {'model': model,
#'device': device,
#'epoch': 0,
#'VADL': VADL}
#[duration_errors, amplitude_errors] = compute_error_stats(args, arguments)
#if args.local_rank == 0:
#plot_stats(VADL, duration_errors, amplitude_errors)
#return
#if args.evaluate:
#arguments = {'model': model,
#'device': device,
#'epoch': 0,
#'VADL': VADL}
#[duration_error, amplitude_error] = validate(args, arguments)
#print('##Duration error {0}\n'
#'##Amplitude error {1}'.format(
#duration_error,
#amplitude_error))
#return
if args.plot_training_history and args.local_rank == 0:
Model_Util.plot_detector_stats(loss_history, precision_history)
hours = int(total_time.sum / 3600)
minutes = int((total_time.sum % 3600) / 60)
seconds = int((total_time.sum % 3600) % 60)
print('The total training time was {} hours {} minutes and {} seconds' .format(hours, minutes, seconds))
hours = int(total_time.avg / 3600)
minutes = int((total_time.avg % 3600) / 60)
seconds = int((total_time.avg % 3600) % 60)
print('while the average time during one epoch of training was {} hours {} minutes and {} seconds' .format(hours, minutes, seconds))
return
for epoch in range(args.start_epoch, args.epochs):
arguments = {'detr': detr,
'criterion': criterion,
'optimizer': optimizer,
'device': device,
'epoch': epoch,
'TADL': TADL,
'VADL': VADL,
'loss_history': loss_history,
'precision_history': precision_history}
# train for one epoch
epoch_time, avg_batch_time = train(args, arguments)
total_time.update(epoch_time)
# validate every val_freq epochs
if epoch%args.val_freq == 0 and epoch != 0:
# evaluate on validation set
print("\nValidating ...\nComputing mean average precision (mAP) for epoch {}" .format(epoch))
precision = validate(args, arguments)
else:
precision = best_precision
#if args.test:
#break
lr_scheduler.step()
# remember the best detr and save checkpoint
if args.local_rank == 0:
if epoch%args.val_freq == 0:
print('From validation we have precision is {} while best_precision is {}'.format(precision, best_precision))
is_best = precision > best_precision
best_precision = max(precision, best_precision)
Model_Util.save_checkpoint({
'arch': 'DETR_' + args.feature_predictor_arch,
'epoch': epoch + 1,
'best_precision': best_precision,
'state_dict': detr.state_dict(),
'criterion': criterion.state_dict(),
'optimizer': optimizer.state_dict(),
'loss_history': loss_history,
'precision_history': precision_history,
'lr_scheduler': lr_scheduler.state_dict(),
'total_time': total_time
}, is_best)
print('##Detector precision {0}\n'
'##Perf {1}'.format(
precision,
args.total_batch_size / avg_batch_time))
def train(args, arguments):
batch_time = Utilities.AverageMeter()
losses = Utilities.AverageMeter()
# switch to train mode
arguments['detr'].train()
end = time.time()
train_loader_len = int(math.ceil(arguments['TADL'].shard_size / args.batch_size))
i = 0
arguments['TADL'].reset_avail_winds(arguments['epoch'])
########################################################
#_, inputs, _, targets, _ = arguments['TADL'].get_batch()
#targets = transform_targets(targets)
#lr_scheduler = torch.optim.lr_scheduler.StepLR(arguments['optimizer'], args.lrsp,
# args.lrm)
########################################################
########################################################
#while True:
########################################################
while i * arguments['TADL'].batch_size < arguments['TADL'].shard_size:
# get the noisy inputs and the labels
_, inputs, _, targets, _ = arguments['TADL'].get_batch()
mean = torch.mean(inputs, 1, True)
inputs = inputs-mean
# zero the parameter gradients
arguments['optimizer'].zero_grad()
# forward + backward + optimize
inputs = inputs.unsqueeze(1)
outputs = arguments['detr'](inputs)
########################################################
#inputs = inputs.squeeze(1)
########################################################
# Compute the loss
targets = transform_targets(targets)
loss_dict = arguments['criterion'].forward(outputs=outputs, targets=targets)
weight_dict = arguments['criterion'].weight_dict
loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# compute gradient and do optimizer step
loss.backward()
torch.nn.utils.clip_grad_norm_(arguments['detr'].parameters(), 0.1)
arguments['optimizer'].step()
#if args.test:
#if i > 10:
#break
if i%args.print_freq == 0:
#if i%args.print_freq == 0 and i != 0:
# Every print_freq iterations, check the loss and speed.
# For best performance, it doesn't make sense to print these metrics every
# iteration, since they incur an allreduce and some host<->device syncs.
# Average loss across processes for logging
if args.distributed:
reduced_loss = Utilities.reduce_tensor(loss.data, args.world_size)
else:
reduced_loss = loss.data
# to_python_float incurs a host<->device sync
losses.update(Utilities.to_python_float(reduced_loss), args.batch_size)
if not args.cpu:
torch.cuda.synchronize()
batch_time.update((time.time() - end)/args.print_freq, args.print_freq)
end = time.time()
if args.local_rank == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Speed {3:.3f} ({4:.3f})\t'
'Loss {loss.val:.10f} ({loss.avg:.4f})'.format(
arguments['epoch'], i, train_loader_len,
args.world_size*args.batch_size/batch_time.val,
args.world_size*args.batch_size/batch_time.avg,
batch_time=batch_time,
loss=losses))
i += 1
########################################################
#lr_scheduler.step()
########################################################
arguments['loss_history'].append(losses.avg)
return batch_time.sum, batch_time.avg
def validate(args, arguments):
average_precision = Utilities.AverageMeter()
# switch to evaluate mode
arguments['detr'].eval()
end = time.time()
val_loader_len = int(math.ceil(arguments['VADL'].shard_size / args.batch_size))
i = 0
arguments['VADL'].reset_avail_winds(arguments['epoch'])
pred_segments = []
true_segments = []
while i * arguments['VADL'].batch_size < arguments['VADL'].shard_size:
# get the noisy inputs and the labels
_, inputs, _, targets, labels = arguments['TADL'].get_batch()
mean = torch.mean(inputs, 1, True)
inputs = inputs-mean
with torch.no_grad():
# forward
inputs = inputs.unsqueeze(1)
outputs = arguments['detr'](inputs)
for j in range(arguments['VADL'].batch_size):
train_idx = int(j + i * arguments['VADL'].batch_size)
probabilities = F.softmax(outputs['pred_logits'][j], dim=1)
aux_pred_segments = outputs['pred_segments'][j]
for probability, pred_segment in zip(probabilities.to('cpu'), aux_pred_segments.to('cpu')):
#if probability[-1] < 0.9:
if torch.argmax(probability) != args.num_classes:
segment = [train_idx, np.argmax(probability[:-1]).item(), 1.0 - probability[-1].item(), pred_segment[0].item(), pred_segment[1].item()]
pred_segments.append(segment)
num_pulses = labels[j, 0]
starts = targets[j, 0]
widths = targets[j, 1]
categories = targets[j, 3]
for k in range(int(num_pulses.item())):
segment = [train_idx, categories[k].item(), 1.0, starts[k].item(), widths[k].item()]
true_segments.append(segment)
i += 1
for threshold in np.arange(0.5, 0.95, 0.05):
detection_precision=mean_average_precision(device=arguments['device'],
pred_segments=pred_segments,
true_segments=true_segments,
iou_threshold=threshold,
seg_format="mix",
num_classes=1)
if args.distributed:
reduced_detection_precision = Utilities.reduce_tensor(detection_precision.data, args.world_size)
else:
reduced_detection_precision = detection_precision.data
average_precision.update(Utilities.to_python_float(reduced_detection_precision))
if not args.evaluate:
arguments['precision_history'].append(average_precision.avg)
return average_precision.avg
def compute_error_stats(args, arguments):
# switch to evaluate mode
arguments['model'].eval()
duration_errors = torch.zeros(arguments['VADL'].shape)
amplitude_errors = torch.zeros(arguments['VADL'].shape)
arguments['VADL'].reset_avail_winds(arguments['epoch'])
for i in range(arguments['VADL'].total_number_of_windows):
if i % args.world_size == args.local_rank:
(Cnp, Duration, Dnp, window) = np.unravel_index(i, arguments['VADL'].shape)
# bring a new window
times, noisy_signals, clean_signals, _, labels = arguments['VADL'].get_signal_window(Cnp, Duration, Dnp, window)
if labels[0] > 0:
times = times.unsqueeze(0)
noisy_signals = noisy_signals.unsqueeze(0)
clean_signals = clean_signals.unsqueeze(0)
labels = labels.unsqueeze(0)
mean = torch.mean(noisy_signals, 1, True)
noisy_signals = noisy_signals-mean
with torch.no_grad():
noisy_signals = noisy_signals.unsqueeze(1)
external = torch.reshape(labels[:,0],[1,1])
outputs = arguments['model'](noisy_signals, external)
noisy_signals = noisy_signals.squeeze(1)
errors=abs((labels[:,1:].to('cpu') - outputs.data.to('cpu')*torch.Tensor([10**(-3), 10**(-10)]).repeat(1,1)) / labels[:,1:].to('cpu'))*100
errors=torch.mean(errors,dim=0)
duration_errors[Cnp, Duration, Dnp, window] = errors[0]
amplitude_errors[Cnp, Duration, Dnp, window] = errors[1]
else:
duration_errors[Cnp, Duration, Dnp, window] = torch.tensor(float('nan'))
amplitude_errors[Cnp, Duration, Dnp, window] = torch.tensor(float('nan'))
#if args.test:
#if i > 10:
#break
if args.distributed:
reduced_duration_error = Utilities.reduce_tensor_sum_dest(duration_errors.data, 0)
reduced_amplitude_error = Utilities.reduce_tensor_sum_dest(amplitude_errors.data, 0)
else:
reduced_duration_error = duration_errors.data
reduced_amplitude_error = amplitude_errors.data
return [reduced_duration_error, reduced_amplitude_error]
def plot_stats(VADL, reduced_duration_error, reduced_amplitude_error):
mean_duration_error = reduced_duration_error.numpy()
mean_duration_error = np.nanmean(mean_duration_error, 3)
std_duration_error = reduced_duration_error.numpy()
std_duration_error = np.nanstd(std_duration_error, 3)
mean_amplitude_error = reduced_amplitude_error.numpy()
mean_amplitude_error = np.nanmean(mean_amplitude_error, 3)
std_amplitude_error = reduced_amplitude_error.numpy()
std_amplitude_error = | np.nanstd(std_amplitude_error, 3) | numpy.nanstd |
import numpy as np
def read_file(test = True):
if test:
filename = '../tests/day7.txt'
else:
filename = '../input/day7.txt'
with open(filename) as file:
for line in file:
temp = list(map(int,line.strip().split(',')))
return | np.array(temp) | numpy.array |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 4 10:09:21 2019
@author: nmei
"""
from autoreject import (AutoReject,get_rejection_threshold)
import mne
from glob import glob
import re
import os
import numpy as np
import pandas as pd
import pickle
#import faster # https://gist.github.com/wmvanvliet/d883c3fe1402c7ced6fc
from sklearn.metrics import roc_auc_score,roc_curve
from sklearn.metrics import (
classification_report,
matthews_corrcoef,
confusion_matrix,
f1_score,
log_loss,
r2_score
)
from sklearn.preprocessing import (MinMaxScaler,
OneHotEncoder,
FunctionTransformer,
StandardScaler)
from sklearn.pipeline import make_pipeline
from sklearn.ensemble.forest import _generate_unsampled_indices
from sklearn.utils import shuffle
from sklearn.svm import SVC,LinearSVC
from sklearn.calibration import CalibratedClassifierCV
from sklearn.decomposition import PCA
from sklearn.dummy import DummyClassifier
from sklearn.feature_selection import (SelectFromModel,
SelectPercentile,
VarianceThreshold,
mutual_info_classif,
f_classif,
chi2,
f_regression,
GenericUnivariateSelect)
from sklearn.model_selection import (StratifiedShuffleSplit,
cross_val_score)
from sklearn.ensemble import RandomForestClassifier,BaggingClassifier,VotingClassifier
from sklearn.neural_network import MLPClassifier
from xgboost import XGBClassifier
from itertools import product,combinations
from sklearn.base import clone
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from collections import OrderedDict
from scipy import stats
from collections import Counter
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib import pyplot as plt
from matplotlib.pyplot import cm
from nilearn.plotting.img_plotting import (_load_anat,
_utils,
_plot_img_with_bg,
_get_colorbar_and_data_ranges,
_safe_get_data)
import matplotlib.patches as patches
try:
#from mvpa2.datasets.base import Dataset
from mvpa2.mappers.fx import mean_group_sample
#from mvpa2.measures import rsa
#from mvpa2.measures.searchlight import sphere_searchlight
#from mvpa2.base.learner import ChainLearner
#from mvpa2.mappers.shape import TransposeMapper
#from mvpa2.generators.partition import NFoldPartitioner
except:
pass#print('pymvpa is not installed')
try:
# from tqdm import tqdm_notebook as tqdm
from tqdm.auto import tqdm
except:
print('why is tqdm not installed?')
def preprocessing_conscious(raw,
events,
session,
tmin = -0,
tmax = 1,
notch_filter = 50,
event_id = {'living':1,'nonliving':2},
baseline = (None,None),
perform_ICA = False,
lowpass = None,
interpolate_bad_channels = True,):
"""
0. re-reference - explicitly
"""
raw_ref ,_ = mne.set_eeg_reference(raw,
ref_channels = 'average',
projection = True,)
raw_ref.apply_proj() # it might tell you it already has been re-referenced, but do it anyway
# everytime before filtering, explicitly pick the type of channels you want
# to perform the filters
picks = mne.pick_types(raw_ref.info,
meg = False, # No MEG
eeg = True, # YES EEG
eog = perform_ICA, # depends on ICA
)
# regardless the bandpass filtering later, we should always filter
# for wire artifacts and their oscillations
raw_ref.notch_filter(np.arange(notch_filter,241,notch_filter),
picks = picks)
if lowpass is not None:
raw_ref.filter(None,lowpass,)
epochs = mne.Epochs(raw_ref,
events, # numpy array
event_id, # dictionary
tmin = tmin,
tmax = tmax,
baseline = baseline, # range of time for computing the mean references for each channel and subtract these values from all the time points per channel
picks = picks,
detrend = 1, # detrend
preload = True # must be true if we want to do further processing
)
"""
1. if necessary, perform ICA
"""
if perform_ICA:
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
if interpolate_bad_channels:
interpolation_list = faster_bad_channels(epochs,picks=picks)
for ch_name in interpolation_list:
epochs.info['bads'].append(ch_name)
epochs = epochs.interpolate_bads()
# ar = AutoReject(
# picks = picks,
# random_state = 12345,
# )
# ar.fit(epochs)
# _,reject_log = ar.transform(epochs,return_log=True)
# calculate the noise covariance of the epochs
noise_cov = mne.compute_covariance(epochs,#[~reject_log.bad_epochs],
tmin = baseline[0],
tmax = baseline[1],
method = 'empirical',
rank = None,)
# define an ica function
ica = mne.preprocessing.ICA(n_components = .99,
n_pca_components = .99,
max_pca_components = None,
method = 'infomax',
max_iter = int(3e3),
noise_cov = noise_cov,
random_state = 12345,)
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
ica.fit(epochs,#[~reject_log.bad_epochs],
picks = picks,
start = tmin,
stop = tmax,
decim = 3,
tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw.
)
# search for artificial ICAs automatically
# most of these hyperparameters were used in a unrelated published study
ica.detect_artifacts(epochs,#[~reject_log.bad_epochs],
eog_ch = ['FT9','FT10','TP9','TP10'],
eog_criterion = 0.4, # arbitary choice
skew_criterion = 1, # arbitary choice
kurt_criterion = 1, # arbitary choice
var_criterion = 1, # arbitary choice
)
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs],
exclude = ica.exclude,
)
epochs = epochs_ica.copy()
else:
picks = mne.pick_types(epochs.info,
eeg = True, # YES EEG
eog = False # NO EOG
)
if interpolate_bad_channels:
interpolation_list = faster_bad_channels(epochs,picks=picks)
for ch_name in interpolation_list:
epochs.info['bads'].append(ch_name)
epochs = epochs.interpolate_bads()
# pick the EEG channels for later use
clean_epochs = epochs.pick_types(eeg = True, eog = False)
return clean_epochs
def preprocessing_unconscious(raw,
events,
session,
tmin = -0,
tmax = 1,
notch_filter = 50,
event_id = {'living':1,'nonliving':2},
baseline = (None,None),
perform_ICA = False,
eog_chs = [],
ecg_chs = [],):
# everytime before filtering, explicitly pick the type of channels you want
# to perform the filters
picks = mne.pick_types(raw.info,
meg = True, # No MEG
eeg = False, # NO EEG
eog = True, # YES EOG
ecg = True, # YES ECG
)
# regardless the bandpass filtering later, we should always filter
# for wire artifacts and their oscillations
if type(notch_filter) is list:
for item in notch_filter:
raw.notch_filter(np.arange(item,301,item),
picks = picks)
else:
raw.notch_filter( | np.arange(notch_filter,301,notch_filter) | numpy.arange |
#################################################################
#iris-recognition original code base was created by
#github user mokosaur https://github.com/mokosaur/iris-recognition
#code was forked from original on 4-4-2019
################################################################
import math
import numpy as np
from skimage.util import view_as_blocks
def polar2cart(radius, xCoordinate, yCoordinate, polarAngle):
"""Changes polar coordinates to cartesian coordinate system.
:param radius: Radius
:param xCoordinate: x coordinate of the origin
:param yCoordinate: y coordinate of the origin
:param polarAngle: Angle
:return: Cartesian coordinates
:rtype: tuple (int, int)
"""
xCartesian = int(xCoordinate + radius * math.cos(polarAngle))
yCartesian = int(yCoordinate + radius * math.sin(polarAngle))
return xCartesian, yCartesian
def unravel_iris(eyeImage, xPupilCenter, yPupilCenter, pupilRadius, xIrisCenter, yIrisCenter, irisRadius, phase_width=300, iris_width=150):
"""Unravels the iris from the image and transforms it to a straightened representation.
:param eyeImage: Image of an eye
:param xPupilCenter: x coordinate of the pupil centre
:param yPupilCenter: y coordinate of the pupil centre
:param pupilRadius: Radius of the pupil
:param xIrisCenter: x coordinate of the iris centre
:param yIrisCenter: y coordinate of the iris centre
:param irisRadius: Radius of the iris
:param phase_width: Length of the transformed iris
:param iris_width: Width of the transformed iris
:return: Straightened image of the iris
:rtype: ndarray
"""
if eyeImage.ndim > 2:
eyeImage = eyeImage[:, :, 0].copy()
iris = np.zeros((iris_width, phase_width))
theta = | np.linspace(0, 2 * np.pi, phase_width) | numpy.linspace |
"""
rnn_lstm_cell_test_cy.py
Test the correctness of the LSTM-cell implementation.
"""
import os
import unittest
from random import random
from numpy import asarray, ones, zeros
from torch import float64, FloatTensor, tensor
from torch.nn import LSTMCell as PytorchLSTM
from population.utils.rnn_cell_util.cy.lstm_cy import LSTMCellCy as LSTMCell
EPSILON = 1e-5
def get_lstm(input_size):
"""Get a LSTM-cell of the requested input-size, completely initialized with zeros."""
bias_h = zeros((4,))
weight_hh = zeros((4, 1))
weight_xh = zeros((4, input_size))
return LSTMCell(
input_size=input_size,
bias=bias_h,
weight_hh=weight_hh,
weight_xh=weight_xh,
)
def get_pytorch_lstm(input_size, used_lstm):
"""Load in a PyTorch LSTM that is a copy of the currently used LSTM."""
lstm = PytorchLSTM(input_size, 1)
lstm.bias_hh[:] = tensor(zeros((4,)), dtype=float64)[:]
lstm.bias_ih[:] = tensor(used_lstm.bias, dtype=float64)[:]
lstm.weight_hh[:] = tensor(used_lstm.weight_hh, dtype=float64)[:]
lstm.weight_ih[:] = tensor(used_lstm.weight_xh, dtype=float64)[:]
return lstm
# noinspection PyArgumentList
class LSTM(unittest.TestCase):
"""Test the custom numpy implementation of the LSTM-cell."""
def test_single_input_single_batch(self):
"""> Test when only one input given and batch-size is only one."""
# Folder must be root to load in make_net properly
if os.getcwd().split('\\')[-1] == 'tests': os.chdir('..')
# Get 'empty' LSTM
lstm = get_lstm(1)
# Completely zero LSTM, all inputs get ignored
self.assertEqual(lstm(asarray([[0]])), 0)
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
self.assertEqual(lstm(asarray([[1]])), 0)
lstm.hx, lstm.c = asarray([]), asarray([]) # LSTM keeps own state, reset it
# Modify the LSTM to have weight-arrays of one
lstm.weight_hh = asarray(ones((4, 1)))
lstm.weight_xh = asarray( | ones((4, 1)) | numpy.ones |
"""
Correlation module calculating connectivity values from data
"""
import logging
import numpy as np
import os
from itertools import islice
from pylsl import local_clock
from scipy.signal import hilbert
from scipy.signal import lfilter
from scipy.stats import zscore
from astropy.stats import circmean
from itertools import product
from osc4py3.as_allthreads import *
from osc4py3 import oscbuildparse
from osc4py3 import oscchannel as osch
import warnings
warnings.filterwarnings("ignore")
current = os.path.dirname(__file__)
LAST_CALCULATION = local_clock()
ORDER = 5
class Correlation:
def __init__(self, sample_rate, channel_count, mode, chn_type, corr_params, OSC_params, compute_pow, norm_params,
window_length, COEFFICIENTS, HANN, CONNECTIONS, OUTLET, OUTLET_POWER):
"""
Class computing connectivity values
:param sample_rate: sampling rate
:param channel_count: channel count
:param mode: connectivity mode. See notes for options.
:param chn_type: compute all electrode pairs if 'all-to-all';
alternatively, compute only corresponding electrode pairs if 'one-to-one'
:param corr_params: a list of three lists: frequency parameters, channel parameters, weight parameters
:param OSC_params: OSC parameters for OSC transmission
:param compute_pow: boolean variable determining whether to compute and transmit power values
:param norm_params: a list of two numbers. min and max values for MinMax normalization
:param COEFFICIENTS: band-pass filtering coefficients
:param HANN: Hanning window coefficients
:param CONNECTIONS: number of connections
:param OUTLET: StreamOutlet object for connectivity value output
:param OUTLET_POWER: StreamOutlet object for power value output
Note:
**supported connectivity measures**
- 'envelope correlation': envelope correlation
- 'power correlation': power correlation
- 'plv': phase locking value
- 'ccorr': circular correlation coefficient
- 'coherence': coherence
- 'imaginary coherence': imaginary coherence
"""
self.logger = logging.getLogger(__name__)
self.sample_rate = sample_rate
self.window_length = window_length # number of samples in the analysis window
self.channel_count = channel_count
self.freqParams, self.chnParams, self.weightParams = corr_params
self.OSC_params = OSC_params
self.compute_pow = compute_pow
self.norm_min, self.norm_max = norm_params
self.mode = mode
self.chn_type = chn_type
self.timestamp = None
self.SAMPLE_RATE = self.sample_rate
self.CHANNEL_COUNT = self.channel_count
# read setup tools
self.COEFFICIENTS = COEFFICIENTS
self.HANN = HANN
self.CONNECTIONS = CONNECTIONS
self.OUTLET = OUTLET
if self.compute_pow:
self.OUTLET_POWER = OUTLET_POWER
if OSC_params[0] is not None:
self._setup_OSC()
def run(self, buffers):
"""
running the analysis
:return: connectivity values
"""
global LAST_CALCULATION
trailing_timestamp = self._find_trailing_timestamp(buffers)
if trailing_timestamp != LAST_CALCULATION:
LAST_CALCULATION = trailing_timestamp
# select data for analysis based on the last timestamp
analysis_window = self._select_analysis_window(trailing_timestamp, buffers)
# apply Hanning window
# analysis_window = self._apply_window_weights(analysis_window)
# band-pass filter and compute analytic signal
analytic_matrix = self._calculate_all(analysis_window)
# compute connectivity values
rvalues = self._calculate_rvalues(analytic_matrix, self.mode)
if self.compute_pow:
power_values = self._calculate_power(analytic_matrix)
self.OUTLET_POWER.push_sample(power_values, timestamp=trailing_timestamp)
# sending LSL packets
if self.OUTLET:
self.logger.warning("Sending {} R values with timestamp {}".format(len(rvalues), trailing_timestamp))
self.OUTLET.push_sample(rvalues, timestamp=trailing_timestamp)
# sending OSC packets
if self.OSC_params[0] is not None: # if sending OSC
sample_size = self.CONNECTIONS * len(self.freqParams)
msg = oscbuildparse.OSCMessage("/Rvalues/me", ","+'f'*sample_size, rvalues)
osc_send(msg, 'Rvalues')
osc_process()
return rvalues
else:
self.logger.debug("Still waiting for new data to arrive, skipping analysis")
return
def _clamp(self, n):
"""
helper function to clamp a float variable between 0 and 1
"""
return max(min(1, n), 0)
def _apply_window_weights(self, analysis_window):
"""
applying hanning window to data
:param analysis_window: dictionary with EEG data streams
:return: dictionary of the same shape after applying hanning window
"""
for uid in analysis_window.keys():
analysis_window[uid] = np.multiply(analysis_window[uid], self.HANN[:, None])
self.logger.debug("Applying window weights with %s samples and %s channels." % analysis_window[uid].shape)
return analysis_window
def _setup_OSC(self):
"""
setting up OSC outlet
"""
# reading params
IP = self.OSC_params[0]
port = int(self.OSC_params[1])
# Start the system.
osc_startup()
# Make client channels to send packets.
try:
osc_udp_client(IP, int(port), "Rvalues")
except:
osch.terminate_all_channels()
osc_udp_client(IP, int(port), "Rvalues")
# first message is empty (removed this bc it's causing OSC msg to be all zeros)
# msg = oscbuildparse.OSCMessage("/Rvalues/me", ","+'f'*sample_size, [0]*sample_size)
# osc_send(msg, 'Rvalues')
def _calculate_power(self, analytic_matrix):
"""
compute power values from analytic signals
:param analytic_matrix: shape is (n_freq_bands, n_subjects, n_channel_count, n_sample_size). filtered analytic signal
:return: a vector that can be reshaped into (n_freq_bands, n_subjects, n_channel_count). Power values
"""
return np.nanmean(np.abs(analytic_matrix)**2, axis=3).reshape(-1)
def _find_trailing_timestamp(self, buffers):
trailing_timestamp = local_clock()
for buffer in buffers.values():#self.buffers.values():
timestamp, _ = buffer[-1]
if trailing_timestamp > timestamp:
trailing_timestamp = timestamp
return trailing_timestamp
def _select_analysis_window(self, trailing_timestamp, buffers):
"""
construct the analysis window based on the timestamp from last window
:param trailing_timestamp: timestamp from the last window
:return: a dictionary containing data. each value is a matrix of size (n_sample_size, n_channel_count)
"""
analysis_window = {}
for uid, buffer in buffers.items():#self.buffers.items():
# compute the sample start
latest_sample_at, _ = buffer[-1]
sample_offset = int(round((latest_sample_at - trailing_timestamp) * self.sample_rate))
sample_start = len(buffer) - self.window_length - sample_offset
if sample_start < 0:
self.logger.info("Not enough data to process in buffer {}, using dummy data".format(uid))
analysis_window[uid] = np.zeros((self.window_length, self.channel_count))
else:
# take data from buffer
timestamped_window = list(islice(buffer, sample_start, sample_start + self.window_length))
analysis_window[uid] = np.array([sample[1] for sample in timestamped_window])
return analysis_window
def _calculate_all(self, analysis_window):
"""
compute analytic signal from the analysis window
:param analysis_window: a dictionary containing data
:return: a matrix of shape (n_freq_bands, n_subjects, n_channel_count, n_sample_size)
"""
all_analytic = zscore(np.swapaxes(np.array(list(analysis_window.values())),1,2), axis=-1) # shape = (n_sub, n_chn, n_times)
all_analytic = np.array([hilbert(lfilter(coeff[0], coeff[1], all_analytic)) for c, coeff in enumerate(self.COEFFICIENTS)])
return all_analytic
# helper function
def _multiply_conjugate(self, real: np.ndarray, imag: np.ndarray, transpose_axes: tuple) -> np.ndarray:
"""
Helper function to compute the product of a complex array and its conjugate.
It is designed specifically to collapse the last dimension of a four-dimensional array.
Arguments:
real: the real part of the array.
imag: the imaginary part of the array.
transpose_axes: axes to transpose for matrix multiplication.
Returns:
product: the product of the array and its complex conjugate.
"""
formula = 'ilm,imk->ilk'
product = np.einsum(formula, real, real.transpose(transpose_axes)) + \
np.einsum(formula, imag, imag.transpose(transpose_axes)) - 1j * \
(np.einsum(formula, real, imag.transpose(transpose_axes)) - \
np.einsum(formula, imag, real.transpose(transpose_axes)))
return product
def compute_sync(self, complex_signal: np.ndarray, mode: str) -> np.ndarray:
"""
helper function for computing connectivity value.
The result is a connectivity matrix of all possible electrode pairs between the dyad, including inter- and intra-brain connectivities.
:param complex_signal: complex signal of shape (n_freq, 2, n_channel_count, n_sample_size). data for one dyad.
:param mode: connectivity mode. see notes for details.
:return: connectivity matrix of shape (n_freq, 2*n_channel_count, 2*channel_count)
"""
n_ch, n_freq, n_samp = complex_signal.shape[2], complex_signal.shape[0], \
complex_signal.shape[3]
complex_signal = complex_signal.reshape(n_freq, 2 * n_ch, n_samp)
transpose_axes = (0, 2, 1)
if mode.lower() == 'plv':
phase = complex_signal / | np.abs(complex_signal) | numpy.abs |
"""Main spyke window"""
from __future__ import division
from __future__ import print_function
__authors__ = ['<NAME>', '<NAME>']
import sys
print('Running spyke in Python %d.%d' % (sys.version_info.major, sys.version_info.minor))
from .__version__ import check_LIBVERSIONS
check_LIBVERSIONS(verbose=True)
# set working directory to path of this module instead of path of script that launched python,
# otherwise Qt4 has problems finding the spyke.ui file:
from . import __path__
import os
os.chdir(__path__[0])
import sys
import platform
import time
import datetime
import gc
JSONPICKLENUMERICKEYPREFIX = 'json://'
LENJSONPICKLENUMERICKEYPREFIX = len(JSONPICKLENUMERICKEYPREFIX)
def sort_numeric_json_keys(keyval):
"""Process string keys to sort jsonpickle json:// keys properly as int placeholders
in natural numeric order (1, 2, 3) instead of alpha order (1, 11, 12, ..., 2, 21, 22...)"""
k, v = keyval
#if type(k) not in [str, unicode]:
# print('Unexpected key type:', type(k))
if k.startswith(JSONPICKLENUMERICKEYPREFIX):
newk = k[LENJSONPICKLENUMERICKEYPREFIX:] # left strip prefix
if newk.isdigit(): # sort json int keys as natural numbers ahead of string keys
newk = int(newk)
#print('k=%r, newk=%r' % (k, newk))
return newk
return k
import jsonpickle
jsonpickle.set_preferred_backend('simplejson') # make default explicit
jsonpickle.set_encoder_options('simplejson',
indent=' ',
separators=(',', ':'),
#sort_keys=True, # overridden by item_sort_key callable
item_sort_key=sort_numeric_json_keys
)
import jsonpickle.ext.numpy as jsonpickle_numpy
jsonpickle_numpy.register_handlers()
try:
import cPickle as pickle
except ImportError:
import pickle
import random
from copy import copy, deepcopy
from struct import unpack
from collections import OrderedDict as odict
import numpy as np
import scipy.stats
# instantiate an IPython embedded shell which shows up in the terminal on demand
# and on every exception:
from IPython.terminal.ipapp import load_default_config
from IPython.terminal.embed import InteractiveShellEmbed
config = load_default_config()
# automatically call the pdb debugger after every exception, override default config:
config.TerminalInteractiveShell.pdb = True
ipshell = InteractiveShellEmbed(display_banner=False, config=config)
from PyQt4 import QtCore, QtGui, uic
from PyQt4.QtCore import Qt, QByteArray
getSaveFileName = QtGui.QFileDialog.getSaveFileName
getExistingDirectory = QtGui.QFileDialog.getExistingDirectory
SpykeUi, SpykeUiBase = uic.loadUiType('spyke.ui')
import pylab as pl
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
from matplotlib.figure import Figure
import pyximport
pyximport.install(build_in_temp=False, inplace=True)
from . import util # .pyx file
from .gac import gac # .pyx file
from . import core
from .core import (toiter, tocontig, intround, intceil, printflush, lstrip, matlabize,
g, iterable, ClusterChange, SpykeToolWindow, DJS,
qvar2list, qvar2str, qvar2int, nullwavesat)
from . import dat, nsx, surf, stream, probes
from .stream import SimpleStream, MultiStream
from .sort import Sort, SortWindow, NSLISTWIDTH, MEANWAVEMAXSAMPLES, NPCSPERCHAN
from .plot import SpikePanel, ChartPanel, LFPPanel
from .detect import Detector, calc_SPIKEDTYPE, DEBUG
from .extract import Extractor
from .cluster import Cluster, ClusterWindow
from .__version__ import __version__
# spike window temporal window (us)
SPIKETW = {'.dat': (-500, 1500),
'.ns6': (-500, 1500),
'.srf': (-400, 600),
'.tsf': (-1000, 2000)}
# chart window temporal window (us)
CHARTTW = {'.dat': (-25000, 25000),
'.ns6': (-25000, 25000),
'.srf': (-25000, 25000),
'.tsf': (-50000, 50000)}
# LFP window temporal window (us)
LFPTW = -500000, 500000
# zero out +/- this amount of time around each saturated timepoint when exporting
# high-pass data to Kilosort2:
SATURATIONWINDOW = 25000 # us
# shift imported Kilosort2 spike times by this much for better positioning in sort window:
KILOSORT2SHIFTCORRECT = -(66+2.0/3) # us, multiple of both 16.67 or 33.33 .ns6 tres
# spatial channel layout:
# UVPERUM affects vertical channel spacing and voltage gain (which is further multiplied by
# each plot window's gain):
UVPERUM = {'.dat': 5, '.ns6': 5, '.srf': 2, '.tsf': 20}
# USPERUM affects horizontal channel spacing. Decreasing USPERUM increases horizontal overlap
# between spike chans. For .srf data, 17 gives roughly no horizontal overlap for
# self.tw[1] - self.tw[0] == 1000 us:
# However, this also depends on the horizontal spacing of the probe sites, so really
# this should be set according to probe type, not file type, or it should be scaled in
# terms of fraction of the horizontal span of the probe site layout:
USPERUM = {'.dat': 50, '.ns6': 50, '.srf': 17, '.tsf': 125}
DYNAMICNOISEX = {'.dat': 4.5, '.ns6': 4.5, '.srf': 6, '.tsf': 3} # noise multiplier
DT = {'.dat': 600, '.ns6': 600, '.srf': 400, '.tsf': 1500} # max time between spike peaks (us)
SCREENWIDTH = 1920 # TODO: this should be found programmatically
#SCREENHEIGHT = 1080 # TODO: this should be found programmatically
WINDOWTITLEHEIGHT = 26 # TODO: this should be found programmatically
BORDER = 2 # TODO: this should be found programmatically
SPIKEWINDOWWIDTHPERCOLUMN = 80
SPIKEWINDOWHEIGHT = 658 + 2*BORDER # TODO: this should be calculated from SCREENHEIGHT
CHARTWINDOWSIZE = 900+2*BORDER, SPIKEWINDOWHEIGHT
LFPWINDOWSIZE = 250+2*BORDER, SPIKEWINDOWHEIGHT
#SHELLSIZE = CHARTWINDOWSIZE[0], CHARTWINDOWSIZE[1]/2
CLUSTERWINDOWHEIGHT = 700
MAXRECENTFILES = 20 # anything > 10 will mess up keyboard accelerators, but who cares
WINDOWUPDATEORDER = ['Spike', 'LFP', 'Chart'] # chart goes last cuz it's slowest
# if updating at least this many selected spikes in .wave file, update them all
# instead for speed:
NDIRTYSIDSTHRESH = 200000
class SpykeWindow(QtGui.QMainWindow):
"""spyke's main window, uses gui layout generated by QtDesigner"""
def __init__(self):
QtGui.QMainWindow.__init__(self)
self.ui = SpykeUi()
self.ui.setupUi(self) # lay it out
self.groupMenuFiltering()
self.groupMenuCAR()
self.groupMenuSampling()
self.addRecentFileActions()
self.updateRecentFiles()
self.move(0, 0) # top left corner, to make space for data windows
self.streampath = os.getcwd() # init
self.sortpath = os.getcwd() # init
for d in ('~/data', '/data'): # use first existing of these paths, if any
path = os.path.expanduser(d)
if os.path.exists(path):
self.streampath = path
self.sortpath = path
break
self.windows = {} # holds child windows
self.t = None # current time position in recording (us)
self.hpstream = None
self.lpstream = None
self.cchanges = core.Stack() # cluster change stack, for undo/redo
self.cci = -1 # pointer to cluster change for the next undo (add 1 for next redo)
self.dirtysids = set() # sids whose waveforms in .wave file are out of date
# disable most widgets until a stream or a sort is opened:
self.EnableStreamWidgets(False)
self.EnableSortWidgets(False)
self.EnableFilteringMenu(False) # disable by default, not all file types need filtering
self.EnableCARMenu(False) # disable until stream is open
self.EnableSamplingMenu(False) # disable until stream is open
def addRecentFileActions(self):
"""Init recent file QActions and insert them into the right place in the
File menu. Leave them invisible until needed"""
self.recentFileActions = []
for i in range(MAXRECENTFILES):
action = QtGui.QAction(self)
action.setVisible(False)
action.triggered.connect(self.OpenRecentFile)
self.recentFileActions.append(action)
self.ui.menuFile.insertAction(self.ui.actionSaveSort, action)
self.ui.menuFile.insertSeparator(self.ui.actionSaveSort)
def groupMenuFiltering(self):
"""Group filtering methods in filtering menu into a QActionGroup such that only
one is ever active at a time. This isn't possible to do from within
QtDesigner 4.7, so it's done here manually instead"""
ui = self.ui
filteringGroup = QtGui.QActionGroup(self)
filteringGroup.addAction(ui.actionFiltmethNone)
filteringGroup.addAction(ui.actionFiltmethBW)
filteringGroup.addAction(ui.actionFiltmethBWNC)
filteringGroup.addAction(ui.actionFiltmethWMLDR)
def groupMenuCAR(self):
"""Group common average referencing methods in CAR menu into a QActionGroup such
that only one is ever active at a time. This isn't possible to do from within
QtDesigner 4.7, so it's done here manually instead"""
ui = self.ui
CARGroup = QtGui.QActionGroup(self)
CARGroup.addAction(ui.actionCARNone)
CARGroup.addAction(ui.actionCARMedian)
CARGroup.addAction(ui.actionCARMean)
def groupMenuSampling(self):
"""Group sampling rates in sampling menu into a QActionGroup such that only
one is ever active at a time. This isn't possible to do from within
QtDesigner 4.7, so it's done here manually instead"""
ui = self.ui
samplingGroup = QtGui.QActionGroup(self)
samplingGroup.addAction(ui.action20kHz)
samplingGroup.addAction(ui.action25kHz)
samplingGroup.addAction(ui.action30kHz)
samplingGroup.addAction(ui.action40kHz)
samplingGroup.addAction(ui.action50kHz)
samplingGroup.addAction(ui.action60kHz)
samplingGroup.addAction(ui.action80kHz)
samplingGroup.addAction(ui.action100kHz)
samplingGroup.addAction(ui.action120kHz)
@QtCore.pyqtSlot()
def on_actionNewSort_triggered(self):
self.DeleteSort() # don't create a new one until spikes exist
@QtCore.pyqtSlot()
def on_actionNewTrack_triggered(self):
self.CreateNewTrack()
def CreateNewTrack(self):
"""Create a new .track file"""
exts = ['.ns6', '.dat', '.srf']
caption = "Create .track file from %s files" % ' '.join(exts)
starexts = [ '*%s' % ext for ext in exts ]
filter = ('%s files ' % ', '.join(exts) +
'(%s)' % ' '.join(starexts) + ';;All files (*.*)')
trackfname = getSaveFileName(self, caption=caption,
directory=self.streampath,
filter=filter)
trackfname = str(trackfname)
if not trackfname:
return
if not trackfname.endswith('.track'):
trackfname += '.track'
path = os.path.split(trackfname)[0]
ls = os.listdir(path)
fnames = {}
for ext in exts:
fnames = [ fname for fname in os.listdir(path) if fname.endswith(ext) ]
if len(fnames) > 0:
break
if len(fnames) == 0:
print("Couldn't find any .ns6, .dat, or .srf files in %r" % path)
return
fnames = sorted(fnames)
trackstr = '\n'.join(fnames)
with open(trackfname, 'w') as trackf:
trackf.write(trackstr)
trackf.write('\n') # end the file with a newline
print('Wrote track file %r:' % trackfname)
print(trackstr)
self.OpenFile(trackfname)
@QtCore.pyqtSlot()
def on_actionOpen_triggered(self):
getOpenFileName = QtGui.QFileDialog.getOpenFileName
filter = (".dat, .ns6, .srf, .track, .tsf, .mat, .event, .sort & .json files "
"(*.dat *.ns6 *.srf *.track *.tsf *.mat *.event*.zip *.sort *.json);;"
"All files (*.*)")
fname = getOpenFileName(self, caption="Open stream or sort or din",
directory=self.streampath,
filter=filter)
fname = str(fname)
if fname:
self.OpenFile(fname)
@QtCore.pyqtSlot()
def on_actionSaveSort_triggered(self):
try:
self.sort
except AttributeError: # sort doesn't exist
return
if self.sort.fname:
self.SaveSortFile(self.sort.fname) # save to existing sort fname
else:
self.on_actionSaveSortAs_triggered()
@QtCore.pyqtSlot()
def on_actionSaveSortAs_triggered(self):
"""Save sort to new .sort/.json file"""
fname = self.sort.fname
if fname == '': # sort hasn't been previously saved
# generate default fname with hpstream.fname:
fname = self.hpstream.fname.replace(' ', '_')
# and datetime:
#dt = str(datetime.datetime.now()) # get a sort creation timestamp
#dt = dt.split('.')[0] # ditch the us
#dt = dt.replace(' ', '_')
#dt = dt.replace(':', '.')
#fname += '_' + dt
fname += '.json' # add default sort fname extension
defaultfname = os.path.join(self.sortpath, fname)
fname = getSaveFileName(self, caption="Save sort As",
directory=defaultfname,
filter="Sort files (*.sort *.json);;"
"All files (*.*)")
fname = str(fname)
if fname:
head, tail = os.path.split(fname)
base, ext = os.path.splitext(tail)
if ext not in ['.sort', '.json']:
raise ValueError('Sort file extension (.sort or .json) must be specified')
oldsortpath = self.sortpath
oldbase, oldext = os.path.splitext(self.sort.fname)
# Don't force re-creation of new .wave file if the base name and path
# are the same and the .wave file already exists. This means that when
# overwriting a sort file with SaveAs, its .wave file is untouched:
try:
wavefileexists = os.path.exists(os.path.join(head, self.sort.wavefname))
except AttributeError: # self.sort.wavefname not set
wavefileexists = False # at least as far as this Sort is concerned
if head == oldsortpath and base == oldbase and wavefileexists:
print('Skipping overwriting of existing .wave file: %s' % self.sort.wavefname)
pass
else: # force re-creation of .wave file
self.sortpath = head # update sort path
try:
del self.sort.wavefname
except AttributeError:
pass
self.SaveSortFile(tail) # always overwrites any existing .spike file
@QtCore.pyqtSlot()
def on_actionSaveTrackChans_triggered(self):
self.SaveTrackChans()
def SaveTrackChans(self):
"""Overwrite existing .track file, potentially saving a new set of enabled chans"""
stream = self.hpstream
if not stream.is_multi():
print("Stream is not a MultiStream, can't save a .track file")
return
trackfname = os.path.join(self.streampath, stream.fname)
if not os.path.isfile(trackfname):
raise RuntimeError('Somehow the current MultiStream has no existing .track file')
trackstr = ''
allchans = np.sort(stream.streams[0].f.fileheader.chans)
if len(stream.chans) != len(allchans):
# some chans are disabled, write them as a comment in .track file
trackstr += '# enabledchans = %r\n' % list(stream.chans)
else:
assert (stream.chans == allchans).all()
trackstr += '\n'.join(stream.fnames)
with open(trackfname, 'w') as trackf:
trackf.write(trackstr)
trackf.write('\n') # end the file with a newline
print('Wrote track file %r:' % trackfname)
print(trackstr)
@QtCore.pyqtSlot()
def on_actionSaveParse_triggered(self):
if self.hpstream.ext == '.srf':
self.hpstream.pickle()
else:
print('Only .srf streams have complicated parsings that can be '
'saved to a .parse file')
def getUserInfo(self):
"""Get user info when exporting spikes"""
dlg = uic.loadUi('userinfodialog.ui')
dlg.setWindowTitle('Enter optional user initials/name and notes about the sort')
sort = self.sort
dlg.userLineEdit.insert(sort.user)
dlg.notesTextEdit.insertPlainText(sort.notes)
if dlg.exec_(): # returns 1 if OK, 0 if Cancel
user = str(dlg.userLineEdit.text()).rstrip().upper()
notes = str(dlg.notesTextEdit.toPlainText()).rstrip()
if not user.isalpha():
print('User initials must be alphabetic characters only')
sort.user = user
sort.notes = notes
return user, notes
@QtCore.pyqtSlot()
def on_actionExportPtcsFiles_triggered(self):
userinfo = self.getUserInfo()
if userinfo is None:
return # cancel
user, notes = userinfo
path = getExistingDirectory(self, caption="Export .ptcs file(s) to",
directory=self.sortpath)
path = str(path)
if path:
self.sort.exportptcsfiles(path, self.sortpath, user=user, notes=notes)
# don't update path
@QtCore.pyqtSlot()
def on_actionExportTsChIdFiles_triggered(self):
path = getExistingDirectory(self, caption="Export .tschid file(s) to",
directory=self.sortpath)
path = str(path)
if path:
self.sort.exporttschid(path)
# don't update path
@QtCore.pyqtSlot()
def on_actionExportDIN_triggered(self):
path = getExistingDirectory(self, caption="Export .din file(s) to",
directory=self.sortpath)
path = str(path)
if path:
## TODO: if sort doesn't exist, make a temporary fake with hpstream
## as its stream. That's all that's needed.
self.sort.exportdin(path)
# don't update path
@QtCore.pyqtSlot()
def on_actionExportTextheader_triggered(self):
path = getExistingDirectory(self, caption="Export .textheader file(s) to",
directory=self.sortpath)
path = str(path)
if path:
## TODO: if sort doesn't exist, make a temporary fake with hpstream
## as its stream. That's all that's needed.
self.sort.exporttextheader(path)
# don't update path
@QtCore.pyqtSlot()
def on_actionExportAll_triggered(self):
path = getExistingDirectory(self,
caption="Export .ptcs, .din and .textheader file(s) to",
directory=self.sortpath)
path = str(path)
if path:
self.sort.exportall(basepath=path, sortpath=self.sortpath)
# don't update path
@QtCore.pyqtSlot()
def on_actionExportCSVFile_triggered(self):
"""Export "good" spikes to .csv file"""
sortfname = os.path.join(self.sortpath, self.sort.fname)
if sortfname == '': # sort hasn't been previously saved
raise ValueError('Please save sort file before exporting to .csv')
# generate default fname with sort fname + datetime:
sortfname = sortfname.replace(' ', '_')
dt = str(datetime.datetime.now()) # get an export timestamp
dt = dt.split('.')[0] # ditch the us
dt = dt.replace(' ', '_')
dt = dt.replace(':', '.')
ext = '.csv'
defaultfname = sortfname + '_' + dt + ext
caption = "Export spikes to %s file" % ext
filter = "%s spike files (*%s);;All files (*.*)" % (ext, ext)
fname = getSaveFileName(self, caption=caption,
directory=defaultfname,
filter=filter)
fname = str(fname)
if fname:
before, sep, after = fname.partition(ext)
if sep != ext:
fname = before + ext # make sure it has extension
sw = self.OpenWindow('Sort') # in case it isn't already open
self.sort.exportcsv(fname)
@QtCore.pyqtSlot()
def on_actionExportSpikesZipFile_triggered(self):
"""Save selected spikes on selected channels and timepoints to
binary .spikes.zip file"""
self.exportSpikeWaveforms(format='binary')
@QtCore.pyqtSlot()
def on_actionExportSpikesCSVFile_triggered(self):
"""Save selected spikes on selected channels and timepoints to
text .spikes.csv file"""
self.exportSpikeWaveforms(format='text')
def exportSpikeWaveforms(self, format):
"""Save selected spikes on selected channels and timepoints to
binary .spikes.zip file or text .spikes.csv file"""
if format == 'binary':
ext = '.spikes.zip'
elif format == 'text':
ext = '.spikes.csv'
else:
raise ValueError("Invalid format: %r" % format)
defaultfname = os.path.join(self.sortpath, self.sort.fname)
if defaultfname == '': # sort hasn't been previously saved
# generate default fname with hpstream.fname and datetime
fname = self.hpstream.fname.replace(' ', '_')
dt = str(datetime.datetime.now()) # get an export timestamp
dt = dt.split('.')[0] # ditch the us
dt = dt.replace(' ', '_')
dt = dt.replace(':', '.')
defaultfname = fname + '_' + dt
defaultfname = defaultfname + ext
caption = "Export spike waveforms to %s %s file" % (format, ext)
filter = "%s spike waveform files (*%s);;All files (*.*)" % (format, ext)
fname = getSaveFileName(self, caption=caption,
directory=defaultfname,
filter=filter)
fname = str(fname)
if fname:
before, sep, after = fname.partition(ext)
if sep != ext:
fname = before + ext # make sure it has extension
sids = self.GetAllSpikes()
selchans = self.get_selchans(sids)
sw = self.OpenWindow('Sort') # in case it isn't already open
tis = sw.tis
self.sort.exportspikewaves(sids, selchans, tis, fname, format)
@QtCore.pyqtSlot()
def on_actionExportHighPassDatFiles_triggered(self):
self.export_hpstream()
def export_hpstream(self, cat=False, gaps=False, checksat=False, satwin=None,
export_msg='high-pass', export_ext='.filt.dat'):
"""Export high-pass stream to user-designated path, using current preprocessing
settings (filtering, CAR, and resampling) and channel selection, to export_ext file(s)
with associated export_ext.json file describing the preprocessing that was done. This
can also be used to export raw data if the hpstream settings for filtering, CAR and
resampling are set appropriately. Use export_msg and export_ext to communicate this.
cat controls whether to concatenate all the exported data into a single
.dat file.
If gaps is True, gaps between streams in a Multistream are excluded
from the .dat file; if gaps is False, gaps are not excluded from the .dat file
and are zero-padded, resulting in one long continuous time range of data.
If checksat is true, check for saturation in raw data, then null out +/- satwin us
around any saturated data. This works best if the data is indeed high-pass"""
if not self.hpstream:
print('First open a stream!')
return
if self.hpstream.is_multi(): # self.hpstream is a MultiStream
defaultpath = self.hpstream.streams[0].f.path # get path of first stream
if cat: # export entire MultiStream to one file:
hpstreams = [self.hpstream]
else: # export each stream in MultiStream to a separate file
hpstreams = self.hpstream.streams
else: # self.hpstream is a single Stream
assert cat == False # nonsensical for a single Stream
defaultpath = self.hpstream.f.path
hpstreams = [self.hpstream]
caption = "Export %s data to %s files" % (export_msg, export_ext)
path = str(getExistingDirectory(self, caption=caption, directory=defaultpath))
if not path:
return
print('Exporting %d channels:' % self.hpstream.nchans)
print('chans = %s' % self.hpstream.chans)
blocksize = int(float(self.ui.blockSizeLineEdit.text()))
print('Exporting in blocks of %d us' % blocksize)
for hps in hpstreams:
fname = hps.fname + export_ext
fullfname = os.path.join(path, fname)
fulljsonfname = fullfname + '.json'
print('Exporting %s data to %r' % (export_msg, fullfname))
with open(fullfname, 'wb') as datf:
# collect tranges that will correspond to exported timepoints in .dat:
tranges = np.array([[hps.t0, hps.t1]]) # 2D array
if hps.is_multi() and gaps:
# make gaps explicit by excluding them from tranges:
tranges = hps.tranges # tranges of streams in MultiStream, 2D array
nulltranges = []
t0s = np.arange(hps.t0, hps.t1, blocksize)
for t0 in t0s:
t1 = t0 + blocksize
#print('%d to %d us' % (t0, t1))
printflush('.', end='') # succint progress indicator
wave = hps(t0, t1, checksat=checksat, gaps=gaps)
if checksat:
satis = wave.satis # should have same shape as wave.data
if satis.any():
wsatis = np.where(satis) # integer row and col indices
satchanis = np.unique(wsatis[0]) # indices of rows that saturated
satchans = wave.chans[satchanis]
print() # newline
print('Saturation in block (%d, %d) on chans %s'
% (t0, t1, satchans))
ntwin = intround(satwin / hps.tres)
# null the saturated periods:
blocknulltranges = nullwavesat(wave, ntwin) # nx2 array
nulltranges.append(blocknulltranges)
#if t0 == t0s[-1]:
# print('last block asked:', t0, t1)
# print('last block received:', wave.ts[0], wave.ts[-1])
wave.data.T.tofile(datf) # write in column-major (Fortran) order
print() # newline
if len(nulltranges) == 0:
nulltranges = None # default value
else:
# concatenate 2D arrays vertically:
nulltranges = np.concatenate(nulltranges, axis=0)
#nulltrangesfname = fullfname + '.0tranges.npy'
#np.save(nulltrangesfname, nulltranges)
print('Nulled %d time ranges' % len(nulltranges))
core.write_dat_json(hps, fulljsonfname, gaps=gaps,
tranges=tranges, nulltranges=nulltranges)
print('Done exporting %s data' % export_msg)
# only return path and fname if we're only exporting to a single file:
if len(hpstreams) == 1:
return path, fname
@QtCore.pyqtSlot()
def on_actionExportLFPZipFiles_triggered(self):
self.export_lpstream(format='binary')
@QtCore.pyqtSlot()
def on_actionExportLFPCSVFiles_triggered(self):
self.export_lpstream(format='text')
def export_lpstream(self, format='binary'):
"""Export low-pass stream (LFP) data as binary .lfp.zip file(s) or text .lfp.csv
file(s) in user-designated basepath"""
if not self.lpstream:
print('First open a stream!')
return
format2ext = {'binary': '.lfp.zip', 'text': '.lfp.csv'}
ext = format2ext[format]
caption = "Export low-pass data to %s %s files" % (format, ext)
basepath = getExistingDirectory(self, caption=caption, directory=self.sortpath)
basepath = str(basepath)
if not basepath:
return
if self.lpstream.is_multi(): # self.lpstream is a MultiStream
lpstreams = self.lpstream.streams
else: # self.lpstream is a single Stream
lpstreams = [self.lpstream]
print('Exporting low-pass data to:')
for lps in lpstreams:
path = os.path.join(basepath, lps.srcfnameroot)
try: os.mkdir(path)
except OSError: pass # path already exists?
fullfname = os.path.join(path, lps.srcfnameroot+ext)
print(fullfname)
# collect low-pass data in blocks, to prevent MemoryErrors when trying to
# low-pass filter an entire raw ephys data file:
blocksize = int(float(self.ui.blockSizeLineEdit.text())) # allow exp notation
t0s = np.arange(lps.t0, lps.t1, blocksize)
data = []
for t0 in t0s:
t1 = t0 + blocksize
wave = lps[t0:t1]
data.append(wave.data)
# concatenate data blocks horizontally in time:
data = np.hstack(data)
if format == 'binary':
chanpos = lps.probe.siteloc_arr()
uVperAD = lps.converter.AD2uV(1)
with open(fullfname, 'wb') as f:
np.savez_compressed(f, data=data, chans=wave.chans, t0=lps.t0,
t1=lps.t1, tres=lps.tres, chanpos=chanpos,
chan0=lps.probe.chan0, probename=lps.probe.name,
uVperAD=uVperAD)
else: # format == 'text'
np.savetxt(fullfname, data, fmt='%d', delimiter=',') # data should be int
print('Done exporting low-pass data')
@QtCore.pyqtSlot()
def on_actionExportHighPassEnvelopeDatFiles_triggered(self):
self.export_hp_envelope()
@QtCore.pyqtSlot()
def on_actionExportHighPassBipolarRefEnvelopeDatFiles_triggered(self):
self.export_hp_envelope(bipolarref=True)
def export_hp_envelope(self, sampfreq=2000, f0=None, f1=500, bipolarref=False):
"""Export envelope of high-pass stream to the same folder as the stream, or if this is
a MultiStream, to the same folders as each of its constituent Streams. Use current
preprocessing settings (filtering, CAR, and resampling), to .envl.dat file(s) with
associated .envl.dat.json file describing the preprocessing that was done. Decimate
output to get sampfreq. Export chans in order of depth, superficial to deep.
bipolarref: optionally take each channel's raw data to be the difference of the two
immediately spatially adjacent channels, before calculating the envelope"""
if not self.hpstream:
print('First open a stream!')
return
if self.hpstream.is_multi(): # self.hpstream is a MultiStream
hpstreams = self.hpstream.streams
else: # self.hpstream is a single Stream
hpstreams = [self.hpstream]
print('Exporting high-pass envelope data to:')
for hps in hpstreams:
assert hps.sampfreq % sampfreq == 0
decimatex = intround(hps.sampfreq / sampfreq)
fullfname = os.path.join(hps.f.path, hps.fname + '.envl.dat')
fulljsonfname = fullfname + '.json'
print(fullfname)
# excess data to get at either end of each block, to eliminate
# filtering edge effects:
xs = core.XSWIDEBANDPOINTS * hps.rawtres # us
# sort channels for export by depth instead of by ID:
# get ypos of each enabled site:
enabledchans = self.hpstream.chans
ypos = [ self.hpstream.probe.SiteLoc[chan][1] for chan in enabledchans ]
ysortis = np.argsort(ypos)
ychans = enabledchans[ysortis]
with open(fullfname, 'wb') as datf:
blocksize = int(float(self.ui.blockSizeLineEdit.text())) # allow exp notation
t0s = np.arange(hps.t0, hps.t1, blocksize)
for t0 in t0s:
t1 = t0 + blocksize
t0xs, t1xs = t0-xs, t1+xs
wave = hps[t0xs:t1xs] # get excess range of data
data = wave.data[ysortis] # sort chans by depth
chans = wave.chans[ysortis]
assert (chans == ychans).all()
if bipolarref:
# set each channel to be the difference of the two immediately
# spatially adjacent channels:
data[1:-1] = data[:-2] - data[2:]
data[[0, -1]] = 0 # null out the first and last channel
# get envelope of data by rectifying and low-pass filtering:
data = core.envelope_filt(data, sampfreq=hps.sampfreq,
f0=f0, f1=f1) # float64
# ensure data limits fall within int16:
iint16 = np.iinfo(np.int16)
assert data.max() <= iint16.max
assert data.min() >= iint16.min
data = np.int16(data) # convert float64 to int16
t0i, t1i = wave.ts.searchsorted([t0, t1]) # get indices to remove excess
data = data[:, t0i:t1i:decimatex] # remove excess and decimate
data.T.tofile(datf) # write in column-major (Fortran) order
envelope = odict()
envelope['meth'] = 'abs'
envelope['bipolar_ref'] = bipolarref
envelope['filter_meth'] = 'BW'
envelope['f0'] = f0
envelope['f1'] = f1
core.write_dat_json(hps, fulljsonfname, sampfreq=sampfreq,
chans=ychans, chan_order='depth', envelope=envelope)
print('Done exporting high-pass envelope data')
@QtCore.pyqtSlot()
def on_actionExportWideBandDatKilosort2Files_triggered(self):
self.export_wb_ks2_dat()
@QtCore.pyqtSlot()
def on_actionExportRawDataDatFiles_triggered(self):
self.export_raw_dat()
@QtCore.pyqtSlot()
def on_actionExportKilosort2Files_triggered(self):
fname = self.hpstream.fname
if self.hpstream.is_multi(): # self.hpstream is a MultiStream
path = self.hpstream.streams[0].f.path # get path of first stream
else: # self.hpstream is a single Stream
path = self.hpstream.f.path
self.export_ks2(path, fname)
def export_wb_ks2_dat(self):
"""Export wide-band ephys data for use in Kilosort2, while checking
for and zeroing out any periods of saturation. Exports enabled chans concatenated
across all files in current track, without gaps, to .dat file in user-designated path.
This works by first turning off all filtering, CAR, and resampling, then calling
self.export_hpstream(), then restoring filtering, CAR, and resampling settings"""
print('Exporting wide-band gapless ephys data to .dat file for use in Kilosort2, '
'removing any saturation')
# save current hpstream filtering, CAR, and sampling settings:
stream = self.hpstream
if not stream:
print('First open a stream!')
return
# check if this is already a .dat file, if so, we probably want to simply run
# self.export_ks2() instead. Perhaps this block can be commented out for
# exceptional cases, such as if an oe .dat file has periods of saturation or channels
# to exclude, in which case a new .dat.dat file does indeed need to be exported
# for Kilosort2:
fname = self.hpstream.fname
base, ext = os.path.splitext(fname)
if ext == '.dat':
print('*** NOTE: The currently open %s data stream is already a .dat file, and '
'there may be no need to export another one (unless you want to ensure '
'saturation periods are removed). If you want to simply '
'export the Kilosort2 channel map, config, and run files, cancel with '
'Ctrl+C and try again with the appropriate menu option' % fname)
filtmeth = stream.filtmeth
car = stream.car
sampfreq = stream.sampfreq
shcorrect = stream.shcorrect
# set hpstream to show raw data:
print('Temporarily disabling filtering, CAR, and resampling for raw export')
self.SetFiltmeth(None)
self.SetCAR(None)
self.SetSampfreq(stream.rawsampfreq)
if stream.ext != '.srf':
self.SetSHCorrect(False) # leave it enabled for .srf, data is wrong w/o it
# do the export:
if stream.is_multi(): # it's a MultiStream
cat, gaps = True, True # concatenate, export with timestamp gaps
else: # it's a single Stream
cat, gaps = False, False # nothing to concatenate
result = self.export_hpstream(cat=cat, gaps=gaps,
checksat=True, satwin=SATURATIONWINDOW,
export_msg='wide-band', export_ext='.dat')
if result:
path, datfname = result
# restore hpstream settings:
print('Restoring filtering, CAR, and resampling settings')
self.SetFiltmeth(filtmeth)
self.SetCAR(car)
self.SetSampfreq(sampfreq)
self.SetSHCorrect(shcorrect)
if not result:
print('Wide-band data export cancelled')
return
# export Kilosort2 files:
self.export_ks2(path, datfname)
def export_ks2(self, path, datfname):
"""Export Kilosort2 channel map, config, and run files to path, for the specified
.dat file"""
stream = self.hpstream
if not stream:
print('First open a stream!')
return
base, ext = os.path.splitext(datfname)
if ext != '.dat':
print('Kilosort2 can only run on .dat files, %s is a %s file.\n'
'Maybe you first need to export to a .dat file?' % (datfname, ext))
return
# write Kilosort2 channel map .mat file, indicate which chans are included in the .dat
datfnameML = matlabize(datfname) # make suitable for use as MATLAB script name
chanmapfname = datfnameML + '_ks2_chanmap.mat'
fullchanmapfname = os.path.join(path, chanmapfname)
core.write_ks2_chanmap_mat(stream, fullchanmapfname)
# write Kilosort2 config .m file:
with open('./templates/Kilosort2/ks2_config.m') as templateksconfigf:
ksconfigstr = templateksconfigf.read()
ksconfigstr = ksconfigstr.format(DATFNAME=datfname,
KSRESULTSFOLDERNAME=datfname+'.ks2_results',
CHANMAPFNAME=chanmapfname,
NCHANS=stream.nchans,
FS=stream.rawsampfreq,
)
ksconfigfname = datfnameML + '_ks2_config.m'
fullksconfigfname = os.path.join(path, ksconfigfname)
with open(fullksconfigfname, 'w') as ksconfigf:
ksconfigf.write(ksconfigstr)
print('Wrote Kilosort2 config file %r' % fullksconfigfname)
# write Kilosort2 run .m file:
with open('./templates/Kilosort2/ks2_run.m') as templateksrunf:
ksrunstr = templateksrunf.read()
# can't use str.format() because the curly bracket field replacement
# syntax in Python conflicts with Matlab cell array {i} indexing:
#ksrunstr = ksrunstr.format(KSCONFIGFNAME=ksconfigfname)
# use simple str.replace() instead:
ksrunstr = ksrunstr.replace('{KSCONFIGFNAME}', ksconfigfname)
ksrunfname = datfnameML + '_ks2_run.m'
fullksrunfname = os.path.join(path, ksrunfname)
with open(fullksrunfname, 'w') as ksrunf:
ksrunf.write(ksrunstr)
print('Wrote Kilosort2 run file %r' % fullksrunfname)
def export_raw_dat(self):
"""Export raw ephys data of enabled chans concatenated across all files in current
track, to .dat file in user-designated path. This works by first turning off all
filtering, CAR, and resampling, then calling self.export_hpstream(), then restoring
filtering, CAR, and resampling settings"""
print('Exporting raw ephys data to .dat file')
# save current hpstream filtering, CAR, and sampling settings:
stream = self.hpstream
if not stream:
print('First open a stream!')
return
filtmeth = stream.filtmeth
car = stream.car
sampfreq = stream.sampfreq
shcorrect = stream.shcorrect
# set hpstream to show raw data:
print('Temporarily disabling filtering, CAR, and resampling for raw export')
self.SetFiltmeth(None)
self.SetCAR(None)
self.SetSampfreq(stream.rawsampfreq)
if stream.ext != '.srf':
self.SetSHCorrect(False) # leave it enabled for .srf, data is wrong w/o it
# do the export:
if stream.is_multi(): # it's a MultiStream
cat = True # concatenate
else: # it's a single Stream
cat = False # nothing to concatenate
result = self.export_hpstream(cat=cat, export_msg='raw', export_ext='.dat')
if result:
path, datfname = result
# restore hpstream settings:
print('Restoring filtering, CAR, and resampling settings')
self.SetFiltmeth(filtmeth)
self.SetCAR(car)
self.SetSampfreq(sampfreq)
self.SetSHCorrect(shcorrect)
if not result:
print('Raw data export cancelled')
return
@QtCore.pyqtSlot()
def on_actionConvertKilosort2Npy2EventsZip_triggered(self):
caption = "Convert relevant Kilosort2 .npy files to a single .events.zip file"
path = getExistingDirectory(self, caption=caption, directory=self.streampath)
path = str(path)
if not path:
return
self.convert_kilosort2npy2eventszip(path)
def update_sort_version(self):
"""Update self.sort to latest version"""
s = self.sort
v = float(s.__version__) # sort version
lv = float(__version__) # latest version
if v > lv:
raise RuntimeError('Versioning error')
if v == lv:
print('No update necessary')
return
if v < 0.3:
print("Can't auto update from sort version < 0.3")
return
if v == 0.3:
v = self.update_0_3_to_0_4()
if v == 0.4:
v = self.update_0_4_to_0_5()
if v == 0.5:
v = self.update_0_5_to_0_6()
if v == 0.6:
v = self.update_0_6_to_0_7()
if v == 0.7:
v = self.update_0_7_to_0_8()
if v == 0.8:
v = self.update_0_8_to_0_9()
if v == 0.9:
v = self.update_0_9_to_1_0()
if v == 1.0:
v = self.update_1_0_to_1_1()
if v == 1.1:
v = self.update_1_1_to_1_2()
if v == 1.2:
v = self.update_1_2_to_1_3()
if v == 1.3:
v = self.update_1_3_to_1_4()
if v == 1.4:
v = self.update_1_4_to_2_0()
if v == 2.0:
v = self.update_2_0_to_2_1()
print('Now save me!')
def update_0_3_to_0_4(self):
"""Update sort 0.3 to 0.4:
- reload all spike waveforms and fix all of their time values
"""
print('Updating sort from version 0.3 to 0.4')
s = self.sort
sids = np.arange(s.nspikes)
s.reload_spikes(sids)
# add sids to the set of dirtysids to be resaved to .wave file:
self.dirtysids.update(sids)
s.__version__ = '0.4' # update
print('Done updating sort from version 0.3 to 0.4')
return float(s.__version__)
def update_0_4_to_0_5(self):
"""Update sort 0.4 to 0.5:
- rename sort.sortfname to sort.fname
"""
print('Updating sort from version 0.4 to 0.5')
s = self.sort
s.fname = s.sortfname
del s.sortfname
s.__version__ = '0.5' # update
print('Done updating sort from version 0.4 to 0.5')
return float(s.__version__)
def update_0_5_to_0_6(self):
"""Update sort 0.5 to 0.6:
- rename sort.spikes field names 'phasetis' and 'dphase' to
'tis' and 'dt' respectively
- remove unused 'cid', 's0' and 's1' fields from sort.spikes, reorder fields
"""
print('Updating sort from version 0.5 to 0.6')
s = self.sort
names = list(s.spikes.dtype.names) # convert from tuple
phasetis_index = names.index('phasetis')
dphase_index = names.index('dphase')
assert (phasetis_index, dphase_index) == (13, 19)
names[phasetis_index] = 'tis' # rename 'phasetis' to 'tis'
names[dphase_index] = 'dt' # rename 'dphase' to 'dt'
s.spikes.dtype.names = names # checks length and auto converts back to tuple
# also rename fields in detector's SPIKEDTYPE:
for i in [phasetis_index, dphase_index]:
field = list(s.detector.SPIKEDTYPE[i])
field[0] = names[i]
s.detector.SPIKEDTYPE[i] = tuple(field)
# new name order, leaves out unused 'cid', 's0' and 's1'
newnames = ['id', 'nid', 'chan', 'nchans', 'chans', 'chani', 't', 't0', 't1', 'dt',
'tis', 'aligni', 'V0', 'V1', 'Vpp', 'x0', 'y0', 'sx', 'sy']
olddtype = s.detector.SPIKEDTYPE # list of tuples
oldnames = [ field[0] for field in olddtype ]
newdtype = []
for name in newnames:
newdtype.append(olddtype[oldnames.index(name)])
s.detector.SPIKEDTYPE = newdtype # replace detector's SPIKEDTYPE
newspikes = np.empty(s.spikes.shape, dtype=newdtype)
from numpy.lib import recfunctions as rfn
newspikes = rfn.recursive_fill_fields(s.spikes, newspikes) # copy from old to new
s.spikes = newspikes # overwrite
# in cluster.pos and .normpos, remove 's0' and 's1', and rename 'dphase' to 'dt':
for c in s.clusters.values():
c.pos.pop('s0')
c.pos.pop('s1')
c.pos['dt'] = c.pos.pop('dphase')
c.normpos.pop('s0')
c.normpos.pop('s1')
c.normpos['dt'] = c.normpos.pop('dphase')
s.__version__ = '0.6' # update
print('Done updating sort from version 0.5 to 0.6')
return float(s.__version__)
def update_0_6_to_0_7(self):
"""Update sort 0.6 to 0.7:
- replace sort.TW class attribute with sort.tw instance attribute
"""
print('Updating sort from version 0.6 to 0.7')
s = self.sort
# Sort.TW class attrib was (-500, 500) in version 0.6
s.tw = -500, 500
s.__version__ = '0.7' # update
print('Done updating sort from version 0.6 to 0.7')
return float(s.__version__)
def update_0_7_to_0_8(self):
"""Update sort 0.7 to 0.8:
- rename/move classes (done by core.unpickler_find_global()):
- core.Stream -> stream.SurfStream
- core.SimpleStream -> stream.SimpleStream
- core.TrackStream -> stream.MultiStream
- rename Stream attrib .srff -> .f
- rename MultiStream attrib .srffnames -> .fnames
- add potentially missing sort.npcsperchan attrib
"""
print('Updating sort from version 0.7 to 0.8')
s = self.sort
stream = s.stream
classname = stream.__class__.__name__
if classname == 'SurfStream':
f = stream.srff
del stream.srff
stream.f = f
elif classname == 'SimpleStream':
# don't think any existing saved SimpleStreams had a .srff attrib:
pass
elif classname == 'MultiStream':
fnames = stream.srffnames
del stream.srffnames
stream.fnames = fnames
else:
raise RuntimeError("Don't know how to upgrade stream type %r" % classname)
try:
s.npcsperchan
except AttributeError:
s.npcsperchan = NPCSPERCHAN
s.__version__ = '0.8' # update
print('Done updating sort from version 0.7 to 0.8')
return float(s.__version__)
def update_0_8_to_0_9(self):
"""Update sort 0.8 to 0.9:
- add sort.filtmeth attrib, init to None
"""
print('Updating sort from version 0.8 to 0.9')
s = self.sort
try:
s.filtmeth
except AttributeError:
s.filtmeth = None
s.__version__ = '0.9' # update
print('Done updating sort from version 0.8 to 0.9')
return float(s.__version__)
def update_0_9_to_1_0(self):
"""Update sort 0.9 to 1.0:
- add nlockchans and lockchans fields to spike record
- add detector.lockrx attrib
"""
print('Updating sort from version 0.9 to 1.0')
s = self.sort
oldspikes = s.spikes
olddtype = oldspikes.dtype.descr # [(fieldname, fieldtype)] tuples, ordered by offset
oldnames = oldspikes.dtype.names # list of field names, ordered by offset
oldfields = oldspikes.dtype.fields # {fieldname:(fielddtype, byte offset)} mapping
newdtype = copy(olddtype)
inserti = oldnames.index('t') # insert our new fields just before the 't' field
assert inserti == 6
newdtype.insert(inserti, ('nlockchans', oldfields['nchans'][0])) # copy nchans type
newdtype.insert(inserti+1, ('lockchans', oldfields['chans'][0])) # copy chans type
s.detector.SPIKEDTYPE = newdtype # replace detector's SPIKEDTYPE
newspikes = np.empty(oldspikes.shape, dtype=newdtype) # init newspikes
from numpy.lib import recfunctions as rfn
newspikes = rfn.recursive_fill_fields(oldspikes, newspikes) # copy from old to new
# the new fields are redundant for old detection runs, but are used in the code
# for displaying spike rasters:
newspikes['nlockchans'] = oldspikes['nchans']
newspikes['lockchans'] = oldspikes['chans']
s.spikes = newspikes # overwrite
from pprint import pprint
print('Old dtype:')
pprint(olddtype)
print('New dtype:')
pprint(s.spikes.dtype.descr)
# add new detector.lockrx attrib, supercedes detector.lockr attrib
s.detector.lockrx = 0.0 # set to 0 to indicate it wasn't used during detection
s.__version__ = '1.0' # update
print('Done updating sort from version 0.9 to 1.0')
return float(s.__version__)
def update_1_0_to_1_1(self):
"""Update sort 1.0 to 1.1:
- add sort.car attrib, init to None
"""
print('Updating sort from version 1.0 to 1.1')
s = self.sort
try:
s.car
except AttributeError:
s.car = None
s.__version__ = '1.1' # update
print('Done updating sort from version 1.0 to 1.1')
return float(s.__version__)
def update_1_1_to_1_2(self):
"""Update sort 1.1 to 1.2:
- add stream.adapter, fileheader.adapter & fileheader.adaptername, init to None
"""
print('Updating sort from version 1.1 to 1.2')
s = self.sort
if s.stream.is_multi():
s.stream.adapter = None
streams = s.stream.streams
else: # it's a single stream
streams = [s.stream]
for stream in streams: # iterate over all single streams
stream.adapter = None
if stream.ext in ['.ns6', '.dat']:
stream.f.fileheader.adapter = None
stream.f.fileheader.adaptername = None
s.__version__ = '1.2' # update
print('Done updating sort from version 1.1 to 1.2')
return float(s.__version__)
def update_1_2_to_1_3(self):
"""Update sort 1.2 to 1.3:
- rename class (done by core.unpickler_find_global()):
- A1x64_Poly2_6mm_23s_160 -> A1x64
"""
print('Updating sort from version 1.2 to 1.3')
s = self.sort
classname = s.probe.__class__.__name__
if s.probe.name == 'A1x64_Poly2_6mm_23s_160':
print('sort.probe class is now %r' % classname)
print('sort.probe.name was %r' % s.probe.name)
s.probe.name = 'A1x64' # update name attribute
print('sort.probe.name is now %r' % s.probe.name)
s.__version__ = '1.3' # update
print('Done updating sort from version 1.2 to 1.3')
return float(s.__version__)
def update_1_3_to_1_4(self):
"""Update sort 1.3 to 1.4:
- add .tres attribute to all WaveForms, which should only be in Neuron.wave
"""
print('Updating sort from version 1.3 to 1.4')
s = self.sort
for nid, neuron in s.neurons.items():
print('n%d ' % nid, end='')
wave = neuron.wave
try:
wave.tres
except AttributeError:
if wave.ts is None: # empty WaveForm, can't calculate tres
print("Found empty WaveForm, setting missing neuron.wave.tres = None")
wave.tres = None
continue
tres = s.tres # assign tres from sort
print('Setting missing neuron.wave.tres = %f' % tres)
wave.tres = tres
s.__version__ = '1.4' # update
print('Done updating sort from version 1.3 to 1.4')
return float(s.__version__)
def update_1_4_to_2_0(self):
"""Update sort 1.4 to 2.0:
- mostly just to document new support for jsonpickle .json sort files
- store window state QByteArray rawdata instead of full object
"""
print('Updating sort from version 1.4 to 2.0')
s = self.sort
for wintype in s.windowGeometries:
# for compatibility with jsonpickle, instead of saving the QByteArray to the sort,
# save its raw data as a (byte) string:
s.windowGeometries[wintype] = s.windowGeometries[wintype].data()
s.windowStates[wintype] = s.windowStates[wintype].data()
s.__version__ = '2.0' # update
print('Done updating sort from version 1.4 to 2.0.\n'
'Consider saving as .json instead of .sort\n'
'Click "File->Save Sort As" and then change the extension to .json')
return float(s.__version__)
def update_2_0_to_2_1(self):
"""Update sort 2.0 to 2.1:
- add empty .user and .notes fields for use when exporting spikes
"""
print('Updating sort from version 2.0 to 2.1')
s = self.sort
s.user = ''
s.notes = ''
s.__version__ = '2.1' # update
print('Done updating sort from version 2.0 to 2.1')
return float(s.__version__)
@QtCore.pyqtSlot()
def on_actionCloseSort_triggered(self):
# TODO: add confirmation dialog if Sort not saved
self.CloseSortFile()
print('Closed sort')
@QtCore.pyqtSlot()
def on_actionCloseStream_triggered(self):
if self.hpstream is not None:
self.CloseStream()
print('Closed stream')
@QtCore.pyqtSlot()
def on_actionQuit_triggered(self):
self.close()
#self.destroy() # no longer seems necessary, causes segfault
def closeEvent(self, event):
self.on_actionCloseSort_triggered()
self.on_actionCloseStream_triggered()
QtGui.QMainWindow.closeEvent(self, event)
def keyPressEvent(self, event):
key = event.key()
try:
sw = self.windows['Sort']
except KeyError:
QtGui.QMainWindow.keyPressEvent(self, event) # pass it on
if key == Qt.Key_A:
self.ui.plotButton.click()
elif key == Qt.Key_X:
self.ui.plotXcorrsButton.click()
elif key == Qt.Key_N:
self.ui.normButton.click()
elif key in [Qt.Key_Escape, Qt.Key_E]:
sw.clear()
elif key == Qt.Key_R: # doesn't fire when certain widgets have focus
sw.on_actionSelectRandomSpikes_triggered()
elif key == Qt.Key_B:
sw.on_actionAlignBest_triggered()
@QtCore.pyqtSlot()
def on_actionUndo_triggered(self):
"""Undo button click. Undo previous cluster change"""
try:
cc = self.cchanges[self.cci]
except IndexError:
print('Nothing to undo')
return
print('Undoing: %s' % cc.message)
self.ApplyClusterChange(cc, direction='back')
self.cci -= 1 # move pointer one change back on the stack
print('Undo complete')
@QtCore.pyqtSlot()
def on_actionRedo_triggered(self):
"""Redo button click. Redo next cluster change"""
try:
cc = self.cchanges[self.cci+1]
except IndexError:
print('Nothing to redo')
return
print('Redoing: %s' % cc.message)
self.ApplyClusterChange(cc, direction='forward')
self.cci += 1 # move pointer one change forward on the stack
print('Redo complete')
@QtCore.pyqtSlot()
def on_actionSpikeWindow_triggered(self):
"""Spike window toggle menu/button event"""
self.ToggleWindow('Spike')
@QtCore.pyqtSlot()
def on_actionChartWindow_triggered(self):
"""Chart window toggle menu/button event"""
self.ToggleWindow('Chart')
@QtCore.pyqtSlot()
def on_actionLFPWindow_triggered(self):
"""LFP window toggle menu/button event"""
self.ToggleWindow('LFP')
@QtCore.pyqtSlot()
def on_actionSortWindow_triggered(self):
"""Sort window toggle menu/button event"""
self.ToggleWindow('Sort')
@QtCore.pyqtSlot()
def on_actionClusterWindow_triggered(self):
"""Cluster window toggle menu/button event"""
self.ToggleWindow('Cluster')
@QtCore.pyqtSlot()
def on_actionMPLWindow_triggered(self):
"""Matplotlib window toggle menu/button event"""
self.ToggleWindow('MPL')
@QtCore.pyqtSlot()
def on_actionShell_triggered(self):
"""Shell window toggle menu/button event"""
#self.ToggleWindow('Shell')
# FIXME: this blocks until you Ctrl-D out of ipython:
ipshell()
@QtCore.pyqtSlot()
def on_actionRasters_triggered(self):
"""Spike rasters toggle menu event"""
self.ToggleRasters()
@QtCore.pyqtSlot()
def on_actionStims_triggered(self):
"""Spike stimulus edges toggle menu event"""
self.ToggleStims()
@QtCore.pyqtSlot()
def on_actionTimeRef_triggered(self):
"""Time reference toggle menu event"""
self.ToggleRef('TimeRef')
@QtCore.pyqtSlot()
def on_actionVoltageRef_triggered(self):
"""Voltage reference toggle menu event"""
self.ToggleRef('VoltageRef')
@QtCore.pyqtSlot()
def on_actionScale_triggered(self):
"""Scale toggle menu event"""
self.ToggleRef('Scale')
@QtCore.pyqtSlot()
def on_actionCaret_triggered(self):
"""Caret toggle menu event"""
self.ToggleRef('Caret')
@QtCore.pyqtSlot()
def on_actionFiltmethNone_triggered(self):
"""None filtering menu choice event"""
self.SetFiltmeth(None)
@QtCore.pyqtSlot()
def on_actionFiltmethBW_triggered(self):
"""Butterworth filtering menu choice event"""
self.SetFiltmeth('BW')
@QtCore.pyqtSlot()
def on_actionFiltmethBWNC_triggered(self):
"""Non-causal Butterworth filtering menu choice event"""
self.SetFiltmeth('BWNC')
@QtCore.pyqtSlot()
def on_actionFiltmethWMLDR_triggered(self):
"""WMLDR filtering menu choice event"""
self.SetFiltmeth('WMLDR')
@QtCore.pyqtSlot()
def on_actionCARNone_triggered(self):
"""None CAR menu choice event"""
self.SetCAR(None)
@QtCore.pyqtSlot()
def on_actionCARMedian_triggered(self):
"""Median CAR menu choice event"""
self.SetCAR('Median')
@QtCore.pyqtSlot()
def on_actionCARMean_triggered(self):
"""Mean CAR menu choice event"""
self.SetCAR('Mean')
@QtCore.pyqtSlot()
def on_action20kHz_triggered(self):
"""20kHz menu choice event"""
self.SetSampfreq(20000)
@QtCore.pyqtSlot()
def on_action25kHz_triggered(self):
"""25kHz menu choice event"""
self.SetSampfreq(25000)
@QtCore.pyqtSlot()
def on_action30kHz_triggered(self):
"""30kHz menu choice event"""
self.SetSampfreq(30000)
@QtCore.pyqtSlot()
def on_action40kHz_triggered(self):
"""40kHz menu choice event"""
self.SetSampfreq(40000)
@QtCore.pyqtSlot()
def on_action50kHz_triggered(self):
"""50kHz menu choice event"""
self.SetSampfreq(50000)
@QtCore.pyqtSlot()
def on_action60kHz_triggered(self):
"""60kHz menu choice event"""
self.SetSampfreq(60000)
@QtCore.pyqtSlot()
def on_action80kHz_triggered(self):
"""80kHz menu choice event"""
self.SetSampfreq(80000)
@QtCore.pyqtSlot()
def on_action100kHz_triggered(self):
"""100kHz menu choice event"""
self.SetSampfreq(100000)
@QtCore.pyqtSlot()
def on_action120kHz_triggered(self):
"""120kHz menu choice event"""
self.SetSampfreq(120000)
@QtCore.pyqtSlot()
def on_actionSampleAndHoldCorrect_triggered(self):
"""Sample & hold menu event"""
enable = self.ui.actionSampleAndHoldCorrect.isChecked()
self.SetSHCorrect(enable)
#def onFilePosLineEdit_textChanged(self, text): # updates immediately
def on_filePosLineEdit_editingFinished(self): # updates on Enter/loss of focus
text = str(self.ui.filePosLineEdit.text())
try:
t = self.str2t[text]
except KeyError: # convert to float to allow exp notation shorthand
t = float(text)
self.seek(t)
@QtCore.pyqtSlot()
def on_actionAboutSpyke_triggered(self):
with open('../LICENSE', 'r') as lf:
LICENSE = lf.read()
system = """<p>Python %s, Qt %s, PyQt %s<br>
%s</p>""" % (platform.python_version(),
QtCore.QT_VERSION_STR, QtCore.PYQT_VERSION_STR,
platform.platform())
text = """
<h2><a href=http://spyke.github.io>spyke</a> %s</h2>
<p>A tool for neuronal waveform visualization and spike sorting</p>
<p>Copyright © 2008-2019 <a href=https://mspacek.github.io><NAME></a>,
<NAME><br>
<a href=http://swindale.ecc.ubc.ca>Swindale</a> Lab,
University of British Columbia, Vancouver, Canada<br>
<a href=http://www.neuro.bio.lmu.de/members/system_neuro_busse/busse_l/index.html>
Busse</a> Lab, Ludwig-Maximilians-University, Munich, Germany</p>
<p>Some functionality inherited from <NAME>'s Delphi program "SurfBawd".</p>
<p>Many icons were copied from Ubuntu's <a
href=http://launchpad.net/humanity>Humanity</a> icon theme.</p>
<p>%s</p>
%s""" % (__version__, LICENSE, system)
QtGui.QMessageBox.about(self, "About spyke", text)
@QtCore.pyqtSlot()
def on_actionAboutQt_triggered(self):
QtGui.QMessageBox.aboutQt(self)
@QtCore.pyqtSlot()
def on_filePosStartButton_clicked(self):
self.seek(self.str2t['start'])
@QtCore.pyqtSlot()
def on_filePosEndButton_clicked(self):
self.seek(self.str2t['end'])
@QtCore.pyqtSlot(int)
def on_slider_valueChanged(self, slideri):
t = slideri * self.hpstream.tres
self.seek(t)
def update_slider(self):
"""Update slider limits and step sizes. Slider ticks are multiples of tres"""
tres = self.hpstream.tres
self.ui.slider.setRange(intround(self.trange[0] / tres),
intround(self.trange[1] / tres))
self.ui.slider.setValue(intround(self.t / tres))
self.ui.slider.setSingleStep(1)
self.ui.slider.setPageStep(intround((self.spiketw[1]-self.spiketw[0]) / tres))
self.ui.slider.setInvertedControls(True)
@QtCore.pyqtSlot()
def on_detectButton_clicked(self):
"""Detect pane Detect button click"""
sort = self.CreateNewSort() # create a new sort, with bound stream
self.get_detector() # update Sort's current detector with new one from widgets
if sort.detector.extractparamsondetect:
self.init_extractor() # init the Extractor
# create struct array of spikes and 3D array of spike waveform data:
sort.spikes, sort.wavedata = sort.detector.detect(logpath=self.streampath)
sort.update_usids()
# lock down filtmeth, car, sampfreq and shcorrect attribs:
sort.filtmeth = sort.stream.filtmeth
sort.car = sort.stream.car
sort.sampfreq = sort.stream.sampfreq
sort.shcorrect = sort.stream.shcorrect
self.ui.progressBar.setFormat("%d spikes" % sort.nspikes)
self.EnableSortWidgets(True)
sw = self.OpenWindow('Sort') # ensure it's open
if sort.nspikes > 0:
self.on_plotButton_clicked()
def init_extractor(self):
"""Initialize Extractor"""
#XYmethod = self.XY_extract_radio_box.GetStringSelection()
# hard code XYmethod for now, don't really need extract pane:
if self.sort.probe.ncols == 1:
XYmethod = 'Gaussian 1D'
else:
XYmethod = 'Gaussian 2D'
# create Extractor, or eventually, call a self.get_extractor() method instead:
ext = Extractor(self.sort, XYmethod, maxsigma=self.sort.detector.inclr)
self.sort.extractor = ext
# eventually, update extractor from multiple Extract pane widgets:
#self.update_extractor(ext)
def OnXYExtract(self, evt=None):
"""Extract pane XY Extract button click. Extracts (or re-extracts and
overwrites) XY parameters from all sort.spikes, and stores
them as spike attribs"""
try:
self.sort.extractor
except AttributeError:
self.init_extractor()
#import cProfile
#cProfile.runctx('self.sort.extractor.extract_all_XY()', globals(), locals())
self.sort.extractor.extract_all_XY() # adds extracted XY params to sort.spikes
self.windows['Sort'].uslist.updateAll() # update any columns showing param values
self.EnableSpikeWidgets(True) # enable cluster_pane
def OnWaveletExtract(self, evt=None):
"""Extract pane wavelet Extract button click. Extracts (or re-extracts and
overwrites) wavelet coefficients from all sort.spikes, and stores
them as spike attribs"""
try:
self.sort.extractor
except AttributeError:
self.init_extractor()
#import cProfile
#cProfile.runctx('self.sort.extractor.extract_all_XY()', globals(), locals())
# extract coeffs of selected wavelet type, add coeffs to sort.spikes
wavelet = self.wavelet_extract_radio_box.GetStringSelection()
self.sort.extractor.extract_all_wcs(wavelet)
self.windows['Sort'].uslist.updateAll() # update any columns showing param values
self.EnableSpikeWidgets(True) # enable cluster_pane
def OnTemporalExtract(self, evt=None):
"""Extract pane temporal Extract button click. Extracts (or re-extracts and
overwrites) temporal params from all sort.spikes, and stores
them as spike attribs"""
try:
self.sort.extractor
except AttributeError:
self.init_extractor()
self.sort.extractor.extract_all_temporal()
self.windows['Sort'].uslist.updateAll() # update any columns showing param values
self.EnableSpikeWidgets(True) # enable cluster_pane
@QtCore.pyqtSlot()
def on_clusterButton_clicked(self):
"""Cluster pane Cluster button click"""
s = self.sort
spikes = s.spikes
#sids = self.GetAllSpikes() # all selected spikes
# always cluster all spikes in existing clusters, don't just cluster some subset,
# since existing clusters are always deleted in apply_clustering and
# ApplyClusterChange, and spikes that aren't in that subset would inadvertantly
# become unsorted
sids = np.concatenate([self.GetClusterSpikes(), self.GetUnsortedSpikes()])
sids.sort()
oldclusters = self.GetClusters() # all selected clusters
if len(sids) == 0: # nothing selected
sids = spikes['id'] # all spikes (sorted)
oldclusters = s.clusters.values() # all clusters
dims = self.GetClusterPlotDims()
comps = np.any([ dim.startswith('c') and dim[-1].isdigit() for dim in dims ])
subsidss = [] # sids grouped into subclusters, each to be clustered separately
msgs = []
t0 = time.time()
if comps and np.all(sids == spikes['id']): # doing PCA/ICA on all spikes
if not oldclusters:
print("No existing clusters to sequentially do PCA/ICA on and subcluster")
return
# partition data by existing clusters before clustering,
# restrict to only clustered spikes:
for oldcluster in oldclusters:
subsidss.append(oldcluster.neuron.sids)
msgs.append('oldcluster %d' % oldcluster.id)
sids = np.concatenate(subsidss) # update
sids.sort()
else: # just the selected spikes
subsidss.append(sids)
msgs.append('%d selected sids' % len(sids))
nids = self.subcluster(sids, subsidss, msgs, dims)
print('Clustering took %.3f sec' % (time.time()-t0))
self.apply_clustering(oldclusters, sids, nids, verb='GAC')
def subcluster(self, sids, subsidss, msgs, dims):
"""Perform (sub)clustering according to subsids in subsidss. Incorporate results
from each (sub)clustering into a single nids output array"""
# init nids output array to be all unclustered:
nids = np.zeros(len(sids), dtype=np.int32)
for subsids, msg in zip(subsidss, msgs):
print('Clustering %s on dims %r' % (msg, dims))
subnids = self.gac(subsids, dims) # subclustering result
ci = subnids > 0 # consider only the clustered sids
subsids = subsids[ci]
subnids = subnids[ci]
nidoffset = max(nids) + 1
nidsi = sids.searchsorted(subsids)
nids[nidsi] = subnids + nidoffset
return nids
def chancombosplit(self):
"""Split spikes into clusters of unique channel combinations"""
s = self.sort
spikes = s.spikes
sids = self.GetAllSpikes() # all selected spikes
oldclusters = self.GetClusters() # all selected clusters
if len(sids) == 0: # nothing selected
sids = spikes['id'] # all spikes (sorted)
oldclusters = s.clusters.values() # all clusters
t0 = time.time()
chans = spikes[sids]['chans']
chans = tocontig(chans) # string view won't work without contiguity
# each row becomes a string:
strchans = chans.view('S%d' % (chans.itemsize*chans.shape[1]))
# each row in uchancombos is a unique combination of chans:
uchancombos = np.unique(strchans).view(chans.dtype).reshape(-1, chans.shape[1])
if len(uchancombos) == 1:
print("Selected spikes all share the same set of channels, can't chancombosplit")
return
# init to unclustered, shouldn't be any once done:
nids = np.zeros(len(sids), dtype=np.int32)
for comboi, chancombo in enumerate(uchancombos):
nids[(chans == chancombo).all(axis=1)] = comboi + 1
if (nids == 0).any():
raise RuntimeError("There shouldn't be any unclustered points from chancombosplit")
print('chancombosplit took %.3f sec' % (time.time()-t0))
self.apply_clustering(oldclusters, sids, nids, verb='chancombo split')
def maxchansplit(self):
"""Split spikes into clusters by maxchan"""
s = self.sort
spikes = s.spikes
sids = self.GetAllSpikes() # all selected spikes
oldclusters = self.GetClusters() # all selected clusters
if len(sids) == 0: # nothing selected
sids = spikes['id'] # all spikes (sorted)
oldclusters = s.clusters.values() # all clusters
t0 = time.time()
maxchans = spikes[sids]['chan']
umaxchans = np.unique(maxchans)
if len(umaxchans) == 1:
print("Selected spikes all share the same set of max channels, can't maxchansplit")
return
# init to unclustered, shouldn't be any once done:
nids = np.zeros(len(sids), dtype=np.int32)
for maxchani, maxchan in enumerate(umaxchans):
nids[maxchans == maxchan] = maxchani + 1
if (nids == 0).any():
raise RuntimeError("There shouldn't be any unclustered points from maxchansplit")
print('maxchansplit took %.3f sec' % (time.time()-t0))
self.apply_clustering(oldclusters, sids, nids, verb='maxchan split')
def densitysplit(self):
"""Split cluster pair by density along line between their centers in current
cluster space"""
s = self.sort
spikes = s.spikes
oldclusters = self.GetClusters() # all selected clusters
if len(oldclusters) != 2:
print("Need to select exactly 2 clusters to split them by density")
return
dims = self.GetClusterPlotDims()
try:
X, sids = self.get_param_matrix(dims=dims)
except RuntimeError as err:
print(err)
return
nids = s.spikes['nid'][sids] # copy
unids = np.unique(nids)
assert len(unids) == 2
# centers of both clusters, use median:
i0 = nids == unids[0]
i1 = nids == unids[1]
c0 = np.median(X[i0], axis=0) # ndims vector
c1 = np.median(X[i1], axis=0)
# line connecting the centers of the two clusters, wrt c0
line = c1-c0
line /= np.linalg.norm(line) # make it unit length
#print('c0=%r, c1=%r, line=%r' % (c0, c1, line))
proj = np.dot(X-c0, line) # projection of each point onto line
nbins = max(intround(np.sqrt(len(proj))), 2) # good heuristic
#print('nbins = %d' % nbins)
hist, edges = np.histogram(proj, bins=nbins)
ei0, ei1 = edges.searchsorted((np.median(proj[i0]), np.median(proj[i1])))
# find histogram min between cluster medians:
threshi = hist[ei0:ei1].argmin()
thresh = edges[ei0:ei1][threshi]
#print('thresh is %.3f' % thresh)
#print('ei0, ei1: %d, %d' % (ei0, ei1))
assert ei0 < ei1 # think this is always the case because projections are wrt c0
nids[proj < thresh] = unids[0] # overwrite nid values in nids, since it's a copy
nids[proj >= thresh] = unids[1]
self.apply_clustering(oldclusters, sids, nids, verb='density split')
def randomsplit(self):
"""Randomly split each selected cluster in half. This is done to increase
gac() speed"""
oldclusters = self.GetClusters() # all selected clusters
subsidss = []
for cluster in oldclusters:
subsidss.append(cluster.neuron.sids)
sids = np.concatenate(subsidss)
sids.sort()
destsubsidss = []
for subsids in subsidss:
np.random.shuffle(subsids) # shuffle in-place
spliti = len(subsids) // 2
destsubsids0 = subsids[:spliti]
destsubsids0.sort() # sids should always go out sorted
destsubsidss.append(destsubsids0)
destsubsids1 = subsids[spliti:]
destsubsids1.sort()
destsubsidss.append(destsubsids1)
# init to unclustered, shouldn't be any once done:
nids = np.zeros(len(sids), dtype=np.int32)
for i, destsubsids in enumerate(destsubsidss):
nids[sids.searchsorted(destsubsids)] = i + 1
if (nids == 0).any():
raise RuntimeError("There shouldn't be any unclustered points from randomsplit")
self.apply_clustering(oldclusters, sids, nids, verb='randomly split')
def gac(self, sids, dims):
"""Cluster sids along dims, using NVS's gradient ascent algorithm"""
s = self.sort
norm = self.ui.normButton.isChecked()
data, sids = self.get_param_matrix(sids=sids, dims=dims, norm=norm, scale=True)
data = tocontig(data) # ensure it's contiguous for gac()
# grab gac() params and run it
self.update_sort_from_cluster_pane()
npoints, ndims = data.shape
print('Clustering %d points in %d-D space' % (npoints, ndims))
t0 = time.time()
nids = gac(data, sigma=s.sigma, rmergex=s.rmergex, rneighx=s.rneighx,
alpha=s.alpha, maxgrad=s.maxgrad,
maxnnomerges=1000, minpoints=s.minpoints)
# nids from gac() are 0-based, but we want our single unit nids to be 1-based,
# to leave room for junk cluster at 0 and multiunit clusters at nids < 0. So add 1:
nids += 1
print('GAC took %.3f sec' % (time.time()-t0))
return nids
def get_selchans(self, sids):
"""Return user selected chans. If none, automatically select and
return chans within a radius encompassing 95% percent of sx values in sids,
centered on average position of sids. Could also use a multiple of this
derived sx to select more or fewer chans"""
spikes = self.sort.spikes
panel = self.windows['Sort'].panel
selchans = panel.chans_selected # a list
selchans.sort()
if selchans and panel.manual_selection:
return selchans # always return whatever's manually selected
sxs = spikes['sx'][sids]
sxs = np.sort(sxs) # get a sorted copy
sxi = int(len(sxs) * 0.95) # round down, index > ~95% percent of values
sx = sxs[sxi]
dm = self.sort.detector.dm # DistanceMatrix
spos = np.vstack((spikes['x0'][sids], spikes['y0'][sids])).T # sids x 2
meanpos = spos.mean(axis=0) # mean spike position
chanpos = np.asarray(dm.coords) # positions of enabled chans
# Euclidean chan distances from meanpos:
d = np.sqrt(np.sum((chanpos - meanpos)**2, axis=1))
# chans within sx of meanpos:
selchans = sorted(dm.chans[d <= sx].tolist()) # from int64 to list for clean jsonpickle
print('Selection center: %.1f, %.1f um' % (meanpos[0], meanpos[1]))
print('Selection radius: %.1f um' % sx)
panel.chans_selected = selchans
panel.update_selvrefs()
panel.draw_refs()
panel.manual_selection = False
return selchans
def apply_clustering(self, oldclusters, sids, nids, verb=''):
"""Delete old clusters and replace the existing clustering of the desired sids
with their new nids"""
s = self.sort
spikes = s.spikes
sw = self.windows['Sort']
cw = self.windows['Cluster']
# deselect all clusters before potentially deleting any unselected
# clusters, to avoid lack of Qt selection event when selection values
# (not rows) change. Also, deselect usids while we're at it:
self.SelectClusters(s.clusters, on=False)
sw.uslist.clearSelection()
# delete junk cluster if it exists and isn't in oldclusters,
# add this deletion to cluster change stack
if 0 in s.clusters and 0 not in [ c.id for c in oldclusters ]:
# save some undo/redo stuff
message = 'delete junk cluster 0'
cc = ClusterChange(s.neurons[0].sids, spikes, message)
cc.save_old([s.clusters[0]], s.norder, s.good)
# delete it
s.remove_neuron(0)
# save more undo/redo stuff
cc.save_new([], s.norder, s.good)
self.AddClusterChangeToStack(cc)
print(cc.message)
# save some undo/redo stuff
message = '%s clusters %r' % (verb, [ c.id for c in oldclusters ])
cc = ClusterChange(sids, spikes, message)
cc.save_old(oldclusters, s.norder, s.good)
# start insertion indices of new clusters from first selected cluster, if any
unids = np.unique(nids)
nnids = len(unids)
insertis = [None] * nnids
if len(oldclusters) > 0:
startinserti = s.norder.index(oldclusters[0].id)
insertis = range(startinserti, startinserti+nnids)
# delete old clusters
self.DelClusters(oldclusters, update=False)
# apply new clusters
newclusters = []
for nid, inserti in zip(unids, insertis):
ii, = np.where(nids == nid)
nsids = sids[ii] # sids belonging to this nid
if nid != 0:
nid = None # auto generate a new nid
cluster = self.CreateCluster(update=False, id=nid, inserti=inserti)
newclusters.append(cluster)
neuron = cluster.neuron
sw.MoveSpikes2Neuron(nsids, neuron, update=False)
if len(nsids) == 0:
raise RuntimeError('WARNING: neuron %d has no spikes for some reason'
% neuron.id)
cluster.update_pos()
# save more undo/redo stuff
cc.save_new(newclusters, s.norder, s.good)
self.AddClusterChangeToStack(cc)
# now do some final updates
self.UpdateClustersGUI()
if len(sids) != len(spikes) or not np.all(sids == spikes['id']):
# if clustering only some spikes, select all newly created cluster(s)
self.SelectClusters(newclusters)
if len(sids) == len(cw.glWidget.sids) and np.all(sids == cw.glWidget.sids):
self.ColourPoints(newclusters) # just recolour
else:
self.on_plotButton_clicked() # need to do a full replot
cc.message += ' into %r' % [c.id for c in newclusters]
print(cc.message)
@QtCore.pyqtSlot()
def on_x0y0VppButton_clicked(self):
"""Cluster pane x0y0Vpp button click. Set plot dims to x0, y0, and Vpp"""
self.SetPlotDims('x0', 'y0', 'Vpp')
@QtCore.pyqtSlot()
def on_c0c1c2Button_clicked(self):
"""Cluster pane c0c1c2 button click. Set plot dims to c0, c1, and c2"""
s = self.sort
ctrl = QtGui.QApplication.instance().keyboardModifiers() == Qt.ControlModifier
if ctrl:
try:
del s.X[s.get_Xhash(*self.get_Xhash_args())] # force recalc
except (AttributeError, KeyError): pass
self.SetPlotDims('c0', 'c1', 'c2')
@QtCore.pyqtSlot()
def on_c0c1tButton_clicked(self):
"""Cluster pane c0c1t button click. Set plot dims to c0, c1, and t"""
s = self.sort
ctrl = QtGui.QApplication.instance().keyboardModifiers() == Qt.ControlModifier
if ctrl:
try:
del s.X[s.get_Xhash(*self.get_Xhash_args())] # force recalc
except (AttributeError, KeyError): pass
self.SetPlotDims('c0', 'c1', 't')
def SetPlotDims(self, x, y, z):
"""Set plot dimensions to x, y, z, and replot"""
xi = self.ui.xDimComboBox.findText(x)
yi = self.ui.yDimComboBox.findText(y)
zi = self.ui.zDimComboBox.findText(z)
self.ui.xDimComboBox.setCurrentIndex(xi)
self.ui.yDimComboBox.setCurrentIndex(yi)
self.ui.zDimComboBox.setCurrentIndex(zi)
self.on_plotButton_clicked() # replot
def get_param_matrix(self, sids=None, dims=None, norm=False, scale=True):
"""Given list of dims, get clustering parameter matrix according to
current selection of sids and channels"""
s = self.sort
sw = self.OpenWindow('Sort') # in case it isn't already open
cw = self.OpenWindow('Cluster') # in case it isn't already open
comps = np.any([ dim.startswith('c') and dim[-1].isdigit() for dim in dims ])
# calc RMS error between each spike and its clusters median waveform, if any?
rmserror = np.any([ dim == 'RMSerror' for dim in dims ])
if sids is None:
sids = self.GetAllSpikes() # only selected spikes
if len(sids) == 0: # if none selected
if comps: # if component analysis selected
raise RuntimeError('Need non-empty spike selection to do component analysis')
else: # return all spike ids
sids = self.sort.spikes['id']
kind = None
tis = None
selchans = None
if comps or rmserror:
tis = sw.tis # waveform time indices to include, centered on spike
selchans = self.get_selchans(sids)
if comps:
kind = str(self.ui.componentAnalysisComboBox.currentText())
norm = self.ui.normButton.isChecked()
X = s.get_param_matrix(kind=kind, sids=sids, tis=tis, selchans=selchans,
norm=norm, dims=dims, scale=scale)
return X, sids
def get_Xhash_args(self):
"""Return currently selected clustering paramaters that would be used to generate the
identifying hash for the dimension reduced matrix if it were to be calculated at this
point in time"""
sw = self.OpenWindow('Sort') # in case it isn't already open
kind = str(self.ui.componentAnalysisComboBox.currentText())
sids = self.GetAllSpikes() # only selected spikes
tis = sw.tis # waveform time indices to include, centered on spike
selchans = np.asarray(self.get_selchans(sids))
chans = self.sort.get_common_chans(sids, selchans)[0]
npcsperchan = self.sort.npcsperchan
norm = self.ui.normButton.isChecked()
return kind, sids, tis, chans, npcsperchan, norm
@QtCore.pyqtSlot()
def on_plotButton_clicked(self):
"""Cluster pane plot button click. Plot points and colour them
according to their clusters."""
s = self.sort
ctrl = QtGui.QApplication.instance().keyboardModifiers() == Qt.ControlModifier
if ctrl:
try:
del s.X[s.get_Xhash(*self.get_Xhash_args())] # force recalc
except (AttributeError, KeyError): pass
cw = self.OpenWindow('Cluster') # in case it isn't already open
dims = self.GetClusterPlotDims()
try:
X, sids = self.get_param_matrix(dims=dims)
except RuntimeError as err:
print(err)
return
if len(X) == 0:
return # nothing to plot
nids = s.spikes['nid'][sids]
cw.plot(X, sids, nids)
sw = self.OpenWindow('Sort') # in case it isn't already open
sw.PlotClusterHistogram(X, nids) # auto update cluster histogram plot
@QtCore.pyqtSlot()
def on_normButton_clicked(self):
"""Cluster pane norm button click"""
if self.ui.normButton.isChecked():
print('Normalizing spike amplitudes')
else:
print('Un-normalizing spike amplitudes')
self.windows['Sort'].panel.updateAllItems() # refresh plotted waveforms
self.on_plotButton_clicked() # refresh cluster plot
@QtCore.pyqtSlot()
def get_cleaning_density_hist(self):
"""Calculate histogram of point densities of selected spikes over selected
clustering dimensions from origin"""
dims = self.GetClusterPlotDims()
X, sids = self.get_param_matrix(dims=dims)
# each dim in X has 0 mean, so X is centered on origin
X = np.float64(X) # convert to double precision
ndims = X.shape[1]
r = np.sqrt(np.square(X).sum(axis=1)) # all +ve values
r /= r.std() # normalize to unit variance
nbins = intround(np.sqrt(len(X))) # good heuristic
rhist, edges = np.histogram(r, nbins) # distance hist, edges includes the right edge
ledges = edges[:-1] # keep just the left edges, discard the last right edge
assert len(ledges) == nbins
binwidth = ledges[1] - ledges[0]
# density histogram: npoints / fractional volume
dhist = np.float64(rhist) / np.diff(edges**ndims)
dhist /= (dhist * binwidth).sum() # normalize to unit area
return dhist, ledges, binwidth, ndims, sids, r
@QtCore.pyqtSlot()
def on_cleanHistButton_clicked(self):
"""Cluster pane cleaning hist button click. Plot histogram of point
densities of selected spikes over selected clustering dimensions from origin,
compare to Gaussian. Note that each time you reject points > nstds away
from origin, the distrib may get less and less Gaussian, and more and more
uniform"""
dhist, ledges, binwidth, ndims, sids, r = self.get_cleaning_density_hist()
ris = ledges + (binwidth / 2) # center values of bins
gauss = g(0, 1, ris)
gauss /= (gauss * binwidth).sum() # normalize to unit area
djs = DJS(dhist, gauss)
mplw = self.OpenWindow('MPL')
a = mplw.ax
a.clear()
mplw.setWindowTitle('Density Histogram')
a.bar(ledges, dhist, width=binwidth)
a.plot(ris, gauss, '-') # plot Gaussian on top of density histogram
a.set_title('%dD cluster density histogram, DJS = %.3f' % (ndims, djs))
a.set_xlabel('nstdevs')
a.set_ylabel('Normalized density')
mplw.f.tight_layout(pad=0.3) # crop figure to contents
mplw.figurecanvas.draw()
@QtCore.pyqtSlot()
def on_cleanButton_clicked(self):
"""Cluster pane clean button click. Set as unsorted those points that fall outside
of nstds distance away in the cluster density histogram plotted above"""
# r vals are in nstds units:
dhist, ledges, binwidth, ndims, sids, r = self.get_cleaning_density_hist()
nstds = self.ui.cleanNstdsSpinBox.value()
nids = self.sort.spikes[sids]['nid']
unids = np.unique(nids)
oldclusters = [ self.sort.clusters[unid] for unid in unids ]
nids[r > nstds] = 0 # set some sids to cluster 0, ie unclustered
self.apply_clustering(oldclusters, sids, nids, verb='clean')
@QtCore.pyqtSlot()
def on_calcMatchErrorsButton_clicked(self):
"""Match pane calc button click. Calculate rmserror between all clusters and
all unsorted spikes. Also calculate which cluster each unsorted spike matches best"""
spikes = self.sort.spikes
wavedata = self.sort.wavedata
cids = np.sort(list(self.sort.clusters))
sids = self.sort.usids.copy()
ncids, nsids = len(cids), len(sids)
print('Calculating rmserror between all %d clusters and all %d unsorted spikes'
% (ncids, nsids))
errs = np.empty((ncids, nsids), dtype=np.float32)
errs.fill(np.inf) # TODO: replace with sparse matrix with np.inf as default value
for cidi, cid in enumerate(cids):
neuron = self.sort.neurons[cid]
for sidi, sid in enumerate(sids):
chan = spikes['chan'][sid]
nchans = spikes['nchans'][sid]
chans = spikes['chans'][sid][:nchans]
# TODO: this is a bit wasteful if no chans are in common:
sdata = wavedata[sid, :nchans]
try:
ndata, sdata = neuron.getCommonWaveData(chan, chans, sdata)
except ValueError: # not comparable
continue
errs[cidi, sidi] = core.rms(ndata - sdata)
errs = self.sort.converter.AD2uV(errs) # convert from AD units to uV, np.infs are OK
self.match = Match(cids, sids, errs)
print('Done calculating rmserror between all %d clusters and all %d unsorted spikes'
% (ncids, nsids))
return self.match
@QtCore.pyqtSlot()
def on_plotMatchErrorsButton_clicked(self):
"""Match pane plot match errors button click. Plot histogram of rms error between
current cluster and all unclustered spikes that best fit the current cluster"""
cluster = self.GetCluster()
cid = cluster.id
if not hasattr(self, 'match') or self.match == None:
self.match = self.on_calcMatchErrorsButton_clicked() # (re)calc
errs = self.match.get_best_errs(cid)
if len(errs) == 0:
print('No unsorted spikes fit cluster %d' % cid)
return
f = pl.gcf()
pl.clf()
f.canvas.parent().setWindowTitle('cluster %d rmserror histogram' % cid)
binsize = self.ui.matchErrorPlotBinSizeSpinBox.value()
pl.hist(errs, bins=np.arange(0, 50, binsize))
pl.title('RMS error between cluster %d and %d unsorted spikes' %
(cid, len(errs)))
pl.xlabel('RMS error (uV)')
pl.ylabel('Count')
@QtCore.pyqtSlot()
def on_matchButton_clicked(self):
"""Deselect any selected unsorted spikes in uslist, and then select
unsorted spikes that fall below match error threshold and fit the
current cluster best"""
cluster = self.GetCluster()
cid = cluster.id
if not hasattr(self, 'match') or self.match == None:
self.match = self.on_calcMatchErrorsButton_clicked() # (re)calc
errs = self.match.get_best_errs(cid)
if len(errs) == 0:
print('No unsorted spikes fit cluster %d' % cid)
return
bestsids = self.match.best[cid]
thresh = self.ui.matchThreshSpinBox.value()
sids = bestsids[errs <= thresh]
sidis = self.sort.usids.searchsorted(sids)
# clear uslist selection, select sidis rows in uslist
sw = self.windows['Sort']
sw.uslist.clearSelection()
sw.uslist.selectRows(sidis, on=True, scrollTo=False)
print('Matched %d spikes to cluster %d' % (len(sids), cid))
@QtCore.pyqtSlot()
def on_plotXcorrsButton_clicked(self):
"""Plot all cross/auto correlograms for all selected neurons, and display
them in an upper or lower triangle configuration"""
## TODO: for now, just plot a single cross/auto correlogram
clusters = self.GetClusters()
xsids = clusters[0].neuron.sids
if len(clusters) == 1:
autocorr = True
ysids = xsids # x and y are identical
elif len(clusters) == 2:
autocorr = False
ysids = clusters[1].neuron.sids
else:
raise NotImplementedError("Can't handle more than one xcorr for now")
xspikets = self.sort.spikes['t'][xsids]
yspikets = self.sort.spikes['t'][ysids]
## TODO: spikes['t'][sids] is very different from spikes[sids]['t'] !
## The first is C contig, the second is not! The first probably makes a copy,
## while the second does not. First is much much faster for array ops, while
## the second conserves memory, and avoids needless copying, which might be faster
## if no array ops are involved. Should check all the code that pulls stuff out of
## the spikes recarray, and choose the best one more carefully!
trange = self.ui.xcorrsRangeSpinBox.value() * 1000 # convert to us
trange = max(1000, trange) # enforce min trange, in us
trange = np.array([-trange, trange]) # convert to a +/- array, in us
t0 = time.time()
dts = util.xcorr(xspikets, yspikets, trange=trange) # delta timepoints of y wrt x (us)
print('xcorr calc took %.3f sec' % (time.time()-t0))
if autocorr:
dts = dts[dts != 0] # remove 0s for autocorr
#print(dts)
dts = dts / 1000 # in ms, converts to float64 array
trange = trange / 1000 # in ms, converts to float64 array
nbins = intround(np.sqrt(len(dts))) # good heuristic
nbins = max(20, nbins) # enforce min nbins
nbins = min(100, nbins) # enforce max nbins
t = np.linspace(start=trange[0], stop=trange[1], num=nbins, endpoint=True)
n = np.histogram(dts, bins=t, density=False)[0]
binwidth = t[1] - t[0] # all should be equal width
# plot:
mplw = self.OpenWindow('MPL')
a = mplw.ax
a.clear()
# omit last right edge in t:
a.bar(t[:-1], height=n, width=binwidth, color='k', edgecolor='k')
a.set_xlim(t[0], t[-1])
a.set_xlabel('ISI (ms)')
a.set_ylabel('count')
if autocorr:
windowtitle = "n%d autocorr" % clusters[0].id
else:
windowtitle = "xcorr n%d wrt n%d" % (clusters[1].id, clusters[0].id)
mplw.setWindowTitle(windowtitle)
title = windowtitle + ', binwidth: %.2f ms' % binwidth
print(title)
a.set_title(title)
#a.set_ylabel('ISI rate (Hz)')
mplw.f.tight_layout(pad=0.3) # crop figure to contents
mplw.figurecanvas.draw()
@QtCore.pyqtSlot()
def on_ISICleanButton_clicked(self):
"""If only one cluster is selected, split off any duplicate spikes within that
cluster, according to the ISI threshold. If multiple clusters or no clusters are
selected, remove any duplicate spikes within selected clusters or all clusters,
respectively, according to the same single ISI threshold. As implemented, the latter
is not undoable"""
clusters = self.GetClusters()
minISI = self.ui.minISISpinBox.value()
spikes = self.sort.spikes
nids = [ cluster.id for cluster in clusters ] # selected neurons, in norder
if len(nids) == 0: # if no neurons selected, clean all neurons
nids = sorted(self.sort.neurons)
rmsidss = {} # dict of lists of sids to split off or remove, indexed by nid
print('Duplicate spikes:')
for nid in nids:
# For each pair of duplicate spikes, keep whichever has the most channel overlap
# with neuron template. If they have same amount of overlap, keep the first one
neuron = self.sort.neurons[nid]
rmsids = [] # list of sids to remove for this neuron
# pick out the first sid of each pair of duplicate sids, if any:
sidis = np.where(np.diff(spikes['t'][neuron.sids]) <= minISI)[0]
if len(sidis) == 0:
continue # skip to next nid
#x0, y0 = neuron.cluster.pos['x0'], neuron.cluster.pos['y0']
for sidi in sidis:
sid0 = neuron.sids[sidi] # 1st spike in each pair
sid1 = neuron.sids[sidi+1] # 2nd spike in each pair
nchans0 = spikes['nchans'][sid0]
nchans1 = spikes['nchans'][sid1]
chans0 = spikes['chans'][sid0][:nchans0]
chans1 = spikes['chans'][sid1][:nchans1]
ncommon0 = len(np.intersect1d(neuron.chans, chans0))
ncommon1 = len(np.intersect1d(neuron.chans, chans1))
if ncommon0 >= ncommon1:
# sid0 has more template chan overlap, or both are equal, keep sid0
rmsid = sid1
else:
# sid1 has more template chan overlap, keep it
rmsid = sid0
"""
# code for choosing the one closest to template mean position, not as robust:
d02 = (spikes['x0'][sid] - x0)**2 + (spikes['y0'][sid] - y0)**2
d12 = (spikes['x0'][sid+1] - x0)**2 + (spikes['y0'][sid+1] - y0)**2
if d02 <= d12:
rmsid = sid + 1
else:
rmsid = sid
"""
rmsids.append(rmsid)
print('n%d: %r' % (nid, rmsids))
rmsidss[nid] = rmsids
nrm = sum([ len(rmsids) for rmsids in rmsidss.values() ])
print('Found %d duplicate spikes' % nrm)
if nrm == 0:
return
sw = self.windows['Sort']
if len(nids) == 1: # split duplicate spikes from single cluster into cluster 0
sidis = neuron.sids.searchsorted(rmsids)
sw.nslist.selectRows(sidis) # select spikes to split off from single cluster
self.SplitSpikes(delete=True) # split them off into cluster 0 (undoable)
return
# otherwise, remove duplicate spikes from multiple clusters:
val = QtGui.QMessageBox.question(self, "Remove %d duplicate spikes" % nrm,
"Are you sure? This will clear the undo/redo stack, and is not undoable.",
QtGui.QMessageBox.Yes, QtGui.QMessageBox.No)
if val == QtGui.QMessageBox.No:
return
# do the actual removal:
for nid, rmsids in rmsidss.items():
neuron = self.sort.neurons[nid]
neuron.sids = np.setdiff1d(neuron.sids, rmsids) # remove from source neuron
spikes['nid'][rmsids] = 0 # set to junk in spikes struct array
neuron.wave.data = None # trigger template mean update
if neuron in sw.nslist.neurons:
sw.nslist.neurons = sw.nslist.neurons # trigger nslist refresh
# update usids and uslist:
self.sort.update_usids()
sw.uslist.updateAll()
# cluster changes in stack no longer applicable, reset cchanges:
del self.cchanges[:]
print('Removed %d duplicate spikes' % nrm)
def GetSortedSpikes(self):
"""Return IDs of selected sorted spikes"""
sw = self.windows['Sort']
srows = sw.nslist.selectedRows()
return sw.nslist.sids[srows]
def GetUnsortedSpikes(self):
"""Return IDs of selected unsorted spikes"""
sw = self.windows['Sort']
srows = sw.uslist.selectedRows()
return self.sort.usids[srows]
def GetClusterSpikes(self):
"""Return sorted IDs of all spikes of selected clusters"""
clusters = self.GetClusters()
if len(clusters) == 0:
return np.array([], dtype=np.int64)
sids = []
for cluster in clusters:
sids.append(cluster.neuron.sids)
sids = np.concatenate(sids)
sids.sort()
return sids
def GetSpikes(self):
"""Return IDs of explicitly selected spikes"""
sw = self.windows['Sort']
return np.concatenate([ self.GetSortedSpikes(), self.GetUnsortedSpikes() ])
def GetSpike(self):
"""Return ID of just one selected spike, from nslist or uslist"""
sids = self.GetSpikes()
nselected = len(sids)
if nselected != 1:
raise RuntimeError("Can't figure out which of the %d selected spike IDs you want"
% nselected)
return sids[0]
def GetAllSpikes(self):
"""Return sorted IDs of all selected spikes, whether explicitly or implicitly
selected"""
sids = []
ssids = self.GetSortedSpikes()
sids.append(ssids)
# if no sorted spikes explicitly selected, check if any clusters are:
if len(ssids) == 0:
sids.append(self.GetClusterSpikes())
# include any selected usids as well
sids.append(self.GetUnsortedSpikes())
sids = np.concatenate(sids)
sids.sort()
return sids
def GetClusterIDs(self):
"""Return list of IDs of currently selected clusters, in norder"""
sw = self.windows['Sort']
cids = [ qvar2int(i.data()) for i in sw.nlist.selectedIndexes() ]
#cids.sort() # don't do regular sort, sort by norder
ciis = np.argsort([ self.sort.norder.index(cid) for cid in cids ])
return [ cids[cii] for cii in ciis ] # in norder
def GetClusters(self):
"""Return list of currently selected clusters, in norder"""
cids = self.GetClusterIDs() # already in norder
return [ self.sort.clusters[cid] for cid in cids ]
def GetCluster(self):
"""Return just one selected cluster"""
clusters = self.GetClusters()
nselected = len(clusters)
if nselected != 1:
raise RuntimeError("Can't figure out which of the %d selected clusters you want"
% nselected)
return clusters[0]
def SelectClusters(self, clusters, on=True):
"""Select/deselect clusters"""
clusters = toiter(clusters)
try:
selnids = [ cluster.id for cluster in clusters ]
except AttributeError: # assume they're ints
selnids = [ cluster for cluster in clusters ]
rows = [ self.sort.norder.index(selnid) for selnid in selnids ]
nlist = self.windows['Sort'].nlist
nlist.selectRows(rows, on)
#print('Set rows %r to %r' % (rows, on))
def ToggleCluster(self, cluster):
"""Toggle selection of given cluster"""
sw = self.windows['Sort']
try:
nid = cluster.id
except AttributeError: # assume it's an int
nid = cluster
row = self.sort.norder.index(nid)
on = not sw.nlist.rowSelected(row)
sw.nlist.selectRows(row, on=on)
return on
def SelectSpikes(self, sids, on=True, nslistplot=True):
"""Set selection state of given spikes, as well as their current clusters, if any"""
sw = self.windows['Sort']
nids = self.sort.spikes['nid'][sids]
# select/deselect any unclustered spikes:
usids = sids[nids == 0]
if len(usids) > 0:
usrows = self.sort.usids.searchsorted(usids)
sw.uslist.selectRows(usrows, on=on)
# select/deselect any clustered spikes, as well as their clusters:
csids = sids[nids != 0] # clustered spike ids
unids = np.unique(nids)
unids = unids[unids != 0] # remove cluster 0
# get currently selected sids in nslist, and the unids they belong to:
selsids = sw.nslist.sids[sw.nslist.selectedRows()] # hopefully don't need a copy
selunids = sw.nslist.nids
if on == True: # find clustered spikes to add to selection:
# add csids to selsids (get values in csids that aren't in selsids):
csids = np.setdiff1d(csids, selsids, assume_unique=True) # to add
allcsids = np.union1d(csids, selsids) # final
elif on == False: # find clustered spikes to remove from selection:
# remove csids from selsids:
csids = np.intersect1d(csids, selsids, assume_unique=True) # to remove
allcsids = np.setdiff1d(csids, selsids, assume_unique=True) # final
else:
raise ValueError("Invalid 'on' value: %r" % on)
if len(csids) == 0:
return # no clustered spikes to add or remove
newunids = np.unique(self.sort.spikes['nid'][allcsids]) # excludes cluster 0
# select any new clusters so nslist has correct contents, this
# changes contents of nslist and hence clears any currently selected sids:
addunids = np.setdiff1d(newunids, selunids)
if len(addunids) > 0:
# all nids will be in sort.norder list, find their positions
addnlistrows = [ self.sort.norder.index(unid) for unid in addunids ]
sw.nlist.selectRows(addnlistrows, on=True)
# now do the clustered spike selection:
nslistrows = sw.nslist.sids.searchsorted(csids) # nslist.sids is sorted
#t0 = time.time()
sw.nslist.fake_selectRows(nslistrows, on=on, plot=nslistplot)
#print('nslist.fake_selectRows took %.3f sec' % (time.time()-t0))
def CreateCluster(self, update=True, id=None, inserti=None):
"""Create a new cluster, add it to the GUI, return it"""
s = self.sort
neuron = s.create_neuron(id, inserti=inserti)
sw = self.windows['Sort']
if update:
sw.nlist.updateAll()
cluster = Cluster(neuron)
s.clusters[cluster.id] = cluster
neuron.cluster = cluster
try:
cw = self.windows['Cluster'] # don't force its display by default
except KeyError:
cw = self.OpenWindow('Cluster')
return cluster
def DelClusters(self, clusters, update=True):
"""Delete clusters from the GUI, and delete clusters
and their neurons from the Sort."""
clusters = toiter(clusters)
self.SelectClusters(clusters, on=False) # first deselect them all
sw = self.windows['Sort']
cw = self.windows['Cluster']
self.ColourPoints(clusters, setnid=0) # decolour before clusters lose their sids
for cluster in clusters:
sw.RemoveNeuron(cluster.neuron, update=update)
cw.glWidget.updateGL()
if update:
self.UpdateClustersGUI()
def UpdateClustersGUI(self):
"""Update lots of stuff after modifying clusters,
here as a separate method for speed, only call when really needed"""
s = self.sort
sw = self.windows['Sort']
sw.nlist.updateAll()
s.update_usids()
sw.uslist.updateAll()
def ColourPoints(self, clusters, setnid=None):
"""Colour the points that fall within each cluster (as specified
by cluster.neuron.sids) the same colour as the cluster itself. Or, if
setnid != None, colour all points in clusters according to setnid value"""
clusters = toiter(clusters)
gw = self.windows['Cluster'].glWidget
for cluster in clusters:
neuron = cluster.neuron
# not all (or any) of neuron.sids may currently be plotted
commonsids = np.intersect1d(neuron.sids, gw.sids)
if len(commonsids) > 0:
sidis = gw.sids.searchsorted(commonsids)
# set new nids for commonsids in glWidget:
if setnid == None:
gw.nids[sidis] = neuron.id
else:
gw.nids[sidis] = setnid
gw.colour(commonsids) # recolour commonsids according to their nids
gw.updateGL()
def GetClusterPlotDims(self):
"""Return 3-tuple of strings of cluster dimension names, in (x, y, z) order"""
x = str(self.ui.xDimComboBox.currentText())
y = str(self.ui.yDimComboBox.currentText())
z = str(self.ui.zDimComboBox.currentText())
return x, y, z
def AddClusterChangeToStack(self, cc):
"""Adds cc to the cluster change stack, removing any potential redo changes"""
self.cci += 1
del self.cchanges[self.cci::] # remove any existing redo cluster changes
self.cchanges.append(cc) # add to stack
# TODO: check if stack has gotten too long, if so, remove some from the start
# and update self.cci appropriately
def ApplyClusterChange(self, cc, direction):
"""Apply cluster change described in cc, in either the forward or backward
direction, to the current set of clusters"""
s = self.sort
spikes = s.spikes
sw = self.windows['Sort']
cw = self.windows['Cluster']
sids = cc.sids
# reverse meaning of 'new' and 'old' if direction == 'forward', ie if redoing
if direction == 'back':
#newnids = cc.newnids # not needed
oldnids = cc.oldnids
newunids = cc.newunids
oldunids = cc.oldunids
poss = cc.oldposs
normposs = cc.oldnormposs
norder = cc.oldnorder
good = cc.oldgood
else: # direction == 'forward'
#newnids = cc.oldnids # not needed
oldnids = cc.newnids
newunids = cc.oldunids
oldunids = cc.newunids
poss = cc.newposs
normposs = cc.newnormposs
norder = cc.newnorder
good = cc.newgood
# delete newly added clusters
newclusters = [ s.clusters[nid] for nid in newunids ]
self.SelectClusters(newclusters, on=False) # deselect new clusters
# temporarily deselect any bystander clusters to get around fact that
# selections are row-based in Qt, not value-based, which means selection
# changes happen without a selectionChanged event when the rowCount changes
bystanders = self.GetClusters()
self.SelectClusters(bystanders, on=False)
self.DelClusters(newclusters, update=False) # del new clusters
# restore relevant spike fields
spikes['nid'][sids] = oldnids
# restore the old clusters
oldclusters = []
dims = self.GetClusterPlotDims()
t0 = time.time()
# NOTE: oldunids are not necessarily sorted
for nid, pos, normpos in zip(oldunids, poss, normposs):
nsids = sids[oldnids == nid] # sids belonging to this nid
cluster = self.CreateCluster(update=False, id=nid)
oldclusters.append(cluster)
neuron = cluster.neuron
sw.MoveSpikes2Neuron(nsids, neuron, update=False)
cluster.pos = pos
cluster.normpos = normpos
# restore norder and good
s.norder = copy(norder)
s.good = copy(good)
# now do some final updates
self.UpdateClustersGUI()
self.ColourPoints(oldclusters)
#print('Applying clusters to plot took %.3f sec' % (time.time()-t0))
# select newly recreated oldclusters
self.SelectClusters(oldclusters)
# restore bystander selections
self.SelectClusters(bystanders)
#print('oldclusters: %r' % [c.id for c in oldclusters])
#print('newclusters: %r' % [c.id for c in newclusters])
#print('bystanders: %r' % [c.id for c in bystanders])
def SplitSpikes(self, delete=False):
"""Split off explicitly selected spikes from their clusters (if any). More accurately,
split selected cluster(s) into new cluster(s) plus a destination cluster, whose ID
depends on the delete arg. This process is required to allow undo/redo"""
oldclusters = self.GetClusters()
s = self.sort
spikes = s.spikes
sids = np.concatenate([self.GetClusterSpikes(), self.GetUnsortedSpikes()])
sids.sort()
if len(sids) == 0:
return # do nothing
if delete:
newnid = 0 # junk cluster
else:
newnid = s.nextnid
selsids = self.GetSpikes() # explicitly selected spikes
selsidis = sids.searchsorted(selsids)
nids = spikes[sids]['nid'] # seems to return a copy
nids[selsidis] = newnid # doesn't seem to overwrite nid values in spikes recarray
self.apply_clustering(oldclusters, sids, nids, verb='split')
def updateTitle(self):
"""Update main spyke window title based on open stream and sort, if any"""
if hasattr(self.hpstream, 'fname'):
title = self.hpstream.fname
if hasattr(self, 'sort') and self.sort.fname:
title += ', ' + self.sort.fname
elif hasattr(self, 'sort') and self.sort.fname:
title = self.sort.fname
else:
title = 'spyke'
self.setWindowTitle(title) # update the title
def OpenRecentFile(self):
"""Open a filename from the clicked recent file in the File menu"""
action = self.sender()
if action:
fullfname = qvar2str(action.data())
self.OpenFile(fullfname)
def updateRecentFiles(self, fullfname=None):
"""Update list of recent files in File menu, optionally specifying the
last fname opened or closed, which should hence go to the top of the list.
Some of this code is taken from PySide's examples/mainwindows/recentfiles.py"""
settings = QtCore.QSettings('spyke', 'spyke') # retrieve setting
fullfnames = qvar2list(settings.value('recentFileList'))
for i in range(len(fullfnames)): # Py2: convert each entry from QVariant to QString
fullfnames[i] = qvar2str(fullfnames[i])
if fullfname:
try:
fullfnames.remove(fullfname)
except ValueError:
pass
fullfnames.insert(0, fullfname)
del fullfnames[MAXRECENTFILES:]
settings.setValue('recentFileList', fullfnames) # update setting
# update menu to match fullfnames:
nrecent = len(fullfnames)
for i, fullfname in enumerate(fullfnames):
text = "&%d %s" % (i, fullfname) # add keyboard accelerator
self.recentFileActions[i].setText(text)
self.recentFileActions[i].setData(fullfname)
self.recentFileActions[i].setVisible(True)
for j in range(nrecent, MAXRECENTFILES):
self.recentFileActions[j].setVisible(False)
def OpenFile(self, fname):
"""Open a stream or sort or digital signal file.
fname in this case must contain a full path"""
print('Opening file %r' % fname)
head, tail = os.path.split(fname)
assert head # make sure fname has a path to it
base, ext = os.path.splitext(tail)
if ext in ['.dat', '.ns6', '.srf', '.track', '.tsf', '.mat']:
self.streampath = head
self.OpenStreamFile(tail)
elif ext == '.zip':
subext = os.path.splitext(base)[1]
self.eventspath = head
if subext == '.eventwaves':
self.OpenEventWavesFile(tail)
elif subext == '.events':
self.OpenEventsFile(tail)
elif ext in ['.sort', '.json']:
self.sortpath = head
self.OpenSortFile(tail)
else:
critical = QtGui.QMessageBox.critical
critical(self, "Error", "%s is not a .dat, .ns6, .srf, .track, .tsf, .mat, "
".event*.zip, .sort or .json file" % fname)
def OpenStreamFile(self, fname):
"""Open a stream (.dat, .ns6, .srf, .track, or .tsf file) and update display
accordingly. fname is assumed to be relative to self.streampath. File names in
a .track file can be relative to self.streampath or absolute"""
if self.hpstream is not None:
self.CloseStream() # in case a stream is already open
enabledchans = None
ext = os.path.splitext(fname)[1]
if ext == '.dat':
f = dat.File(fname, self.streampath) # parses immediately
self.hpstream = f.hpstream # highpass record (spike) stream
self.lpstream = f.lpstream # lowpassmultichan record (LFP) stream
# if .din.npy file exists with same base name, open that as well and
# assume it contains stimulus information from AG Busse Busse Open-Ephys
base, ext = os.path.splitext(fname)
dinnpyfname = base + '.din.npy'
if os.path.exists(os.path.join(self.streampath, dinnpyfname)):
self.OpenDINNPYFile(dinnpyfname)
elif ext == '.ns6':
f = nsx.File(fname, self.streampath) # parses immediately
self.hpstream = f.hpstream # highpass record (spike) stream
self.lpstream = f.lpstream # lowpassmultichan record (LFP) stream
elif ext == '.srf':
f = surf.File(fname, self.streampath)
f.parse() # TODO: parsing progress dialog
self.hpstream = f.hpstream # highpass record (spike) stream
self.lpstream = f.lpstream # lowpassmultichan record (LFP) stream
elif ext == '.track':
fs = []
with open(os.path.join(self.streampath, fname), 'r') as trackfile:
for line in trackfile: # one filename per line
line = line.strip() # remove leading and trailing whitespace
print('%s' % line)
if not line: # blank line
continue
if line.startswith('#'): # comment line
line = lstrip(line, '#') # remove comment character
line = line.replace(' ', '') # remove all spaces
if line.startswith('enabledchans='):
# it's a comment line describing which chans have been set to
# enabled for this track
enabledchans = np.asarray(eval(lstrip(line, 'enabledchans=')))
assert iterable(enabledchans)
continue # to next line
path, fn = os.path.split(line) # allow absolute file paths
if not path:
path = self.streampath
fext = os.path.splitext(fn)[1]
if fext == '.dat':
f = dat.File(fn, path)
elif fext == '.ns6':
f = nsx.File(fn, path)
elif fext == '.srf':
f = surf.File(fn, path)
f.parse()
else:
raise ValueError('Unknown extension %r' % fext)
fs.append(f) # build up list of open and parsed data file objects
self.hpstream = MultiStream(fs, fname, kind='highpass')
self.lpstream = MultiStream(fs, fname, kind='lowpass')
ext = fext # for setting *tw variables below
elif ext == '.tsf':
self.hpstream, self.lpstream = self.OpenTSFFile(fname)
elif ext == '.mat':
self.hpstream = self.OpenQuirogaMATFile(fname)
ext = '.srf' # use same *tw variables as for .srf
else:
raise ValueError('Unknown extension %r' % ext)
# if a sort is already open, try rebinding new stream to the sort. If they don't match,
# abort opening of the new stream:
try:
self.sort.stream = self.hpstream # restore newly opened stream to sort
except AttributeError: # no sort yet
pass
except ValueError: # from sort.set_stream()
print('Aborting opening of the stream')
self.CloseStream()
raise # re-raise the ValueError from sort.set_stream()
self.updateTitle()
self.updateRecentFiles(os.path.join(self.streampath, fname))
self.ui.__dict__['actionFiltmeth%s' % self.hpstream.filtmeth ].setChecked(True)
self.ui.__dict__['actionCAR%s' % self.hpstream.car ].setChecked(True)
try:
sampfreqkHz = self.hpstream.sampfreq / 1000
self.ui.__dict__['action%dkHz' % sampfreqkHz].setChecked(True)
except KeyError:
print('WARNING: %d kHz is not a sampling menu option' % sampfreqkHz)
self.ui.actionSampleAndHoldCorrect.setChecked(self.hpstream.shcorrect)
self.spiketw = SPIKETW[ext] # spike window temporal window (us)
self.charttw = CHARTTW[ext] # chart window temporal window (us)
self.lfptw = LFPTW # lfp window temporal window (us)
self.uVperum = UVPERUM[ext]
self.usperum = USPERUM[ext]
self.ui.dynamicNoiseXSpinBox.setValue(DYNAMICNOISEX[ext])
self.ui.dtSpinBox.setValue(DT[ext])
# if a sort file is already open, enable only those channels that were used
# by the sort's Detector:
try:
enabledchans = self.sort.detector.chans
except AttributeError:
pass
if enabledchans is None:
self.chans_enabled = self.hpstream.chans
else:
print('Setting enabled chans = %s' % enabledchans)
self.chans_enabled = enabledchans
self.trange = self.hpstream.t0, self.hpstream.t1 # us
self.t = self.trange[0] # init current timepoint (us)
self.str2t = {'start': self.trange[0],
'now' : self.t,
'end' : self.trange[1]}
self.SPIKEWINDOWWIDTH = self.hpstream.probe.ncols * SPIKEWINDOWWIDTHPERCOLUMN
self.OpenWindow('Spike')
self.OpenWindow('Chart')
self.ui.filePosLineEdit.setText('%.1f' % self.t)
self.ui.filePosStartButton.setText('%.1f' % self.trange[0])
self.ui.filePosEndButton.setText('%.1f' % self.trange[1])
self.update_slider() # set slider limits and step sizes
self.EnableStreamWidgets(True)
def OpenDINNPYFile(self, fname):
"""Open .din.npy file, assume that it is an AG Busse Open-Ephys file that
contains stimulus timing information"""
from expio.oe import DINFile # AG Busse experimental I/O library
print('Opening file %r' % os.path.join(self.streampath, fname))
dinf = DINFile(fname, self.streampath)
stimriseis, stimfallis = dinf.trangeis('stim')
self.stimtons = dinf.tsec[stimriseis] * 1e6 # us
self.stimtoffs = dinf.tsec[stimfallis] * 1e6
self.ui.actionStims.setEnabled(True)
self.ShowStims()
def OpenQuirogaMATFile(self, fname):
"""Open Quiroga's .mat files containing single channel synthetic highpass spike data.
Return a SimpleStream. Assume no sample-and-hold correction is required, and no
highpass filtering is required"""
import scipy.io
fname = os.path.join(self.streampath, fname)
d = scipy.io.loadmat(fname, squeeze_me=True)
#chan = d['chan'] # this field isn't always present
#assert chan == 1
nchans = 1
wavedata = d['data'] # float64, mV
wavedata = wavedata * 1000 # uV
assert wavedata.ndim == 1
nt = len(wavedata)
wavedata.shape = nchans, -1 # enforce 2D
# convert to int16, assume ADC resolution for this data was <= 16 bits,
# use some reasonable gain values, check they don't saturate 16 bits:
intgain = 1
extgain = 2000
converter = core.Converter(intgain=intgain, extgain=extgain)
wavedata = converter.uV2AD(wavedata, dtype=np.int64)
# check for saturation:
wdmin, wdmax = wavedata.min(), wavedata.max()
print('gain = %d' % (intgain*extgain))
print('wavedata.min() = %d, wavedata.max() = %d' % (wdmin, wdmax))
if wdmin <= -2**15 or wdmax >= 2**15-1:
raise RuntimeError("wavedata has saturated int16. Try reducing gain")
wavedata = np.int16(wavedata) # downcast to int16
siteloc = np.empty((nchans, 2))
siteloc[0] = 0, 0
rawtres = float(d['samplingInterval']) # ms
rawtres = rawtres / 1000 # sec
rawsampfreq = intround(1 / rawtres) # Hz
masterclockfreq = None
stream = SimpleStream(fname, wavedata, siteloc, rawsampfreq, masterclockfreq,
intgain, extgain, shcorrect=False, bitshift=None)
truth = core.EmptyClass()
truth.spiketis = d['spike_times']
assert truth.spiketis[-1] < nt
truth.spikets = truth.spiketis * rawtres
# unsure what the other arrays in this field are for:
truth.sids = d['spike_class'][0]
assert int(d['startData']) == 0
stream.truth = truth
return stream
def OpenTSFFile(self, fname):
"""Open NVS's "test spike file" .tsf format for testing spike sorting performance.
This describes a single 2D contiguous array of raw waveform data, within which are
embedded a number of spikes from a number of neurons. The ground truth is typically
listed at the end of the file. Return a highpass and lowpass SimpleStream. For .tsf
files that only have highpass, return None as a lowpass stream.
fname is assumed to be relative to self.streampath.
.tsf file TODO:
- make data column-major for better seeking in time
- move nchans field before siteloc field
- make maxchans 0 based, ie same as labelled on probe design by UMich
- would be better to keep spikes sorted in time, instead of by cluster id
- no need for 64 extgain values, they're all the same, whether you're exporting
spike or LFP data. And if for some reason they could've been different, length
of extgains vector should be nchans, not fixed 64. Also, if extgains is a
vector, then so should intgains
- number cluster ids in vertically spatial order, by mean of their template's
vertical spatial position, not just by their maxchan - subtle difference
- are .tsf spike times all aligned to +ve 0 crossing? One difference from .sort
is that they're all truncated to the nearest 25kHz sample point. Maybe it
would be best to save the spike time in us instead of in 25kHz sample point
indices
- add some kind of datetime stamp, ala .srf. Maybe datetime the .tsf file was
generated
- increment format number. Maybe we should ultimately make a .nvs file
type, similar to .tsf format, for sharing with others, as a simplified
.srf file. Would require adding an LFP channel field to the end, or just make
the LFP chans look like normal spike chans, way oversampled
- add more cells, make some fraction of them bursting, give bursting cells
some prob distrib over number of spikes per burst, make each spike in a
burst say 5 or 10% smaller than the previous spike adaptation
- maybe even simulate spatial drift? That would be more difficult
- need far more spikes. Enforce a power law distribution in number spikes
per cell
- main thing is to look at how close in space and time spikes can be seeded
and still be detected and clustered correctly
"""
with open(os.path.join(self.streampath, fname), 'rb') as f:
header = f.read(16).decode()
assert header == 'Test spike file '
version, = unpack('i', f.read(4))
if version == 1002:
return self.OpenTSFFile_1002(fname)
elif version == 1000:
return self.OpenTSFFile_1000(fname)
def OpenTSFFile_1002(self, fname):
"""Open TSF file, version 1002. Assume no sample-and-hold correction is required,
assume wavedata already has the correct 0 voltage offset (i.e., is signed), assume no
bitshift is required (data is 16 bit, not 12). Assume wavedata is wideband, containing
both spike and LFP data"""
try:
f = open(os.path.join(self.streampath, fname), 'rb')
except IOError:
print("Can't find file %r" % fname)
return
header = f.read(16).decode()
assert header == 'Test spike file '
version, = unpack('i', f.read(4))
assert version == 1002
rawsampfreq, = unpack('i', f.read(4)) # Hz
masterclockfreq = None
nchans, = unpack('i', f.read(4))
nt, = unpack('i', f.read(4))
intgain = 1 # assumed
extgain, = unpack('f', f.read(4))
print('extgain: %f' % extgain)
siteloc = np.zeros((nchans, 2), dtype=np.int16)
readloc = np.zeros(nchans, dtype=np.int32) # optimal chan display order
#print('readloc:', readloc)
for i in range(nchans):
# these two data types really shouldn't be intertwined like this:
siteloc[i, :] = unpack('hh', f.read(4))
readloc[i], = unpack('i', f.read(4))
# read row major data, ie, chan loop is outer loop:
wavedata = np.fromfile(f, dtype=np.int16, count=nchans*nt)
wavedata.shape = nchans, nt
nspikes, = unpack('i', f.read(4))
print("%d ground truth spikes" % nspikes)
# filter into highpass data:
hpwavedata = core.WMLDR(wavedata)
# assume all 16 bits are actually used, not just 12 bits, so no bitshift is required:
hpstream = SimpleStream(fname, hpwavedata, siteloc, rawsampfreq, masterclockfreq,
intgain, extgain, shcorrect=False, bitshift=False,
tsfversion=version)
lpstream = None ## TODO: implement this
if nspikes > 0:
truth = core.EmptyClass()
truth.spikets = np.fromfile(f, dtype=np.int32, count=nspikes)
truth.nids = np.fromfile(f, dtype=np.int32, count=nspikes)
truth.maxchans = np.fromfile(f, dtype=np.int32, count=nspikes)
assert truth.maxchans.min() >= 1 # NVS stores these as 1-based
truth.maxchans -= 1 # convert to proper 0-based maxchan ids
self.renumber_tsf_truth(truth, hpstream)
hpstream.truth = truth
pos = f.tell()
f.seek(0, 2)
nbytes = f.tell()
f.close()
print('Read %d bytes, %s is %d bytes long' % (pos, fname, nbytes))
return hpstream, lpstream
def OpenTSFFile_1000(self, fname):
"""Open TSF file, version 1000. Assume wavedata is highpass spike data only"""
try:
f = open(os.path.join(self.streampath, fname), 'rb')
except IOError:
print("Can't find file %r" % fname)
return
header = f.read(16).decode()
assert header == 'Test spike file '
version, = unpack('i', f.read(4))
assert version == 1000
nchans = 54 # assumed
siteloc = np.fromfile(f, dtype=np.int16, count=nchans*2)
siteloc.shape = nchans, 2
rawsampfreq, = unpack('i', f.read(4)) # 25k
masterclockfreq, = unpack('i', f.read(4)) # 1M
extgains = np.fromfile(f, dtype=np.uint16, count=64)
extgain = extgains[0]
intgain, = unpack('H', f.read(2))
# this nchans field should've been above siteloc field:
nchans2, = unpack('i', f.read(4))
assert nchans == nchans2 # make sure above assumption was right
nt, = unpack('i', f.read(4)) # 7.5M, eq'v to 300 sec data total
# read row major data, ie, chan loop is outer loop:
wavedata = np.fromfile(f, dtype=np.int16, count=nchans*nt)
wavedata.shape = nchans, nt
hpstream = SimpleStream(fname, wavedata, siteloc, rawsampfreq, masterclockfreq,
intgain, extgain, shcorrect=True, tsfversion=version)
lpstream = None # no lowpass data in this version
# not all .tsf files have ground truth data at end:
pos = f.tell()
groundtruth = f.read()
if groundtruth == b'': # reached EOF
nbytes = f.tell()
f.close()
print('Read %d bytes, %s is %d bytes long' % (pos, fname, nbytes))
return hpstream, lpstream
else:
f.seek(pos) # go back and parse ground truth data
truth = core.EmptyClass()
# something to do with how spikes were seeded vertically in space:
truth.vspacing, = unpack('i', f.read(4))
truth.nspikes, = unpack('i', f.read(4))
# sample index of each spike:
spiketis = np.fromfile(f, dtype=np.uint32, count=truth.nspikes)
sids = spiketis.argsort() # indices that sort spikes in time
truth.spikets = spiketis[sids] * hpstream.rawtres # in us
truth.nids = np.fromfile(f, dtype=np.uint32, count=truth.nspikes)[sids]
truth.chans = np.fromfile(f, dtype=np.uint32, count=truth.nspikes)[sids]
assert truth.chans.min() >= 1 # NVS stores these as 1-based
truth.chans -= 1 # convert to proper 0-based maxchan ids
self.renumber_tsf_truth(truth, hpstream)
hpstream.truth = truth
pos = f.tell()
f.seek(0, 2)
nbytes = f.tell()
f.close()
print('Read %d bytes, %s is %d bytes long' % (pos, fname, nbytes))
return hpstream, lpstream
def renumber_tsf_truth(self, truth, stream):
"""Renumber .tsf ground truth nids according to vertical spatial order of their
max chan, similar to what's done in .sort. Differences in labelling can still
arise because in a .sort, nids are ordered by the mean vertically modelled
position of each neuron's member spikes, not strictly by the maxchan of its
mean template"""
oldnid2sids = {}
nids = truth.nids
oldunids = np.unique(nids)
nnids = len(oldunids)
oldchans = np.zeros(nnids, dtype=truth.chans.dtype)
assert (oldunids == np.arange(1, nnids+1)).all()
# find maxchan of each nid, store in oldchans:
for chani, oldnid in enumerate(oldunids):
sids = nids == oldnid
oldnid2sids[oldnid] = sids # save these for next loop
chans = truth.chans[sids]
chan = chans[0]
assert (chans == chan).all() # check for surprises
oldchans[chani] = chan
# convert maxchans to y positions:
ypos = np.asarray([ stream.probe.SiteLoc[chan][1] for chan in oldchans ])
# as in sort.on_actionRenumberClusters_triggered(), this is a bit confusing:
# find indices that would sort old ids by y pos, but then what you really want
# is to find the y pos *rank* of each old id, so you need to take argsort again:
sortiis = ypos.argsort().argsort()
newunids = oldunids[sortiis] # sorted by vertical position
for oldnid, newnid in zip(oldunids, newunids):
sids = oldnid2sids[oldnid]
nids[sids] = newnid # overwrite old nid values with new ones
def OpenEventWavesFile(self, fname):
"""Open and import the data in an .eventwaves.zip file, containing event times,
channels and waveforms, plus some other data. fname is assumed to be relative to
self.eventspath"""
if self.hpstream != None:
self.CloseStream() # in case a stream is open
self.DeleteSort() # delete any existing Sort
fullfname = os.path.join(self.eventspath, fname)
with open(fullfname, 'rb') as f:
d = dict(np.load(f)) # convert to an actual dict to use d.get() method
print('Done opening .eventswave.zip file')
print('.eventswave.zip file was %d bytes long' % f.tell())
chan = d.get('chan') # array of maxchans, one per event
chanpos = d.get('chanpos') # array of (x, y) coords, in channel order
chans = d.get('chans') # set of incl. chans, each of length nchans, one per event
nchans = d.get('nchans') # count of included chans, one per event
sampfreq = d.get('sampfreq') # sampling rate, Hz
t = d.get('t') # even timestamps, us
uVperAD = d.get('uVperAD') # uV per AD value in wavedata
# event waveform data (nevents x maxnchans x nt), treated as AD values:
wavedata = d.get('wavedata')
# check for mandatory fields:
if sampfreq is None:
raise ValueError('Missing sampfreq')
if uVperAD is None:
raise ValueError('Missing uVperAD')
if wavedata is None:
raise ValueError('Missing wavedata')
# pull singleton values out of numpy array:
sampfreq = float(sampfreq)
uVperAD = float(uVperAD)
nevents, maxnchans, nt = wavedata.shape # maxnchans is per event
print('wavedata.shape:', wavedata.shape)
# handle optional fields:
if chanpos is None:
if maxnchans > 1:
raise ValueError('Multiple chans per event, chanpos should be specified')
chanpos = np.array([[0, 0]]) # treat events as single channel
if t is None: # create artificial event timestamps at 1 ms intervals
t = np.arange(nevents) * 1000 # us
if chan is None: # maxchan
chan = np.zeros(nevents)
if nchans is None:
nchans = np.ones(nevents)
if chans is None:
chans = np.asarray([chan]) # (1, nevents)
assert len(chans) is maxnchans
# create fake stream, create sort, populate spikes array:
tres = 1 / sampfreq * 1000000 # us
halfdt = nt * tres / 2
self.spiketw = -halfdt, halfdt
# treat this source .eventwaves.zip file as a fake stream:
fakestream = stream.FakeStream()
fakestream.fname = fname
fakestream.tres = tres
fakestream.probe = probes.findprobe(chanpos)
fakestream.converter = None
self.hpstream = fakestream
sort = self.CreateNewSort() # create a new sort, with bound stream
det = Detector(sort=sort)
SPIKEDTYPE = calc_SPIKEDTYPE(maxnchans)
sort.detector = det
sort.converter = core.SimpleConverter(uVperAD)
spikes = np.zeros(nevents, SPIKEDTYPE)
spikes['id'] = np.arange(nevents)
spikes['t'] = t
spikes['t0'], spikes['t1'] = t-halfdt, t+halfdt
spikes['chan'] = chan
spikes['nchans'] = nchans
spikes['chans'] = chans.T # (nevents, 1)
sort.spikes = spikes
sort.wavedata = wavedata
# hack:
self.uVperum = 20
self.usperum = 125
sort.update_usids() # required for self.on_plotButton_clicked()
# lock down filtmeth, car, sampfreq and shcorrect attribs:
#sort.filtmeth = sort.stream.filtmeth
#sort.car = sort.stream.car
#sort.sampfreq = sort.stream.sampfreq
#sort.shcorrect = sort.stream.shcorrect
self.ui.progressBar.setFormat("%d spikes" % sort.nspikes)
self.EnableSortWidgets(True)
sw = self.OpenWindow('Sort') # ensure it's open
if sort.nspikes > 0:
self.on_plotButton_clicked()
self.SPIKEWINDOWWIDTH = sort.probe.ncols * SPIKEWINDOWWIDTHPERCOLUMN
self.updateTitle()
self.updateRecentFiles(fullfname)
# start with all events in a single non-junk cluster 1:
oldclusters = []
sids = spikes['id']
nids = np.ones(nevents)
self.apply_clustering(oldclusters, sids, nids, verb='initial eventwaves split')
def OpenEventsFile(self, fname):
"""Open and import the data in an .events.zip file, containing spike times, channels,
and neuron ids. fname is assumed to be relative to self.eventspath. Spike waveforms
are extracted from the currently open stream"""
if self.hpstream is None:
raise RuntimeError("Need an open raw data stream before loading an events.zip "
"file")
self.DeleteSort() # delete any existing Sort
fullfname = os.path.join(self.eventspath, fname)
with open(fullfname, 'rb') as f:
d = dict(np.load(f)) # convert to an actual dict to use d.get() method
print('Done opening .events.zip file')
print('.events.zip file was %d bytes long' % f.tell())
spikets = d.get('spikets') # spike times, us
maxchans = d.get('maxchans') # maxchans
nids = d.get('nids') # neuron IDs
# check for mandatory fields:
if spikets is None:
raise ValueError('Missing spikets')
if maxchans is None:
raise ValueError('Missing maxchans')
if nids is None:
raise ValueError('Missing nids')
assert len(spikets) == len(maxchans) == len(nids)
nspikes = len(spikets)
# check that maxchans are a subset of enabled chans in stream:
umaxchans = np.unique(maxchans)
if not np.isin(umaxchans, self.hpstream.chans).all():
raise RuntimeError("maxchans in %r are not a subset of currently enabled stream "
"chans. Was the .events.zip file generated from a different "
"set of enabled channels?\n"
"maxchans: %s\n"
"enabled chans: %s\n"
% (fname, umaxchans, self.hpstream.chans))
# create sort:
print('Creating new sort')
sort = self.CreateNewSort() # create a new sort, with bound stream
# create detector and run Detector.predetect(), so that things initialize:
self.get_detector()
det = sort.detector
assert det.extractparamsondetect == True
self.init_extractor() # init the Extractor
det.predetect(logpath=self.eventspath)
# manually set detection results:
print('Allocating and filling spikes array')
spikes = np.zeros(nspikes, det.SPIKEDTYPE)
spikes['id'] = np.arange(nspikes)
spikes['t'] = spikets
spikes['t0'], spikes['t1'] = spikets+sort.tw[0], spikets+sort.tw[1]
spikes['chan'] = maxchans # one maxchan per spike
# convert inclnbhdi to inclnbhd, taking chan and returning inclchans instead of taking
# chani and returning inclchanis:
inclnbhd = {}
for chani, inclchanis in det.inclnbhdi.items():
chan = det.chans[chani]
inclchans = det.chans[inclchanis]
inclnbhd[chan] = inclchans
for s, maxchan in zip(spikes, maxchans):
inclchans = inclnbhd[maxchan]
nchans = len(inclchans)
s['nchans'] = nchans
s['chans'][:nchans] = inclchans
s['chani'], = np.where(inclchans == maxchan) # index into spike's chan list
# bind to self:
sort.spikes = spikes
det.nspikes = nspikes
# init wavedata:
print('Allocating wavedata array')
sort.wavedata = np.zeros((nspikes, det.maxnchansperspike, det.maxnt), dtype=np.int16)
# Linux has lazy physical memory allocation. See https://stackoverflow.com/a/27582592.
# This forces physical memory allocation, though strangely, doesn't seem to speed
# up loading of wavedata. It will fail immediately if physical memory can't be
# allocated, which is desirable:
sort.wavedata[:] = 0
print('wavedata.shape:', sort.wavedata.shape)
print('wavedata.nbytes: %.3f GiB' % (sort.wavedata.nbytes / 1024**3))
# "re"load spike wavedata based on imported events:
sort.reload_spikes(spikes['id'])
sort.update_usids() # required for self.on_plotButton_clicked()
# lock down filtmeth, car, sampfreq and shcorrect attribs:
sort.filtmeth = sort.stream.filtmeth
sort.car = sort.stream.car
sort.sampfreq = sort.stream.sampfreq
sort.shcorrect = sort.stream.shcorrect
self.ui.progressBar.setFormat("%d spikes" % sort.nspikes)
self.EnableSortWidgets(True)
sw = self.OpenWindow('Sort') # ensure it's open
if sort.nspikes > 0:
self.on_plotButton_clicked()
self.SPIKEWINDOWWIDTH = sort.probe.ncols * SPIKEWINDOWWIDTHPERCOLUMN
self.updateTitle()
self.updateRecentFiles(fullfname)
# set nids using apply_clustering():
oldclusters = []
sids = spikes['id']
self.apply_clustering(oldclusters, sids, nids, verb='initial .events.zip split')
# no longer valid, loaded nids may have had gaps that were removed by
# apply_clustering():
del nids
sort.init_spike_alignment()
# perform spatial localization on all spikes in sort:
nreject = sort.spatially_localize_spikes(sw)
# spatial localization is done, reset fit objects for clean jsonpickle:
sort.extractor.set_fit_objects()
print() # newline
preject = nreject / nspikes * 100
print('Rejected %d/%d spikes (%.1f %%), set as unclustered'
% (nreject, nspikes, preject))
# remove any empty neurons due to all their spikes being rejected:
nneurons, nnreject = len(sort.neurons), 0
for neuron in sort.neurons.values():
if len(neuron.sids) == 0:
sw.RemoveNeuron(neuron, update=False)
nnreject += 1
preject = nnreject / nneurons * 100
print('Removed %d/%d (%.1f %%) empty neurons'
% (nnreject, nneurons, preject))
self.UpdateClustersGUI()
# update mean cluster positions, so they can be sorted by y0:
for cluster in sort.clusters.values():
cluster.update_pos()
print('Done importing events from %r' % fullfname)
def convert_kilosort2npy2eventszip(self, path):
"""Read relevant Kilosort2 .npy results files in path, process them slightly,
and save them with standard spyke variable names to an ".events.zip" npz file.
Kilosort2 .npy results are assumed to correspond to currently open stream."""
s = self.hpstream
assert s != None
# build file names:
chansfname = os.path.join(path, 'channel_map.npy')
spiketisfname = os.path.join(path, 'spike_times.npy')
nidsfname = os.path.join(path, 'spike_clusters.npy')
templatesfname = os.path.join(path, 'templates.npy')
outputfname = os.path.join(path, s.fname + '.events.zip')
print('Converting Kilosort2 events to:\n%r' % outputfname)
# load relevant Kilosort2 .npy results files:
chanis = np.load(chansfname).ravel() # 0-based indices of chans that ks2 didn't ignore
# ensure that `chanis` are a subset of 0-based indices of chans enabled in the stream:
streamchanis = np.arange(s.nchans)
assert (np.isin(chanis, streamchanis)).all()
chans = s.chans[chanis] # dereference, chans that Kilosort2 didn't ignore
if len(chans) < s.nchans:
# Kilosort2 has ignored some chans that are enabled in the stream
ignoredchans = np.setdiff1d(s.chans, chans)
print('*** NOTE: Kilosort2 ignored channels %s because they have a spike rate\n'
' that is too low, yet these channels are currently enabled in\n'
' the open stream. Consider disabling those channels in the open\n'
' stream to save some space in the sort' % ignoredchans)
# spike times, sample point integers relative to start of .dat file:
spiketis = np.load(spiketisfname).ravel()
nids = np.load(nidsfname).ravel() # 0-based neuron IDs, one per spike
templates = np.load(templatesfname) # ntemplates, nt, nchans, Fortran contiguous
# reshape to ntemplates, nchans, nt by swapping axes (can't just assign new shape!):
templates = np.swapaxes(templates, 1, 2)
templates = np.ascontiguousarray(templates) # make C contiguous
ntemplates, nchans, nt = templates.shape
if nchans != len(chans):
raise RuntimeError("Number of chans in 'templates.npy' (%d) doesn't match "
"number of non-ignored chans in 'channel_map.npy' (%d)"
% (nchans, len(chans)))
# calculate spike times to nearest int64 us, assume Kilosort2 was run on
# raw uninterpolated data, and that gaps=True during the export, i.e. that
# gaps between streams in the data were excluded and not zero-padded:
print('Assuming that Kilosort2 was run on raw uninterpolated data, '
'and that gaps=True during the export (if any) to .dat')
rawts = []
rawtres = s.rawtres
if s.is_multi(): # MultiStream
streams = s.streams
else: # it's a single Stream
streams = [s]
tranges = s.tranges # exists for both Stream and MultiStream
# iterate over absolute time ranges of Streams relative to start of MultiStream:
for stream, trange in zip(streams, tranges):
nt = stream.f.nt # get nt from its lower level File object
t0, t1 = trange
# should be same as taking difference of end-inclusive tranges,
# dividing by rawtres, and adding 1:
streamnt = intround((t1 - t0)/rawtres) + 1 # end inclusive
assert nt == streamnt
streamrawts = np.linspace(t0, t0+(nt-1)*rawtres, nt) # end inclusive
rawts.append(streamrawts)
# pack raw timestamps into a single contiguous array,
# convert to nearest int64 us (as in SPIKEDTYPE):
rawts = intround(np.concatenate(rawts))
spikets = rawts[spiketis] # us
# shift Kilosort2 spike times:
print('Shifting Kilosort2 spike times by %g us for better positioning in sort window'
% KILOSORT2SHIFTCORRECT)
spikets = spikets + KILOSORT2SHIFTCORRECT
# find maxchan for each template: find max along time axis of each chan of each
# template, then find argmax along chan axis of each template:
templatemaxchanis = abs(templates).max(axis=2).argmax(axis=1) # one per template
# get dereferenced maxchan IDs:
templatemaxchans = chans[templatemaxchanis] # one per template
maxchans = templatemaxchans[nids] # one per spike
# check limits, convert maxchans to uint8:
assert maxchans.min() >= np.iinfo(np.uint8).min
assert maxchans.max() <= np.iinfo(np.uint8).max
maxchans = np.uint8(maxchans) # save space, use same dtype as in SPIKEDTYPE
# convert to 1-based neuron IDs, reserve 0 for unclustered spikes. Note that
# Kilosort2's 0-based neuron IDs might have gaps, i.e., they don't necessarily span
# the range 0..nneurons-1:
nids += 1
# check limits, convert nids to int16:
assert nids.min() >= np.iinfo(np.int16).min
assert nids.max() <= | np.iinfo(np.int16) | numpy.iinfo |
import argparse
import os
import numpy as np
from PIL import Image
import torch
from torch.autograd import Variable
import torchvision.transforms as transforms
#import torchvision.transforms as standard_transforms
#from sklearn.preprocessing import minmax_scale,StandardScaler
from skimage import img_as_ubyte
import torch.nn as nn
#from util import is_image_file, load_img, save_img
from skimage.io import imread, imsave
from skimage import io
from glob import glob
#import SimpleITK as sitk
#import nibabel as nib
from math import log10
import h5py
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
# Testing settings
parser = argparse.ArgumentParser(description='pix2pix-PyTorch-implementation')
parser.add_argument('--batchSize', type=int, default=4, help='training batch size')
parser.add_argument('--testBatchSize', type=int, default=1, help='testing batch size')
parser.add_argument('--nEpochs', type=int, default=200, help='number of epochs to train for')
parser.add_argument('--input_nc', type=int, default=16, help='input image channels')
parser.add_argument('--output_nc', type=int, default=1, help='output image channels')
parser.add_argument('--ngf', type=int, default=64, help='generator filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='discriminator filters in first conv layer')
parser.add_argument('--lr', type=float, default=0.0002, help='Learning Rate. Default=0.002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--threads', type=int, default=4, help='number of threads for data loader to use')
parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123')
parser.add_argument('--lamb', type=int, default=10, help='weight on L1 term in objective')
parser.add_argument('--dataset', default=True, help='DEEP-TFM-l1loss')
parser.add_argument('--model', type=str, default='checkpoint/DEEP-TFM-l1loss/netG_model_epoch_50.pth.tar', help='model file to use')
parser.add_argument('--cuda', default=True, help='use cuda')
opt = parser.parse_args(args=[])
max_im = 100
max_gt = 741
criterionMSE = nn.MSELoss()
img_dir = open('train.txt','r')
avg_mse = 0
avg_psnr = 0
h5_dir = '/n/holyscratch01/wadduwage_lab/uom_bme/ForwardModel_matlab/_cnn_synthTrData/03-Jun-2020/cells_tr_data_6sls_03-Jun-2020.h5'
for epochs in range(12,13):
my_model = '/n/holyscratch01/wadduwage_lab/uom_bme/2020_static/Data_02Apr2020/unetscse/depth_6/checkpoint/DEEP-TFM-lr-0.001/netG_model_epoch_' + str(epochs) + '.pth.tar'
netG = torch.load(my_model)
netG.eval()
p = 0
for line in img_dir:
print(line)
id_ = int(line)
with h5py.File(h5_dir, 'r') as db:
modalities = db['input'][id_]
GT_ = db['gt'][id_]
depth = modalities.shape[2]
predicted_im = np.zeros((160,160,1))
if np.min(np.array(GT_))==np.max(np.array(GT_)):
print('Yes')
GT = torch.from_numpy(np.divide(GT_,max_gt))
img = torch.from_numpy(np.divide(modalities,max_im)[None, :, :]).float()
netG = netG.cuda()
input = img.cuda()
out = netG(input)
print(out.max())
out = out.cpu()
out_img = out.data[0]
out_img = | np.squeeze(out_img) | numpy.squeeze |
# -*- coding: utf-8 -*-
##########################################################################
# pySAP - Copyright (C) CEA, 2017 - 2018
# Distributed under the terms of the CeCILL-B license, as published by
# the CEA-CNRS-INRIA. Refer to the LICENSE file or to
# http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html
# for details.
##########################################################################
# System import
import unittest
import numpy as np
from itertools import product
# Package import
from mri.operators import FFT, NonCartesianFFT, Stacked3DNFFT
from mri.operators.utils import convert_mask_to_locations, \
convert_locations_to_mask, normalize_frequency_locations, \
discard_frequency_outliers, get_stacks_fourier
import time
class TestAdjointOperatorFourierTransform(unittest.TestCase):
""" Test the adjoint operator of the Fourier in both for 2D and 3D.
"""
def setUp(self):
""" Set the number of iterations.
"""
self.N = 64
self.max_iter = 10
self.num_channels = [1, 2]
def test_normalize_frequency_locations_2D(self):
"""Test the output of the normalize frequency methods and check that it
is indeed within [-0.5; 0.5[
"""
for _ in range(10):
samples = np.random.randn(128*128, 2)
normalized_samples = normalize_frequency_locations(samples)
self.assertTrue((normalized_samples < 0.5).all() and
(normalized_samples >= -0.5).all())
print(" Test normalization function for 2D input passes")
def test_normalize_frequency_locations_3D(self):
"""Test the output of the normalize frequency methods and check that it
is indeed within [-0.5; 0.5[
"""
for _ in range(10):
samples = np.random.randn(128*128, 3)
normalized_samples = normalize_frequency_locations(samples)
self.assertTrue((normalized_samples < 0.5).all() and
(normalized_samples >= -0.5).all())
print(" Test normalization function for 3D input passes")
def test_discard_frequency_outliers_2D(self):
"""Test the output of the discard frequency methods, checking that
locations are within [-0.5; 0.5[ and that locations and samples are
similarly discarded.
"""
for _ in range(10):
kspace_loc = np.random.randn(128*128, 2)
kspace_data = np.random.randn(1, 128*128, 2)
reduced_loc, reduced_data = discard_frequency_outliers(kspace_loc,
kspace_data)
self.assertTrue((reduced_loc < 0.5).all() and
(reduced_loc >= -0.5).all())
self.assertEqual(reduced_loc.shape[0], reduced_data.shape[1])
print(" Test location discarding function for 2D input passes")
def test_discard_frequency_outliers_3D(self):
"""Test the output of the discard frequency methods, checking that
locations are within [-0.5; 0.5[ and that locations and samples are
similarly discarded.
"""
for _ in range(10):
kspace_loc = np.random.randn(128*128, 3)
kspace_data = np.random.randn(1, 128*128, 3)
reduced_loc, reduced_data = discard_frequency_outliers(kspace_loc,
kspace_data)
self.assertTrue((reduced_loc < 0.5).all() and
(reduced_loc >= -0.5).all())
self.assertEqual(reduced_loc.shape[0], reduced_data.shape[1])
print(" Test location discarding function for 3D input passes")
def test_sampling_converters(self):
"""Test the adjoint operator for the 2D non-Cartesian Fourier transform
"""
for i in range(self.max_iter):
print("Process test convert mask to samples test '{0}'...", i)
Nx = np.random.randint(8, 512)
Ny = np.random.randint(8, 512)
mask = np.random.randint(2, size=(Nx, Ny))
samples = convert_mask_to_locations(mask)
recovered_mask = convert_locations_to_mask(samples,
(Nx, Ny))
self.assertEqual(mask.all(), recovered_mask.all())
mismatch = 0. + (np.mean(
np.allclose(mask, recovered_mask)))
print(" mismatch = ", mismatch)
print(" Test convert mask to samples and it's adjoint passes for",
" the 2D cases")
def test_sampling_converters_3D(self):
"""Test the adjoint operator for the 3D non-Cartesian Fourier
transform
"""
for i in range(self.max_iter):
print("Process test convert mask to samples test '{0}'...", i)
Nx = np.random.randint(8, 512)
Ny = np.random.randint(8, 512)
Nz = np.random.randint(8, 512)
mask = | np.random.randint(2, size=(Nx, Ny, Nz)) | numpy.random.randint |
# -*- coding: utf-8 -*-
"""
@author: bokorn
"""
import numpy as np
import cv2
import torch
import torchvision.transforms as transforms
from se3_distributions.utils import to_np
def cropBBox(img, bbox, boarder_width = 10):
rows, cols = img.shape[:2]
x,y,w,h = bbox
y0 = min(max(y - boarder_width, 0), rows)
x0 = min(max(x - boarder_width, 0), cols)
y1 = min(max(y + h + boarder_width, 0), rows)
x1 = min(max(x + w + boarder_width, 0), cols)
img_crop = img[y0:y1,x0:x1]
return img_crop, (x0, y0)
def seg2Mask(segmentation, img_size):
mask = np.zeros(img_size[:2] + (1,), dtype=np.uint8)
polys = []
for seg in segmentation:
polys.append(np.reshape(seg,(-1,2)))
cv2.fillPoly(mask, polys, (1))
return mask
norm_mean = np.array([0.485, 0.456, 0.406])
#norm_std = np.array([0.229, 0.224, 0.225])
#normalize = transforms.Normalize(mean=norm_mean, std=norm_std)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
to_tensor = transforms.ToTensor()
vgg_mean = torch.tensor([102.9801, 115.9465, 122.7717])
def vggToTensor(img, mean = vgg_mean):
return (torch.tensor(img).float() - mean).permute([2,0,1])
def cropAndPad(img, padding_size = 0.1):
where = np.array(np.where(img[:,:,3]))
x1, y1 = np.amin(where, axis=1)
x2, y2 = np.amax(where, axis=1)
sub_img = img[x1:(x2+1), y1:(y2+1)]
pad_size = int(max(sub_img.shape[:2])*padding_size)
pad_img = cv2.copyMakeBorder(sub_img, pad_size, pad_size, pad_size, pad_size, cv2.BORDER_CONSTANT,value=0)
return pad_img
def unprocessImages(imgs,
norm_mean = np.array([0.485, 0.456, 0.406]),
norm_std = np.array([0.229, 0.224, 0.225])):
imgs = np.transpose(to_np(imgs), (0,2,3,1))
imgs = np.minimum(np.maximum(imgs*norm_std + norm_mean, 0.0), 1.0)*255
return imgs
def preprocessImages(imgs, img_size,
normalize_tensors = False,
background = None,
background_filenames = None,
crop_percent = None,
remove_mask = True,
vgg_normalize = False):
p_imgs = []
for image in imgs:
if(background is None and background_filenames is not None):
bg_idx = np.random.randint(0, len(background_filenames))
background = cv2.imread(background_filenames[bg_idx])
if (len(image.shape) == 2):
image = np.expand_dims(image, axis=2)
if(image.shape[2] == 4):
image = transparentOverlay(image, background, remove_mask=remove_mask)
if(crop_percent is not None):
image = cropAndResize(image, img_size, crop_percent)
else:
if(type(background) in [int, float]):
padColor = background
else:
padColor = 255.0
image = resizeAndPad(image, img_size, padColor=padColor)
image = image.astype(np.uint8)
if(normalize_tensors):
if(vgg_normalize):
if(remove_mask):
image = vggToTensor(image[:,:,:3])
else:
image = torch.cat([vggToTensor(image[:,:,:3]),
vggToTensor(image[:,:,3:], mean=0)])
else:
if(remove_mask):
image = normalize(to_tensor(image[:,:,:3]))
else:
image = torch.cat([normalize(to_tensor(image[:,:,:3])),
to_tensor(image[:,:,3:])])
p_imgs.append(image)
if(normalize_tensors):
p_imgs = torch.stack(p_imgs)
return p_imgs
def resizeAndPad(img, size, padColor=255.0):
h, w = img.shape[:2]
sh, sw = size
# interpolation method
if h > sh or w > sw: # shrinking image
interp = cv2.INTER_AREA
else: # stretching image
interp = cv2.INTER_CUBIC
# aspect ratio of image
aspect = w/h
# compute scaling and pad sizing
if aspect > 1: # horizontal image
new_w = sw
new_h = np.round(new_w/aspect).astype(int)
pad_vert = (sh-new_h)/2
pad_top, pad_bot = np.floor(pad_vert).astype(int), np.ceil(pad_vert).astype(int)
pad_left, pad_right = 0, 0
elif aspect < 1: # vertical image
new_h = sh
new_w = np.round(new_h*aspect).astype(int)
pad_horz = (sw-new_w)/2
pad_left, pad_right = np.floor(pad_horz).astype(int), np.ceil(pad_horz).astype(int)
pad_top, pad_bot = 0, 0
else: # square image
new_h, new_w = sh, sw
pad_left, pad_right, pad_top, pad_bot = 0, 0, 0, 0
# set pad color
if len(img.shape) is 3 and not isinstance(padColor, (list, tuple, np.ndarray)): # color image but only one color provided
padColor = [padColor]*3
# scale and pad
scaled_img = cv2.resize(img, (new_w, new_h), interpolation=interp)
scaled_img = cv2.copyMakeBorder(scaled_img, pad_top, pad_bot, pad_left, pad_right, borderType=cv2.BORDER_CONSTANT, value=padColor)
return scaled_img
def cropAndResize(img, size, crop_percent):
h, w = img.shape[:2]
sh, sw = size
ch = crop_percent*h
cw = crop_percent*w
if(ch/sh > cw/sw):
ch = cw*sh/sw
else:
cw = ch*sw/sh
ch = int(ch)
cw = int(cw)
r0 = int(h/2-ch/2)
r1 = r0 + ch
c0 = int(w/2-cw/2)
c1 = c0 + cw
cropped_img = img[r0:r1, c0:c1]
# interpolation method
if ch > sh or cw > sw: # shrinking image
interp = cv2.INTER_AREA
else: # stretching image
interp = cv2.INTER_CUBIC
scaled_img = cv2.resize(cropped_img, (sw, sh), interpolation=interp)
return scaled_img
def transparentOverlay(foreground, background=None, remove_mask = True, pos=(0,0),scale = 1):
"""
:param foreground: transparent Image (BGRA)
:param background: Input Color Background Image
:param pos: position where the image to be blit.
:param scale : scale factor of transparent image.
:return: Overlayed image
"""
if(scale != 1):
foreground = cv2.resize(foreground, None,fx=scale,fy=scale)
alpha = foreground[:,:,3:].astype(float)/255
if(background is None):
background = 255.0
if(type(background) in [int, float]):
img = alpha*foreground[:,:,:3] + background*(1.0-alpha)
if(not remove_mask):
img = np.concatenate([img, foreground[:,:,3:]], axis=2)
else:
h,w,_ = foreground.shape
rows,cols,_ = background.shape
y0,x0 = pos[0],pos[1]
y1 = min(y0+h, rows)
x1 = min(x0+w, cols)
img = background.copy()
img[y0:y1,x0:x1,:] = alpha*foreground[:,:,:3] + (1.0-alpha)*background[y0:y1,x0:x1,:]
if(not remove_mask):
img = np.concatenate([img, | np.zeros((rows,cols,1)) | numpy.zeros |
# this tells python to act as if though We are one folder up
import sys
sys.path.insert(0,'..')
import pandas as pd
import FixedEffectModelPyHDFE.api as FEM
from FixedEffectModelPyHDFE.DemeanDataframe import get_np_columns
#import FixedEffectModel.api as FEM
import numpy as np
from patsy import dmatrices
import statsmodels.formula.api as smf
import statsmodels.api as sm
from fastreg import linear
from datetime import datetime
import unittest
from math import isclose
NLS_WORK = "./../data/test_dropped_na.dta"
CEREAL = "./../data/cereal.dta"
AUTO = "./../data/auto_drop_na.dta"
TOLERANCE = 0.01
class FixedEffectsModelTestsVSfastreg(unittest.TestCase):
def setup(self, data_directory, target, regressors, absorb, cluster):
print(self._testMethodName)
print("target: ", target)
print("regressors: ", regressors)
print("absorb: ", absorb)
print("cluster: ", cluster)
df = pd.read_stata(data_directory)
df.reset_index(drop=True, inplace=True)
fem_start = datetime.now()
self.result = FEM.ols_high_d_category(df,
regressors,
target,
absorb,
cluster,
formula=None,
robust=False,
epsilon = 1e-8,
max_iter = 1e6)
fem_end = datetime.now()
print("FEM time taken: " + str(fem_end-fem_start))
self.result.summary()
print()
if absorb[0] == '0':
absorb=None
fastreg_start = datetime.now()
fastreg = linear.ols(y=target[0],
x=regressors,
absorb=absorb,
cluster=cluster,
data=df)
fastreg_end = datetime.now()
print(fastreg)
print("fastreg time taken: " + str(fastreg_end - fastreg_start))
print("\n\n\n\n\n")
#########################################################################
#########################################################################
def test_just_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts'],
cluster=[])
def test_no_absorb_cluster_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts'])
# comparing fvalue
def test_clustering_single_variable_no_absorb2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['race'])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 127593.72, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([.148934, .0065111, .0113615]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([27.75, 2.32, 66.61]), atol=TOLERANCE)))
def test_clustering_single_variable_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts'])
assert(np.isclose(self.result.fvalue, 10230.63, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.048274, .0044294, .0052923]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([85.60, 3.42, 143.00]), atol=TOLERANCE)))
def test_clustering_two_variables_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts', 'sixty_clusts'])
assert(np.isclose(self.result.fvalue, 12347.24, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0518019, .0048228, .00492]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([79.77, 3.14, 153.82]), atol=TOLERANCE)))
def test_clustering_many_variables_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode'])
assert(np.isclose(self.result.fvalue, 4664.62, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0551555, .0080815, .007881]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([74.92, 1.87, 96.03]), atol=TOLERANCE)))
def test_just_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode'],
cluster=[])
assert(np.isclose(self.result.fvalue, 3891.51, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0047052, .0096448]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([6.48, 88.22]), atol=TOLERANCE)))
def test_cluster_1_absorb_1_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['sixty_clusts'])
assert(np.isclose(self.result.fvalue, 9884.24, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.004654, .0055812]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.18, 135.54]), atol=TOLERANCE)))
def test_cluster_1_absorb_1_2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['fifty_clusts'])
assert(np.isclose(self.result.fvalue, 10100.50, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0044538, .005324]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.33, 142.09]), atol=TOLERANCE)))
def test_cluster_many_absorb_1_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['fifty_clusts', 'sixty_clusts', 'idcode', 'year'])
assert(np.isclose(self.result.fvalue, 86.89, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0189465, .0574001]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([0.78, 13.18]), atol=TOLERANCE)))
def test_cluster_3_absorb_3_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'ind_code'],
cluster=['idcode', 'year', 'grade'])
assert(np.isclose(self.result.fvalue, 113.61, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0168144, .0501467]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([0.93, 15.03]), atol=TOLERANCE)))
def test_cluster_3_absorb_3_2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'ind_code'],
cluster=['fifty_clusts', 'sixty_clusts', 'ind_code'])
assert(np.isclose(self.result.fvalue, 2525.34, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.004604, .0106474]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.41, 70.78]), atol=TOLERANCE)))
def test_cluster_4_absorb_4_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'ind_code', 'idcode'],
cluster=['fifty_clusts', 'sixty_clusts', 'ind_code', 'idcode'])
assert(np.isclose(self.result.fvalue, 3191.76, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.00498, .010914]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([6.17, 77.85]), atol=TOLERANCE)))
#########################################################################
#########################################################################
# Boston auto dataset
def test_pure_regression_boston_auto_dataset(self):
self.setup(AUTO,
target=['price'],
regressors=['weight', 'length', 'turn'],
absorb=['0'],
cluster=[])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 14.78, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([4667.441, 1.143408, 40.13139, 128.8455]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.19, 4.67, -1.75, -2.28]), atol=TOLERANCE)))
def test_clustering_one_variable_no_absorb_auto_dataset(self):
self.setup(AUTO,
target=['price'],
regressors=['weight', 'length', 'turn'],
absorb=['0'],
cluster=['rep78'])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 17.17, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([6132.17, .8258151, 24.15393, 191.4521]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([2.42, 6.46, -2.91, -1.53]), atol=TOLERANCE)))
def test_clustering_two_variables_no_absorb_auto_dataset(self):
self.setup(AUTO,
target=['price'],
regressors=['weight', 'length', 'turn'],
absorb=['0'],
cluster=['rep78', 'headroom'])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 27.03, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([6037.897, 1.210828, 44.88812, 183.8683]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([2.46, 4.41, -1.57, -1.60]), atol=TOLERANCE)))
def test_clustering_two_variables_no_absorb_auto_dataset(self):
self.setup(AUTO,
target=['price'],
regressors=['weight', 'length', 'turn'],
absorb=['0'],
cluster=['rep78', 'headroom'])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 27.03, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([6037.897, 1.210828, 44.88812, 183.8683]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([2.46, 4.41, -1.57, -1.60]), atol=TOLERANCE)))
def test_clustering_3_absorb_3_variables_auto_dataset(self):
self.setup(AUTO,
target=['price'],
regressors=['weight', 'length'],
absorb=['rep78', 'headroom', 'turn'],
cluster=['rep78', 'headroom', 'turn'])
# comparing fvalue
assert( | np.isclose(self.result.fvalue, 21.46, atol=TOLERANCE) | numpy.isclose |
#!/usr/bin/env python
# coding: utf-8
"""
run consensus analysis to identify overall pattern
analysis method developed by <NAME> and <NAME>
"""
import os
import sys
import glob
import numpy
import nibabel
import nilearn.plotting
import nilearn.input_data
import matplotlib.pyplot as plt
from statsmodels.stats.multitest import multipletests
import scipy.stats
from narps import Narps, hypnums, hypotheses
from narps import NarpsDirs # noqa, flake8 issue
from utils import log_to_file
def t_corr(y, res_mean=None, res_var=None, Q=None):
"""
perform a one-sample t-test on correlated data
y = data (n observations X n vars)
res_mean = Common mean over voxels and results
res_var = Common variance over voxels and results
Q = "known" correlation across observations
- (use empirical correlation based on maps)
"""
npts = y.shape[0]
X = numpy.ones((npts, 1))
if res_mean is None:
res_mean = 0
if res_var is None:
res_var = 1
if Q is None:
Q = numpy.eye(npts)
VarMean = res_var * X.T.dot(Q).dot(X) / npts**2
# T = mean(y,0)/s-hat-2
# use diag to get s_hat2 for each variable
T = ( | numpy.mean(y, 0) | numpy.mean |
#%%
from kdg import kdf
from kdg.utils import get_ece
import openml
from kdg.utils import sparse_parity
import multiprocessing
from joblib import Parallel, delayed
import numpy as np
import pandas as pd
from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier as rf
from sklearn.metrics import cohen_kappa_score
import os
from kdg.utils import generate_gaussian_parity, pdf, hellinger
# %%
reps = 100
n_estimators = 500
sample_size = np.logspace(
np.log10(10),
np.log10(5000),
num=10,
endpoint=True,
dtype=int
)
#%%
def experiment_kdf(sample, n_estimators=500):
X, y = sparse_parity(sample, p_star=2, p=2)
X_test, y_test = sparse_parity(1000, p_star=2, p=2)
p = np.arange(-1,1,step=0.006)
q = np.arange(-1,1,step=0.006)
xx, yy = np.meshgrid(p,q)
grid_samples = np.concatenate(
(
xx.reshape(-1,1),
yy.reshape(-1,1)
),
axis=1
)
model_kdf = kdf(kwargs={'n_estimators':n_estimators})
model_kdf.fit(X, y)
proba_kdf = model_kdf.predict_proba(grid_samples)
true_pdf_class1 = np.array([np.sum(grid_samples>0, axis=1)%2]).reshape(-1,1)
true_pdf = np.concatenate([1-true_pdf_class1, true_pdf_class1], axis = 1)
error = 1 - np.mean(model_kdf.predict(X_test)==y_test)
return hellinger(proba_kdf, true_pdf), error
def experiment_rf(sample, n_estimators=500):
X, y = sparse_parity(sample, p_star=2, p=2)
X_test, y_test = sparse_parity(1000, p_star=2, p=2)
p = np.arange(-1,1,step=0.006)
q = np.arange(-1,1,step=0.006)
xx, yy = np.meshgrid(p,q)
grid_samples = np.concatenate(
(
xx.reshape(-1,1),
yy.reshape(-1,1)
),
axis=1
)
model_rf = rf(n_estimators=n_estimators).fit(X, y)
proba_rf = model_rf.predict_proba(grid_samples)
true_pdf_class1 = np.array([np.sum(grid_samples>0, axis=1)%2]).reshape(-1,1)
true_pdf = | np.concatenate([1-true_pdf_class1, true_pdf_class1], axis = 1) | numpy.concatenate |
# coding: utf-8
"""
This module implements utility functions to compute several geometric
properties.
"""
import numpy as np
__author__ = "<NAME>"
__copyright__ = "University of Pau and Pays Adour"
__email__ = "<EMAIL>"
__all__ = ["center_of_mass", "circum_center", "get_plane", "get_dihedral"]
def center_of_mass(coords, masses=None):
r"""Compute the center of mass of the points at coordinates `coords` with
masses `masses`.
Args:
coords (np.ndarray): (N, 3) matrix of the points in :math:`\mathbb{R}^3`
masses (np.ndarray): vector of length N with the masses
Returns:
The center of mass as a vector in :math:`\mathbb{R}^3`
"""
# check coord array
try:
coords = np.array(coords, dtype=np.float64)
coords = coords.reshape(coords.size // 3, 3)
except ValueError:
print("coords = ", coords)
raise ValueError("Cannot convert coords in a numpy array of floats"
" with a shape (N, 3).")
# check masses
if masses is None:
masses = np.ones(coords.shape[0])
else:
try:
masses = np.array(masses, dtype=np.float64)
masses = masses.reshape(coords.shape[0])
except ValueError:
print("masses = ", masses)
raise ValueError("Cannot convert masses in a numpy array of "
"floats with length coords.shape[0].")
if masses is None:
masses = np.ones(coords.shape[0])
return np.sum(coords * masses[:, np.newaxis], axis=0) / masses.sum()
def circum_center(coords):
r"""Compute the coordinates of the center of the circumscribed circle from
three points A, B and C in :math:`\mathbb{R}^3`.
Args:
coords (ndarray): (3x3) cartesian coordinates of points A, B and C.
Returns
The coordinates of the center of the cicumscribed circle
"""
try:
coords = np.array(coords, dtype=np.float64).reshape(3, 3)
except ValueError:
print("coords = ", coords)
raise ValueError("Cannot convert coords in a numpy array of floats"
" with a shape (3, 3).")
# get coords of poins A, B and C
a, b, c = coords
# normal vector to ABC plane
ABvAC = np.cross(b - a, c - a)
# matrix M and vector B
M = np.array([b - a, c - a, ABvAC])
B = np.array([np.dot(b - a, (b + a) / 2),
np.dot(c - a, (c + a) / 2),
np.dot(ABvAC, a)])
# solve linear system and return coordinates
return np.dot(np.linalg.inv(M), B)
def get_plane(coords, masses=None):
r"""Given a set of N points in :math:`\mathbb{R}^3`, compute an orthonormal
basis of vectors, the first two belonging to the plane and the third one
being normal to the plane. In the particular case where N equal 3, there is
an exact definition of the plane as the three points define an unique plan.
If N = 3, use a gram-schmidt orthonormalization to compute the vectors. If
N > 3, the orthonormal basis is obtained from SVD.
Args:
coords (np.ndarray): (N, 3) matrix of the points in :math:`\mathbb{R}^3`
masses (np.ndarray): vector of length N with the masses
Returns:
Returns the orthonormal basis (vecx, vecy, n_a), vector n_a being
normal to the plane.
"""
# check coord array
try:
coords = | np.array(coords, dtype=np.float64) | numpy.array |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# =========================================================================== #
# Project : ML Studio #
# Version : 0.1.0 #
# File : test_data_management.py #
# Python : 3.8.2 #
# -------------------------------------------------------------------------- #
# Author : <NAME> #
# Company : DecisionScients #
# Email : <EMAIL> #
# URL : https://github.com/decisionscients/MLStudio #
# -------------------------------------------------------------------------- #
# Created : Monday, May 11th 2020, 8:33:38 pm #
# Last Modified : Monday, May 11th 2020, 8:33:38 pm #
# Modified By : <NAME> (<EMAIL>) #
# -------------------------------------------------------------------------- #
# License : BSD #
# Copyright (c) 2020 DecisionScients #
# =========================================================================== #
"""Tests data management utilities."""
#%%
import numpy as np
import pytest
from pytest import mark
from scipy.sparse import csr_matrix
from sklearn.datasets import make_classification
from mlstudio.utils.data_manager import MinMaxScaler, DataSplitter, GradientScaler
from mlstudio.utils.data_manager import DataShuffler
from mlstudio.utils.data_manager import AddBiasTerm, ZeroBiasTerm, unpack_parameters
from mlstudio.utils.data_manager import LabelEncoder, OneHotLabelEncoder
# -------------------------------------------------------------------------- #
# TEST ADD BIAS TERM TRANSFORMER #
# -------------------------------------------------------------------------- #
@mark.utils
@mark.data_manager
@mark.add_bias_term
def test_add_bias_term_np():
X = np.random.rand(5,5)
xformer = AddBiasTerm()
X = xformer.fit_transform(X)
assert X.shape[1] == 6, "Bias term not added."
assert np.all(X[:,0] == 1.0), "Column zero not ones."
# Inverse transform
X = xformer.inverse_transform(X)
assert X.shape[1] == 5, "Bias term not removed."
@mark.utils
@mark.data_manager
@mark.add_bias_term
def test_add_bias_term_csr():
X = np.random.rand(5,5)
X = csr_matrix(X)
xformer = AddBiasTerm()
X = xformer.fit_transform(X)
assert X.shape[1] == 6, "Bias term not added."
assert np.all(X.toarray()[:,0] == 1.0), "Column zero not ones."
# Inverse transform
X = xformer.inverse_transform(X)
assert X.shape[1] == 5, "Bias term not removed."
# -------------------------------------------------------------------------- #
# TEST ZERO BIAS TERM TRANSFORMER #
# -------------------------------------------------------------------------- #
@mark.utils
@mark.data_manager
@mark.zero_bias_term
def test_zero_bias_term():
X = | np.random.rand(5) | numpy.random.rand |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
import numpy as np
import os
import datetime
import sys
import astropy
from astropy import wcs
from astropy import units
from astropy import convolution
import astropy.convolution as ac # convolve, convolve_fft, Moffat2DKernel, Gaussian2DKernel
import astropy.io.fits as afits
from astropy.coordinates import SkyCoord
from astropy import units as u
from astropy.modeling.models import Sersic1D
from astropy.modeling.models import Sersic2D
from astropy.nddata import Cutout2D
import subprocess
import glob
import shutil
import scipy.ndimage
import scipy.special
import scipy.integrate as integrate
import tdose_utilities as tu
import tdose_model_FoV as tmf
from scipy.stats import multivariate_normal
import matplotlib as mpl
from matplotlib.colors import LogNorm
mpl.use('Agg') # prevent pyplot from opening window; enables closing ssh session with detached screen running TDOSE
import matplotlib.pylab as plt
import pdb
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def load_setup(setupfile='./tdose_setup_template.txt',verbose=True):
"""
Return dictionary with the setups found in 'setupfile'
(both TDOSE run and modification setup files can be loaded)
--- INPUT ---
setupfile The name of the txt file containing the TDOSE setup to load
Template for relevant setup files can be generated with
tdose_load_setup.generate_setup_template() or
tdose_load_setup.generate_setup_template_modify()
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
setup = tu.load_setup(setupfile='./tdose_setup_template.txt')
setup_modify = tu.load_setup(setupfile='./tdose_setup_template_modify.txt')
"""
if verbose: print(' --- tdose_utilities.load_setup() --- ')
#------------------------------------------------------------------------------------------------------
if verbose: print((' - Loading setup for TDOSE in '+setupfile))
setup_arr = np.genfromtxt(setupfile,dtype=None,names=None)
setup_dic = {}
for ii in np.arange(int(setup_arr.shape[0])):
paramname = setup_arr[ii,0].astype(str)
if paramname in list(setup_dic.keys()):
sys.exit(' Setup parameter "'+paramname+'" appears multiple times in the setup file\n '+
setupfile)
try:
val = float(setup_arr[ii,1].astype(str))
except:
val = setup_arr[ii,1].astype(str)
# - - - treatment of individual paramters - - -
if ('extension' in paramname) & (type(val) == float): val = int(val)
if (type(val) == str) or (type(val) == np.str_):
if val.lower() == 'none':
val = None
elif val.lower() == 'true':
val = True
elif val.lower() == 'false':
val = False
if (type(val) == str) or (type(val) == np.str_):
dirs = ['sources_to_extract','model_cube_layers','cutout_sizes']
if (paramname in dirs) & ('/' in str(val)):
val = val
setup_dic[paramname] = val
continue
lists = ['modify_sources_list','nondetections','model_cube_layers','sources_to_extract','plot_1Dspec_xrange','plot_1Dspec_yrange',
'plot_S2Nspec_xrange','plot_S2Nspec_yrange','cutout_sizes','aperture_size']
if (paramname in lists) & (val != 'all') & (val.lower() != 'none') & (val[0] == '['):
val = [float(vv) for vv in val.split('[')[-1].split(']')[0].split(',')]
setup_dic[paramname] = val
continue
if ('psf_sigma' in paramname):
if '/' in val:
sigmasplit = val.split('/')
if len(sigmasplit) != 2:
pass
else:
val = float(sigmasplit[0]) / float(sigmasplit[1])
setup_dic[paramname] = val
continue
setup_dic[paramname] = val
if verbose: print(' - Checking main keys are available; if not, adding them with None values')
checkkeys = ['nondetections','gauss_guess']
for ck in checkkeys:
if ck not in list(setup_dic.keys()):
setup_dic[ck] = None
if verbose: print(' - Returning dictionary containing setup parameters')
return setup_dic
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def generate_setup_template(outputfile='./tdose_setup_template.txt',clobber=False,verbose=True):
"""
Generate setup text file template
--- INPUT ---
outputfile The name of the output which will contain the TDOSE setup template
clobber Overwrite files if they exist
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
filename = './tdose_setup_template_new.txt'
tu.generate_setup_template(outputfile=filename,clobber=False)
setup = tu.load_setup(setupfile=filename)
"""
if verbose: print(' --- tdose_utilities.generate_setup_template() --- ')
#------------------------------------------------------------------------------------------------------
if os.path.isfile(outputfile) & (clobber == False):
sys.exit(' ---> Outputfile already exists and clobber=False ')
else:
if verbose: print((' - Will store setup template in '+outputfile))
if os.path.isfile(outputfile) & (clobber == True):
if verbose: print(' - Output already exists but clobber=True so overwriting it ')
setuptemplate = """
#-------------------------------------------------START OF TDOSE SETUP-------------------------------------------------
#
# Template for Three Dimensional Optimal Spectral Extracion (TDOSE, http://github.com/kasperschmidt/TDOSE) setup file
# Template was generated with tdose_utilities.generate_setup_template() on %s
# Setup file can be run with tdose.perform_extraction() or tdose.perform_extractions_in_parallel()
#
# - - - - - - - - - - - - - - - - - - - - - - - - - - DATA INPUT - - - - - - - - - - - - - - - - - - - - - - - - - - -
data_cube /path/datacube.fits # Path and name of fits file containing data cube to extract spectra from
cube_extension DATA_DCBGC # Name or number of fits extension containing data cube
variance_cube /path/variancecube.fits # Path and name of fits file containing variance cube to use for extraction
variance_extension VARCUBE # Name or number of fits extension containing noise cube
ref_image /path/referenceimage.fits # Path and name of fits file containing image to use as reference when creating source model
img_extension 0 # Name or number of fits extension containing reference image
wht_image /path/refimage_wht.fits # Path and name of fits file containing weight map of reference image (only cut out; useful for galfit modeling)
wht_extension 0 # Name or number of fits extension containing weight map
source_catalog /path/tdose_sourcecat.fits # Path and name of source catalog containing sources to extract spectra for
sourcecat_IDcol id # Column containing source IDs in source_catalog
sourcecat_xposcol x_image # Column containing x pixel position in source_catalog
sourcecat_yposcol y_image # Column containing y pixel position in source_catalog
sourcecat_racol ra # Column containing ra position in source_catalog (used to position cutouts if model_cutouts = True)
sourcecat_deccol dec # Column containing dec position in source_catalog (used to position cutouts if model_cutouts = True)
sourcecat_fluxcol fluxscale # Column containing a flux scale used for the modeling if no gauss_guess is provided
sourcecat_parentIDcol None # Column containing parent source IDs grouping source IDs into objects. Set to None to used id column
# corresponding to assigning each source to a single object
# if not None the parentid is used to group source models when storing 1D spectra. All models keep sources separate.
# - - - - - - - - - - - - - - - - - - - - - - - - OUTPUT DIRECTORIES - - - - - - - - - - - - - - - - - - - - - - - - -
models_directory /path/tdose_models/ # Directory to store the modeling output from TDOSE in
cutout_directory /path/tdose_cutouts/ # Directory to store image and cube cutouts in if model_cutouts=True
spec1D_directory /path/tdose_spectra/ # Output directory to store spectra in.
# - - - - - - - - - - - - - - - - - - - - - - - - - - CUTOUT SETUP - - - - - - - - - - - - - - - - - - - - - - - - - -
model_cutouts True # Perform modeling and spectral extraction on small cutouts of the cube and images to reduce run-time
cutout_sizes /path/tdose_setup_cutoutsizes.txt # Size of cutouts [ra,dec] in arcsec around each source to model.
# To use source-specific cutouts provide ascii file containing ID xsize[arcsec] and ysize[arcsec].
# - - - - - - - - - - - - - - - - - - - - - - - - SOURCE MODEL SETUP - - - - - - - - - - - - - - - - - - - - - - - - -
model_image_ext tdose_modelimage # Name extension of fits file containing reference image model. To ignored use None
model_param_reg tdose_modelimage_ds9 # Name extension of DS9 region file for reference image model. To ignored use None
model_image_cube_ext tdose_modelimage_cubeWCS # Name extension of fits file containing model image after conversion to cube WCS. To ignored use None.
source_model gauss # The source model to use for sources. Choices are:
# gauss Each source is modeled as a multivariate gaussian using the source_catalog input as starting point
# galfit The sources in the field-of-view are defined based on GALFIT header parameters; if all components are # Not enabled yet
# Gaussians an analytical convolution is performed. Otherwise numerical convolution is used. # Not enabled yet
# modelimg A model image exists, e.g., obtained with Galfit, in modelimg_directory. To disentangle/de-blend individual
# components, a model cube and parent_ids should be provided (see comments to modelimg_directory). If a model
# image is provded, TDOSE assumes it to represent the 1 object in the field-of-view.
# If the model image is not found a gaussian model of the FoV (source_model=gauss) is performed instead.
# aperture A simple aperture extraction on the datacubes is performed, i.e., no modeling of sources.
# - - - - - - - - - - - - - - - - - - - - - - - - GAUSS MODEL SETUP - - - - - - - - - - - - - - - - - - - - - - - - - -
gauss_guess /path/sextractoroutput.fits # To base initial guess of gaussian parameters on a SExtractor output provide SExtractor output fits file here
# If gauss_initguess=None the positions and flux scale provided in source_catalog will be used.
gauss_guess_idcol ID # Column of IDs in gauss_guess SExtractor file
gauss_guess_racol RA # Column of RAs in gauss_guess SExtractor file
gauss_guess_deccol DEC # Column of Decs in gauss_guess SExtractor file
gauss_guess_aimg A_IMAGE # Column of major axis in gauss_guess SExtractor file
gauss_guess_bimg B_IMAGE # Column of minor axis in gauss_guess SExtractor file
gauss_guess_angle THETA_IMAGE # Column of angle in gauss_guess SExtractor file
gauss_guess_fluxscale ACS_F814W_FLUX # Column of flux in gauss_guess SExtractor file to us for scaling
gauss_guess_fluxfactor 3 # Factor to apply to flux scale in initial Gauss parameter guess
gauss_guess_Nsigma 1 # Number of sigmas to include in initial Gauss parameter guess
max_centroid_shift 10 # The maximum shift of the centroid of each source allowed in the gaussian modeling. Given in pixels to
# set bounds ypix_centroid +/- max_centroid_shift and xpix_centroid +/- max_centroid_shift
# If none, no bounds are put on the centroid position of the sources.
# - - - - - - - - - - - - - - - - - - - - - - - - GALFIT MODEL SETUP - - - - - - - - - - - - - - - - - - - - - - - - -
galfit_directory /path/models_galfit/ # If source_model = galfit provide path to directory containing galfit models.
# TDOSE will look for galfit_*ref_image*_output.fits (incl. the cutout string if model_cutouts=True)
# If no model is found a source_model=gauss run on the object will be performed instead.
galfit_model_extension 2 # Fits extension containing galfit model with model parameters of each source in header.
# - - - - - - - - - - - - - - - - - - - - - - - - MODEL IMAGE SETUP - - - - - - - - - - - - - - - - - - - - - - - - -
modelimg_directory /path/models_cutouts/ # If source_model = modelimg provide the path to directory containing the individual source models
# TDOSE will look for model_*ref_image*.fits (incl. the cutout string if model_cutouts=True). If no model is found the object is skipped
# If a model image named model_*ref_image*_cube.fits is found, TDOSE assumes this file contains a cube with the individual model
# components isolated in individual layers of the cube. TDOSE will use this model instead of one generated within TDOSE.
# Parent IDs in the source catalog can be used to define what components belong to the object of interest (i.e., to extract a spectrum for)
# GALFIT models can be converted to TDOSE-suited model-cubes with tdose_utilities.galfit_convertmodel2cube()
# A TDOSE-suited model-cube can be build from individual 2D models with tdose_utilities.build_modelcube_from_modelimages()
modelimg_extension 0 # Fits extension containing model
# - - - - - - - - - - - - - - - - - - - - - - - - APERTURE MODEL SETUP - - - - - - - - - - - - - - - - - - - - - - - -
aperture_size 1.5 # Radius of apertures (float or list) to use given in arc seconds. For longer list of
# object-specific apertures provide ascii file containing ID and aperturesize[arcsec].
# - - - - - - - - - - - - - - - - - - - - - - - - - PSF MODEL SETUP - - - - - - - - - - - - - - - - - - - - - - - - - -
psf_type gauss # Select PSF model to build. Choices are:
# gauss Model the PSF as a symmetric Gaussian with sigma = FWHM/2.35482
# kernel_gauss An astropy.convolution.Gaussian2DKernel() used for numerical convolution # Not enabled yet
# kernel_moffat An astropy.convolution.Moffat2DKernel() used for numerical convolution # Not enabled yet
psf_FWHM_evolve linear # Evolution of the FWHM from blue to red end of data cube. Choices are:
# linear FWHM wavelength dependence described as FWHM(lambda) = p0[''] + p1[''/A] * (lambda - p2[A])
psf_FWHMp0 0.940 # p0 parameter to use when determining wavelength dependence of PSF
psf_FWHMp1 -3.182e-5 # p1 parameter to use when determining wavelength dependence of PSF
psf_FWHMp2 7050 # p2 parameter to use when determining wavelength dependence of PSF
psf_savecube True # To save fits file containing the PSF cube set psf_savecube = True
# This cube is used for the "source_model = modelimg" numerical PSF convolution
# - - - - - - - - - - - - - - - - - - - - - - - - - - - NON_DETECTIONS - - - - - - - - - - - - - - - - - - - - - - - -
nondetections None # List of IDs of sources in source_catalog that are not detected in the reference image or which
# have low flux levels in which cases the Gaussian modeling is likely to be inaccurate.
# For long list of objects provide ascii file containing ids.
# If source_model = gauss then sources will be extracted by replacing models within ignore_radius
# with a single point source in the reference image model, which will then
# be convolved with the PSF specified when extracting, as usual.
# If source_model = modelimg TDOSE assumes that the input model already represents the desired extraction model
# of the non-detection. I.e., if the object should be extracted as a (PSF
# convolved) point source, the model image should include a point source.
# Hence, for source_model = modelimg the keyword nondetections is ignored.
ignore_radius 0.3 # Models within a radius of ignore_radius [arcsec] of the non-detection location will be replaced with a
# point source for extractions with source_model = gauss before convolving with the PSF and adjusting the flux
# leves in each model cube layer.
# - - - - - - - - - - - - - - - - - - - - - - - - - CUBE MODEL SETUP - - - - - - - - - - - - - - - - - - - - - - - - -
model_cube_layers all # Layers of data cube to model [both end layers included]. If 'all' the full cube will be modeled.
# To model source-specific layers provide ascii file containing ID layerlow and layerhigh.
# If layerlow=all and layerhigh=all all layers will be modeled for particular source
model_cube_optimizer matrix # The optimizer to use when matching flux levels in cube layers:
# matrix Optimize fluxes analytically using matrix algebra to minimize chi squared of
# the equation set comparing model and data in each layer.
# nnls Optimize fluxes using Scipy's non-negative least squares solver restricting
# flux scales to >= 0 (assuming source models are non-negative too).
# curvefit Optimize fluxes numerically using least square fitting from scipy.optimize.curve_fit().
# Only enabled for analytic convolution of Gaussian source models.
# lstsq Optimize fluxes analytically using scipy.linalg.lstsq().
model_cube_ext tdose_modelcube # Name extension of fits file containing model data cube.
residual_cube_ext tdose_modelcube_residual # Name extension of fits file containing residual between model data cube and data. To ignored use None.
source_model_cube_ext tdose_source_modelcube # Name extension of fits file containing source model cube (used to modify data cube).
# - - - - - - - - - - - - - - - - - - - - - - - - SPECTRAL EXTRACTION - - - - - - - - - - - - - - - - - - - - - - - - -
sources_to_extract [8685,9262,10195,29743] # Sources in source_catalog to extract 1D spectra for.
# If sourcecat_parentIDcol is not None all associated spectra are included in stored object spectra
# If set to 'all', 1D spectra for all sources in source_catalog is produced (without grouping according to parents).
# For long list of objects provide ascii file containing containing ids (here parent grouping will be performed)
spec1D_name tdose_spectrum # Name extension to use for extracted 1D spectra
# - - - - - - - - - - - - - - - - - - - - - - - - - - - PLOTTING - - - - - - - - - - - - - - - - - - - - - - - - - - -
plot_generate True # Indicate whether to generate plots or not
plot_1Dspec_ext fluxplot # Name extension of pdf file containing plot of 1D spectrum
plot_1Dspec_xrange [4800,9300] # Range of x-axes (wavelength) for plot of 1D spectra
plot_1Dspec_yrange [-100,1500] # Range of y-axes (flux) for plot of 1D spectra
plot_1Dspec_shownoise True # Indicate whether to show the noise envelope in plot or not
plot_S2Nspec_ext S2Nplot # Name extension of pdf file containing plot of S/N spectrum
plot_S2Nspec_xrange [4800,9300] # Range of x-axes (wavelength) for plot of S2N spectra
plot_S2Nspec_yrange [-1,15] # Range of y-axes (S2N) for plot of S2N spectra
#--------------------------------------------------END OF TDOSE SETUP--------------------------------------------------
""" % (tu.get_now_string())
fout = open(outputfile,'w')
fout.write(setuptemplate)
fout.close()
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def generate_setup_template_modify(outputfile='./tdose_setup_template_modify.txt',clobber=False,verbose=True):
"""
Generate setup text file template for modifying data cubes
--- INPUT ---
outputfile The name of the output which will contain the TDOSE setup template
clobber Overwrite files if they exist
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
filename = './tdose_setup_template_modify_new.txt'
tu.generate_setup_template_modify(outputfile=filename,clobber=True)
setup = tu.load_setup(setupfile=filename)
"""
if verbose: print(' --- tdose_utilities.generate_setup_template_modify() --- ')
#------------------------------------------------------------------------------------------------------
if os.path.isfile(outputfile) & (clobber == False):
sys.exit(' ---> Outputfile already exists and clobber=False ')
else:
if verbose: print((' - Will store setup template in '+outputfile))
if os.path.isfile(outputfile) & (clobber == True):
if verbose: print(' - Output already exists but clobber=True so overwriting it ')
setuptemplate = """
#---------------------------------------------START OF TDOSE MODIFY SETUP---------------------------------------------
#
# Template for TDOSE (http://github.com/kasperschmidt/TDOSE) setup file for modifying data cubes.
# Generated with tdose_utilities.generate_setup_template_modify() on %s
# Cube modifications are performed with tdose_modify_cube.perform_modification(setupfile=setup_file_modify)
#
# - - - - - - - - - - - - - - - - - - - - - - - - - MODIFYING CUBE - - - - - - - - - - - - - - - - - - - - - - - - - -
data_cube /path/datacube.fits # Path and name of fits file containing data cube to modify
cube_extension DATA_DCBGC # Name or number of fits extension containing data cube
source_model_cube /path/tdose_source_modelcube.fits # Path and name of fits file containing source model cube
source_extension DATA_DCBGC # Name or number of fits extension containing source model cube
modified_cube_dir /path/to/output/ # Path of output directory to store modified cube in
modified_cube tdose_modified_datacube # Name extension of file containing modified data cube.
modify_sources_list [1,2,5] # List of IDs of sources to remove from data cube using source model cube.
# Corresponds to indices of source model cube so expects [0,Nmodelcomp-1]
# For long list of IDs provide path and name of file containing IDs (only)
sources_action remove # Indicate how to modify the data cube. Chose between:
# 'remove' Sources in modify_sources_list are removed from data cube
# 'keep' All sources except the sources in modify_sources_list are removed from data cube
#----------------------------------------------END OF TDOSE MODIFY SETUP----------------------------------------------
""" % (tu.get_now_string())
fout = open(outputfile,'w')
fout.write(setuptemplate)
fout.close()
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def duplicate_setup_template(outputdirectory,infofile,infohdr=2,infofmt="S250",
loopcols=['data_cube','cube_extension'],
namebase='MUSEWide_tdose_setup',clobber=False,verbose=True):
"""
Take a setup template generated with generate_setup_template() and duplicate it filling
it with information from a provided infofile, e.g., fill update PSF info, field names,
image names, source lists, etc.
--- INPUT ---
outputdirectory Directory to store setup templates in
infofile File containing info to replace values in template setup with
infohdr Number of header (comment) lines in infofile before the expected list of column names
infofmt Format of columns in infofile (format for all columns are needed; not just loopcols)
If just a single format string is provided, this will be used for all columns.
loopcols The name of the columns in the loopcols to perform replacements for. The columns should
correspond to keywords in the TDOSE setup file. The first column of the file should be
named 'setupname' and will be used to name the duplicated setup file (appending it to namebase).
if 'all', all columns in infofile will be attempted replaced.
namebase Name base to use for the setup templates
clobber Overwrite files if they exist
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
outputdir = '/Users/kschmidt/work/TDOSE/muse_tdose_setups/'
infofile = outputdir+'musewide_infofile.txt'
tu.duplicate_setup_template(outputdir,infofile,namebase='MUSEWide_tdose_setup',clobber=False,loopcols=['setupname','data_cube','cube_extension'])
"""
if verbose: print(' --- tdose_utilities.duplicate_setup_template_MUSEWide() --- ')
filename = outputdirectory+namebase+'.txt'
tu.generate_setup_template(outputfile=filename,clobber=clobber)
if ',' not in infofmt: #if a single common format is given count columns in infofile
copen = np.genfromtxt(infofile,skip_header=infohdr,names=True)
Ncol = len(copen[0])
infofmt = ','.join([infofmt]*Ncol)
copen = np.genfromtxt(infofile,skip_header=infohdr,names=True,dtype=infofmt)
if loopcols == 'all':
if verbose: print(' - loopcals="all" so will attempt replacement of all columns in infofile')
loopcols = np.asarray(copen.dtype.names).tolist()
Nfiles = len(copen[loopcols[0]])
if verbose: print((' - Performing replacements and generating the '+str(Nfiles)+' TDOSE setup templates ' \
'described in \n '+infofile))
for setupnumber in np.arange(int(Nfiles)):
replacements = copen[setupnumber]
newsetup = outputdirectory+namebase+'_'+replacements['setupname'].astype(str)+'.txt'
if os.path.isfile(newsetup) & (clobber == False):
if verbose: print(' - File '+newsetup+' already exists and clobber = False so moving on to next duplication ')
continue
else:
fout = open(newsetup,'w')
with open(filename,'r') as fsetup:
for setupline in fsetup:
if setupline.startswith('#'):
if "Generated with tdose_utilities.generate_setup_template()" in setupline:
nowstring = tu.get_now_string()
fout.write("# Generated with tdose_utilities.duplicate_setup_template() on "+nowstring+' \n')
else:
fout.write(setupline)
elif setupline == '\n':
fout.write(setupline)
else:
vals = setupline.split()
if vals[0] in loopcols:
replaceline = setupline.replace(' '+vals[1]+' ',' '+copen[vals[0]][setupnumber].astype(str)+' ')
else:
replaceline = setupline.replace(' '+vals[1]+' ',' NO_REPLACEMENT ')
newline = replaceline.split('#')[0]+'#'+\
'#'.join(setupline.split('#')[1:]) # don't include comment replacements
fout.write(newline)
fout.close()
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def build_2D_cov_matrix(sigmax,sigmay,angle,verbose=True):
"""
Build a covariance matrix for a 2D multivariate Gaussian
--- INPUT ---
sigmax Standard deviation of the x-compoent of the multivariate Gaussian
sigmay Standard deviation of the y-compoent of the multivariate Gaussian
angle Angle to rotate matrix by in degrees (clockwise) to populate covariance cross terms
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
covmatrix = tu.build_2D_cov_matrix(3,1,35)
"""
if verbose: print((' - Build 2D covariance matrix with varinaces (x,y)=('+str(sigmax)+','+str(sigmay)+\
') and then rotated '+str(angle)+' degrees'))
cov_orig = np.zeros([2,2])
cov_orig[0,0] = sigmay**2.0
cov_orig[1,1] = sigmax**2.0
angle_rad = (180.0-angle) * np.pi/180.0 # The (90-angle) makes sure the same convention as DS9 is used
c, s = np.cos(angle_rad), np.sin(angle_rad)
rotmatrix = np.matrix([[c, -s], [s, c]])
cov_rot = np.dot(np.dot(rotmatrix,cov_orig),np.transpose(rotmatrix)) # performing rot * cov * rot^T
return cov_rot
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def normalize_2D_cov_matrix(covmatrix,verbose=True):
"""
Calculate the normalization foctor for a multivariate gaussian from it's covariance matrix
However, not that gaussian returned by tu.gen_2Dgauss() is normalized for scale=1
--- INPUT ---
covmatrix covariance matrix to normaliz
verbose Toggle verbosity
"""
detcov = np.linalg.det(covmatrix)
normfac = 1.0 / (2.0 * np.pi * np.sqrt(detcov) )
return normfac
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def gen_noisy_cube(cube,type='poisson',gauss_std=0.5,verbose=True):
"""
Generate noisy cube based on input cube.
--- INPUT ---
cube Data cube to be smoothed
type Type of noise to generate
poisson Generates poissonian (integer) noise
gauss Generates gaussian noise for a gaussian with standard deviation gauss_std=0.5
gauss_std Standard deviation of noise if type='gauss'
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
datacube = np.ones(([3,3,3])); datacube[0,1,1]=5; datacube[1,1,1]=6; datacube[2,1,1]=8
cube_with_noise = tu.gen_noisy_cube(datacube,type='gauss',gauss_std='0.5')
"""
if verbose: print((' - Generating "'+str(type)+'" noise on data cube'))
if type == 'poisson':
cube_with_noise = np.random.poisson(lam=cube, size=None)
elif type == 'gauss':
cube_with_noise = cube + np.random.normal(loc=np.zeros(cube.shape),scale=gauss_std, size=None)
else:
sys.exit(' ---> type="'+type+'" is not valid in call to mock_cube_sources.generate_cube_noise() ')
return cube_with_noise
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def gen_psfed_cube(cube,type='gauss',type_param=[0.5,1.0],use_fftconvolution=False,verbose=True):
"""
Smooth cube with a 2D kernel provided by 'type', i.e., applying a model PSF smoothing to cube
--- INPUT ---
cube Data cube to be smoothed
type Type of smoothing kernel to apply
gauss Use 2D gaussian smoothing kernel
type_param expected: [stdev,(stdev_wave_scale)]
moffat Use a 2D moffat profile to represent the PSF
type_param expected: [gamma,alpha,(gamma_wave_scale,alpha_wave_scale)]
NB: If *wave_scale inputs are provided a list of scales to apply at each wavelength layer
(z-direction) of data cube is expected, hence, adding a wavelength dependence to the kernels.
type_param List of parameters for the smoothing kernel.
For expected paramters see notes in description of "type" keyword above.
use_fftconvolution Perform convolution in Foruire space with FFT
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
datacube = np.ones(([3,3,3])); datacube[0,1,1]=5; datacube[1,1,1]=6; datacube[2,1,1]=8
cube_smoothed = tu.gen_psfed_cube(datacube,type='gauss',type_param=[10.0,[1.1,1.3,1.5]])
--- EXAMPLE OF USE ---
"""
if verbose: print((' - Applying a '+type+' PSF to data cube'))
Nparam = len(type_param)
Nlayers = cube.shape[0]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if type == 'gauss':
if Nparam == 1:
if verbose: print(' No wavelength dependence; duplicating kernel for all layers')
kernel = ac.Gaussian2DKernel(type_param[0])
kernels = [kernel]*Nlayers
elif Nparam == 2:
if verbose: print(' Wavelength dependence; looping over layers to generate kernels')
if Nlayers != len(type_param[1]):
sys.exit(' ---> The number of wavelength scalings provided ('+str(len(type_param[1]))+
') is different from the number of layers in cube ('+str(Nlayers)+')')
kernels = []
for ll in np.arange(int(Nlayers)):
kernel = ac.Gaussian2DKernel(type_param[0]*type_param[1][ll])
kernels.append(kernel)
else:
sys.exit(' ---> Invalid number of paramters provided ('+str(Nparam)+')')
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
elif type == 'moffat':
if Nparam == 2:
if verbose: print(' No wavelength dependence; duplicating kernel for all layers')
kernel = ac.Moffat2DKernel(type_param[0],type_param[1])
kernels = [kernel]*Nlayers
elif Nparam == 4:
if verbose: print(' Wavelength dependence; looping over layers to generate kernels')
if (Nlayers != len(type_param[2])) or (Nlayers != len(type_param[3])):
sys.exit(' ---> The number of wavelength scalings provided ('+str(len(type_param[2]))+
' and '+str(len(type_param[3]))+
') are different from the number of layers in cube ('+str(Nlayers)+')')
kernels = []
for ll in np.arange(int(Nlayers)):
kernel = ac.Moffat2DKernel(type_param[0]*type_param[2][ll],type_param[1]*type_param[3][ll])
kernels.append(kernel)
else:
sys.exit(' ---> Invalid number of paramters provided ('+str(Nparam)+')')
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
else:
sys.exit(' ---> type="'+type+'" is not valid in call to mock_cube_sources.gen_smoothed_cube() ')
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if verbose: print((' - Applying convolution kernel ('+type+') to each wavelength layer '))
cube_psfed = tu.perform_2Dconvolution(cube,kernels,use_fftconvolution=use_fftconvolution,verbose=True)
return cube_psfed
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def perform_2Dconvolution(cube,kernels,use_fftconvolution=False,verbose=True):
"""
Perform 2D convolution in data cube layer by layer
--- INPUT ---
cube Data cube to convolve
kernels List of (astropy) kernels to apply on each (z/wavelengt)layer of the cube
use_fftconvolution To convolve in FFT space set this keyword to True
verbose Toggle verbosity
--- EXAMPLE OF USE ---
# see tdose_utilities.gen_psfed_cube()
"""
csh = cube.shape
cube_convolved = np.zeros(csh)
for zz in np.arange(int(csh[0])): # looping over wavelength layers of cube
layer = cube[zz,:,:]
if use_fftconvolution:
layer_convolved = ac.convolve_fft(layer, kernels[zz], boundary='fill')
else:
layer_convolved = ac.convolve(layer, kernels[zz], boundary='fill')
cube_convolved[zz,:,:] = layer_convolved
return cube_convolved
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def gen_aperture(imgsize,ypos,xpos,radius,pixval=1,showaperture=False,verbose=True):
"""
Generating an aperture image
--- INPUT ---
imgsize The dimensions of the array to return. Expects [y-size,x-size].
The aperture will be positioned in the center of a (+/-x-size/2., +/-y-size/2) sized array
ypos Pixel position in the y direction
xpos Pixel position in the x direction
radius Radius of aperture in pixels
showaperture Display image of generated aperture
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
apertureimg = tu.gen_aperture([20,40],10,5,10,showaperture=True)
apertureimg = tu.gen_aperture([2000,4000],900,1700,150,showaperture=True)
"""
if verbose: print(' - Generating aperture in image (2D array)')
y , x = np.ogrid[-ypos+1.:imgsize[0]-ypos+1., -xpos+1.:imgsize[1]-xpos+1.] # +1s make sure pixel indication starts at pixel 1,1
mask = x*x + y*y <= radius**2.
aperture = np.zeros(imgsize)
if verbose: print((' - Assigning pixel value '+str(pixval)+' to aperture'))
aperture[mask] = pixval
if showaperture:
if verbose: print(' - Displaying resulting image of aperture (added background noise)')
noisimg = np.random.normal(0,pixval/5.,imgsize)
noisimg[mask] = pixval
plt.imshow(noisimg,interpolation='none')
plt.grid()
plt.title('Generated aperture')
plt.show()
plt.ion()
return aperture
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def gen_2Dgauss(size,cov,scale,method='scipy',show2Dgauss=False,savefits=False,verbose=True):
"""
Generating a 2D gaussian with specified parameters
--- INPUT ---
size The dimensions of the array to return. Expects [ysize,xsize].
The 2D gauss will be positioned in the center of the array
cov Covariance matrix of gaussian, i.e., variances and rotation
Can be build with cov = build_2D_cov_matrix(stdx,stdy,angle)
scale Scaling the 2D gaussian. By default scale = 1 returns normalized 2D Gaussian.
I.e., np.trapz(np.trapz(gauss2D,axis=0),axis=0) = 1
method Method to use for generating 2D gaussian:
'scipy' Using the class multivariate_normal from the scipy.stats library
'matrix' Use direct matrix expression for PDF of 2D gaussian (slow!)
show2Dgauss Save plot of generated 2D gaussian
savefits Save generated profile to fits file
verbose Toggler verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
covmatrix = tu.build_2D_cov_matrix(4,1,5)
gauss2Dimg = tu.gen_2Dgauss([20,40],covmatrix,5,show2Dgauss=True)
gauss2Dimg = tu.gen_2Dgauss([9,9],covmatrix,1,show2Dgauss=True)
sigmax = 3.2
sigmay = 1.5
covmatrix = tu.build_2D_cov_matrix(sigmax,sigmay,0)
scale = 1 # returns normalized gaussian
Nsigwidth = 15
gauss2DimgNorm = tu.gen_2Dgauss([sigmay*Nsigwidth,sigmax*Nsigwidth],covmatrix,scale,show2Dgauss=True,savefits=True)
covmatrix = tu.build_2D_cov_matrix(4,2,45)
scale = 1 # returns normalized gaussian
gauss2DimgNorm = tu.gen_2Dgauss([33,33],covmatrix,scale,show2Dgauss=True,savefits=True)
"""
if verbose: print(' - Generating multivariate_normal object for generating 2D gauss using ')
if method == 'scipy':
if verbose: print(' scipy.stats.multivariate_normal.pdf() ')
mvn = multivariate_normal([0, 0], cov)
if verbose: print(' - Setting up grid to populate with 2D gauss PDF')
#x, y = np.mgrid[-np.ceil(size[0]/2.):np.floor(size[0]/2.):1.0, -np.ceil(size[1]/2.):np.floor(size[1]/2.):1.0] #LT170707
x, y = np.mgrid[-np.floor(size[0]/2.):np.ceil(size[0]/2.):1.0, -np.floor(size[1]/2.):np.ceil(size[1]/2.):1.0]
pos = np.zeros(x.shape + (2,))
pos[:, :, 0] = x; pos[:, :, 1] = y
gauss2D = mvn.pdf(pos)
elif method == 'matrix':
if verbose: print(' loop over matrix expression ')
gauss2D = np.zeros([np.int(np.ceil(size[0])),np.int(np.ceil(size[1]))])
mean = np.array([np.floor(size[0]/2.),np.floor(size[1]/2.)])
norm = 1/np.linalg.det(np.sqrt(cov))/2.0/np.pi
for xpix in np.arange(size[1]):
for ypix in np.arange(size[0]):
coordMmean = np.array([int(ypix),int(xpix)]) - mean
MTXexpr = np.dot(np.dot(np.transpose(coordMmean),np.linalg.inv(cov)),coordMmean)
gauss2D[int(ypix),int(xpix)] = norm * np.exp(-0.5 * MTXexpr)
if float(size[0]/2.) - float(int(size[0]/2.)) == 0.0:
ypos = np.asarray(size[0])/2.0-1.0
else:
ypos = np.floor(np.asarray(size[0])/2.0)
if float(size[1]/2.) - float(int(size[1]/2.)) == 0.0:
xpos = np.asarray(size[1])/2.0-1.0
else:
xpos = np.floor(np.asarray(size[1])/2.0)
gauss2D = tu.shift_2Dprofile(gauss2D,[ypos,xpos],showprofiles=False,origin=0)
if verbose: print((' - Scaling 2D gaussian by a factor '+str(scale)))
gauss2D = gauss2D*scale
if show2Dgauss:
savename = './Generated2Dgauss.pdf'
if verbose: print((' - Saving resulting image of 2D gaussian to '+savename))
plt.clf()
centerdot = gauss2D*0.0
center = [int(gauss2D.shape[0]/2.),int(gauss2D.shape[1]/2.)]
centerdot[center[1],center[0]] = 2.0*np.max(gauss2D)
print((' - Center of gaussian (pixelized - marked in plot):'+str(center)))
print((' - Center of gaussian (subpixel) :'+str([ypos,xpos])))
plt.imshow(gauss2D-centerdot,interpolation=None,origin='lower')
plt.colorbar()
plt.title('Generated 2D Gauss')
plt.savefig(savename)
plt.clf()
if savefits:
fitsname = './Generated2Dgauss.fits'
hduimg = afits.PrimaryHDU(gauss2D)
hdus = [hduimg]
hdulist = afits.HDUList(hdus) # turn header into to hdulist
hdulist.writeto(fitsname,overwrite=True) # write fits file
if verbose: print((' - Saved image of shifted profile to '+fitsname))
return gauss2D
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def gen_2Dsersic(size,parameters,normalize=False,show2Dsersic=False,savefits=False,verbose=True):
"""
Generating a 2D sersic with specified parameters using astropy's generator
--- INPUT ---
size The dimensions of the array to return. Expects [ysize,xsize].
The 2D gauss will be positioned in the center of the array
parameters List of the sersic parameters.
Expects [amplitude,effective radius, Sersic index,ellipticity,rotation angle]
The amplitude is the central surface brightness within the effective radius (Ftot/2 is within r_eff)
The rotation angle should be in degrees, counterclockwise from the positive x-axis.
normalize Normalize the profile so sum(profile img) = 1.
show2Dsersic Save plot of generated 2D Sersic
savefits Save generated profile to fits file
verbose Toggler verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
size = [30,40]
size = [31,41]
parameters = [1,6.7,1.7,1.0-0.67,17.76-90]
sersic2D = tu.gen_2Dsersic(size,parameters,show2Dsersic=True,savefits=True)
size = [30,30]
size = [31,31]
parameters = [1,5,1.7,0.5,45]
sersic2D = tu.gen_2Dsersic(size,parameters,show2Dsersic=True,savefits=True)
"""
x, y = np.meshgrid(np.arange(size[1]), np.arange(size[0]))
if float(size[0]/2.) - float(int(size[0]/2.)) == 0.0:
ypos = np.asarray(size[0])/2.0-0.5
else:
ypos = np.floor(np.asarray(size[0])/2.0)
if float(size[1]/2.) - float(int(size[1]/2.)) == 0.0:
xpos = np.asarray(size[1])/2.0-0.5
else:
xpos = np.floor(np.asarray(size[1])/2.0)
model = Sersic2D(amplitude=parameters[0], r_eff=parameters[1], n=parameters[2], ellip=parameters[3],
theta=parameters[4]*np.pi/180., x_0=xpos, y_0=ypos)
sersic2D = model(x, y)
if normalize:
sersic2D = sersic2D / np.sum(sersic2D)
if show2Dsersic:
plt.clf()
savename = './Generated2Dsersic.pdf'
if verbose: print((' - Displaying resulting image of 2D sersic in '+savename))
centerdot = sersic2D*0.0
center = [int(sersic2D.shape[0]/2.),int(sersic2D.shape[1]/2.)]
# centerdot[center[1],center[0]] = 2.0*np.max(sersic2D)
print((' - Center of Sersic (pixelized - marked in plot): '+str(center)))
plt.imshow(sersic2D,interpolation=None,origin='lower')
plt.colorbar()
plt.title('Generated 2D Sersic')
plt.savefig(savename)
plt.clf()
if savefits:
fitsname = './Generated2Dsersic.fits'
hduimg = afits.PrimaryHDU(sersic2D)
hdus = [hduimg]
hdulist = afits.HDUList(hdus) # turn header into to hdulist
hdulist.writeto(fitsname,overwrite=True) # write fits file
if verbose: print((' - Saved image of shifted profile to '+fitsname))
return sersic2D
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_2DsersicIeff(value,reff,sersicindex,axisratio,boxiness=0.0,returnFtot=False):
"""
Get the surface brightness value at the effective radius of a 2D sersic profile (given GALFIT Sersic parameters).
Ieff is calculated using ewuations (4) and (5) in Peng et al. (2010), AJ 139:2097.
This Ieff is what is referred to as 'amplitude' in astropy.modeling.models.Sersic2D
used in tdose_utilities.gen_2Dsersic()
--- INPUT ---
value If returnFtot=False "value" corresponds to Ftot of the profile (total flux for profile integrated
til r=infty) and Ieff will be returned.
If instead returnFtot=True "value" should provide Ieff so Ftot can be returned
reff Effective radius
sersicindex Sersic index of profile
axisratio Ratio between the minor and major axis (0<axisratio<1)
boxiness The boxiness of the profile
returnFtot If Ftot is not known, but Ieff is, set returnFtot=True to return Ftot instead (providing Ieff to "value")
--- EXAMPLE OF USE ---
Ieff = 1.0
reff = 25.0
sersicindex = 4.0
axisratio = 1.0
Ftot_calc = tu.get_2DsersicIeff(Ieff,reff,sersicindex,axisratio,returnFtot=True)
Ieff_calc = tu.get_2DsersicIeff(Ftot_calc,reff,sersicindex,axisratio)
size = 1000
x,y = np.meshgrid(np.arange(size), np.arange(size))
mod = Sersic2D(amplitude = Ieff, r_eff = reff, n=sersicindex, x_0=size/2.0, y_0=size/2.0, ellip=1-axisratio, theta=-1)
img = mod(x, y)
hducube = afits.PrimaryHDU(img)
hdus = [hducube]
hdulist = afits.HDUList(hdus)
hdulist.writeto('/Volumes/DATABCKUP2/TDOSEextractions/models_cutouts/model_sersic_spherical.fits',clobber=True)
"""
gam2n = scipy.special.gamma(2.0*sersicindex)
kappa = scipy.special.gammaincinv(2.0*sersicindex,0.5)
Rfct = np.pi * (boxiness + 2.) / (4. * scipy.special.beta(1./(boxiness+2.),1.+1./(boxiness+2.)) )
factor = 2.0 * np.pi * reff**2.0 * np.exp(kappa) * sersicindex * kappa**(-2*sersicindex) * gam2n * axisratio / Rfct
if returnFtot:
Ftot = value * factor
return Ftot
else:
Ieff = value / factor
return Ieff
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def shift_2Dprofile(profile,position,padvalue=0.0,showprofiles=False,origin=1,splineorder=3,savefits=False,verbose=True):
"""
Shift 2D profile to given position in array by rolling it in x and y.
Can move by sub-pixel amount using interpolation
--- INPUT ---
profile profile to shift
position position to move center of image (profile) to: [ypos,xpos]
padvalue the values to padd the images with when shifting profile
origin The orging of the position values. If 0-based pixels postions the
center calculation is updated to refelect this.
showprofiles Save plot of profile when shifted?
splineorder Order of spline interpolation to use when shifting
savefits Save a fitsfile of the shifted profile
verbose Toggle verbosity
--- EXAMPLE OF USE ---
profile = np.ones([35,35])
profile[17,17] = 5.0
fitsname = './Shifted2Dprofile_initial.fits'
hduimg = afits.PrimaryHDU(profile)
hdus = [hduimg]
hdulist = afits.HDUList(hdus)
hdulist.writeto(fitsname,clobber=True)
profile_shifted = tu.shift_2Dprofile(profile,[20.5,20.5],padvalue=0.0,showprofiles=False,origin=1,splineorder=3,savefits=True)
"""
profile_dim = profile.shape
yposition = np.asarray(position[0])
xposition = np.asarray(position[1])
if origin == 1:
yposition = yposition - 1.0
xposition = xposition - 1.0
ycenter_img = profile_dim[0]/2.-0.5 # sub-pixel center to use as reference when estimating shift
xcenter_img = profile_dim[1]/2.-0.5 # sub-pixel center to use as reference when estimating shift
yshift = np.float(yposition)-ycenter_img
xshift = np.float(xposition)-xcenter_img
profile_shifted = scipy.ndimage.interpolation.shift(profile, [yshift,xshift], output=None, order=splineorder,
mode='nearest', cval=0.0, prefilter=True)
if showprofiles:
plt.clf()
savename = './Shifted2Dprofile.pdf'
vmaxval = np.max(profile_shifted)
plt.imshow(profile_shifted,interpolation=None,origin='lower') # ,vmin=-vmaxval, vmax=vmaxval
plt.colorbar()
plt.title('Positioned Source')
plt.savefig(savename)
plt.clf()
if verbose: print((' - Saved image of shifted profile to '+savename))
if savefits:
fitsname = './Shifted2Dprofile.fits'
hduimg = afits.PrimaryHDU(profile_shifted)
hdus = [hduimg]
hdulist = afits.HDUList(hdus) # turn header into to hdulist
hdulist.writeto(fitsname,overwrite=True) # write fits file
if verbose: print((' - Saved image of shifted profile to '+fitsname))
return profile_shifted
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def roll_2Dprofile(profile,position,padvalue=0.0,showprofiles=False):
"""
Move 2D profile to given position in array by rolling it in x and y.
Note that the roll does not handle sub-pixel moves.
tu.shift_2Dprofile() does this using interpolation
--- INPUT ---
profile profile to shift
position position to move center of image (profile) to: [ypos,xpos]
padvalue the values to padd the images with when shifting profile
showprofiles Show profile when shifted?
--- EXAMPLE OF USE ---
tu.roll_2Dprofile(gauss2D,)
"""
profile_dim = profile.shape
yroll = np.int(np.round(position[0]-profile_dim[0]/2.))
xroll = np.int(np.round(position[1]-profile_dim[1]/2.))
profile_shifted = np.roll(np.roll(profile,yroll,axis=0),xroll,axis=1)
if showprofiles:
vmaxval = np.max(profile_shifted)
plt.imshow(profile_shifted,interpolation='none',vmin=-vmaxval, vmax=vmaxval)
plt.title('Positioned Source')
plt.show()
if yroll < 0:
profile_shifted[yroll:,:] = padvalue
else:
profile_shifted[:yroll,:] = padvalue
if xroll < 0:
profile_shifted[:,xroll:] = padvalue
else:
profile_shifted[:,:xroll] = padvalue
if showprofiles:
plt.imshow(profile_shifted,interpolation='none',vmin=-vmaxval, vmax=vmaxval)
plt.title('Positioned Source with 0s inserted')
plt.show()
return profile_shifted
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_now_string(withseconds=False):
"""
Retruning a string containing a formated version of the current data and time
--- INPUNT ---
withseconds To include seconds in the outputted string set this keyword to True
"""
if withseconds:
nowstr = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
else:
nowstr = datetime.datetime.now().strftime("%Y-%m-%d %H:%M")
return nowstr
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def gen_gridcomponents(imgsize):
"""
Generate grid compoents, i.e. x and y indecese for a given image size
--- INPUT ---
imgsize size of image to generate grid points for (y,x)
"""
x = np.linspace(0, imgsize[1]-1, imgsize[1])
y = np.linspace(0, imgsize[0]-1, imgsize[0])
x,y = np.meshgrid(x, y)
return x,y
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def analytic_convolution_gaussian(mu1,covar1,mu2,covar2):
"""
The analytic vconvolution of two Gaussians is simply the sum of the two mean vectors
and the two convariance matrixes
--- INPUT ---
mu1 The mean of the first gaussian
covar1 The covariance matrix of of the first gaussian
mu2 The mean of the second gaussian
covar2 The covariance matrix of of the second gaussian
"""
muconv = mu1+mu2
covarconv = covar1+covar2
return muconv, covarconv
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def numerical_convolution_image(imgarray,kerneltype,saveimg=False,clobber=False,imgmask=None,fill_value=0.0,
norm_kernel=False,convolveFFT=False,use_scipy_conv=False,verbose=True):
"""
Perform numerical convolution on numpy array (image)
--- INPUT ---
imgarray numpy array containing image to convolve
kerneltype Provide either a numpy array containing the kernel or an astropy kernel
to use for the convolution. E.g.,
astropy.convolution.Moffat2DKernel()
astropy.convolution.Gaussian2DKernel()
saveimg Save image of convolved imgarray
clobber Overwrite existing files?
imgmask Mask of image array to apply during convolution
fill_value Fill value to use in convolution
norm_kernel To normalize the convolution kernel set this keyword to True
convolveFFT To convolve the image in fourier space set convolveFFT=True
use_scipy_conv Whenever the kernel and imgarray has odd dimensions, default is to use the
Astropy convolution where NaNs are treated with interpolation. To force a
scipy.ndimage convolution set use_scipy_conv=True (this is the convolution
used if any of the kernel (and imgarray) dimensions are even).
verbose Toggle verbosity
"""
if (type(kerneltype) is np.ndarray):
kernel = kerneltype
kernelstr = 'numpy array'
else:
kernel = kerneltype
kernelstr = 'astropy Guass/Moffat'
if verbose: print((' - Convolving image with a '+kernelstr+' kernel using astropy convolution routines'))
if (np.float(imgarray.shape[0]/2.0)-np.int(imgarray.shape[0]/2.0) == 0) or \
(np.float(imgarray.shape[0]/2.0)-np.int(imgarray.shape[0]/2.0) == 0) or \
(np.float(kernel.shape[0]/2.0)-np.int(kernel.shape[0]/2.0) == 0) or \
(np.float(kernel.shape[1]/2.0)-np.int(kernel.shape[1]/2.0) == 0) or \
use_scipy_conv:
if verbose: print(' - Convolving using scipy.ndimage.filters.convolve() as at least one dimension of kernel or image is even; ' \
'no interpolation over NaN values')
if norm_kernel & (np.sum(kernel) != 1.0):
kernel = kernel/np.sum(kernel)
# shift to sub-pixel center for even dimensions
intpixcen = [kernel.shape[0]/2.0-0.5,kernel.shape[1]/2.0-0.5]
kernel = tu.shift_2Dprofile(kernel,intpixcen,showprofiles=False,origin=0)
img_conv = scipy.ndimage.filters.convolve(imgarray,kernel,cval=fill_value,origin=0)
else:
if (kernel.shape[0] < imgarray.shape[0]) or (kernel.shape[1] < imgarray.shape[1]):
sys.exit(' ---> Astropy convolution requires kernel to have same size as image (but at least one size is smaller)')
if (kernel.shape[0] > imgarray.shape[0]) or (kernel.shape[1] > imgarray.shape[1]):
if verbose: print(' - Astropy convolution requires kernel to have same size as image (but it is larger); ')
if verbose: print(' Extracting center of kernel to use for convolution')
kernel_use = tu.get_kernelcenter(imgarray.shape,kernel,useMaxAsCenter=True,verbose=False)
else:
kernel_use = kernel
if convolveFFT:
if verbose: print(' - Convolving using astropy.convolution.convolve_fft(); interpolation over NaN values')
img_conv = convolution.convolve_fft(imgarray, kernel_use, boundary='fill',
fill_value=fill_value,normalize_kernel=norm_kernel, mask=imgmask,
crop=True, return_fft=False, fft_pad=None,
psf_pad=None, interpolate_nan=False, quiet=False,
ignore_edge_zeros=False, min_wt=0.0)
else:
if verbose: print(' - Convolving using astropy.convolution.convolve(); interpolation over NaN values')
img_conv = convolution.convolve(imgarray, kernel_use, boundary='fill',
fill_value=fill_value, normalize_kernel=norm_kernel, mask=imgmask)
if saveimg:
hdulist = afits.PrimaryHDU(data=img_conv)
hdulist.writeto(saveimg,overwrite=clobber)
return img_conv
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_kernelcenter(shape,kernel,useMaxAsCenter=False,verbose=True):
"""
Cutting out kernel center (with a given shape).
Used to ensure that kernels have the right size for numerical convolution where they are required to have
the same shape as the image to be convolved.
NB! Assumes that the kernel is _larger_ than the image. In the other case, e.g.,
add zeros around kernel to grow it's size
--- INFO ---
shape Shape of center of kernel to cut out
kernel Kernel to extract central region from
useMaxAsCenter The default is to extract kernel around center of kjernelshape. To use the maximum value
of the kernel to define the extraction center set useMaxAsCenter=True
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import tdose_utilities as tu
img = np.ones([61,61])
kernel = np.ones([121,121])
kernel[60,60] = 10.0
kcenter = tu.get_kernelcenter(img.shape,kernel,useMaxAsCenter=True)
img = np.ones([40,30])
kernel = np.ones([190,190])
kernel[60,60] = 10.0
kcenter = tu.get_kernelcenter(img.shape,kernel,useMaxAsCenter=True)
"""
if useMaxAsCenter:
cenpix = np.where(kernel == np.max(kernel))
if len(cenpix[0]) > 1:
print((' WARNING: '+str(len(cenpix[0]))+' pixels with value max(Kernel). Using the first as center'))
xcen = cenpix[1][0]
ycen = cenpix[0][0]
else:
xcen = np.floor(kernel.shape[1]/2.)
ycen = np.floor(kernel.shape[0]/2.)
dx = np.floor(shape[1]/2.)
dy = np.floor(shape[0]/2.)
if (np.floor(shape[0]/2.) != shape[0]/2.) & (np.floor(shape[1]/2.) != shape[1]/2.):
kernelcen = kernel[int(ycen)-int(dy):int(ycen)+int(dy)+1, int(xcen)-int(dx):int(xcen)+int(dx)+1]
elif (np.floor(shape[0]/2.) != shape[0]/2.) & (np.floor(shape[1]/2.) == shape[1]/2.):
kernelcen = kernel[int(ycen)-int(dy):int(ycen)+int(dy)+1, int(xcen)-int(dx):int(xcen)+int(dx)]
elif (np.floor(shape[0]/2.) == shape[0]/2.) & (np.floor(shape[1]/2.) != shape[1]/2.):
kernelcen = kernel[int(ycen)-int(dy):int(ycen)+int(dy), int(xcen)-int(dx):int(xcen)+int(dx)+1]
elif (np.floor(shape[0]/2.) == shape[0]/2.) & (np.floor(shape[1]/2.) == shape[1]/2.):
kernelcen = kernel[int(ycen)-int(dy):int(ycen)+int(dy), int(xcen)-int(dx):int(xcen)+int(dx)]
else:
kernelcen = None
if verbose: print((' - Input kernel shape: '+str(kernel.shape)))
if verbose: print((' - Returned kernel center shape: '+str(kernelcen.shape)))
if verbose: print((' - Max value of input kernel: '+str(np.max(kernel))))
if verbose: print((' - Max value of returned kernel center: '+str(np.max(kernelcen))))
if verbose: print((' - Location of max value in input kernel: '+str(np.where(kernel == np.max(kernel)))))
if verbose: print((' - Location of max value in kernel center: '+str(np.where(kernelcen == | np.max(kernelcen) | numpy.max |
import numpy as np
import tensorflow as tf
def logistic_logpdf(*, x, mean, logscale):
"""
log density of logistic distribution
this operates elementwise
"""
z = (x - mean) * tf.exp(-logscale)
return z - logscale - 2 * tf.nn.softplus(z)
def logistic_logcdf(*, x, mean, logscale):
"""
log cdf of logistic distribution
this operates elementwise
"""
z = (x - mean) * tf.exp(-logscale)
return tf.log_sigmoid(z)
def test_logistic():
import scipy.stats
# TF graph for logistic pdf computation
tf.reset_default_graph()
in_x = tf.placeholder(tf.float64, [None])
in_means = tf.placeholder(tf.float64, [None])
in_logscales = tf.placeholder(tf.float64, [None])
out_logpdf = logistic_logpdf(x=in_x, mean=in_means, logscale=in_logscales)
out_logcdf = logistic_logcdf(x=in_x, mean=in_means, logscale=in_logscales)
# Evaluate log pdf at these points
n = 100
xs = np.linspace(-5, 5, n)
with tf.Session() as sess:
# Test against scipy
for loc in np.linspace(-1, 2, 5):
for scale in np.linspace(.01, 3, 5):
true_logpdfs = scipy.stats.logistic.logpdf(xs, loc, scale)
true_logcdfs = scipy.stats.logistic.logcdf(xs, loc, scale)
logpdfs, logcdfs = sess.run([out_logpdf, out_logcdf], {
in_x: xs,
in_means: [loc] * n,
in_logscales: | np.log([scale] * n) | numpy.log |
import pickle
import numpy as np
import random
import tensorflow as tf
import csv
import cv2
import glob
# import matplotlib.image as mpimg
# import matplotlib.pyplot as plt
from keras import optimizers
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda
from keras.layers import Cropping2D
from keras.layers.convolutional import Conv2D
from keras.layers.pooling import MaxPooling2D
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
def preprocess_image(images, measurements, to_flip = 0):
X_train, y_train = images, measurements
if to_flip == 1:
flip_measurements = -1.0*measurements
flip_images = []
for image in images:
flip_images += [cv2.flip(image, 1)]
X_train = np.concatenate((X_train, flip_images), axis = 0)
y_train = np.concatenate((y_train, flip_measurements), axis = 0)
return X_train, y_train
def generator(samples, batch_size = 32, is_validation = 0, include_side = 0, to_flip = 0, sample_size = 2000):
samples = random.sample(samples, k=sample_size) if is_validation == 0 else shuffle(samples)
num_samples = sample_size
while True:
shuffle(samples)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset+batch_size]
center_images, left_images, right_images = [], [], []
center_measurements = []
for batch_sample in batch_samples:
center_images += [cv2.imread('./data/IMG/'+batch_sample[0].split('IMG/')[-1])]
center_measurements += [float(batch_sample[3])]
if include_side == 1:
left_images += [cv2.imread('./data/IMG/'+batch_sample[1].split('IMG/')[-1])]
right_images += [cv2.imread('./data/IMG/'+batch_sample[2].split('IMG/')[-1])]
images = np.array(center_images)
measurements = np.array(center_measurements)
if include_side == 1:
images = np.concatenate((images, left_images, right_images), axis = 0)
measurements = np.concatenate((measurements, measurements + 0.23, measurements - 0.23), axis = 0)
if is_validation == 0:
X_train, y_train = preprocess_image(images, measurements, to_flip = to_flip)
else:
X_train, y_train = images, measurements
yield shuffle(X_train, y_train)
def model_LeNet(X_train, y_train):
model = Sequential()
model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=(160,320,3)))
model.add(Conv2D(10,5, activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(20,5, activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(500))
model.add(Dense(240))
model.add(Dense(120))
model.add(Dense(40))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, validation_split = 0.2, shuffle = True, epochs = 5, batch_size = 16)
model.save('model_lenet.h5')
def model_nvidia(train_samples, validation_samples):
batch_size = 32
sample_size = 3000
train_generator = generator(train_samples, batch_size = batch_size, is_validation = 0, include_side = 1, to_flip = 1, sample_size = sample_size)
validation_generator = generator(validation_samples, batch_size = batch_size, is_validation = 1, include_side = 0)
model = Sequential()
model.add(Lambda(lambda x: (x/255.0) - 0.5, input_shape=(160,320,3)))
model.add(Cropping2D(cropping=((70,25),(0,0))))
model.add(Conv2D(24, 5, strides = (2,2), activation='relu'))
model.add(Dropout(0.5))
model.add(Conv2D(36, 5, strides = (2,2), activation='relu'))
model.add(Dropout(0.5))
model.add(Conv2D(48, 5, strides = (2,2), activation='relu'))
model.add(Conv2D(64, 3, activation='relu'))
model.add(Conv2D(64, 3, activation='relu'))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
opt = optimizers.Adam(lr=0.001)
model.compile(loss='mse', optimizer=opt, metrics=['accuracy'])
model.fit_generator(train_generator,
steps_per_epoch = sample_size//batch_size,
validation_data = validation_generator,
validation_steps = len(validation_samples)//batch_size,
epochs = 15, verbose = 1)
model.save('model_nvidia.h5')
def make_uniform(samples):
no_bins = 25
augmented_samples = []
count_thresh = int(len(samples)/no_bins)*2
samples_arr = np.array(samples)
angles = np.array(list(map(float, samples_arr[:,3])))
angle_bins = np.linspace(-1., 1.01, no_bins + 1)
print(len(angles))
for i in range(no_bins):
idx = np.where((angles>=angle_bins[i]) & (angles<angle_bins[i+1]))[0]
if len(idx) < count_thresh and len(idx) > 0:
idx_sel = np.random.choice(idx, count_thresh - len(idx))
samples = samples + samples_arr[idx_sel].tolist()
samples_arr = | np.array(samples) | numpy.array |
#!/usr/bin/env py.test
from __future__ import print_function, division
import math
from copy import deepcopy
import numpy as np
from numpy.random import RandomState
from numpy.testing import assert_allclose, assert_approx_equal
import pytest
import itertools
try:
from numpy.random import choice
HAVE_CHOICE = True
except ImportError:
HAVE_CHOICE = False
import nestle
SQRTEPS = math.sqrt(float(np.finfo(np.float64).eps)) # testing closeness to 1
NMAX = 20 # many tests are run for dimensions 1 to NMAX inclusive
def test_vol_prefactor():
assert nestle.vol_prefactor(1) == 2.
assert nestle.vol_prefactor(2) == math.pi
assert nestle.vol_prefactor(3) == 4./3. * math.pi
assert nestle.vol_prefactor(4) == 1./2. * math.pi**2
assert nestle.vol_prefactor(5) == 8./15. * math.pi**2
assert nestle.vol_prefactor(9) == 32./945. * math.pi**4
def test_rstate_kwarg():
"""Test that rstate keyword argument works as expected."""
rstate = RandomState(123)
a = nestle.randsphere(10, rstate=rstate)
np.random.seed(123)
b = nestle.randsphere(10)
assert np.all(a == b)
# TODO: test that points are uniform
def test_randsphere():
"""Draw a lot of points and check that they're within a unit sphere.
"""
rstate = RandomState(0)
npoints = 1000
for n in range(1, NMAX+1):
for i in range(npoints):
x = nestle.randsphere(n, rstate=rstate)
r = np.sum(x**2)
assert r < 1.0
@pytest.mark.skipif("not HAVE_CHOICE")
def test_random_choice():
"""nestle.random_choice() is designed to mimic np.random.choice(),
for numpy < v1.7.0. In cases where we have both, test that they agree.
"""
rstate = RandomState(0)
p = rstate.rand(10)
p /= p.sum()
for seed in range(10):
rstate.seed(seed)
i = rstate.choice(10, p=p)
rstate.seed(seed)
j = nestle.random_choice(10, p=p, rstate=rstate)
assert i == j
def test_random_choice_error():
"""random_choice should raise an error when probabilities do not sum
to one."""
rstate = RandomState(0)
p = rstate.rand(10)
p /= p.sum()
p *= 1.001
with pytest.raises(ValueError):
nestle.random_choice(10, p=p, rstate=rstate)
def test_ellipsoid_sphere():
"""Test that Ellipsoid works like a sphere when ``a`` is proportional to
the identity matrix."""
scale = 5.
for n in range(1, NMAX+1):
ctr = 2.0 * scale * np.ones(n) # arbitrary non-zero center
a = 1.0 / scale**2 * | np.identity(n) | numpy.identity |
import numpy as np
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_validate
from NiaPy.algorithms.modified import HybridBatAlgorithm
import pygal
KNN_WEIGHT_FUNCTIONS = [
'uniform',
'distance'
]
KNN_ALGORITHMS = [
'ball_tree',
'kd_tree',
'brute'
]
# map from real number [0, 1] to integer ranging [5, 15]
def swap_n_neighbors(val):
return int(val * 10 + 5)
# map from real number [0, 1] to integer ranging [0, 1]
def swap_weights(val):
if val > 0.5:
return 1
return 0
# map from real number [0, 1] to integer ranging [1, 3]
def swap_algorithm(val):
if val == 1:
return 3
return int(val * 3 + 1)
# map from real number [0, 1] to integer ranging [10, 50]
def swap_leaf_size(val):
return int(val * 10 + 40)
class KNNBreastCancerBenchmark(object):
def __init__(self):
self.Lower = 0
self.Upper = 1
def function(self):
# our definition of fitness function
def evaluate(D, solution):
n_neighbors = swap_n_neighbors(solution[0])
weights = KNN_WEIGHT_FUNCTIONS[(swap_weights(solution[1]) - 1)]
algorithm = KNN_ALGORITHMS[(swap_algorithm(solution[2]) - 1)]
leaf_size = swap_leaf_size(solution[3])
fitness = 1 - KNNBreastCancerClassifier(1234).evaluate(n_neighbors, weights, algorithm, leaf_size)
scores.append([fitness, n_neighbors, weights, algorithm, leaf_size])
return fitness
return evaluate
class KNNBreastCancerClassifier(object):
def __init__(self, seed=1234):
self.seed = seed
self.ten_fold_scores = {}
self.default_ten_fold_scores = {}
np.random.seed(self.seed)
dataset = datasets.load_breast_cancer()
self.X = dataset.data
self.y = dataset.target
self.X_search, self.X_validate, self.y_search, self.y_validate = train_test_split(self.X, self.y, test_size=0.8, random_state=self.seed)
self.X_search_train, self.X_search_test, self.y_search_train, self.y_search_test = train_test_split(self.X_search, self.y_search, test_size=0.8, random_state=self.seed)
def evaluate(self, n_neighbors, weights, algorithm, leaf_size):
model = KNeighborsClassifier(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm, leaf_size=leaf_size)
model.fit(self.X_search_train, self.y_search_train)
return model.score(self.X_search_test, self.y_search_test)
def run_10_fold(self, solution=None):
if solution is None:
estimator = KNeighborsClassifier()
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=self.seed)
self.default_ten_fold_scores = cross_validate(estimator, self.X, self.y, cv=kfold, scoring=['accuracy'])
else:
estimator = KNeighborsClassifier(n_neighbors=solution[1], weights=solution[2], algorithm=solution[3], leaf_size=solution[4])
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=self.seed)
self.ten_fold_scores = cross_validate(estimator, self.X_validate, self.y_validate, cv=kfold, scoring=['accuracy'])
scores = []
algorithm = HybridBatAlgorithm(4, 40, 100, 0.9, 0.1, 0.001, 0.9, 0.0, 2.0, KNNBreastCancerBenchmark())
best = algorithm.run()
print('Optimal KNN parameters are:')
best_solution = []
for score in scores:
if score[0] == best:
best_solution = score
print(best_solution)
model = KNNBreastCancerClassifier()
model.run_10_fold(solution=best_solution)
model.run_10_fold()
print('best model mean test accuracy: ' + str(np.mean(model.ten_fold_scores['test_accuracy'])))
print('default model mean test accuracy: ' + str( | np.mean(model.default_ten_fold_scores['test_accuracy']) | numpy.mean |
from math import isclose
import numpy as np
import pandas as pd
import pytest
from freqtrade.data.dataprovider import DataProvider
from freqtrade.strategy import (merge_informative_pair, stoploss_from_absolute, stoploss_from_open,
timeframe_to_minutes)
def generate_test_data(timeframe: str, size: int):
np.random.seed(42)
tf_mins = timeframe_to_minutes(timeframe)
base = np.random.normal(20, 2, size=size)
date = pd.period_range('2020-07-05', periods=size, freq=f'{tf_mins}min').to_timestamp()
df = pd.DataFrame({
'date': date,
'open': base,
'high': base + np.random.normal(2, 1, size=size),
'low': base - np.random.normal(2, 1, size=size),
'close': base + np.random.normal(0, 1, size=size),
'volume': np.random.normal(200, size=size)
}
)
df = df.dropna()
return df
def test_merge_informative_pair():
data = generate_test_data('15m', 40)
informative = generate_test_data('1h', 40)
result = merge_informative_pair(data, informative, '15m', '1h', ffill=True)
assert isinstance(result, pd.DataFrame)
assert len(result) == len(data)
assert 'date' in result.columns
assert result['date'].equals(data['date'])
assert 'date_1h' in result.columns
assert 'open' in result.columns
assert 'open_1h' in result.columns
assert result['open'].equals(data['open'])
assert 'close' in result.columns
assert 'close_1h' in result.columns
assert result['close'].equals(data['close'])
assert 'volume' in result.columns
assert 'volume_1h' in result.columns
assert result['volume'].equals(data['volume'])
# First 3 rows are empty
assert result.iloc[0]['date_1h'] is pd.NaT
assert result.iloc[1]['date_1h'] is pd.NaT
assert result.iloc[2]['date_1h'] is pd.NaT
# Next 4 rows contain the starting date (0:00)
assert result.iloc[3]['date_1h'] == result.iloc[0]['date']
assert result.iloc[4]['date_1h'] == result.iloc[0]['date']
assert result.iloc[5]['date_1h'] == result.iloc[0]['date']
assert result.iloc[6]['date_1h'] == result.iloc[0]['date']
# Next 4 rows contain the next Hourly date original date row 4
assert result.iloc[7]['date_1h'] == result.iloc[4]['date']
assert result.iloc[8]['date_1h'] == result.iloc[4]['date']
def test_merge_informative_pair_same():
data = generate_test_data('15m', 40)
informative = generate_test_data('15m', 40)
result = merge_informative_pair(data, informative, '15m', '15m', ffill=True)
assert isinstance(result, pd.DataFrame)
assert len(result) == len(data)
assert 'date' in result.columns
assert result['date'].equals(data['date'])
assert 'date_15m' in result.columns
assert 'open' in result.columns
assert 'open_15m' in result.columns
assert result['open'].equals(data['open'])
assert 'close' in result.columns
assert 'close_15m' in result.columns
assert result['close'].equals(data['close'])
assert 'volume' in result.columns
assert 'volume_15m' in result.columns
assert result['volume'].equals(data['volume'])
# Dates match 1:1
assert result['date_15m'].equals(result['date'])
def test_merge_informative_pair_lower():
data = generate_test_data('1h', 40)
informative = generate_test_data('15m', 40)
with pytest.raises(ValueError, match=r"Tried to merge a faster timeframe .*"):
merge_informative_pair(data, informative, '1h', '15m', ffill=True)
def test_stoploss_from_open():
open_price_ranges = [
[0.01, 1.00, 30],
[1, 100, 30],
[100, 10000, 30],
]
current_profit_range = [-0.99, 2, 30]
desired_stop_range = [-0.50, 0.50, 30]
for open_range in open_price_ranges:
for open_price in | np.linspace(*open_range) | numpy.linspace |
import numpy as np
import keras.backend as K
from keras.models import Model
from keras.layers import Input, Embedding, Dot, Lambda, Conv2D
from keras.layers import MaxPooling2D, Flatten, Concatenate, Dense
from keras.layers import Activation, BatchNormalization, Dropout
def semantic_match(X, Y, A, window):
"""Computing semantic match in direction X -> Y
shape X: (s,n,d), Y: (s,m,d), A: (s, n, m)
"""
# shape Pivot, lower_lim, upper_lim: (s,n,1)
Pivot = np.expand_dims(np.argmax(A, axis=-1), axis=-1)
lower_lim = np.maximum(0, Pivot-window)
upper_lim = np.minimum(A.shape[-1], Pivot+window)
# shape indices: (s,n,m)
# indices = np.tile(np.arange(A.shape[2]), (A.shape[0], A.shape[1] ,1))
indices = np.tile(np.arange(A.shape[-1]), A.shape[:-1]+(1,))
# NOTE: To replicate "mcrisc" implementation in github use: indices < upper_lim
mask = ((indices >= lower_lim) & (indices <= upper_lim)).astype(np.float32)
# shape X_hat: (n,d)
X_hat = np.matmul(A*mask, Y)
return X_hat
def decompose(X, X_hat, method="linear"):
"""Decompose a dataset with regards to its
semantic match version
shape X, X_hat: (s,n,d)
"""
assert method in ("linear", "orthogonal")
if method == "linear":
# shape alpha: (s,n,1)
denom = (np.linalg.norm(X, axis=-1, keepdims=True) *
np.linalg.norm(X_hat, axis=-1, keepdims=True))
alpha = np.divide(np.sum(X * X_hat, axis=-1, keepdims=True),
denom, where=denom!=0)
# shape X_pos, X_neg: (s,n,d)
X_pos = alpha * X
X_neg = (1 - alpha) * X
elif method == "orthogonal":
# shape X_pos, X_neg: (s,n,d)
denom = np.sum(X_hat * X_hat, axis=-1, keepdims=True)
X_pos = np.divide(np.sum(X * X_hat, axis=-1, keepdims=True),
denom, where=denom!=0) * X_hat
X_neg = X - X_pos
X_pos = np.expand_dims(X_pos, axis=-1)
X_neg = np.expand_dims(X_neg, axis=-1)
# shape X_decomp: (s,n,d,2)
X_decomp = np.concatenate([X_pos, X_neg], axis=-1)
return X_decomp
def decompose_data(X, Y, window=3, method="linear"):
"""Decompose datasets X, Y into positive and negative
channels with regards to each other
shape X: (s,n,d), Y: (s,m,d)
"""
# Cosine similarity
# shape A: (s,n,m)
norm_X = | np.linalg.norm(X, axis=-1, keepdims=True) | numpy.linalg.norm |
## Source : https://github.com/naokishibuya/car-behavioral-cloning/blob/master/utils.py
import os
import cv2
import sklearn
import math
import csv
import numpy as np
from scipy.ndimage import rotate
from scipy.stats import bernoulli
IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS = 66, 200, 3
INPUT_SHAPE = (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS)
#IMG_file="/home/workspace/CarND-Behavioral-Cloning-P3/data/IMG/"
IMG_file="/opt/carnd_p3/data/data/IMG/"
def random_rotation(image, steering_angle, rotation_amount=15):
angle = np.random.uniform(-rotation_amount, rotation_amount + 1)
rad = (np.pi / 180.0) * angle
return rotate(image, angle, reshape=False), steering_angle + (-1) * rad
def random_translate(image, steering_angle, range_x=100, range_y=10):
"""
Randomly shift the image virtially and horizontally (translation).
"""
trans_x = range_x * (np.random.rand() - 0.5)
trans_y = range_y * (np.random.rand() - 0.5)
steering_angle += trans_x * 0.002
trans_m = np.float32([[1, 0, trans_x], [0, 1, trans_y]])
height, width = image.shape[:2]
image = cv2.warpAffine(image, trans_m, (width, height))
return image, steering_angle
def random_shadow(image):
"""
Generates and adds random shadow
"""
# (x1, y1) and (x2, y2) forms a line
# xm, ym gives all the locations of the image
x1, y1 = IMAGE_WIDTH * np.random.rand(), 0
x2, y2 = IMAGE_WIDTH * np.random.rand(), IMAGE_HEIGHT
xm, ym = np.mgrid[0:IMAGE_HEIGHT, 0:IMAGE_WIDTH]
# mathematically speaking, we want to set 1 below the line and zero otherwise
# Our coordinate is up side down. So, the above the line:
# (ym-y1)/(xm-x1) > (y2-y1)/(x2-x1)
# as x2 == x1 causes zero-division problem, we'll write it in the below form:
# (ym-y1)*(x2-x1) - (y2-y1)*(xm-x1) > 0
mask = np.zeros_like(image[:, :, 1])
mask[(ym - y1) * (x2 - x1) - (y2 - y1) * (xm - x1) > 0] = 1
# choose which side should have shadow and adjust saturation
cond = mask == np.random.randint(2)
s_ratio = np.random.uniform(low=0.2, high=0.5)
# adjust Saturation in HLS(Hue, Light, Saturation)
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
hls[:, :, 1][cond] = hls[:, :, 1][cond] * s_ratio
return cv2.cvtColor(hls, cv2.COLOR_HLS2RGB)
def random_brightness(image):
"""
Randomly adjust brightness of the image.
"""
# HSV (Hue, Saturation, Value) is also called HSB ('B' for Brightness).
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
ratio = 1.0 + 0.4 * (np.random.rand() - 0.5)
hsv[:,:,2] = hsv[:,:,2] * ratio
return cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
def flipper(image,angle):
return cv2.flip(image,1),(-angle)#np.fliplr(image)
def preproces(image):
image = image[60:-25, :, :]
image = cv2.resize(image, (IMAGE_WIDTH, IMAGE_HEIGHT), cv2.INTER_AREA)
image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
return image
def augumentation(image,angle,aug_num):
image = preproces(image)
if aug_num == 0:
#image = preproces(image)
return image,angle
if aug_num == 1:
image,angle = random_rotation(image, angle, rotation_amount=10)
if aug_num == 2:
image, angle = flipper(image, angle)
if aug_num == 3:
image, angle = random_translate(image, angle, range_x=100, range_y=10)
if aug_num == 4:
image = random_shadow(image)
image = random_brightness(image)
image, angle = flipper(image, angle)
return image,angle
def generator(samples, batch_size=16,is_training=True):
num_samples = len(samples)
while 1: # Loop forever so the generator never terminates
sklearn.utils.shuffle(samples)
for offset in range(0, num_samples, (batch_size)):
batch_samples = samples[offset:offset+batch_size]
images = []
angles = []
for batch_sample in batch_samples:
name_center = IMG_file+batch_sample[0].split('\\')[-1]
name_left = IMG_file+batch_sample[1].split('\\')[-1]
name_right = IMG_file+batch_sample[2].split('\\')[-1]
center_image = cv2.imread(name_center)
left_image = cv2.imread(name_left)
right_image = cv2.imread(name_right)
center_angle = float(batch_sample[3])
left_angle = center_angle+0.009#*(1.005)
right_angle = center_angle-0.009#*(0.995)
if not is_training:
center_image1,center_angle1 = augumentation(center_image,center_angle,0)
left_image1,left_angle1 = augumentation(center_image,center_angle,0)
right_image1,right_angle1 = augumentation(center_image,center_angle,0)
images.append(center_image1)
images.append(left_image1)
images.append(right_image1)
angles.append(center_angle1)
angles.append(left_angle1)
angles.append(right_angle1)
else:
for i in range(5):
center_image1,center_angle1 = augumentation(center_image,center_angle,i)
left_image1,left_angle1 = augumentation(center_image,center_angle,i)
right_image1,right_angle1 = augumentation(center_image,center_angle,i)
#center_image1 = preproces(center_image1)
#left_image1 = preproces(left_image1)
#ight_image1 = preproces(right_image1)
images.append(center_image1)
images.append(left_image1)
images.append(right_image1)
angles.append(center_angle1)
angles.append(left_angle1)
angles.append(right_angle1)
# trim image to only see section with road
X_train = np.array(images)
y_train = | np.array(angles) | numpy.array |
#!/usr/bin/env python
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import numpy as np
from pyscf import lib
from pyscf import scf
from pyscf.lib import logger
from pyscf.cc import ccsd
from pyscf.cc import uccsd
from pyscf.cc import eom_rccsd
from pyscf.cc import eom_gccsd
from pyscf.cc import addons
########################################
# EOM-IP-CCSD
########################################
class EOMIP(eom_gccsd.EOMIP):
def __init__(self, cc):
gcc = addons.convert_to_gccsd(cc)
eom_gccsd.EOMIP.__init__(self, gcc)
########################################
# EOM-EA-CCSD
########################################
class EOMEA(eom_gccsd.EOMEA):
def __init__(self, cc):
gcc = addons.convert_to_gccsd(cc)
eom_gccsd.EOMEA.__init__(self, gcc)
########################################
# EOM-EE-CCSD
########################################
def eeccsd(eom, nroots=1, koopmans=False, guess=None, eris=None, imds=None):
'''Calculate N-electron neutral excitations via EOM-EE-CCSD.
Kwargs:
nroots : int
Number of roots (eigenvalues) requested
koopmans : bool
Calculate Koopmans'-like (1p1h) excitations only, targeting via
overlap.
guess : list of ndarray
List of guess vectors to use for targeting via overlap.
'''
if eris is None: eris = eom._cc.ao2mo()
if imds is None: imds = eom.make_imds(eris)
spinvec_size = eom.vector_size()
nroots = min(nroots, spinvec_size)
diag_ee, diag_sf = eom.get_diag(imds)
guess_ee = []
guess_sf = []
if guess and guess[0].size == spinvec_size:
raise NotImplementedError
#TODO: initial guess from GCCSD EOM amplitudes
#orbspin = scf.addons.get_ghf_orbspin(eris.mo_coeff)
#nmo = np.sum(eom.nmo)
#nocc = np.sum(eom.nocc)
#for g in guess:
# r1, r2 = eom_gccsd.vector_to_amplitudes_ee(g, nmo, nocc)
# r1aa = r1[orbspin==0][:,orbspin==0]
# r1ab = r1[orbspin==0][:,orbspin==1]
# if abs(r1aa).max() > 1e-7:
# r1 = addons.spin2spatial(r1, orbspin)
# r2 = addons.spin2spatial(r2, orbspin)
# guess_ee.append(eom.amplitudes_to_vector(r1, r2))
# else:
# r1 = spin2spatial_eomsf(r1, orbspin)
# r2 = spin2spatial_eomsf(r2, orbspin)
# guess_sf.append(amplitudes_to_vector_eomsf(r1, r2))
# r1 = r2 = r1aa = r1ab = g = None
#nroots_ee = len(guess_ee)
#nroots_sf = len(guess_sf)
elif guess:
for g in guess:
if g.size == diag_ee.size:
guess_ee.append(g)
else:
guess_sf.append(g)
nroots_ee = len(guess_ee)
nroots_sf = len(guess_sf)
else:
dee = np.sort(diag_ee)[:nroots]
dsf = np.sort(diag_sf)[:nroots]
dmax = np.sort(np.hstack([dee,dsf]))[nroots-1]
nroots_ee = np.count_nonzero(dee <= dmax)
nroots_sf = np.count_nonzero(dsf <= dmax)
guess_ee = guess_sf = None
def eomee_sub(cls, nroots, guess, diag):
ee_sub = cls(eom._cc)
ee_sub.__dict__.update(eom.__dict__)
e, v = ee_sub.kernel(nroots, koopmans, guess, eris, imds, diag=diag)
if nroots == 1:
e, v = [e], [v]
ee_sub.converged = [ee_sub.converged]
return list(ee_sub.converged), list(e), list(v)
e0 = e1 = []
v0 = v1 = []
conv0 = conv1 = []
if nroots_ee > 0:
conv0, e0, v0 = eomee_sub(EOMEESpinKeep, nroots_ee, guess_ee, diag_ee)
if nroots_sf > 0:
conv1, e1, v1 = eomee_sub(EOMEESpinFlip, nroots_sf, guess_sf, diag_sf)
e = np.hstack([e0,e1])
idx = e.argsort()
e = e[idx]
conv = conv0 + conv1
conv = [conv[x] for x in idx]
v = v0 + v1
v = [v[x] for x in idx]
if nroots == 1:
conv = conv[0]
e = e[0]
v = v[0]
eom.converged = conv
eom.e = e
eom.v = v
return eom.e, eom.v
def eomee_ccsd(eom, nroots=1, koopmans=False, guess=None,
eris=None, imds=None, diag=None):
if eris is None: eris = eom._cc.ao2mo()
if imds is None: imds = eom.make_imds(eris)
eom.converged, eom.e, eom.v \
= eom_rccsd.kernel(eom, nroots, koopmans, guess, imds=imds, diag=diag)
return eom.e, eom.v
def eomsf_ccsd(eom, nroots=1, koopmans=False, guess=None,
eris=None, imds=None, diag=None):
'''Spin flip EOM-EE-CCSD
'''
return eomee_ccsd(eom, nroots, koopmans, guess, eris, imds, diag)
amplitudes_to_vector_ee = uccsd.amplitudes_to_vector
vector_to_amplitudes_ee = uccsd.vector_to_amplitudes
def amplitudes_to_vector_eomsf(t1, t2, out=None):
t1ab, t1ba = t1
t2baaa, t2aaba, t2abbb, t2bbab = t2
nocca, nvirb = t1ab.shape
noccb, nvira = t1ba.shape
otrila = np.tril_indices(nocca, k=-1)
otrilb = np.tril_indices(noccb, k=-1)
vtrila = np.tril_indices(nvira, k=-1)
vtrilb = np.tril_indices(nvirb, k=-1)
baaa = np.take(t2baaa.reshape(noccb*nocca,nvira*nvira),
vtrila[0]*nvira+vtrila[1], axis=1)
abbb = np.take(t2abbb.reshape(nocca*noccb,nvirb*nvirb),
vtrilb[0]*nvirb+vtrilb[1], axis=1)
vector = np.hstack((t1ab.ravel(), t1ba.ravel(),
baaa.ravel(), t2aaba[otrila].ravel(),
abbb.ravel(), t2bbab[otrilb].ravel()))
return vector
def vector_to_amplitudes_eomsf(vector, nmo, nocc):
nocca, noccb = nocc
nmoa, nmob = nmo
nvira, nvirb = nmoa-nocca, nmob-noccb
t1ab = vector[:nocca*nvirb].reshape(nocca,nvirb).copy()
t1ba = vector[nocca*nvirb:nocca*nvirb+noccb*nvira].reshape(noccb,nvira).copy()
pvec = vector[t1ab.size+t1ba.size:]
nbaaa = noccb*nocca*nvira*(nvira-1)//2
naaba = nocca*(nocca-1)//2*nvirb*nvira
nabbb = nocca*noccb*nvirb*(nvirb-1)//2
nbbab = noccb*(noccb-1)//2*nvira*nvirb
t2baaa = np.zeros((noccb*nocca,nvira*nvira), dtype=vector.dtype)
t2aaba = np.zeros((nocca*nocca,nvirb*nvira), dtype=vector.dtype)
t2abbb = np.zeros((nocca*noccb,nvirb*nvirb), dtype=vector.dtype)
t2bbab = np.zeros((noccb*noccb,nvira*nvirb), dtype=vector.dtype)
otrila = np.tril_indices(nocca, k=-1)
otrilb = np.tril_indices(noccb, k=-1)
vtrila = np.tril_indices(nvira, k=-1)
vtrilb = np.tril_indices(nvirb, k=-1)
oidxab = np.arange(nocca*noccb, dtype=np.int32)
vidxab = np.arange(nvira*nvirb, dtype=np.int32)
v = pvec[:nbaaa].reshape(noccb*nocca,-1)
lib.takebak_2d(t2baaa, v, oidxab, vtrila[0]*nvira+vtrila[1])
lib.takebak_2d(t2baaa,-v, oidxab, vtrila[1]*nvira+vtrila[0])
v = pvec[nbaaa:nbaaa+naaba].reshape(-1,nvirb*nvira)
lib.takebak_2d(t2aaba, v, otrila[0]*nocca+otrila[1], vidxab)
lib.takebak_2d(t2aaba,-v, otrila[1]*nocca+otrila[0], vidxab)
v = pvec[nbaaa+naaba:nbaaa+naaba+nabbb].reshape(nocca*noccb,-1)
lib.takebak_2d(t2abbb, v, oidxab, vtrilb[0]*nvirb+vtrilb[1])
lib.takebak_2d(t2abbb,-v, oidxab, vtrilb[1]*nvirb+vtrilb[0])
v = pvec[nbaaa+naaba+nabbb:].reshape(-1,nvira*nvirb)
lib.takebak_2d(t2bbab, v, otrilb[0]*noccb+otrilb[1], vidxab)
lib.takebak_2d(t2bbab,-v, otrilb[1]*noccb+otrilb[0], vidxab)
t2baaa = t2baaa.reshape(noccb,nocca,nvira,nvira)
t2aaba = t2aaba.reshape(nocca,nocca,nvirb,nvira)
t2abbb = t2abbb.reshape(nocca,noccb,nvirb,nvirb)
t2bbab = t2bbab.reshape(noccb,noccb,nvira,nvirb)
return (t1ab,t1ba), (t2baaa, t2aaba, t2abbb, t2bbab)
def spatial2spin_eomsf(rx, orbspin):
'''Convert EOM spatial R1,R2 to spin-orbital R1,R2'''
if len(rx) == 2: # r1
r1ab, r1ba = rx
nocca, nvirb = r1ab.shape
noccb, nvira = r1ba.shape
else:
r2baaa,r2aaba,r2abbb,r2bbab = rx
noccb, nocca, nvira = r2baaa.shape[:3]
nvirb = r2aaba.shape[2]
nocc = nocca + noccb
nvir = nvira + nvirb
idxoa = np.where(orbspin[:nocc] == 0)[0]
idxob = np.where(orbspin[:nocc] == 1)[0]
idxva = np.where(orbspin[nocc:] == 0)[0]
idxvb = np.where(orbspin[nocc:] == 1)[0]
if len(rx) == 2: # r1
r1 = np.zeros((nocc,nvir), dtype=r1ab.dtype)
lib.takebak_2d(r1, r1ab, idxoa, idxvb)
lib.takebak_2d(r1, r1ba, idxob, idxva)
return r1
else:
r2 = np.zeros((nocc**2,nvir**2), dtype=r2aaba.dtype)
idxoaa = idxoa[:,None] * nocc + idxoa
idxoab = idxoa[:,None] * nocc + idxob
idxoba = idxob[:,None] * nocc + idxoa
idxobb = idxob[:,None] * nocc + idxob
idxvaa = idxva[:,None] * nvir + idxva
idxvab = idxva[:,None] * nvir + idxvb
idxvba = idxvb[:,None] * nvir + idxva
idxvbb = idxvb[:,None] * nvir + idxvb
r2baaa = r2baaa.reshape(noccb*nocca,nvira*nvira)
r2aaba = r2aaba.reshape(nocca*nocca,nvirb*nvira)
r2abbb = r2abbb.reshape(nocca*noccb,nvirb*nvirb)
r2bbab = r2bbab.reshape(noccb*noccb,nvira*nvirb)
lib.takebak_2d(r2, r2baaa, idxoba.ravel(), idxvaa.ravel())
lib.takebak_2d(r2, r2aaba, idxoaa.ravel(), idxvba.ravel())
lib.takebak_2d(r2, r2abbb, idxoab.ravel(), idxvbb.ravel())
lib.takebak_2d(r2, r2bbab, idxobb.ravel(), idxvab.ravel())
lib.takebak_2d(r2, r2baaa, idxoab.T.ravel(), idxvaa.T.ravel())
lib.takebak_2d(r2, r2aaba, idxoaa.T.ravel(), idxvab.T.ravel())
lib.takebak_2d(r2, r2abbb, idxoba.T.ravel(), idxvbb.T.ravel())
lib.takebak_2d(r2, r2bbab, idxobb.T.ravel(), idxvba.T.ravel())
return r2.reshape(nocc,nocc,nvir,nvir)
def spin2spatial_eomsf(rx, orbspin):
'''Convert EOM spin-orbital R1,R2 to spatial R1,R2'''
if rx.ndim == 2: # r1
nocc, nvir = rx.shape
else:
nocc, nvir = rx.shape[1:3]
idxoa = np.where(orbspin[:nocc] == 0)[0]
idxob = np.where(orbspin[:nocc] == 1)[0]
idxva = np.where(orbspin[nocc:] == 0)[0]
idxvb = np.where(orbspin[nocc:] == 1)[0]
nocca = len(idxoa)
noccb = len(idxob)
nvira = len(idxva)
nvirb = len(idxvb)
if rx.ndim == 2:
r1ab = lib.take_2d(rx, idxoa, idxvb)
r1ba = lib.take_2d(rx, idxob, idxva)
return r1ab, r1ba
else:
idxoaa = idxoa[:,None] * nocc + idxoa
idxoab = idxoa[:,None] * nocc + idxob
idxoba = idxob[:,None] * nocc + idxoa
idxobb = idxob[:,None] * nocc + idxob
idxvaa = idxva[:,None] * nvir + idxva
idxvab = idxva[:,None] * nvir + idxvb
idxvba = idxvb[:,None] * nvir + idxva
idxvbb = idxvb[:,None] * nvir + idxvb
r2 = rx.reshape(nocc**2,nvir**2)
r2baaa = lib.take_2d(r2, idxoba.ravel(), idxvaa.ravel())
r2aaba = lib.take_2d(r2, idxoaa.ravel(), idxvba.ravel())
r2abbb = lib.take_2d(r2, idxoab.ravel(), idxvbb.ravel())
r2bbab = lib.take_2d(r2, idxobb.ravel(), idxvab.ravel())
r2baaa = r2baaa.reshape(noccb,nocca,nvira,nvira)
r2aaba = r2aaba.reshape(nocca,nocca,nvirb,nvira)
r2abbb = r2abbb.reshape(nocca,noccb,nvirb,nvirb)
r2bbab = r2bbab.reshape(noccb,noccb,nvira,nvirb)
return r2baaa,r2aaba,r2abbb,r2bbab
# Ref: <NAME>, and <NAME>. Chem. Theory Comput. 10, 5567 (2014) Eqs.(9)-(10)
# Note: Last line in Eq. (10) is superfluous.
# See, e.g. Gwaltney, Nooijen, and Barlett, Chem. Phys. Lett. 248, 189 (1996)
def eomee_ccsd_matvec(eom, vector, imds=None):
if imds is None: imds = eom.make_imds()
t1, t2, eris = imds.t1, imds.t2, imds.eris
t1a, t1b = t1
t2aa, t2ab, t2bb = t2
nocca, noccb, nvira, nvirb = t2ab.shape
nmoa, nmob = nocca+nvira, noccb+nvirb
r1, r2 = vector_to_amplitudes_ee(vector, (nmoa,nmob), (nocca,noccb))
r1a, r1b = r1
r2aa, r2ab, r2bb = r2
#:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb)
#:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb)
#:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb)
#:Hr2aa += lib.einsum('ijef,aebf->ijab', tau2aa, eris_vvvv) * .5
#:Hr2bb += lib.einsum('ijef,aebf->ijab', tau2bb, eris_VVVV) * .5
#:Hr2ab += lib.einsum('iJeF,aeBF->iJaB', tau2ab, eris_vvVV)
tau2aa, tau2ab, tau2bb = uccsd.make_tau(r2, r1, t1, 2)
Hr2aa, Hr2ab, Hr2bb = eom._cc._add_vvvv(None, (tau2aa,tau2ab,tau2bb), eris)
Hr2aa *= .5
Hr2bb *= .5
tau2aa = tau2ab = tau2bb = None
Hr1a = lib.einsum('ae,ie->ia', imds.Fvva, r1a)
Hr1a -= lib.einsum('mi,ma->ia', imds.Fooa, r1a)
Hr1a += np.einsum('me,imae->ia',imds.Fova, r2aa)
Hr1a += np.einsum('ME,iMaE->ia',imds.Fovb, r2ab)
Hr1b = lib.einsum('ae,ie->ia', imds.Fvvb, r1b)
Hr1b -= lib.einsum('mi,ma->ia', imds.Foob, r1b)
Hr1b += np.einsum('me,imae->ia',imds.Fovb, r2bb)
Hr1b += np.einsum('me,mIeA->IA',imds.Fova, r2ab)
Hr2aa += lib.einsum('mnij,mnab->ijab', imds.woooo, r2aa) * .25
Hr2bb += lib.einsum('mnij,mnab->ijab', imds.wOOOO, r2bb) * .25
Hr2ab += lib.einsum('mNiJ,mNaB->iJaB', imds.woOoO, r2ab)
Hr2aa += lib.einsum('be,ijae->ijab', imds.Fvva, r2aa)
Hr2bb += lib.einsum('be,ijae->ijab', imds.Fvvb, r2bb)
Hr2ab += lib.einsum('BE,iJaE->iJaB', imds.Fvvb, r2ab)
Hr2ab += lib.einsum('be,iJeA->iJbA', imds.Fvva, r2ab)
Hr2aa -= lib.einsum('mj,imab->ijab', imds.Fooa, r2aa)
Hr2bb -= lib.einsum('mj,imab->ijab', imds.Foob, r2bb)
Hr2ab -= lib.einsum('MJ,iMaB->iJaB', imds.Foob, r2ab)
Hr2ab -= lib.einsum('mj,mIaB->jIaB', imds.Fooa, r2ab)
#:tau2aa, tau2ab, tau2bb = uccsd.make_tau(r2, r1, t1, 2)
#:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira)
#:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb)
#:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira)
#:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb)
#:Hr1a += lib.einsum('mfae,imef->ia', eris_ovvv, r2aa)
#:tmpaa = lib.einsum('meaf,ijef->maij', eris_ovvv, tau2aa)
#:Hr2aa+= lib.einsum('mb,maij->ijab', t1a, tmpaa)
#:tmpa = lib.einsum('mfae,me->af', eris_ovvv, r1a)
#:tmpa-= lib.einsum('meaf,me->af', eris_ovvv, r1a)
#:Hr1b += lib.einsum('mfae,imef->ia', eris_OVVV, r2bb)
#:tmpbb = lib.einsum('meaf,ijef->maij', eris_OVVV, tau2bb)
#:Hr2bb+= lib.einsum('mb,maij->ijab', t1b, tmpbb)
#:tmpb = lib.einsum('mfae,me->af', eris_OVVV, r1b)
#:tmpb-= lib.einsum('meaf,me->af', eris_OVVV, r1b)
#:Hr1b += lib.einsum('mfAE,mIfE->IA', eris_ovVV, r2ab)
#:tmpab = lib.einsum('meAF,iJeF->mAiJ', eris_ovVV, tau2ab)
#:Hr2ab-= lib.einsum('mb,mAiJ->iJbA', t1a, tmpab)
#:tmpb-= lib.einsum('meAF,me->AF', eris_ovVV, r1a)
#:Hr1a += lib.einsum('MFae,iMeF->ia', eris_OVvv, r2ab)
#:tmpba =-lib.einsum('MEaf,iJfE->MaiJ', eris_OVvv, tau2ab)
#:Hr2ab+= lib.einsum('MB,MaiJ->iJaB', t1b, tmpba)
#:tmpa-= lib.einsum('MEaf,ME->af', eris_OVvv, r1b)
tau2aa = uccsd.make_tau_aa(r2aa, r1a, t1a, 2)
mem_now = lib.current_memory()[0]
max_memory = max(0, eom.max_memory - mem_now)
tmpa = np.zeros((nvira,nvira))
tmpb = np.zeros((nvirb,nvirb))
blksize = min(nocca, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira**3*3))))
for p0, p1 in lib.prange(0, nocca, blksize):
ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1]
Hr1a += lib.einsum('mfae,imef->ia', ovvv, r2aa[:,p0:p1])
tmpaa = lib.einsum('meaf,ijef->maij', ovvv, tau2aa)
Hr2aa+= lib.einsum('mb,maij->ijab', t1a[p0:p1], tmpaa)
tmpa+= lib.einsum('mfae,me->af', ovvv, r1a[p0:p1])
tmpa-= lib.einsum('meaf,me->af', ovvv, r1a[p0:p1])
ovvv = tmpaa = None
tau2aa = None
tau2bb = uccsd.make_tau_aa(r2bb, r1b, t1b, 2)
blksize = min(noccb, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb**3*3))))
for p0, p1 in lib.prange(0, noccb, blksize):
OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1]
Hr1b += lib.einsum('mfae,imef->ia', OVVV, r2bb[:,p0:p1])
tmpbb = lib.einsum('meaf,ijef->maij', OVVV, tau2bb)
Hr2bb+= lib.einsum('mb,maij->ijab', t1b[p0:p1], tmpbb)
tmpb+= lib.einsum('mfae,me->af', OVVV, r1b[p0:p1])
tmpb-= lib.einsum('meaf,me->af', OVVV, r1b[p0:p1])
OVVV = tmpbb = None
tau2bb = None
tau2ab = uccsd.make_tau_ab(r2ab, r1 , t1 , 2)
blksize = min(nocca, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3))))
for p0, p1 in lib.prange(0, nocca, blksize):
ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1]
Hr1b += lib.einsum('mfAE,mIfE->IA', ovVV, r2ab[p0:p1])
tmpab = lib.einsum('meAF,iJeF->mAiJ', ovVV, tau2ab)
Hr2ab-= lib.einsum('mb,mAiJ->iJbA', t1a[p0:p1], tmpab)
tmpb-= lib.einsum('meAF,me->AF', ovVV, r1a[p0:p1])
ovVV = tmpab = None
blksize = min(noccb, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3))))
for p0, p1 in lib.prange(0, noccb, blksize):
OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1]
Hr1a += lib.einsum('MFae,iMeF->ia', OVvv, r2ab[:,p0:p1])
tmpba = lib.einsum('MEaf,iJfE->MaiJ', OVvv, tau2ab)
Hr2ab-= lib.einsum('MB,MaiJ->iJaB', t1b[p0:p1], tmpba)
tmpa-= lib.einsum('MEaf,ME->af', OVvv, r1b[p0:p1])
OVvv = tmpba = None
tau2ab = None
Hr2aa-= lib.einsum('af,ijfb->ijab', tmpa, t2aa)
Hr2bb-= lib.einsum('af,ijfb->ijab', tmpb, t2bb)
Hr2ab-= lib.einsum('af,iJfB->iJaB', tmpa, t2ab)
Hr2ab-= lib.einsum('AF,iJbF->iJbA', tmpb, t2ab)
eris_ovov = np.asarray(eris.ovov)
eris_OVOV = np.asarray(eris.OVOV)
eris_ovOV = np.asarray(eris.ovOV)
tau2aa = uccsd.make_tau_aa(r2aa, r1a, t1a, 2)
tauaa = uccsd.make_tau_aa(t2aa, t1a, t1a)
tmpaa = lib.einsum('menf,ijef->mnij', eris_ovov, tau2aa)
Hr2aa += lib.einsum('mnij,mnab->ijab', tmpaa, tauaa) * 0.25
tau2aa = tauaa = None
tau2bb = uccsd.make_tau_aa(r2bb, r1b, t1b, 2)
taubb = uccsd.make_tau_aa(t2bb, t1b, t1b)
tmpbb = lib.einsum('menf,ijef->mnij', eris_OVOV, tau2bb)
Hr2bb += lib.einsum('mnij,mnab->ijab', tmpbb, taubb) * 0.25
tau2bb = taubb = None
tau2ab = uccsd.make_tau_ab(r2ab, r1 , t1 , 2)
tauab = uccsd.make_tau_ab(t2ab, t1 , t1)
tmpab = lib.einsum('meNF,iJeF->mNiJ', eris_ovOV, tau2ab)
Hr2ab += lib.einsum('mNiJ,mNaB->iJaB', tmpab, tauab)
tau2ab = tauab = None
tmpa = lib.einsum('menf,imef->ni', eris_ovov, r2aa)
tmpa-= lib.einsum('neMF,iMeF->ni', eris_ovOV, r2ab)
tmpb = lib.einsum('menf,imef->ni', eris_OVOV, r2bb)
tmpb-= lib.einsum('mfNE,mIfE->NI', eris_ovOV, r2ab)
Hr1a += lib.einsum('na,ni->ia', t1a, tmpa)
Hr1b += lib.einsum('na,ni->ia', t1b, tmpb)
Hr2aa+= lib.einsum('mj,imab->ijab', tmpa, t2aa)
Hr2bb+= lib.einsum('mj,imab->ijab', tmpb, t2bb)
Hr2ab+= lib.einsum('MJ,iMaB->iJaB', tmpb, t2ab)
Hr2ab+= lib.einsum('mj,mIaB->jIaB', tmpa, t2ab)
tmp1a = np.einsum('menf,mf->en', eris_ovov, r1a)
tmp1a-= np.einsum('mfne,mf->en', eris_ovov, r1a)
tmp1a-= np.einsum('neMF,MF->en', eris_ovOV, r1b)
tmp1b = np.einsum('menf,mf->en', eris_OVOV, r1b)
tmp1b-= | np.einsum('mfne,mf->en', eris_OVOV, r1b) | numpy.einsum |
import numpy as np
from itertools import permutations
# calculating some special moore-penrose-defined resistances for directed graphs
class network:
def __init__(self, A): # A is the adjacency matrix; it must be square
self.A = A
if (A.shape[0] != A.shape[1]):
raise Exception("SquareMatrixError")
else:
self.n = A.shape[0]
self.L = np.zeros((self.n,self.n)) # L is out-Laplacian
self.M = np.zeros((self.n,self.n)) # M is in-Laplacian
self.Li = np.zeros((self.n, self.n)) # Li & Mi are pseudoinverses
self.Mi = np.zeros((self.n, self.n))
self.makeLaps()
def makeLaps(self): # generates the laplacians
one = np.ones((self.n,1))
self.L = np.diagflat(np.matmul(A, one)) - A
self.M = np.diagflat(np.matmul( | np.transpose(A) | numpy.transpose |
#!/usr/bin/env python
u"""
calc_voronoi_harmonics.py
by <NAME>
Read the voronoi regions produced by "create_voronoi_regions.py"
and create harmonic representations of mascons
Last Update 12/2020
"""
#-- load required modules
import os
import sys
import pickle
import numpy as np
from scipy.spatial import SphericalVoronoi,geometric_slerp
#-- import pygplates (https://www.gplates.org/docs/pygplates/pygplates_getting_started.html#installation)
import pygplates
#-- also import gravity toolkit modules
from gravity_toolkit.gen_stokes import gen_stokes
from gravity_toolkit.ncdf_stokes import ncdf_stokes
from gravity_toolkit.ncdf_write import ncdf_write
from gravity_toolkit.ncdf_read_stokes import ncdf_read_stokes
from gravity_toolkit.read_love_numbers import read_love_numbers
from gravity_toolkit.harmonic_summation import harmonic_summation
from gravity_toolkit.plm_mohlenkamp import plm_mohlenkamp
#------------------------------------------------------------------------------
#-- create harmonics for given voronoi regions
#------------------------------------------------------------------------------
def calc_harmonics(parameters):
#-- input file for voronoi regions
input_file = os.path.expanduser(parameters['VORONOI_FILE'])
with open(input_file, 'rb') as in_file:
sv = pickle.load(in_file)
#-- read grid parameters
DDEG_RASTER = float(parameters['DDEG_RASTER'])
#-- read harmonic parameters
LMAX = int(parameters['LMAX'])
MMAX = int(parameters['MMAX'])
LMIN = int(parameters['LMIN'])
#-- read love numbers from file in parameter file
love_file = os.path.expanduser(parameters['LOVE_FILE'])
hl,kl,ll = read_love_numbers(love_file,REFERENCE='CF')
#-- get output directory and create it if it doesn't exist
out_dir = os.path.expanduser(parameters['HARMONIC_DIRECTORY'])
if not os.path.exists(out_dir):
os.mkdir(out_dir)
#-----------------------------------------------------------------------------
#-- Now we make a grid so we can rasterize the polygons onto a grid
#-----------------------------------------------------------------------------
lons = np.arange(-180,180+DDEG_RASTER,DDEG_RASTER)
lats = np.arange(-90,90+DDEG_RASTER,DDEG_RASTER)
glat,glon = np.meshgrid(lats,lons)
#-- flatten the grid for easier processing
glon = glon.flatten()
glat = glat.flatten()
#-- create Legendre polynomials
th = (90.0 - lats)*np.pi/180.0
plm = plm_mohlenkamp(LMAX, np.cos(th))
#-----------------------------------------------------------------------------
#-- Convert voronoi regions into harmonics and savbe to file
#-----------------------------------------------------------------------------
if parameters['MAKE_HARMONICS'] in ['Y','y']:
index_fid = open(os.path.join(out_dir,'mascon_Ylms_index_L{0:02d}_{1:.2f}deg.txt'.format(LMAX,DDEG_RASTER)),'w')
Ylms = {}
for i,region in enumerate(sv.regions):
#-- intitialize mascon data as all zeros (no mass)
mass = np.zeros(len(glon))
#-- get vertices of region
reg_vert = sv.vertices[region]
#-- create polygon from vertices on surface of sphere
poly = pygplates.PolygonOnSphere(reg_vert)
#-- loop through grid points to identify which lie inside polygon
for j in range(len(mass)):
if poly.is_point_in_polygon((glat[j],glon[j])):
mass[j] = 1
#-- now convert the mass field to its harmonic representation
Ylms[i] = gen_stokes(mass.reshape(len(lons),len(lats)),lons,lats,LMIN=LMIN,LMAX=LMAX,MMAX=MMAX,UNITS=1,PLM=plm,LOVE=(hl,kl,ll))
#-- save harmonics to file
outfile = os.path.join(out_dir,'mascon_{0:d}_Ylms_L{1:02d}_{2:.2f}deg.nc'.format(i,LMAX,DDEG_RASTER))
ncdf_stokes(np.array(Ylms[i].clm),np.array(Ylms[i].slm),np.arange(LMAX+1), | np.arange(LMAX+1) | numpy.arange |
'''
Collection of algorithms for transforming coordinates commoly used in
Geophysics.
Glossary:
---------
Geocentric Geodetic Coordinates (GGC)
Geocentric Geodetic System (GGS)
Geocentric Cartesian Coordinates (GCC)
Geocentric Cartesian System (GCS)
Geocentric Spherical Coordinates (GSC)
Geocentric Spherical System (GSS)
Topocentric Cartesian Coordinates (TCC)
Topocentric Cartesian System (TCS)
'''
import numpy as np
from . import utils
def GGC2GCC(height, latitude, longitude, major_semiaxis, minor_semiaxis):
'''
Transform GGC into GCC.
Parameters:
-----------
height: numpy array 1D
Vector containing the geometric height (in meters).
latitude: numpy array 1D
Vector containing the latitude (in degrees).
longitude: numpy array 1D
Vector containing the longitude (in degrees).
major_semiaxis: float
Major semiaxis of the reference ellipsoid (in meters).
minor_semiaxis: float
Minor semiaxis of the reference ellipsoid (in meters).
Returns:
--------
X: numpy array 1D
Vector containing the X component of the Cartesian coordinates (in
meters).
Y: numpy array 1D
Vector containing the X component of the Cartesian coordinates (in
meters).
Z: numpy array 1D
Vector containing the Z component of the Cartesian coordinates (in
meters).
'''
h = np.asarray(height)
lat = np.asarray(latitude)
lon = np.asarray(longitude)
assert (h.size == lat.size == lon.size), 'height, latitude \
and longitude must have the same number of elements'
assert (major_semiaxis > minor_semiaxis), 'major_semiaxis must be greater \
than the minor_semiaxis'
#Prime vertical radius of curvature
N = utils.prime_vertical_curv(major_semiaxis, minor_semiaxis, lat)
# convert degrees to radians
lat = np.deg2rad(lat)
lon = np.deg2rad(lon)
aux = N + height
# squared first eccentricity
e2 = (major_semiaxis**2. - minor_semiaxis**2.)/(major_semiaxis**2.)
clat = np.cos(lat)
slat = np.sin(lat)
clon = np.cos(lon)
slon = np.sin(lon)
X = aux*clat*clon
Y = aux*clat*slon
Z = (N*(1 - e2) + height)*slat
return X, Y, Z
def GCC2GGC(X, Y, Z, major_semiaxis, minor_semiaxis, itmax = 5):
'''
Convert GCC into GGC by using the Hirvonen-Moritz algorithm
(Hofmann-Wellenhof and Moritz, 2005, p. 193).
Parameters:
-----------
X: numpy array 1D or float
Vector containing the x component of the Cartesian coordinates (in
meters).
Y: numpy array 1D or float
Vector containing the y component of the Cartesian coordinates (in
meters).
Z: numpy array 1D or float
Vector containing the z component of the Cartesian coordinates (in
meters).
major_semiaxis: float
Major semiaxis of the reference ellipsoid (in meters).
minor_semiaxis: float
Minor semiaxis of the reference ellipsoid (in meters).
itmax: int
Maximum number of iterations in the Hirvonen-Moritz algorithm. Default
is 5.
Returns:
--------
height: numpy array 1D
Vector containing the geometric height (in meters).
latitude: numpy array 1D
Vector containing the latitude (in degrees).
longitude: numpy array 1D
Vector containing the longitude (in degrees).
'''
x = np.asarray(X)
y = np.asarray(Y)
z = np.asarray(Z)
assert (x.size == y.size == z.size), \
'x, y and z must have the same number of elements'
assert (major_semiaxis > minor_semiaxis), 'major_semiaxis must be greater \
than the minor_semiaxis'
# horizontal distance
p = np.sqrt(x**2. + y**2.)
# null and non-null horizontal distances
p_non_null = (p >= 1e-8)
p_null = np.logical_not(p_non_null)
lon = np.zeros_like(x)
lat = np.zeros_like(x)
height = np.zeros_like(x)
# squared first eccentricity
e2 = (major_semiaxis**2. - minor_semiaxis**2.)/(major_semiaxis**2.)
aux1 = z[p_non_null]/p[p_non_null]
aux2 = 1.- e2
# define the coordinates for null horizontal distances
lon[p_null] = 0.
height[p_null] = np.abs(z[p_null]) - minor_semiaxis
lat[p_null] = np.sign(z[p_null])*np.pi*0.5
# first iteration
lat[p_non_null] = np.arctan(aux1/aux2)
sinlat = np.sin(lat[p_non_null])
N = major_semiaxis/np.sqrt(1 - e2*sinlat*sinlat)
height[p_non_null] = p[p_non_null]/np.cos(lat[p_non_null]) - N
for i in range(itmax):
aux3 = e2*N/(N + height[p_non_null])
lat[p_non_null] = np.arctan(aux1/(1.-aux3))
sinlat = np.sin(lat[p_non_null])
N = major_semiaxis/np.sqrt(1 - e2*sinlat*sinlat)
height[p_non_null] = p[p_non_null]/np.cos(lat[p_non_null]) - N
lon[p_non_null] = np.arctan2(y[p_non_null], x[p_non_null])
# convert latitude and longitude from radians to degrees
latitude = np.rad2deg(lat)
longitude = np.rad2deg(lon)
return height, latitude, longitude
def GCC2GGC_approx(X, Y, Z, major_semiaxis, minor_semiaxis):
'''
Convert GCC into GGC by using an approximated formula (Hofmann-Wellenhof
and Moritz, 2005, p. 196).
Parameters:
-----------
X: numpy array 1D or float
Vector containing the x component of the Cartesian coordinates (in
meters).
Y: numpy array 1D or float
Vector containing the y component of the Cartesian coordinates (in
meters).
Z: numpy array 1D or float
Vector containing the z component of the Cartesian coordinates (in
meters).
major_semiaxis: float
Major semiaxis of the reference ellipsoid (in meters).
minor_semiaxis: float
Minor semiaxis of the reference ellipsoid (in meters).
Returns:
--------
height: numpy array 1D
Vector containing the geometric height (in meters).
latitude: numpy array 1D
Vector containing the latitude (in degrees).
longitude: numpy array 1D
Vector containing the longitude (in degrees).
'''
x = np.asarray(X)
y = np.asarray(Y)
z = np.asarray(Z)
assert (x.size == y.size == z.size), \
'x, y and z must have the same number of elements'
assert (major_semiaxis > minor_semiaxis), 'major_semiaxis must be greater \
than the minor_semiaxis'
# horizontal distance
p = np.sqrt(x**2. + y**2.)
# null and non-null horizontal distances
p_non_null = (p >= 1e-8)
p_null = np.logical_not(p_non_null)
lon = np.zeros_like(x)
lat = np.zeros_like(x)
height = np.zeros_like(x)
# define the coordinates for null horizontal distances
lon[p_null] = 0.
height[p_null] = np.abs(z[p_null]) - minor_semiaxis
lat[p_null] = np.sign(z[p_null])*np.pi*0.5
# squared first eccentricity
e2 = (major_semiaxis**2. - minor_semiaxis**2.)/(major_semiaxis**2.)
# squared second eccentricity
elinha2 = (major_semiaxis**2. - minor_semiaxis**2.)/(minor_semiaxis**2.)
# auxiliary variable
theta = np.arctan(
z[p_non_null]*major_semiaxis/(p[p_non_null]*minor_semiaxis)
)
sintheta = np.sin(theta)
costheta = np.cos(theta)
aux1 = z[p_non_null] + elinha2*minor_semiaxis*sintheta*sintheta*sintheta
aux2 = p[p_non_null] - e2*major_semiaxis*costheta*costheta*costheta
#lat[p_non_null] = np.arctan(aux1/aux2)
lat[p_non_null] = np.arctan2(aux1, aux2)
#lon[p_non_null] = np.arctan(y[p_non_null]/x[p_non_null])
lon[p_non_null] = np.arctan2(y[p_non_null], x[p_non_null])
sinlat = np.sin(lat[p_non_null])
N = major_semiaxis/np.sqrt(1 - e2*sinlat*sinlat)
height[p_non_null] = p[p_non_null]/np.cos(lat[p_non_null]) - N
# convert latitude and longitude from radians to degrees
latitude = np.rad2deg(lat)
longitude = np.rad2deg(lon)
return height, latitude, longitude
def GCC2TCC(X, Y, Z, X0, Y0, Z0, latitude_0, longitude_0):
'''
Convert GCC into TCC with origin at a point Q = (X0, Y0, Z0). The point Q
has latitude and longitude given by latitude_0 and longitude_0,
respectively. This TCS has axis x pointing to north, axis z
pointing to the inward normal and axis y completing the right-handed
system. If latitude_0 is geodetic, then the computed normal is defined with
respect to the referrence elipsoid. If latitude_0 is spherical, then the
normal is defined with respect to a sphere.
The transformation is computed as follows:
x = vX*(X - X0) + vY*(Y - Y0) + vZ*(Z - Z0)
y = wX*(X - X0) + wY*(Y - Y0)
z = -uX*(X - X0) - uY*(Y - Y0) - uZ*(Z - Z0)
where uX, uY, uZ, vX, vY, vZ, wX, and wy are components of the unit vectors
(referred to the GCS) pointing to the orthogonal directions of the GGS
at the point Q.
Parameters:
-----------
X, Y, Z: numpy arrays 1D
Vectors containing the coordinates x, y and z (in meters), respectively,
of the points referred to the GCS.
X0, Y0, Z0: floats
Coordinates of the origin in the GCS.
latitude_0: float
Latitude (in degrees) of the origin Q.
longitude_0: float
Longitude (in degrees) of the origin Q.
Returns:
--------
x: numpy array 1D
Vector containing the x component of TCC (in meters).
y: numpy array 1D
Vector containing the y component of TCC (in meters).
z: numpy array 1D
Vector containing the z component of TCC (in meters).
'''
X = np.asarray(X)
Y = np.asarray(Y)
Z = np.asarray(Z)
assert (X.shape == Y.shape == Z.shape), 'X, Y and Z must have the same \
shape'
assert np.isscalar(X0), 'X0 must be a scalar'
assert np.isscalar(Y0), 'Y0 must be a scalar'
assert np.isscalar(Z0), 'Z0 must be a scalar'
assert | np.isscalar(latitude_0) | numpy.isscalar |
""" Unit-testing module for weighted_npairs_s_mu
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import pytest
import numpy as np
from astropy.utils.misc import NumpyRNGContext
from ..npairs_s_mu import npairs_s_mu
from ..weighted_npairs_s_mu import weighted_npairs_s_mu
__all__ = ('test1', )
fixed_seed = 43
def test1():
"""
"""
Npts = 1000
with NumpyRNGContext(fixed_seed):
random_sample = np.random.random((Npts, 3))
period = np.array([1.0, 1.0, 1.0])
# define bins
s_bins = np.array([0.0, 0.1, 0.2, 0.3])
N_mu_bins = 100
mu_bins = np.linspace(0, 1.0, N_mu_bins)
Npts = len(random_sample)
weights1 = np.ones(Npts)
weights2 = np.ones(Npts)
# count pairs using optimized double tree pair counter
unweighted_counts1 = npairs_s_mu(random_sample, random_sample, s_bins, mu_bins, period=period)
unweighted_counts2, weighted_counts = weighted_npairs_s_mu(random_sample, random_sample,
weights1, weights2, s_bins, mu_bins, period=period)
assert np.all(unweighted_counts1 == unweighted_counts2)
assert np.all(unweighted_counts1 == weighted_counts)
def test2():
"""
"""
Npts = 1000
with NumpyRNGContext(fixed_seed+1):
random_sample = np.random.random((Npts, 3))
weights1 = np.random.rand(Npts)
weights2 = np.random.rand(Npts)
period = np.array([1.0, 1.0, 1.0])
# define bins
s_bins = np.array([0.0, 0.1, 0.2, 0.3])
N_mu_bins = 100
mu_bins = np.linspace(0, 1.0, N_mu_bins)
Npts = len(random_sample)
# count pairs using optimized double tree pair counter
unweighted_counts1 = npairs_s_mu(random_sample, random_sample, s_bins, mu_bins, period=period)
unweighted_counts2, weighted_counts = weighted_npairs_s_mu(random_sample, random_sample,
weights1, weights2, s_bins, mu_bins, period=period)
assert np.all(unweighted_counts1 == unweighted_counts2)
assert np.all(unweighted_counts1 != weighted_counts)
def test_weight_consistency():
"""
"""
Npts = 1000
with NumpyRNGContext(fixed_seed):
random_sample = | np.random.random((Npts, 3)) | numpy.random.random |
import math
import numpy as np
class Atom:
def __init__(self, atom_string):
self.id = int(atom_string[6:11])
self.name = atom_string[11:16].strip()
self.alt = atom_string[16]
self.resn = atom_string[17:20].strip()
self.chain = atom_string[21]
self.resi = int(atom_string[22:26])
self.x = float(atom_string[30:38])
self.y = float(atom_string[38:46])
self.z = float(atom_string[46:54])
self.pos = np.array([self.x,self.y,self.z])
self.occ = float(atom_string[54:60])
self.temp_factor = float(atom_string[60:66])
if len(atom_string)>=78:
self.elem = atom_string[76:78].strip()
def __str__(self):
return self.name+"_"+str(self.resi)
def __repr__(self):
return 'Atom("ATOM %5d%5s %3s %c%4d %8.3f%8.3f%8.3f")' % (self.id, self.name, self.resn, self.chain, self.resi, self.x, self.y, self.z)
def pdbString(self):
return 'ATOM %5d%5s %3s %c%4d %8.3f%8.3f%8.3f' % (self.id, self.name, self.resn, self.chain, self.resi, self.x, self.y, self.z)
def __sub__(self, other):
return np.array([self.x-other.x, self.y-other.y, self.z-other.z])
def __add__(self, other):
return np.array([self.x+other.x, self.y+other.y, self.z+other.z])
def distance(self, a):
return math.sqrt((self.x-a.x)**2 + (self.y-a.y)**2 + (self.z-a.z)**2)
def distanceSquared(self, a):
return (self.x-a.x)**2 + (self.y-a.y)**2 + (self.z-a.z)**2
class PDBFile:
""" A representation of a PDB-file """
def pdbDownload(self,pdb_id):
hostname="ftp.wwpdb.org"
directory="/pub/pdb/data/structures/all/pdb/"
prefix="pdb"
suffix=".ent.gz"
import os, sys, ftplib, shutil, gzip
# Log into server
#print "Downloading %s from %s ..." % (pdb_id, hostname)
ftp = ftplib.FTP()
ftp.connect(hostname)
ftp.login()
# Download all files in file_list
to_get = "%s/%s%s%s" % (directory,prefix,pdb_id.lower(),suffix)
to_write = "%s%s" % (pdb_id,suffix)
final_name = "%s.pdb" % to_write[:to_write.index(".")]
try:
ftp.retrbinary("RETR %s" % to_get,open(to_write,"wb").write)
f = gzip.open(to_write,'r')
g = open(final_name,'w')
g.writelines(f.readlines())
f.close()
g.close()
os.remove(to_write)
except ftplib.error_perm:
os.remove(to_write)
print("ERROR! %s could not be retrieved from PDB!" % to_get)
ftp.quit()
return None
# Log out
ftp.quit()
return final_name
def __init__(self, pdb):
""" Initialize a PDBFile object using a PDB-file or PDB-id. If pdb is 4 characters long
its assumed to be a PDB-id and the corresponding PDB-file will be downloaded and used. """
self.file_name = pdb
self.models = []
cur_model = None
if len(pdb)==4:
self.file_name = self.pdbDownload(pdb)
if self.file_name.endswith(".gz"):
import gzip
f = gzip.open(self.file_name, "r")
lines = map(lambda l: l.decode('ascii'), f.readlines())
else:
f = open(self.file_name,'r')
lines = f.readlines()
for line in lines:
if line[0:4] == "ATOM":
if cur_model==None: cur_model = []
cur_model.append(Atom(line))
if (line[0:6] == "ENDMDL" or line[0:5] == "MODEL") and cur_model!=None:
self.models.append(cur_model)
cur_model = None
if cur_model!=None:
self.models.append(cur_model)
f.close()
def removeResidues(self, residues):
for model in range(len(self.models)):
self.models[model] = [ a for a in self.models[model] if not a.resi in residues ]
def getAtom(self, res_number, atom_name, model_number = 0):
for atom in self.models[model_number]:
if atom.resi==res_number and atom.name==atom_name:
return atom
def getAtomById(self, atom_id):
for model in self.models:
for atom in model:
if atom.id==atom_id:
return atom
def getAtoms(self, model_number = 0):
return self.models[model_number]
def getAtomsInResi(self, resi, model_number = 0):
ret = []
for atom in self.models[model_number]:
if atom.resi==resi:
ret.append(atom)
return ret
def getResidues(self, model_number = 0):
'''
Return a sorted list of all residue numbers in this structure
'''
ret = set()
for atom in self.models[model_number]:
ret.add(atom.resi)
return sorted(list(ret))
def getResidueIDsandNames(self, model_number = 0):
'''
Return a sorted list of all residue numbers and names in this structure
'''
ret = set()
for atom in self.models[model_number]:
ret.add((atom.resi,atom.resn))
return sorted(list(ret))
def getChains(self, model_number = 0):
'''
Return a set of unique chain identifiers
'''
return set(map(lambda a: a.chain, self.models[model_number]))
def getSequence(self, model_number = 0):
'''
Get the sequence of this structure. Currently only works for RNA (single-char resn)
'''
protresnmap={'ALA':'A','ARG':'R','ASN':'N','ASP':'D','ASX':'B','CYS':'C','GLU':'E','GLN':'Q','GLX':'Z','GLY':'G','HIS':'H','ILE':'I','LEU':'L','LYS':'K','MET':'M','PHE':'F','PRO':'P','SER':'S','THR':'T','TRP':'W','TYR':'Y','VAL':'V'}
ret = ''
prevResi = -1000
for atom in self.models[model_number]:
if prevResi==-1000 or prevResi+1==atom.resi:
if len(atom.resn)==1: #Its RNA/DNA: Just use the resn
ret+=atom.resn
else: #Its probably protein. Use the resn map
if atom.resn in protresnmap:
ret+=protresnmap[atom.resn]
else:
ret+='?'
prevResi=atom.resi
else:
while prevResi<atom.resi:
ret+='_'
prevResi+=1
return ret
def bFactorList(self, model_number = 0, names=["C4'","CA"],resis=None):
"""
Get a list of b-factors number of atoms with one of the specified names, an optional list of residues
that can limit b factors to specified residues only, useful for
comparison across non-identical sequences or with missing loops.
"""
ret =[]
for atom in self.models[model_number]:
if names and atom.name not in names: continue
if resis and atom.resi not in resis: continue
ret.append(atom.temp_factor)
return ret
def coordMatrix(self, model_number = 0, names=["C4'","CA"],resis=None):
"""
Get a coordinate-matrix of shape (a, 3) where a is the number of atoms with one of the specified names.
New: an optional list of residues can limit the coordinate Matrix to specified residues only, useful for
comparison across non-identical sequences or with missing loops.
"""
ret = np.zeros( shape=( len(self.models[model_number]) , 3 ) )
a = 0
for atom in self.models[model_number]:
if names and atom.name not in names: continue
if resis and atom.resi not in resis: continue
ret[a][0] = atom.x
ret[a][1] = atom.y
ret[a][2] = atom.z
a+=1
ret.resize(a,3)
return ret
def rmsd(self, pdbFile, model1=0, model2=0, names=None):
"""
Return the smallest root-mean-square-deviation between coordinates in self and pdbFile.
If names is None, then all atoms are used.
"""
crds1 = self.coordMatrix(model1, names=names)
crds2 = pdbFile.coordMatrix(model2, names=names)
assert(crds1.shape[1] == 3)
if crds1.shape[0] != crds2.shape[0]:
print("Structure 1 size does not match structure 2 (", crds1.shape[0], "vs", crds2.shape[0], ")")
assert(crds1.shape == crds2.shape)
n = np.shape(crds1)[0]
# Move crds1 to origo
avg1 = np.zeros(3)
for c1 in crds1:
avg1 += c1
avg1 /= n
for c1 in crds1:
c1 -= avg1
# Move crds2 to origo
avg2 = np.zeros(3)
for c2 in crds2:
avg2 += c2
avg2 /= n
for c2 in crds2:
c2 -= avg2
# Get optimal rotation
# From http://boscoh.com/protein/rmsd-root-mean-square-deviation.html
correlation_matrix = np.dot(np.transpose(crds1), crds2)
u, s, v_tr = np.linalg.svd(correlation_matrix)
r = np.dot(u, v_tr)
r_det = np.linalg.det(r)
if r_det < 0:
# print 'WARNING: MIRRORING'
u[:,-1] = -u[:,-1]
r = np.dot(u, v_tr)
# is_reflection = (np.linalg.det(u) * np.linalg.det(v_tr))
# if is_reflection:
# u[:,-1] = -u[:,-1]
# Apply rotation and find rmsd
import itertools
rms = 0.
for c1, c2 in itertools.izip(crds1, crds2):
c2_r = np.dot(r, c2) #rotate centroid-shifted coordinates
#compute optimal RMSD
tmp = c1-c2_r
rms += | np.dot(tmp, tmp) | numpy.dot |
import numpy as np
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
digits = load_digits()
X = np.round(digits.data / 16.)
y_classed = digits.target
target_arr = digits.target_names
X, X_test, y, y_test = train_test_split(X, y_classed, test_size=0.33,
random_state=42)
m = X.shape[0]
n = X.shape[1]
N = target_arr.shape[0]
m_test = X_test.shape[1]
theta = np.zeros((n, N))
for k in range(N):
theta[:, k] = np.sum(X[y == k], axis=0) / len(X[y == k])
unique, counts = np.unique(y, return_counts=True)
priors = np.array([x / np.sum(counts) for x in counts])
class_probs = np.zeros((m, N))
for i, x in enumerate(X):
for k in range(N):
prior = priors[k]
lklhd = np.prod(theta[:, k] ** x * (1 - theta[:, k]) ** (1 - x))
pstrr_k = prior * lklhd
class_probs[i, k] = pstrr_k
class_probs /= np.sum(class_probs, axis=1, keepdims=True)
y_pred_train = np.argmax(class_probs, axis=1)
cm_train = confusion_matrix(y_pred_train, y)
# print(cm_train)
# print(r)
train_accuracy = accuracy_score(y, y_pred_train)
print('training accuracy: {}, trying to beat 0.913549459684123'.format(
train_accuracy))
class_probs_test = np.zeros((m, N))
for i, xt in enumerate(X_test):
for k in range(N):
prior = priors[k]
lklhd = np.prod(theta[:, k] ** xt * (1 - theta[:, k]) ** (1 - xt))
pstrr_k = prior * lklhd
class_probs_test[i, k] = pstrr_k
class_probs_test /= | np.sum(class_probs_test, axis=1, keepdims=True) | numpy.sum |
# -*- coding: utf-8 -*-
"""
Merge two X/y. Takes care of reading two feature/label files, merges them and shuffels them
and writes them to new output directory.
Of course, I could also generalize to two lists of X and ys, respectively but this might lead
to even worse practices.
One big approximation of all of this is that all data fits into memory in once. But it should not be
hard to wrap it in Dask if this is not the case.
"""
import os
import pickle
import click
import numpy as np
from sklearn.utils import shuffle
from oximachine_featurizer.utils import read_pickle
RANDOM_SEED = 1234
class Merger:
"""Class to merge two featrue sets"""
def __init__( # pylint:disable=too-many-arguments
self,
features0,
features1,
labels0,
labels1,
names0,
names1,
outdir_features,
outdir_labels,
outdir_names,
):
self.features0 = features0
self.features1 = features1
# make sure that they have the same number of features
assert self.features0.shape[1] == self.features1.shape[1]
self.labels0 = labels0
self.labels1 = labels1
self.names0 = names0
self.names1 = names1
# make sure labels have the same number of columns (one) and the same length as the corresponding features
assert len(self.features0) == len(self.labels0)
assert len(self.features1) == len(self.labels1)
assert len(self.labels0) == len(self.names0)
assert len(self.labels1) == len(self.labels1)
# set the outdir
self.outdir_features = outdir_features
self.outdir_labels = outdir_labels
self.outdir_names = outdir_names
@staticmethod
def stack_arrays(features0, features1, labels0, labels1, names0, names1):
"""Perform the actual merging"""
X = np.vstack([features0, features1]) # pylint:disable=invalid-name
y = np.array(list(labels0) + list(labels1)) # pylint:disable=invalid-name
names = names0 + names1
return X, y, names
@classmethod
def from_files( # pylint:disable=too-many-arguments
cls,
features0path,
features1path,
labels0path,
labels1path,
names0path,
names1path,
outdir_features,
outdir_labels,
outdir_names,
):
"""Construct class from filepaths"""
features0 = np.load(features0path)
features1 = np.load(features1path)
labels0 = | np.load(labels0path) | numpy.load |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.