prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
"""Distributed containers for holding various types of analysis data. Containers ========== .. autosummary:: :toctree: TimeStream SiderealStream GainData StaticGainData Map MModes RingMap Container Base Classes ---------------------- .. autosummary:: :toctree: ContainerBase TODContainer VisContainer Helper Routines --------------- These routines are designed to be replaced by other packages trying to insert their own custom container types. .. autosummary:: :toctree: empty_like empty_timestream """ import inspect import numpy as np from caput import memh5, tod # Try to import bitshuffle to set the default compression options try: import bitshuffle.h5 COMPRESSION = bitshuffle.h5.H5FILTER COMPRESSION_OPTS = (0, bitshuffle.h5.H5_COMPRESS_LZ4) except ImportError: COMPRESSION = None COMPRESSION_OPTS = None class ContainerBase(memh5.BasicCont): """A base class for pipeline containers. This class is designed to do much of the work of setting up pipeline containers. It should be derived from, and two variables set `_axes` and `_dataset_spec`. See the `Notes`_ section for details. Parameters ---------- axes_from : `memh5.BasicCont`, optional Another container to copy axis definitions from. Must be supplied as keyword argument. attrs_from : `memh5.BasicCont`, optional Another container to copy attributes from. Must be supplied as keyword argument. This applies to attributes in default datasets too. skip_datasets : bool, optional Skip creating datasets. They must all be added manually with `.add_dataset` regardless of the entry in `.dataset_spec`. Default is False. kwargs : dict Should contain entries for all other axes. Notes ----- Inheritance from other `ContainerBase` subclasses should work as expected, with datasets defined in super classes appearing as expected, and being overriden where they are redefined in the derived class. The variable `_axes` should be a tuple containing the names of axes that datasets in this container will use. The variable `_dataset_spec` should define the datasets. It's a dictionary with the name of the dataset as key. Each entry should be another dictionary, the entry 'axes' is mandatory and should be a list of the axes the dataset has (these should correspond to entries in `_axes`), as is `dtype` which should be a datatype understood by numpy. Other possible entries are: - `initialise` : if set to `True` the dataset will be created as the container is initialised. - `distributed` : the dataset will be distributed if the entry is `True`, if `False` it won't be, and if not set it will be distributed if the container is set to be. - `distributed_axis` : the axis to distribute over. Should be a name given in the `axes` entry. """ _axes = () _dataset_spec = {} convert_attribute_strings = True convert_dataset_strings = True def __init__(self, *args, **kwargs): # Pull out the values of needed arguments axes_from = kwargs.pop("axes_from", None) attrs_from = kwargs.pop("attrs_from", None) skip_datasets = kwargs.pop("skip_datasets", False) dist = kwargs.pop("distributed", True) comm = kwargs.pop("comm", None) self.allow_chunked = kwargs.pop("allow_chunked", False) # Run base initialiser memh5.BasicCont.__init__(self, distributed=dist, comm=comm) # Check to see if this call looks like it was called like # memh5.MemDiskGroup would have been. If it is, we're probably trying to # create a bare container, so don't initialise any datasets. This # behaviour is needed to support tod.concatenate if len(args) or "data_group" in kwargs: return # Create axis entries for axis in self.axes: axis_map = None # Check if axis is specified in initialiser if axis in kwargs: # If axis is an integer, turn into an arange as a default definition if isinstance(kwargs[axis], int): axis_map = np.arange(kwargs[axis]) else: axis_map = kwargs[axis] # If not set in the arguments copy from another object if set elif axes_from is not None and axis in axes_from.index_map: axis_map = axes_from.index_map[axis] # Set the index_map[axis] if we have a definition, otherwise throw an error if axis_map is not None: self.create_index_map(axis, axis_map) else: raise RuntimeError("No definition of axis %s supplied." % axis) # Iterate over datasets and initialise any that specify it if not skip_datasets: for name, spec in self.dataset_spec.items(): if "initialise" in spec and spec["initialise"]: self.add_dataset(name) # Copy over attributes if attrs_from is not None: # Copy attributes from container root memh5.copyattrs(attrs_from.attrs, self.attrs) # Copy attributes over from any common datasets for name in self.dataset_spec.keys(): if name in self.datasets and name in attrs_from.datasets: attrs_no_axis = { k: v for k, v in attrs_from.datasets[name].attrs.items() if k != "axis" } memh5.copyattrs(attrs_no_axis, self.datasets[name].attrs) # Make sure that the __memh5_subclass attribute is accurate clspath = self.__class__.__module__ + "." + self.__class__.__name__ clsattr = self.attrs.get("__memh5_subclass", None) if clsattr and (clsattr != clspath): self.attrs["__memh5_subclass"] = clspath def add_dataset(self, name): """Create an empty dataset. The dataset must be defined in the specification for the container. Parameters ---------- name : string Name of the dataset to create. Returns ------- dset : `memh5.MemDataset` """ # Dataset must be specified if name not in self.dataset_spec: raise RuntimeError("Dataset name not known.") dspec = self.dataset_spec[name] # Fetch dataset properties axes = dspec["axes"] dtype = dspec["dtype"] chunks, compression, compression_opts = None, None, None if self.allow_chunked: chunks = dspec.get("chunks", None) compression = dspec.get("compression", None) compression_opts = dspec.get("compression_opts", None) # Get distribution properties dist = self.distributed and dspec.get("distributed", True) shape = () # Check that all the specified axes are defined, and fetch their lengths for axis in axes: if axis not in self.index_map: if isinstance(axis, int): l = axis else: raise RuntimeError("Axis not defined in index_map") else: l = len(self.index_map[axis]) shape += (l,) # Fetch distributed axis, and turn into axis index dist_axis = ( dspec["distributed_axis"] if "distributed_axis" in dspec else axes[0] ) dist_axis = list(axes).index(dist_axis) # Check chunk dimensions are consistent with axis if chunks is not None: final_chunks = () for i, l in enumerate(shape): final_chunks += (min(chunks[i], l),) chunks = final_chunks # Create dataset dset = self.create_dataset( name, shape=shape, dtype=dtype, distributed=dist, distributed_axis=dist_axis, chunks=chunks, compression=compression, compression_opts=compression_opts, ) dset.attrs["axis"] = np.array(axes) return dset @property def datasets(self): """Return the datasets in this container. Do not try to add a new dataset by assigning to an item of this property. Use `create_dataset` instead. Returns ------- datasets : read only dictionary Entries are :mod:`caput.memh5` datasets. """ out = {} for name, value in self._data.items(): if not memh5.is_group(value): out[name] = value return memh5.ro_dict(out) @property def dataset_spec(self): """Return a copy of the fully resolved dataset specifiction as a dictionary. """ ddict = {} # Iterate over the reversed MRO and look for _table_spec attributes # which get added to a temporary dict. We go over the reversed MRO so # that the `tdict.update` overrides tables in base classes.` for cls in inspect.getmro(self.__class__)[::-1]: try: # NOTE: this is a little ugly as the following line will drop # down to base classes if dataset_spec isn't present, and thus # try and `update` with the same values again. ddict.update(cls._dataset_spec) except AttributeError: pass # Add in any _dataset_spec found on the instance ddict.update(self.__dict__.get("_dataset_spec", {})) # Ensure that the dataset_spec is the same order on all ranks return {k: ddict[k] for k in sorted(ddict)} @classmethod def _class_axes(cls): """Return the set of axes for this container defined by this class and the base classes.""" axes = set() # Iterate over the reversed MRO and look for _table_spec attributes # which get added to a temporary dict. We go over the reversed MRO so # that the `tdict.update` overrides tables in base classes. for c in inspect.getmro(cls)[::-1]: try: axes |= set(c._axes) except AttributeError: pass # This must be the same order on all ranks, so we need to explicitly sort to get around the # hash randomization return tuple(sorted(axes)) @property def axes(self): """The set of axes for this container including any defined on the instance.""" axes = set(self._class_axes()) # Add in any axes found on the instance (this is needed to support the table classes where # the axes get added at run time) axes |= set(self.__dict__.get("_axes", [])) # This must be the same order on all ranks, so we need to explicitly sort to get around the # hash randomization return tuple(sorted(axes)) @classmethod def _make_selections(cls, sel_args): """ Match down-selection arguments to axes of datasets. Parses sel_* argument and returns dict mapping dataset names to selections. Parameters ---------- sel_args : dict Should contain valid numpy indexes as values and axis names (str) as keys. Returns ------- dict Mapping of dataset names to numpy indexes for downselection of the data. Also includes another dict under the key "index_map" that includes the selections for those. """ # Check if all those axes exist for axis in sel_args.keys(): if axis not in cls._class_axes(): raise RuntimeError("No '{}' axis found to select from.".format(axis)) # Build selections dict selections = {} for name, dataset in cls._dataset_spec.items(): ds_axes = dataset["axes"] sel = [] ds_relevant = False for axis in ds_axes: if axis in sel_args: sel.append(sel_args[axis]) ds_relevant = True else: sel.append(slice(None)) if ds_relevant: selections["/" + name] = tuple(sel) # add index maps selections for axis, sel in sel_args.items(): selections["/index_map/" + axis] = sel return selections def copy(self, shared=None): """Copy this container, optionally sharing the source datasets. This routine will create a copy of the container. By default this is as full copy with the contents fully independent. However, a set of dataset names can be given that will share the same data as the source to save memory for large datasets. These will just view the same memory, so any modification to either the original or the copy will be visible to the other. This includes all write operations, addition and removal of attributes, redistribution etc. This functionality should be used with caution and clearly documented. Parameters ---------- shared : list, optional A list of datasets whose content will be shared with the original. Returns ------- copy : subclass of ContainerBase The copied container. """ new_cont = self.__class__( attrs_from=self, axes_from=self, skip_datasets=True, distributed=self.distributed, comm=self.comm, ) # Loop over datasets that exist in the source and either add a view of # the source dataset, or perform a full copy for name, data in self.datasets.items(): if shared and name in shared: # TODO: find a way to do this that doesn't depend on the # internal implementation of BasicCont and MemGroup # NOTE: we don't use `.view()` on the RHS here as we want to # preserve the shared data through redistributions new_cont._data._get_storage()[name] = self._data._get_storage()[name] else: dset = new_cont.add_dataset(name) # Ensure that we have exactly the same distribution if dset.distributed: dset.redistribute(data.distributed_axis) # Copy over the data and attributes dset[:] = data[:] memh5.copyattrs(data.attrs, dset.attrs) return new_cont class TableBase(ContainerBase): """A base class for containers holding tables of data. Similar to the `ContainerBase` class, the container is defined through a dictionary given as a `_table_spec` class attribute. The container may also hold generic datasets by specifying `_dataset_spec` as with `ContainerBase`. See `Notes`_ for details. Parameters ---------- axes_from : `memh5.BasicCont`, optional Another container to copy axis definitions from. Must be supplied as keyword argument. attrs_from : `memh5.BasicCont`, optional Another container to copy attributes from. Must be supplied as keyword argument. This applies to attributes in default datasets too. kwargs : dict Should contain definitions for all other table axes. Notes ----- A `_table_spec` consists of a dictionary mapping table names into a description of the table. That description is another dictionary containing several entries. - `columns` : the set of columns in the table. Given as a list of `(name, dtype)` pairs. - `axis` : an optional name for the rows of the table. This is automatically generated as `'<tablename>_index'` if not explicitly set. This corresponds to an `index_map` entry on the container. - `initialise` : whether to create the table by default. - `distributed` : whether the table is distributed, or common across all MPI ranks. An example `_table_spec` entry is:: _table_spec = { 'quasars': { 'columns': [ ['ra': np.float64], ['dec': np.float64], ['z': np.float64] ], 'distributed': False, 'axis': 'quasar_id' } 'quasar_mask': { 'columns': [ ['mask', np.bool] ], 'axis': 'quasar_id' } } """ _table_spec = {} def __init__(self, *args, **kwargs): # Get the dataset specifiction for this class (not any base classes), or # an empty dictionary if it does not exist. Do the same for the axes entry.. dspec = self.__class__.__dict__.get("_dataset_spec", {}) axes = self.__class__.__dict__.get("_axes", ()) # Iterate over all table_spec entries and construct dataset specifications for them. for name, spec in self.table_spec.items(): # Get the specifieid axis or if not present create a unique one for # this table entry axis = spec.get("axis", name + "_index") dtype = self._create_dtype(spec["columns"]) _dataset = { "axes": [axis], "dtype": dtype, "initialise": spec.get("initialise", True), "distributed": spec.get("distributed", False), "distributed_axis": axis, } dspec[name] = _dataset if axis not in axes: axes += (axis,) self._dataset_spec = dspec self._axes = axes super(TableBase, self).__init__(*args, **kwargs) def _create_dtype(self, columns): """Take a dictionary of columns and turn into the appropriate compound data type. """ dt = [] for ci, (name, dtype) in enumerate(columns): if not isinstance(name, str): raise ValueError("Column %i is invalid" % ci) dt.append((name, dtype)) return dt @property def table_spec(self): """Return a copy of the fully resolved table specifiction as a dictionary. """ import inspect tdict = {} for cls in inspect.getmro(self.__class__)[::-1]: try: tdict.update(cls._table_spec) except AttributeError: pass return tdict class TODContainer(ContainerBase, tod.TOData): """A pipeline container for time ordered data. This works like a normal :class:`ContainerBase` container, with the added ability to be concatenated, and treated like a a :class:`tod.TOData` instance. """ _axes = ("time",) @property def time(self): try: return self.index_map["time"][:]["ctime"] # Need to check for both types as different numpy versions return # different exceptions. except (IndexError, ValueError): return self.index_map["time"][:] class VisContainer(ContainerBase): """A base container for holding a visibility dataset. This works like a :class:`ContainerBase` container, with the ability to create visibility specific axes, if they are not passed as a kwargs parameter. Additionally this container has visibility specific defined properties such as 'vis', 'weight', 'freq', 'input', 'prod', 'stack', 'prodstack', 'conjugate'. Parameters ---------- axes_from : `memh5.BasicCont`, optional Another container to copy axis definitions from. Must be supplied as keyword argument. attrs_from : `memh5.BasicCont`, optional Another container to copy attributes from. Must be supplied as keyword argument. This applies to attributes in default datasets too. kwargs : dict Should contain entries for all other axes. """ _axes = ("freq", "input", "prod", "stack") def __init__(self, *args, **kwargs): # Resolve product map prod = None if "prod" in kwargs: prod = kwargs["prod"] elif ("axes_from" in kwargs) and ("prod" in kwargs["axes_from"].index_map): prod = kwargs["axes_from"].index_map["prod"] # Resolve input map inputs = None if "input" in kwargs: inputs = kwargs["input"] elif ("axes_from" in kwargs) and ("input" in kwargs["axes_from"].index_map): inputs = kwargs["axes_from"].index_map["input"] # Resolve stack map stack = None if "stack" in kwargs: stack = kwargs["stack"] elif ("axes_from" in kwargs) and ("stack" in kwargs["axes_from"].index_map): stack = kwargs["axes_from"].index_map["stack"] # Automatically construct product map from inputs if not given if prod is None and inputs is not None: nfeed = inputs if isinstance(inputs, int) else len(inputs) kwargs["prod"] = np.array( [[fi, fj] for fi in range(nfeed) for fj in range(fi, nfeed)] ) if stack is None and prod is not None: stack = np.empty_like(prod, dtype=[("prod", "<u4"), ("conjugate", "u1")]) stack["prod"][:] = np.arange(len(prod)) stack["conjugate"] = 0 kwargs["stack"] = stack # Call initializer from `ContainerBase` super(VisContainer, self).__init__(*args, **kwargs) reverse_map_stack = None # Create reverse map if "reverse_map_stack" in kwargs: # If axis is an integer, turn into an arange as a default definition if isinstance(kwargs["reverse_map_stack"], int): reverse_map_stack = np.arange(kwargs["reverse_map_stack"]) else: reverse_map_stack = kwargs["reverse_map_stack"] # If not set in the arguments copy from another object if set elif ("axes_from" in kwargs) and ("stack" in kwargs["axes_from"].reverse_map): reverse_map_stack = kwargs["axes_from"].reverse_map["stack"] # Set the reverse_map['stack'] if we have a definition, # otherwise do NOT throw an error, errors are thrown in # classes that actually need a reverse stack if reverse_map_stack is not None: self.create_reverse_map("stack", reverse_map_stack) @property def vis(self): """The visibility like dataset.""" return self.datasets["vis"] @property def weight(self): """The visibility weights.""" return self.datasets["vis_weight"] @property def freq(self): """The frequency axis.""" return self.index_map["freq"]["centre"] @property def input(self): """The correlated inputs.""" return self.index_map["input"] @property def prod(self): """All the pairwise products that are represented in the data.""" return self.index_map["prod"] @property def stack(self): """The stacks definition as an index (and conjugation) of a member product.""" return self.index_map["stack"] @property def prodstack(self): """A pair of input indices representative of those in the stack. Note, these are correctly conjugated on return, and so calculations of the baseline and polarisation can be done without additionally looking up the stack conjugation. """ if not self.is_stacked: return self.prod t = self.index_map["prod"][:][self.index_map["stack"]["prod"]] prodmap = t.copy() conj = self.stack["conjugate"] prodmap["input_a"] = np.where(conj, t["input_b"], t["input_a"]) prodmap["input_b"] =
np.where(conj, t["input_a"], t["input_b"])
numpy.where
import photutils from astropy.io import fits, ascii import matplotlib as mpl from mpl_toolkits.axes_grid1 import make_axes_locatable import sys import os from pkg_resources import resource_filename if 'DISPLAY' not in os.environ: mpl.use('Agg') import matplotlib.pyplot as plt from matplotlib import patches from matplotlib import gridspec import glob from photutils import CircularAperture, CircularAnnulus from photutils import RectangularAperture from photutils import aperture_photometry import photutils if photutils.__version__ > "1.0": from . import fit_2dgauss from photutils.centroids import centroid_2dg else: from photutils import centroid_2dg import numpy as np from astropy.time import Time import astropy.units as u import pdb from copy import deepcopy import yaml import warnings from scipy.stats import binned_statistic from astropy.table import Table import multiprocessing from multiprocessing import Pool import time import logging import urllib import tqdm maxCPUs = multiprocessing.cpu_count() // 3 try: import bokeh.plotting from bokeh.models import ColumnDataSource, HoverTool from bokeh.models import Range1d from bokeh.models import WheelZoomTool except ImportError as err2: print("Could not import bokeh plotting. Interactive plotting may not work") from .utils import robust_poly, robust_statistics from .utils import get_baseDir from .instrument_specific import rowamp_sub def run_one_phot_method(allInput): """ Do a photometry/spectroscopy method on one file For example, do aperture photometry on one file This is a slightly awkward workaround because multiprocessing doesn't work on object methods So it's a separate function that takes an object and runs the method Parameters ----------- allInput: 3 part tuple (object, int, string) This contains the object, file index to run (0-based) and name of the method to run """ photObj, ind, method = allInput photMethod = getattr(photObj,method) return photMethod(ind) def run_multiprocessing_phot(photObj,fileIndices,method='phot_for_one_file'): """ Run photometry/spectroscopy methods on all files using multiprocessing Awkward workaround because multiprocessing doesn't work on object methods Parameters ---------- photObj: Photometry object A photometry Object instance fileIndices: list List of file indices method: str Method on which to apply multiprocessing """ allInput = [] for oneInd in fileIndices: allInput.append([photObj,oneInd,method]) n_files = len(fileIndices) if n_files < maxCPUs: raise Exception("Fewer files to process than CPUs, this can confuse multiprocessing") p = Pool(maxCPUs) outputDat = list(tqdm.tqdm(p.imap(run_one_phot_method,allInput),total=n_files)) p.close() return outputDat def read_yaml(filePath): with open(filePath) as yamlFile: yamlStructure = yaml.safe_load(yamlFile) return yamlStructure path_to_example = "parameters/phot_params/example_phot_parameters.yaml" exampleParamPath = resource_filename('tshirt',path_to_example) class phot: def __init__(self,paramFile=exampleParamPath, directParam=None): """ Photometry class Parameters ------ paramFile: str Location of the YAML file that contains the photometry parameters as long as directParam is None. Otherwise, it uses directParam directParam: dict Rather than use the paramFile, you can put a dictionary here. This can be useful for running a batch of photometric extractions. Properties ------- paramFile: str Same as paramFile above param: dict The photometry parameters like file names, aperture sizes, guess locations fileL: list The files on which photometry will be performed nImg: int Number of images in the sequence directParam: dict Parameter dictionary rather than YAML file (useful for batch processing) """ self.pipeType = 'photometry' self.get_parameters(paramFile=paramFile,directParam=directParam) defaultParams = {'srcGeometry': 'Circular', 'bkgSub': True, 'isCube': False, 'cubePlane': 0, 'doCentering': True, 'bkgGeometry': 'CircularAnnulus', 'boxFindSize': 18,'backStart': 9, 'backEnd': 12, 'scaleAperture': False, 'apScale': 2.5, 'apRange': [0.01,9999], 'scaleBackground': False, 'nanTreatment': 'zero', 'backOffset': [0.0,0.0], 'srcName': 'WASP 62','srcNameShort': 'wasp62', 'refStarPos': [[50,50]],'procFiles': '*.fits', 'apRadius': 9,'FITSextension': 0, 'jdRef': 2458868, 'nightName': 'UT2020-01-20','srcName' 'FITSextension': 0, 'HEADextension': 0, 'refPhotCentering': None,'isSlope': False, 'itimeKeyword': 'INTTIME','readNoise': None, 'detectorGain': None,'cornerSubarray': False, 'subpixelMethod': 'exact','excludeList': None, 'dateFormat': 'Two Part','copyCentroidFile': None, 'bkgMethod': 'mean','diagnosticMode': False, 'bkgOrderX': 1, 'bkgOrderY': 1,'backsub_directions': ['Y','X'], 'readFromTshirtExamples': False, 'saturationVal': None, 'satNPix': 5, 'nanReplaceValue': 0.0, 'DATE-OBS': None, 'driftFile': None } for oneKey in defaultParams.keys(): if oneKey not in self.param: self.param[oneKey] = defaultParams[oneKey] xCoors, yCoors = [], [] positions = self.param['refStarPos'] self.nsrc = len(positions) ## Set up file names for output self.check_file_structure() self.dataFileDescrip = self.param['srcNameShort'] + '_'+ self.param['nightName'] self.photFile = os.path.join(self.baseDir,'tser_data','phot','phot_'+self.dataFileDescrip+'.fits') self.centroidFile = os.path.join(self.baseDir,'centroids','cen_'+self.dataFileDescrip+'.fits') self.refCorPhotFile = os.path.join(self.baseDir,'tser_data','refcor_phot','refcor_'+self.dataFileDescrip+'.fits') # Get the file list self.fileL = self.get_fileList() self.nImg = len(self.fileL) self.srcNames = np.array(np.arange(self.nsrc),dtype=str) self.srcNames[0] = 'src' self.set_up_apertures(positions) self.check_parameters() self.get_drift_dat() def get_parameters(self,paramFile,directParam=None): if directParam is None: self.paramFile = paramFile self.param = read_yaml(paramFile) else: self.paramFile = 'direct dictionary' self.param = directParam def check_file_structure(self): """ Check the file structure for plotting/saving data """ baseDir = get_baseDir() structure_file = resource_filename('tshirt','directory_info/directory_list.yaml') dirList = read_yaml(structure_file) for oneFile in dirList: fullPath = os.path.join(baseDir,oneFile) ensure_directories_are_in_place(fullPath) self.baseDir = baseDir def get_fileList(self): if self.param['readFromTshirtExamples'] == True: ## Find the files from the package data examples ## This is only when running example pipeline runs or tests search_path = os.path.join(self.baseDir,'example_tshirt_data',self.param['procFiles']) if len(glob.glob(search_path)) == 0: print("Did not find example tshirt data. Now attempting to download...") get_tshirt_example_data() else: search_path = self.param['procFiles'] origList = np.sort(glob.glob(search_path)) if self.param['excludeList'] is not None: fileList = [] for oneFile in origList: if os.path.basename(oneFile) not in self.param['excludeList']: fileList.append(oneFile) else: fileList = origList if len(fileList) == 0: print("Note: File Search comes up empty") if os.path.exists(self.photFile): print("Note: Reading file list from previous phot file instead.") t1 = Table.read(self.photFile,hdu='FILENAMES') fileList = np.array(t1['File Path']) return fileList def check_parameters(self): assert type(self.param['backOffset']) == list,"Background offset is not a list" assert len(self.param['backOffset']) == 2,'Background offset must by a 2 element list' def set_up_apertures(self,positions): if self.param['srcGeometry'] == 'Circular': self.srcApertures = CircularAperture(positions,r=self.param['apRadius']) elif self.param['srcGeometry'] == 'Square': self.srcApertures = RectangularAperture(positions,w=self.param['apRadius'], h=self.param['apRadius'],theta=0) elif self.param['srcGeometry'] == 'Rectangular': self.srcApertures = RectangularAperture(positions,w=self.param['apWidth'], h=self.param['apHeight'],theta=0) else: print('Unrecognized aperture') self.xCoors = self.srcApertures.positions[:,0] self.yCoors = self.srcApertures.positions[:,1] if self.param['bkgSub'] == True: bkgPositions = np.array(deepcopy(positions)) bkgPositions[:,0] = bkgPositions[:,0] + self.param['backOffset'][0] bkgPositions[:,1] = bkgPositions[:,1] + self.param['backOffset'][1] if self.param['bkgGeometry'] == 'CircularAnnulus': self.bkgApertures = CircularAnnulus(bkgPositions,r_in=self.param['backStart'], r_out=self.param['backEnd']) elif self.param['bkgGeometry'] == 'Rectangular': self.bkgApertures = RectangularAperture(bkgPositions,w=self.param['backWidth'], h=self.param['backHeight'],theta=0) else: raise ValueError('Unrecognized background geometry') def get_default_index(self): """ Get the default index from the file list """ return self.nImg // 2 def get_default_im(self,img=None,head=None): """ Get the default image for postage stamps or star identification maps""" ## Get the data if img is None: img, head = self.getImg(self.fileL[self.get_default_index()]) return img, head def get_default_cen(self,custPos=None,ind=0): """ Get the default centroids for postage stamps or star identification maps Parameters ---------- custPos: numpy array Array of custom positions for the apertures. Otherwise it uses the guess position ind: int Image index. This is used to guess the position if a drift file is given """ if custPos is None: initialPos = deepcopy(self.srcApertures.positions) showApPos = np.zeros_like(initialPos) showApPos[:,0] = initialPos[:,0] + float(self.drift_dat['dx'][ind]) showApPos[:,1] = initialPos[:,1] + float(self.drift_dat['dy'][ind]) else: showApPos = custPos return showApPos def get_drift_dat(self): drift_dat_0 = Table() drift_dat_0['Index'] = np.arange(self.nImg) #drift_dat_0['File'] = self.fileL drift_dat_0['dx'] = np.zeros(self.nImg) drift_dat_0['dy'] = np.zeros(self.nImg) if self.param['driftFile'] == None: self.drift_dat = drift_dat_0 drift_file_found = False else: if self.param['readFromTshirtExamples'] == True: ## Find the files from the package data examples ## This is only when running example pipeline runs or tests drift_file_path = os.path.join(self.baseDir,'example_tshirt_data',self.param['driftFile']) else: drift_file_path = self.param['driftFile'] if os.path.exists(drift_file_path) == False: drift_file_found = False warnings.warn("No Drift file found at {}".format(drift_file_path)) else: drift_file_found = True self.drift_dat = ascii.read(drift_file_path) return drift_file_found def make_drift_file(self,srcInd=0,refIndex=0): """ Use the centroids in photometry to generate a drift file of X/Y offsets Parameters ---------- srcInd: int The source index used for drifts refIndex: int Which file index corresponds to 0.0 drift """ HDUList = fits.open(self.photFile) cenData = HDUList['CENTROIDS'].data photHead = HDUList['PHOTOMETRY'].header nImg = photHead['NIMG'] drift_dat = Table() drift_dat['Index'] = np.arange(nImg) x = cenData[:,srcInd,0] drift_dat['dx'] = x - x[refIndex] y = cenData[:,srcInd,1] drift_dat['dy'] = y - y[refIndex] drift_dat['File'] = HDUList['FILENAMES'].data['File Path'] outPath = os.path.join(self.baseDir,'centroids','drift_'+self.dataFileDescrip+'.ecsv') drift_dat.meta['Zero Index'] = refIndex drift_dat.meta['Source Used'] = srcInd drift_dat.meta['Zero File'] = str(drift_dat['File'][refIndex]) print("Saving Drift file to {}".format(outPath)) drift_dat.write(outPath,overwrite=True,format='ascii.ecsv') def showStarChoices(self,img=None,head=None,custPos=None,showAps=False, srcLabel=None,figSize=None,showPlot=False, apColor='black',backColor='black', vmin=None,vmax=None,index=None, labelColor='white', xLim=None,yLim=None, txtOffset=20): """ Show the star choices for photometry Parameters ------------------ img : numpy 2D array, optional An image to plot head : astropy FITS header, optional header for image custPos : numpy 2D array or list of tuple coordinates, optional Custom positions showAps : bool, optional Show apertures rather than circle stars srcLabel : str or None, optional What should the source label be? The default is "src" srcLabel : list or None, optional Specify the size of the plot. This is useful for looking at high/lower resolution showPlot : bool Show the plot? If True, it will show, otherwise it is saved as a file apColor: str The color for the source apertures backColor: str The color for the background apertures vmin: float or None A value for the :code:`matplotlib.pyplot.plot.imshow` vmin parameter vmax: float or None A value for the :code:`matplotlib.pyplot.plot.imshow` vmax parameter index: int or None The index of the file name. If None, it uses the default labelColor: str Color for the text label for sources xLim: None or two element list Specify the minimum and maximum X for the plot. For example xLim=[40,60] yLim: None or two element list Specify the minimum and maximum Y for the plot. For example yLim=[40,60] txtOffset: float The X and Y offset to place the text label for a source """ fig, ax = plt.subplots(figsize=figSize) if index is None: index = self.get_default_index() if img is None: img, head = self.getImg(self.fileL[index]) else: img_other, head = self.get_default_im(img=img,head=None) if vmin is None: useVmin = np.nanpercentile(img,1) else: useVmin = vmin if vmax is None: useVmax = np.nanpercentile(img,99) else: useVmax = vmax imData = ax.imshow(img,cmap='viridis',vmin=useVmin,vmax=useVmax,interpolation='nearest') ax.invert_yaxis() rad = 50 ## the radius for the matplotlib scatter to show source centers showApPos = self.get_default_cen(custPos=custPos,ind=index) if showAps == True: apsShow = deepcopy(self.srcApertures) apsShow.positions = showApPos self.adjust_apertures(index) if photutils.__version__ >= "0.7": apsShow.plot(axes=ax,color=apColor) else: apsShow.plot(ax=ax,color=apColor) if self.param['bkgSub'] == True: backApsShow = deepcopy(self.bkgApertures) backApsShow.positions = showApPos backApsShow.positions[:,0] = backApsShow.positions[:,0] + self.param['backOffset'][0] backApsShow.positions[:,1] = backApsShow.positions[:,1] + self.param['backOffset'][1] if photutils.__version__ >= "0.7": backApsShow.plot(axes=ax,color=backColor) else: backApsShow.plot(ax=ax,color=backColor) outName = 'ap_labels_{}.pdf'.format(self.dataFileDescrip) else: ax.scatter(showApPos[:,0],showApPos[:,1], s=rad, facecolors='none', edgecolors='r') outName = 'st_labels_{}.pdf'.format(self.dataFileDescrip) for ind, onePos in enumerate(showApPos): #circ = plt.Circle((onePos[0], onePos[1]), rad, color='r') #ax.add_patch(circ) if ind == 0: if srcLabel is None: name='src' else: name=srcLabel else: name=str(ind) ax.text(onePos[0]+txtOffset,onePos[1]+txtOffset,name,color=labelColor) ax.set_xlabel('X (px)') ax.set_ylabel('Y (px)') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(imData,label='Counts',cax=cax) ax.set_xlim(xLim) ax.set_ylim(yLim) if showPlot == True: fig.show() else: outF = os.path.join(self.baseDir,'plots','photometry','star_labels',outName) fig.savefig(outF, bbox_inches='tight') plt.close(fig) def showStamps(self,img=None,head=None,custPos=None,custFWHM=None, vmin=None,vmax=None,showPlot=False,boxsize=None,index=None): """ Shows the fixed apertures on the image with postage stamps surrounding sources Parameters ----------- index: int Index of the file list. This is needed if scaling apertures """ ## Calculate approximately square numbers of X & Y positions in the grid numGridY = int(np.floor(np.sqrt(self.nsrc))) numGridX = int(np.ceil(float(self.nsrc) / float(numGridY))) fig, axArr = plt.subplots(numGridY, numGridX) img, head = self.get_default_im(img=img,head=head) if boxsize == None: boxsize = self.param['boxFindSize'] showApPos = self.get_default_cen(custPos=custPos) if index is None: index = self.get_default_index() self.adjust_apertures(index) for ind, onePos in enumerate(showApPos): if self.nsrc == 1: ax = axArr else: ax = axArr.ravel()[ind] yStamp_proposed = np.array(onePos[1] +
np.array([-1,1])
numpy.array
from __future__ import annotations #import abc from abc import ABC, abstractmethod import copy import numpy as np import pandas as pd import hotstepper.analysis as analysis import hotstepper.mixins as mixins from hotstepper.core.data_model import DataModel from hotstepper.basis.Basis import Basis from hotstepper.basis.Bases import Bases from hotstepper.utilities.helpers import ( get_epoch_start, get_epoch_end, prepare_input, get_clean_step_data, prepare_datetime, process_slice, get_datetime) class AbstractSteps(ABC): """ The base class that defines the steps object interface, base properties and methods expected of all derived classes. """ __slots__ = ('_start','_using_dt','_end','_basis','_base','_step_data','_ts_scale','_all_data') def __init__(self,use_datetime=False,basis=None): super().__init__() self._step_data = None self._all_data = None if basis is None: basis = Basis() self._basis = basis self._using_dt = use_datetime self._base = basis.base() self._ts_scale = 1 # Expected methods of parent classes @abstractmethod def __repr__(self): pass def compare(self,other): """ Compare the steps function with another to determine if the two are equivalent based on their cummulative values and step keys. Parameters =========== other : AbstractSteps The other steps object to come this one to Returns ======== bool Indication if the two steps a equivalent or not. """ st_this_keys = self.step_keys() st_this_values = self.step_values() #check if other implements AbstractSteps interface if type(self).__base__ == type(other).__base__: st_that_keys = other.step_keys() st_that_values = other.step_values() return np.array_equal(st_this_keys, st_that_keys) and np.array_equal(st_this_values,st_that_values) else: return (st_this_values==other).all() def step_data(self,delta_values=False,convert_keys=False): """ A clean multi-dimensional numpy array of the step keys and either the cummulative values or the step change values all in floats and ready to use in further analysis. .. note:: This function returns a dataset that can directly be consumed by numpy, Sklearn and similar packages for forecasting or analysis. Parameters =========== delta_values : bool, Optional Return the step delta changes instead of the cummulative total at each step key. convert_keys : bool Optional If the keys are datetime, they will be converted, else they will remain floats. Returns ======== array """ if delta_values: nice_data = np.copy(self._all_data[:,[DataModel.START.value,DataModel.DIRECTION.value]]) else: nice_data = np.copy(self._all_data[:,[DataModel.START.value,DataModel.WEIGHT.value]]) if nice_data[0,DataModel.START.value] == get_epoch_start(False): nice_data = nice_data[1:] if nice_data[-1,DataModel.START.value] == get_epoch_end(False): nice_data = nice_data[:-1] if convert_keys and self._using_dt: nice_data = np.array(list(zip(prepare_datetime(nice_data[:,DataModel.START.value]),nice_data[:,DataModel.DIRECTION.value]))) if nice_data[0,DataModel.START.value] == get_epoch_start(): nice_data[0,DataModel.START.value] = nice_data[1,DataModel.START.value] else: return self._all_data[:,DataModel.START.value] return nice_data def iloc(self,idx,raw_keys=True): """ The individual step changes at each array index, these are the delta values that add and subtract across the series to realise the entire step function. Parameters ============ idx : int, slice The numpy index, range index or slice to lookup the raw step change values wihtin the Steps DataModel Returns ======== array Individual step change values within the steps object. """ nice_data = np.copy(self._all_data[idx,[DataModel.START.value,DataModel.DIRECTION.value,DataModel.WEIGHT.value]]) return nice_data def step_changes(self): """ The individual step changes at each key value, these are the delta values that add and subtract across the series to realise the entire step function. Returns ======== array Individual step change values within the steps object. """ return self._all_data[:,DataModel.DIRECTION.value] def first(self): """ The first key or start value of the steps, if the steps extend to negative infinity, the first value will be the first finite key value. Returns ======== int, float or datetime First finite key value of the steps. """ if self._using_dt: return get_datetime(self._start) return self._start def last(self): """ The last key or start value of the steps, if the steps extend to positive infinity, the last value will be the last finite key value. Returns ======== int, float or datetime Last finite key value of the steps. """ if self._using_dt: return get_datetime(self._end) return self._end def step_values(self): """ The cummulative step values at each key value. Returns ======== array Cummulative steps value at each step key within the steps object """ return self._all_data[:,DataModel.WEIGHT.value] def step_keys(self,convert_keys=False): """ The step key values within this object, can be returned either in raw float format or converted if using datetime. Parameters =========== convert_keys : bool Optional If the keys are datetime, they will be converted, else they will remain floats. Returns ======== array Step keys """ if convert_keys and self._using_dt: keys = prepare_datetime(self._all_data[:,DataModel.START.value],self._using_dt) if keys[0] == get_epoch_start(): keys[0] = keys[1] return keys else: return self._all_data[:,DataModel.START.value] def __getitem__(self,x): x = process_slice(x) return self.fast_step(x) def __call__(self,x): return self.fast_step(x) def step(self, xdata,process_input=True): """ This is a mathematical function definition of the Steps object, this is a dynamically created formula representation that can be passed an array of values to evaluate the steps function at. Parameters =========== xdata : array_like(int, float, datetime) The values the steps function is the be evaluated at using the assigned mathematical basis function. process_input : bool, Optional Indicate if the input data needs processing, to convert datetimes to floats for calculation. Primarily used internally to avoid converting input data twice. Returns ======== array The values of the cummulative steps function evaluated at the provided input (x axis) values. See Also ========= fast_step smooth_step """ #if we are using default basis, get answer even quicker # if self._basis.name == 'Heaviside' and self._all_data.shape[0] != 1: # return self.fast_step(xdata=xdata,process_input=process_input) if process_input: x = prepare_input(xdata) else: x = xdata if self._step_data.shape[0] > 0: result = self._base(x,self._step_data,self._basis.param) if (self._basis.name != 'Heaviside') and (x[0] == get_epoch_start(False)): result[0] = result[1] else: return np.zeros(len(x)) return result def fast_step(self,xdata,process_input=True,side='right'): """ This will evaluate the cummulative steps function at the provided input values. This function ignores the assigned basis and performs some numpy trickery to improve performance. .. note:: This function will ignore the assigned basis and evaluate the cummulative function directly, to ensure the assigned basis is used, please use the `step` function. Parameters ========== xdata : array_like(int, float, datetime) The values the steps function is to be evaluated at. process_input : bool, Optional Indicate if the input data needs processing, to convert datetimes to floats for calculation. Primarily used internally to avoid converting input data twice. side : {'right', 'left'}, Optional Location to evaluate the steps function relative to the step location. Default is *'right'*, which means the step assumes the weight value on and after the step key value. Returns ======== array The values of the cummulative steps function evaluated at the provided input (x axis) values. See Also ========= step smooth_step """ if process_input: x = prepare_input(xdata) else: x = xdata search_data = np.concatenate([self.step(np.array([get_epoch_start(False)]),False),self._all_data[:,DataModel.WEIGHT.value]]) if self._all_data.shape[0] < 5: return self.step(x) #improves lookup performance, just need an extra check to avoid over/under run limit = search_data.shape[0] idxs = np.searchsorted(self._all_data[:,DataModel.START.value],x,side=side) return search_data[
np.clip(idxs,0,limit)
numpy.clip
import cv2 import h5py import imageio import keras import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from IPython.display import Image from keras import backend as K from keras.engine import Input, Model from keras.layers import ( Activation, Conv3D, Deconvolution3D, MaxPooling3D, UpSampling3D, ) from keras.layers.merge import concatenate from keras.optimizers import Adam from keras.utils import to_categorical from tensorflow.compat.v1.logging import INFO, set_verbosity set_verbosity(INFO) K.set_image_data_format("channels_first") def plot_image_grid(image): data_all = [] data_all.append(image) fig, ax = plt.subplots(3, 6, figsize=[16, 9]) # coronal plane coronal = np.transpose(data_all, [1, 3, 2, 4, 0]) coronal = np.rot90(coronal, 1) # transversal plane transversal = np.transpose(data_all, [2, 1, 3, 4, 0]) transversal = np.rot90(transversal, 2) # sagittal plane sagittal = np.transpose(data_all, [2, 3, 1, 4, 0]) sagittal = np.rot90(sagittal, 1) for i in range(6): n = np.random.randint(coronal.shape[2]) ax[0][i].imshow(np.squeeze(coronal[:, :, n, :])) ax[0][i].set_xticks([]) ax[0][i].set_yticks([]) if i == 0: ax[0][i].set_ylabel('Coronal', fontsize=15) for i in range(6): n = np.random.randint(transversal.shape[2]) ax[1][i].imshow(np.squeeze(transversal[:, :, n, :])) ax[1][i].set_xticks([]) ax[1][i].set_yticks([]) if i == 0: ax[1][i].set_ylabel('Transversal', fontsize=15) for i in range(6): n = np.random.randint(sagittal.shape[2]) ax[2][i].imshow(np.squeeze(sagittal[:, :, n, :])) ax[2][i].set_xticks([]) ax[2][i].set_yticks([]) if i == 0: ax[2][i].set_ylabel('Sagittal', fontsize=15) fig.subplots_adjust(wspace=0, hspace=0) def visualize_data_gif(data_): images = [] for i in range(data_.shape[0]): x = data_[min(i, data_.shape[0] - 1), :, :] y = data_[:, min(i, data_.shape[1] - 1), :] z = data_[:, :, min(i, data_.shape[2] - 1)] img = np.concatenate((x, y, z), axis=1) images.append(img) imageio.mimsave("/tmp/gif.gif", images, duration=0.01) return Image(filename="/tmp/gif.gif", format='png') # Some code was borrowed from: # https://github.com/ellisdg/3DUnetCNN/blob/master/unet3d/ def create_convolution_block(input_layer, n_filters, batch_normalization=False, kernel=(3, 3, 3), activation=None, padding='same', strides=(1, 1, 1), instance_normalization=False): """ :param strides: :param input_layer: :param n_filters: :param batch_normalization: :param kernel: :param activation: Keras activation layer to use. (default is 'relu') :param padding: :return: """ layer = Conv3D(n_filters, kernel, padding=padding, strides=strides)( input_layer) if activation is None: return Activation('relu')(layer) else: return activation()(layer) def get_up_convolution(n_filters, pool_size, kernel_size=(2, 2, 2), strides=(2, 2, 2), deconvolution=False): if deconvolution: return Deconvolution3D(filters=n_filters, kernel_size=kernel_size, strides=strides) else: return UpSampling3D(size=pool_size) def unet_model_3d(loss_function, input_shape=(4, 160, 160, 16), pool_size=(2, 2, 2), n_labels=3, initial_learning_rate=0.00001, deconvolution=False, depth=4, n_base_filters=32, include_label_wise_dice_coefficients=False, metrics=[], batch_normalization=False, activation_name="sigmoid"): """ Builds the 3D UNet Keras model.f :param metrics: List metrics to be calculated during model training (default is dice coefficient). :param include_label_wise_dice_coefficients: If True and n_labels is greater than 1, model will report the dice coefficient for each label as metric. :param n_base_filters: The number of filters that the first layer in the convolution network will have. Following layers will contain a multiple of this number. Lowering this number will likely reduce the amount of memory required to train the model. :param depth: indicates the depth of the U-shape for the model. The greater the depth, the more max pooling layers will be added to the model. Lowering the depth may reduce the amount of memory required for training. :param input_shape: Shape of the input data (n_chanels, x_size, y_size, z_size). The x, y, and z sizes must be divisible by the pool size to the power of the depth of the UNet, that is pool_size^depth. :param pool_size: Pool size for the max pooling operations. :param n_labels: Number of binary labels that the model is learning. :param initial_learning_rate: Initial learning rate for the model. This will be decayed during training. :param deconvolution: If set to True, will use transpose convolution(deconvolution) instead of up-sampling. This increases the amount memory required during training. :return: Untrained 3D UNet Model """ inputs = Input(input_shape) current_layer = inputs levels = list() # add levels with max pooling for layer_depth in range(depth): layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters * ( 2 ** layer_depth), batch_normalization=batch_normalization) layer2 = create_convolution_block(input_layer=layer1, n_filters=n_base_filters * ( 2 ** layer_depth) * 2, batch_normalization=batch_normalization) if layer_depth < depth - 1: current_layer = MaxPooling3D(pool_size=pool_size)(layer2) levels.append([layer1, layer2, current_layer]) else: current_layer = layer2 levels.append([layer1, layer2]) # add levels with up-convolution or up-sampling for layer_depth in range(depth - 2, -1, -1): up_convolution = get_up_convolution(pool_size=pool_size, deconvolution=deconvolution, n_filters= current_layer._keras_shape[1])( current_layer) concat = concatenate([up_convolution, levels[layer_depth][1]], axis=1) current_layer = create_convolution_block( n_filters=levels[layer_depth][1]._keras_shape[1], input_layer=concat, batch_normalization=batch_normalization) current_layer = create_convolution_block( n_filters=levels[layer_depth][1]._keras_shape[1], input_layer=current_layer, batch_normalization=batch_normalization) final_convolution = Conv3D(n_labels, (1, 1, 1))(current_layer) act = Activation(activation_name)(final_convolution) model = Model(inputs=inputs, outputs=act) if not isinstance(metrics, list): metrics = [metrics] model.compile(optimizer=Adam(lr=initial_learning_rate), loss=loss_function, metrics=metrics) return model def visualize_patch(X, y): fig, ax = plt.subplots(1, 2, figsize=[10, 5], squeeze=False) ax[0][0].imshow(X[:, :, 0], cmap='Greys_r') ax[0][0].set_yticks([]) ax[0][0].set_xticks([]) ax[0][1].imshow(y[:, :, 0], cmap='Greys_r') ax[0][1].set_xticks([]) ax[0][1].set_yticks([]) fig.subplots_adjust(wspace=0, hspace=0) class VolumeDataGenerator(keras.utils.Sequence): def __init__(self, sample_list, base_dir, batch_size=1, shuffle=True, dim=(160, 160, 16), num_channels=4, num_classes=3, verbose=1): self.batch_size = batch_size self.shuffle = shuffle self.base_dir = base_dir self.dim = dim self.num_channels = num_channels self.num_classes = num_classes self.verbose = verbose self.sample_list = sample_list self.on_epoch_end() def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.sample_list)) if self.shuffle == True: np.random.shuffle(self.indexes) def __len__(self): 'Denotes the number of batches per epoch' return int(np.floor(len(self.sample_list) / self.batch_size)) def __data_generation(self, list_IDs_temp): 'Generates data containing batch_size samples' # Initialization X = np.zeros((self.batch_size, self.num_channels, *self.dim), dtype=np.float64) y = np.zeros((self.batch_size, self.num_classes, *self.dim), dtype=np.float64) # Generate data for i, ID in enumerate(list_IDs_temp): # Store sample if self.verbose == 1: print("Training on: %s" % self.base_dir + ID) with h5py.File(self.base_dir + ID, 'r') as f: X[i] = np.array(f.get("x")) # remove the background class y[i] = np.moveaxis(np.array(f.get("y")), 3, 0)[1:] return X, y def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[ index * self.batch_size: (index + 1) * self.batch_size] # Find list of IDs sample_list_temp = [self.sample_list[k] for k in indexes] # Generate data X, y = self.__data_generation(sample_list_temp) return X, y def get_labeled_image(image, label, is_categorical=False): if not is_categorical: label = to_categorical(label, num_classes=4).astype(np.uint8) image = cv2.normalize(image[:, :, :, 0], None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F).astype( np.uint8) labeled_image = np.zeros_like(label[:, :, :, 1:]) # remove tumor part from image labeled_image[:, :, :, 0] = image * (label[:, :, :, 0]) labeled_image[:, :, :, 1] = image * (label[:, :, :, 0]) labeled_image[:, :, :, 2] = image * (label[:, :, :, 0]) # color labels labeled_image += label[:, :, :, 1:] * 255 return labeled_image def predict_and_viz(image, label, model, threshold, loc=(100, 100, 50)): image_labeled = get_labeled_image(image.copy(), label.copy()) model_label = np.zeros([3, 320, 320, 160]) for x in range(0, image.shape[0], 160): for y in range(0, image.shape[1], 160): for z in range(0, image.shape[2], 16): patch = np.zeros([4, 160, 160, 16]) p = np.moveaxis(image[x: x + 160, y: y + 160, z:z + 16], 3, 0) patch[:, 0:p.shape[1], 0:p.shape[2], 0:p.shape[3]] = p pred = model.predict(np.expand_dims(patch, 0)) model_label[:, x:x + p.shape[1], y:y + p.shape[2], z: z + p.shape[3]] += pred[0][:, :p.shape[1], :p.shape[2], :p.shape[3]] model_label = np.moveaxis(model_label[:, 0:240, 0:240, 0:155], 0, 3) model_label_reformatted = np.zeros((240, 240, 155, 4)) model_label_reformatted = to_categorical(label, num_classes=4).astype( np.uint8) model_label_reformatted[:, :, :, 1:4] = model_label model_labeled_image = get_labeled_image(image, model_label_reformatted, is_categorical=True) fig, ax = plt.subplots(2, 3, figsize=[10, 7]) # plane values x, y, z = loc ax[0][0].imshow(np.rot90(image_labeled[x, :, :, :])) ax[0][0].set_ylabel('Ground Truth', fontsize=15) ax[0][0].set_xlabel('Sagital', fontsize=15) ax[0][1].imshow(np.rot90(image_labeled[:, y, :, :])) ax[0][1].set_xlabel('Coronal', fontsize=15) ax[0][2].imshow(np.squeeze(image_labeled[:, :, z, :])) ax[0][2].set_xlabel('Transversal', fontsize=15) ax[1][0].imshow(
np.rot90(model_labeled_image[x, :, :, :])
numpy.rot90
import matplotlib.pyplot as plt import pandas as pd import numpy as np from matplotlib.ticker import PercentFormatter data = pd.read_csv('C:\\Users\\stewue\\OneDrive - Wuersten\\Uni\\19_HS\\Masterarbeit\\Repo\\Evaluation\\RQ1_Results\\aggregated\\executiontime.csv') totalTime = data['executionTime'] * data['parameterizationCombinations'] / 60 all, base = np.histogram(totalTime, bins=1000, range=[0, 30], weights=np.ones(len(totalTime)) / len(totalTime)) cumulative = np.cumsum(all) fig = plt.figure() total = totalTime.shape[0] # absolute ax1 = fig.add_subplot() ax1.plot(base[:-1], cumulative * total) ax1.set_ylabel('# benchmarks') # relative ax2 = ax1.twinx() plt.gca().yaxis.set_major_formatter(PercentFormatter(1, 0)) ax2.plot(base[:-1], cumulative) ax2.set_ylabel('# benchmarks [cumulative %]') ax1.set_xlabel('execution time [min]') plt.yticks(np.arange(0, 0.91, 0.1)) plt.tight_layout() #plt.show() #plt.savefig('C:\\Users\\stewue\\OneDrive - Wuersten\\Uni\\19_HS\\Masterarbeit\\Repo\\Evaluation\\RQ1_Results\\images\\execution_time_per_benchmark.pdf') print("max: " + str(
np.max(totalTime)
numpy.max
# -*- coding: utf-8 -*- """ human VS AI models Input your move in the format: 2,3 @author: <NAME> """ from __future__ import print_function import pickle from policy_value_net_numpy import PolicyValueNetNumpy # from policy_value_net import PolicyValueNet # Theano and Lasagne # from policy_value_net_pytorch import PolicyValueNet # Pytorch # from policy_value_net_tensorflow import PolicyValueNet # Tensorflow # from policy_value_net_keras import PolicyValueNet # Keras import random import numpy as np from collections import defaultdict, deque from game import Board, Game from mcts_pure import MCTSPlayer as MCTS_Pure from mcts_alphaZero import MCTSPlayer # from policy_value_net import PolicyValueNet # Theano and Lasagne from policy_value_net_pytorch import PolicyValueNet # Pytorch from policy_value_net_pytorch import PolicyValueNet # Pytorch # from policy_value_net_tensorflow import PolicyValueNet # Tensorflow # from policy_value_net_keras import PolicyValueNet # Keras class Human(object): """ human player """ def __init__(self): self.player = None def set_player_ind(self, p): self.player = p def get_action(self, board): try: location = input("Your move: ") if isinstance(location, str): # for python3 location = [int(n, 10) for n in location.split(",")] move = board.location_to_move(location) except Exception as e: move = -1 if move == -1 or move not in board.availables: print("invalid move") move = self.get_action(board) return move def __str__(self): return "Human {}".format(self.player) class TrainPipeline(): def __init__(self, init_model=None): # params of the board and the game self.board_width = 6 self.board_height = 6 self.n_in_row = 4 self.board = Board(width=self.board_width, height=self.board_height, n_in_row=self.n_in_row) self.game = Game(self.board) # training params self.learn_rate = 2e-3 self.lr_multiplier = 1.0 # adaptively adjust the learning rate based on KL self.temp = 1.0 # the temperature param self.n_playout = 400 # num of simulations for each move self.c_puct = 5 self.buffer_size = 10000 self.batch_size = 512 # mini-batch size for training self.data_buffer = deque(maxlen=self.buffer_size) self.play_batch_size = 1 self.epochs = 5 # num of train_steps for each update self.kl_targ = 0.02 self.check_freq = 50 self.game_batch_num = 1500 self.best_win_ratio = 0.0 # num of simulations used for the pure mcts, which is used as # the opponent to evaluate the trained policy self.pure_mcts_playout_num = 1000 if init_model: # start training from an initial policy-value net self.policy_value_net = PolicyValueNet(self.board_width, self.board_height, model_file=init_model) else: # start training from a new policy-value net self.policy_value_net = PolicyValueNet(self.board_width, self.board_height) self.mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn, c_puct=self.c_puct, n_playout=self.n_playout, is_selfplay=1) def get_equi_data(self, play_data): """augment the data set by rotation and flipping play_data: [(state, mcts_prob, winner_z), ..., ...] """ extend_data = [] for state, mcts_porb, winner in play_data: for i in [1, 2, 3, 4]: # rotate counterclockwise equi_state = np.array([np.rot90(s, i) for s in state]) equi_mcts_prob = np.rot90(np.flipud( mcts_porb.reshape(self.board_height, self.board_width)), i) extend_data.append((equi_state, np.flipud(equi_mcts_prob).flatten(), winner)) # flip horizontally equi_state = np.array([np.fliplr(s) for s in equi_state]) equi_mcts_prob =
np.fliplr(equi_mcts_prob)
numpy.fliplr
from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt from numpy import linalg as LA from matplotlib.animation import FuncAnimation from matplotlib.ticker import FormatStrFormatter from mpl_toolkits.mplot3d import Axes3D from operator import itemgetter, attrgetter, truediv import statistics as stat from scipy import signal from scipy.optimize import minimize import math import matplotlib.image as mpimg #from scipy import signal import librosa import librosa.display import wave import sys import soundfile as sf import os import pyaudio import threading import pickle np.seterr(divide='ignore', invalid='ignore') import params WINDOW = params.WINDOW BINS_PER_OCTAVE = params.BINS_PER_OCTAVE BINS_PER_OCTAVE_ONSETS = params.BINS_PER_OCTAVE_ONSETS FILTER_SCALE = params.FILTER_SCALE STEP = 512 α = params.α ω = params.ω H = params.H T = params.T T_att = params.T_att cmap = params.cmap ϵ = sys.float_info.epsilon class AudioFile: chunk = 1024 def __init__(self, file): """ Init audio stream """ self.file = file self.wf = wave.open(file, 'rb') self.p = pyaudio.PyAudio() self.stream = self.p.open( format = self.p.get_format_from_width(self.wf.getsampwidth()), channels = self.wf.getnchannels(), rate = self.wf.getframerate(), output = True ) def __truePlay(self): data = self.wf.readframes(self.chunk) while data != '': self.stream.write(data) data = self.wf.readframes(self.chunk) def play(self): """ Play entire file """ x = threading.Thread(target=self.__truePlay, args=()) x.start() def close(self): """ Graceful shutdown """ self.stream.close() self.p.terminate() class SignalSepare: """ Prend en entrée en signal et le signal des pistes audio séparées. """ def __init__(self, signal, sr, pistes, Notemin = 'D3', Notemax = 'D9', onset_frames = [], delOnsets = [], addOnsets = [], score = [], instrument = ''): self.y = signal self.pistes = pistes self.sr = sr self.n_pistes = len(pistes) self.Notemin = Notemin self.Notemax = Notemax self.delOnsets = delOnsets self.addOnsets = addOnsets self.score = score self.instrument = instrument self.n_bins_ONSETS = 0 self.n_bins = 0 self.N = 0 self.fmin = 0 self.fmax = 0 self.n_bins = 0 self.n_att = 0 self.n_frames = 0 self.N_sample = [] self.Dev = [] self.Seuil = [] self.times = [] self.Onset_given = True self.onset_times = [] self.onset_times_graph = [] self.onset_frames = onset_frames self.Percu = [] self.Chrom_ONSETS = [] self.ChromDB_ONSETS = [] self.ChromSync_ONSETS = [] self.ChromPistesSync_ONSETS = [] self.ChromDB_reloc = [] self.Chrom = [] self.chromSync = [] self.chromSyncDB = [] self.chromPistesSync = [] self.chromSyncSimpl = [] self.chromPistesSyncSimpl = [] self.ChromNoHpss = [] self.energy = [] self.energyPistes = [] self.activation = [] self.n_notes = [] self.chrom_concordance = [] self.concordance = [] self.chrom_concordanceTot = [] self.concordanceTot = [] self.chrom_concordance3 = [] self.concordance3 = [] self.tension = [] self.roughness = [] self.chrom_harmonicity = [] self.liste_partials = [] self.tensionSignal = [] self.chrom_roughness = [] self.roughnessSignal = [] self.chrom_harmonicChange = [] self.harmonicChange = [] self.chrom_crossConcordance = [] self.crossConcordance = [] self.chrom_crossConcordanceTot = [] self.crossConcordanceTot = [] self.chrom_diffConcordance = [] self.diffRoughness = [] self.chrom_diffRoughness = [] self.diffConcordance = [] self.harmonicity = [] self.virtualPitch = [] self.context = [] self.contextSimpl = [] self.energyContext = [] self.chrom_harmonicNovelty = [] self.harmonicNovelty = [] self.harmonicityContext = [] self.virtualPitchContext = [] self.roughnessContext = [] self.chrom_roughnessContext = [] self.diffConcordanceContext = [] self.chrom_diffConcordanceContext = [] self.diffRoughnessContext = [] self.chrom_diffRoughnessContext = [] def DetectionOnsets(self): self.fmin = librosa.note_to_hz(self.Notemin) self.fmax = librosa.note_to_hz(self.Notemax) #Nmin = int((sr/(fmax*(2**(1/BINS_PER_OCTAVE)-1)))) #Nmax = int((sr/(fmin*(2**(1/BINS_PER_OCTAVE)-1)))) self.n_bins_ONSETS = int((librosa.note_to_midi(self.Notemax) - librosa.note_to_midi(self.Notemin))*BINS_PER_OCTAVE_ONSETS/12) self.Chrom_ONSETS = np.abs(librosa.cqt(y=self.y, sr=self.sr, hop_length = STEP, fmin= self.fmin, bins_per_octave=BINS_PER_OCTAVE_ONSETS, n_bins=self.n_bins_ONSETS, window=WINDOW)) self.ChromDB_ONSETS = librosa.amplitude_to_db(self.Chrom_ONSETS, ref=np.max) self.N = len(self.ChromDB_ONSETS[0]) self.times = librosa.frames_to_time(np.arange(self.N), sr=self.sr, hop_length=STEP) # CALCUL DES ONSETS (pour onset précalculé, le rentrer dans self.onset_frames à l'initialisation) if len(self.onset_frames) == 0: self.Onset_given = False Diff = np.zeros((self.n_bins_ONSETS,self.N)) self.Dev = np.zeros(self.N) for j in range(1,self.N): for i in range(self.n_bins_ONSETS): Diff[i,j] = np.abs(self.ChromDB_ONSETS[i,j]-self.ChromDB_ONSETS[i,j-1]) self.Dev[j] = sum(Diff[:,j]) # FONCTION DE SEUIL # Ajout de zéros en queue et en tête l = [] Onsets = [] for k in range(int(H/2)): l.append(0) for val in self.Dev: l.append(val) for k in range(int(H/2)): l.append(0) #Calcul de la médiane for i in range(self.N): self.Seuil.append(α + ω*stat.median(l[i:i+H])) if self.Dev[i] > self.Seuil[i]: Onsets.append(i) # FONCTION DE TRI SUR LES ONSETS # Onsets espacés d'au moins T i=0 while i<(len(Onsets)-1): while (i<(len(Onsets)-1)) and (self.times[Onsets[i+1]]< self.times[Onsets[i]]+T): if (self.Dev[Onsets[i+1]]-self.Seuil[Onsets[i+1]]) < (self.Dev[Onsets[i]]-self.Seuil[Onsets[i]]): del Onsets[i+1] #if (Dev[Onsets[i+1]]) < (Dev[Onsets[i]]): del Onsets[i+1] else: del Onsets[i] i=i+1 # Suppression manuelle des onsets en trop (cela nécessite d'avoir affiché les onsets jusqu'ici détectés) if isinstance(self.delOnsets, str): Onsets = [] else: self.delOnsets.sort(reverse = True) for o in self.delOnsets: Onsets.pop(o-1) #Ajout manuel des onsets for t in self.addOnsets: Onsets.append(librosa.time_to_frames(t, sr=self.sr, hop_length=STEP)) Onsets.sort() self.onset_frames = librosa.util.fix_frames(Onsets, x_min=0, x_max=self.ChromDB_ONSETS.shape[1]-1) self.onset_frames = librosa.util.fix_frames(self.onset_frames, x_min=0, x_max=self.ChromDB_ONSETS.shape[1]-1) self.onset_times = librosa.frames_to_time(self.onset_frames, sr=self.sr, hop_length = STEP) self.n_frames = len(self.onset_frames)-1 self.n_notes = np.ones(self.n_frames) # TRANSFORMÉE avec la précision due pour l'analyse self.n_bins = int((librosa.note_to_midi(self.Notemax) - librosa.note_to_midi(self.Notemin))*BINS_PER_OCTAVE/12) self.Chrom = np.abs(librosa.cqt(y=self.y, sr=self.sr, hop_length = STEP, fmin= self.fmin, bins_per_octave=BINS_PER_OCTAVE, n_bins=self.n_bins, window=WINDOW, filter_scale = FILTER_SCALE)) # self.Chrom[np.isnan(self.Chrom)] = 0 # Relocalisation if params.spectral_reloc: freq_analyse = [self.fmin*2**(k/BINS_PER_OCTAVE) for k in range(self.n_bins)] N = [round(self.sr * params.FILTER_SCALE/(f*(2**(1/BINS_PER_OCTAVE)-1))) for f in freq_analyse] self.N_sample = [round(n/STEP) for n in N] Chrom_copy = np.copy(self.Chrom) for k in range(self.n_bins): for n in reversed(range(self.N)): if n <= self.N_sample[k]: self.Chrom[k,n] = Chrom_copy[k,n] else: self.Chrom[k,n] = Chrom_copy[k,n-int(self.N_sample[k]/2)] # Décomposition partie harmonique / partie percussive if params.decompo_hpss: self.ChromNoHpss = np.copy(self.Chrom) self.Chrom = librosa.decompose.hpss(self.Chrom, margin=params.margin)[0] self.ChromDB = librosa.amplitude_to_db(self.Chrom, ref=np.max) #Synchronisation sur les onsets, en enlevant le début et la fin des longues frames self.chromSync = np.zeros((self.n_bins,self.n_frames)) self.n_att = int(librosa.time_to_frames(T_att, sr=self.sr, hop_length = STEP)) # for j in range(self.n_frames): # if j==0: # for i in range(self.n_bins): # self.chromSync[i,j] = np.median(self.Chrom[i][self.onset_frames[j]:self.onset_frames[j+1]]) # else: # for i in range(self.n_bins): # self.chromSync[i,j] = np.median(self.Chrom[i][(self.onset_frames[j]+self.n_att):(self.onset_frames[j+1])]) Δmin = 0.1 # en secondes for i in range(self.n_bins): f = self.fmin*2**(i/BINS_PER_OCTAVE) T_ret = 1.5 / (f * (2**(1.0/(12*4)) - 1)) for j in range(self.n_frames): if j==0: self.chromSync[i,j] = np.median(self.Chrom[i][self.onset_frames[j]:self.onset_frames[j+1]]) else: if T_ret < (self.onset_times[j+1] - self.onset_times[j+1]) - Δmin: self.chromSync[i,j] = np.median(self.Chrom[i][(self.onset_frames[j]+int(librosa.time_to_frames(T_ret, sr=self.sr, hop_length = STEP))):(self.onset_frames[j+1])]) else: self.chromSync[i,j] = np.median(self.Chrom[i][(self.onset_frames[j+1]-int(librosa.time_to_frames(Δmin, sr=self.sr, hop_length = STEP))):(self.onset_frames[j+1])]) self.chromSync[np.isnan(self.chromSync)] = 0 self.chromSync[:,0] = np.zeros(self.n_bins) self.chromSync[:,-1] = np.zeros(self.n_bins) self.chromSyncDB = librosa.amplitude_to_db(self.chromSync, ref=np.max) #Calcul de l'énergie for t in range(self.n_frames): self.energy.append(LA.norm(self.chromSync[:,t])**2) def Clustering(self): """ Découpe et synchronise les pistes séparées sur les ONSETS, stoque le spectrogramme synchronisé en construisant self.chromPistesSync""" if len(self.pistes) != 0: # Construction de chromPistesSync ChromPistes = [] for k, voice in enumerate(self.pistes): if params.decompo_hpss: ChromPistes.append(np.nan_to_num(librosa.decompose.hpss(np.abs(librosa.cqt(y=voice, sr=self.sr, hop_length = STEP, fmin= self.fmin, bins_per_octave=BINS_PER_OCTAVE, n_bins=self.n_bins)), margin=params.margin)[0],False)) else: ChromPistes.append(np.nan_to_num(np.abs(librosa.cqt(y=voice, sr=self.sr, hop_length = STEP, fmin= self.fmin, bins_per_octave=BINS_PER_OCTAVE, n_bins=self.n_bins)),False)) for k, voice in enumerate(self.pistes): # if params.spectral_reloc: # ChromPistesCopy = np.copy(ChromPistes) # for f in range(self.n_bins): # for n in reversed(range(self.N)): # if n <= self.N_sample[f]: ChromPistes[k][f,n] = ChromPistesCopy[k][f,n] # else: ChromPistes[k][f,n] = ChromPistesCopy[k][f,n-int(self.N_sample[f]/2)] self.chromPistesSync.append(np.zeros((self.n_bins,self.n_frames))) for j in range(self.n_frames): if j==0: for i in range(self.n_bins): self.chromPistesSync[k][i,j] = np.median(ChromPistes[k][i][self.onset_frames[j]:self.onset_frames[j+1]]) else: for i in range(self.n_bins): self.chromPistesSync[k][i,j] = np.median(ChromPistes[k][i][(self.onset_frames[j]+self.n_att):(self.onset_frames[j+1]-self.n_att)]) # Calcul de l'énergie des pistes self.energyPistes = np.zeros((self.n_pistes, self.n_frames)) for t in range(self.n_frames): for k in range(self.n_pistes): self.energyPistes[k,t] = np.sum(np.multiply(self.chromPistesSync[k][:,t], self.chromPistesSync[k][:,t])) # Calcul de la matrice d'activation (pour savoir quelles voix contiennent des notes à quel moment) + mise à zéro des pistes sans note # Par défaut, tout est à 1, ie dans chaque frame chaque piste joue une note self.activation = np.ones((self.n_pistes, self.n_frames)) if title in params.list_calcul_nombre_notes: max_energy = np.amax(self.energyPistes, axis = 1) for k in range(self.n_pistes): for t in range(self.n_frames): if (self.energyPistes[k,t] < params.seuil_activation * max_energy[k]): self.activation[k,t] = 0 self.chromPistesSync[k][:,t] = 0 self.activation[:,0] = 0 self.activation[:,self.n_frames-1] = 0 elif title in params.list_3_voix: self.activation[-1] = np.zeros(self.n_frames) # Calcul du nombre de notes self.n_notes = np.sum(self.activation, axis=0) self.n_notes[0] = 0 self.n_notes[-1] = 0 def Context(self, type = params.memory_type, size = params.memory_size - 1, decr = params.memory_decr_ponderation): #Construction du context harmonique self.context = np.zeros((self.n_bins,self.n_frames)) self.context[:,0] = self.chromSync[:,0] # Memory = "full" if isinstance(size,str): if type == 'max': for t in range(1,self.n_frames): self.context[:,t] = np.fmax(self.context[:,t-1],self.chromSync[:,t]) elif type == 'mean': #Construction du vecteur de pondération weights = [(1/i**decr) for i in range(1,self.n_frames+2)] #Moyennage for t in range(1,self.n_frames): self.context[:,t] = np.average(self.chromSync[:,:(t+1)], axis=1, weights=[weights[t-i] for i in range(t+1)]) # Memory = int elif isinstance(size,int): if type == 'max': for t in range(1,size+1): self.context[:,t] = np.fmax(self.chromSync[:,t], self.context[:,t-1]) for t in range(size+1,self.n_frames): self.context[:,t] = np.amax(self.chromSync[:,(t-size):(t+1)], axis = 1) elif type == 'mean': #Construction du vecteur de pondération weights = [(1/i**decr) for i in range(1,size+2)] #Moyennage for t in range(1,size+1): self.context[:,t] = np.average(self.chromSync[:,1:(t+1)], axis=1, weights=[weights[t-i] for i in range(1,t+1)]) for t in range(size+1,self.n_frames): self.context[:,t] = np.average(self.chromSync[:,(t-size):(t+1)], axis=1, weights=[weights[size-i] for i in range(size+1)]) #Calcul de l'énergie du contexte self.energyContext = [] for t in range(self.n_frames): self.energyContext.append(LA.norm(self.context[:,t])**2) def SimplifySpectrum(self): self.chromSyncSimpl = np.zeros(self.chromSync.shape) self.contextSimpl = np.zeros(self.context.shape) self.chromPistesSyncSimpl= np.copy(self.chromPistesSync) δ = params.δ if distribution == 'themeAcc' or distribution == 'voix': for t in range(self.n_frames): for i in range(10, self.n_bins - 10): for p in range(len(self.pistes)): if self.chromPistesSync[p][i,t] < np.max(self.chromPistesSync[p][i-δ:i+δ+1,t]): self.chromPistesSyncSimpl[p][i,t] = 0 else: self.chromPistesSyncSimpl[p][i,t] = np.sum(self.chromPistesSync[p][i-δ:i+δ+1,t]) # Global if self.chromSync[i,t] < np.max(self.chromSync[i-δ:i+δ+1,t]): self.chromSyncSimpl[i,t] = 0 else: self.chromSyncSimpl[i,t] = np.sum(self.chromSync[i-δ:i+δ+1,t]) # Contexte if self.context[i,t] < np.max(self.context[i-δ:i+δ+1,t]): self.contextSimpl[i,t] = 0 else: self.contextSimpl[i,t] = np.sum(self.context[i-δ:i+δ+1,t]) # for p in range(len(self.pistes)): # self.chromSyncSimpl += self.chromPistesSyncSimpl[p] elif distribution == 'record': for t in range(self.n_frames): for i in range(10, self.n_bins - 10): # Global if self.chromSync[i,t] < np.max(self.chromSync[i-δ:i+δ+1,t]): self.chromSyncSimpl[i,t] = 0 else: self.chromSyncSimpl[i,t] = np.sum(self.chromSync[i-δ:i+δ+1,t]) # Contexte if self.context[i,t] < np.max(self.context[i-δ:i+δ+1,t]): self.contextSimpl[i,t] = 0 else: self.contextSimpl[i,t] = np.sum(self.context[i-δ:i+δ+1,t]) # Liste des partiels de self.chromSyncSimpl self.liste_partials = [] for t in range(self.n_frames): self.liste_partials.append([]) for k in range(self.n_bins): if self.chromSyncSimpl[k,t] > 0: self.liste_partials[t].append(k) def Concordance(self): """Multiplie les spectres (cqt) des différentes pistes pour créer le spectre de concordance, et calcule la concordance en sommant sur les fréquences""" self.chrom_concordance = np.zeros((self.n_bins,self.n_frames)) for k in range(self.n_pistes-1): for l in range(k+1, self.n_pistes): self.chrom_concordance += np.multiply(self.chromPistesSync[k], self.chromPistesSync[l]) # Normalisation par l'énergie et par le nombre de notes for t in range(self.n_frames): if self.n_notes[t] >= 2: self.chrom_concordance[:,t] *= (self.n_notes[t]**(2*params.norm_conc)/(self.n_notes[t]*(self.n_notes[t]-1)/2)) / (self.energy[t]**params.norm_conc) self.chrom_concordance[:,0] = 0 self.chrom_concordance[:,self.n_frames-1] = 0 self.concordance = self.chrom_concordance.sum(axis=0) # self.concordance[0]=0 # self.concordance[self.n_frames-1]=0 def ConcordanceTot(self): """Multiplie les spectres (cqt) des différentes pistes pour créer le spectre de concordance, et calcule la concordance en sommant sur les fréquences""" self.chrom_concordanceTot = np.ones((self.n_bins,self.n_frames)) for t in range(self.n_frames): for k in range(self.n_pistes): if self.activation[k,t]: self.chrom_concordanceTot[:,t] = np.multiply(self.chrom_concordanceTot[:,t], self.chromPistesSync[k][:,t]) if self.n_notes[t]>=1: self.chrom_concordanceTot[:,t] = np.divide((self.n_notes[t]**(self.n_notes[t]*params.norm_concTot)) * self.chrom_concordanceTot[:,t], LA.norm(self.chromSync[:,t], self.n_notes[t])**(self.n_notes[t]*params.norm_concTot)) self.concordanceTot.append(self.chrom_concordanceTot[:,t].sum(axis=0))#**(1./self.n_notes[t])) self.chrom_concordanceTot[:,0] = 0 self.chrom_concordanceTot[:,self.n_frames-1] = 0 self.concordanceTot[0]=0 self.concordanceTot[self.n_frames-1]=0 def Concordance3(self): self.chrom_concordance3 = np.zeros((self.n_bins,self.n_frames)) for k in range(self.n_pistes-2): for l in range(k+1, self.n_pistes-1): for m in range(l+1, self.n_pistes): self.chrom_concordance3 += np.multiply(np.multiply(self.chromPistesSync[k], self.chromPistesSync[l]), self.chromPistesSync[m]) # Normalisation par la norme 3 et le nombre de notes for t in range(self.n_frames): if self.n_notes[t] >= 3: self.chrom_concordance3[:,t] *= (self.n_notes[t]**(3*params.norm_conc3)/(self.n_notes[t]*(self.n_notes[t]-1)*(self.n_notes[t]-2)/6)) / LA.norm(self.chromSync[:,t],ord=3)**(3*params.norm_conc3) self.chrom_concordance3[:,0] = 0 self.chrom_concordance3[:,self.n_frames-1] = 0 self.concordance3 = self.chrom_concordance3.sum(axis=0) # self.concordance3[0]=0 # self.concordance3[self.n_frames-1]=0 def Roughness(self): #fonction qui convertit les amplitudes en sonies # def Sones(Ampl): # P = Ampl/np.sqrt(2) # SPL = 20*np.log10(P/params.P_ref) # return ((1/16)*np.power(2,SPL/10)) self.chrom_roughness = np.zeros((self.n_bins,self.n_frames)) self.roughness = np.zeros(self.n_frames) for b1 in range(self.n_bins-1): for b2 in range(b1+1,self.n_bins): # Modèle de Sethares f1 = self.fmin*2**(b1/BINS_PER_OCTAVE) f2 = self.fmin*2**(b2/BINS_PER_OCTAVE) freq = [f1, f2] freq.sort() if params.mod_rough == 'sethares + KK': s = (1/2.27)*(np.log(params.β2/params.β1)/(params.β2-params.β1))/(freq[0]**(0.477)) elif params.mod_rough == 'sethares': s = 0.24/(0.021*freq[0] + 19) rug = np.exp(-params.β1*s*(freq[1]-freq[0]))-np.exp(-params.β2*s*(freq[1]-freq[0])) if not params.type_rug_signal: for p1 in range(self.n_pistes-1): for p2 in range(p1+1, self.n_pistes): if params.rug_simpl: self.chrom_roughness[b1] += (self.chromPistesSyncSimpl[p1][b1] * self.chromPistesSyncSimpl[p2][b2] + self.chromPistesSyncSimpl[p1][b2] * self.chromPistesSyncSimpl[p2][b1]) * rug/2 self.chrom_roughness[b2] += (self.chromPistesSyncSimpl[p1][b1] * self.chromPistesSyncSimpl[p2][b2] + self.chromPistesSyncSimpl[p1][b2] * self.chromPistesSyncSimpl[p2][b1]) * rug/2 else: self.chrom_roughness[b1] += (self.chromPistesSync[p1][b1] * self.chromPistesSync[p2][b2] + self.chromPistesSync[p1][b2] * self.chromPistesSync[p2][b1]) * rug/2 self.chrom_roughness[b2] += (self.chromPistesSync[p1][b1] * self.chromPistesSync[p2][b2] + self.chromPistesSync[p1][b2] * self.chromPistesSync[p2][b1]) * rug/2 else: if params.rug_simpl: self.chrom_roughness[b1] += (self.chromSyncSimpl[b1] * self.chromSyncSimpl[b2]) * rug/2 self.chrom_roughness[b2] += (self.chromSyncSimpl[b1] * self.chromSyncSimpl[b2]) * rug/2 else: self.chrom_roughness[b1] += (self.chromSync[b1] * self.chromSync[b2]) * rug/2 self.chrom_roughness[b2] += (self.chromSync[b1] * self.chromSync[b2]) * rug/2 # Normalisation par l'énergie et par le nombre de n_notes for t in range(self.n_frames): if not params.type_rug_signal: if self.n_notes[t] >= 2: self.chrom_roughness[:,t] *= (self.n_notes[t]**(2*params.norm_rug) / (self.n_notes[t]*(self.n_notes[t]-1)/2.0)) / (self.energy[t]**params.norm_rug) else: self.chrom_roughness[:,t] /= self.energy[t]**params.norm_rug self.chrom_roughness[:,0] = 0 self.roughness = self.chrom_roughness.sum(axis=0) self.roughness[0]=0 self.roughness[self.n_frames-1]=0 def RoughnessSignal(self): self.roughnessSignal = np.zeros(self.n_frames) for b1 in range(self.n_bins-1): for b2 in range(b1+1,self.n_bins): # Modèle de Sethares f1 = self.fmin*2**(b1/BINS_PER_OCTAVE) f2 = self.fmin*2**(b2/BINS_PER_OCTAVE) freq = [f1, f2] freq.sort() s = 0.44*(np.log(params.β2/params.β1)/(params.β2-params.β1))*(freq[1]-freq[0])/(freq[0]**(0.477)) rug = np.exp(-params.β1*s)-np.exp(-params.β2*s) self.roughnessSignal = self.roughnessSignal + (self.chromSync[b1,:] * self.chromSync[b2,:]) * rug if params.norm_rug: self.roughnessSignal = np.divide(self.roughnessSignal, np.power(self.energy,1.0)) self.roughnessSignal[0]=0 self.roughnessSignal[self.n_frames-1]=0 def Tension(self): self.tension = np.zeros(self.n_frames) for t in range(self.n_frames): self.liste_partials[t].sort() long = len(self.liste_partials[t]) for i1 in range(long-2) : for i2 in range(i1+1,long-1): for i3 in range(i2+1,long): int1, int2 = self.liste_partials[t][i2] - self.liste_partials[t][i1], self.liste_partials[t][i3] - self.liste_partials[t][i2] tens = np.exp(-((int2-int1) / (0.6*BINS_PER_OCTAVE/12.0))**2) self.tension[t] += self.chromSyncSimpl[self.liste_partials[t][i1],t] * self.chromSyncSimpl[self.liste_partials[t][i2],t] * self.chromSyncSimpl[self.liste_partials[t][i3],t] * tens # Normalisation par l'énergie et par le nombre de n_notes for t in range(self.n_frames): self.tension[t] /= self.energy[t]**(params.norm_tension*3/2.0) self.tension[0]=0 self.tension[self.n_frames-1]=0 # # self.tension = np.zeros(self.n_frames) # # liste des partiels # set_partials = set() # for t in range(self.n_frames): # set_partials = set_partials.union(set(self.liste_partials[t])) # liste_partials_full = list(set_partials) # liste_partials_full.sort() # # # # Calcul de la tension # long = len(liste_partials_full) # for i1 in range(long-2) : # for i2 in range(i1+1,long-1): # for i3 in range(i2+1,long): # int1, int2 = liste_partials_full[i2] - liste_partials_full[i1], liste_partials_full[i3] - liste_partials_full[i2] # tens = np.exp(-((int2-int1) / (0.6*BINS_PER_OCTAVE/12.0))**2) # for t in range(self.n_frames): # self.tension[t] += self.chromSyncSimpl[liste_partials_full[i1],t] * self.chromSyncSimpl[liste_partials_full[i2],t] * self.chromSyncSimpl[liste_partials_full[i3],t] * tens # # # Normalisation par l'énergie et par le nombre de n_notes # for t in range(self.n_frames): # self.tension[t] /= self.energy[t]**(params.norm_tension*3/2.0) # # if self.n_notes[t] >= 3: # # self.tension[t] *= (self.n_notes[t]**(3*params.norm_tension) / (self.n_notes[t]*(self.n_notes[t]-1)*(self.n_notes[t]-2)/6.0)) / (self.energy[t]**(params.norm_tension*3/2.0)) # # self.tension[0]=0 # self.tension[self.n_frames-1]=0 def TensionSignal(self): # Calcul des spectres des pistes en 1/4 de tons pour avoir un calcul de la tensionSignal en temps raisonnable self.ChromSync_ONSETS = np.zeros((self.n_bins_ONSETS,self.n_frames)) for j in range(self.n_frames): for i in range(self.n_bins_ONSETS): self.ChromSync_ONSETS[i,j] = np.median(self.Chrom_ONSETS[i][(self.onset_frames[j]+self.n_att):(self.onset_frames[j+1]-self.n_att)]) #Calcul tensionSignal self.tensionSignal = np.zeros(self.n_frames) for b1 in range(self.n_bins_ONSETS-2): for b2 in range(b1+1, self.n_bins_ONSETS-1): for b3 in range(b2+2, self.n_bins_ONSETS): int = [abs(b3-b1), abs(b2-b1), abs(b3-b2)] int.sort() monInt = int[1]-int[0] tens = np.exp(-((int[1]-int[0])* BINS_PER_OCTAVE/(12*params.δ))**2) self.tensionSignal = self.tensionSignal + (self.ChromSync_ONSETS[b1,:] * self.ChromSync_ONSETS[b2,:] * self.ChromSync_ONSETS[b3,:]) * tens self.tensionSignal = np.divide(self.tensionSignal, np.power(self.energy, 3/2)) self.tensionSignal[0]=0 self.tensionSignal[self.n_frames-1]=0 def CrossConcordance(self): if len(self.concordance) == 0: self.Concordance() self.chrom_crossConcordance = np.zeros((self.n_bins,self.n_frames-1)) for t in range(self.n_frames-1): self.chrom_crossConcordance[:,t] = np.multiply(self.chrom_concordance[:,t],self.chrom_concordance[:,t+1]) if params.norm_crossConc: if self.concordance[t]*self.concordance[t+1]!=0: self.chrom_crossConcordance[:,t] = np.divide(self.chrom_crossConcordance[:,t], self.concordance[t]*self.concordance[t+1]) self.crossConcordance = self.chrom_crossConcordance.sum(axis=0) self.crossConcordance[0]=0 self.crossConcordance[self.n_frames-2]=0 def CrossConcordanceTot(self): if len(self.concordanceTot) == 0: self.ConcordanceTot() self.chrom_crossConcordanceTot = np.zeros((self.n_bins,self.n_frames-1)) for t in range(self.n_frames-1): self.chrom_crossConcordanceTot[:,t] = np.multiply(self.chrom_concordanceTot[:,t],self.chrom_concordanceTot[:,t+1]) if params.norm_crossConcTot: if self.concordanceTot[t]*self.concordanceTot[t+1]!=0: self.chrom_crossConcordanceTot[:,t] = np.divide(self.chrom_crossConcordanceTot[:,t], self.concordanceTot[t]*self.concordanceTot[t+1]) self.crossConcordanceTot = self.chrom_crossConcordanceTot.sum(axis=0) self.crossConcordanceTot[0]=0 self.crossConcordanceTot[self.n_frames-2]=0 def HarmonicChange(self): self.chrom_harmonicChange = np.zeros((self.n_bins,self.n_frames-1)) for t in range(self.n_frames-1): # Par défaut, params.type_harmChange == 'relative' if params.norm_harmChange == 'None': self.chrom_harmonicChange[:,t] = self.chromSync[:,t+1] - self.context[:,t] elif params.norm_harmChange == 'frame_by_frame': self.chrom_harmonicChange[:,t] = self.chromSync[:,t+1]/np.sqrt(self.energy[t+1]) - self.context[:,t]/np.sqrt(self.energyContext[t]) elif params.norm_harmChange == 'general': self.chrom_harmonicChange[:,t] = (self.chromSync[:,t+1] - self.context[:,t]) / (self.energy[t+1]*self.energyContext[t])**(1.0/4) if params.type_harmChange == 'absolute': self.chrom_harmonicChange[:,t] = np.abs(self.chrom_harmonicChange[:,t]) self.harmonicChange = np.sum(np.power(self.chrom_harmonicChange,1), axis=0) self.harmonicChange[0]=0 self.harmonicChange[-1]=0 def HarmonicNovelty(self): if len(self.context) == 0: self.context() # Construction du spectre des Nouveautés harmoniques self.chrom_harmonicNovelty = np.zeros((self.n_bins,self.n_frames)) self.chrom_harmonicNovelty[:,1] = self.chromSync[:,1] for t in range(2,self.n_frames): if params.norm_Novelty == 'frame_by_frame': self.chrom_harmonicNovelty[:,t] = self.chromSync[:,t]/np.sqrt(self.energy[t]) - self.context[:,t-1]/np.sqrt(self.energyContext[t-1]) elif params.norm_Novelty == 'general': self.chrom_harmonicNovelty[:,t] = np.divide(self.chromSync[:,t] - self.context[:,t-1], (self.energy[t]*self.energyContext[t-1])**(1/4)) elif params.norm_Novelty == 'None': self.chrom_harmonicNovelty[:,t] = self.chromSync[:,t] - self.context[:,t-1] for i in range(self.n_bins): if self.chrom_harmonicNovelty[:,t][i]<0: self.chrom_harmonicNovelty[:,t][i] = 0 # Construction des Nouveautés harmoniques self.harmonicNovelty = np.exp(self.chrom_harmonicNovelty.sum(axis=0)) if params.type_Novelty == 'dyn': self.harmonicNovelty = self.harmonicNovelty[1:] self.harmonicNovelty[0]=0 self.harmonicNovelty[-1]=0 def DiffConcordance(self): self.chrom_diffConcordance = np.zeros((self.n_bins,self.n_frames-1)) if not params.theme_diffConc: for t in range(self.n_frames-1): self.chrom_diffConcordance[:,t] = np.multiply(self.chromSync[:,t], self.chromSync[:,t+1]) self.chrom_diffConcordance[:,t] /= np.sqrt(self.energy[t] * self.energy[t+1]) ** params.norm_diffConc else : for t in range(self.n_frames-1): if self.activation[0,t+1]: self.chrom_diffConcordance[:,t] = np.multiply(self.chromSync[:,t], self.chromPistesSync[0][:,t+1]) / np.sqrt(self.energy[t] * self.energyPistes[0][t+1])** params.norm_diffConc self.diffConcordance = self.chrom_diffConcordance.sum(axis=0) self.diffConcordance[0]=0 self.diffConcordance[self.n_frames-2]=0 def Harmonicity(self): # Construction du spectre harmonique dec = BINS_PER_OCTAVE/6 # décalage d'un ton pour tenir compte de l'épaisseur des gaussiennes epaiss = int(np.rint(BINS_PER_OCTAVE/(2*params.σ))) print(epaiss) SpecHarm = np.zeros(2*int(dec) + int(np.rint(BINS_PER_OCTAVE * np.log2(params.κ)))) for k in range(params.κ): pic = int(dec + np.rint(BINS_PER_OCTAVE * np.log2(k+1))) for i in range(-epaiss, epaiss+1): SpecHarm[pic + i] = 1/(k+1)**params.decr len_corr = self.n_bins + len(SpecHarm) - 1 # Correlation avec le spectre réel self.chrom_harmonicity = np.zeros((len_corr,self.n_frames)) self.harmonicity = [] for t in range(self.n_frames): self.chrom_harmonicity[:,t] = np.correlate(np.power(self.chromSync[:,t],params.norm_harmonicity), SpecHarm,"full") / self.energy[t]**(params.norm_harmonicity * params.norm_harm/2) self.harmonicity.append(np.exp(max(self.chrom_harmonicity[:,t]))) # Virtual Pitch self.virtualPitch.append(np.argmax(self.chrom_harmonicity[:,t])) virtualNotes = librosa.hz_to_note([self.fmin * (2**((i-len(SpecHarm)+dec+1)/BINS_PER_OCTAVE)) for i in self.virtualPitch] , cents = False) global f_corr_min f_corr_min = self.fmin * (2**((-len(SpecHarm)+dec+1)/BINS_PER_OCTAVE)) print(virtualNotes[1:self.n_frames-1]) self.chrom_harmonicity[:,0] = 0 self.chrom_harmonicity[:,self.n_frames-1] = 0 self.harmonicity[0]=0 self.harmonicity[self.n_frames-1]=0 def HarmonicityContext(self): # Construction du spectre harmonique dec = BINS_PER_OCTAVE/6 # décalage d'un ton pour tenir compte de l'épaisseur des gaussiennes epaiss = int(np.rint(BINS_PER_OCTAVE/(2*params.σ))) SpecHarm = np.zeros(2*int(dec) + int(np.rint(BINS_PER_OCTAVE * np.log2(params.κ)))) for k in range(params.κ): pic = int(dec + np.rint(BINS_PER_OCTAVE * np.log2(k+1))) for i in range(-epaiss, epaiss+1): SpecHarm[pic + i] = 1/(k+1)**params.decr # Correlation avec le spectre réel self.harmonicityContext = [] for t in range(self.n_frames): self.harmonicityContext.append(max(np.correlate(np.power(self.context[:,t],params.norm_harmonicity), SpecHarm,"full")) / LA.norm(self.context[:,t], ord = params.norm_harmonicity)**(params.norm_harmonicity)) # Virtual Pitch self.virtualPitchContext.append(np.argmax(np.correlate(np.power(self.context[:,t],params.norm_harmonicity), SpecHarm,"full"))) diffVirtualNotes = librosa.hz_to_note([self.fmin * (2**((i-len(SpecHarm)+dec+1)/BINS_PER_OCTAVE)) for i in self.virtualPitchContext] , cents = False) print(diffVirtualNotes[1:self.n_frames-1]) def RoughnessContext(self): self.chrom_roughnessContext = np.zeros((self.n_bins,self.n_frames)) for b1 in range(self.n_bins-1): for b2 in range(b1+1,self.n_bins): f1 = self.fmin*2**(b1/BINS_PER_OCTAVE) f2 = self.fmin*2**(b2/BINS_PER_OCTAVE) freq = [f1, f2] freq.sort() if params.mod_rough == 'sethares + KK': s = (1/2.27)*(np.log(params.β2/params.β1)/(params.β2-params.β1))/(freq[0]**(0.477)) elif params.mod_rough == 'sethares': s = 0.24/(0.021*freq[0] + 19) rug = np.exp(-params.β1*s*(freq[1]-freq[0]))-np.exp(-params.β2*s*(freq[1]-freq[0])) for t in range(self.n_frames): self.chrom_roughnessContext[b1,t] += (self.context[b1,t] * self.context[b2,t]) * rug / 2 self.chrom_roughnessContext[b2,t] += (self.context[b1,t] * self.context[b2,t]) * rug / 2 if params.norm_rugCtx: for t in range(self.n_frames-1): self.chrom_roughnessContext[:,t] = np.divide(self.chrom_roughnessContext[:,t], self.energyContext[t]) self.roughnessContext = self.chrom_roughnessContext.sum(axis=0) def DiffConcordanceContext(self): self.chrom_diffConcordanceContext = np.zeros((self.n_bins,self.n_frames-1)) if not params.theme_diffConcCtx: for t in range(self.n_frames-1): self.chrom_diffConcordanceContext[:,t] = np.multiply(self.context[:,t], self.chromSync[:,t+1]) if params.norm_diffConcCtx: self.chrom_diffConcordanceContext[:,t] /=
np.sqrt(self.energyContext[t] * self.energy[t+1])
numpy.sqrt
# Standard imports import os from datetime import datetime as dt import numpy as np from calendar import monthrange import calendar import logging # Third-party imports import pandas as pd # Internal imports from generate_profile.main import LinearModel LOG_FORMAT = '%(asctime)s: %(levelname)s: %(message)s' class DataHandler: def __init__(self,config_dict,logger=None): self.config_dict = config_dict if logger != None: self.logger = logger else: self.logger = logging.getLogger() logging.basicConfig(format=LOG_FORMAT,level='DEBUG') self.read_files() self.get_trans_capacity() self.logger.info('DataHandler initiallized ..') def read_files(self): self.dt_data = pd.read_csv(os.path.join(self.config_dict['project_path'],\ self.config_dict['dtpower_file']), parse_dates=['Date']) self.dt_metadata = pd.read_csv(os.path.join(self.config_dict['project_path'],\ self.config_dict['dt_metadata_file'])) self.feeders = set(self.dt_metadata['Feeder Name'].tolist()) self.solar_data = pd.read_csv(os.path.join(self.config_dict['project_path'],\ self.config_dict['solar_irradiance_file']),parse_dates=['Date'],index_col='Date') self.dt_to_feeder_map = dict(zip(self.dt_metadata['Transformer Name'], self.dt_metadata['Feeder Name'])) if 'optional_data' in self.config_dict: self.customer_energy = pd.read_csv(os.path.join(self.config_dict['project_path'], \ self.config_dict['optional_data']['folder_name'], self.config_dict['optional_data']['customer_energy_file'])) self.weather_data = pd.read_csv(os.path.join(self.config_dict['project_path'], \ self.config_dict['optional_data']['folder_name'], self.config_dict['optional_data']['weather_file']), parse_dates=['Date']) self.weather_data = self.weather_data.set_index('Date') self.date_data = pd.read_csv(os.path.join(self.config_dict['project_path'], \ self.config_dict['optional_data']['folder_name'], self.config_dict['optional_data']['date_data_file']), parse_dates=['Date']) self.date_data = self.date_data.set_index('Date') # Here create linear model instace dt_data_indexed = self.dt_data.set_index('Date') self.profile_instance = LinearModel(dt_data_indexed, self.customer_energy, self.weather_data, self.date_data) self.logger.info('All files successfully read') def get_trans_capacity(self): self.trans_capacity = dict(zip(self.dt_metadata['Transformer Name'],self.dt_metadata['KVA Capacity'])) def get_customernumber_bygroup(self, name, dtorfeeder): if hasattr(self, 'customer_energy'): customer_energy_group = self.customer_energy.groupby('Transformer Name') if dtorfeeder == 'DT': customer_number_by_group = {'domestic':0,'commercial':0,'industrial':0} dt_group = customer_energy_group.get_group(name) grouped_by_custtype = dt_group.groupby('Customer Type') for cust_group in list(grouped_by_custtype.groups): customer_number_by_group[cust_group] = len(grouped_by_custtype.get_group(cust_group)) return list(customer_number_by_group.values()) else: customer_number_by_group = {'domestic':0,'commercial':0,'industrial':0} for dist in self.dt_to_feeder_map: if self.dt_to_feeder_map[dist] == name: dt_group = customer_energy_group.get_group(dist) grouped_by_custtype = dt_group.groupby('Customer Type') for cust_group in list(grouped_by_custtype.groups): customer_number_by_group[cust_group] += len(grouped_by_custtype.get_group(cust_group)) return list(customer_number_by_group.values()) return [1,1,1] # def get_loaddataframe(self,dt_name,year): # result_path = self.config_dict['linear_model_results_path'] # filename = dt_name+'-'+str(year)+'.csv' # dt_result_dataframe = pd.read_csv(os.path.join(result_path,filename),parse_dates=[0]) # return dt_result_dataframe def return_solar_multiplier(self,startdate,mode): num_of_days= 366 if calendar.isleap(startdate.year) else 365 data = self.solar_data['Irradiance'] if mode=='Daily': date_range = pd.date_range(startdate,periods=48,freq='30min') if mode == 'Weekly': date_range = pd.date_range(startdate,periods=48*7,freq='30min') if mode == 'Monthly': date_range = pd.date_range(dt(startdate.year,startdate.month,1,0,0,0),\ periods=48*monthrange(startdate.year, startdate.month)[1],freq='30min') if mode == 'Yearly': date_range = pd.date_range(dt(startdate.year,1,1,0,0,0),\ periods=48*num_of_days,freq='30min') return [data[date] for date in date_range] def analyze_feeder(self,feeder_name, year, mode, userdate, startdate=[], enddate=[]): feeder_energy, feeder_energy_high_res = [], [] for dist in self.dt_to_feeder_map: if self.dt_to_feeder_map[dist] == feeder_name: dt_data, dt_data_high_res = self.analyze_dt(dist,year,mode,userdate,startdate,enddate) t_data,p_data = zip(*dt_data) if feeder_energy == []: feeder_energy = p_data feeder_energy_high_res = dt_data_high_res else: feeder_energy=[sum(filter(None,x)) for x in zip(p_data,feeder_energy)] feeder_energy_high_res = [sum(filter(None,x)) for x in \ zip(dt_data_high_res,feeder_energy_high_res)] return zip(t_data,feeder_energy), feeder_energy_high_res def analyze_dt(self, dt_name, year, mode, userdate, startdate=[], enddate=[]): if startdate ==[]: startdate=dt(year,1,1,0,0,0) if enddate ==[]: enddate = dt(year,12,31,23,59,0) self.dt_df = pd.DataFrame({ 'DATE': self.dt_data['Date'].tolist(), 'Energy(kwh)': self.dt_data[dt_name].tolist() }) # Introducing year column to slice it by year self.dt_df['Year'] = [str(date.year) \ for date in self.dt_df['DATE'].tolist()] # Get data for input year self.dt_df_grouped_year = self.dt_df.groupby('Year') if str(year) in list(self.dt_df_grouped_year.groups): self.dt_df_year = self.dt_df_grouped_year.get_group(str(year)) # Let's find out missing time stamps all_date_list = list(pd.date_range(startdate,enddate,freq='30min')) available_date_list = self.dt_df_year['DATE'].tolist() # Replace missing time-stamps with zero or None value temp_dict = dict(zip(available_date_list, self.dt_df_year['Energy(kwh)'].tolist())) new_dict = {date: None for date in all_date_list} new_dict = {**new_dict,**temp_dict} self.dt_data_by_year = pd.DataFrame({'DATE': [keys for keys in new_dict.keys()], 'Average Power (kW)': list(new_dict.values())}) self.dt_data_by_year = self.dt_data_by_year.set_index('DATE') self.dt_power_by_year = self.dt_data_by_year['Average Power (kW)'] if mode == 'Daily': daily_dt_data = [[date,self.dt_power_by_year[date]] for date in self.dt_power_by_year.index \ if date.year==userdate.year and date.month==userdate.month and date.day==userdate.day] return daily_dt_data, [x[1] for x in daily_dt_data] if mode == 'Weekly': weekbegin = dt(userdate.year, userdate.month, userdate.day, 0,0,0) weekly_date_list = pd.date_range(weekbegin,periods=48*7,freq='30min') weekly_dt_list = [self.dt_power_by_year[date] for date in weekly_date_list] weekly_dt_list_splitted = np.array_split(np.array(weekly_dt_list),7) weekly_date_list_splitted = np.array_split(
np.array(weekly_date_list)
numpy.array
import argparse from common.args import Args import torch import sys import pathlib import h5py import numpy as np import numpy.fft as nf import random import torchvision from torchvision import transforms, utils import torch from torch.nn import functional as F from pytorch_msssim import ssim import vd_spiral import sigpy as sp import sigpy.plot as pl sys.argv=[''] def create_arg_parser(parser=None): if parser: return parser parser = argparse.ArgumentParser(description="ML parameters") parser.add_argument('--num-pools', type=int, default=4, help='Number of U-Net pooling layers') parser.add_argument('--drop-prob', type=float, default=0.0, help='Dropout probability') parser.add_argument('--num-chans', type=int, default=32, help='Number of U-Net channels') parser.add_argument('--batch-size', default=1, type=int, help='Mini batch size') parser.add_argument('--num-epochs', type=int, default=500, help='Number of training epochs') parser.add_argument('--lr', type=float, default=0.1, help='Learning rate') parser.add_argument('--lr-step-size', type=int, default=40, help='Period of learning rate decay') parser.add_argument('--lr-gamma', type=float, default=0.1, help='Multiplicative factor of learning rate decay') parser.add_argument('--weight-decay', type=float, default=0., help='Strength of weight decay regularization') parser.add_argument('--report-interval', type=int, default=100, help='Period of loss reporting') parser.add_argument('--data-parallel', default=True, help='If set, use multiple GPUs using data parallelism') parser.add_argument('--device', type=str, default='cpu', help='Which device to train on. Set to "cuda" to use the GPU') parser.add_argument('--exp-dir', type=pathlib.Path, default='/mnt/mnt/5TB_slot2/Tobias/Thesis/wrapper', help='Path where model and results should be saved') parser.add_argument('--resume', action='store_true', default=False, help='If set, resume the training from a previous model checkpoint. ' '"--checkpoint" should be set with this') parser.add_argument('--checkpoint', type=str, default='/mnt/mnt/5TB_slot2/Tobias/Thesis/wrapper/model.pt', help='Path to an existing checkpoint. Used along with "--resume"') parser.add_argument('--logdir', type=str, default='/mnt/mnt/5TB_slot2/Tobias/Thesis/log/wrapper_org', help='Path to an existing checkpoint. Used along with "--resume"') parser.add_argument('--seed', default=42, type=int, help='Seed for random number generators') parser.add_argument('--resolution', default=128, type=int, help='Resolution of images') parser.add_argument('--device_ids', default=[0,1] , help='GPUS used') parser.add_argument('--acceleration', default=4, help='Acceleration factor used in artifical undersampling') return parser args=create_arg_parser().parse_args() def to_tensor(data): if np.iscomplexobj(data): data = np.stack((data.real, data.imag), axis=-1) return torch.from_numpy(data).double() def rsos(data,ax=1): return np.sqrt(np.sum(np.square(np.abs(data)),axis=ax)) def to_complex(data): data = data.numpy() return data[..., 0] + 1j * data[..., 1] def make_ift_one(data): return nf.ifft(data,axis=0) def make_ft_one(data): return nf.fft(data,axis=0) def make_ift(data): try: if len(data.shape)>2: return nf.fftshift(nf.ifftn(nf.ifftshift(data),axes=(-2,-1))) return nf.fftshift(nf.ifftn(nf.ifftshift(data),axes=(0,-1))) except: data=data.detach().numpy() if len(data.shape)>2: return nf.fftshift(nf.ifftn(nf.ifftshift(data),axes=(-2,-1))) return nf.fftshift(nf.ifftn(nf.ifftshift(data),axes=(0,-1))) return -1 def make_ft(data): if len(data.shape)>2: return nf.fftshift(nf.fftn(nf.ifftshift(data),axes=(-2,-1))) return nf.fftshift(nf.fftn(nf.ifftshift(data),axes=(0,-1))) def center_crop(data, shape): """ Apply a center crop to the input real image or batch of real images. Args: data (torch.Tensor): The input tensor to be center cropped. It should have at least 2 dimensions and the cropping is applied along the last two dimensions. shape (int, int): The output shape. The shape should be smaller than the corresponding dimensions of data. Returns: torch.Tensor: The center cropped image """ assert 0 < shape[0] <= data.shape[-2] assert 0 < shape[1] <= data.shape[-1] w_from = (data.shape[-2] - shape[0]) // 2 h_from = (data.shape[-1] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] if len(data.shape)>2: return data[..., w_from:w_to, h_from:h_to] else: return data[w_from:w_to, h_from:h_to] def complex_center_crop(data, shape): """ Apply a center crop to the input image or batch of complex images. Args: data (torch.Tensor): The complex input tensor to be center cropped. It should have at least 3 dimensions and the cropping is applied along dimensions -3 and -2 and the last dimensions should have a size of 2. shape (int, int): The output shape. The shape should be smaller than the corresponding dimensions of data. Returns: torch.Tensor: The center cropped image """ assert 0 < shape[0] <= data.shape[-3] assert 0 < shape[1] <= data.shape[-2] w_from = (data.shape[-3] - shape[0]) // 2 h_from = (data.shape[-2] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] if len(data.shape)>2: return data[..., w_from:w_to, h_from:h_to, :] else: return data[w_from:w_to, h_from:h_to, :] def complex_center_crop_2d(data, shape): """ Apply a center crop to the input image or batch of complex images. Args: data (torch.Tensor): The complex input tensor to be center cropped. It should have at least 3 dimensions and the cropping is applied along dimensions -3 and -2 and the last dimensions should have a size of 2. shape (int, int): The output shape. The shape should be smaller than the corresponding dimensions of data. Returns: torch.Tensor: The center cropped image """ assert 0 < shape[0] <= data.shape[-3] assert 0 < shape[1] <= data.shape[-2] w_from = (data.shape[-3] - shape[0]) // 2 h_from = (data.shape[-2] - shape[1]) // 2 w_to = w_from + shape[0] h_to = h_from + shape[1] return data[w_from:w_to, h_from:h_to, :] #statistics for normalization #masking k-space (multiple undersamplings to test) def random_cartesian_mask(shape=[1,args.resolution,args.resolution],center_fractions=[0.04],accelerations=[4],seed=42): rng = np.random.RandomState() if len(shape) < 3: raise ValueError('Shape should have 3 or more dimensions') rng.seed(seed) choice = rng.randint(0, len(accelerations)) center_fraction = center_fractions[choice] acceleration = accelerations[choice] num_cols = shape[-2] num_low_freqs = int(round(num_cols * center_fraction)) # Create the mask prob = (num_cols / acceleration - num_low_freqs) / (num_cols - num_low_freqs) mask = rng.uniform(size=num_cols) < prob pad = (num_cols - num_low_freqs + 1) // 2 mask[pad:pad + num_low_freqs] = True # Reshape the mask mask_shape = [1 for _ in shape] mask_shape[-2] = num_cols mask = torch.from_numpy(mask.reshape(*mask_shape).astype(np.float32)) #print(mask.shape) return mask def equi_cartesian_mask(shape=[1,args.resolution,args.resolution],center_fractions=[0.04],accelerations=[8],seed=42): rng = np.random.RandomState() if len(shape) < 3: raise ValueError('Shape should have 3 or more dimensions') rng.seed(seed) choice = rng.randint(0, len(accelerations)) center_fraction = center_fractions[choice] acceleration = accelerations[choice] num_cols = shape[-2] num_low_freqs = int(round(num_cols * center_fraction)) # Create the mask mask = np.zeros(num_cols, dtype=np.float32) pad = (num_cols - num_low_freqs + 1) // 2 mask[pad:pad + num_low_freqs] = True # Determine acceleration rate by adjusting for the number of low frequencies adjusted_accel = (acceleration * (num_low_freqs - num_cols)) / (num_low_freqs * acceleration - num_cols) offset = rng.randint(0, round(adjusted_accel)) accel_samples = np.arange(offset, num_cols - 1, adjusted_accel) accel_samples = np.around(accel_samples).astype(np.uint) mask[accel_samples] = True # Reshape the mask mask_shape = [1 for _ in shape] mask_shape[-2] = num_cols mask = torch.from_numpy(mask.reshape(*mask_shape).astype(np.float32)) return mask def plain_cartesian_mask(shape=[1,args.resolution,args.resolution],acceleration=args.acceleration): mask=np.array([i%acceleration==0 for i in range(shape[-2])]) mask_shape = [1 for _ in shape] mask_shape[-2] = shape[-2] mask = torch.from_numpy(mask.reshape(*mask_shape).astype(np.float32)) return mask def apply_mask(data,mode="mid",r=4): shape = np.array(data.shape) if mode=="random": c_mask = random_cartesian_mask(shape,accelerations=[r]) elif mode=="mid": c_mask = equi_cartesian_mask(shape,accelerations=[r]) else: c_mask=plain_cartesian_mask(shape,acceleration=r) #print(c_mask.shape) return data * c_mask, c_mask def losses(out,tar): mse=F.mse_loss(out, tar) l1=F.l1_loss(out, tar) ssim=ssim( out, tar, data_range=1, size_average=False) return mse,l1,ssim def check_density(traj,d=[],r0=1): d_p=[] temp=1 r=r0 rs=[] for i in range(len(traj)): #print((traj[i, 0]**2 + traj[i, 1]**2)**0.5) #print("r",r) if (traj[i, 0]**2 + traj[i, 1]**2)**0.5>r: #print(r) d.append(temp) for i in range(temp-1): d_p.append(temp) rs.append(r) temp=1 r=np.sqrt(r0+r**2) while (traj[i, 0]**2 + traj[i, 1]**2)**0.5>r: d.append(temp) r=np.sqrt(r0+r**2) rs.append(r) temp=2 else: temp+=1 d.append(temp) for i in range(temp-1): d_p.append(temp) #print(d) return np.array(d),np.array(rs),np.array(d_p) def get_dcf(points,dcf,rs): for i in range(len(points)): for j in range(len(points[i])): print(j) idx=0 while (i-args.resolution)**2 + (j-args.resolution)**2>rs[idx]: if idx==len(rs)-1: break idx+=1 points[i,j]=points[i,j]*1/dcf[idx] return points def apply_dcf(ksp,dp): return ksp/dp def spiral_undersampling(data,r=8): full=data.shape[-2]*data.shape[-1] us_factor=r N=full//us_factor nRounds=100; PowCoeff=2; m_size=160; p_base=0; traj=vd_spiral.makeSpiral(N,nRounds,PowCoeff,p_base,m_size); traj=
np.swapaxes(traj,0,1)
numpy.swapaxes
import numpy as np class PerspCamera(object): r"""Perspective camera in 35mm format. Attributes: f_mm (float): See ``f``. im_h (float): See ``im_res``. im_w (float): See ``im_res``. loc (numpy.ndarray) lookat (numpy.ndarray) up (numpy.ndarray) Note: - Sensor width of the 35mm format is actually 36mm. - This class assumes unit pixel aspect ratio (i.e., :math:`f_x = f_y`) and no skewing between the sensor plane and optical axis. - The active sensor size may be smaller than ``sensor_size``, depending on ``im_res``. - ``aov`` is a hardware property, having nothing to do with ``im_res``. """ def __init__( self, f=50., im_res=(256, 256), loc=(1, 1, 1), lookat=(0, 0, 0), up=(0, 1, 0)): """ Args: f (float, optional): 35mm format-equivalent focal length in mm. im_res (array_like, optional): Image height and width in pixels. loc (array_like, optional): Camera location in object space. lookat (array_like, optional): Where the camera points to in object space, so default :math:`(0, 0, 0)` is the object center. up (array_like, optional): Vector in object space that, when projected, points upward in image. """ self.f_mm = f self.im_h, self.im_w = im_res self.loc = np.array(loc) self.lookat = np.array(lookat) self.up = np.array(up) @property def sensor_w(self): """float: Fixed at 36mm""" return 36 # mm @property def sensor_h(self): """float: Fixed at 24mm""" return 24 # mm @property def aov(self): """tuple: Vertical and horizontal angles of view in degrees.""" alpha_v = 2 * np.arctan(self.sensor_h / (2 * self.f_mm)) alpha_h = 2 * np.arctan(self.sensor_w / (2 * self.f_mm)) return (alpha_v / np.pi * 180, alpha_h / np.pi * 180) @property def _mm_per_pix(self): return min(self.sensor_h / self.im_h, self.sensor_w / self.im_w) @property def f_pix(self): """float: Focal length in pixels.""" return self.f_mm / self._mm_per_pix @property def int_mat(self): """numpy.ndarray: 3-by-3 intrinsics matrix.""" return np.array([ [self.f_pix, 0, self.im_w / 2], [0, self.f_pix, self.im_h / 2], [0, 0, 1], ]) @property def ext_mat(self): """numpy.ndarray: 3-by-4 extrinsics matrix, i.e., rotation and translation that transform a point from object space to camera space. """ # Two coordinate systems involved: # 1. Object space: "obj" # 2. Desired computer vision camera coordinates: "cv" # - x is horizontal, pointing right (to align with pixel coordinates) # - y is vertical, pointing down # - right-handed: positive z is the look-at direction # cv axes expressed in obj space cvz_obj = self.lookat - self.loc assert np.linalg.norm(cvz_obj) > 0, "Camera location and lookat coincide" cvx_obj = np.cross(cvz_obj, self.up) cvy_obj = np.cross(cvz_obj, cvx_obj) # Normalize cvz_obj = cvz_obj / np.linalg.norm(cvz_obj) cvx_obj = cvx_obj / np.linalg.norm(cvx_obj) cvy_obj = cvy_obj / np.linalg.norm(cvy_obj) # Compute rotation from obj to cv: R # R(1, 0, 0)^T = cvx_obj gives first column of R # R(0, 1, 0)^T = cvy_obj gives second column of R # R(0, 0, 1)^T = cvz_obj gives third column of R rot_obj2cv = np.vstack((cvx_obj, cvy_obj, cvz_obj)).T # Extrinsics return rot_obj2cv.dot( np.array([ [1, 0, 0, -self.loc[0]], [0, 1, 0, -self.loc[1]], [0, 0, 1, -self.loc[2]], ]) ) @property def proj_mat(self): """numpy.ndarray: 3-by-4 projection matrix, derived from intrinsics and extrinsics. """ return self.int_mat.dot(self.ext_mat) def set_from_mitsuba(self, xml_path): """Sets camera according to a Mitsuba XML file. Args: xml_path (str): Path to the XML file. Raises: NotImplementedError: If focal length is not specified in mm. """ from xml.etree.ElementTree import parse tree = parse(xml_path) # Focal length f_tag = tree.find('./sensor/string[@name="focalLength"]') if f_tag is None: self.f_mm = 50. # Mitsuba default else: f_str = f_tag.attrib['value'] if f_str[-2:] == 'mm': self.f_mm = float(f_str[:-2]) else: raise NotImplementedError(f_str) # Extrinsics cam_transform = tree.find('./sensor/transform/lookAt').attrib self.loc = np.fromstring(cam_transform['origin'], sep=',') self.lookat = np.fromstring(cam_transform['target'], sep=',') self.up = np.fromstring(cam_transform['up'], sep=',') # Resolution self.im_h = int(tree.find('./sensor/film/integer[@name="height"]').attrib['value']) self.im_w = int(tree.find('./sensor/film/integer[@name="width"]').attrib['value']) def proj(self, pts, space='object'): """Projects 3D points to 2D. Args: pts (array_like): 3D point(s) of shape N-by-3 or 3-by-N, or of length 3. space (str, optional): In which space these points are specified: ``'object'`` or ``'camera'``. Returns: array_like: Vertical and horizontal coordinates of the projections, following: .. code-block:: none +-----------> dim1 | | | v dim0 """ pts = np.array(pts) if pts.shape == (3,): pts = pts.reshape((3, 1)) elif pts.shape[1] == 3: pts = pts.T assert space in ('object', 'camera'), "Unrecognized space" # 3 x N n_pts = pts.shape[1] pts_homo = np.vstack((pts, np.ones((1, n_pts)))) # 4 x N if space == 'object': proj_mat = self.proj_mat else: ext_mat = np.hstack((np.eye(3), np.zeros((3, 1)))) proj_mat = self.int_mat.dot(ext_mat) # Project hvs_homo = proj_mat.dot(pts_homo) # 3 x N: dim0 is horizontal, and dim1 is vertical hs_homo = hvs_homo[0, :] vs_homo = hvs_homo[1, :] ws = hvs_homo[2, :] hs = np.divide(hs_homo, ws) vs = np.divide(vs_homo, ws) vhs = np.vstack((vs, hs)).T if vhs.shape[0] == 1: # Single point vhs = vhs[0, :] return vhs def backproj(self, depth, fg_mask=None, depth_type='plane', space='object'): """Backprojects depth map to 3D points. Args: depth (numpy.ndarray): Depth map. fg_mask (numpy.ndarray, optional): Backproject only pixels falling inside this foreground mask. Its values should be logical. depth_type (str, optional): Plane or ray depth. space (str, optional): In which space the backprojected points are specified: ``'object'`` or ``'camera'``. Returns: numpy.ndarray: 3D points. """ if fg_mask is None: fg_mask = np.ones(depth.shape, dtype=bool) assert depth_type in ('ray', 'plane'), "Unrecognized depth type" assert space in ('object', 'camera'), "Unrecognized space" v_is, h_is = np.where(fg_mask) hs = h_is + 0.5 vs = v_is + 0.5 h_c = (depth.shape[1] - 1) / 2 v_c = (depth.shape[0] - 1) / 2 zs = depth[fg_mask] if depth_type == 'ray': d2 = np.power(vs - v_c, 2) + np.power(hs - h_c, 2) # Similar triangles zs_plane = np.multiply(zs, self.f_pix / np.sqrt(self.f_pix ** 2 + d2)) zs = zs_plane # Backproject to camera space xs = np.multiply(zs, hs - h_c) / self.f_pix ys = np.multiply(zs, vs - v_c) / self.f_pix pts = np.vstack((xs, ys, zs)) if space == 'camera': return pts.T # Need to further transform to object space rot_mat = self.ext_mat[:, :3] # happens first in projection trans_vec = self.ext_mat[:, 3].reshape(-1, 1) # happens second in projection n_pts = pts.shape[1] pts_obj =
np.linalg.inv(rot_mat)
numpy.linalg.inv
##### SOLVING VIBRATIONS PROBLEMS BY NUMERICAL METHODS ##### import numpy as np import numpy.linalg as la import Dynas as dyn import pandas as pd import matplotlib.pyplot as plt K = np.array([[ 8, -4, 0], [-4, 8, -4], [ 0, -4, 4]]) M = np.diag([4, 4, 4]) def modal_analysis(K,M): # solving the eigenvalue/eigenvector problem D = np.dot(la.inv(M),K) lambdak, Phi = la.eig(D) # sorting the eigenvalues and eigenvectors in ascending order index_lambdak = lambdak.argsort() lambdak = lambdak[index_lambdak] Phi = Phi[:, index_lambdak] # computing the natural angular frequencys and natural frequencys wk = np.sqrt(np.real(lambdak)) fk = wk/(2*np.pi) return fk, wk, Phi def finite_diff(F, x0, v0, dt, M, K, C, T): """ SOLVING DIFFERENTIAL EQUATIONS BY THE FINITE DIFFERENCE METHOD F = matrix including in each column the load vector along time with step dt x0 = initial position column vector v0 = initial velocity column vector dt = time step (uniform along duration) M = mass matrix K = stiffness matrix C = damping matrix T = total duration of the analysis (not necessarily the same duration of the load)""" ### INITIAL PARAMETERS #### # defining the number of steps of analysis = Ns Ns = int(T/dt)+1 # step t0 (initial acceleration) ngl = np.shape(F)[0] # captures the number of degrees of freedom ### MODELLING THE DISPLACEMENTS ### x_before = np.zeros((ngl,1)) # matrix that indicates the displacements, in each degree of freedom, along the time of # duration of analysis. Each column is a time step x = np.zeros((ngl, Ns)) x[:,0] = x0[:,0] ### SOLVING INITIAL STEP ### # initial Force F0 is equivalent to the first column of the matrix of load vectors F along time aux1 = np.zeros((ngl,1)) aux1[:,0] = np.copy(F[:,0]) aux2 = aux1 - np.dot(C,v0) - np.dot(K,x0) a0 = np.dot(la.inv(M),aux2) # step t-1 (before initial condition) x_before = dt*dt*a0/2 - dt*v0 + x0 # step t+1 (after initial condition) C1 = M / (dt*dt) + C / (2*dt) C2 = K - 2*M / (dt*dt) C3 = M / (dt*dt) - C / (2*dt) aux3 = aux1 - np.dot(C2, x0) -
np.dot(C3, x_before)
numpy.dot
import struct import socket import pickle import json from torch.optim import SGD, Adam, AdamW import sys import time import random import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt #import seaborn as sns import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.autograd import Variable from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve from sklearn.metrics import classification_report, confusion_matrix from sklearn.metrics import accuracy_score, auc, f1_score, precision_score, recall_score, roc_auc_score from sklearn.preprocessing import MinMaxScaler import Metrics import wfdb import ast import math import os.path import utils import Models #np.set_printoptions(threshold=np.inf) cwd = os.path.dirname(os.path.abspath(__file__)) mlb_path = os.path.join(cwd, "..","Benchmark", "output", "mlb.pkl") scaler_path = os.path.join(cwd, "..","Benchmark", "output", "standard_scaler.pkl") ptb_path = os.path.join(cwd, "..", "server", "../server/PTB-XL", "ptb-xl/") import wandb wandb.init(project="non-IID,clean", entity="split-learning-medical") client_num = 1 num_classes = 2 pretrain_this_client = 0 simultrain_this_client = 0 pretrain_epochs = 50 IID = 0 f = open('parameter_client.json', ) data = json.load(f) # set parameters fron json file #epoch = data["training_epochs"] lr = data["learningrate"] batchsize = data["batchsize"] batch_concat = data["batch_concat"] host = data["host"] port = data["port"] max_recv = data["max_recv"] autoencoder = data["autoencoder"] detailed_output = data["detailed_output"] count_flops = data["count_flops"] plots = data["plots"] autoencoder_train = data["autoencoder_train"] deactivate_train_after_num_epochs = data["deactivate_train_after_num_epochs"] grad_encode = data["grad_encode"] train_gradAE_active = data["train_gradAE_active"] deactivate_grad_train_after_num_epochs = data["deactivate_grad_train_after_num_epochs"] wandb.init(config={ "learning_rate": lr, #"epochs": epoch, "batch_size": batchsize, "autoencoder": autoencoder }) wandb.config.update({"learning_rate": lr, "PC: ": 2}) def print_json(): print("learningrate: ", lr) print("grad_encode: ", grad_encode) print("gradAE_train: ", train_gradAE_active) print("deactivate_grad_train_after_num_epochs: ", deactivate_grad_train_after_num_epochs) #print("Getting the metadata epoch: ", epoch) print("Getting the metadata host: ", host) print("Getting the metadata port: ", port) print("Getting the metadata batchsize: ", batchsize) print("Autoencoder: ", autoencoder) print("detailed_output: ", detailed_output) print("count_flops: ", count_flops) print("plots: ", plots) print("autoencoder_train: ", autoencoder_train) print("deactivate_train_after_num_epochs: ", deactivate_train_after_num_epochs) # load data from json file class PTB_XL(Dataset): def __init__(self, stage=None): self.stage = stage if self.stage == 'train': global X_train global y_train self.y_train = y_train self.X_train = X_train if self.stage == 'val': global y_val global X_val self.y_val = y_val self.X_val = X_val if self.stage == 'test': global y_test global X_test self.y_test = y_test self.X_test = X_test if self.stage == 'raw': global y_raw global X_raw self.y_raw = y_raw self.X_raw = X_raw def __len__(self): if self.stage == 'train': return len(self.y_train) if self.stage == 'val': return len(self.y_val) if self.stage == 'test': return len(self.y_test) if self.stage == 'raw': return len(self.y_raw) def __getitem__(self, idx): if self.stage == 'train': sample = self.X_train[idx].transpose((1, 0)), self.y_train[idx] if self.stage == 'val': sample = self.X_val[idx].transpose((1, 0)), self.y_val[idx] if self.stage == 'test': sample = self.X_test[idx].transpose((1, 0)), self.y_test[idx] if self.stage == 'raw': sample = self.X_raw[idx].transpose((1, 0)), self.y_raw[idx] return sample def init(): train_dataset = PTB_XL('train') val_dataset = PTB_XL('val') if IID: train_1, rest1 = torch.utils.data.random_split(train_dataset, [3853, 15414], generator=torch.Generator().manual_seed(42)) train_2, rest2 = torch.utils.data.random_split(rest1, [3853, 11561], generator=torch.Generator().manual_seed(42)) train_3, rest3 = torch.utils.data.random_split(rest2, [3853, 7708], generator=torch.Generator().manual_seed(42)) train_4, train_5 = torch.utils.data.random_split(rest3, [3853, 3855], generator=torch.Generator().manual_seed(42)) if client_num == 1: train_dataset = train_1 if client_num == 2: train_dataset = train_2 if client_num == 3: train_dataset = train_3 if client_num == 4: train_dataset = train_4 if client_num == 5: train_dataset = train_5 if pretrain_this_client: raw_dataset = PTB_XL('raw') print("len raw dataset", len(raw_dataset)) pretrain_dataset, no_dataset = torch.utils.data.random_split(raw_dataset, [963, 18304], generator=torch.Generator().manual_seed(42)) print("pretrain_dataset length: ", len(pretrain_dataset)) global pretrain_loader pretrain_loader = torch.utils.data.DataLoader(pretrain_dataset, batch_size=batchsize, shuffle=True) if simultrain_this_client: raw_dataset = PTB_XL('raw') print("len raw dataset", len(raw_dataset)) pretrain_dataset, no_dataset = torch.utils.data.random_split(raw_dataset, [963, 18304], generator=torch.Generator().manual_seed(42)) print("len train dataset", len(train_dataset)) train_dataset = torch.utils.data.ConcatDataset((pretrain_dataset, train_dataset)) print("len mixed-train dataset", len(train_dataset)) print("train_dataset length: ", len(train_dataset)) print("val_dataset length: ", len(train_dataset)) global train_loader global val_loader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchsize, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batchsize, shuffle=True) """ def new_split(): global train_loader global val_loader train_dataset, val_dataset = torch.utils.data.random_split(training_dataset, [size_train_dataset, len(training_dataset) - size_train_dataset]) print("train_dataset size: ", size_train_dataset) print("val_dataset size: ", len(training_dataset) - size_train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchsize, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batchsize, shuffle=True) """ if count_flops: #Does not work on the Jetson Nano yet. The amount of FLOPs doesn't depend on the architecture. Measuring FLOPs on the PC and JetsonNano would result in the same outcome. # The paranoid switch prevents the FLOPs count # Solution: sudo sh -c 'echo 1 >/proc/sys/kernel/perf_event_paranoid' # Needs to be done after every restart of the PC from ptflops import get_model_complexity_info from pypapi import events, papi_high as high def str_to_number(label): a = np.zeros(5) if not label: return a for i in label: if i == 'NORM': a[0] = 1 if i == 'MI': a[1] = 1 if i == 'STTC': a[2] = 1 if i == 'HYP': a[3] = 1 if i == 'CD': a[4] = 1 return a #send/recieve system: def send_msg(sock, getid, content): """ pickles the content (creates bitstream), adds header and send message via tcp port :param sock: socket :param content: content to send via tcp port """ msg = [getid, content] # add getid msg = pickle.dumps(msg) msg = struct.pack('>I', len(msg)) + msg # add 4-byte length in network byte order #print("communication overhead send: ", sys.getsizeof(msg), " bytes") global data_send_per_epoch data_send_per_epoch += sys.getsizeof(msg) sock.sendall(msg) def recieve_msg(sock): """ recieves the meassage with helper function, umpickles the message and separates the getid from the actual massage content :param sock: socket """ msg = recv_msg(sock) # receive client message from socket msg = pickle.loads(msg) return msg def recieve_request(sock): """ recieves the meassage with helper function, umpickles the message and separates the getid from the actual massage content :param sock: socket """ msg = recv_msg(sock) # receive client message from socket msg = pickle.loads(msg) getid = msg[0] content = msg[1] handle_request(sock, getid, content) def recv_msg(sock): """ gets the message length (which corresponds to the first 4 bytes of the recieved bytestream) with the recvall function :param sock: socket :return: returns the data retrieved from the recvall function """ # read message length and unpack it into an integer raw_msglen = recvall(sock, 4) if not raw_msglen: return None msglen = struct.unpack('>I', raw_msglen)[0] #print("Message length:", msglen) global data_recieved_per_epoch data_recieved_per_epoch += msglen # read the message data return recvall(sock, msglen) def recvall(sock, n): """ returns the data from a recieved bytestream, helper function to receive n bytes or return None if EOF is hit :param sock: socket :param n: length in bytes (number of bytes) :return: message """ # data = b'' while len(data) < n: if detailed_output: print("Start function sock.recv") packet = sock.recv(n - len(data)) if not packet: return None data += packet # print("Daten: ", data) return data def handle_request(sock, getid, content): """ executes the requested function, depending on the get id, and passes the recieved message :param sock: socket :param getid: id of the function, that should be executed if the message is recieved :param content: message content """ #print("request mit id:", getid) switcher = { 0: initialize_model, 1: train_epoch, 2: val_stage, 3: test_stage, } switcher.get(getid, "invalid request recieved")(sock, content) def serverHandler(conn): while True: recieve_request(conn) def grad_postprocessing(grad): grad_new = grad.numpy() for a in range(64): #scaler.fit(grad[a]) grad_new[a] = scaler.inverse_transform(grad[a]) grad_new = torch.DoubleTensor(grad_new).to(device) return grad_new def train_epoch(s, pretraining): #new_split() #new random dist between train and val loss_grad_total = 0 global epoch epoch += 1 flops_forward_epoch, flops_encoder_epoch, flops_backprop_epoch, flops_rest, flops_send = 0,0,0,0,0 #Specify AE configuration train_active = 0 #default: AE is pretrained train_grad_active = 0 if epoch < deactivate_train_after_num_epochs: if autoencoder_train: train_active = 1 if epoch < deactivate_grad_train_after_num_epochs: if train_gradAE_active: train_grad_active = 1 global data_send_per_epoch, data_recieved_per_epoch, data_send_per_epoch_total, data_recieved_per_epoch_total data_send_per_epoch, data_recieved_per_epoch = 0, 0 correct_train, total_train, train_loss = 0, 0, 0 batches_aborted, total_train_nr, total_val_nr, total_test_nr = 0, 0, 0, 0 hamming_epoch, precision_epoch, recall_epoch, f1_epoch, auc_train = 0, 0, 0, 0, 0 #encoder_grad_server = 0 epoch_start_time = time.time() loader = pretrain_loader if pretraining else train_loader for b, batch in enumerate(loader): if count_flops: x = high.read_counters() #print("batch: ", b) # print("FLOPs dataloader: ", x) # if b % 100 == 0: # print("batch ", b, " / ", total_batch) forward_time = time.time() active_training_time_batch_client = 0 start_time_batch_forward = time.time() # define labels and data per batch x_train, label_train = batch x_train = x_train.to(device) # x_train = x_train.to(device) label_train = label_train.double().to(device) if len(x_train) != 64: break if count_flops: x = high.read_counters() flops_rest += x[0] # reset Flop Counter optimizer.zero_grad() # sets gradients to 0 - start for backprop later client_output_backprop = client(x_train) client_output_train = client_output_backprop.detach().clone() if count_flops: x = high.read_counters() #print("FLOPs forward: ", x) flops_forward_epoch += x[0] client_output_train_without_ae_send = 0 if autoencoder: if train_active: optimizerencode.zero_grad() # client_output_train_without_ae = client_output_train.clone().detach().requires_grad_(False) client_encoded = encode(client_output_train) client_output_send = client_encoded.detach().clone() if train_active: client_output_train_without_ae_send = client_output_train.detach().clone() else: client_output_send = client_output_train.detach().clone() # client_output_send = encode(client_output_train) if count_flops: x = high.read_counters() flops_encoder_epoch += x[0] global encoder_grad_server msg = { 'client_output_train': client_output_send, 'client_output_train_without_ae': client_output_train_without_ae_send, 'label_train': label_train, # concat_labels, 'batch_concat': batch_concat, 'batchsize': batchsize, 'train_active': train_active, 'encoder_grad_server': encoder_grad_server, 'train_grad_active': train_grad_active, 'grad_encode': grad_encode } active_training_time_batch_client += time.time() - start_time_batch_forward if detailed_output: print("Send the message to server") send_msg(s, 0, msg) # while concat_counter_recv < concat_counter_send: msg = recieve_msg(s) # print("msg: ", msg) if pretraining == 0: wandb.log({"dropout_threshold": msg["dropout_threshold"]}, commit=False) # decode grad: client_grad_without_encode = msg["client_grad_without_encode"] client_grad = msg["grad_client"] global scaler scaler = msg["scaler"] if msg["grad_encode"]: if train_grad_active: # print("train_active") optimizer_grad_decoder.zero_grad() client_grad = Variable(client_grad, requires_grad=True) client_grad_decode = grad_decoder(client_grad) if train_grad_active: loss_grad_autoencoder = error_grad_autoencoder(client_grad_without_encode, client_grad_decode) loss_grad_total += loss_grad_autoencoder.item() loss_grad_autoencoder.backward() encoder_grad_server = client_grad.grad.detach().clone()# optimizer_grad_decoder.step() # print("loss_grad_autoencoder: ", loss_grad_autoencoder) else: encoder_grad_server = 0 client_grad_decode = grad_postprocessing(client_grad_decode.detach().clone().cpu()) else: if msg["client_grad_abort"] == 0: client_grad_decode = client_grad.detach().clone() #else: # client_grad = "abort" encoder_grad_server = 0 start_time_batch_backward = time.time() encoder_grad = msg["encoder_grad"] if client_grad == "abort": # print("client_grad: ", client_grad) train_loss_add, add_correct_train, add_total_train = msg["train_loss"], msg["add_correct_train"], \ msg["add_total_train"] correct_train += add_correct_train total_train_nr += 1 total_train += add_total_train train_loss += train_loss_add batches_aborted += 1 output_train = msg["output_train"] # print("train_loss: ", train_loss/total_train_nr) # meter.update(output_train, label_train, train_loss/total_train_nr) pass else: if train_active: client_encoded.backward(encoder_grad) optimizerencode.step() # concat_tensors[concat_counter_recv].to(device) # concat_tensors[concat_counter_recv].backward(client_grad) # client_output_backprob.to(device) # if b % 1000 == 999: # print("Backprop with: ", client_grad) if count_flops: x = high.read_counters() # reset counter flops_rest += x[0] flops_send += x[0] client_output_backprop.backward(client_grad_decode) optimizer.step() if count_flops: x = high.read_counters() # print("FLOPs backprob: ", x) flops_backprop_epoch += x[0] train_loss_add, add_correct_train, add_total_train = msg["train_loss"], msg["add_correct_train"], \ msg["add_total_train"] correct_train += add_correct_train total_train_nr += 1 total_train += add_total_train train_loss += train_loss_add output_train = msg["output_train"] # print("train_loss: ", train_loss/total_train_nr) # meter.update(output_train, label_train, train_loss/total_train_nr) # wandb.watch(client, log_freq=100) output = torch.round(output_train) # if np.sum(label.cpu().detach().numpy()[0]) > 1: # if np.sum(output.cpu().detach().numpy()[0] > 1): # print("output[0]: ", output.cpu().detach().numpy()[0]) # print("label [0]: ", label.cpu().detach().numpy()[0]) #if (total_train_nr % 100 == 0): # print("output[0]: ", output.cpu().detach().numpy()[0]) # print("label [0]: ", label_train.cpu().detach().numpy()[0]) #global batches_abort_rate_total #batches_abort_rate_total.append(batches_aborted / total_train_nr) active_training_time_batch_client += time.time() - start_time_batch_backward #active_training_time_batch_server = msg["active_trtime_batch_server"] #active_training_time_epoch_client += active_training_time_batch_client #active_training_time_epoch_server += active_training_time_batch_server # try: roc_auc = roc_auc_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(),average='micro') auc_train += roc_auc except: # print("auc_train_exception: ") # print("label: ", label) # print("output: ", output) pass hamming_epoch += Metrics.Accuracy(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu()) # accuracy_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu()) precision_epoch += precision_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) epoch_endtime = time.time() - epoch_start_time if pretraining: status_epoch_train = "epoch: {}, AUC_train: {:.4f}, Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, trainingtime for epoch: {:.6f}s, batches abortrate:{:.2f}, train_loss: {:.4f} ".format( epoch, auc_train / total_train_nr, hamming_epoch / total_train_nr, precision_epoch / total_train_nr, recall_epoch / total_train_nr, f1_epoch / total_train_nr, epoch_endtime, batches_aborted / total_train_nr, train_loss / total_train_nr) print("status_epoch_pretrain: ", status_epoch_train) else: flops_client_forward_total.append(flops_forward_epoch) flops_client_encoder_total.append(flops_encoder_epoch) flops_client_backprop_total.append(flops_backprop_epoch) print("data_send_per_epoch: ", data_send_per_epoch / 1000000, " MegaBytes") print("data_recieved_per_epoch: ", data_recieved_per_epoch / 1000000, "MegaBytes") data_send_per_epoch_total.append(data_send_per_epoch) data_recieved_per_epoch_total.append(data_recieved_per_epoch) status_epoch_train = "epoch: {}, AUC_train: {:.4f}, Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, trainingtime for epoch: {:.6f}s, batches abortrate:{:.2f}, train_loss: {:.4f} ".format( epoch, auc_train / total_train_nr, hamming_epoch / total_train_nr, precision_epoch / total_train_nr, recall_epoch / total_train_nr, f1_epoch / total_train_nr, epoch_endtime, batches_aborted / total_train_nr, train_loss / total_train_nr) print("status_epoch_train: ", status_epoch_train) if count_flops: print("MegaFLOPS_forward_epoch", flops_forward_epoch / 1000000) print("MegaFLOPS_encoder_epoch", flops_encoder_epoch / 1000000) print("MegaFLOPS_backprop_epoch", flops_backprop_epoch / 1000000) print("MegaFLOPS_rest", flops_rest / 1000000) print("MegaFLOPS_send", flops_send / 1000000) wandb.log({"Batches Abortrate": batches_aborted / total_train_nr, "MegaFLOPS Client Encoder": flops_encoder_epoch / 1000000, "MegaFLOPS Client Forward": flops_forward_epoch / 1000000, "MegaFLOPS Client Backprop": flops_backprop_epoch / 1000000}, commit=False) global auc_train_log auc_train_log = auc_train / total_train_nr global accuracy_train_log accuracy_train_log = hamming_epoch / total_train_nr global batches_abort_rate_total batches_abort_rate_total.append(batches_aborted / total_train_nr) initial_weights = client.state_dict() send_msg(s, 2, initial_weights) msg = 0 send_msg(s, 3, msg) def val_stage(s, pretraining=0): total_val_nr, val_loss_total, correct_val, total_val = 0, 0, 0, 0 val_losses, val_accs = [], [] hamming_epoch, precision_epoch, recall_epoch, f1_epoch, accuracy, auc_val = 0, 0, 0, 0, 0, 0 val_time = time.time() with torch.no_grad(): for b_t, batch_t in enumerate(val_loader): x_val, label_val = batch_t x_val, label_val = x_val.to(device), label_val.double().to(device) optimizer.zero_grad() output_val = client(x_val, drop=False) client_output_val = output_val.clone().detach().requires_grad_(True) if autoencoder: client_output_val = encode(client_output_val) msg = {'client_output_val/test': client_output_val, 'label_val/test': label_val, } if detailed_output: print("The msg is:", msg) send_msg(s, 1, msg) if detailed_output: print("294: send_msg success!") msg = recieve_msg(s) if detailed_output: print("296: recieve_msg success!") correct_val_add = msg["correct_val/test"] val_loss = msg["val/test_loss"] output_val_server = msg["output_val/test_server"] val_loss_total += val_loss correct_val += correct_val_add total_val_add = len(label_val) total_val += total_val_add total_val_nr += 1 try: roc_auc = roc_auc_score(label_val.detach().clone().cpu(), torch.round(output_val_server).detach().clone().cpu(), average='micro') auc_val += roc_auc except: # print("auc_train_exception: ") # print("label: ", label) # print("output: ", output) pass output_val_server = torch.round(output_val_server) hamming_epoch += Metrics.Accuracy(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu()) #accuracy_score(label_val.detach().clone().cpu(), # torch.round(output_val_server).detach().clone().cpu()) precision_epoch += precision_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) status_epoch_val = "epoch: {},AUC_val: {:.4f} ,Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, val_loss: {:.4f}".format( epoch, auc_val / total_val_nr, hamming_epoch / total_val_nr, precision_epoch / total_val_nr, recall_epoch / total_val_nr, f1_epoch / total_val_nr, val_loss_total / total_val_nr) print("status_epoch_val: ", status_epoch_val) if pretraining == 0: wandb.log({"Loss_val": val_loss_total / total_val_nr, "Accuracy_val_micro": hamming_epoch / total_val_nr, "F1_val": f1_epoch / total_val_nr, "AUC_val": auc_val / total_val_nr, "AUC_train": auc_train_log, "Accuracy_train_micro": accuracy_train_log}) send_msg(s, 3, 0) def test_stage(s, epoch): loss_test = 0.0 correct_test, total_test = 0, 0 hamming_epoch = 0 precision_epoch = 0 recall_epoch = 0 f1_epoch = 0 total_test_nr = 0 with torch.no_grad(): for b_t, batch_t in enumerate(val_loader): x_test, label_test = batch_t x_test, label_test = x_test.to(device), label_test.double().to(device) optimizer.zero_grad() output_test = client(x_test, drop=False) client_output_test = output_test.clone().detach().requires_grad_(True) if autoencoder: client_output_test = encode(client_output_test) msg = {'client_output_val/test': client_output_test, 'label_val/test': label_test, } if detailed_output: print("The msg is:", msg) send_msg(s, 1, msg) if detailed_output: print("294: send_msg success!") msg = recieve_msg(s) if detailed_output: print("296: recieve_msg success!") correct_test_add = msg["correct_val/test"] test_loss = msg["val/test_loss"] output_test_server = msg["output_val/test_server"] loss_test += test_loss correct_test += correct_test_add total_test_add = len(label_test) total_test += total_test_add total_test_nr += 1 output_test_server = torch.round(output_test_server) hamming_epoch += Metrics.Accuracy(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu()) #accuracy_score(label_test.detach().clone().cpu(), #torch.round(output_test_server).detach().clone().cpu()) precision_epoch += precision_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') status_test = "test: hamming_epoch: {:.4f}, precision_epoch: {:.4f}, recall_epoch: {:.4f}, f1_epoch: {:.4f}".format( hamming_epoch / total_test_nr, precision_epoch / total_test_nr, recall_epoch / total_test_nr, f1_epoch / total_test_nr) print("status_test: ", status_test) global data_send_per_epoch_total global data_recieved_per_epoch_total global batches_abort_rate_total data_transfer_per_epoch = 0 average_dismissal_rate = 0 total_flops_forward = 0 total_flops_encoder = 0 total_flops_backprob = 0 for data in data_send_per_epoch_total: data_transfer_per_epoch += data for data in data_recieved_per_epoch_total: data_transfer_per_epoch += data for data in batches_abort_rate_total: average_dismissal_rate += data for flop in flops_client_forward_total: total_flops_forward += flop for flop in flops_client_encoder_total: total_flops_encoder += flop for flop in flops_client_backprop_total: total_flops_backprob += flop total_flops = total_flops_backprob + total_flops_encoder + total_flops_forward print("total FLOPs forward: ", total_flops_forward) print("total FLOPs encoder: ", total_flops_encoder) print("total FLOPs backprob: ", total_flops_backprob) print("total FLOPs client: ", total_flops) print("Average data transfer/epoch: ", data_transfer_per_epoch / epoch / 1000000, " MB") print("Average dismissal rate: ", average_dismissal_rate / epoch) wandb.config.update({"Average data transfer/epoch (MB): ": data_transfer_per_epoch / epoch / 1000000, "Average dismissal rate: ": average_dismissal_rate / epoch, "total_MegaFLOPS_forward": total_flops_forward/1000000, "total_MegaFLOPS_encoder": total_flops_encoder/1000000, "total_MegaFLOPS_backprob": total_flops_backprob/1000000, "total_MegaFLOPS": total_flops/1000000}) msg = 0 send_msg(s, 3, msg) def initialize_model(s, msg): """ if new connected client is not the first connected client, the initial weights are fetched from the server :param conn: """ #msg = recieve_msg(s) if msg == 0: #print("msg == 0") pass else: print("msg != 0") client.load_state_dict(msg, strict=False) print("model successfully initialized") #print("start_training") # start_training(s) #train_epoch(s) def initIID(): global X_train, X_val, y_val, y_train, y_test, X_test sampling_frequency = 100 datafolder = ptb_path task = 'superdiagnostic' outputfolder = mlb_path # Load PTB-XL data data, raw_labels = utils.load_dataset(datafolder, sampling_frequency) # Preprocess label data labels = utils.compute_label_aggregations(raw_labels, datafolder, task) # Select relevant data and convert to one-hot data, labels, Y, _ = utils.select_data(data, labels, task, min_samples=0, outputfolder=outputfolder) input_shape = data[0].shape print(input_shape) # 1-9 for training X_train = data[labels.strat_fold < 10] y_train = Y[labels.strat_fold < 10] # 10 for validation X_val = data[labels.strat_fold == 10] y_val = Y[labels.strat_fold == 10] # X_test = data[labels.strat_fold == 10] # y_test = Y[labels.strat_fold == 10] num_classes = 5 # <=== number of classes in the finetuning dataset input_shape = [1000, 12] # <=== shape of samples, [None, 12] in case of different lengths print(X_train.shape, y_train.shape, X_val.shape, y_val.shape) # , X_test.shape, y_test.shape) import pickle standard_scaler = pickle.load(open(scaler_path, "rb")) X_train = utils.apply_standardizer(X_train, standard_scaler) X_val = utils.apply_standardizer(X_val, standard_scaler) global X_raw, y_raw X_raw = X_train y_raw = y_train def init_nonIID(): global X_train, X_val, y_val, y_train, y_test, X_test norm, mi, sttc, hyp, cd = [],[],[],[],[] for a in range(len(y_train)): if label_class(y_train[a], 0): sttc.append(X_train[a]) if label_class(y_train[a], 1): hyp.append(X_train[a]) if label_class(y_train[a], 2): mi.append(X_train[a]) if label_class(y_train[a], 3): norm.append(X_train[a]) if label_class(y_train[a], 4): cd.append(X_train[a]) """ print("norm shape: ", len(norm)) print("mi shape: ", len(mi)) print("sttc shape: ", len(sttc)) print("hyp shape: ", len(hyp)) print("cd shape: ", len(cd)) print("norm label: ", label_norm[0]) print("mi label: ", label_mi[0]) print("sttc label: ", label_sttc[0]) print("hyp label: ", label_hyp[0]) print("cd label: ", label_cd[0]) print("norm label: ", len(label_norm)) print("mi label: ", len(label_mi)) print("sttc label: ", len(label_sttc)) print("hyp label: ", len(label_hyp)) print("cd label: ", len(label_cd)) """ if client_num == 1: if num_classes == 1: print("Client number: ", client_num, " Class norm") X_train = norm y_train = label_norm if num_classes == 2: print("Client number: ", client_num, " Class norm, mi") X_train = np.concatenate((norm, mi), axis=0) y_train = np.concatenate((label_norm, label_mi), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class norm, mi, sttc") X_train = np.concatenate((norm, mi), axis=0) X_train = np.concatenate((X_train, sttc), axis=0) y_train = np.concatenate((label_norm, label_mi), axis=0) y_train = np.concatenate((y_train, label_sttc), axis=0) if client_num == 2: if num_classes == 1: print("Client number: ", client_num, " Class mi") X_train = mi y_train = label_mi if num_classes == 2: print("Client number: ", client_num, " Class mi, sttc") X_train = np.concatenate((mi, sttc), axis=0) y_train = np.concatenate((label_mi, label_sttc), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class mi, sttc, hyp") X_train = np.concatenate((mi, sttc), axis=0) X_train = np.concatenate((X_train, hyp), axis=0) y_train = np.concatenate((label_mi, label_sttc), axis=0) y_train = np.concatenate((y_train, label_hyp), axis=0) if client_num == 3: if num_classes == 1: print("Client number: ", client_num, " Class sttc") X_train = sttc y_train = label_sttc if num_classes == 2: print("Client number: ", client_num, " Class sttc, hyp") X_train = np.concatenate((sttc, hyp), axis=0) y_train = np.concatenate((label_sttc, label_hyp), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class sttc, hyp, cd") X_train = np.concatenate((sttc, hyp), axis=0) X_train = np.concatenate((X_train, cd), axis=0) y_train = np.concatenate((label_sttc, label_hyp), axis=0) y_train = np.concatenate((y_train, label_cd), axis=0) if client_num == 4: if num_classes == 1: print("Client number: ", client_num, " Class hyp") X_train = hyp y_train = label_hyp if num_classes == 2: print("Client number: ", client_num, " Class hyp, cd") X_train = np.concatenate((hyp, cd), axis=0) y_train = np.concatenate((label_hyp, label_cd), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class hyp, cd, norm") X_train = np.concatenate((hyp, cd), axis=0) X_train = np.concatenate((X_train, norm), axis=0) y_train = np.concatenate((label_hyp, label_cd), axis=0) y_train = np.concatenate((y_train, label_norm), axis=0) if client_num == 5: if num_classes == 1: print("Client number: ", client_num, " Class cd") X_train = cd y_train = label_cd if num_classes == 2: print("Client number: ", client_num, " Class cd, norm") X_train = np.concatenate((cd, norm), axis=0) y_train = np.concatenate((label_cd, label_norm), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class cd, norm, mi") X_train =
np.concatenate((cd, norm), axis=0)
numpy.concatenate
""" Created on 13 April 2020 Last Update on 17 April 2020 @author: Md. <NAME> version: 1.1 Approach: Vectorisation """ from __future__ import division import numpy as np from scipy.stats import rankdata from collections import namedtuple # Supporting Functions # Data Preprocessing def __preprocessing(x): try: if x.index.dtype != 'int64': idx = x.index.date.astype('str') else: idx = np.asarray(range(1, len(x)+1)) except: idx = np.asarray(range(1, len(x)+1)) x =
np.asarray(x)
numpy.asarray
#!/usr/bin/env python # -*- coding:utf-8 -*- import numpy as np import matplotlib.pyplot as plt from ibllib.dsp import rms def wiggle(w, fs=1, gain=0.71, color='k', ax=None, fill=True, linewidth=0.5, t0=0, **kwargs): """ Matplotlib display of wiggle traces :param w: 2D array (numpy array dimension nsamples, ntraces) :param fs: sampling frequency :param gain: display gain :param color: ('k') color of traces :param ax: (None) matplotlib axes object :param fill: (True) fill variable area above 0 :param t0: (0) timestamp of the first sample :return: None """ nech, ntr = w.shape tscale = np.arange(nech) / fs sf = gain / np.sqrt(rms(w.flatten())) def insert_zeros(trace): # Insert zero locations in data trace and tt vector based on linear fit # Find zeros zc_idx = np.where(np.diff(np.signbit(trace)))[0] x1 = tscale[zc_idx] x2 = tscale[zc_idx + 1] y1 = trace[zc_idx] y2 = trace[zc_idx + 1] a = (y2 - y1) / (x2 - x1) tt_zero = x1 - y1 / a # split tt and trace tt_split = np.split(tscale, zc_idx + 1) trace_split =
np.split(trace, zc_idx + 1)
numpy.split
# ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2020, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= import pytest import unittest import shutil import os import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.logging.WARN) os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import numpy as np import json import libpymo import time from aimet_tensorflow.quantsim import QuantizationSimModel from aimet_tensorflow.utils.graph_saver import load_model_from_meta from aimet_tensorflow.common.graph_eval import initialize_uninitialized_vars from aimet_tensorflow.examples.test_models import model_with_dtype_int, keras_model_functional from aimet_common.defs import QuantScheme from aimet_tensorflow.quantsim import save_checkpoint, load_checkpoint from aimet_tensorflow.utils.constants import QuantizeOpIndices class TestQuantSim(unittest.TestCase): def test_construction_cpu_model(self): """ Create QuantSim for a CPU model and check that quantizers have been added to the graph """ tf.compat.v1.reset_default_graph() with tf.device('/cpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, ['conv2d_input'], ['conv2d_1/Relu'], use_cuda=False) # One run through the model to check if the ops got added correctly model_output = sess.graph.get_tensor_by_name('conv2d_1/BiasAdd_quantized:0') model_input = sess.graph.get_tensor_by_name('conv2d_input:0') dummy_input = np.random.randn(20, 28, 28, 3) sess.run(model_output, feed_dict={model_input: dummy_input}) # Check that quantized ops got added for all params quant_ops = [op for op in sess.graph.get_operations() if op.type == 'QcQuantize'] for op in quant_ops: print(op.name) self.assertEqual(10, len(quant_ops)) # Check that the quant ops are correctly connected in the graph self.assertEqual('Conv2D', quant_ops[0].outputs[0].consumers()[0].type) self.assertEqual('BiasAdd', quant_ops[1].outputs[0].consumers()[0].type) self.assertEqual(int(libpymo.TensorQuantizerOpMode.passThrough), sess.run(quant_ops[1].inputs[1])) # Check that op-mode is set correctly self.assertEqual(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), sess.run(quant_ops[0].inputs[1])) sess.close() sim.session.close() del sim @pytest.mark.cuda def test_construction_gpu_model(self): """ Create QuantSim for a GPU model and check that quantizers have been added to the graph """ tf.compat.v1.reset_default_graph() with tf.device('/gpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, ['conv2d_input'], ['conv2d_1/Relu'], use_cuda=True) # One run through the model to check if the ops got added correctly model_output = sess.graph.get_tensor_by_name('conv2d_1/BiasAdd_quantized:0') model_input = sess.graph.get_tensor_by_name('conv2d_input:0') dummy_input = np.random.randn(20, 28, 28, 3) sess.run(model_output, feed_dict={model_input: dummy_input}) # Check that quantized ops got added for all params quant_ops = [op for op in sess.graph.get_operations() if op.type == 'QcQuantize'] for op in quant_ops: print(op.name) self.assertEqual(10, len(quant_ops)) # Check that the quant ops are correctly connected in the graph self.assertEqual('Conv2D', quant_ops[0].outputs[0].consumers()[0].type) self.assertEqual('BiasAdd', quant_ops[1].outputs[0].consumers()[0].type) # Check that op-mode is set correctly self.assertEqual(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), sess.run(quant_ops[0].inputs[1])) sess.close() sim.session.close() del sim def test_compute_encodings_cpu_model(self): """ Create QuantSim for a CPU model and test that activation encodings are computed """ tf.compat.v1.reset_default_graph() with tf.device('/cpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, ['conv2d_input'], ['conv2d_1/Relu'], use_cuda=False) # Check that op-mode is set correctly conv2d_weight_quant_op = sim.session.graph.get_operation_by_name('conv2d/Conv2D/ReadVariableOp_quantized') conv2d_output_quant_op = sim.session.graph.get_operation_by_name('conv2d/Relu_quantized') self.assertEqual(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), sim.session.run(conv2d_weight_quant_op.inputs[1])) self.assertEqual(int(libpymo.TensorQuantizerOpMode.updateStats), sim.session.run(conv2d_output_quant_op.inputs[1])) def dummy_forward_pass(sess, args): model_output = sess.graph.get_tensor_by_name('conv2d_1/Relu_quantized:0') model_input = sess.graph.get_tensor_by_name('conv2d_input:0') dummy_input = np.random.randn(20, 28, 28, 3) sess.run(model_output, feed_dict={model_input: dummy_input}) sim.compute_encodings(dummy_forward_pass, None) # Check if encodings have been calculated deactivated_quantizers = [ 'conv2d_input_quantized', 'conv2d/BiasAdd_quantized', 'conv2d_1/BiasAdd_quantized' ] for name, quantizer in sim._activation_quantizers.items(): if name in deactivated_quantizers: self.assertTrue(int(libpymo.TensorQuantizerOpMode.passThrough), sim.session.run(name + '_op_mode/read:0')) else: self.assertTrue(quantizer.tensor_quantizer.isEncodingValid, "quantizer: {} does not have a valid encoding".format(name)) # Check that op-mode is set correctly # Check that quantized ops got added for all params conv2d_weight_quant_op = sim.session.graph.get_operation_by_name('conv2d/Conv2D/ReadVariableOp_quantized') conv2d_output_quant_op = sim.session.graph.get_operation_by_name('conv2d/Relu_quantized') self.assertEqual(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), sim.session.run(conv2d_weight_quant_op.inputs[1])) self.assertEqual(int(libpymo.TensorQuantizerOpMode.quantizeDequantize), sim.session.run(conv2d_output_quant_op.inputs[1])) def _save_to_keras_common_test_code(self, use_cuda): tf.compat.v1.reset_default_graph() if not use_cuda: model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() else: with tf.device('/cpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, ['conv2d_input'], ['conv2d_1/Relu'], use_cuda=use_cuda) # Check that op-mode is set correctly conv2d_weight_quant_op = sim.session.graph.get_operation_by_name('conv2d/Conv2D/ReadVariableOp_quantized') conv2d_output_quant_op = sim.session.graph.get_operation_by_name('conv2d/Relu_quantized') self.assertEqual(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), sim.session.run(conv2d_weight_quant_op.inputs[1])) self.assertEqual(int(libpymo.TensorQuantizerOpMode.updateStats), sim.session.run(conv2d_output_quant_op.inputs[1])) def dummy_forward_pass(sess, eval_tensor_name): model_output = sess.graph.get_tensor_by_name(eval_tensor_name) model_input = sess.graph.get_tensor_by_name('conv2d_input:0') dummy_input = np.random.randn(20, 28, 28, 3) sess.run(model_output, feed_dict={model_input: dummy_input}) sim.compute_encodings(dummy_forward_pass, 'conv2d_1/Relu_quantized:0') mod_sess = sim.save_to_keras() # Check 1: The new graph is well formed. Try forward pass through the graph. dummy_forward_pass(mod_sess, 'conv2d_1/Relu_quantized_static:0') # Check 2: All the QcQuantizeOp nodes have no output - meaning are disconnected from the main graph op_count = 0 for op in mod_sess.graph.get_operations(): if op.type == "QcQuantize": op_count += 1 self.assertFalse(op.outputs[0].consumers()) # Check 3: One QcQuantizeStatic for each QcQuantize op static_op_count = 0 for op in mod_sess.graph.get_operations(): if op.type == "QcQuantizeStatic": static_op_count += 1 self.assertEqual(op_count, static_op_count) # Check 4: Make sure the attributes are set correctly op = mod_sess.graph.get_operation_by_name("conv2d/Conv2D/ReadVariableOp_quantized_static") self.assertEqual(8, op.get_attr("bitwidth")) self.assertEqual(1, op.get_attr("quant_scheme")) # TF-Enhanced self.assertEqual(1, op.get_attr("op_mode")) # oneShotQuantizeDequantize op = mod_sess.graph.get_operation_by_name("conv2d/BiasAdd_quantized_static") self.assertEqual(3, op.get_attr("op_mode")) # passThrough op = mod_sess.graph.get_operation_by_name("conv2d/Relu_quantized_static") self.assertEqual(8, op.get_attr("bitwidth")) self.assertEqual(1, op.get_attr("quant_scheme")) # TF-Enhanced self.assertEqual(2, op.get_attr("op_mode")) # quantizeDequantize sess.close() sim.session.close() del sim def test_save_to_keras_cpu_model(self): """ Create sim model for a keras pipeline """ self._save_to_keras_common_test_code(False) def test_save_to_keras_gpu_model(self): """ Create sim model for a keras pipeline """ self._save_to_keras_common_test_code(True) @pytest.mark.cuda def test_compute_encodings_gpu_model(self): """ Create QuantSim for a CPU model and test that activation encodings are computed """ tf.compat.v1.reset_default_graph() with tf.device('/gpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, ['conv2d_input'], ['conv2d_1/Relu'], use_cuda=True) # Check that op-mode is set correctly conv2d_weight_quant_op = sim.session.graph.get_operation_by_name('conv2d/Conv2D/ReadVariableOp_quantized') conv2d_output_quant_op = sim.session.graph.get_operation_by_name('conv2d/Relu_quantized') self.assertEqual(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), sim.session.run(conv2d_weight_quant_op.inputs[1])) self.assertEqual(int(libpymo.TensorQuantizerOpMode.updateStats), sim.session.run(conv2d_output_quant_op.inputs[1])) def dummy_forward_pass(sess, args): model_output = sess.graph.get_tensor_by_name('conv2d_1/Relu_quantized:0') model_input = sess.graph.get_tensor_by_name('conv2d_input:0') dummy_input = np.random.randn(20, 28, 28, 3) sess.run(model_output, feed_dict={model_input: dummy_input}) sim.compute_encodings(dummy_forward_pass, None) # Check if encodings have been calculated deactivated_quantizers = [ 'conv2d_input_quantized', 'conv2d/BiasAdd_quantized', 'conv2d_1/BiasAdd_quantized' ] for name, quantizer in sim._activation_quantizers.items(): if name in deactivated_quantizers: self.assertTrue(int(libpymo.TensorQuantizerOpMode.passThrough), sim.session.run(name + '_op_mode/read:0')) else: self.assertTrue(quantizer.tensor_quantizer.isEncodingValid, "quantizer: {} does not have a valid encoding".format(name)) # Check that op-mode is set correctly # Check that quantized ops got added for all params conv2d_weight_quant_op = sim.session.graph.get_operation_by_name('conv2d/Conv2D/ReadVariableOp_quantized') conv2d_output_quant_op = sim.session.graph.get_operation_by_name('conv2d/Relu_quantized') self.assertEqual(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), sim.session.run(conv2d_weight_quant_op.inputs[1])) self.assertEqual(int(libpymo.TensorQuantizerOpMode.quantizeDequantize), sim.session.run(conv2d_output_quant_op.inputs[1])) sess.close() sim.session.close() del sim @pytest.mark.cuda def test_compute_encodings_quant_scheme_update(self): """ Create QuantSim model and update quantScheme using property interface """ tf.compat.v1.reset_default_graph() np.random.seed(0) tf.compat.v1.set_random_seed(0) with tf.device('/gpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, ['conv2d_input'], ['conv2d_1/Relu'], use_cuda=True) # Check that op-mode is set correctly conv2d_weight_quant_op = sim.session.graph.get_operation_by_name('conv2d/Conv2D/ReadVariableOp_quantized') self.assertEqual(int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), sim.session.run(conv2d_weight_quant_op.inputs[1])) def dummy_forward_pass(sess, args): np.random.seed(0) tf.compat.v1.set_random_seed(0) model_output = sess.graph.get_tensor_by_name('conv2d_1/Relu_quantized:0') model_input = sess.graph.get_tensor_by_name('conv2d_input:0') dummy_input = np.random.randn(20, 28, 28, 3) sess.run(model_output, feed_dict={model_input: dummy_input}) sim.compute_encodings(dummy_forward_pass, None) p_quantizer = sim.quantizer_config('conv2d/Conv2D/ReadVariableOp_quantized') old_p_encoding_min = p_quantizer.get_variable_from_op(QuantizeOpIndices.encoding_min) old_p_encoding_max = p_quantizer.get_variable_from_op(QuantizeOpIndices.encoding_max) self.assertEqual(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, p_quantizer.quant_scheme) p_quantizer.quant_scheme = QuantScheme.post_training_tf self.assertEqual(libpymo.QuantizationMode.QUANTIZATION_TF, p_quantizer.quant_scheme) # invoke compute encoding after quantScheme update sim.compute_encodings(dummy_forward_pass, None) new_p_encoding_min = p_quantizer.get_variable_from_op(QuantizeOpIndices.encoding_min) new_p_encoding_max = p_quantizer.get_variable_from_op(QuantizeOpIndices.encoding_max) # validate self.assertNotEqual(old_p_encoding_min, new_p_encoding_min) self.assertNotEqual(old_p_encoding_max, new_p_encoding_max) sess.close() sim.session.close() del sim def test_export_cpu_model(self): """ Create QuantSim for a CPU model, compute encodings and export out a resulting model """ tf.compat.v1.reset_default_graph() with tf.device('/cpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, [model.input.op.name], [model.output.op.name], use_cuda=False) def dummy_forward_pass(sess, args): model_output = sess.graph.get_tensor_by_name(model.output.name) model_output = model_output.consumers()[0].outputs[0] model_input = sess.graph.get_tensor_by_name(model.input.name) dummy_input = np.random.randn(20, 28, 28, 3) sess.run(model_output, feed_dict={model_input: dummy_input}) sim.compute_encodings(dummy_forward_pass, None) # Make some changes to model parameters to see if they are part of the exported model with sim.session.graph.as_default(): first_bias_tensor = sim.session.graph.get_tensor_by_name('conv2d/BiasAdd/ReadVariableOp:0') first_bias_tensor_val = sim.session.run(first_bias_tensor) self.assertTrue(np.any(first_bias_tensor_val == 0)) first_bias_tensor_var = [var for var in tf.compat.v1.global_variables() if var.name == 'conv2d/bias:0'][0] first_bias_tensor_var.load(np.ones(32), sim.session) all_op_types = [op.type for op in sim.session.graph.get_operations()] self.assertIn('QcQuantize', all_op_types) sim.export('/tmp', 'quant_sim_model') with open('/tmp/quant_sim_model.encodings') as json_file: encoding_data = json.load(json_file) activation_keys = list(encoding_data["activation_encodings"].keys()) self.assertTrue(activation_keys[0] == "conv2d/Relu:0") self.assertTrue(isinstance(encoding_data["activation_encodings"]["conv2d/Relu:0"], list)) act_encoding_keys = encoding_data["activation_encodings"]["conv2d/Relu:0"][0].keys() self.assertTrue("bitwidth" in act_encoding_keys) self.assertTrue("is_symmetric" in act_encoding_keys) self.assertTrue("max" in act_encoding_keys) self.assertTrue("min" in act_encoding_keys) self.assertTrue("offset" in act_encoding_keys) self.assertTrue("scale" in act_encoding_keys) param_keys = list(encoding_data["param_encodings"].keys()) self.assertTrue(param_keys[0] == "conv2d/Conv2D/ReadVariableOp:0") self.assertTrue(isinstance(encoding_data["param_encodings"]["conv2d/Conv2D/ReadVariableOp:0"], list)) param_encoding_keys = encoding_data["param_encodings"]["conv2d/Conv2D/ReadVariableOp:0"][0].keys() self.assertTrue("bitwidth" in param_encoding_keys) self.assertTrue("is_symmetric" in param_encoding_keys) self.assertTrue("max" in param_encoding_keys) self.assertTrue("min" in param_encoding_keys) self.assertTrue("offset" in param_encoding_keys) self.assertTrue("scale" in param_encoding_keys) new_sess = load_model_from_meta('/tmp/quant_sim_model.meta') first_bias_tensor = new_sess.graph.get_tensor_by_name('conv2d/BiasAdd/ReadVariableOp:0') first_bias_tensor_val = new_sess.run(first_bias_tensor) self.assertTrue(np.any(first_bias_tensor_val == 1)) all_op_types = [op.type for op in new_sess.graph.get_operations()] self.assertNotIn('QcQuantize', all_op_types) sess.close() sim.session.close() del sim def test_save_load_ckpt_cpu_model(self): """ Create QuantSim for a CPU model, test save and load on a quantsim model. """ tf.compat.v1.reset_default_graph() with tf.device('/cpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, [model.input.op.name], [model.output.op.name], use_cuda=False) # save quantsim model save_checkpoint(sim, './test_3', 'orig_quantsim_model') new_quantsim = load_checkpoint('./test_3', 'orig_quantsim_model') # validations assert(sim is not new_quantsim) self.assertTrue(new_quantsim.session is not None) self.assertTrue(new_quantsim._quant_scheme == sim._quant_scheme) self.assertTrue(new_quantsim._rounding_mode == sim._rounding_mode) self.assertTrue(new_quantsim._use_cuda == sim._use_cuda) self.assertTrue(len(new_quantsim._param_quantizers) == len(sim._param_quantizers)) self.assertTrue(len(new_quantsim._activation_quantizers) == len(sim._activation_quantizers)) for quantize_op in new_quantsim._param_quantizers: self.assertFalse(sim._param_quantizers[quantize_op].session == new_quantsim._param_quantizers[quantize_op].session) self.assertTrue(sim._param_quantizers[quantize_op].tensor_quantizer.getQuantScheme() == new_quantsim._param_quantizers[quantize_op].tensor_quantizer.getQuantScheme()) self.assertTrue(sim._param_quantizers[quantize_op].tensor_quantizer.roundingMode == new_quantsim._param_quantizers[quantize_op].tensor_quantizer.roundingMode) self.assertFalse(sim._param_quantizers[quantize_op].tensor_quantizer.isEncodingValid) self.assertFalse(new_quantsim._param_quantizers[quantize_op].tensor_quantizer.isEncodingValid) for quantize_op in new_quantsim._activation_quantizers: self.assertFalse(sim._activation_quantizers[quantize_op].session == new_quantsim._activation_quantizers[quantize_op].session) self.assertTrue(sim._activation_quantizers[quantize_op].tensor_quantizer.getQuantScheme() == new_quantsim._activation_quantizers[quantize_op].tensor_quantizer.getQuantScheme()) self.assertTrue(sim._activation_quantizers[quantize_op].tensor_quantizer.roundingMode == new_quantsim._activation_quantizers[quantize_op].tensor_quantizer.roundingMode) self.assertFalse(sim._activation_quantizers[quantize_op].tensor_quantizer.isEncodingValid) self.assertFalse(new_quantsim._activation_quantizers[quantize_op].tensor_quantizer.isEncodingValid) # remove the old quant sim reference and session # to test that everything is loaded correctly on new quantsim including tensor quantizer references sim.session.close() del sim # delete temp folder created and close sessions shutil.rmtree('./test_3') sess.close() new_quantsim.session.close() del new_quantsim def test_save_load_ckpt_after_compute_encoding_on_orig_object(self): """ Create QuantSim for a CPU model, test save and load on a quantsim model when encodings have been computed on original quantsim object """ tf.compat.v1.reset_default_graph() with tf.device('/cpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, [model.input.op.name], [model.output.op.name], use_cuda=False) def dummy_forward_pass(n_sess, args): model_output = n_sess.graph.get_tensor_by_name(model.output.name) model_output = model_output.consumers()[0].outputs[0] model_input = n_sess.graph.get_tensor_by_name(model.input.name) dummy_input = np.random.randn(20, 28, 28, 3) n_sess.run(model_output, feed_dict={model_input: dummy_input}) sim.compute_encodings(dummy_forward_pass, None) # save quantsim model save_checkpoint(sim, './test_3', 'orig_quantsim_model') new_quantsim = load_checkpoint('./test_3', 'orig_quantsim_model') # validations assert(sim is not new_quantsim) # as we have performed computeEncodings() on saved quantsim object, these must be set to True/False # in loaded quantsim object as on orig model for quantize_op in new_quantsim._param_quantizers: self.assertTrue(new_quantsim._param_quantizers[quantize_op].tensor_quantizer.isEncodingValid == sim._param_quantizers[quantize_op].tensor_quantizer.isEncodingValid) self.assertTrue(new_quantsim._param_quantizers[quantize_op]. get_variable_from_op(QuantizeOpIndices.encoding_min) == sim._param_quantizers[quantize_op]. get_variable_from_op(QuantizeOpIndices.encoding_min)) self.assertTrue(new_quantsim._param_quantizers[quantize_op]. get_variable_from_op(QuantizeOpIndices.encoding_max) == sim._param_quantizers[quantize_op]. get_variable_from_op(QuantizeOpIndices.encoding_max)) for quantize_op in new_quantsim._activation_quantizers: self.assertTrue(new_quantsim._activation_quantizers[quantize_op].tensor_quantizer.isEncodingValid == sim._activation_quantizers[quantize_op].tensor_quantizer.isEncodingValid) self.assertTrue(new_quantsim._activation_quantizers[quantize_op]. get_variable_from_op(QuantizeOpIndices.encoding_min) == sim._activation_quantizers[quantize_op]. get_variable_from_op(QuantizeOpIndices.encoding_min)) self.assertTrue(new_quantsim._activation_quantizers[quantize_op]. get_variable_from_op(QuantizeOpIndices.encoding_max) == sim._activation_quantizers[quantize_op]. get_variable_from_op(QuantizeOpIndices.encoding_max)) # delete temp folder created and close sessions shutil.rmtree('./test_3') sess.close() sim.session.close() new_quantsim.session.close() del sim del new_quantsim def test_set_get_quantizer_params_using_properties(self): """ Create QuantSim for a CPU model, test param read and write using properties """ tf.compat.v1.reset_default_graph() with tf.device('/cpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, [model.input.op.name], [model.output.op.name], use_cuda=False) p_quantizer = sim.quantizer_config('conv2d/Conv2D/ReadVariableOp_quantized') o_quantizer = sim.quantizer_config('conv2d/Relu_quantized') bias_quantizer = sim.quantizer_config('conv2d/BiasAdd/ReadVariableOp_quantized') # check if __str__ can print the object info print(p_quantizer) bitwidth = p_quantizer.bitwidth self.assertEqual(8, bitwidth) p_quantizer.bitwidth = 6 bitwidth = p_quantizer.bitwidth self.assertEqual(6, bitwidth) bitwidth = o_quantizer.bitwidth self.assertEqual(8, bitwidth) o_quantizer.bitwidth = 6 bitwidth = o_quantizer.bitwidth self.assertEqual(6, bitwidth) sym_encoding = bias_quantizer.use_symmetric_encoding self.assertFalse(sym_encoding) bias_quantizer.use_symmetric_encoding = True sym_encoding = bias_quantizer.use_symmetric_encoding self.assertTrue(sym_encoding) rounding_mode = o_quantizer.rounding_mode self.assertEqual(libpymo.RoundingMode.ROUND_NEAREST, rounding_mode) o_quantizer.rounding_mode = libpymo.RoundingMode.ROUND_STOCHASTIC rounding_mode = o_quantizer.rounding_mode self.assertEqual(libpymo.RoundingMode.ROUND_STOCHASTIC, rounding_mode) quant_scheme = o_quantizer.quant_scheme self.assertEqual(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, quant_scheme) o_quantizer.quant_scheme = QuantScheme.post_training_tf quant_scheme = o_quantizer.quant_scheme self.assertEqual(libpymo.QuantizationMode.QUANTIZATION_TF, quant_scheme) self.assertFalse(o_quantizer.tensor_quantizer.isEncodingValid) is_enabled = p_quantizer.enabled self.assertTrue(is_enabled) p_quantizer.enabled = False is_enabled = p_quantizer.enabled self.assertFalse(is_enabled) sim.session.close() del sim def test_manual_quantize(self): """ Test quantizing a model by manually specifying ops to quantize """ def get_manual_activations(_graph, _starting_ops, _ending_ops): """ Overriding function for getting a list of ops to insert activation quantizers for :param _graph: Unused argument :param _starting_ops: Unused argument :param _ending_ops: Unused argument :return: List of ops to insert activation quantizers for, None for placeholder """ return ['conv2d/Relu'], None def get_manual_params(_graph, _starting_ops, _ending_ops): """ Overriding function for getting a list of ops to insert param quantizers for :param _graph: Unused argument :param _starting_ops: Unused argument :param _ending_ops: Unused argument :return: List of ops to insert param quantizers for, and list of param indices for these ops """ return ['conv2d_1/Conv2D'], [1] def configure_quantization_ops(self, _conn_graph, _ops_with_param_names, _indices, _activation_op_names, _config_file): """ Overriding function for configuring quantization ops inserted by QuantizationSimModel :param self: Self refers to QuantizationSimModel object :param _conn_graph: Unused argument :param _ops_with_param_names: Unused argument :param _indices: Unused argument :param _activation_op_names: Unused argument :param _config_file: Unused argument """ conv2d_relu_quant_info = self._activation_quantizers['conv2d/Relu_quantized'] conv2d_relu_quant_info.enabled = False conv2d_relu_quant_info.enabled = True conv2d_1_weight_quant_info = self._param_quantizers['conv2d_1/Conv2D/ReadVariableOp_quantized'] conv2d_1_weight_quant_info.enabled = False conv2d_1_weight_quant_info.enabled = True tf.compat.v1.reset_default_graph() with tf.device('/cpu:0'): model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=3, input_shape=(28, 28, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D((2, 2))) model.add(tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu')) model.summary() sess = tf.compat.v1.Session() initialize_uninitialized_vars(sess) orig_get_ops_to_quantize_activations_for = QuantizationSimModel._get_ops_to_quantize_activations_for orig_get_ops_to_quantize_weights_for = QuantizationSimModel._get_ops_to_quantize_params_for orig_configure_quantization_ops = QuantizationSimModel.configure_quantization_ops QuantizationSimModel._get_ops_to_quantize_activations_for = get_manual_activations QuantizationSimModel._get_ops_to_quantize_params_for = get_manual_params QuantizationSimModel.configure_quantization_ops = configure_quantization_ops sim = QuantizationSimModel(sess, ['conv2d_input'], ['conv2d_1/Relu'], use_cuda=False) self.assertEqual(1, len(sim._activation_quantizers)) self.assertEqual(1, len(sim._param_quantizers)) sess.close() sim.session.close() QuantizationSimModel._get_ops_to_quantize_activations_for = orig_get_ops_to_quantize_activations_for QuantizationSimModel._get_ops_to_quantize_params_for = orig_get_ops_to_quantize_weights_for QuantizationSimModel.configure_quantization_ops = orig_configure_quantization_ops sim.session.close() del sim def test_skip_quantizing_dtype_int(self): """ Test that op with dtype int32 is skipped during quantization """ tf.compat.v1.reset_default_graph() with tf.compat.v1.Session() as sess: _ = model_with_dtype_int() initialize_uninitialized_vars(sess) sim = QuantizationSimModel(sess, ['input_1', 'input_2'], ['model_with_dtype_int/Softmax'], use_cuda=False) self.assertEqual(6, len(sim._activation_quantizers)) self.assertTrue('input_1_quantized' not in sim._activation_quantizers) self.assertTrue('input_2_quantized' in sim._activation_quantizers) sim.session.close() del sim def test_insert_quant_op_recurrent(self): """ test insertion of quant ops to recurrent layer with conditional blocks """ tf.compat.v1.reset_default_graph() sess = tf.compat.v1.Session() with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add an RNN layer with 12 internal units. # Add an RNN layer x = tf.keras.layers.SimpleRNN(12)(inputs) _ = tf.keras.layers.Dense(12, activation=tf.nn.softmax, name="simplernn_model")(x) init = tf.compat.v1.global_variables_initializer() sess.run(init) ops = sess.graph.get_operations() quant_op_inside_while_block_name = "simple_rnn/while/MatMul/ReadVariableOp_quantized" self.assertFalse(quant_op_inside_while_block_name in [op.name for op in ops]) # construct a quantization sim model sim = QuantizationSimModel(sess, ['input_1'], ['simplernn_model/Softmax'], use_cuda=False) # get ops and make sure we have a quantized op added to the conditional block ops = sim.session.graph.get_operations() self.assertTrue(quant_op_inside_while_block_name in [op.name for op in ops]) sim.session.close() del sim def test_compute_encodings(self): """ Test that ops not evaluated during compute encodings are set to passThrough mode. """ tf.compat.v1.reset_default_graph() sess = tf.compat.v1.Session() test_inp = np.ndarray((1, 32, 32, 3)) def dummy_forward_func(sess, _): input_tensor = sess.graph.get_tensor_by_name('input_1:0') output_tensor = sess.graph.get_tensor_by_name('flatten/Reshape:0') sess.run(output_tensor, feed_dict={input_tensor: test_inp}) with sess.as_default(): _ = keras_model_functional() init = tf.compat.v1.global_variables_initializer() sess.run(init) sim = QuantizationSimModel(sess, ['input_1'], ['keras_model_functional/Softmax']) sim.compute_encodings(dummy_forward_func, None) for name, quant_info in sim._activation_quantizers.items(): if name in ['keras_model_functional/Softmax_quantized', 'keras_model_functional/BiasAdd_quantized']: # Check that quantizers after op evaluated in compute_encodings are in passThrough (3) mode self.assertEqual(quant_info.get_op_mode(), 3) self.assertFalse(quant_info.tensor_quantizer.isEncodingValid) elif name in ['scope_1/conv2d_3/BiasAdd_quantized']: # Check that passThrough quantizers remain as passThrough (3) self.assertEqual(quant_info.get_op_mode(), 3) self.assertFalse(quant_info.tensor_quantizer.isEncodingValid) else: # Check that all other quantizers are in quantizeDequantize (2) mode self.assertEqual(quant_info.get_op_mode(), 2) self.assertTrue(quant_info.tensor_quantizer.isEncodingValid) input_tensor = sim.session.graph.get_tensor_by_name('input_1:0') output_tensor = sim.session.graph.get_tensor_by_name('keras_model_functional/Softmax:0') sim.session.run(output_tensor, feed_dict={input_tensor: test_inp}) sim.session.close() del sim def test_matmul_param_selection_lstm(self): """ Test apis to select input params to MatMuls within LSTM for quantization """ tf.compat.v1.reset_default_graph() sess = tf.compat.v1.Session() with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add an RNN layer with 12 internal units. x = tf.keras.layers.LSTM(12, name='lstm0')(inputs) _ = tf.keras.layers.Dense(12, activation=tf.nn.softmax, name="matmul0")(x) init = tf.compat.v1.global_variables_initializer() sess.run(init) # _ = tf.compat.v1.summary.FileWriter('./lstm', sess.graph) matmul_with_split_inside_lstm = "lstm0/while/MatMul" tf_split_op_in = sess.graph.get_operation_by_name("lstm0/while/split") tf_matmul_with_split_inside_lstm = sess.graph.get_operation_by_name(matmul_with_split_inside_lstm) param_in_through_split = sess.graph.get_tensor_by_name("lstm0/while/split/ReadVariableOp:0") can_modify_op, param_in = QuantizationSimModel._get_op_to_modify_with_param_in( tf_matmul_with_split_inside_lstm, 1) self.assertEqual(can_modify_op, tf_split_op_in) self.assertEqual(param_in, param_in_through_split) matmul_with_slice_inside_lstm = "lstm0/while/MatMul_5" tf_strided_slice_op_in = sess.graph.get_operation_by_name("lstm0/while/strided_slice_1") tf_matmul_with_slice_inside_lstm = sess.graph.get_operation_by_name(matmul_with_slice_inside_lstm) param_in_through_strided_slice = sess.graph.get_tensor_by_name("lstm0/while/ReadVariableOp_1:0") can_modify_op, param_in = QuantizationSimModel._get_op_to_modify_with_param_in( tf_matmul_with_slice_inside_lstm, 1) self.assertEqual(can_modify_op, tf_strided_slice_op_in) self.assertEqual(param_in, param_in_through_strided_slice) sess.close() def validate_simple_rnn_auto_insertion_and_forward_pass(self, sess): """ common api to validate auto quant node insertion and forward pass for simple rnn layer :param sess: TensorFlow session :return: """ np.random.seed(0) tf.set_random_seed(0) ops = sess.graph.get_operations() matmul_param_quant_op_inside_while_block_name = "simple_rnn/while/MatMul/ReadVariableOp_quantized" self.assertFalse(matmul_param_quant_op_inside_while_block_name in [op.name for op in ops]) # _ = tf.summary.FileWriter('./test_simple_rnn_keras', sess.graph) # construct a quantization sim model sim = QuantizationSimModel(sess, ['input_1'], ['simplernn_model/Softmax'], use_cuda=False) # params that must have quantizers matmul_2_param_quant_op_inside_while_block_name = "simple_rnn/while/MatMul_1/ReadVariableOp_quantized" # check biasadd param quantizers are disabled param_quantizers = sim._param_quantizers for p_quantizer in param_quantizers.keys(): if 'BiasAdd' in p_quantizer: p_quant_config = sim.quantizer_config(p_quantizer) self.assertFalse(p_quant_config.enabled) # activations with quantizers activation_bias_add_op_inside_while_block_name = "simple_rnn/while/BiasAdd_quantized" add_op_inside_while_block_name = "simple_rnn/while/add_quantized" # these should not have activation quantizers activation_matmul_op_inside_while_block_name = "simple_rnn/while/MatMul_quantized" activation_matmul_2_op_inside_while_block_name = "simple_rnn/while/MatMul_1_quantized" # get ops and make sure we have a quantized op added to the conditional block quantized_graph_op_names = self._get_quant_ops_from_tf_graph(sim.session.graph) # while block ops # bias and kernel quantizers self.assertTrue(matmul_param_quant_op_inside_while_block_name in quantized_graph_op_names) self.assertTrue(matmul_2_param_quant_op_inside_while_block_name in quantized_graph_op_names) # output quantizers self.assertFalse(activation_bias_add_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(add_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_2_op_inside_while_block_name in quantized_graph_op_names) # check for input quantizers input_matmul_op_inside_while_block_name = "simple_rnn/while/TensorArrayReadV3_quantized" input_matmul_2_op_inside_while_block_name = "simple_rnn/while/Identity_2_quantized" self.assertTrue(input_matmul_op_inside_while_block_name in quantized_graph_op_names) self.assertTrue(input_matmul_2_op_inside_while_block_name in quantized_graph_op_names) # validate encodings def dummy_forward_pass(sess, args): model_output = sess.graph.get_tensor_by_name('simplernn_model/Softmax:0') model_input = sess.graph.get_tensor_by_name('input_1:0') dummy_input = np.random.randn(16, 3, 100) sess.run(model_output, feed_dict={model_input: dummy_input}) def eval(sess, input_tensor): model_output = sess.graph.get_tensor_by_name('simplernn_model/Softmax:0') model_input = sess.graph.get_tensor_by_name('input_1:0') out = sess.run(model_output, feed_dict={model_input: input_tensor}) return out sim.compute_encodings(dummy_forward_pass, None) random_tensor = np.random.randn(16, 3, 100) orig_out = eval(sess, random_tensor) sim.compute_encodings(dummy_forward_pass, None) # check encoding min and max got updated with sim.session.graph.as_default(): quantized_out = eval(sim.session, random_tensor) # check quantized output with orig output self.assertFalse(np.allclose(orig_out, quantized_out)) # close tf sessions sess.close() sim.session.close() del sim def test_insert_quant_op_forward_pass_simple_rnn(self): """ test insertion of quant ops to recurrent layer with conditional blocks """ tf.reset_default_graph() np.random.seed(0) tf.set_random_seed(0) sess = tf.Session() with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add an RNN layer x = tf.keras.layers.SimpleRNN(12, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal')(inputs) _ = tf.keras.layers.Dense(12, activation=tf.nn.softmax, name="simplernn_model")(x) init = tf.global_variables_initializer() sess.run(init) self.validate_simple_rnn_auto_insertion_and_forward_pass(sess) sess.close() def test_insert_quant_op_forward_pass_simple_rnn_with_relu(self): """ test insertion of quant ops to simple rnn with relu """ tf.reset_default_graph() np.random.seed(0) tf.set_random_seed(0) sess = tf.Session() with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add an RNN layer x = tf.keras.layers.SimpleRNN(12, activation='relu', kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal')(inputs) _ = tf.keras.layers.Dense(12, activation=tf.nn.softmax, name="simplernn_model")(x) init = tf.global_variables_initializer() sess.run(init) self.validate_simple_rnn_auto_insertion_and_forward_pass(sess) sess.close() def test_insert_quant_op_forward_pass_simple_rnn_multiple_layers(self): """ test insertion of quant ops to simple rnn with multiple layes """ tf.reset_default_graph() np.random.seed(0) tf.set_random_seed(0) sess = tf.Session() with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add an RNN layer x = tf.keras.layers.SimpleRNN(12, activation='tanh', kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', return_sequences=True)(inputs) x = tf.keras.layers.SimpleRNN(12, name='rnn1', activation='relu', return_sequences=True)(x) x = tf.keras.layers.SimpleRNN(12, name='rnn2', activation='tanh')(x) _ = tf.keras.layers.Dense(12, activation=tf.nn.softmax, name="simplernn_model")(x) init = tf.global_variables_initializer() sess.run(init) self.validate_simple_rnn_auto_insertion_and_forward_pass(sess) # note - we will need to disable quantizers on identity nodes in this case sess.close() def test_backward_pass_time_taken_simple_rnn(self, is_quantized=True, iterations=10, time_steps=1): """ perform backward pass with quantized simple RNN block""" tf.reset_default_graph() sess = tf.Session() np.random.seed(0) tf.set_random_seed(0) batches = 16 with sess.graph.as_default(): inputs = tf.keras.Input(shape=(1, 100)) # Add an RNN layer with 12 internal units. x = tf.keras.layers.SimpleRNN(12, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal')(inputs) _ = tf.keras.layers.Dense(10, activation=tf.nn.softmax, name="simplernn_model")(x) init = tf.global_variables_initializer() sess.run(init) curr_sess = sess if is_quantized: sim = QuantizationSimModel(sess, ['input_1'], ['simplernn_model/Softmax'], use_cuda=False) def dummy_forward_pass(sess, args): model_output = sess.graph.get_tensor_by_name('simplernn_model/Softmax:0') model_input = sess.graph.get_tensor_by_name('input_1:0') dummy_input = np.random.randn(batches, 1, 100) sess.run(model_output, feed_dict={model_input: dummy_input}) sim.compute_encodings(dummy_forward_pass, None) curr_sess = sim.session inp_tensor = curr_sess.graph.get_tensor_by_name('input_1:0') np.random.seed(0) w_shape = inp_tensor.shape inp_data = np.random.rand(batches, w_shape[1], w_shape[2]) logits = curr_sess.graph.get_tensor_by_name('simplernn_model/MatMul:0') labels = np.random.randint(10, size=batches) one_hot_labels = np.eye(10)[labels] with curr_sess.graph.as_default(): var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) labels_placeholder = tf.placeholder(tf.float32, [None, 10], name='labels') loss = tf.losses.softmax_cross_entropy(onehot_labels=labels_placeholder, logits=logits) update_ops = [] global_step = tf.train.create_global_step() optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-3) gradients = optimizer.compute_gradients(loss, var_list) init_global = tf.global_variables_initializer() init_local = tf.local_variables_initializer() init = tf.group(init_global, init_local) curr_sess.run(init) grad_updates = optimizer.apply_gradients(gradients, global_step=global_step) update_ops.append(grad_updates) update_op = tf.group(*update_ops) with tf.control_dependencies([update_op]): train_op = tf.identity(loss, name='train_op') # start training time_taken_by_default_grad = 0 for i in range(iterations): start_time = time.perf_counter() _ = curr_sess.run(train_op, feed_dict={inp_tensor: inp_data, labels_placeholder: one_hot_labels}) exec_time = time.perf_counter() - start_time time_taken_by_default_grad = time_taken_by_default_grad + exec_time default_grad_avg_time = time_taken_by_default_grad / iterations # close session sess.close() if is_quantized: sim.session.close() del sim return default_grad_avg_time # Keeping this disabled, this is for study purpose def _test_compare_simple_rnn_training_processing_time_increase(self): """ Test to compare time taken by simple rnn node quantized versus no quantization There is no validation criterion for this test. It is only for study. :return: """ # compare with and without quantize nodes itr = 1 no_quant_simple_rnn_train_avg_time = self.test_backward_pass_time_taken_simple_rnn(is_quantized=False, iterations=itr) quantized_simple_rnn_train_avg_time = self.test_backward_pass_time_taken_simple_rnn(is_quantized=True, iterations=itr) print('\nquantized_simple_rnn_train_avg_time = ', quantized_simple_rnn_train_avg_time) print('\nno_quant_simple_rnn_train_avg_time = ', no_quant_simple_rnn_train_avg_time) print(' There is a ', ((quantized_simple_rnn_train_avg_time - no_quant_simple_rnn_train_avg_time) / no_quant_simple_rnn_train_avg_time), 'x increase in processing time with quant nodes in rnn block') def validate_internal_lstm_quantisim_nodes(self, quantized_graph_op_names, block_name='lstm', is_stacked=False, is_time_major=False): """ Given a list of quantized_graph_op_names, this is utility function to validate the quantisim nodes are properly inserted :return: """ # params that must have quantizers bias_param_quant_op_inside_while_block_name = block_name + "/while/split_1/ReadVariableOp_quantized" kernel_param_quant_op_inside_while_block_name = block_name + "/while/split/ReadVariableOp_quantized" recurrent_kenel_param_quant_op_inside_while_block_name_cp1 = block_name + "/while/ReadVariableOp_quantized" recurrent_kenel_param_quant_op_inside_while_block_name_cp2 = block_name + "/while/ReadVariableOp_1_quantized" recurrent_kenel_param_quant_op_inside_while_block_name_cp3 = block_name + "/while/ReadVariableOp_2_quantized" recurrent_kenel_param_quant_op_inside_while_block_name_cp4 = block_name + "/while/ReadVariableOp_3_quantized" # these should not have activation quantizers activation_matmul_op_inside_while_block_name = block_name + "/while/MatMul_quantized" activation_matmul_1_op_inside_while_block_name = block_name + "/while/MatMul_1_quantized" activation_matmul_2_op_inside_while_block_name = block_name + "/while/MatMul_2_quantized" activation_matmul_3_op_inside_while_block_name = block_name + "/while/MatMul_3_quantized" activation_matmul_4_op_inside_while_block_name = block_name + "/while/MatMul_4_quantized" activation_matmul_5_op_inside_while_block_name = block_name + "/while/MatMul_5_quantized" activation_matmul_6_op_inside_while_block_name = block_name + "/while/MatMul_6_quantized" activation_matmul_7_op_inside_while_block_name = block_name + "/while/MatMul_7_quantized" activation_bias_add_op_inside_while_block_name = block_name + "/while/BiasAdd_quantized" activation_bias_add_1_op_inside_while_block_name = block_name + "/while/BiasAdd_1_quantized" activation_bias_add_2_op_inside_while_block_name = block_name + "/while/BiasAdd_2_quantized" activation_bias_add_3_op_inside_while_block_name = block_name + "/while/BiasAdd_3_quantized" activation_add_op_inside_while_block_name = block_name + "/while/add_quantized" activation_add_2_op_inside_while_block_name = block_name + "/while/add_2_quantized" activation_add_4_op_inside_while_block_name = block_name + "/while/add_4_quantized" activation_add_6_op_inside_while_block_name = block_name + "/while/add_6_quantized" activation_mul_op_inside_while_block_name = block_name + "/while/Mul_quantized" activation_mul_1_op_inside_while_block_name = block_name + "/while/Mul_1_quantized" activation_mul_4_op_inside_while_block_name = block_name + "/while/Mul_4_quantized" activation_add_1_op_inside_while_block_name = block_name + "/while/Add_1_quantized" activation_add_3_op_inside_while_block_name = block_name + "/while/Add_3_quantized" activation_add_7_op_inside_while_block_name = block_name + "/while/Add_7_quantized" activation_mul_2_op_inside_while_block_name = block_name + "/while/mul_2_quantized" activation_mul_3_op_inside_while_block_name = block_name + "/while/mul_3_quantized" activation_mul_5_op_inside_while_block_name = block_name + "/while/mul_5_quantized" activation_add_5_op_inside_while_block_name = block_name + "/while/add_5_quantized" # while block ops # bias and kernel quantizers self.assertTrue(bias_param_quant_op_inside_while_block_name in quantized_graph_op_names) self.assertTrue(kernel_param_quant_op_inside_while_block_name in quantized_graph_op_names) self.assertTrue(recurrent_kenel_param_quant_op_inside_while_block_name_cp1 in quantized_graph_op_names) self.assertTrue(recurrent_kenel_param_quant_op_inside_while_block_name_cp2 in quantized_graph_op_names) self.assertTrue(recurrent_kenel_param_quant_op_inside_while_block_name_cp3 in quantized_graph_op_names) self.assertTrue(recurrent_kenel_param_quant_op_inside_while_block_name_cp4 in quantized_graph_op_names) # output quantizers: no activation quantizer is added for eAI # activations that are not quantized self.assertFalse(activation_matmul_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_1_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_2_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_3_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_4_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_5_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_6_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_matmul_7_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_bias_add_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_bias_add_1_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_bias_add_2_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_bias_add_3_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_add_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_add_1_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_add_2_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_add_3_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_add_4_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_add_5_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_add_6_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_add_7_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_mul_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_mul_1_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_mul_2_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_mul_3_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_mul_4_op_inside_while_block_name in quantized_graph_op_names) self.assertFalse(activation_mul_5_op_inside_while_block_name in quantized_graph_op_names) # check for input quantizers input_x_op_inside_while_block_name = block_name + "/while/TensorArrayReadV3_quantized" input_h_op_inside_while_block_name = block_name + "/while/Identity_2_quantized" self.assertTrue(input_x_op_inside_while_block_name in quantized_graph_op_names) self.assertTrue(input_h_op_inside_while_block_name in quantized_graph_op_names) # check for input quantizer in stacked mode if is_stacked: if is_time_major: input_h_op_pass_to_last_lstm_name = block_name + "/TensorArrayStack/TensorArrayGatherV3_quantized" else: input_h_op_pass_to_last_lstm_name = block_name + "/transpose_1_quantized" self.assertTrue(input_h_op_pass_to_last_lstm_name in quantized_graph_op_names) def validate_general_lstm_forward_pass_and_encoding(self, sess, sim, num_activation_quantizer=6, num_param_quantizer=8): def dummy_forward_pass(sess, args): model_output = sess.graph.get_tensor_by_name('lstm_model/Softmax:0') model_input = sess.graph.get_tensor_by_name('input_1:0') dummy_input = np.random.randn(16, 3, 100) sess.run(model_output, feed_dict={model_input: dummy_input}) def eval(sess, input_tensor): model_output = sess.graph.get_tensor_by_name('lstm_model/Softmax:0') model_input = sess.graph.get_tensor_by_name('input_1:0') out = sess.run(model_output, feed_dict={model_input: input_tensor}) return out sim.compute_encodings(dummy_forward_pass, None) random_tensor = np.random.randn(16, 3, 100) orig_out = eval(sess, random_tensor) activation_quantizers = sim._activation_quantizers param_quantizers = sim._param_quantizers # check the number of quantizers self.assertEqual(len(activation_quantizers), num_activation_quantizer) # kernel, recurrent kernelx4, bias # one bias and kernel of dense layer MatMul self.assertEqual(len(param_quantizers), num_param_quantizer) # Check if encodings have been calculated for name, quantizer in activation_quantizers.items(): if quantizer.enabled: self.assertTrue(quantizer.tensor_quantizer.isEncodingValid, "enabled quantizer: {} does not have a valid encoding set ".format(name)) # check encoding min and max got updated with sim.session.graph.as_default(): quantized_out = eval(sim.session, random_tensor) # quantized moddel output is different from orig model self.assertFalse(np.allclose(orig_out, quantized_out)) def test_quantize_lstm_default_quantsim_and_forward_pass(self): """ Test connected graph construction on a model with lstm op """ tf.reset_default_graph() sess = tf.Session() np.random.seed(0) tf.set_random_seed(0) with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add a LSTM layer with 12 internal units. x = tf.keras.layers.LSTM(12)(inputs) _ = tf.keras.layers.Dense(12, activation=tf.nn.softmax, name="lstm_model")(x) init = tf.global_variables_initializer() sess.run(init) # _ = tf.summary.FileWriter('./lstm', sess.graph) sim = QuantizationSimModel(sess, ['input_1'], ['lstm_model/Softmax'], use_cuda=False) # validate quantsim # get ops and make sure we have a quantized op added to the conditional block quantized_graph_op_names = self._get_quant_ops_from_tf_graph(sim.session.graph) self.validate_internal_lstm_quantisim_nodes(quantized_graph_op_names) # validate forward pass self.validate_general_lstm_forward_pass_and_encoding(sess, sim) # close tf sessions sess.close() sim.session.close() del sim # def test_quantize_simple_rnn_export(self): """ Test model export for recurrent models """ tf.reset_default_graph() sess = tf.Session() np.random.seed(0) tf.set_random_seed(0) with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add an RNN layer with 12 internal units. x = tf.keras.layers.SimpleRNN(10, name='rnn1', return_sequences=True)(inputs) x = tf.keras.layers.SimpleRNN(10, name='rnn2')(x) _ = tf.keras.layers.Dense(10, activation=tf.nn.softmax, name="fc")(x) init = tf.global_variables_initializer() sess.run(init) sim = QuantizationSimModel(sess, ['input_1'], ['fc/Softmax'], use_cuda=False) def dummy_forward_pass(sess, args): model_output = sess.graph.get_tensor_by_name('fc/Softmax:0') model_input = sess.graph.get_tensor_by_name('input_1:0') dummy_input = np.random.randn(1, 3, 100) sess.run(model_output, feed_dict={model_input: dummy_input}) sim.compute_encodings(dummy_forward_pass, None) sim.export('./data', 'rnn_quantsim') new_sess = load_model_from_meta('./data/rnn_quantsim.meta') dummy_forward_pass(new_sess, None) all_op_types = [op.type for op in new_sess.graph.get_operations()] self.assertNotIn('QcQuantize', all_op_types) self.assertNotIn('QcQuantizeRecurrentParam', all_op_types) # Load the encodings file to check if the encodings were exported correctly with open("./data/rnn_quantsim.encodings", "r") as encodings_file: encodings = json.load(encodings_file) self.assertEqual(8, len(encodings['activation_encodings'])) self.assertEqual(5, len(encodings['param_encodings'])) # close tf sessions sess.close() sim.session.close() del sim def _get_quant_ops_from_tf_graph(self, gr: tf.Graph): """ utility to get quant op names in given graph :param graph: tf.Graph :return: """ ops = gr.get_operations() quantized_graph_op_names = [op.name for op in ops if op.type in ["QcQuantize", "QcQuantizeRecurrentParam"]] return quantized_graph_op_names def test_quantize_simple_rnn_save_and_load_checkpoint(self): """ Test model export for recurrent models """ tf.reset_default_graph() sess = tf.Session() np.random.seed(0) tf.set_random_seed(0) with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add an RNN layer with 12 internal units. x = tf.keras.layers.SimpleRNN(10, name='rnn1', return_sequences=True)(inputs) x = tf.keras.layers.SimpleRNN(10, name='rnn2')(x) _ = tf.keras.layers.Dense(10, activation=tf.nn.softmax, name="fc")(x) init = tf.global_variables_initializer() sess.run(init) sim = QuantizationSimModel(sess, ['input_1'], ['fc/Softmax'], use_cuda=False) def eval(sess, input_tensor): model_output = sess.graph.get_tensor_by_name('fc/Softmax:0') model_input = sess.graph.get_tensor_by_name('input_1:0') out = sess.run(model_output, feed_dict={model_input: input_tensor}) return out def dummy_forward_pass(sess, args): dummy_input = np.random.randn(1, 3, 100) eval(sess, dummy_input) sim.compute_encodings(dummy_forward_pass, None) random_tensor = np.random.randn(1, 3, 100) old_out = eval(sim.session, random_tensor) save_checkpoint(sim, './data/', 'simple_rnn_save') new_sim = load_checkpoint('./data', 'simple_rnn_save') # Check to make sure that inference through the new sim produces exactly the same output as the old sim # This checks that quantization parameters have been restored correctly # Also checks that we are able to invoke quantize-dequantize ops in the new session (so pymo objects were # restored correctly etc.) new_out = eval(new_sim.session, random_tensor) self.assertTrue(np.allclose(old_out, new_out)) sim.session.close() del sim def test_quantize_lstm_sigmoid_quantsim_and_forward_pass(self): """ Test connected graph construction on a model with lstm op """ tf.reset_default_graph() sess = tf.Session() np.random.seed(0) tf.set_random_seed(0) with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add a LSTM layer with 12 internal units. x = tf.keras.layers.LSTM(12, recurrent_activation='sigmoid')(inputs) _ = tf.keras.layers.Dense(12, activation=tf.nn.softmax, name="lstm_model")(x) init = tf.global_variables_initializer() sess.run(init) # _ = tf.summary.FileWriter('./lstm', sess.graph) sim = QuantizationSimModel(sess, ['input_1'], ['lstm_model/Softmax'], use_cuda=False) # validate quantsim # get ops and make sure we have a quantized op added to the conditional block quantized_graph_op_names = self._get_quant_ops_from_tf_graph(sim.session.graph) self.validate_internal_lstm_quantisim_nodes(quantized_graph_op_names) # validate forward pass self.validate_general_lstm_forward_pass_and_encoding(sess, sim) # close tf sessions sess.close() sim.session.close() del sim def test_quantize_lstm_time_major_true_quantsim_and_forward_pass(self): """ Test connected graph construction on a model with lstm op """ tf.reset_default_graph() sess = tf.Session() np.random.seed(0) tf.set_random_seed(0) with sess.graph.as_default(): inputs = tf.keras.Input(shape=(3, 100)) # Add a LSTM layer with 12 internal units. x = tf.keras.layers.LSTM(12, time_major=True, name='lstm_tm')(inputs) _ = tf.keras.layers.Dense(12, activation=tf.nn.softmax, name="lstm_model")(x) init = tf.global_variables_initializer() sess.run(init) # _ = tf.summary.FileWriter('./lstm', sess.graph) sim = QuantizationSimModel(sess, ['input_1'], ['lstm_model/Softmax'], use_cuda=False) # validate quantsim # get ops and make sure we have a quantized op added to the conditional blocks quantized_graph_op_names = self._get_quant_ops_from_tf_graph(sim.session.graph) batches = 32 def dummy_forward_pass(sess, args): model_output = sess.graph.get_tensor_by_name('lstm_model/Softmax:0') model_input = sess.graph.get_tensor_by_name('input_1:0') dummy_input = np.random.randn(batches, 3, 100) sess.run(model_output, feed_dict={model_input: dummy_input}) self.validate_internal_lstm_quantisim_nodes(quantized_graph_op_names, 'lstm_tm') # validate forward pass self.validate_general_lstm_forward_pass_and_encoding(sess, sim) # close tf sessions sess.close() sim.session.close() del sim def test_quantize_lstm_deepspeech_time_major_true_quantsim_and_forward_pass(self): """ Test connected graph construction on a model with lstm op """ tf.reset_default_graph() sess = tf.Session()
np.random.seed(0)
numpy.random.seed
import numpy as np import pickle import glob import matplotlib.pyplot as plt from tqdm.notebook import tqdm import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn.metrics import r2_score import ipdb from sklearn.linear_model import LinearRegression from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split from scipy.special import comb def crop_to_window(u, n): n0 = u.shape[1] b = int((n0-n)//2) return u[:, b:b+n] def blocks(repeat_length, num_bits=13): if repeat_locations == 0: return [np.zeros(num_bits)] num_blocks = num_bits - repeat_length + 1 patterns = [] for i in range(0, num_blocks): pattern = np.zeros(num_bits) pattern[i:i+repeat_length] = 1 patterns.append(pattern) return patterns def left_right_blocks(repeat_length, num_bits=13): if repeat_length == 0: return [np.zeros(num_bits)] left_boundary = 0 right_boundary = int(num_bits//2) num_blocks = right_boundary - repeat_length + 1 patterns = [] for i in range(0, num_blocks): for j in range(0, num_blocks): pattern = np.zeros(num_bits) pattern[i:i+repeat_length] = 1 pattern[right_boundary+j:right_boundary+j+repeat_length] = 1 patterns.append(pattern) return patterns def repeat_locations(repeat_length, num_bits=13): patterns = [] for i in range(0,repeat_length+1): new_patterns = left_right_blocks(i, num_bits) patterns += new_patterns return patterns def support_augmented_with_reversed(support): support_set = set() for s in support: support_set.add(zo_to_string(s)) support_set_temp = set() for s in support_set: s_reversed = s[::-1] if s_reversed not in support_set: support_set_temp.add(s_reversed) support_set = support_set | support_set_temp support = [] for s in support_set: support.append(string_to_zo(s)) return support def next_string_with_same_num_ones(v): t = (v | (v-1))+ 1 w = t | ((( (t & -t) // (v & -v) ) >> 1) - 1 ) return w def all_strings_with_k_ones(bit_length,k): num_total = int( comb(bit_length,k) ) c = 2**k - 1 my_list = [] for i in range(num_total): my_list.append(c) if i != num_total - 1: c = next_string_with_same_num_ones(c) return my_list def all_strings_up_to_k_ones(bit_length,k): my_list = [] for i in range(k+1): my_list = my_list + all_strings_with_k_ones(bit_length,i) return my_list def all_strings_with_given_ones(bit_length, k_list): my_list = [] for i in k_list: my_list = my_list + all_strings_with_k_ones(bit_length,i) return my_list def synthetic_band_support(band_width, num_bits=13): max_number = 2**(2*band_width) rotate_length = num_bits//2 + band_width support = [] for i in range(max_number): binary_loc = dec_to_bin(i, num_bits) binary_loc = np.roll(binary_loc, rotate_length) support.append(binary_loc) return support def synthetic_band_support_capped_degree(band_width, degree_cap, num_bits=13): assert band_width >= 0, "width needs to be non-negative" assert degree_cap >= 0, "cap needs to be non-negative" rotate_length = num_bits//2 + band_width support = [] if isinstance(degree_cap, list): all_strings = all_strings_with_given_ones(2*band_width, degree_cap) else: all_strings = all_strings_up_to_k_ones(2*band_width, degree_cap) for s in all_strings: binary_loc = dec_to_bin(s, num_bits) binary_loc = np.roll(binary_loc, rotate_length) support.append(binary_loc) return support def support_to_set(support): support_set = set() for s in support: support_set.add(zo_to_string(s)) return support_set def set_to_support(the_set): locations = [] for loc in the_set: locations.append(string_to_zo(loc)) return locations def pm_to_zo(pm): """ Goes from plus-minus to zero-one """ zo = np.zeros_like(pm) zo[pm < 0] = 1 return zo.astype(int) def zo_to_pm(zo): """ Goes from plus-minus to zero-one """ return (-1)**zo def zo_to_string(u): return ''.join([str(i) for i in list(u)]) def string_to_zo(u): return np.array([int(i) for i in list(u)]) def my_string_format(s): N = len(s) return s[:N//2] + ':' + s[N//2:] def my_print_string(s): print(my_string_format(s)) def random_binary_matrix(m, n, p=0.5): A = np.random.binomial(1,p,size=(m,n)) return A def dec_to_bin(x, num_bits): assert x < 2**num_bits, "number of bits are not enough" u = bin(x)[2:].zfill(num_bits) u = list(u) u = [int(i) for i in u] return np.array(u) def bin_to_dec(x): n = len(x) c = 2**(np.arange(n)[::-1]) return c.dot(x) def bool2int(x): y = 0 for i,j in enumerate(x): y += j<<i return y def get_sampling_index(x, A, p=0): """ x: sampling index A: subsampling matrix p: delay """ num_bits = A.shape[0] x = dec_to_bin(x, num_bits) r = x.dot(A) + p return r % 2 def get_random_binary_string(num_bits, p=0.5): a = np.random.binomial(1,p,size=num_bits) return a def random_delay_pair(num_bits, target_bit): """ num_bits: number of bits location_target: the targeted location (q in equation 26 in https://arxiv.org/pdf/1508.06336.pdf) """ e_q = 2**target_bit e_q = dec_to_bin(e_q, num_bits) random_seed = get_random_binary_string(num_bits) return random_seed, (random_seed+e_q)%2 def make_delay_pairs(num_pairs, num_bits): z = [] z.append(dec_to_bin(0,num_bits)) for bit_index in range(0, num_bits): for pair_idx in range(num_pairs): a,b = random_delay_pair(num_bits, bit_index) z.append(a) z.append(b) return z def myfwht(x): """A recursive implementation of the 1D Cooley-Tukey FFT""" # x = np.asarray(x, dtype=float) N = x.shape[0] if N == 1: return x else: X_even = myfwht(x[0:(N//2)]) X_odd = myfwht(x[(N//2):]) return np.concatenate([(X_even + X_odd), (X_even - X_odd)]) def results_to_measurements(results): measurement_matrix = np.zeros_like(results) for i in range(results.shape[0]): measurement_matrix[i] = myfwht(results[i]) return measurement_matrix def get_delay_index_base(bit_index, delay_index, D): return 1+ 2*D*bit_index + 2*delay_index def estimate_location(u, num_bits=13, num_delays_per_bit=3): location = [] for bit in range(num_bits): sign_total = 0 for delay in range(num_delays_per_bit): delay_0 = get_delay_index_base(bit, delay, num_delays_per_bit) delay_1 = delay_0 + 1 r0 = u[delay_0] r1 = u[delay_1] sign_total += np.sign(r0)*np.sign(r1) location.append(sign_total/num_delays_per_bit) location =
np.array(location)
numpy.array
import numpy as np import math import data def angle_rotation(gui): first_position = [gui.line_rot.LineCoords[0][1], gui.line_rot.LineCoords[0][0]] second_position = [gui.line_rot.LineCoords[1][1], gui.line_rot.LineCoords[1][0]] print('first position = ', first_position) print('second position = ', second_position) first_point = [first_position[1], -first_position[0]] second_point = [second_position[1], -second_position[0]] print('first point = ', first_point) print('second point = ', second_point) # x1 = math.sqrt((second_point[0] - first_point[0]) ** 2) # x2 = math.sqrt((second_point[1] - first_point[1]) ** 2) norm = math.sqrt((second_point[0] - first_point[0]) ** 2 + (second_point[1] - first_point[1]) ** 2) horizontal_proj = (second_point[0] - first_point[0]) / norm vertical_proj = (second_point[1] - first_point[1]) / norm if vertical_proj >= 0: theta = np.arccos(horizontal_proj) else: theta = - np.arccos(horizontal_proj) print('theta = ', theta) return theta def rotate_tensor(datastruct, gui): theta = angle_rotation(gui) exx = data.SMGData.load(datastruct, 'Exx') eyy = data.SMGData.load(datastruct, 'Eyy') exy = data.SMGData.load(datastruct, 'Exy') rxy = data.SMGData.load(datastruct, 'Rxy') epsilon = np.array([[exx, exy], [exy, eyy]]) omega = np.array([[np.zeros(rxy.shape), rxy], [-rxy,
np.zeros(rxy.shape)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Wed Apr 8 13:54:55 2020 @author: akurnizk """ import os import hydroeval import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates from datetime import datetime #parse the datetimes we get from NOAA from matplotlib import pylab from scipy.optimize import fsolve from pytides.tide import Tide import seaborn as sns; sns.set(font_scale=2) import matplotlib as mpl mpl.rc('xtick', labelsize=22) mpl.rc('ytick', labelsize=22) mpl.rcParams['pdf.fonttype'] = 42 map_dir = r'E:\Maps' # retrieved files from https://viewer.nationalmap.gov/basic/ data_dir = os.path.join('E:\Data') #%% Load Data """ Dike + Herring River All """ # All Measured + Discharge Calculated off Measured HR_all_resam_1hr_df = pd.read_csv(os.path.join(data_dir,"General Dike Data","HR_All_Data_Resampled_HourlyMeans_8272017-1212020.csv")) data_cols = HR_all_resam_1hr_df.columns.drop("datetime") HR_all_resam_1hr_df[data_cols] = HR_all_resam_1hr_df[data_cols].apply(pd.to_numeric, errors='coerce') HR_all_resam_1hr_df["datetime"] = pd.to_datetime(HR_all_resam_1hr_df["datetime"]) # WF Harbor, HR Predicted pred_to_2100_dtHRocean_df = pd.read_csv(os.path.join(data_dir,"General Dike Data","Dike_Data_HourlyPred_111946_12312100.csv")) data_cols_max = pred_to_2100_dtHRocean_df.columns.drop("datetime") pred_to_2100_dtHRocean_df[data_cols_max] = pred_to_2100_dtHRocean_df[data_cols_max].apply(pd.to_numeric, errors='coerce') pred_to_2100_dtHRocean_df["datetime"] = pd.to_datetime(pred_to_2100_dtHRocean_df["datetime"]) # CNR U/S, High Toss Predicted pred_to_2100_CNRUS_HT_df = pd.read_csv(os.path.join(data_dir,"General Dike Data","CNRUS_HT_HourlyPred_111946_12312100.csv")) data_cols_min = pred_to_2100_CNRUS_HT_df.columns.drop("datetime") pred_to_2100_CNRUS_HT_df[data_cols_min] = pred_to_2100_CNRUS_HT_df[data_cols_min].apply(pd.to_numeric, errors='coerce') pred_to_2100_CNRUS_HT_df["datetime"] = pd.to_datetime(pred_to_2100_CNRUS_HT_df["datetime"]) # Discharge Calculated off Predicted Q_dike_df = pd.read_csv(os.path.join(data_dir,"General Dike Data","Dike_Discharge_Calc_HourlyPred_111946_12312100.csv")) data_cols_min = Q_dike_df.columns.drop("datetime") Q_dike_df[data_cols_min] = Q_dike_df[data_cols_min].apply(pd.to_numeric, errors='coerce') Q_dike_df["datetime"] = pd.to_datetime(Q_dike_df["datetime"]) """ Channel Geometry """ out_x_stacked = np.loadtxt(os.path.join(map_dir, 'HR_XsecLines','HR_xsec_all_xcoords.csv'), delimiter=',') out_y_stacked = np.loadtxt(os.path.join(map_dir, 'HR_XsecLines','HR_xsec_all_ycoords.csv'), delimiter=',') elevs_interp = np.loadtxt(os.path.join(map_dir, 'HR_XsecLines','HR_xsec_all_elevs.csv'), delimiter=',') intersect_newxy = np.loadtxt(os.path.join(map_dir, 'HR_XsecLines','HR_xsec_all_inscts.csv'), delimiter=',') min_dist_dx = np.loadtxt(os.path.join(map_dir, 'HR_XsecLines','HR_xsec_all_dx.csv'), delimiter=',') # make top of array the upstream-most section? out_x_stacked = np.flip(out_x_stacked,axis=0) out_y_stacked = np.flip(out_y_stacked,axis=0) elevs_interp = np.flip(elevs_interp,axis=0) intersect_newxy = np.flip(intersect_newxy,axis=0) min_dist_dx = np.flip(min_dist_dx,axis=0) # High Toss out_x_HT = out_x_stacked[0] out_y_HT = out_y_stacked[0] elev_HT = elevs_interp[0] intersect_HT = intersect_newxy[0] # CNR U/S out_x_CNR = out_x_stacked[-1] out_y_CNR = out_y_stacked[-1] elev_CNR = elevs_interp[-1] intersect_CNR = intersect_newxy[-1] #%% Plot of Measured, and Dike Q Calcs with Measured ax = HR_all_resam_1hr_df.plot.scatter(x="datetime", y="Gage height, m, Ocean side", color='LightBlue', label = 'Gage height, m , Ocean side') HR_all_resam_1hr_df.plot.scatter(x="datetime", y="Gage height, m, HR side", color='LightGreen', label = 'Gage height, m , HR side', ax=ax) HR_all_resam_1hr_df.plot.scatter(x="datetime", y="Discharge, cms", color='Turquoise', label = 'Discharge, cms', ax=ax) HR_all_resam_1hr_df.plot.scatter(x="datetime", y="CNR U/S Water Level, NAVD88", color='DarkGreen', label = 'Water Level, m, CNR U/S', ax=ax) HR_all_resam_1hr_df.plot.scatter(x="datetime", y="Dog Leg Water Level, NAVD88", color='DarkRed', label = 'Water Level, m, Dog Leg', ax=ax) HR_all_resam_1hr_df.plot.scatter(x="datetime", y="High Toss Water Level, NAVD88", color='DarkOrange', label = 'Water Level, m, High Toss', ax=ax) HR_all_resam_1hr_df.plot.scatter(x="datetime", y="Discharge, Dike Calc, cms", color='DarkBlue', label = 'Dike Calculated Discharge, cms', ax=ax) # Show X-axis major tick marks as dates def DateAxisFmt(yax_label): loc = mdates.AutoDateLocator() plt.gca().xaxis.set_major_locator(loc) plt.gca().xaxis.set_major_formatter(mdates.AutoDateFormatter(loc)) plt.gcf().autofmt_xdate() plt.xlabel('Date', fontsize=22) plt.ylabel(yax_label, fontsize=22) ylabel_elev_disch = 'Elevation (m), Discharge (m^3/s)' DateAxisFmt(ylabel_elev_disch) plt.legend(loc='upper right') #%% Remove NaNs from necessary data. # For Measured Discharge HR_disch_measend = HR_all_resam_1hr_df["Discharge, cms"].last_valid_index() HR_all_meas_disch_df_slice = HR_all_resam_1hr_df.iloc[0:HR_disch_measend] dt_CNR_HT_disch_cols = ['datetime','CNR U/S Water Level, NAVD88','High Toss Water Level, NAVD88','Discharge, cms'] HR_CNR_HT_disch_df_slice = HR_all_meas_disch_df_slice.filter(dt_CNR_HT_disch_cols, axis=1) HR_CNR_HT_disch_df_slice.dropna(inplace=True) # Doesn't change anything... # For Calculated Discharge HR_disch_calcstrt = HR_all_resam_1hr_df["Discharge, Dike Calc, cms"].first_valid_index() HR_disch_calcend = HR_all_resam_1hr_df["Discharge, Dike Calc, cms"].last_valid_index() HR_all_calc_disch_df_slice = HR_all_resam_1hr_df.iloc[HR_disch_calcstrt:HR_disch_calcend] dt_CNR_HT_calcdisch_cols = ['datetime','CNR U/S Water Level, NAVD88','High Toss Water Level, NAVD88','Discharge, Dike Calc, cms'] HR_CNR_HT_calcdisch_df_slice = HR_all_calc_disch_df_slice.filter(dt_CNR_HT_calcdisch_cols, axis=1) HR_CNR_HT_calcdisch_df_slice.dropna(inplace=True) HR_CNR_HT_calcdisch_df_slice.reset_index(drop=True, inplace=True) # Make sure to re-merge with full time series! #%% Starting conditions grav = 9.81 # m/s^2 nsec = len(min_dist_dx) # number of spaces between xsecs np11 = 2*nsec + 2 tlast = 89400*1 # time for transient flow computation (measurements are at 5 min (300s) intervals - use these?) chl =
np.nansum(min_dist_dx)
numpy.nansum
#!/usr/bin/env python3 import numpy as np # import matplotlib.pyplot as plt # from scipy.integrate import quad # from scipy import interpolate # import AMC import mass_function import NSencounter as NE import perturbations as PB import glob try: from tqdm import tqdm except ImportError as err: def tqdm(x): return x import argparse import sys import os import re import warnings import params # sys.path.append("../") import dirs if not os.path.exists(dirs.data_dir + "distributions/"): os.makedirs(dirs.data_dir + "distributions/") # The code in principle is parallelised, but I wouldn't recommend it... USING_MPI = False try: from mpi4py import MPI comm = MPI.COMM_WORLD MPI_size = comm.Get_size() MPI_rank = comm.Get_rank() if MPI_size > 1: USING_MPI = True except ImportError as err: print(" mpi4py module not found: using a single process only...") USING_MPI = False MPI_size = 1 MPI_rank = 0 print(MPI_size, MPI_rank) warnings.filterwarnings("error") # This mass corresponds roughly to an axion decay # constant of 3e11 and a confinement scale of Lambda = 0.076 in_maeV = params.m_a # axion mass in eV in_gg = -0.7 print("> Using m_a = %.2e eV, gamma = %.2f" % (in_maeV, in_gg)) ###################### #### OPTIONS ###### # Parse the arguments! parser = argparse.ArgumentParser(description="...") parser.add_argument( "-profile", "--profile", help="Density profile for AMCs - `NFW` or `PL`", type=str, default="PL", ) parser.add_argument( "-unperturbed", "--unperturbed", help="Calculate for unperturbed profiles?", type=bool, default=False, ) parser.add_argument( "-max_rows", "--max_rows", help="Maximum number of rows to read from each file?", type=int, default=None, ) parser.add_argument( "-circ", "--circular", dest="circular", action="store_true", help="Use the circular flag to force e = 0 for all orbits.", ) parser.add_argument( "-AScut", "--AScut", dest="AScut", action="store_true", help="Include an axion star cut on the AMC properties.", ) parser.add_argument( "-mass_choice", "--mass_choice", help="Mass parameter = 'c' or 'a' for characteristic or average.", type=str, default="c", ) parser.set_defaults(circular=False) parser.set_defaults(AScut=False) args = parser.parse_args() UNPERTURBED = args.unperturbed PROFILE = args.profile CIRCULAR = args.circular AS_CUT = args.AScut max_rows = args.max_rows MASS_CHOICE = args.mass_choice circ_text = "" if CIRCULAR: circ_text = "_circ" cut_text = "" if AS_CUT: print("> Calculating with axion-star cut...") cut_text = "_AScut" if MASS_CHOICE.lower() == "c": M0 = mass_function.calc_Mchar(in_maeV) elif MASS_CHOICE.lower() == "a": AMC_MF = mass_function.PowerLawMassFunction(m_a=in_maeV, gamma=in_gg) M0 = AMC_MF.mavg if PROFILE == "NFW" and UNPERTURBED == False: M0 = mass_function.mass_after_stripping(M0) # Mass function if PROFILE == "PL" or UNPERTURBED == True: AMC_MF = mass_function.PowerLawMassFunction(m_a=in_maeV, gamma=in_gg) elif PROFILE == "NFW": AMC_MF = mass_function.StrippedPowerLawMassFunction(m_a=in_maeV, gamma=in_gg) M_cut = 1e-29 # IDstr = "_ma_57mueV" IDstr = params.IDstr IDstr += "_delta_" + MASS_CHOICE.lower() Nbins_mass = 300 Nbins_radius = 500 # Previously 500 # How much smaller than the local DM density # do we care about? k = params.min_enhancement # Define AS cut def r_AS(M_AMC): m_22 = in_maeV / 1e-22 return 1e3 * (1.6 / m_22) * (M_AMC / 1e9) ** (-1 / 3) alpha_AS = r_AS(1.0) k_AMC = (3 / (4 * np.pi)) ** (1 / 3) # Helper for MPI stuff def MPI_send_chunks(data, dest, tag): data_shape = data.shape comm.send(data_shape, dest, tag) data_flat = data.flatten() # Split the data into N_chunks, each of maximum length 1e6 data_len = len(data_flat) N_chunks = int(np.ceil(data_len / 1e6)) chunk_indices = np.array_split(np.arange(data_len), N_chunks) print("Source:", data_len, N_chunks) # Loop over the chunks and send for inds in chunk_indices: comm.send(data_flat[inds], dest, tag) return None def MPI_recv_chunks(source, tag): data_shape = comm.recv(source=source, tag=tag) data_flat = np.zeros(data_shape).flatten() # Split the data into N_chunks, each of maximum length 1e6 data_len = len(data_flat) N_chunks = int(np.ceil(data_len / 1e6)) print("Dest:", data_len, N_chunks) chunk_indices = np.array_split(np.arange(data_len), N_chunks) # Loop over the chunks and send for inds in chunk_indices: data_flat[inds] = comm.recv(source=source, tag=tag) data = np.reshape(data_flat, data_shape) return data def main(): a_grid = None if MPI_rank == 0: # Gather the list of files to be used, then loop over semi-major axis a ff1 = glob.glob( dirs.montecarlo_dir + "AMC_logflat_*" + PROFILE + circ_text + ".txt" ) a_grid = np.zeros(len(ff1)) print(dirs.montecarlo_dir) for i, fname in enumerate(ff1): # print(fname) m = re.search("AMC_logflat_a=(.+?)_" + PROFILE + circ_text + ".txt", fname) if m: a_string = m.group(1) a_grid[i] = float(a_string) * 1.0e3 # conversion to pc a_grid = np.sort(a_grid) print(len(a_grid)) print(a_grid) if USING_MPI: # Tell all processes about the list, a_grid a_grid = comm.bcast(a_grid, root=0) # Edges to use for the output bins in R (galactocentric radius, pc) if CIRCULAR: R_centres = 1.0 * a_grid else: R_bin_edges = np.geomspace(0.05e3, 60e3, 65) R_centres = np.sqrt(R_bin_edges[:-1] * R_bin_edges[1:]) mass_ini_all, mass_all, radius_all, e_all, a_all = load_AMC_results(a_grid) # ---------------------------- # Re-weight the samples according to radius if CIRCULAR: ( AMC_weights, AMC_weights_surv, AMC_weights_masscut, AMC_weights_AScut, AMC_weights_AScut_masscut, ) = calculate_weights_circ( a_grid, a_all, e_all, mass_all, mass_ini_all, radius_all ) else: ( AMC_weights, AMC_weights_surv, AMC_weights_masscut, AMC_weights_AScut, AMC_weights_AScut_masscut, ) = calculate_weights( R_bin_edges, a_grid, a_all, e_all, mass_all, mass_ini_all, radius_all ) # Just pass the eccentricities and semi major axes if USING_MPI: comm.barrier() if MPI_rank != 0: comm.send(mass_ini_all, dest=0, tag=(10 * MPI_rank + 1)) comm.send(mass_all, dest=0, tag=(10 * MPI_rank + 2)) comm.send(radius_all, dest=0, tag=(10 * MPI_rank + 3)) comm.send(a_all, dest=0, tag=(10 * MPI_rank + 4)) comm.send(e_all, dest=0, tag=(10 * MPI_rank + 5)) # print(AMC_weights.shape) # print(sys.getsizeof(AMC_weights)) # comm.send(AMC_weights.shape, dest=0,tag= (10*MPI_rank+6) ) # print("MPI_rank : ...") # comm.Send(AMC_weights, dest=0, tag= (10*MPI_rank+7) ) MPI_send_chunks(AMC_weights, dest=0, tag=(10 * MPI_rank + 7)) MPI_send_chunks(AMC_weights_surv, dest=0, tag=(10 * MPI_rank + 9)) # comm.send(AMC_weights_surv, dest=0, tag= (10*MPI_rank+9) ) # print(MPI_rank) # https://stackoverflow.com/questions/15833947/mpi-hangs-on-mpi-send-for-large-messages if MPI_rank == 0: for i in range(1, MPI_size): mass_ini_tmp = comm.recv(source=i, tag=(10 * i + 1)) mass_tmp = comm.recv(source=i, tag=(10 * i + 2)) radius_tmp = comm.recv(source=i, tag=(10 * i + 3)) a_tmp = comm.recv(source=i, tag=(10 * i + 4)) e_tmp = comm.recv(source=i, tag=(10 * i + 5)) # req = comm.irecv(source=i, tag= (10*i+7) ) # comm.Recv(AMC_w_tmp, source=i, tag= (10*i+7) ) AMC_w_tmp = MPI_recv_chunks(source=i, tag=(10 * i + 7)) # AMC_w_surv_tmp = comm.recv(source=i, tag= (10*i+9) ) AMC_w_surv_tmp = MPI_recv_chunks(source=i, tag=(10 * i + 9)) mass_ini_all = np.concatenate((mass_ini_all, mass_ini_tmp)) mass_all = np.concatenate((mass_all, mass_tmp)) radius_all = np.concatenate((radius_all, radius_tmp)) a_all = np.concatenate((a_all, a_tmp)) e_all = np.concatenate((e_all, e_tmp)) AMC_weights = np.concatenate((AMC_weights, AMC_w_tmp)) AMC_weights_surv = np.concatenate((AMC_weights_surv, AMC_w_surv_tmp)) comm.barrier() # quit() if MPI_rank == 0: # Calculate the survival probability as a function of a psurv_a_list, psurv_a_AScut_list = calculate_survivalprobability( a_grid, a_all, mass_all, mass_ini_all, radius_all ) P_r_weights = np.sum( AMC_weights, axis=0 ) # Check if this should be a sum or integral P_r_weights_surv = np.sum(AMC_weights_surv, axis=0) P_r_weights_masscut = np.sum(AMC_weights_masscut, axis=0) P_r_weights_AScut = np.sum(AMC_weights_AScut, axis=0) P_r_weights_AScut_masscut =
np.sum(AMC_weights_AScut_masscut, axis=0)
numpy.sum
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not
np.array_equal(observed, images)
numpy.array_equal
# -*- coding: utf-8 -*- """ Created on Tue Oct 22 05:44:13 2019 @author: alan_ """ ### Se implementaran las funciones desarrolladas en la parte 1 en las registros. import numpy as np from matplotlib import pyplot as plt from scipy import signal as sig from scipy import fftpack as fft from scipy.signal import chebwin def PSD(matrix): N1=np.size(matrix,1) N2=np.size(matrix,0) #rxx=sig.convolve2d(matrix,matrix,mode='same') rxx=matrix rxx=rxx*(chebwin(N1,at=100).reshape(1,N1)*np.ones((N2,1))) sxx=np.fft.fft(rxx,axis=1) mag_sxx=(np.abs(sxx[:,0:N1//2])*ts)**2 mag_sxx=10*np.log10(np.mean(mag_sxx,0)) F=np.linspace(0,fs//2,len(mag_sxx)) return F,mag_sxx def Periodograma(p,v): N=len(p) if N % v!=0: Nzeros=v-(N % v) x=np.append(p,np.zeros(Nzeros)) # agregar ceros para mejorar la estimación, y para que el reshape se pueda hacer else: x=p Nv=len(x)//v matrix=x.reshape(v,Nv) F,sxx=PSD(matrix) plt.plot(F[0:len(F)//4],sxx[0:len(F)//4],label=lavel[j]) legend = plt.legend(loc='upper right', shadow=True, fontsize='small') legend.get_frame().set_facecolor('pink') plt.xlabel('Hz') plt.ylabel('dBs') plt.title(senal[i]) plt.grid() def RF(den,num,fm): w, h = sig.freqz(den,num) h[h==0] = 1E-5 H = 20*np.log10( np.abs(h) ) W = np.angle (h) W = np.unwrap (W) W = np.degrees(W) w = np.linspace(0,fs//2,H.shape[0] ) return w, W, H def pseudo_inv(A): U, Sigma, V = np.linalg.svd(A, full_matrices=False,compute_uv=True) Sigma_pseu=1/Sigma inv=np.matrix(U)*np.diag(Sigma_pseu)*np.matrix(V) return inv def inv_fitting(t,y): A=[] A.append(t) A.append(np.ones(len(t))) A=np.array(A).T inv=pseudo_inv(A) slcion=np.dot(y.reshape(1,len(y)),inv) return slcion def detrend(y,v): N=len(y) L=N//v ind=0 ydet=[] for i in range(N): if (i+1) % L == 0: t=np.arange(0,L) fit=inv_fitting(t,y[ind:i+1]) ydet.append(y[ind:i+1]-(t*fit[0,0]+fit[0,1])) ind=i+1 ydet = np.ndarray.flatten(np.array(ydet)) return ydet def barlett_par (v): x1=np.arange(0,v//2) x2=np.arange(v//2,v) triangular=np.append(2*x1/v,2-(2*x2/v)) return triangular def MAverage(x,N): L=len(x)-N y=
np.zeros(L)
numpy.zeros
#!/usr/bin/env python import argparse import ast import numpy as np import re import torch import torch.nn as nn import torch.utils.data as data from pathlib import Path from torchvision import datasets, transforms from typing import Dict, List, Optional, Tuple ParamDict = Dict[str, np.ndarray] class PytorchReshape(nn.Module): def __init__(self, shape): super().__init__() self.shape = (-1,) + tuple(shape) def forward(self, x): return x.contiguous().view(self.shape) class PytorchTranspose(nn.Module): def __init__(self, *dims): super().__init__() self.dims = (0,) + tuple(d + 1 for d in dims) def forward(self, x): return x.permute(self.dims) class PytorchParSum(nn.Module): def __init__(self, par_sum_1, par_sum_2): super().__init__() self.par_sum_1 = nn.Sequential(*par_sum_1) self.par_sum_2 = nn.Sequential(*par_sum_2) def forward(self, x): y_1 = self.par_sum_1(x) y_2 = self.par_sum_2(x) return y_1 + y_2 def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "eran_network", type=Path, help="path to the ERAN network to convert" ) parser.add_argument( "-o", "--output", type=Path, default=Path("model.onnx"), help="path to save the ONNX model", ) parser.add_argument( "--input_shape", type=int, nargs="+", default=[1, 28, 28], help="the input shape to the network (in CHW format)", ) parser.add_argument( "--drop_normalization", action="store_true", help="do not include any input normalization in the converted model", ) parser.add_argument( "--check_cifar_accuracy", action="store_true", help="evaluate the converted model on the CIFAR10 test set", ) parser.add_argument( "--check_mnist_accuracy", action="store_true", help="evaluate the converted model on the MNIST test set", ) return parser.parse_args() def parse_layer_params(param_str: str) -> ParamDict: params = [] pattern = re.compile(r"([a-zA-Z_]+?=.+?),? [a-zA-Z]") while True: param_match = re.match(pattern, param_str) if param_match is None: params.append(param_str) break params.append(param_match.group(1)) param_str = param_str[param_match.end() - 1 :] param_dict = {} for param in params: key, value = param.split("=") param_dict[key] = np.array(ast.literal_eval(value)) return param_dict def build_normalize( parameters: ParamDict, input_shape: List[int], output_shape: List[int] ) -> nn.Module: output_shape.extend(input_shape) num_c = input_shape[0] weights = np.diag(1.0 / parameters["std"]) bias = -parameters["mean"] / parameters["std"] norm_layer = nn.Conv2d(num_c, num_c, 1, 1) norm_layer.weight.data = torch.from_numpy( weights.reshape(num_c, num_c, 1, 1) ).float() norm_layer.bias.data = torch.from_numpy(bias).float() return norm_layer def build_linear( weights: np.ndarray, bias: np.ndarray, activation: str, input_shape: List[int], output_shape: List[int], ) -> nn.Module: flat_input_size = np.product(input_shape) output_shape.append(bias.shape[0]) flat_output_size =
np.product(output_shape)
numpy.product
import numpy as np import numba from numba import jit NumericThresh = 1E-150 LogNumericThresh = np.log(NumericThresh) EigenValueThresh = 1E-10 @jit(nopython=True) def sample_variance(zero_mean_data_array,norm): """ Compute the variance of a zero meaned array. Divide by normalization factor. zero_mean_data_array (required) : float64 array of data norm (required) : float64 value to divide variance by - supplied so one can substract appropriate values etc from normalization """ # meta data from array nDataPoints = zero_mean_data_array.shape[0] # zero variance var = np.float64(0.0) # compute sum of variances over data for i in range(nDataPoints): var += zero_mean_data_array[i]**2 # returned averaged variance return var/norm @jit(nopython=True) def weight_kabsch_dist_align(x1, x2, weights): """ Compute the Mahalabonis distance between positions x1 and x2 after aligned x1 to x2 given Kabsch weights (inverse variance) x1 (required) : float64 array with dimensions (n_atoms,3) of one molecular configuration x2 (required) : float64 array with dimensions (n_atoms,3) of another molecular configuration weights (required) : float64 matrix with dimensions (n_atoms, n_atoms) of inverse (n_atoms, n_atoms) covariance """ # rotate x1 to x2 given Kabsch weights x1_prime = weight_kabsch_rotate(x1, x2, weights) # zero distance dist = 0.0 # compute distance as sum over indepdent (because covar is n_atoms x n_atoms) dimensions for i in range(3): disp = x1_prime[:,i] - x2[:,i] dist += np.dot(disp,np.dot(weights,disp)) # return distance - this is actually the squared Mahalabonis distance return dist @jit(nopython=True) def weight_kabsch_dist(x1, x2, weights): """ Compute the Mahalabonis distance between positions x1 and x2 given Kabsch weights (inverse variance) x1 (required) : float64 array with dimensions (n_atoms,3) of one molecular configuration x2 (required) : float64 array with dimensions (n_atoms,3) of another molecular configuration weights (required) : float64 matrix with dimensions (n_atoms, n_atoms) of inverse (n_atoms, n_atoms) covariance """ # zero distance dist = 0.0 # compute distance as sum over indepdent (because covar is n_atoms x n_atoms) dimensions for i in range(3): disp = x1[:,i] - x2[:,i] dist += np.dot(disp,np.dot(weights,disp)) # return value return dist @jit(nopython=True) def pseudo_lpdet_inv(sigma): N = sigma.shape[0] e, v = np.linalg.eigh(sigma) precision = np.zeros(sigma.shape,dtype=np.float64) lpdet = 0.0 rank = 0 for i in range(N): if (e[i] > EigenValueThresh): lpdet += np.log(e[i]) precision += 1.0/e[i]*np.outer(v[:,i],v[:,i]) rank += 1 return lpdet, precision, rank @jit(nopython=True) def lpdet_inv(sigma): N = sigma.shape[0] e, v = np.linalg.eigh(sigma) lpdet = 0.0 for i in range(N): if (e[i] > EigenValueThresh): lpdet -= np.log(e[i]) return lpdet @jit(nopython=True) def uniform_kabsch_log_lik(x, mu): # meta data n_frames = x.shape[0] n_atoms = x.shape[1] # compute log Likelihood for all points log_lik = 0.0 sampleVar = 0.0 for i in range(n_frames): for j in range(3): disp = x[i,:,j] - mu[:,j] temp = np.dot(disp,disp) sampleVar += temp log_lik += temp # finish variance sampleVar /= (n_frames-1)*3*(n_atoms-1) log_lik /= sampleVar log_lik += n_frames * 3 * (n_atoms-1) * np.log(sampleVar) log_lik *= -0.5 return log_lik @jit(nopython=True) def intermediate_kabsch_log_lik(x, mu, kabsch_weights): # meta data n_frames = x.shape[0] # determine precision and pseudo determinant lpdet = lpdet_inv(kabsch_weights) # compute log Likelihood for all points log_lik = 0.0 for i in range(n_frames): #disp = x[i] - mu for j in range(3): disp = x[i,:,j] - mu[:,j] log_lik += np.dot(disp,np.dot(kabsch_weights,disp)) log_lik += 3 * n_frames * lpdet log_lik *= -0.5 return log_lik @jit(nopython=True) def weight_kabsch_log_lik(x, mu, precision, lpdet): # meta data n_frames = x.shape[0] # compute log Likelihood for all points log_lik = 0.0 for i in range(n_frames): #disp = x[i] - mu for j in range(3): disp = x[i,:,j] - mu[:,j] log_lik += np.dot(disp,np.dot(precision,disp)) log_lik += 3 * n_frames * lpdet log_lik *= -0.5 return log_lik @jit(nopython=True) def weight_kabsch_rotate(mobile, target, weights): correlation_matrix = np.dot(np.transpose(mobile), np.dot(weights, target)) V, S, W_tr = np.linalg.svd(correlation_matrix) if np.linalg.det(V) * np.linalg.det(W_tr) < 0.0: V[:, -1] = -V[:, -1] rotation = np.dot(V, W_tr) mobile_prime = np.dot(mobile,rotation) return mobile_prime @jit(nopython=True) def weight_kabsch_rmsd(mobile, target, weights): xyz1_prime = weight_kabsch_rotate(mobile, target, weights) delta = xyz1_prime - target rmsd = (delta ** 2.0).sum(1).mean() ** 0.5 return rmsd @jit(nopython=True) def rmsd_kabsch(xyz1, xyz2): xyz1_prime = kabsch_rotate(xyz1, xyz2) delta = xyz1_prime - xyz2 rmsd = (delta ** 2.0).sum(1).mean() ** 0.5 return rmsd @jit(nopython=True) def kabsch_rotate(mobile, target): correlation_matrix = np.dot(np.transpose(mobile), target) V, S, W_tr = np.linalg.svd(correlation_matrix) if np.linalg.det(V) * np.linalg.det(W_tr) < 0.0: V[:, -1] = -V[:, -1] rotation = np.dot(V, W_tr) mobile_prime = np.dot(mobile,rotation) return mobile_prime @jit(nopython=True) def kabsch_transform(mobile, target): translation, rotation = compute_translation_and_rotation(mobile, target) #mobile_prime = mobile.dot(rotation) + translation mobile_prime = np.dot(mobile,rotation) #+ translation return mobile_prime @jit(nopython=True) def compute_translation_and_rotation(mobile, target): #meta data n_atoms = mobile.shape[0] nDim = mobile.shape[1] mu1 = np.zeros(nDim) mu2 = np.zeros(nDim) for i in range(n_atoms): for j in range(nDim): mu1[j] += mobile[i,j] mu2[j] += target[i,j] mu1 /= n_atoms mu2 /= n_atoms mobile = mobile - mu1 target = target - mu2 correlation_matrix = np.dot(np.transpose(mobile), target) V, S, W_tr = np.linalg.svd(correlation_matrix) #is_reflection = (np.linalg.det(V) * np.linalg.det(W_tr)) < 0.0 if np.linalg.det(V) * np.linalg.det(W_tr) < 0.0: V[:, -1] = -V[:, -1] rotation = np.dot(V, W_tr) translation = mu2 - np.dot(mu1,rotation) return translation, rotation # remove COG translation @jit(nopython=True) def traj_remove_cog_translation(traj_data): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] # start be removing COG translation for ts in range(n_frames): mu = np.zeros(nDim) for atom in range(n_atoms): mu += traj_data[ts,atom] mu /= n_atoms traj_data[ts] -= mu return traj_data @jit(nopython=True) def particle_variances_from_trajectory(traj_data, avg): # meta data n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] # disp = traj_data - avg particleVariances = np.zeros(n_atoms,dtype=np.float64) for ts in range(n_frames): for atom in range(n_atoms): particleVariances[atom] += np.dot(disp[ts,atom],disp[ts,atom]) particleVariances /= 3*(n_frames-1) return particleVariances @jit(nopython=True) def intermediate_kabsch_weights(variances): # meta data n_atoms = variances.shape[0] # kasbch weights are inverse of variances inverseVariances = np.power(variances,-1) kabsch_weights = np.zeros((n_atoms,n_atoms),dtype=np.float64) # force constant vector to be null space of kabsch weights wsum = np.sum(inverseVariances) for i in range(n_atoms): # Populate diagonal elements kabsch_weights[i,i] = inverseVariances[i] for j in range(n_atoms): kabsch_weights[i,j] -= inverseVariances[i]*inverseVariances[j]/wsum # return the weights return kabsch_weights # compute the average structure and covariance from trajectory data @jit(nopython=True) def traj_iterative_average_vars_intermediate_kabsch(traj_data,thresh=1E-3,max_steps=300): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] # Initialize with uniform weighted Kabsch avg, aligned_pos = traj_iterative_average(traj_data,thresh) # Compute Kabsch Weights particleVariances = particle_variances_from_trajectory(aligned_pos, avg) kabsch_weights = intermediate_kabsch_weights(particleVariances) log_lik = intermediate_kabsch_log_lik(aligned_pos,avg,kabsch_weights) # perform iterative alignment and average to converge average log_lik_diff = 10 step = 0 while log_lik_diff > thresh and step < max_steps: # rezero new average new_avg = np.zeros((n_atoms,nDim),dtype=np.float64) # align trajectory to average and accumulate new average for ts in range(n_frames): aligned_pos[ts] = weight_kabsch_rotate(aligned_pos[ts], avg, kabsch_weights) new_avg += aligned_pos[ts] # finish average new_avg /= n_frames # compute log likelihood new_log_lik = intermediate_kabsch_log_lik(aligned_pos,avg,kabsch_weights) log_lik_diff = np.abs(new_log_lik-log_lik) log_lik = new_log_lik # compute new Kabsch Weights particleVariances = particle_variances_from_trajectory(aligned_pos,new_avg) kabschWeightes = intermediate_kabsch_weights(particleVariances) # compute Distance between averages avgRmsd = weight_kabsch_dist_align(avg,new_avg,kabsch_weights) avg = np.copy(new_avg) step += 1 print(step, avgRmsd,log_lik) return aligned_pos, avg, particleVariances # compute the average structure and covariance from trajectory data @jit(nopython=True) def traj_iterative_average_precision_weighted_kabsch(traj_data,thresh=1E-3,max_steps=300): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] # Initialize with uniform weighted Kabsch avg, aligned_pos = traj_iterative_average(traj_data,thresh) # Compute Kabsch Weights disp = aligned_pos - avg covar = np.zeros((n_atoms,n_atoms),dtype=np.float64) for ts in range(n_frames): covar += np.dot(disp[ts],disp[ts].T) covar /= nDim*(n_frames-1) # determine precision and pseudo determinant lpdet, precision, rank = pseudo_lpdet_inv(covar) # compute log likelihood log_lik = weight_kabsch_log_lik(aligned_pos, avg, precision, lpdet) # perform iterative alignment and average to converge average log_lik_diff = 10+thresh step = 0 while log_lik_diff > thresh and step < max_steps: # rezero new average new_avg = np.zeros((n_atoms,nDim),dtype=np.float64) # align trajectory to average and accumulate new average for ts in range(n_frames): aligned_pos[ts] = weight_kabsch_rotate(aligned_pos[ts], avg, precision) new_avg += aligned_pos[ts] # finish average new_avg /= n_frames # compute new Kabsch Weights covar = np.zeros((n_atoms,n_atoms),dtype=np.float64) for ts in range(n_frames): disp = aligned_pos[ts] - new_avg covar += np.dot(disp,disp.T) covar /= nDim*(n_frames-1) # determine precision and pseudo determinant lpdet, precision, rank = pseudo_lpdet_inv(covar) # compute log likelihood new_log_lik = weight_kabsch_log_lik(aligned_pos, new_avg, precision, lpdet) log_lik_diff = np.abs(new_log_lik-log_lik) log_lik = new_log_lik avg = np.copy(new_avg) step += 1 # print(step, log_lik) return aligned_pos, avg, precision, lpdet # compute the average structure and covariance from trajectory data @jit(nopython=True) def traj_iterative_average_weighted_kabsch(traj_data,thresh=1E-3,max_steps=200): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] # Initialize with uniform weighted Kabsch avg, aligned_pos = traj_iterative_average(traj_data,thresh) # Compute Kabsch Weights disp = aligned_pos - avg covar = np.zeros((n_atoms,n_atoms),dtype=np.float64) for ts in range(n_frames): covar += np.dot(disp[ts],disp[ts].T) covar /= nDim*(n_frames-1) # determine precision and pseudo determinant lpdet, precision, rank = pseudo_lpdet_inv(covar) # perform iterative alignment and average to converge average log_lik = weight_kabsch_log_lik(aligned_pos, avg, precision, lpdet) log_lik_diff = 10 step = 0 while log_lik_diff > thresh and step < max_steps: # rezero new average new_avg = np.zeros((n_atoms,nDim),dtype=np.float64) # align trajectory to average and accumulate new average for ts in range(n_frames): aligned_pos[ts] = weight_kabsch_rotate(aligned_pos[ts], avg, precision) new_avg += aligned_pos[ts] # finish average new_avg /= n_frames # compute new Kabsch Weights covar = np.zeros((n_atoms,n_atoms),dtype=np.float64) disp = aligned_pos - new_avg for ts in range(n_frames): covar += np.dot(disp[ts],disp[ts].T) covar /= nDim*(n_frames-1) # determine precision and pseudo determinant lpdet, precision, rank = pseudo_lpdet_inv(covar) # compute new log likelihood new_log_lik = weight_kabsch_log_lik(aligned_pos, new_avg, precision, lpdet) log_lik_diff = np.abs(new_log_lik-log_lik) log_lik = new_log_lik avg = np.copy(new_avg) step += 1 # return average structure and aligned trajectory return avg, aligned_pos # compute the average structure from trajectory data @jit(nopython=True) def traj_iterative_average(traj_data,thresh=1E-3): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] # create numpy array of aligned positions aligned_pos = np.copy(traj_data).astype(np.float64) # start be removing COG translation for ts in range(n_frames): mu = np.zeros(nDim) for atom in range(n_atoms): mu += aligned_pos[ts,atom] mu /= n_atoms aligned_pos[ts] -= mu # Initialize average as first frame avg = np.copy(aligned_pos[0]).astype(np.float64) log_lik = uniform_kabsch_log_lik(aligned_pos,avg) # perform iterative alignment and average to converge log likelihood log_lik_diff = 10 count = 1 while log_lik_diff > thresh: # rezero new average new_avg = np.zeros((n_atoms,nDim),dtype=np.float64) # align trajectory to average and accumulate new average for ts in range(n_frames): aligned_pos[ts] = kabsch_rotate(aligned_pos[ts], avg) new_avg += aligned_pos[ts] # finish average new_avg /= n_frames # compute log likelihood new_log_lik = uniform_kabsch_log_lik(aligned_pos,avg) log_lik_diff = np.abs(new_log_lik-log_lik) log_lik = new_log_lik # copy new average avg = np.copy(new_avg) count += 1 return avg, aligned_pos # compute the average structure from trajectory data @jit(nopython=True) def traj_iterative_average_covar(traj_data,thresh=1E-3): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] # create numpy array of aligned positions aligned_pos = np.copy(traj_data) # Initialize average as first frame avg = np.copy(aligned_pos[0]).astype(np.float64) log_lik = uniform_kabsch_log_lik(aligned_pos,avg) # perform iterative alignment and average to converge average log_lik_diff = 10 while log_lik_diff > thresh: # rezero new average new_avg = np.zeros((n_atoms,nDim),dtype=np.float64) # align trajectory to average and accumulate new average for ts in range(n_frames): # align positions aligned_pos[ts] = kabsch_rotate(aligned_pos[ts], avg) new_avg += aligned_pos[ts] # finish average new_avg /= n_frames # compute log likelihood new_log_lik = uniform_kabsch_log_lik(aligned_pos,avg) log_lik_diff = np.abs(new_log_lik-log_lik) log_lik = new_log_lik avg = np.copy(new_avg) covar = np.zeros((n_atoms*nDim,n_atoms*nDim),dtype=np.float64) # loop over trajectory and compute average and covariance for ts in range(n_frames): disp = (aligned_pos[ts]-avg).flatten() covar += np.outer(disp,disp) # finish average covar /= (n_frames-1) return avg, covar # compute the average structure from weighted trajectory data @jit(nopython=True) def traj_iterative_average_weighted(traj_data, weights, prev_avg=None, thresh=1E-3): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] nFeatures = n_atoms*nDim # determine normalization norm = np.power(np.sum(weights),-1) weights *= norm # create numpy array of aligned positions aligned_pos = np.copy(traj_data) # Initialize average if prev_avg == None: avg = np.copy(traj_data[np.argmax(weights)]) else: avg = np.copy(prev_avg) log_lik = uniform_kabsch_log_lik(aligned_pos,avg) # perform iterative alignment and average to converge average log_lik_diff = 10 while log_lik_diff > thresh: # rezero new average new_avg = np.zeros((n_atoms,nDim),dtype=np.float64) # align trajectory to average and accumulate new average for ts in range(n_frames): # align to average aligned_pos[ts] = kabsch_rotate(aligned_pos[ts], avg) new_avg += weights[ts]*aligned_pos[ts] # compute log likelihood new_log_lik = uniform_kabsch_log_lik(aligned_pos,avg) log_lik_diff = np.abs(new_log_lik-log_lik) log_lik = new_log_lik # copy new avg avg = np.copy(new_avg) return aligned_pos, avg # compute the average structure and covariance from weighted trajectory data @jit(nopython=True) def traj_iterative_average_precision_weighted_weighted_kabsch(traj_data, weights, prev_avg, prev_precision, prev_lpdet, thresh=1E-3, max_steps=100): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] nFeatures = n_atoms*nDim # determine normalization norm = np.power(np.sum(weights),-1) weights *= norm # create numpy array of aligned positions aligned_pos = np.copy(traj_data) # Initialize average with previous average avg = np.copy(prev_avg) # compute log likelihood of current trajectory alignment log_lik = weight_kabsch_log_lik(aligned_pos, avg, prev_precision, prev_lpdet) # perform iterative alignment and average to converge average log_lik_diff = 10 + thresh step = 0 while log_lik_diff > thresh and step < max_steps: # rezero new average new_avg = np.zeros((n_atoms,nDim),dtype=np.float64) # align trajectory to average and accumulate new average for ts in range(n_frames): # align to average aligned_pos[ts] = weight_kabsch_rotate(aligned_pos[ts], avg, precision) new_avg += weights[ts]*aligned_pos[ts] # compute new Kabsch Weights covar = np.zeros((n_atoms,n_atoms),dtype=np.float64) for ts in range(n_frames): disp = aligned_pos[ts] - new_avg covar += weights[ts]*np.dot(disp,disp.T) covar /= 3.0 # determine precision and pseudo determinant lpdet, precision, rank = pseudo_lpdet_inv(covar) # compute log likelihood new_log_lik = weight_kabsch_log_lik(aligned_pos, new_avg, precision, lpdet) log_lik_diff = np.abs(new_log_lik-log_lik) log_lik = new_log_lik # copy new avg avg = np.copy(new_avg) step += 1 return avg, precision, lpdet # align trajectory data to a reference structure @jit(nopython=True) def traj_align_weighted_kabsch(traj_data, ref, precision): # trajectory metadata n_frames = traj_data.shape[0] # create numpy array of aligned positions aligned_pos = np.copy(traj_data) for ts in range(n_frames): # align positions based on weighted Kabsch aligned_pos[ts] = weight_kabsch_rotate(aligned_pos[ts], ref, precision) return aligned_pos # align trajectory data to a reference structure @jit(nopython=True) def traj_align(traj_data,ref): # trajectory metadata n_frames = traj_data.shape[0] # create numpy array of aligned positions aligned_pos = np.copy(traj_data) for ts in range(n_frames): # make sure positions are centered aligned_pos[ts] = kabsch_rotate(aligned_pos[ts], ref) return aligned_pos # compute the covariance from trajectory data # we assume the trajectory is aligned here @jit(nopython=True) def traj_covar(traj_data): # trajectory metadata n_frames = traj_data.shape[0] n_atoms = traj_data.shape[1] nDim = traj_data.shape[2] # Initialize average and covariance arrays avg = np.zeros((n_atoms*nDim)) covar = np.zeros((n_atoms*nDim,n_atoms*nDim)) # loop over trajectory and compute average and covariance for ts in range(n_frames): flat = traj_data[ts].flatten() avg += flat covar += np.outer(flat,flat) # finish averages avg /= n_frames covar /= n_frames # finish covar covar -= np.outer(avg,avg) return covar # compute the time separated covariance matrix @jit(nopython=True) def traj_time_covar(traj1, traj2, mean1, mean2, lag): # trajectory metadata n_frames = traj1.shape[0] n_atoms = traj1.shape[1] nDim = traj1.shape[2] # declare covar covar = np.zeros((n_atoms*nDim,n_atoms*nDim),dtype=np.float64) # loop over trajectory and compute average and covariance for ts in range(n_frames-lag): disp1 = traj1[ts].flatten()-mean1.flatten() disp2 = traj2[ts+lag].flatten()-mean2.flatten() covar +=
np.outer(disp1,disp2)
numpy.outer
import cv2 import os import pdb import numpy as np from numpy.lib.function_base import piecewise from tqdm import tqdm import matplotlib.pyplot as plt from PIL import Image import copy # read an image def read_img(filename,denoising=False): # img = Image.open(filename) #! RGB img=cv2.imread(filename) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # scale 0~255 to 0~1 if denoising: img = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) np_img = np.array(img, dtype=np.float32) / 255. original_h, original_w, _ = np_img.shape # np_img = cv2.resize(np_img, img_wh, interpolation=cv2.INTER_LINEAR) return np_img, original_h, original_w def region_seg(scan_folder, ref_view,prt_img=False): use_new_depth=False import cv2 try: ref_img_orig, _, _ = read_img(os.path.join(scan_folder,'edge_detect/{:0>8}.jpg'.format(ref_view)),denoising=False) except: print('region_seg error') return False ref_img = cv2.cvtColor(ref_img_orig, cv2.COLOR_RGB2BGR) #! plt也是BGR # ref_lines_file_path=os.path.join(scan_folder, 'images/save_lines/{:0>8}_lines.txt'.format(ref_view)) # ref_lines = np.loadtxt(ref_lines_file_path,delimiter=',') # ref_img_orig=plot_lines(ref_img_orig,ref_lines,change_color=False) ref_img=copy.deepcopy(ref_img_orig) ref_img_gray = cv2.cvtColor(ref_img,cv2.COLOR_RGB2GRAY) save_dir=os.path.join(scan_folder, "edge_detect/region_seg") mask_save_dir=os.path.join(scan_folder, "edge_detect/region_seg_mask") os.makedirs(save_dir, exist_ok=True) os.makedirs(mask_save_dir, exist_ok=True) mask_filename=os.path.join(mask_save_dir,"{:0>8}_region_seg_mask.npy".format(ref_view)) height,width,_=ref_img.shape patchsize=10 mask=np.zeros((height,width),dtype=np.float32) if os.path.exists(mask_filename) and 0: mask=np.load(mask_filename) # mask=np.cv2.imread(mask_filename) else: # start_time=time.time() seg_values={} for row in tqdm(range(patchsize,height-patchsize)): #! 基于相邻灰度差异的方式 near_gray_gap=-np.ones((width,)).astype(np.float32) #*初值全为-1 for col in range(patchsize,width-patchsize): patch_src_i=ref_img_gray[row,col-patchsize:col+patchsize] near_gray_gap[col]=abs(patch_src_i.max()-patch_src_i.min()) near_gray_gap[near_gray_gap<0]=near_gray_gap.max() simi_pixel=np.where(near_gray_gap<0.04)[0] #! 0.05 pixel_gap=
np.ones_like(simi_pixel)
numpy.ones_like
import itertools import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as mlines from matrices import start_prob, expert_emission_matrix, hmt_start_prob, hmt_expert_emission_matrix def viterbi(observed_seq, transition_matrices, n_states=5): """ Calculate the most probable sequence of hidden states using time-dependent transition matrices. """ startprob = start_prob() emissionmat = expert_emission_matrix() N = len(observed_seq) Z = np.zeros(N) T1 = np.zeros([n_states, N]) T2 = np.full((n_states, N), -1) T1[:, 0] = np.log(startprob * emissionmat[:, observed_seq[0]]) for j in range(1, N): for i in range(n_states): probabilities = (T1[:, j - 1] + np.log(transition_matrices[j - 1][:, i]) + np.log(emissionmat[i, observed_seq[j]])) T1[i, j] = np.max(probabilities) T2[i, j] = np.argmax(probabilities) Z[-1] = np.argmax(T1[:, N - 1]) for i in range(N - 2, 0, -1): Z[i] = T2[int(Z[i + 1]), i + 1] Z = Z.astype(int) return Z, T1, T2 def hmt_viterbi(X_obs, tree_obs, transition_matrices, dev_abb, dev_map, n_states=10): """ Calculate the most probable hidden tree using time-dependent transition matrices. The tree structure is based on the results from STREAM. """ startprob = hmt_start_prob() emission = hmt_expert_emission_matrix() tm = transition_matrices M = np.zeros((len(X_obs.index), n_states)) opt_states = np.full((len(X_obs.index), n_states), -1) # Initialization for leaf in tree_obs['leaves']: M[int(leaf)] = np.log(emission[:, dev_map[X_obs.loc[leaf]['label']]]) branches = ['branch S6-S5', 'branch S4-S3', 'branch S2-S1', 'branch S0-S1'] for b in branches: branch = tree_obs[b] for i in range(1, len(branch)): m_max = [] for j in range(n_states): prob = M[int(branch[i - 1])] + np.log(tm[int(branch[i - 1])][j]) m_max.append(np.max(prob)) opt_states[int(branch[i - 1]), j] = np.argmax(prob) m_max = np.array(m_max) M[int(branch[i])] = m_max + np.log(emission[:, dev_map[X_obs.loc[branch[i]]['label']]]) # Branching point S1 '963' branching_point = '963' child = tree_obs['children'][branching_point] m_max1 = [] for j in range(n_states): prob = M[int(child[0])] + np.log(tm[int(child[0])][j]) m_max1.append(np.max(prob)) opt_states[int(child[0]), j] = np.argmax(prob) m_max1 = np.array(m_max1) m_max2 = [] for j in range(n_states): prob = M[int(child[1])] + np.log(tm[int(child[1])][j]) m_max2.append(np.max(prob)) opt_states[int(child[1]), j] = np.argmax(prob) m_max2 = np.array(m_max2) M[int(branching_point)] = m_max1 + m_max2 + np.log(emission[:, dev_map[X_obs.loc[branching_point]['label']]]) # Branch S1-S3 branch = tree_obs['branch S1-S3'] for i in range(1, len(branch)): m_max = [] for j in range(n_states): prob = M[int(branch[i - 1])] + np.log(tm[int(branch[i - 1])][j]) m_max.append(np.max(prob)) opt_states[int(branch[i - 1]), j] = np.argmax(prob) m_max = np.array(m_max) M[int(branch[i])] = m_max + np.log(emission[:, dev_map[X_obs.loc[branch[i]]['label']]]) # Branching point S3 '509' branching_point = '509' child = tree_obs['children'][branching_point] m_max1 = [] for j in range(n_states): prob = M[int(child[0])] + np.log(tm[int(child[0])][j]) m_max1.append(np.max(prob)) opt_states[int(child[0]), j] =
np.argmax(prob)
numpy.argmax
""" Runs the alignment test generated by elicitation.py on a set of test rewards and reports performance. """ import logging import pickle as pkl from functools import partial from itertools import product from pathlib import Path from typing import ( Dict, Generator, List, Literal, NamedTuple, Optional, Sequence, Set, Tuple, Union, cast, ) import argh # type: ignore import numpy as np import tensorflow as tf # type: ignore from driver.gym_env.legacy_env import LegacyEnv from gym.spaces import flatten # type: ignore from search import GeometricSearch, TestRewardSearch tf.config.set_visible_devices([], "GPU") # Car simulation stuff is faster on cpu from argh import arg from driver.legacy.models import Driver from gym.core import Env # type: ignore from joblib import Parallel, delayed # type: ignore from sklearn.metrics import confusion_matrix # type: ignore from active.simulation_utils import TrajOptimizer, assert_normals, make_normals, orient_normals from equiv_utils import add_equiv_constraints, remove_equiv from random_baseline import make_random_questions from testing_factory import TestFactory from utils import ( assert_nonempty, assert_reward, assert_rewards, get_mean_reward, load, make_gaussian_rewards, parse_replications, rollout, setup_logging, shape_compat, ) Experiment = Tuple[float, Optional[float], int] input_features_name = Path("input_features.npy") normals_name = Path("normals.npy") preferences_name = Path("preferences.npy") true_reward_name = Path("true_reward.npy") flags_name = Path("flags.pkl") use_equiv = False # Top level functions callable from fire @arg("--epsilons", nargs="+", type=float) def premake_test_rewards( epsilons: List[float] = [0.0], n_rewards: int = 100, n_test_states: Optional[int] = None, n_gt_test_questions: int = 10000, true_reward_name: Path = Path("true_reward.npy"), datadir: Path = Path(), outdir: Path = Path(), replications: Optional[Union[str, Tuple[int, ...]]] = None, n_cpus: int = 1, overwrite: bool = False, verbosity: Literal["INFO", "DEBUG"] = "INFO", ): """ Finds test rewards for each experiment. """ outdir.mkdir(parents=True, exist_ok=True) # TODO(joschnei): I'm making some dangerous logging decisions. Do I want to append to logs, or # give logs unique names? I really need to pick at least one. setup_logging(verbosity, log_path=outdir / "log.txt") if replications is not None: replication_indices = parse_replications(replications) for replication in replication_indices: if not (datadir / str(replication)).exists(): logging.warning(f"Replication {replication} does not exist, skipping") continue premake_test_rewards( epsilons=epsilons, n_rewards=n_rewards, n_test_states=n_test_states, n_gt_test_questions=n_gt_test_questions, true_reward_name=true_reward_name, datadir=datadir / str(replication), outdir=outdir / str(replication), use_equiv=use_equiv, n_cpus=n_cpus, overwrite=overwrite, verbosity=verbosity, ) logging.info(f"Done with replication {replication}") exit() true_reward = np.load(datadir / true_reward_name) assert_reward(true_reward, False, 4) with Parallel(n_jobs=n_cpus) as parallel: make_test_rewards( epsilons=epsilons, true_reward=true_reward, n_rewards=n_rewards, n_test_states=n_test_states, n_gt_test_questions=int(n_gt_test_questions), outdir=outdir, parallel=parallel, use_equiv=use_equiv, overwrite=overwrite, ) @arg("--epsilons", nargs="+", type=float) @arg("--deltas", nargs="+", type=float) @arg("--human-samples", nargs="+", type=int) def simulated( epsilons: List[float] = [0.0], n_rewards: int = 100, human_samples: List[int] = [1], n_reward_samples: int = 1000, n_test_states: Optional[int] = None, n_gt_test_questions: int = 10000, traj_opt: bool = False, datadir: Path = Path(), outdir: Path = Path(), deltas: List[Optional[float]] = [None], use_mean_reward: bool = False, use_random_test_questions: bool = False, n_random_test_questions: Optional[int] = None, use_cheating_questions: bool = False, skip_remove_duplicates: bool = False, skip_epsilon_filtering: bool = False, skip_redundancy_filtering: bool = False, use_true_epsilon: bool = False, legacy_test_rewards: bool = False, replications: Optional[Union[str, Tuple[int, ...]]] = None, n_cpus: int = 1, overwrite_test_rewards: bool = False, overwrite_results: bool = False, verbosity: Literal["INFO", "DEBUG"] = "INFO", ) -> None: """ Evaluates alignment test generated by ground-truth rewards. """ logging.basicConfig(level=verbosity, format="%(levelname)s:%(asctime)s:%(message)s") if replications is not None: replication_indices = parse_replications(replications) for replication in replication_indices: if not (datadir / str(replication)).exists(): logging.warning(f"Replication {replication} does not exist, skipping") continue logging.info(f"Starting replication {replication}") simulated( epsilons=epsilons, deltas=deltas, n_rewards=n_rewards, human_samples=human_samples, n_reward_samples=n_reward_samples, n_test_states=n_test_states, n_gt_test_questions=n_gt_test_questions, datadir=datadir / str(replication), outdir=outdir / str(replication), use_mean_reward=use_mean_reward, use_random_test_questions=use_random_test_questions, use_cheating_questions=use_cheating_questions, n_random_test_questions=n_random_test_questions, skip_remove_duplicates=skip_remove_duplicates, skip_epsilon_filtering=skip_epsilon_filtering, skip_redundancy_filtering=skip_redundancy_filtering, use_true_epsilon=use_true_epsilon, legacy_test_rewards=legacy_test_rewards, n_cpus=n_cpus, overwrite_test_rewards=overwrite_test_rewards, overwrite_results=overwrite_results, verbosity=verbosity, ) exit() logging.info(f"Using {n_cpus} cpus.") parallel = Parallel(n_jobs=n_cpus) outdir.mkdir(parents=True, exist_ok=True) if n_random_test_questions is not None: # Argh defaults to parsing something as a string if its optional n_random_test_questions = int(n_random_test_questions) flags = pkl.load(open(datadir / flags_name, "rb")) query_type = flags["query_type"] equiv_probability = flags["equiv_size"] env = Driver() n_reward_features = env.num_of_features logging.info("Loading elicitation results") elicited_normals, elicited_preferences, elicited_input_features = load_elicitation( datadir=datadir, normals_name=normals_name, preferences_name=preferences_name, input_features_name=input_features_name, n_reward_features=n_reward_features, use_equiv=use_equiv, query_type=query_type, equiv_probability=equiv_probability, ) true_reward = np.load(datadir / true_reward_name) assert_reward(true_reward, False, n_reward_features) if use_equiv: true_reward = np.append(true_reward, [1]) else: assert not np.any(elicited_preferences == 0) factory = TestFactory( query_type=query_type, reward_dimension=elicited_normals.shape[1], equiv_probability=equiv_probability, n_reward_samples=n_reward_samples, use_mean_reward=use_mean_reward, skip_dedup=skip_remove_duplicates, skip_noise_filtering=True, skip_epsilon_filtering=skip_epsilon_filtering, skip_redundancy_filtering=skip_redundancy_filtering, use_true_epsilon=use_true_epsilon, true_reward=true_reward, ) logging.info( f"""Filtering settings: # reward samples={n_reward_samples}, use mean reward={use_mean_reward}, skip duplicates={skip_remove_duplicates} skip noise={True} skip epsilon={skip_epsilon_filtering} skip redundancy={skip_redundancy_filtering} use true epsilon={use_true_epsilon} """ ) confusion_path, test_path = make_outnames( outdir, skip_remove_duplicates, True, skip_epsilon_filtering, skip_redundancy_filtering, ) confusions: Dict[Experiment, np.ndarray] = load(confusion_path, overwrite_results, default={}) minimal_tests: Dict[Experiment, np.ndarray] = load(test_path, overwrite_results, default={}) experiments = make_experiments( epsilons, deltas, human_samples, overwrite_results, experiments=set(minimal_tests.keys()) ) if use_random_test_questions: logging.info("Making random test") logging.info(f"True reward: {true_reward}") normals, preferences, input_features = make_random_test( n_random_test_questions, elicited_input_features, elicited_preferences, reward_iterations=flags["reward_iterations"], query_type=query_type, equiv_size=flags["equiv_size"], sim=env, use_equiv=use_equiv, ) good_indices = (true_reward @ normals.T) > 0 logging.info(f"{np.mean(good_indices)*100:2f}% of new test questions agree with gt reward.") if use_cheating_questions: logging.info(f"Selecting only questions consistent with gt reward") normals = normals[good_indices] preferences = preferences[good_indices] input_features = input_features[good_indices] assert_normals(normals, use_equiv) else: max_n = max(human_samples) preferences = elicited_preferences[:max_n] input_features = elicited_input_features[:max_n] logging.debug(f"elicited_normals={elicited_normals[:10]}") normals = orient_normals( elicited_normals[:max_n], preferences, use_equiv, n_reward_features ) logging.debug(f"normals={normals[:10]}") assert np.all(true_reward @ normals.T >= 0) if not legacy_test_rewards: test_rewards = make_test_rewards( epsilons=epsilons, true_reward=true_reward, n_rewards=n_rewards, n_test_states=n_test_states, n_gt_test_questions=int(n_gt_test_questions), traj_opt=traj_opt, outdir=outdir, parallel=parallel, use_equiv=use_equiv, overwrite=overwrite_test_rewards, ) else: test_rewards = legacy_make_test_rewards(1000, n_rewards, true_reward, epsilons, use_equiv) for indices, confusion, experiment in parallel( delayed(run_gt_experiment)( normals=normals, test_rewards=test_rewards[epsilon][0], test_reward_alignment=test_rewards[epsilon][1], epsilon=epsilon, delta=delta, use_equiv=use_equiv, n_human_samples=n, factory=factory, input_features=input_features, preferences=preferences, outdir=outdir, verbosity=verbosity, ) for epsilon, delta, n in experiments ): minimal_tests[experiment] = indices confusions[experiment] = confusion pkl.dump(confusions, open(confusion_path, "wb")) pkl.dump(minimal_tests, open(test_path, "wb")) @arg("--epsilons", nargs="+", type=float) @arg("--deltas", nargs="+", type=float) @arg("--human-samples", nargs="+", type=int) def human( epsilons: List[float] = [0.0], deltas: List[float] = [0.05], n_rewards: int = 10000, human_samples: List[int] = [1], n_model_samples: int = 1000, input_features_name: Path = Path("input_features.npy"), normals_name: Path = Path("normals.npy"), preferences_name: Path = Path("preferences.npy"), flags_name: Path = Path("flags.pkl"), datadir: Path = Path("questions"), outdir: Path = Path("questions"), rewards_path: Optional[Path] = None, use_mean_reward: bool = False, skip_remove_duplicates: bool = False, skip_epsilon_filtering: bool = False, skip_redundancy_filtering: bool = False, n_cpus: int = 1, overwrite: bool = False, ): """ Evaluates alignment test elicited from a human. """ outdir.mkdir(parents=True, exist_ok=True) parallel = Parallel(n_jobs=n_cpus) flags = pkl.load(open(datadir / flags_name, "rb")) query_type = flags["query_type"] equiv_probability = flags["equiv_size"] sim = Driver() n_reward_features = sim.num_of_features elicited_normals, elicited_preferences, elicited_input_features = load_elicitation( datadir=datadir, normals_name=normals_name, preferences_name=preferences_name, input_features_name=input_features_name, n_reward_features=n_reward_features, use_equiv=use_equiv, query_type=query_type, equiv_probability=equiv_probability, ) assert elicited_preferences.shape[0] > 0 factory = TestFactory( query_type=query_type, reward_dimension=elicited_normals.shape[1], equiv_probability=equiv_probability, n_reward_samples=n_model_samples, use_mean_reward=use_mean_reward, skip_dedup=skip_remove_duplicates, skip_noise_filtering=True, skip_epsilon_filtering=skip_epsilon_filtering, skip_redundancy_filtering=skip_redundancy_filtering, ) test_path = outdir / make_outname( skip_remove_duplicates, True, skip_epsilon_filtering, skip_redundancy_filtering, base="indices", ) test_results_path = outdir / make_outname( skip_remove_duplicates, True, skip_epsilon_filtering, skip_redundancy_filtering, base="test_results", ) minimal_tests: Dict[Experiment, np.ndarray] = load(test_path, overwrite) results: Dict[Experiment, np.ndarray] = load(test_results_path, overwrite) test_rewards = ( np.load(open(rewards_path, "rb")) if rewards_path is not None else make_gaussian_rewards(n_rewards, use_equiv) ) np.save(outdir / "test_rewards.npy", test_rewards) experiments = make_experiments( epsilons, deltas, human_samples, overwrite, experiments=set(minimal_tests.keys()) ) for indices, result, experiment in parallel( delayed(run_human_experiment)( test_rewards, elicited_normals, elicited_input_features, elicited_preferences, epsilon, delta, n, factory, use_equiv, ) for epsilon, delta, n in experiments ): minimal_tests[experiment] = indices results[experiment] = result pkl.dump(minimal_tests, open(test_path, "wb")) pkl.dump(results, open(test_results_path, "wb")) def compare_test_labels( test_rewards_path: Path, true_reward_path: Path, traj_opt: bool = False, elicitation: bool = False, replications: Optional[str] = None, normals_path: Optional[Path] = None, ): if replications is not None: raise NotImplementedError("Replications not yet implemented") starting_tests: Dict[float, Tuple[np.ndarray, np.ndarray]] = pkl.load( open(test_rewards_path, "rb") ) assert not (traj_opt == elicitation), "Provided labels must come from exactly one source" class Test(NamedTuple): rewards: np.ndarray q_labels: np.ndarray elicitation_labels: np.ndarray test_rewards: Dict[float, Test] = {} true_reward = np.load(true_reward_path) if traj_opt: normals = np.load(normals_path) for epsilon, (rewards, q_labels) in starting_tests.items(): normals = normals[true_reward @ normals.T > epsilon] elicitation_labels = run_test(normals, rewards, use_equiv=False) test_rewards[epsilon] = Test( rewards=rewards, q_labels=q_labels, elicitation_labels=elicitation_labels ) elif elicitation: parallel = Parallel(n_cpus=-4) env = LegacyEnv(reward=true_reward, random_start=True) traj_optimizer = TrajOptimizer(10) for epsilon, (rewards, elicitation_labels) in starting_tests.items(): q_labels = rewards_aligned( traj_optimizer=traj_optimizer, env=env, true_reward=true_reward, test_rewards=rewards, epsilon=epsilon, parallel=parallel, ) test_rewards[epsilon] = Test( rewards=rewards, q_labels=q_labels, elicitation_labels=elicitation_labels ) total_agree = 0 total_rewards = 0 for epsilon, test in test_rewards.items(): total_agree += np.sum(test.q_labels == test.elicitation_labels) total_rewards += len(test.rewards) print( f"Critic and superset labels agree on {total_agree / total_rewards * 100 :.1f}% of rewards" ) # Test reward generation def make_test_rewards( epsilons: Sequence[float], true_reward: np.ndarray, n_rewards: int, outdir: Path, parallel: Parallel, n_test_states: Optional[int] = None, traj_opt: bool = False, max_attempts: int = 10, n_gt_test_questions: Optional[int] = None, use_equiv: bool = False, overwrite: bool = False, ) -> Dict[float, Tuple[np.ndarray, np.ndarray]]: """ Makes test rewards sets for every epsilon and saves them to a file. """ traj_optimizer = ( TrajOptimizer(n_planner_iters=100, optim=tf.keras.optimizers.Adam(0.2)) if traj_opt else None ) reward_path = outdir / "test_rewards.pkl" test_rewards: Dict[float, Tuple[np.ndarray, np.ndarray]] = load( reward_path, overwrite=overwrite ) if test_rewards is None: test_rewards = {} else: logging.info(f"Loading test rewards from {reward_path}") new_epsilons = set(epsilons) - test_rewards.keys() if len(new_epsilons) > 0: logging.info(f"Creating new test rewards for epsilons: {new_epsilons}") if (n_test_states is not None and n_test_states > 1) or len(new_epsilons) == 1: # Parallelize internally test_rewards.update( { epsilon: find_reward_boundary( true_reward=true_reward, traj_optimizer=traj_optimizer, n_rewards=n_rewards, use_equiv=use_equiv, epsilon=epsilon, n_test_states=n_test_states, max_attempts=max_attempts, outdir=outdir, n_gt_test_questions=n_gt_test_questions, overwrite=overwrite, parallel=parallel, )[:2] for epsilon in new_epsilons } ) else: for rewards, alignment, epsilon in parallel( delayed(find_reward_boundary)( true_reward=true_reward, traj_optimizer=traj_optimizer, n_rewards=n_rewards, use_equiv=use_equiv, epsilon=epsilon, n_test_states=n_test_states, max_attempts=max_attempts, n_gt_test_questions=n_gt_test_questions, outdir=outdir, overwrite=overwrite, parallel=None, ) for epsilon in new_epsilons ): test_rewards[epsilon] = (rewards, alignment) logging.info(f"Writing generated test rewards to {reward_path}") pkl.dump(test_rewards, open(reward_path, "wb")) return test_rewards def find_reward_boundary( true_reward: np.ndarray, traj_optimizer: Optional[TrajOptimizer], n_rewards: int, use_equiv: bool, epsilon: float, max_attempts: int, outdir: Path, parallel: Parallel, n_test_states: Optional[int] = None, n_gt_test_questions: Optional[int] = None, overwrite: bool = False, ) -> Tuple[np.ndarray, np.ndarray, float]: """ Finds a ballanced set of test rewards according to a critic and epsilon. """ env = LegacyEnv(reward=true_reward) # Don't parallelize here if we're only testing at one state logging.debug(f"# test states={n_test_states}") parallel = None if n_test_states is None or n_test_states <= 1 else parallel new_rewards = partial( make_gaussian_rewards, n_rewards=n_rewards, use_equiv=use_equiv, mean=true_reward ) get_alignment = partial( rewards_aligned, traj_optimizer=traj_optimizer, env=env, true_reward=true_reward, epsilon=epsilon, parallel=parallel, n_test_states=n_test_states, n_questions=n_gt_test_questions, ) search = TestRewardSearch.load(epsilon=epsilon, path=outdir / "search.pkl", overwrite=overwrite) if search is None: search = TestRewardSearch( epsilon, cov_search=GeometricSearch(start=1.0), max_attempts=max_attempts, outdir=outdir, new_rewards=new_rewards, get_alignment=get_alignment, ) else: search.new_rewards = new_rewards search.get_alignment = get_alignment best_test = search.run() return best_test.rewards, best_test.alignment, epsilon def rewards_aligned( traj_optimizer: Optional[TrajOptimizer], env: Env, true_reward: np.ndarray, test_rewards: np.ndarray, epsilon: float, parallel: Optional[Parallel] = None, n_test_states: Optional[int] = None, n_questions: int = 100000, use_equiv: bool = False, ) -> np.ndarray: """ Determines the epsilon-alignment of a set of test rewards relative to a critic and epsilon. """ # This test can produce both false positives and false negatives # This test is prone to false positives, but a negative is always a true negative gt_test = make_gt_test_align(test_rewards, n_questions, true_reward, epsilon, use_equiv) if traj_optimizer is not None: traj_opt_alignment = make_traj_opt_align( traj_optimizer, env, true_reward, test_rewards, epsilon, parallel, n_test_states ) # Start with traj opt alignment, then mask out all of the rewards that failed the gt test # x y z # 0 0 0 # 0 1 0 don't trust y when it says something is aligned if you failed the traj opt # 1 0 0 if y says it's misaligned, then it is # 1 1 1 # This is just the & function alignment = traj_opt_alignment & gt_test n_masked = np.sum(gt_test & np.logical_not(gt_test)) logging.info( f"Trajectory optimization labelling produced at least {n_masked} false positives" ) else: alignment = gt_test return alignment def make_gt_test_align( test_rewards: np.ndarray, n_questions: int, true_reward: np.ndarray, epsilon: float, use_equiv: bool = False, ) -> np.ndarray: env = Driver() trajs = make_random_questions(n_questions, env) _, normals = make_normals(trajs, env, use_equiv) value_diff = true_reward @ normals.T eps_questions = np.abs(value_diff) > epsilon normals = normals[eps_questions] gt_pref = value_diff[eps_questions] > 0 normals = orient_normals(normals, gt_pref, use_equiv) alignment = cast(np.ndarray, np.all(test_rewards @ normals.T > 0, axis=1)) assert alignment.shape == ( test_rewards.shape[0], ), f"alignment shape={alignment.shape} is not expected {test_rewards.shape[0]}" return alignment def make_traj_opt_align( traj_optimizer: TrajOptimizer, env: Env, true_reward: np.ndarray, test_rewards: np.ndarray, epsilon: float, parallel: Optional[Parallel] = None, n_test_states: Optional[int] = None, ) -> np.ndarray: state_shape = env.observation_space.sample().shape action_shape = env.action_space.sample().shape if n_test_states is not None: raw_states = np.array( [ flatten(env.observation_space, env.observation_space.sample()) for _ in range(n_test_states) ] ) else: n_test_states = 1 raw_states = np.array([env.state]) assert raw_states.shape == (n_test_states, *state_shape) opt_plans = make_plans( true_reward.reshape(1, 4), raw_states, traj_optimizer, parallel, action_shape, memorize=True, ) assert opt_plans.shape == ( 1, n_test_states, 50, *action_shape, ), f"opt_plans shape={opt_plans.shape} is not expected {(1,n_test_states,50,*action_shape)}" opt_values: np.ndarray = rollout_plans(env, opt_plans, raw_states) plans = make_plans(test_rewards, raw_states, traj_optimizer, parallel, action_shape) assert plans.shape == ( len(test_rewards), n_test_states, 50, *action_shape, ), f"plans shape={plans.shape} is not expected {(len(test_rewards),n_test_states,50,*action_shape)}" values = rollout_plans(env, plans, raw_states) assert values.shape == ( len(test_rewards), n_test_states, ), f"Values shape={values.shape} is not expected {(len(test_rewards), n_test_states)}" alignment = cast(np.ndarray, np.all(opt_values - values < epsilon, axis=1)) return alignment def rollout_plans(env: LegacyEnv, plans: np.ndarray, states: np.ndarray): returns =
np.empty((plans.shape[0], plans.shape[1]))
numpy.empty
""" Procedures for fitting marginal regression models to dependent data using Generalized Estimating Equations. References ---------- <NAME> and <NAME>. "Longitudinal data analysis using generalized linear models". Biometrika (1986) 73 (1): 13-22. <NAME> and <NAME>. "Longitudinal Data Analysis for Discrete and Continuous Outcomes". Biometrics Vol. 42, No. 1 (Mar., 1986), pp. 121-130 <NAME> and <NAME> (1990). "Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data", Biometrika, 77, 485-497. <NAME> and <NAME> (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf <NAME>, <NAME> (2001). A covariance estimator for GEE with improved small-sample properties. Biometrics. 2001 Mar;57(1):126-34. """ from statsmodels.compat.python import iterkeys, range, lrange, lzip, zip import numpy as np from scipy import stats import pandas as pd from statsmodels.tools.decorators import (cache_readonly, resettable_cache) import statsmodels.base.model as base from statsmodels.genmod import families from statsmodels.genmod import dependence_structures from statsmodels.genmod.dependence_structures import CovStruct import statsmodels.genmod.families.varfuncs as varfuncs from statsmodels.genmod.families.links import Link from statsmodels.genmod.families import Family from statsmodels.tools.sm_exceptions import (ConvergenceWarning, IterationLimitWarning) import warnings # Workaround for block_diag, not available until scipy version # 0.11. When the statsmodels scipy dependency moves to version 0.11, # we can remove this function and use: # from scipy.sparse import block_diag def block_diag(dblocks, format=None): from scipy.sparse import bmat n = len(dblocks) blocks = [] for i in range(n): b = [None,] * n b[i] = dblocks[i] blocks.append(b) return bmat(blocks, format) class ParameterConstraint(object): """ A class for managing linear equality constraints for a parameter vector. """ def __init__(self, lhs, rhs, exog): """ Parameters: ---------- lhs : ndarray A q x p matrix which is the left hand side of the constraint lhs * param = rhs. The number of constraints is q >= 1 and p is the dimension of the parameter vector. rhs : ndarray A 1-dimensional vector of length q which is the right hand side of the constraint equation. exog : ndarray The n x p exognenous data for the full model. """ # In case a row or column vector is passed (patsy linear # constraints passes a column vector). rhs = np.atleast_1d(rhs.squeeze()) if rhs.ndim > 1: raise ValueError("The right hand side of the constraint " "must be a vector.") if len(rhs) != lhs.shape[0]: raise ValueError("The number of rows of the left hand " "side constraint matrix L must equal " "the length of the right hand side " "constraint vector R.") self.lhs = lhs self.rhs = rhs # The columns of lhs0 are an orthogonal basis for the # orthogonal complement to row(lhs), the columns of lhs1 are # an orthogonal basis for row(lhs). The columns of lhsf = # [lhs0, lhs1] are mutually orthogonal. lhs_u, lhs_s, lhs_vt = np.linalg.svd(lhs.T, full_matrices=1) self.lhs0 = lhs_u[:, len(lhs_s):] self.lhs1 = lhs_u[:, 0:len(lhs_s)] self.lhsf = np.hstack((self.lhs0, self.lhs1)) # param0 is one solution to the underdetermined system # L * param = R. self.param0 = np.dot(self.lhs1, np.dot(lhs_vt, self.rhs) / lhs_s) self._offset_increment = np.dot(exog, self.param0) self.orig_exog = exog self.exog_fulltrans = np.dot(exog, self.lhsf) def offset_increment(self): """ Returns a vector that should be added to the offset vector to accommodate the constraint. Parameters: ----------- exog : array-like The exogeneous data for the model. """ return self._offset_increment def reduced_exog(self): """ Returns a linearly transformed exog matrix whose columns span the constrained model space. Parameters: ----------- exog : array-like The exogeneous data for the model. """ return self.exog_fulltrans[:, 0:self.lhs0.shape[1]] def restore_exog(self): """ Returns the full exog matrix before it was reduced to satisfy the constraint. """ return self.orig_exog def unpack_param(self, params): """ Converts the parameter vector `params` from reduced to full coordinates. """ return self.param0 + np.dot(self.lhs0, params) def unpack_cov(self, bcov): """ Converts the covariance matrix `bcov` from reduced to full coordinates. """ return np.dot(self.lhs0, np.dot(bcov, self.lhs0.T)) class GEE(base.Model): __doc__ = """ Generalized Estimating Equations Models GEE estimates Generalized Linear Models when the data have a grouped structure, and the observations are possibly correlated within groups but not between groups. Parameters ---------- endog : array-like 1d array of endogenous response values. exog : array-like A nobs x k array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user. See `statsmodels.tools.add_constant`. groups : array-like A 1d array of length `nobs` containing the group labels. time : array-like A 2d array of time (or other index) values, used by some dependence structures to define similarity relationships among observations within a cluster. family : family class instance The default is Gaussian. To specify the binomial distribution family = sm.family.Binomial(). Each family can take a link instance as an argument. See statsmodels.family.family for more information. cov_struct : CovStruct class instance The default is Independence. To specify an exchangeable structure use cov_struct = Exchangeable(). See statsmodels.genmod.dependence_structures.CovStruct for more information. offset : array-like An offset to be included in the fit. If provided, must be an array whose length is the number of rows in exog. dep_data : array-like Additional data passed to the dependence structure. constraint : (ndarray, ndarray) If provided, the constraint is a tuple (L, R) such that the model parameters are estimated under the constraint L * param = R, where L is a q x p matrix and R is a q-dimensional vector. If constraint is provided, a score test is performed to compare the constrained model to the unconstrained model. %(extra_params)s See Also -------- statsmodels.families.* Notes ----- Only the following combinations make sense for family and link :: + ident log logit probit cloglog pow opow nbinom loglog logc Gaussian | x x x inv Gaussian | x x x binomial | x x x x x x x x x Poission | x x x neg binomial | x x x x gamma | x x x Not all of these link functions are currently available. Endog and exog are references so that if the data they refer to are already arrays and these arrays are changed, endog and exog will change. The "robust" covariance type is the standard "sandwich estimator" (e.g. Liang and Zeger (1986)). It is the default here and in most other packages. The "naive" estimator gives smaller standard errors, but is only correct if the working correlation structure is correctly specified. The "bias reduced" estimator of Mancl and DeRouen (Biometrics, 2001) reduces the downard bias of the robust estimator. """ % {'extra_params': base._missing_param_doc} fit_history = None cached_means = None def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, dep_data=None, constraint=None): self.ordinal = False self.nominal = False self._reset(endog, exog, groups, time=time, family=family, cov_struct=cov_struct, missing=missing, offset=offset, dep_data=dep_data, constraint=constraint) # All the actions of __init__ should go here def _reset(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, dep_data=None, constraint=None): self.missing = missing self.dep_data = dep_data self.constraint = constraint groups = np.array(groups) # in case groups is pandas # Pass groups, time, offset, and dep_data so they are # processed for missing data along with endog and exog. # Calling super creates self.exog, self.endog, etc. as # ndarrays and the original exog, endog, etc. are # self.data.endog, etc. super(GEE, self).__init__(endog, exog, groups=groups, time=time, offset=offset, dep_data=dep_data, missing=missing) # Handle the family argument if family is None: family = families.Gaussian() else: if not issubclass(family.__class__, families.Family): raise ValueError("GEE: `family` must be a genmod " "family instance") self.family = family # Handle the cov_struct argument if cov_struct is None: cov_struct = dependence_structures.Independence() else: if not issubclass(cov_struct.__class__, CovStruct): raise ValueError("GEE: `cov_struct` must be a genmod " "cov_struct instance") self.cov_struct = cov_struct if offset is None: self.offset = np.zeros(self.exog.shape[0], dtype=np.float64) else: self.offset = offset # Handle the constraint self.constraint = None if constraint is not None: if len(constraint) != 2: raise ValueError("GEE: `constraint` must be a 2-tuple.") if constraint[0].shape[1] != self.exog.shape[1]: raise ValueError("GEE: the left hand side of the " "constraint must have the same number of columns " "as the exog matrix.") self.constraint = ParameterConstraint(constraint[0], constraint[1], self.exog) self.offset += self.constraint.offset_increment() self.exog = self.constraint.reduced_exog() # Convert the data to the internal representation, which is a # list of arrays, corresponding to the clusters. group_labels = sorted(set(groups)) group_indices = dict((s, []) for s in group_labels) for i in range(len(self.endog)): group_indices[groups[i]].append(i) for k in iterkeys(group_indices): group_indices[k] = np.asarray(group_indices[k]) self.group_indices = group_indices self.group_labels = group_labels self.endog_li = self.cluster_list(self.endog) self.exog_li = self.cluster_list(self.exog) self.num_group = len(self.endog_li) # Time defaults to a 1d grid with equal spacing if self.time is not None: self.time = np.asarray(self.time, np.float64) if self.time.ndim == 1: self.time = self.time[:,None] self.time_li = self.cluster_list(self.time) else: self.time_li = \ [np.arange(len(y), dtype=np.float64)[:, None] for y in self.endog_li] self.time = np.concatenate(self.time_li) self.offset_li = self.cluster_list(self.offset) if constraint is not None: self.constraint.exog_fulltrans_li = \ self.cluster_list(self.constraint.exog_fulltrans) self.family = family self.cov_struct.initialize(self) # Total sample size group_ns = [len(y) for y in self.endog_li] self.nobs = sum(group_ns) # mean_deriv is the derivative of E[endog|exog] with respect # to params try: # This custom mean_deriv is currently only used for the # multinomial logit model self.mean_deriv = self.family.link.mean_deriv except AttributeError: # Otherwise it can be obtained easily from inverse_deriv mean_deriv_lpr = self.family.link.inverse_deriv def mean_deriv(exog, lpr): dmat = exog * mean_deriv_lpr(lpr)[:, None] return dmat self.mean_deriv = mean_deriv # mean_deriv_exog is the derivative of E[endog|exog] with # respect to exog try: # This custom mean_deriv_exog is currently only used for # the multinomial logit model self.mean_deriv_exog = self.family.link.mean_deriv_exog except AttributeError: # Otherwise it can be obtained easily from inverse_deriv mean_deriv_lpr = self.family.link.inverse_deriv def mean_deriv_exog(exog, params): lpr = np.dot(exog, params) dmat = np.outer(mean_deriv_lpr(lpr), params) return dmat self.mean_deriv_exog = mean_deriv_exog # Skip the covariance updates if all groups have a single # observation (reduces to fitting a GLM). self._do_cov_update = True if max([len(x) for x in self.endog_li]) == 1: self._do_cov_update = False def cluster_list(self, array): """ Returns `array` split into subarrays corresponding to the cluster structure. """ if array.ndim == 1: return [np.array(array[self.group_indices[k]]) for k in self.group_labels] else: return [np.array(array[self.group_indices[k], :]) for k in self.group_labels] def estimate_scale(self): """ Returns an estimate of the scale parameter `phi` at the current parameter value. """ endog = self.endog_li exog = self.exog_li offset = self.offset_li cached_means = self.cached_means nobs = self.nobs exog_dim = exog[0].shape[1] varfunc = self.family.variance scale = 0. for i in range(self.num_group): if len(endog[i]) == 0: continue expval, _ = cached_means[i] sdev = np.sqrt(varfunc(expval)) resid = (endog[i] - offset[i] - expval) / sdev scale += np.sum(resid**2) scale /= (nobs - exog_dim) return scale def _update_mean_params(self): """ Returns ------- update : array-like The update vector such that params + update is the next iterate when solving the score equations. score : array-like The current value of the score equations, not incorporating the scale parameter. If desired, multiply this vector by the scale parameter to incorporate the scale. """ endog = self.endog_li exog = self.exog_li cached_means = self.cached_means varfunc = self.family.variance bmat, score = 0, 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve(expval, i, sdev, (dmat, resid)) if rslt is None: return None, None vinv_d, vinv_resid = tuple(rslt) bmat += np.dot(dmat.T, vinv_d) score += np.dot(dmat.T, vinv_resid) update = np.linalg.solve(bmat, score) return update, score def update_cached_means(self, mean_params): """ cached_means should always contain the most recent calculation of the group-wise mean vectors. This function should be called every time the regression parameters are changed, to keep the cached means up to date. """ endog = self.endog_li exog = self.exog_li offset = self.offset_li linkinv = self.family.link.inverse self.cached_means = [] for i in range(self.num_group): if len(endog[i]) == 0: continue lpr = offset[i] + np.dot(exog[i], mean_params) expval = linkinv(lpr) self.cached_means.append((expval, lpr)) def _covmat(self): """ Returns the sampling covariance matrix of the regression parameters and related quantities. Returns ------- robust_covariance : array-like The robust, or sandwich estimate of the covariance, which is meaningful even if the working covariance structure is incorrectly specified. naive_covariance : array-like The model-based estimate of the covariance, which is meaningful if the covariance structure is correctly specified. robust_covariance_bc : array-like The "bias corrected" robust covariance of Mancl and DeRouen. cmat : array-like The center matrix of the sandwich expression, used in obtaining score test results. """ endog = self.endog_li exog = self.exog_li varfunc = self.family.variance cached_means = self.cached_means # Calculate the naive (model-based) and robust (sandwich) # covariances. bmat, cmat = 0, 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve(expval, i, sdev, (dmat, resid)) if rslt is None: return None, None, None, None vinv_d, vinv_resid = tuple(rslt) bmat += np.dot(dmat.T, vinv_d) dvinv_resid = np.dot(dmat.T, vinv_resid) cmat += np.outer(dvinv_resid, dvinv_resid) scale = self.estimate_scale() bmati = np.linalg.inv(bmat) naive_covariance = bmati * scale robust_covariance = np.dot(bmati, np.dot(cmat, bmati)) # Calculate the bias-corrected sandwich estimate of Mancl and # DeRouen (requires naive_covariance so cannot be calculated # in the previous loop). bcm = 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve(expval, i, sdev, (dmat,)) if rslt is None: return None, None, None, None vinv_d = rslt[0] vinv_d /= scale hmat = np.dot(vinv_d, naive_covariance) hmat = np.dot(hmat, dmat.T).T aresid = np.linalg.solve(np.eye(len(resid)) - hmat, resid) rslt = self.cov_struct.covariance_matrix_solve(expval, i, sdev, (aresid,)) if rslt is None: return None, None, None, None srt = rslt[0] srt = np.dot(dmat.T, srt) / scale bcm += np.outer(srt, srt) robust_covariance_bc = np.dot(naive_covariance, np.dot(bcm, naive_covariance)) return (robust_covariance, naive_covariance, robust_covariance_bc, cmat) def predict(self, params, exog=None, offset=None, linear=False): """ Return predicted values for a design matrix Parameters ---------- params : array-like Parameters / coefficients of a GLM. exog : array-like, optional Design / exogenous data. If exog is None, model exog is used. offset : array-like, optional Offset for exog if provided. If offset is None, model offset is used. linear : bool If True, returns the linear predicted values. If False, returns the value of the inverse of the model's link function at the linear predicted values. Returns ------- An array of fitted values """ if exog is None: exog = self.exog offset = self.offset else: if offset is None: offset = 0 fitted = offset + np.dot(exog, params) if not linear: fitted = self.family.link(fitted) return fitted def _starting_params(self): """ Returns a starting value for the mean parameters and a list of variable names. """ from statsmodels.genmod.dependence_structures import ( GlobalOddsRatio, Independence) dm = self.exog.shape[1] if isinstance(self.cov_struct, GlobalOddsRatio): ind = Independence() md = GEE(self.endog, self.exog, self.groups, time=self.time, family=self.family, offset=self.offset) mdf = md.fit() return mdf.params else: return np.zeros(dm, dtype=np.float64) def fit(self, maxiter=60, ctol=1e-6, start_params=None, params_niter=1, first_dep_update=0, covariance_type='robust'): """ Fits a GEE model. Parameters ---------- maxiter : integer The maximum number of iterations ctol : float The convergence criterion for stopping the Gauss-Seidel iterations start_params : array-like A vector of starting values for the regression coefficients. If None, a default is chosen. params_niter : integer The number of Gauss-Seidel updates of the mean structure parameters that take place prior to each update of the dependence structure. first_dep_update : integer No dependence structure updates occur before this iteration number. covariance_type : string One of "robust", "naive", or "bias_reduced". Returns ------- An instance of the GEEResults class Notes ----- If convergence difficulties occur, increase the values of `first_dep_update` and/or `params_niter`. Setting `first_dep_update` to a greater value (e.g. ~10-20) causes the algorithm to move close to the GLM solution before attempting to identify the dependence structure. For the Gaussian family, there is no benefit to setting `params_niter` to a value greater than 1, since the mean structure parameters converge in one step. """ self.fit_history = {'params': [], 'score': [], 'dep_params': []} if start_params is None: mean_params = self._starting_params() else: mean_params = start_params.copy() self.update_cached_means(mean_params) del_params = -1. num_assoc_updates = 0 for itr in range(maxiter): update, score = self._update_mean_params() if update is None: warnings.warn("Singular matrix encountered in GEE update", ConvergenceWarning) break mean_params += update self.update_cached_means(mean_params) # L2 norm of the change in mean structure parameters at # this iteration. del_params = np.sqrt(np.sum(score**2)) self.fit_history['params'].append(mean_params.copy()) self.fit_history['score'].append(score) self.fit_history['dep_params'].append( self.cov_struct.dep_params) # Don't exit until the association parameters have been # updated at least once. if del_params < ctol and num_assoc_updates > 0: break if self._do_cov_update and (itr % params_niter) == 0\ and (itr >= first_dep_update): self._update_assoc(mean_params) num_assoc_updates += 1 if del_params >= ctol: warnings.warn("Iteration limit reached prior to convergence", IterationLimitWarning) if mean_params is None: warnings.warn("Unable to estimate GEE parameters.", ConvergenceWarning) return None bcov, ncov, bc_cov, _ = self._covmat() if bcov is None: warnings.warn("Estimated covariance structure for GEE " "estimates is singular", ConvergenceWarning) return None if self.constraint is not None: mean_params, bcov = self._handle_constraint(mean_params, bcov) if mean_params is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None scale = self.estimate_scale() # The superclass constructor will multiply the covariance # matrix argument bcov by scale, which we don't want, so we # divide bcov by the scale parameter here results = GEEResults(self, mean_params, bcov / scale, scale) results.covariance_type = covariance_type results.fit_history = self.fit_history results.naive_covariance = ncov results.robust_covariance_bc = bc_cov results.score_norm = del_params results.converged = (del_params < ctol) results.cov_struct = self.cov_struct return results def _handle_constraint(self, mean_params, bcov): """ Expand the parameter estimate `mean_params` and covariance matrix `bcov` to the coordinate system of the unconstrained model. Parameters: ----------- mean_params : array-like A parameter vector estimate for the reduced model. bcov : array-like The covariance matrix of mean_params. Returns: -------- mean_params : array-like The input parameter vector mean_params, expanded to the coordinate system of the full model bcov : array-like The input covariance matrix bcov, expanded to the coordinate system of the full model """ # The number of variables in the full model red_p = len(mean_params) full_p = self.constraint.lhs.shape[1] mean_params0 = np.r_[mean_params, np.zeros(full_p - red_p)] # Get the score vector under the full model. save_exog_li = self.exog_li self.exog_li = self.constraint.exog_fulltrans_li import copy save_cached_means = copy.deepcopy(self.cached_means) self.update_cached_means(mean_params0) _, score = self._update_mean_params() if score is None: warnings.warn("Singular matrix encountered in GEE score test", ConvergenceWarning) return None, None _, ncov1, _, cmat = self._covmat() scale = self.estimate_scale() cmat = cmat / scale**2 score2 = score[len(mean_params):] * scale amat = np.linalg.inv(ncov1) bmat_11 = cmat[0:red_p, 0:red_p] bmat_22 = cmat[red_p:, red_p:] bmat_12 = cmat[0:red_p, red_p:] amat_11 = amat[0:red_p, 0:red_p] amat_12 = amat[0:red_p, red_p:] score_cov = bmat_22 - \ np.dot(amat_12.T, np.linalg.solve(amat_11, bmat_12)) score_cov -= np.dot(bmat_12.T, np.linalg.solve(amat_11, amat_12)) score_cov += np.dot(amat_12.T, np.dot(np.linalg.solve(amat_11, bmat_11), np.linalg.solve(amat_11, amat_12))) from scipy.stats.distributions import chi2 score_statistic = np.dot(score2, np.linalg.solve(score_cov, score2)) score_df = len(score2) score_pvalue = 1 - chi2.cdf(score_statistic, score_df) self.score_test_results = {"statistic": score_statistic, "df": score_df, "p-value": score_pvalue} mean_params = self.constraint.unpack_param(mean_params) bcov = self.constraint.unpack_cov(bcov) self.exog_li = save_exog_li self.cached_means = save_cached_means self.exog = self.constraint.restore_exog() return mean_params, bcov def _update_assoc(self, params): """ Update the association parameters """ self.cov_struct.update(params) def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects returns dF(XB) / dX where F(.) is the predicted probabilities transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ #note, this form should be appropriate for ## group 1 probit, logit, logistic, cloglog, heckprob, xtprobit if exog is None: exog = self.exog margeff = self.mean_deriv_exog(exog, params) # lpr = np.dot(exog, params) # margeff = (self.mean_deriv(exog, lpr) / exog) * params # margeff = np.dot(self.pdf(np.dot(exog, params))[:, None], # params[None,:]) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:, None] if count_idx is not None: from statsmodels.discrete.discrete_margins import ( _get_count_effects) margeff = _get_count_effects(margeff, exog, count_idx, transform, self, params) if dummy_idx is not None: from statsmodels.discrete.discrete_margins import ( _get_dummy_effects) margeff = _get_dummy_effects(margeff, exog, dummy_idx, transform, self, params) return margeff def setup_ordinal(self): """ Restructure ordinal data as binary indicators so that they can be analysed using Generalized Estimating Equations. """ self.endog_orig = self.endog.copy() self.exog_orig = self.exog.copy() self.groups_orig = self.groups.copy() self.exog_names_orig = list(self.exog_names) # The unique outcomes, except the greatest one. self.endog_values =
np.unique(self.endog)
numpy.unique
import os, sys import numpy as np import pandas as pd from datetime import datetime as dt,timedelta import requests import urllib import matplotlib.dates as mdates import matplotlib.colors as mcolors import matplotlib as mlib import warnings def find_var(request,thresh): r""" Given a request and threshold, returns the variable for plotting. Referenced from ``TrackDataset.gridded_stats()`` and ``TrackPlot.plot_gridded()``. Internal function. Parameters ---------- request : str Descriptor of the requested plot. Detailed more in the ``TrackDataset.gridded_dataset()`` function. thresh : dict Dictionary containing thresholds for the plot. Detailed more in the ``TrackDataset.gridded_dataset()`` function. Returns ------- thresh : dict Returns the thresh dictionary, modified depending on the request. varname : str String denoting the variable for plotting. """ #Convert command to lowercase request = request.lower() #Count of number of storms if request.find('count') >= 0 or request.find('num') >= 0: return thresh, 'date' #not sure what date stands for #Sustained wind, or change in wind speed if request.find('wind') >= 0 or request.find('vmax') >= 0: #If change in wind, determine time interval if request.find('change') >= 0: try: thresh['dt_window'] = int(''.join([c for i,c in enumerate(request) \ if c.isdigit() and i > request.find('hour')-4])) except: raise RuntimeError("Error: specify time interval (hours)") return thresh,'dvmax_dt' #Otherwise, sustained wind else: return thresh,'vmax' #Minimum MSLP, or change in MSLP elif request.find('pressure') >= 0 or request.find('slp') >= 0: #If change in MSLP, determine time interval if request.find('change') >= 0: try: thresh['dt_window'] = int(''.join([c for i,c in enumerate(request) \ if c.isdigit() and i > request.find('hour')-4])) except: raise RuntimeError("Error: specify time interval (hours)") return thresh,'dmslp_dt' #Otherwise, minimum MSLP else: return thresh,'mslp' #Storm motion or heading (vector) elif request.find('heading') >= 0 or request.find('movement') >= 0 or request.find('motion') >= 0: return thresh,('dx_dt','dy_dt') #Otherwise, error else: msg = "Error: Could not decipher variable. Please refer to documentation for examples on how to phrase the \"request\" string." raise RuntimeError(msg) def find_func(request,thresh): r""" Given a request and threshold, returns the requested function. Referenced from ``TrackDataset.gridded_stats()``. Internal function. Parameters ---------- request : str Descriptor of the requested plot. Detailed more in the ``TrackDataset.gridded_dataset()`` function. thresh : dict Dictionary containing thresholds for the plot. Detailed more in the ``TrackDataset.gridded_dataset()`` function. Returns ------- thresh : dict Returns the thresh dictionary, modified depending on the request. func : lambda Returns a function to apply to the data. """ #Convert command to lowercase request = request.lower() #Numpy maximum function if request.find('max') == 0: return thresh, lambda x: np.nanmax(x) #Numpy minimum function if request.find('min') == 0: return thresh, lambda x: np.nanmin(x) #Numpy average function elif request.find('mean') >= 0 or request.find('average') >= 0 or request.find('avg') >= 0: thresh['sample_min'] = max([5,thresh['sample_min']]) #Ensure sample minimum is at least 5 per gridpoint return thresh, lambda x: np.nanmean(x) #Numpy percentile function elif request.find('percentile') >= 0: ptile = int(''.join([c for i,c in enumerate(request) if c.isdigit() and i < request.find('percentile')])) thresh['sample_min'] = max([5,thresh['sample_min']]) #Ensure sample minimum is at least 5 per gridpoint return thresh, lambda x: np.nanpercentile(x,ptile) #Count function elif request.find('count') >= 0 or request.find('num') >= 0: return thresh, lambda x: len(x) #Otherwise, function cannot be identified else: msg = "Cannot decipher the function. Please refer to documentation for examples on how to phrase the \"request\" string." raise RuntimeError(msg) def construct_title(thresh): r""" Construct a plot title for ``TrackDataset.gridded_stats()``. Internal function. Parameters ---------- thresh : dict Dictionary containing thresholds for the plot. Detailed more in the ``TrackDataset.gridded_dataset()`` function. Returns ------- thresh : dict Returns the thresh dictionary, modified depending on the threshold(s) specified. plot_subtitle : str String denoting the title for the plot. """ #List containing entry for plot title, later merged into a string plot_subtitle = [] #Symbols for greater/less than or equal to signs gteq = u"\u2265" lteq = u"\u2264" #Add sample minimum if not np.isnan(thresh['sample_min']): plot_subtitle.append(f"{gteq} {thresh['sample_min']} storms/bin") else: thresh['sample_min'] = 0 #Add minimum wind speed if not
np.isnan(thresh['v_min'])
numpy.isnan
import sklearn as sk import numpy as np import h5py from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.model_selection import GridSearchCV # import xgboost as xgb # from xgboost.sklearn import XGBClassifier from sklearn.metrics import classification_report from sklearn.svm import SVC from sklearn.metrics import f1_score, make_scorer, precision_score import os import sys sys.path.insert(1, os.path.join(sys.path[0], '../utils')) from utilities import calculate_accuracy, calculate_confusion_matrix, plot_confusion_matrix2, print_accuracy import config as cfg def prepare_data(datatype): workspace = os.path.join(os.path.expanduser('~'), "Downloads/dcase2018_task1-master") truncation_dir = os.path.join(workspace, 'features', 'truncation', 'holdout_fold={}'.format(1)) if datatype == 'train': hf = h5py.File(os.path.join(truncation_dir, 'train_hpss_l+r_9100.h5'), 'r') features = hf['feature'][:] targets = hf['target'][:] return features, np.argmax(targets, axis=-1) elif datatype == 'validate': hf = h5py.File(os.path.join(truncation_dir, 'validate_hpss_l+r_9100.h5'), 'r') features = hf['feature'][:] targets = hf['target'][:] return features, np.argmax(targets, axis=-1) def model_validate(classifier, class_wise_accuracy=False, plot_confusion_matrix=False): x_val, y_val = prepare_data(datatype='validate') if class_wise_accuracy: predict = classifier.predict(x_val) if plot_confusion_matrix: cm = calculate_confusion_matrix(y_val, predict, 10) plot_confusion_matrix2(cm, "svm", cfg.labels) class_wise_accuracy = calculate_accuracy(y_val, predict, 10) print_accuracy(class_wise_accuracy, cfg.labels) score =
np.mean(class_wise_accuracy)
numpy.mean
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ | Featurizers for pretrain-gnn. | Adapted from https://github.com/snap-stanford/pretrain-gnns/tree/master/chem/utils.py """ import numpy as np import networkx as nx import pgl from rdkit.Chem import AllChem from pahelix.featurizers.featurizer import Featurizer from pahelix.utils.compound_tools import mol_to_graph_data __all__ = [ 'PreGNNAttrMaskFeaturizer', 'PreGNNSupervisedFeaturizer', 'PreGNNContextPredFeaturizer', ] class PreGNNAttrMaskFeaturizer(Featurizer): """Featurizer for attribute mask model of pretrain gnns""" def __init__(self, graph_wrapper, atom_type_num=None, mask_ratio=None): super(PreGNNAttrMaskFeaturizer, self).__init__() self.graph_wrapper = graph_wrapper self.atom_type_num = atom_type_num self.mask_ratio = mask_ratio def gen_features(self, raw_data): """Convert smiles into graph data. Returns: data(dict): a dict of numpy ndarray consists of graph features. """ smiles = raw_data['smiles'] mol = AllChem.MolFromSmiles(smiles) if mol is None: return None data = mol_to_graph_data(mol) data['smiles'] = smiles return data def collate_fn(self, batch_data_list): """Aggregate a list of graph data into a batch data""" g_list = [] for data in batch_data_list: g = pgl.graph.Graph(num_nodes = len(data['atom_type']), edges = data['edges'], node_feat = { 'atom_type': data['atom_type'].reshape([-1, 1]), 'chirality_tag': data['chirality_tag'].reshape([-1, 1]), }, edge_feat ={ 'bond_type': data['bond_type'].reshape([-1, 1]), 'bond_direction': data['bond_direction'].reshape([-1, 1]), }) g_list.append(g) join_graph = pgl.graph.MultiGraph(g_list) ### mask atom num_node = len(join_graph.node_feat['atom_type']) masked_size = int(num_node * self.mask_ratio) masked_node_indice = np.random.choice(range(num_node), size=masked_size, replace=False) masked_node_labels = join_graph.node_feat['atom_type'][masked_node_indice] join_graph.node_feat['atom_type'][masked_node_indice] = self.atom_type_num join_graph.node_feat['chirality_tag'][masked_node_indice] = 0 feed_dict = self.graph_wrapper.to_feed(join_graph) feed_dict['masked_node_indice'] = np.reshape(masked_node_indice, [-1, 1]).astype('int64') feed_dict['masked_node_label'] = np.reshape(masked_node_labels, [-1, 1]).astype('int64') return feed_dict class PreGNNSupervisedFeaturizer(Featurizer): """Featurizer for supervised model of pretrain gnns""" def __init__(self, graph_wrapper): super(PreGNNSupervisedFeaturizer, self).__init__() self.graph_wrapper = graph_wrapper def gen_features(self, raw_data): """Convert smiles into graph data. Returns: data(dict): a dict of numpy ndarray consists of graph features. """ smiles, label = raw_data['smiles'], raw_data['label'] mol = AllChem.MolFromSmiles(smiles) if mol is None: return None data = mol_to_graph_data(mol) data['label'] = label.reshape([-1]) data['smiles'] = smiles return data def collate_fn(self, batch_data_list): """Aggregate a list of graph data into a batch data""" g_list = [] label_list = [] for data in batch_data_list: g = pgl.graph.Graph(num_nodes = len(data['atom_type']), edges = data['edges'], node_feat = { 'atom_type': data['atom_type'].reshape([-1, 1]), 'chirality_tag': data['chirality_tag'].reshape([-1, 1]), }, edge_feat ={ 'bond_type': data['bond_type'].reshape([-1, 1]), 'bond_direction': data['bond_direction'].reshape([-1, 1]), }) g_list.append(g) label_list.append(data['label']) join_graph = pgl.graph.MultiGraph(g_list) feed_dict = self.graph_wrapper.to_feed(join_graph) batch_label = np.array(label_list) batch_label = ((batch_label + 1.0) / 2).astype('float32') batch_valid = (batch_label != 0.5).astype("float32") feed_dict['supervised_label'] = batch_label feed_dict['valid'] = batch_valid return feed_dict def reset_idxes(G): """ Resets node indices such that they are numbered from 0 to num_nodes - 1 Args: G: network x object. Returns: new_G: copy of G with relabelled node indices. mapping: """ mapping = {} for new_idx, old_idx in enumerate(G.nodes()): mapping[old_idx] = new_idx new_G = nx.relabel_nodes(G, mapping, copy=True) return new_G, mapping def graph_data_obj_to_nx_simple(data): """ Converts graph data object into a network x data object. NB: Uses simplified atom and bond features, and represent as indices. NB: possible issues with recapitulating relative stereochemistry since the edges in the nx object are unordered. Args: data(dict): a dict of numpy ndarray consists of graph features. Returns: G: a network x object """ G = nx.Graph() # atoms # atom_features = data['node_feat'] num_atoms = data['atom_type'].shape[0] for i in range(num_atoms): # atomic_num_idx, chirality_tag_idx = atom_features[i] G.add_node(i, atom_num_idx=data['atom_type'][i], chirality_tag_idx=data['chirality_tag'][i]) # bonds edge_index = data['edges'] # edge_attr = data['edge_feat'] num_bonds = edge_index.shape[0] for j in range(0, num_bonds, 2): begin_idx = int(edge_index[j, 0]) end_idx = int(edge_index[j, 1]) # bond_type_idx, bond_dir_idx = edge_attr[j] if not G.has_edge(begin_idx, end_idx): G.add_edge(begin_idx, end_idx, bond_type_idx=data['bond_type'][j], bond_dir_idx=data['bond_direction'][j]) return G def nx_to_graph_data_obj_simple(G): """ Converts nx graph to graph data. Assume node indices are numbered from 0 to num_nodes - 1. NB: Uses simplified atom and bond features, and represent as indices. NB: possible issues with recapitulating relative stereochemistry since the edges in the nx object are unordered. Args: G: nx graph object Returns: data(dict): a dict of numpy ndarray consists of graph features. """ # atoms atom_types = [] chirality_tags = [] for _, node in G.nodes(data=True): atom_types.append(node['atom_num_idx']) chirality_tags.append(node['chirality_tag_idx']) atom_types = np.array(atom_types) chirality_tags = np.array(chirality_tags) # bonds # num_bond_features = 2 # bond type, bond direction if len(G.edges()) > 0: # mol has bonds edges = [] bond_types = [] bond_directions = [] for i, j, edge in G.edges(data=True): # edge_feature = [edge['bond_type_idx'], edge['bond_dir_idx']] edges.append((i, j)) bond_types.append(edge['bond_type_idx']) bond_directions.append(edge['bond_dir_idx']) edges.append((j, i)) bond_types.append(edge['bond_type_idx']) bond_directions.append(edge['bond_dir_idx']) edges = np.array(edges) bond_types = np.array(bond_types) bond_directions = np.array(bond_directions) else: # mol has no bonds edges = np.zeros((0, 2)).astype("int") bond_types =
np.zeros((0,))
numpy.zeros
import numpy as np import pandas as pd def batch_df2batch(df, evaluate_ids=(), n_obs=-1, tform=np.eye(3), is_vehicles_evaluated=False): """ Convert dataframe to SGAN input :param df: :param evaluate_ids: :param n_obs: number of timesteps observed :param tform: :param is_vehicles_evaluated: :return: """ if is_vehicles_evaluated: agent_ids = np.unique(df['agent_id']) else: agent_ids = np.unique(df[df['agent_type'] == 0]['agent_id']) # peds only # input transform df = tform_df(df, tform) # assume min t is the start t_inds = np.unique(np.sort(df['t'])) t0 = t_inds[0] skip = t_inds[1] - t_inds[0] abs_xy = np.zeros((n_obs, agent_ids.size, 2), dtype=np.float32) rel_xy = np.zeros_like(abs_xy) for i, agent_id in enumerate(agent_ids): for step, t in enumerate(range(t0, t0+n_obs*skip, skip)): xy = df[(df['agent_id'] == agent_id) & (df['t'] == t)][['x', 'y']] if xy.size > 0: abs_xy[step, i, :] = xy.values[0] else: abs_xy[step, i, :] = np.nan # for relative, 1st entry is 0,0, rest are the differences rel_xy[1:, i, :] = abs_xy[1:, i, :] - abs_xy[:-1, i, :] # handle observations w/zeros abs_xy[np.isnan(abs_xy)] = 0. rel_xy[np.isnan(rel_xy)] = 0. seq_start_end = [(0, agent_ids.size)] return abs_xy, rel_xy, seq_start_end def raw_pred2df(pred_list, evaluate_ids, evaluate_inds, tform=np.eye(3)): """ :param pred_list: [i] = n_preds, n_peds, 2 | list of sampled predictions - n_preds = number of timesteps predicted into future :param evaluate_ids: list of agent ids :param evaluate_inds: [i] = index of agent_id=evaluate_ids[i] in prediction :param tform: (3,3) | transformation matrix :return: """ merged_peds = np.stack(pred_list, axis=-1) # (n_preds, n_peds, 2, n_samples) n_preds = merged_peds.shape[0] n_samples = merged_peds.shape[3] cols = ['t', 'agent_id', 'x', 'y', 'sample_id', 'p'] INT_COLUMNS = [cols[i] for i in [0, 1, -2]] data = [] for ind, id in zip(evaluate_inds, evaluate_ids): for t in range(n_preds): z =
np.zeros((n_samples, 1))
numpy.zeros
""" Mnist Main agent, as mentioned in the tutorial """ import numpy as np from tqdm import tqdm import shutil import random import torch from torch import nn from torch.backends import cudnn import torch.optim as optim from agents.base import BaseAgent from graphs.models.custom_unet import EEG_CNN, EEG_CNN_2, EEG_CNN_3, EEG_CNN_4, EEG_CNN_5, EEG_CNN_6, EEG_UCnet_1, EEG_UCnet_2 from utils.misc import print_cuda_statistics import copy import time from sklearn.metrics import f1_score, cohen_kappa_score, roc_auc_score, confusion_matrix import matplotlib.pyplot as plt from datasets.sleepset import SleepDataLoader # from pynvml import * # from utils.lr_finders.lr_finder_eeg import LRFinder cudnn.benchmark = True class Sleep_Agent_Init_Train_EEG_UC(BaseAgent): def __init__(self, config): super().__init__(config) torch.backends.cudnn.enabled = False torch.manual_seed(self.config.seed) torch.cuda.manual_seed(self.config.seed) torch.cuda.manual_seed_all(self.config.seed) # if you are using multi-GPU. np.random.seed(self.config.seed) # Numpy module. random.seed(self.config.seed) # Python random module. torch.manual_seed(self.config.seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True self.data_loader = SleepDataLoader(config=config) # self.model = EEG_Unet_1(1,1) self.model = EEG_UCnet_2() self.optimizer = optim.Adam(self.model.parameters(), lr=self.config.learning_rate, betas=(self.config.beta1, self.config.beta2), eps = 1e-08, weight_decay=self.config.weight_decay) # self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, self.config.max_epoch) self.scheduler = optim.lr_scheduler.CyclicLR(self.optimizer, base_lr=self.config.learning_rate, max_lr=self.config.max_lr, cycle_momentum=False) # self.weights = torch.from_numpy(self.data_loader.weights).float() # initialize counter self.weights = torch.from_numpy(self.data_loader.weights).float() print("Available cuda devices: {}, current device:{}".format(torch. cuda. device_count(),torch.cuda.current_device())) # nvmlInit() # for i in self.config.gpu_device: # h = nvmlDeviceGetHandleByIndex(i) # info = nvmlDeviceGetMemoryInfo(h) # print(f'total : {info.total/(1024*1024)}') # print(f'free : {info.free/(1024*1024)}') # print(f'used : {info.used/(1024*1024)}') torch.cuda.manual_seed(self.config.seed) # self.device = "cuda:{}".format(self.config.gpu_device[0]) self.device = torch.device(self.config.gpu_device[0]) self.model = self.model.to(self.device) self.model = nn.DataParallel(self.model, device_ids=[torch.device(i) for i in self.config.gpu_device]) self.best_model = copy.deepcopy(self.model) self.loss = nn.CrossEntropyLoss(self.weights.to(self.device)) self.loss2 = nn.MSELoss() self.current_epoch = 0 self.train_logs = torch.empty((self.config.max_epoch,12)).to(self.device) self.best_logs = torch.zeros(5).to(self.device) self.test_logs = torch.empty((self.config.max_epoch,7)).to(self.device) """ Code to run the learning rate finder, be careful it might need some changes on dataloaders at the source code. lr_finder = LRFinder(self.model, self.optimizer, self.loss, device=self.device) lr_finder.range_test(self.data_loader.train_loader, end_lr=100, num_iter=100) _, lr = lr_finder.plot() # to inspect the loss-learning rate graph lr_finder.reset() # to reset the model and optimizer to their initial state """ self.logger.info("Program will run on *****GPU-CUDA***** ") print_cuda_statistics() def load_checkpoint(self, file_name): """ Latest checkpoint loader :param file_name: name of the checkpoint file :return: """ print("Loading from file {}".format(file_name)) checkpoint = torch.load(file_name) self.model.load_state_dict(checkpoint["model_state_dict"]) self.best_model.load_state_dict(checkpoint["best_model_state_dict"]) self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) self.train_logs[0:checkpoint["train_logs"].shape[0],:] = checkpoint["train_logs"] self.test_logs[0:checkpoint["test_logs"].shape[0],:] = checkpoint["test_logs"] self.current_epoch = checkpoint["epoch"] self.best_logs = checkpoint["best_logs"] print("Model has loaded successfully") def save_checkpoint(self, file_name="checkpoint.pth.tar"): """ Checkpoint saver :param file_name: name of the checkpoint file :param is_best: boolean flag to indicate whether current checkpoint's metric is the best so far :return: """ save_dict = {} savior = {} savior["model_state_dict"] = self.model.state_dict() savior["best_model_state_dict"] = self.best_model.state_dict() savior["optimizer_state_dict"] = self.optimizer.state_dict() savior["train_logs"] = self.train_logs savior["test_logs"] = self.test_logs savior["epoch"] = self.current_epoch savior["best_logs"] = self.best_logs save_dict.update(savior) try: torch.save(save_dict, file_name) print("Models has saved successfully") except: raise Exception("Problem in model saving") def save_encoder(self, file_name="checkpoint_encoder.pth.tar"): """ Checkpoint saver :param file_name: name of the checkpoint file :param is_best: boolean flag to indicate whether current checkpoint's metric is the best so far :return: """ save_dict = {} savior = {} savior["encoder_state_dict"] = self.best_model.module.encoder.state_dict() save_dict.update(savior) try: torch.save(save_dict, file_name) print("Models has saved successfully") except: raise Exception("Problem in model saving") def run(self): """ The main operator :return: """ try: if self.config.load_ongoing: self.load_checkpoint(self.config.save_dir) print("The best in epoch:", self.best_logs[4].item(), "so far acc:",self.best_logs[1].item()," and f1:",self.best_logs[2].item()) test_loss, test_acc, test_f1, test_k, test_auc, test_conf, test_loss1, test_loss2 = self.test() print("Test accuracy: {0:.2f}% and f1: {1:.4f}".format(test_acc * 100, test_f1)) print("Test loss1: {0:5f}% and loss2: {1:.5f}".format(test_loss1, test_loss2)) print("Test kappa: {0:.4f}% and auc: {1:.4f}".format(test_k, test_auc)) print("Test confusion matrix:") print(test_conf) self.train() # self.save_encoder() self.model = self.best_model self.save_encoder(self.config.save_dir_encoder) val_loss, val_acc, val_f1, val_k,_,_ = self.validate() print("Validation accuracy: {0:.2f}% and f1: {1:.4f} and k: {2:.4f}".format(val_acc*100, val_f1, val_k)) test_loss, test_acc, test_f1, test_k, test_auc, test_conf, test_loss1, test_loss2 = self.test() print("Test accuracy: {0:.2f}% and f1: {1:.4f}".format(test_acc*100,test_f1)) print("Test kappa: {0:.4f}% and auc: {1:.4f}".format(test_k,test_auc)) print("Test confusion matrix:") print(test_conf) except KeyboardInterrupt: self.logger.info("You have entered CTRL+C.. Wait to finalize") def train(self): """ Main training loop :return: """ print('we are training model normally') if not self.config.load_ongoing: self.best_model = copy.deepcopy(self.model) epochs_no_improve, early_stop = 0, False self.best_logs[1] = 1000 self.test_it = self.current_epoch for self.current_epoch in range(self.current_epoch, self.config.max_epoch): for param_group in self.optimizer.param_groups: lr = param_group['lr'] print("We have learning rate: {0:.5f}".format(lr)) start = time.time() train_loss, train_acc, train_f1, train_k, train_loss1, train_loss2 = self.train_one_epoch() val_loss, val_acc, val_f1, val_k, val_loss1,val_loss2 = self.validate() self.train_logs[self.current_epoch] = torch.tensor([val_loss,train_loss,train_acc,val_acc,train_f1,val_f1,train_k,val_k,train_loss1, val_loss1, train_loss2, val_loss2],device=self.device) if self.config.validation: not_saved = True print("Epoch {0:d} Validation loss: {1:.6f}, accuracy: {2:.2f}% f1 :{3:.4f}, k :{4:.4f} Training loss: {5:.6f}, accuracy: {6:.2f}% f1 :{7:.4f}, k :{8:.4f},".format(self.current_epoch, val_loss, val_acc*100, val_f1, val_k, train_loss, train_acc*100, train_f1, train_k)) if (val_loss < self.best_logs[1].item()): self.best_logs = torch.tensor([self.current_epoch, val_loss, val_acc, val_f1, val_k],device=self.device) print("we have a new best at epoch {0:d} with validation accuracy: {1:.2f}%, f1: {2:.4f} and k: {3:.4f}".format(self.current_epoch, val_acc*100, val_f1, val_k)) self.best_model = copy.deepcopy(self.model) test_loss, test_acc, test_f1, test_k, test_auc, test_conf, test_loss1, test_loss2 = self.test() print("Test loss: {0:.6}, accuracy: {1:.2f}% f1 :{2:.4f}, k :{3:.4f}, auc :{4:.4f}".format(test_loss, test_acc*100, test_f1, test_k, test_auc)) self.test_logs[self.test_it] = torch.tensor([self.current_epoch,test_loss,test_acc,test_f1,test_k, test_loss1, test_loss2],device=self.device) self.test_it+=1 self.save_checkpoint(self.config.save_dir) not_saved = False epochs_no_improve = 0 else: test_loss, test_acc, test_f1, test_k, test_auc, test_conf, test_loss1, test_loss2 = self.test() # print("Test loss: {0:.6}, accuracy: {1:.2f}% f1 :{2:.4f}, k :{3:.4f}, auc :{4:.4f}".format(test_loss, test_acc*100, test_f1, test_k, test_auc)) self.test_logs[self.test_it] = torch.tensor([self.current_epoch,test_loss,test_acc,test_f1,test_k,test_loss1, test_loss2],device=self.device) self.test_it+=1 epochs_no_improve += 1 if (self.current_epoch % self.config.save_every == 0 and not_saved): self.save_checkpoint(self.config.save_dir) print("This epoch took {} seconds".format(time.time() - start)) if self.current_epoch > 5 and epochs_no_improve == self.config.n_epochs_stop: print('Early stopping!') early_stop = True break else: print("Epoch {0:d} Validation loss: {1:.6f}, accuracy: {2:.2f}% f1 :{3:.4f}, k :{4:.4f} Training loss: {5:.6f}, accuracy: {6:.2f}% f1 :{7:.4f}, k :{8:.4f},".format(self.current_epoch, val_loss, val_acc*100, val_f1, val_k, train_loss, train_acc*100, train_f1, train_k)) self.best_model = copy.deepcopy(self.model) test_loss, test_acc, test_f1, test_k, test_auc, test_conf, test_loss1, test_loss2 = self.test() print("Test loss: {0:.6f}, accuracy: {1:.2f}% f1 :{2:.4f}, k :{3:.4f}, auc :{4:.4f}".format(test_loss, test_acc * 100, test_f1, test_k,test_auc)) self.test_logs[self.test_it] = torch.tensor([self.current_epoch, test_loss, test_acc, test_f1, test_k, test_loss1, test_loss2], device=self.device) self.test_it += 1 self.save_checkpoint(self.config.save_dir) if early_stop: print("Early Stopping Occurred") def train_one_epoch(self): """ One epoch of training :return: """ self.model.train() batch_loss, batch_loss1, batch_loss2 = 0,0,0 tts, preds = [], [] for batch_idx, (data, target, _) in tqdm(enumerate(self.data_loader.train_loader),"Training",leave=False, disable=self.config.tdqm): #enumerate(self.data_loader.train_loader): # self.plot_eeg(data[0].numpy()) view_1, target = data[0].float().to(self.device), target.to(self.device) self.optimizer.zero_grad() pred, view = self.model(view_1) loss1 = self.loss(pred, target) loss2 = self.loss2(view, view_1) loss = loss1 + loss2 loss.backward() batch_loss1 +=loss1.item() batch_loss2 +=loss2.item() batch_loss +=loss.item() tts.append(target) preds.append(pred) self.optimizer.step() self.scheduler.step() tts = torch.cat(tts).cpu().numpy() preds = torch.cat(preds).argmax(axis=1).cpu().numpy() return batch_loss/len(tts), np.equal(tts,preds).sum()/len(tts), f1_score(preds,tts), cohen_kappa_score(preds,tts), batch_loss1/len(tts), batch_loss2/len(tts) def validate(self): """ One cycle of model validation :return: """ self.model.eval() valid_loss, batch_loss1, batch_loss2 = 0,0,0 tts, preds = [], [] with torch.no_grad(): for batch_idx, (data, target, _) in tqdm(enumerate(self.data_loader.valid_loader),"Validation",leave=False, disable=self.config.tdqm): #enumerate(self.data_loader.valid_loader): view_1, target = data[0].float().to(self.device), target.to(self.device) pred, view = self.model(view_1) loss1 = self.loss(pred, target) loss2 = self.loss2(view, view_1) loss = loss1 + loss2 batch_loss1 += loss1.item() batch_loss2 += loss2.item() valid_loss += loss.item() tts.append(target) preds.append(pred) tts = torch.cat(tts).cpu().numpy() preds = torch.cat(preds).cpu().numpy() for w_idx in range(0, len(preds), self.config.post_proc_step): for n_class in range(len(preds[0])): preds[w_idx:w_idx + self.config.post_proc_step, n_class] = preds[ w_idx:w_idx + self.config.post_proc_step, n_class].sum() / self.config.post_proc_step preds = preds.argmax(axis=1) return valid_loss/len(tts), np.equal(tts, preds).sum()/len(tts), f1_score(preds, tts), cohen_kappa_score(tts, preds), batch_loss1/len(tts), batch_loss2/len(tts) def test(self): """ One cycle of model validation :return: """ self.model.eval() test_loss, batch_loss1, batch_loss2 = 0,0,0 tts = [] preds = [] with torch.no_grad(): for batch_idx, (data, target, _) in tqdm(enumerate(self.data_loader.test_loader),"Test",leave=False, disable=self.config.tdqm): view_1, target = data[0].float().to(self.device), target.to(self.device) pred, view = self.model(view_1) loss1 = self.loss(pred, target) loss2 = self.loss2(view, view_1) loss = loss1 + loss2 batch_loss1 += loss1.item() batch_loss2 += loss2.item() test_loss += loss.item() tts.append(target) preds.append(pred) tts = torch.cat(tts).cpu().numpy() preds = torch.cat(preds).cpu().numpy() for w_idx in range(0, len(preds), self.config.post_proc_step): for n_class in range(len(preds[0])): preds[w_idx:w_idx + self.config.post_proc_step, n_class] = preds[ w_idx:w_idx + self.config.post_proc_step, n_class].sum() / self.config.post_proc_step preds = preds.argmax(axis=1) test_acc = np.equal(tts, preds).sum() / len(tts) test_f1 = f1_score(preds, tts) test_k = cohen_kappa_score(tts, preds) test_auc = roc_auc_score(tts, preds) test_conf = confusion_matrix(tts, preds) return test_loss, test_acc, test_f1, test_k, test_auc, test_conf, batch_loss1/len(tts), batch_loss2/len(tts) def finalize(self): """ Finalizes all the operations of the 2 Main classes of the process, the operator and the data loader :return: """ # self.save_checkpoint("./data/{}".format(self.config.checkpoint_file),0) print("We are in the final state.") self.plot_losses() self.plot_k() # self.save_checkpoint(self.config.save_dir) # print("test mse is {}".format(self.test())) def train_time_shift(self): """ One epoch of training :return: """ self.model.train() batch_loss = 0 tts = [] preds = [] for batch_idx, (data, target, _) in enumerate(self.data_loader.train_loader): #tqdm(enumerate(self.data_loader.train_loader),"Training", leave=False): # self.plot_eeg(data[0].numpy()) view_1 = data[0].unsqueeze(dim=-1).permute(0,3,1,2).float() view_1, target = view_1.to(self.device), target.to(self.device) if (batch_idx==0): past_view = view_1 elif (batch_idx==1): self.optimizer.zero_grad() current_view = view_1 elif (batch_idx==len(self.data_loader.train_loader)-1): break else: self.optimizer.zero_grad() future_view = view_1 pred = self.model(past_view,current_view,future_view) loss = self.loss(pred, target) loss.backward() batch_loss +=loss tts.append(target.cpu().numpy()) preds.append(pred.detach().cpu().numpy()) self.optimizer.step() self.scheduler.step() past_view = current_view current_view = future_view tts = np.array([x for i in tts for x in i]) preds =
np.array([x for i in preds for x in i])
numpy.array
""" Target State Module Class of thermal states used for our learning tasks. """ from itertools import product from numpy.linalg import norm from numpy.random import normal as N from numpy.random import randn from numpy.random import seed from qutip.operators import sigmax, sigmay, sigmaz, identity from qutip.tensor import tensor def tensor_sigmas(positions, paulis, size): Is=[identity(2) for _ in range(size-len(positions))] for p, pauli in zip(positions, paulis): Is.insert(p, pauli) return tensor(Is) def two_body_ts(sigma_onsite, size, normalize, temp=1): loop_z=sum([N(scale=sigma_onsite)*tensor_sigmas([i], [sigmaz()], size=size) for i in range(size)]) loop_y=sum([
N(scale=sigma_onsite)
numpy.random.normal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 16 14:25:06 2018 @author: jeremiasknoblauch Description: Plot the Air Pollution Data for NIPS submission """ import csv import numpy as np import scipy from Evaluation_tool import EvaluationTool from matplotlib import pyplot as plt import matplotlib.dates as mdates import datetime import matplotlib #import matplotlib as mpl #mpl.rcParams.update(mpl.rcParamsDefault) plot_model_post_only = False plot_model_post_and_rld_only = True plot_top = False plot_bottom = True """""STEP 1: DATA TRANSFOMRATIONS""""" normalize = True deseasonalize_2h = True deseasonalize_day = True #only one of the two deseasonalizations should be chosen shortened, shortened_to = False, 500 daily_avg = True if daily_avg: deseasonalize_2h = False data_dir = ("//Users//jeremiasknoblauch//Documents////OxWaSP//BOCPDMS//" + "//Code//SpatialBOCD//Data//AirPollutionData") cp_type = "CongestionChargeData" dist_file_road = (data_dir + "//" + cp_type + "//" + "RoadDistanceMatrix_") dist_file_euclid = (data_dir + "//" + cp_type + "//" + "EuclideanDistanceMatrix_") res_path = ("/Users//jeremiasknoblauch//Documents////OxWaSP//BOCPDMS//Code//" + "SpatialBOCD//PaperNIPS//AirPollution//") results_file_DPD = (res_path + "results_DPD.txt") results_file_KL = (res_path + "results_KL.txt") frequency = "2h" #2h, daily (=every 15 min), mode = "bigger" #bigger, smaller (bigger contains more filled-in values) if mode == "bigger": stationIDs = ["BT1", "BX1", "BX2", "CR2", "CR4", "EA1", "EA2", "EN1", "GR4", "GR5", "HG1", "HG2", "HI0", "HI1", "HR1", "HS2", "HV1", "HV3", "KC1", "KC2", "LH2", "MY1", "RB3", "RB4", "TD0", "TH1", "TH2", "WA2", "WL1"] elif mode == "smaller": stationIDs = ["BT1", "BX2", "CR2", "EA2", "EN1", "GR4", "GR5", "HG1", "HG2", "HI0", "HR1", "HV1", "HV3", "KC1", "LH2", "RB3", "TD0", "WA2"] num_stations = len(stationIDs) """STEP 1: Read in distances""" """STEP 1.1: Read in road distances (as strings)""" pw_distances_road = [] station_IDs = [] count = 0 with open(dist_file_road + mode + ".csv") as csvfile: reader = csv.reader(csvfile) for row in reader: pw_distances_road += row """STEP 1.2: Read in euclidean distances (as strings)""" pw_distances_euclid = [] station_IDs = [] count = 0 with open(dist_file_euclid + mode + ".csv") as csvfile: reader = csv.reader(csvfile) for row in reader: pw_distances_euclid += row """STEP 1.3: Convert both distance lists to floats and matrices""" pw_d_r, pw_d_e = [], [] for r,e in zip(pw_distances_road, pw_distances_euclid): pw_d_r.append(float(r)) pw_d_e.append(float(e)) pw_distances_road = np.array(pw_d_r).reshape(num_stations, num_stations) pw_distances_euclid = np.array(pw_d_e).reshape(num_stations, num_stations) """STEP 2: Convert distance matrices to nbhs""" cutoffs = [0.0, 10.0, 20.0, 30.0, 40.0, 100.0] num_nbhs = len(cutoffs) - 1 """STEP 2.1: road distances""" road_nbhs = [] for location in range(0, num_stations): location_nbh = [] for i in range(0, num_nbhs): larger_than, smaller_than = cutoffs[i], cutoffs[i+1] indices = np.intersect1d( np.where(pw_distances_road[location,:] > larger_than), np.where(pw_distances_road[location,:] < smaller_than)).tolist() location_nbh.append(indices.copy()) road_nbhs.append(location_nbh.copy()) """STEP 2.2: euclidean distances""" euclid_nbhs =[] for location in range(0, num_stations): location_nbh = [] for i in range(0, num_nbhs): larger_than, smaller_than = cutoffs[i], cutoffs[i+1] indices = np.intersect1d( np.where(pw_distances_euclid[location,:] > larger_than), np.where(pw_distances_euclid[location,:] < smaller_than)).tolist() location_nbh.append(indices.copy()) euclid_nbhs.append(location_nbh.copy()) """STEP 3: Read in station data for each station""" station_data = [] for id_ in stationIDs: file_name = (data_dir + "//" + cp_type + "//" + id_ + "_081702-081703_" + frequency + ".txt") """STEP 3.1: Read in raw data""" #NOTE: Skip the header data_raw = [] count = 0 with open(file_name) as csvfile: reader = csv.reader(csvfile) for row in reader: if count > 0: data_raw += row count += 1 """STEP 3.2: Convert to floats""" #NOTE: We have row names, so skip every second dat = [] for entry in data_raw: dat += [float(entry)] """STEP 3.3: Append to station_data list""" station_data.append(dat.copy()) """STEP 4: Format the station data into a matrix""" T, S1, S2 = len(station_data[0]), num_stations, 1 data = np.zeros((T, num_stations)) for i in range(0, num_stations): data[:,i] =
np.array(station_data[i])
numpy.array
import numpy as np from scipy.sparse.linalg import cg from scipy.sparse.linalg import LinearOperator import sampler import random from joblib import Parallel, delayed class Trainer: def __init__(self, h, reg_list=(100, 0.9, 1e-4), cores=1, mag = True): self.h = h # Hamiltonian to evaluate wf against self.nspins = h.nspins self.reg_list = reg_list # Parameters for regularization self.step_count = 0 self.nvar = 0 self.parallel_cores = cores self.m = mag def train(self, wf, init_state, batch_size, num_steps, gamma_fun, print_freq=25, file='', out_freq=0): state = init_state elist = np.zeros(num_steps, dtype=complex) # list of energies to evaluate for step in range(num_steps): # First call the update_vector function to get our set of updates and the new state (so process thermalizes) updates, state, elist[step] = self.update_vector(wf, state, batch_size, gamma_fun(step), step) # Now apply appropriate parts of the update vector to wavefunction parameters self.apply_update(updates, wf) if step % print_freq == 0: print("Completed training step {}".format(step)) print("Current energy per spin: {}".format(elist[step])) if out_freq > 0 and step % out_freq == 0: wf.save_parameters(file + str(step)) return wf, elist def update_vector(self, wf, init_state, batch_size, gamma, step, therm=False): # Get the vector of updates self.nvar = self.get_nvar(wf) wf.init_lt(init_state) samp = sampler.Sampler(wf, self.h, mag0=self.m) # start a sampler samp.nflips = self.h.minflips samp.state = np.copy(init_state) samp.reset_av() if therm == True: samp.thermalize(batch_size) results = Parallel(n_jobs=self.parallel_cores)( delayed(get_sample)(samp, self) for i in range(batch_size)) # Pass sampling to parallelization elocals = np.array([i[0] for i in results]) deriv_vectors = np.array([i[1] for i in results]) states = np.array([i[2] for i in results]) # Now that we have all the data from sampling let's run our statistics # cov = self.get_covariance(deriv_vectors) cov_operator = LinearOperator((self.nvar, self.nvar), dtype=complex, matvec=lambda v: self.cov_operator(v, deriv_vectors, step)) forces = self.get_forces(elocals, deriv_vectors) # Now we calculate the updates as # updates = -gamma * np.dot(np.linalg.pinv(cov), forces) vec, info = cg(cov_operator, forces) # vec, info = cg(cov, forces) updates = -gamma * vec self.step_count += batch_size return updates, samp.state, np.mean(elocals) / self.nspins def get_elocal(self, state, wf): # Function to calculate local energies; see equation A2 in Carleo and Troyer if not all(state == wf.state): # make sure wavefunction lookup table is properly initialized wf.init_lt(state) mel, flips = self.h.find_conn(state) # Get all S' that connect to S via H and their matrix elems #for flip in range(len(flips)): # eloc += mel[flip] * wf.pop(state, flips[flip]) eloc = sum([m*wf.pop(state,f) for m, f in zip(mel, flips)]) return eloc def get_deriv_vector(self, state, wf): # The derivative vector is a vector which contains the following elements in one column: # First: derivative of psi(S) w.r.t. visible unit biases (wf.Nv of them) # Second: the hidden unit biases (wf.Nh of them) # Third: The weights (wf.Nh * wf.Nv) # See Carleo C3-5 for formulas vector = np.zeros(self.nvar, dtype=complex) # initialize for bias in range(wf.nv): # visible unit biases vector[bias] = state[bias] for bias in range(wf.nh): # hidden unit biases vector[wf.nv + bias] = np.tanh(wf.Lt[bias]) for v in range(wf.nv): for h in range(wf.nh): vector[wf.nh + wf.nv + wf.nh * v + h] = state[v] * np.tanh(wf.Lt[h]) return vector def get_forces(self, elocals, deriv_vectors): emean = np.mean(elocals) # mean local energy omean = np.mean(deriv_vectors, axis=0) # mean derivative vector correlator = np.mean([i[0] * np.conj(i[1]) for i in zip(elocals, deriv_vectors)], axis=0) # pair the local energies with Ovecs and then calculate mean return correlator - emean * np.conj(omean) def cov_operator(self, vec, deriv_vectors, step): # Callable function for evaluating S*v tvec = np.dot(deriv_vectors, vec) # vector of t-values term1 = np.dot(deriv_vectors.T.conj(), tvec) / deriv_vectors.shape[0] term2 = np.mean(deriv_vectors.conj(), axis=0) * np.mean(tvec) reg = max(self.reg_list[0] * self.reg_list[1] ** step, self.reg_list[2]) * vec return term1 - term2 + reg def apply_update(self, updates, wf): wf.a += updates[0:wf.nv] wf.b += updates[wf.nv:wf.nh + wf.nv] wf.W += np.reshape(updates[wf.nv + wf.nh:], wf.W.shape) def get_nvar(self, wf): return wf.nh + wf.nv + wf.nh * wf.nv class TrainerTI(Trainer): def __init__(self, h, reg_list=(100, 0.9, 1e-4), cores=1): Trainer.__init__(self, h, reg_list=reg_list, cores=cores) def apply_update(self, updates, wf): wf.a += updates[0] wf.breduced += updates[1:wf.alpha + 1] wf.Wreduced += updates[wf.alpha + 1:].reshape(wf.Wreduced.shape) def get_deriv_vector(self, state, wf): # The derivative vector is a vector which contains the following elements in one column: # First: derivative of psi(S) w.r.t. visible unit biases (1 of them) # Second: the hidden unit biases (wf.alpha of them) # Third: The weights (wf.Nh * wf.alpha) # See Carleo C3-5 for formulas vector =
np.zeros(1 + wf.alpha + wf.nv * wf.alpha, dtype=complex)
numpy.zeros
from numpy import full, ones from optimix import Function, Scalar class OffsetMean(Function): r""" Offset mean function, θ⋅𝟏. It represents a mean vector 𝐦 = θ⋅𝟏 of size n. The offset is given by the parameter θ. Example ------- .. doctest:: >>> from glimix_core.mean import OffsetMean >>> >>> mean = OffsetMean(3) >>> mean.offset = 2.0 >>> print(mean.value()) [2. 2. 2.] >>> print(mean.gradient()) {'offset': array([1., 1., 1.])} >>> mean.name = "𝐦" >>> print(mean) OffsetMean(): 𝐦 offset: 2.0 """ def __init__(self, n): """ Constructor. Parameters ---------- n : int Size of the 𝟏 array. """ self._offset = Scalar(0.0) self._offset.bounds = (-200.0, +200) self._n = n Function.__init__(self, "OffsetMean", offset=self._offset) def fix_offset(self): """ Prevent θ update during optimization. """ self._fix("offset") def unfix_offset(self): """ Enable θ update during optimization. """ self._unfix("offset") def value(self): """ Offset mean. Returns ------- 𝐦 : (n,) ndarray θ⋅𝟏. """ return
full(self._n, self._offset.value)
numpy.full
""" This module provides an abstract base class for a callback and a default implementation. If you want to store the data in a way that is different from the functionality provided by the default callback, you can write your own extension of callback. For example, you can easily implement a callback that stores the data in e.g. a NoSQL file. The only method to implement is the __call__ magic method. To use logging of progress, always call super. """ import abc import csv import os import shutil import numpy as np import pandas as pd from .parameters import (CategoricalParameter, IntegerParameter, BooleanParameter) from ..util import ema_exceptions, get_module_logger # # Created on 22 Jan 2013 # # .. codeauthor:: jhkwakkel <j.h.kwakkel (at) tudelft (dot) nl> # __all__ = ['AbstractCallback', 'DefaultCallback', 'FileBasedCallback'] _logger = get_module_logger(__name__) class AbstractCallback(object): """ Abstract base class from which different call back classes can be derived. Callback is responsible for storing the results of the runs. Parameters ---------- uncs : list a list of the parameters over which the experiments are being run. outcomes : list a list of outcomes nr_experiments : int the total number of experiments to be executed reporting_interval : int, optional the interval at which to provide progress information via logging. reporting_frequency: int, optional the total number of progress logs Attributes ---------- i : int a counter that keeps track of how many experiments have been saved reporting_interval : int, the interval between progress logs """ __metaclass__ = abc.ABCMeta i = 0 def __init__(self, uncertainties, outcomes, levers, nr_experiments, reporting_interval=None, reporting_frequency=10): if reporting_interval is None: reporting_interval = max( 1, int(round(nr_experiments / reporting_frequency))) self.reporting_interval = reporting_interval @abc.abstractmethod def __call__(self, experiment, outcomes): """ Method responsible for storing results. The implementation in this class only keeps track of how many runs have been completed and logging this. Any extension of AbstractCallback needs to implement this method. If one want to use the logging provided here, call it via super. Parameters ---------- experiment: Experiment instance outcomes: dict the outcomes dict """ # # TODO:: https://github.com/alexanderkuk/log-progress # can we detect whether we are running within Jupyter? # yes: # https://stackoverflow.com/questions/15411967/how-can-i-check-if-code-is-executed-in-the-ipython-notebook self.i += 1 _logger.debug(str(self.i) + " cases completed") if self.i % self.reporting_interval == 0: _logger.info(str(self.i) + " cases completed") @abc.abstractmethod def get_results(self): """ method for retrieving the results. Called after all experiments have been completed. Any extension of AbstractCallback needs to implement this method. """ class DefaultCallback(AbstractCallback): """ default callback system callback can be used in perform_experiments as a means for specifying the way in which the results should be handled. If no callback is specified, this default implementation is used. This one can be overwritten or replaced with a callback of your own design. For example if you prefer to store the result in a database or write them to a text file """ i = 0 cases = None results = {} shape_error_msg = "can only save up to 2d arrays, this array is {}d" constraint_error_msg = ('can only save 1d arrays for constraint, ' 'this array is {}d') def __init__(self, uncs, levers, outcomes, nr_experiments, reporting_interval=100, reporting_frequency=10): """ Parameters ---------- uncs : list a list of the parameters over which the experiments are being run. outcomes : list a list of outcomes nr_experiments : int the total number of experiments to be executed reporting_interval : int, optional the interval between progress logs reporting_frequency: int, optional the total number of progress logs """ super(DefaultCallback, self).__init__(uncs, levers, outcomes, nr_experiments, reporting_interval, reporting_frequency) self.i = 0 self.cases = None self.results = {} self.outcomes = [outcome.name for outcome in outcomes] # determine data types of parameters columns = [] dtypes = [] self.parameters = [] for parameter in uncs + levers: name = parameter.name self.parameters.append(name) dataType = 'float' if isinstance(parameter, CategoricalParameter): dataType = 'object' elif isinstance(parameter, BooleanParameter): dataType = 'bool' elif isinstance(parameter, IntegerParameter): dataType = 'int' columns.append(name) dtypes.append(dataType) for name in ['scenario', 'policy', 'model']: columns.append(name) dtypes.append('object') df = pd.DataFrame(index=np.arange(nr_experiments)) for name, dtype in zip(columns, dtypes): df[name] = pd.Series(dtype=dtype) self.cases = df self.nr_experiments = nr_experiments for outcome in outcomes: shape = outcome.shape if shape is not None: shape = (nr_experiments,) + shape data = np.empty(shape) data[:] = np.nan self.results[outcome.name] = data def _store_case(self, experiment): scenario = experiment.scenario policy = experiment.policy index = experiment.experiment_id self.cases.at[index, 'scenario'] = scenario.name self.cases.at[index, 'policy'] = policy.name self.cases.at[index, 'model'] = experiment.model_name for k, v in scenario.items(): self.cases.at[index, k] = v for k, v in policy.items(): self.cases.at[index, k] = v def _store_outcomes(self, case_id, outcomes): for outcome in self.outcomes: _logger.debug("storing {}".format(outcome)) try: outcome_res = outcomes[outcome] except KeyError: message = "%s not specified as outcome in msi" % outcome _logger.debug(message) else: try: self.results[outcome][case_id,] = outcome_res except KeyError: a = np.asarray(outcome_res, dtype=float) shape = a.shape if len(shape) > 2: message = self.shape_error_msg.format(len(shape)) raise ema_exceptions.EMAError(message) shape = list(shape) shape.insert(0, self.nr_experiments) self.results[outcome] =
np.empty(shape, dtype=a.dtype)
numpy.empty
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_std_dev_of_added_noise_matches_scale(self): # std correct? base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0]) values = np.array(values) assert np.min(values) == 0 assert 0.1 < np.std(values) / 255.0 < 0.4 def test_nonzero_loc(self): # non-zero loc base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.25 * 255, scale=0.01 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0] - 128) values = np.array(values) assert 54 < np.average(values) < 74 # loc=0.25 should be around 255*0.25=64 average def test_tuple_as_loc(self): # varying locs base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=(0, 0.5 * 255), scale=0.0001 * 255) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_loc(self): # varying locs by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=iap.Choice([-20, 20]), scale=0.0001 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 seen = [0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) mean = np.mean(observed) diff_m20 = abs(mean - (128-20)) diff_p20 = abs(mean - (128+20)) if diff_m20 <= 1: seen[0] += 1 elif diff_p20 <= 1: seen[1] += 1 else: assert False assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_tuple_as_scale(self): # varying stds base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=(0.01 * 255, 0.2 * 255)) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_scale(self): # varying stds by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=iap.Choice([1, 20])) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 128 seen = [0, 0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) std = np.std(observed.astype(np.int32) - 128) diff_1 = abs(std - 1) diff_20 = abs(std - 20) if diff_1 <= 2: seen[0] += 1 elif diff_20 <= 5: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 5 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.AdditiveGaussianNoise(loc="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.AdditiveGaussianNoise(scale="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.5, scale=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.AdditiveGaussianNoise(scale=(0.1, 10), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class TestDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): # no dropout, shouldnt change anything base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] aug = iaa.Dropout(p=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) # 100% dropout, should drop everything aug = iaa.Dropout(p=1.0) observed = aug.augment_images(images) expected = np.zeros((1, 512, 512, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [np.zeros((512, 512, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_p_is_50_percent(self): # 50% dropout base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Dropout(p=0.5) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_tuple_as_p(self): # varying p aug = iaa.Dropout(p=(0.0, 1.0)) aug_det = aug.to_deterministic() images = np.ones((1, 8, 8, 1), dtype=np.uint8) * 255 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_list_as_p(self): aug = iaa.Dropout(p=[0.0, 0.5, 1.0]) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 nb_seen = [0, 0, 0, 0] nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) n_dropped = np.sum(observed_aug == 0) p_observed = n_dropped / observed_aug.size if 0 <= p_observed <= 0.01: nb_seen[0] += 1 elif 0.5 - 0.05 <= p_observed <= 0.5 + 0.05: nb_seen[1] += 1 elif 1.0-0.01 <= p_observed <= 1.0: nb_seen[2] += 1 else: nb_seen[3] += 1 assert np.allclose(nb_seen[0:3], nb_iterations*0.33, rtol=0, atol=75) assert nb_seen[3] < 30 def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.Dropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5]))) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for wrong parameter datatype got_exception = False try: _aug = iaa.Dropout(p="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Dropout(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.Dropout(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = base_img assert np.array_equal(observed, expected) def test_p_is_one(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=1.0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = np.zeros_like(base_img) assert np.array_equal(observed, expected) def test_p_is_50_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_size_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=0.001, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_per_channel(self): aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=True, min_size=1) base_img = np.ones((4, 4, 3), dtype=np.uint8) * 100 found = False for _ in sm.xrange(100): observed = aug.augment_image(base_img) avgs = np.average(observed, axis=(0, 1)) if len(set(avgs)) >= 2: found = True break assert found def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.CoarseDropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5])), size_px=50) images = np.ones((1, 100, 100, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for bad parameters got_exception = False try: _ = iaa.CoarseDropout(p="test") except Exception: got_exception = True assert got_exception def test___init___size_px_and_size_percent_both_none(self): got_exception = False try: _ = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseDropout(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseDropout(p=0.5, size_px=10, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10, shape=(40, 40, 3)) class TestDropout2d(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Dropout2d(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 1 def test___init___p_is_float(self): aug = iaa.Dropout2d(p=0.7) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 0.3) assert aug.nb_keep_channels == 1 def test___init___nb_keep_channels_is_int(self): aug = iaa.Dropout2d(p=0, nb_keep_channels=2) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 2 def test_no_images_in_batch(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) heatmaps = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=heatmaps) assert np.allclose(heatmaps_aug.arr_0to1, heatmaps.arr_0to1) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_1_heatmaps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_1_segmentation_maps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_1_cbaois__keep_one_channel(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_heatmaps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075(self): image = np.full((1, 1, 3000), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.75, nb_keep_channels=0) image_aug = aug(image=image) nb_kept = np.sum(image_aug == 255) nb_dropped = image.shape[2] - nb_kept assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.isclose(nb_dropped, image.shape[2]*0.75, atol=75) def test_force_nb_keep_channels(self): image = np.full((1, 1, 3), 255, dtype=np.uint8) images = np.array([image] * 1000) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) images_aug = aug(images=images) ids_kept = [np.nonzero(image[0, 0, :]) for image in images_aug] ids_kept_uq = np.unique(ids_kept) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name # on average, keep 1 of 3 channels # due to p=1.0 we expect to get exactly 2/3 dropped assert np.isclose(nb_dropped, (len(images)*images.shape[3])*(2/3), atol=1) # every channel dropped at least once, i.e. which one is kept is random assert sorted(ids_kept_uq.tolist()) == [0, 1, 2] def test_some_images_below_nb_keep_channels(self): image_2c = np.full((1, 1, 2), 255, dtype=np.uint8) image_3c = np.full((1, 1, 3), 255, dtype=np.uint8) images = [image_2c if i % 2 == 0 else image_3c for i in sm.xrange(100)] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=2) images_aug = aug(images=images) for i, image_aug in enumerate(images_aug): assert np.sum(image_aug == 255) == 2 if i % 2 == 0: assert np.sum(image_aug == 0) == 0 else: assert np.sum(image_aug == 0) == 1 def test_all_images_below_nb_keep_channels(self): image = np.full((1, 1, 2), 255, dtype=np.uint8) images = np.array([image] * 100) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert nb_dropped == 0 def test_get_parameters(self): aug = iaa.Dropout2d(p=0.7, nb_keep_channels=2) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert np.isclose(params[0].p.value, 0.3) assert params[1] == 2 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.full(shape, 255, dtype=np.uint8) aug = iaa.Dropout2d(1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if value == 0: assert np.sum(image_aug == value) == 10 else: assert np.sum(image_aug == value) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if _isclose(value, 0.0): assert np.sum(_isclose(image_aug, value)) == 10 else: assert ( np.sum(_isclose(image_aug, np.float128(value))) == 3) assert np.sum(image_aug == 0) == 7 def test_pickleable(self): aug = iaa.Dropout2d(p=0.5, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3, shape=(1, 1, 50)) class TestTotalDropout(unittest.TestCase): def setUp(self): reseed() def test___init___p(self): aug = iaa.TotalDropout(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.sum(images_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.TotalDropout(p=1.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.TotalDropout(p=1.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=1.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_heatmaps(self): aug = iaa.TotalDropout(p=0.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.TotalDropout(p=0.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=0.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075_multiple_images_list(self): images = [np.full((1, 1, 1), 255, dtype=np.uint8)] * 3000 aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum([np.sum(image_aug == 255) for image_aug in images_aug]) nb_dropped = len(images) - nb_kept for image_aug in images_aug: assert image_aug.shape == images[0].shape assert image_aug.dtype.name == images[0].dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_p_is_075_multiple_images_array(self): images = np.full((3000, 1, 1, 1), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = len(images) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_get_parameters(self): aug = iaa.TotalDropout(p=0.0) params = aug.get_parameters() assert params[0] is aug.p def test_unusual_channel_numbers(self): shapes = [ (5, 1, 1, 4), (5, 1, 1, 5), (5, 1, 1, 512), (5, 1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): images = np.zeros(shape, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert np.all(images_aug == 0) assert images_aug.dtype.name == "uint8" assert images_aug.shape == shape def test_zero_sized_axes(self): shapes = [ (5, 0, 0), (5, 0, 1), (5, 1, 0), (5, 0, 1, 0), (5, 1, 0, 0), (5, 0, 1, 1), (5, 1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): images = np.full(shape, 255, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert images_aug.dtype.name == "uint8" assert images_aug.shape == images.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 0 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0) or value == 0: assert np.sum(images_aug == 0) == 5*3 else: assert np.sum(images_aug == value) == 5*3 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0): assert np.sum(_isclose(images_aug, 0.0)) == 5*3 else: assert ( np.sum(_isclose(images_aug, np.float128(value))) == 5*3) def test_pickleable(self): aug = iaa.TotalDropout(p=0.5, random_state=1) runtest_pickleable_uint8_img(aug, iterations=30, shape=(4, 4, 2)) class TestMultiply(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected =
np.ones((1, 3, 3, 1), dtype=np.uint8)
numpy.ones
import sys import os import re import glob from PIL import Image, ImageDraw import ocrolib from re import split import os.path import json import numpy as np import cv2 import imageio from ..constants import OCRD_TOOL from shapely.geometry import MultiPoint import click from ocrd.decorators import ocrd_cli_options, ocrd_cli_wrap_processor import subprocess from ocrolib import psegutils, morph, sl from scipy.ndimage.filters import gaussian_filter, uniform_filter, maximum_filter from ocrd import Processor from ocrd_modelfactory import page_from_file from ocrd_utils import ( getLogger, make_file_id, assert_file_grp_cardinality, MIMETYPE_PAGE, coordinates_for_segment, points_from_polygon ) from ocrd_models.ocrd_page import ( to_xml, AlternativeImageType, TextRegionType, CoordsType, TextLineType ) TOOL = 'ocrd-anybaseocr-textline' class OcrdAnybaseocrTextline(Processor): def __init__(self, *args, **kwargs): kwargs['ocrd_tool'] = OCRD_TOOL['tools'][TOOL] kwargs['version'] = OCRD_TOOL['version'] super(OcrdAnybaseocrTextline, self).__init__(*args, **kwargs) def addzeros(self, file): F = open(file, "r") D = F.read() D = split("\n", D) D = D[:-1] F.close() F = open(file, "w") for d in D: d += " 0 0 0 0\n" F.write(d) def process(self): LOG = getLogger('OcrdAnybaseocrTextline') assert_file_grp_cardinality(self.input_file_grp, 1) assert_file_grp_cardinality(self.output_file_grp, 1) oplevel = self.parameter['operation_level'] for (n, input_file) in enumerate(self.input_files): page_id = input_file.pageId or input_file.ID pcgts = page_from_file(self.workspace.download_file(input_file)) self.add_metadata(pcgts) page = pcgts.get_Page() LOG.info("INPUT FILE %s", input_file.pageId or input_file.ID) page_image, page_xywh, page_image_info = self.workspace.image_from_page(page, page_id, feature_selector='binarized,deskewed') if oplevel == 'page': LOG.warning("Operation level should be region.") self._process_segment(page_image, page,None, page_xywh, page_id, input_file, n) else: regions = page.get_TextRegion() if not regions: LOG.warning("Page '%s' contains no text regions", page_id) continue for (k, region) in enumerate(regions): region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh) self._process_segment(region_image, page, region, region_xywh, region.id, input_file, k) file_id = make_file_id(input_file, self.output_file_grp) pcgts.set_pcGtsId(file_id) self.workspace.add_file( ID=file_id, file_grp=self.output_file_grp, pageId=input_file.pageId, mimetype=MIMETYPE_PAGE, local_filename=os.path.join(self.output_file_grp, file_id + '.xml'), content=to_xml(pcgts).encode('utf-8') ) def _process_segment(self, page_image, page, textregion, region_xywh, page_id, input_file, n): LOG = getLogger('OcrdAnybaseocrTextline') #check for existing text lines and whether to overwrite them if textregion.get_TextLine(): if self.parameter['overwrite']: LOG.info('removing existing TextLines in region "%s"', page_id) textregion.set_TextLine([]) else: LOG.warning('keeping existing TextLines in region "%s"', page_id) return binary = ocrolib.pil2array(page_image) if len(binary.shape) > 2: binary = np.mean(binary, 2) binary = np.array(1-binary/np.amax(binary),'B') if self.parameter['scale'] == 0: scale = psegutils.estimate_scale(binary) else: scale = self.parameter['scale'] if np.isnan(scale) or scale > 1000.0 or scale < self.parameter['minscale']: LOG.warning(str(scale)+": bad scale; skipping!\n" ) return segmentation = self.compute_segmentation(binary, scale) if np.amax(segmentation) > self.parameter['maxlines']: LOG.warning("too many lines %i; skipping!\n", (np.amax(segmentation))) return lines = psegutils.compute_lines(segmentation, scale) order = psegutils.reading_order([l.bounds for l in lines]) lsort = psegutils.topsort(order) # renumber the labels so that they conform to the specs nlabels = np.amax(segmentation)+1 renumber = np.zeros(nlabels, 'i') for i, v in enumerate(lsort): renumber[lines[v].label] = 0x010000+(i+1) segmentation = renumber[segmentation] lines = [lines[i] for i in lsort] cleaned = ocrolib.remove_noise(binary, self.parameter['noise']) for i, l in enumerate(lines): #LOG.info('check this: ') #LOG.info(type(l.bounds)) #LOG.info(l.bounds) #line_points = np.where(l.mask==1) #hull = MultiPoint([x for x in zip(line_points[0],line_points[1])]).convex_hull #x,y = hull.exterior.coords.xy #LOG.info('hull coords x: ',x) #LOG.info('hull coords y: ',y) min_x, max_x = (l.bounds[0].start, l.bounds[0].stop) min_y, max_y = (l.bounds[1].start, l.bounds[1].stop) line_polygon = [[min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y]] #line_polygon = [x for x in zip(y, x)] line_polygon = coordinates_for_segment(line_polygon, page_image, region_xywh) line_points = points_from_polygon(line_polygon) img = cleaned[l.bounds[0],l.bounds[1]] img = np.array(255*(img>ocrolib.midrange(img)),'B') img = 255-img img = ocrolib.array2pil(img) file_id = make_file_id(input_file, self.output_file_grp) file_path = self.workspace.save_image_file(img, file_id+"_"+str(n)+"_"+str(i), page_id=page_id, file_grp=self.output_file_grp ) ai = AlternativeImageType(filename=file_path, comments=region_xywh['features']) line_id = '%s_line%04d' % (page_id, i) line = TextLineType(custom='readingOrder {index:'+str(i)+';}', id=line_id, Coords=CoordsType(line_points)) line.add_AlternativeImage(ai) textregion.add_TextLine(line) #line_test = textregion.get_TextLine()[-1] #region_img, region_xy = self.workspace.image_from_segment(line_test, page_image, region_xywh) #region_img.save('checkthis.png') #cv2.imwrite('checkthis.jpg', region_img) def B(self, a): if a.dtype == dtype('B'): return a return np.array(a, 'B') ################################################################ # Column finding. ### # This attempts to find column separators, either as extended # vertical black lines or extended vertical whitespace. # It will work fairly well in simple cases, but for unusual # documents, you need to tune the parameter. ################################################################ def compute_separators_morph(self, binary, scale): """Finds vertical black lines corresponding to column separators.""" d0 = int(max(5, scale/4)) d1 = int(max(5, scale))+self.parameter['sepwiden'] thick = morph.r_dilation(binary, (d0, d1)) vert = morph.rb_opening(thick, (10*scale, 1)) vert = morph.r_erosion(vert, (d0//2, self.parameter['sepwiden'])) vert = morph.select_regions(vert, sl.dim1, min=3, nbest=2*self.parameter['maxseps']) vert = morph.select_regions(vert, sl.dim0, min=20*scale, nbest=self.parameter['maxseps']) return vert def compute_colseps_morph(self, binary, scale, maxseps=3, minheight=20, maxwidth=5): """Finds extended vertical whitespace corresponding to column separators using morphological operations.""" boxmap = psegutils.compute_boxmap(binary, scale, (0.4, 5), dtype='B') bounds = morph.rb_closing(self.B(boxmap), (int(5*scale), int(5*scale))) bounds = maximum(self.B(1-bounds), self.B(boxmap)) cols = 1-morph.rb_closing(boxmap, (int(20*scale), int(scale))) cols = morph.select_regions(cols, sl.aspect, min=self.parameter['csminaspect']) cols = morph.select_regions(cols, sl.dim0, min=self.parameter['csminheight']*scale, nbest=self.parameter['maxcolseps']) cols = morph.r_erosion(cols, (int(0.5+scale), 0)) cols = morph.r_dilation(cols, (int(0.5+scale), 0), origin=(int(scale/2)-1, 0)) return cols def compute_colseps_conv(self, binary, scale=1.0): """Find column separators by convoluation and thresholding.""" h, w = binary.shape # find vertical whitespace by thresholding smoothed = gaussian_filter(1.0*binary, (scale, scale*0.5)) smoothed = uniform_filter(smoothed, (5.0*scale, 1)) thresh = (smoothed < np.amax(smoothed)*0.1) # find column edges by filtering grad = gaussian_filter(1.0*binary, (scale, scale*0.5), order=(0, 1)) grad = uniform_filter(grad, (10.0*scale, 1)) grad = (grad > 0.25*
np.amax(grad)
numpy.amax
''' Testing track_metrics module ''' from StringIO import StringIO import numpy as np from nose.tools import assert_true, assert_false, assert_equal, assert_almost_equal from numpy.testing import assert_array_equal, assert_array_almost_equal from dipy.tracking import metrics as tm from dipy.tracking import distances as pf def test_splines(): #create a helix t=np.linspace(0,1.75*2*np.pi,100) x = np.sin(t) y = np.cos(t) z = t # add noise x+= np.random.normal(scale=0.1, size=x.shape) y+= np.random.normal(scale=0.1, size=y.shape) z+= np.random.normal(scale=0.1, size=z.shape) xyz=np.vstack((x,y,z)).T # get the B-splines smoothed result xyzn=tm.spline(xyz,3,2,-1) def test_minimum_distance(): xyz1=np.array([[1,0,0],[2,0,0]],dtype='float32') xyz2=np.array([[3,0,0],[4,0,0]],dtype='float32') assert_equal(pf.minimum_closest_distance(xyz1,xyz2), 1.0) def test_segment_intersection(): xyz=np.array([[1,1,1],[2,2,2],[2,2,2]]) center=[10,4,10] radius=1 assert_equal(tm.intersect_sphere(xyz,center,radius), False) xyz=np.array([[1,1,1],[2,2,2],[3,3,3],[4,4,4]]) center=[10,10,10] radius=2 assert_equal( tm.intersect_sphere(xyz,center,radius), False) xyz=np.array([[1,1,1],[2,2,2],[3,3,3],[4,4,4]]) center=[2.1,2,2.2] radius=2 assert_equal( tm.intersect_sphere(xyz,center,radius), True) def test_most_similar_mam(): xyz1 = np.array([[0,0,0],[1,0,0],[2,0,0],[3,0,0]],dtype='float32') xyz2 = np.array([[0,1,1],[1,0,1],[2,3,-2]],dtype='float32') xyz3 = np.array([[-1,0,0],[2,0,0],[2,3,0],[3,0,0]],dtype='float32') tracks=[xyz1,xyz2,xyz3] for metric in ('avg', 'min', 'max'): #pf should be much faster and the results equivalent si2,s2=pf.most_similar_track_mam(tracks,metric=metric) def test_bundles_distances_mam(): xyz1A = np.array([[0,0,0],[1,0,0],[2,0,0],[3,0,0]],dtype='float32') xyz2A = np.array([[0,1,1],[1,0,1],[2,3,-2]],dtype='float32') xyz1B = np.array([[-1,0,0],[2,0,0],[2,3,0],[3,0,0]],dtype='float32') tracksA = [xyz1A, xyz2A] tracksB = [xyz1B, xyz1A, xyz2A] for metric in ('avg', 'min', 'max'): DM2 = pf.bundles_distances_mam(tracksA, tracksB, metric=metric) def test_mam_distances(): xyz1 = np.array([[0,0,0],[1,0,0],[2,0,0],[3,0,0]]) xyz2 = np.array([[0,1,1],[1,0,1],[2,3,-2]]) # dm=array([[ 2, 2, 17], [ 3, 1, 14], [6, 2, 13], [11, 5, 14]]) # this is the distance matrix between points of xyz1 # and points of xyz2 xyz1=xyz1.astype('float32') xyz2=xyz2.astype('float32') zd2 = pf.mam_distances(xyz1,xyz2) assert_almost_equal( zd2[0], 1.76135602742) def test_approx_ei_traj(): segs=100 t=np.linspace(0,1.75*2*np.pi,segs) x =t y=5*np.sin(5*t) z=np.zeros(x.shape) xyz=
np.vstack((x,y,z))
numpy.vstack
import numpy as np def p(u): U = np.linalg.norm(u) A = U*0.5; P = np.zeros((3,)) P[0] = 2*np.sin(A)/U**2*(u[1]*U*np.cos(A) + u[0]*u[2]*np.sin(A)) P[1] = 2*np.sin(A)/U**2*(-u[0]*U*np.cos(A) + u[1]*u[2]*np.sin(A)) P[2] = np.cos(A)**2 + np.sin(A)**2/U**2*(u[2]**2 - u[1]**2 - u[0]**2) return P axis = np.array( [0,1,0] ) angle = np.pi/2 u = angle*axis; M = np.zeros((3,3)) h = 1e-6 for i in range(3): for j in range(3): u[i] += h pp = p(u) u[i] -= 2*h pm = p(u) M[i,j] = 0.5*(pp[j] - pm[j])/h u[i] += h print('Numerical derivative:') print(M) U = np.linalg.norm(u) A = U*0.5; Q = np.array( [ np.cos(A), u[0]/U*np.sin(A), u[1]/U*np.sin(A), u[2]/U*np.sin(A) ] ) q0, q1, q2, q3 = Q dpdQ = 2*np.array( [[q2, -q1, q0], [q3, -q0, -q1], [q0, q3, -q2], [q1, q2, q3]] ) dQdu = np.zeros((3,4)) dQdu[:,0] = -0.5*np.sin(A)*u/U dQdu[:,1:] = np.sin(A)*
np.eye(3)
numpy.eye
import pandas as pd from DataHandler.mongoObjects import CollectionManager from datetime import date from datetime import datetime as dt import datedelta import numpy as np features = ['Asset Growth', 'Book Value per Share Growth', 'Debt Growth', 'Dividends per Basic Common Share Growth', 'EBIT Growth', 'EPS Diluted Growth', 'EPS Growth', 'Gross Profit Growth', 'Inventory Growth', 'Net Income Growth', 'Operating Cash Flow Growth', 'Trade and Non-Trade Receivables Growth'] def add_fundamentals_to_db(): """ Adds the fundamental data to the database from a json file :return:None """ fundFile = 'sectorAnalysis/fundamentals/combinedFundamentals.json' funds = pd.read_json(fundFile) manager = CollectionManager('10y_Fundamentals', 'AlgoTradingDB') for index, row in funds.iterrows(): document = row.to_dict() manager.insert(document, is_dictionary=True) manager.close() def json_serial(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, dt): return obj.isoformat() raise TypeError("Type %s not serializable" % type(obj)) def get_next_trading_day(dates, days: list): """ Ensures that the day was a trading day and gets the data for that day. :param price_getter: lambda function :param day: date :return: price for that day of trading """ newDates = [] for day in days: day = day while day not in dates: day += datedelta.DAY newDates.append(day) return newDates def calculate_performance(ticker, dates1: list, dates2: list): """ Gets how much the stock has changed since the last quarter reportings. :param ticker: stock ticker :param date1: beginining of the quarter :param date2: end of the quarter :return: percent change in stock price """ ticker = ticker.lower() manager = CollectionManager('5Y_technicals', 'AlgoTradingDB') prices = manager.find({'ticker': ticker}) dates = [dt.strptime(priceDate, '%Y-%m-%d').date() for priceDate in prices['date']] pricesStart = [prices[prices['date'] == str(d1)]['vwap'].values[0] for d1 in get_next_trading_day(dates, dates1)] pricesEnd = [prices[prices['date'] == str(d2)]['vwap'].values[0] for d2 in get_next_trading_day(dates, dates2)] manager.close() performances = [((p[0] - p[1]) / p[0]) for p in zip(pricesStart, pricesEnd)] return performances def get_historical_fundamentals(ticker: str, d: date, manager: CollectionManager): """ Gets all of the fundamental data for a ticker before some date and after :param ticker: stock ticker :param d: date :param manager: collection manager for the fundamentals database :return: past fundamentals, announcement dates, and future (test) fundamentals """ current_day = dt(d.year, d.month, d.day) allTickersFundamentals = manager.find({'ticker': ticker, 'date': {'$lte': current_day}}).sort_values('date') test = manager.find({'ticker': ticker, 'date': {'$gte': current_day}}).sort_values('date') return allTickersFundamentals[features], [announce.date() for announce in allTickersFundamentals['date'].tolist()], test def find_best_stock(performances: pd.DataFrame): """ Finds the best stock given the performances :param performances: list of performances :return: the best stock """ best = [] stocks = performances.columns.values for index, values in performances.iterrows(): maximum = np.argmax([abs(v) for v in values]) stock = stocks[maximum] best.append(stock) return best def get_all_fundamentals(stocks: list, tradeDate: date): """ Gets all of the fundamentals for a list of tickers and list of quarters :param tickers: stocks :param quarters: list of quarters :param final: whether this is a final prediction :return: Xs and ys """ manager = CollectionManager('10y_Fundamentals', 'AlgoTradingDB') tickers_set = set(stocks) all_fundamental_tickers = set(manager.find({})["ticker"]) tickers = list(tickers_set.intersection(all_fundamental_tickers)) allFundamentals = pd.DataFrame() performances = pd.DataFrame() quarters = 17 allTest = pd.DataFrame() testDates = [] for ticker in tickers: data, announcementDates, test = get_historical_fundamentals(ticker, tradeDate, manager) nextAnnouncementDates = announcementDates[1:] + [dt.strptime('2018-02-05', '%Y-%m-%d').date()] performance = calculate_performance(ticker, announcementDates, nextAnnouncementDates) if len(testDates) == 0: testDates = test['date'].tolist() if len(performance) != 17: performance = performance[len(performance) - 17:] performances[ticker] = performance else: performances[ticker] = performance for index, funds in data.iterrows(): tempDF = pd.DataFrame() tempDF['fundamentals'] = list(funds)[:-1] tempDF['ticker'] = [ticker for i in range(len(funds) - 1)] tempDF['quarter'] = [index for j in range(len(funds) - 1)] allFundamentals = pd.concat([allFundamentals, tempDF]) for index, testFunds in test.iterrows(): temp = pd.DataFrame() temp['fundamentals'] = list(testFunds)[:-1] temp['ticker'] = [ticker for k in range(len(testFunds) - 1)] temp['quarter'] = [index for l in range(len(testFunds) - 1)] allTest = pd.concat([allTest, temp]) manager.close() trainingData = [] for quarter in range(quarters): q = [] for ticker in tickers: tickerdata = allFundamentals[allFundamentals['ticker'] == ticker] quarterdata = tickerdata[tickerdata['quarter'] == quarter]['fundamentals'] q.append(quarterdata.tolist()) trainingData.append(np.array(q)) trainingDataX =
np.array(trainingData)
numpy.array
import pandas as pd import datetime as datetime import numpy as np import matplotlib.pyplot as plt from statsmodels.nonparametric.smoothers_lowess import lowess """ cgmquantify package Description: The cgmquantify package is a comprehensive library for computing metrics from continuous glucose monitors. Requirements: pandas, datetime, numpy, matplotlib, statsmodels Functions: importdexcom(): Imports data from Dexcom continuous glucose monitor devices interdaycv(): Computes and returns the interday coefficient of variation of glucose interdaysd(): Computes and returns the interday standard deviation of glucose intradaycv(): Computes and returns the intraday coefficient of variation of glucose intradaysd(): Computes and returns the intraday standard deviation of glucose TIR(): Computes and returns the time in range TOR(): Computes and returns the time outside range PIR(): Computes and returns the percent time in range POR(): Computes and returns the percent time outside range MGE(): Computes and returns the mean of glucose outside specified range MGN(): Computes and returns the mean of glucose inside specified range MAGE(): Computes and returns the mean amplitude of glucose excursions J_index(): Computes and returns the J-index LBGI(): Computes and returns the low blood glucose index HBGI(): Computes and returns the high blood glucose index ADRR(): Computes and returns the average daily risk range, an assessment of total daily glucose variations within risk space MODD(): Computes and returns the mean of daily differences. Examines mean of value + value 24 hours before CONGA24(): Computes and returns the continuous overall net glycemic action over 24 hours GMI(): Computes and returns the glucose management index eA1c(): Computes and returns the American Diabetes Association estimated HbA1c summary(): Computes and returns glucose summary metrics, including interday mean glucose, interday median glucose, interday minimum glucose, interday maximum glucose, interday first quartile glucose, and interday third quartile glucose plotglucosesd(): Plots glucose with specified standard deviation lines plotglucosebounds(): Plots glucose with user-defined boundaries plotglucosesmooth(): Plots smoothed glucose plot (with LOWESS smoothing) """ def importdexcom(filename): """ Imports data from Dexcom continuous glucose monitor devices Args: filename (String): path to file Returns: (pd.DataFrame): dataframe of data with Time, Glucose, and Day columns """ data = pd.read_csv(filename) df = pd.DataFrame() df['Time'] = data['Timestamp (YYYY-MM-DDThh:mm:ss)'] df['Glucose'] = pd.to_numeric(data['Glucose Value (mg/dL)']) df.drop(df.index[:12], inplace=True) df['Time'] = pd.to_datetime(df['Time'], format='%Y-%m-%dT%H:%M:%S') df['Day'] = df['Time'].dt.date df = df.reset_index() return df def importfreestylelibre(filename): """ Imports data from Abbott FreeStyle Libre continuous glucose monitor devices Args: filename (String): path to file Returns: (pd.DataFrame): dataframe of data with Time, Glucose, and Day columns """ data = pd.read_csv(filename, header=1, parse_dates=['Device Timestamp']) df = pd.DataFrame() historic_id = 0 df['Time'] = data.loc[data['Record Type'] == historic_id, 'Device Timestamp'] df['Glucose'] = pd.to_numeric(data.loc[data['Record Type'] == historic_id, 'Historic Glucose mg/dL']) df['Day'] = df['Time'].dt.date return df def interdaycv(df): """ Computes and returns the interday coefficient of variation of glucose Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns Returns: cvx (float): interday coefficient of variation averaged over all days """ cvx = (np.std(df['Glucose']) / (np.mean(df['Glucose'])))*100 return cvx def interdaysd(df): """ Computes and returns the interday standard deviation of glucose Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns Returns: interdaysd (float): interday standard deviation averaged over all days """ interdaysd = np.std(df['Glucose']) return interdaysd def intradaycv(df): """ Computes and returns the intraday coefficient of variation of glucose Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns Returns: intradaycv_mean (float): intraday coefficient of variation averaged over all days intradaycv_medan (float): intraday coefficient of variation median over all days intradaycv_sd (float): intraday coefficient of variation standard deviation over all days """ intradaycv = [] for i in pd.unique(df['Day']): intradaycv.append(interdaycv(df[df['Day']==i])) intradaycv_mean = np.mean(intradaycv) intradaycv_median = np.median(intradaycv) intradaycv_sd = np.std(intradaycv) return intradaycv_mean, intradaycv_median, intradaycv_sd def intradaysd(df): """ Computes and returns the intraday standard deviation of glucose Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns Returns: intradaysd_mean (float): intraday standard deviation averaged over all days intradaysd_medan (float): intraday standard deviation median over all days intradaysd_sd (float): intraday standard deviation standard deviation over all days """ intradaysd =[] for i in pd.unique(df['Day']): intradaysd.append(np.std(df[df['Day']==i])) intradaysd_mean = np.mean(intradaysd) intradaysd_median = np.median(intradaysd) intradaysd_sd = np.std(intradaysd) return intradaysd_mean, intradaysd_median, intradaysd_sd def TIR(df, sd=1, sr=5): """ Computes and returns the time in range Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns sd (integer): standard deviation for computing range (default=1) sr (integer): sampling rate (default=5[minutes, once every 5 minutes glucose is recorded]) Returns: TIR (float): time in range, units=minutes """ up = np.mean(df['Glucose']) + sd*np.std(df['Glucose']) dw = np.mean(df['Glucose']) - sd*np.std(df['Glucose']) TIR = len(df[(df['Glucose']<= up) & (df['Glucose']>= dw)])*sr return TIR def TOR(df, sd=1, sr=5): """ Computes and returns the time outside range Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns sd (integer): standard deviation for computing range (default=1) sr (integer): sampling rate (default=5[minutes, once every 5 minutes glucose is recorded]) Returns: TOR (float): time outside range, units=minutes """ up = np.mean(df['Glucose']) + sd*np.std(df['Glucose']) dw = np.mean(df['Glucose']) - sd*np.std(df['Glucose']) TOR = len(df[(df['Glucose']>= up) | (df['Glucose']<= dw)])*sr return TOR def POR(df, sd=1, sr=5): """ Computes and returns the percent time outside range Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns sd (integer): standard deviation for computing range (default=1) sr (integer): sampling rate (default=5[minutes, once every 5 minutes glucose is recorded]) Returns: POR (float): percent time outside range, units=% """ up = np.mean(df['Glucose']) + sd*np.std(df['Glucose']) dw = np.mean(df['Glucose']) - sd*np.std(df['Glucose']) TOR = len(df[(df['Glucose']>= up) | (df['Glucose']<= dw)])*sr POR = (TOR/(len(df)*sr))*100 return POR def PIR(df, sd=1, sr=5): """ Computes and returns the percent time inside range Args: (pd.DataFrame): dataframe of data with DateTime, Time and Glucose columns sd (integer): standard deviation for computing range (default=1) sr (integer): sampling rate (default=5[minutes, once every 5 minutes glucose is recorded]) Returns: PIR (float): percent time inside range, units=% """ up = np.mean(df['Glucose']) + sd*np.std(df['Glucose']) dw =
np.mean(df['Glucose'])
numpy.mean
import turtle import numpy as np import random from random import randint class branch(): def __init__(self, x, x2, y, y2): self.x = x self.y = y self.x2 = x2 self.y2 = y2 self.grow_count = 0 self.grow_x = 0 self.grow_y = 0 self.width = 1 self.child = [] self.screen = turtle.Screen() self.screen.setup(width=84, height=84) self.screen.bgcolor('black') self.tree = turtle.Turtle() self.tree.hideturtle() self.tree.color('green') self.tree.speed(0) self.tree.pensize(2) def plot(self): self.tree.penup() #self.tree.hideturtle() self.tree.goto(self.x, self.y) # make the turtle go to the start position self.tree.pendown() self.tree.goto(self.x2, self.y2) self.screen.update() def draw(x, y, mindist, maxdist, branches): for i in range(len(x) - 1, 0, -1): closest_branch = 0 dist = 109 for j in range(len(branches)): temp_dist = np.sqrt((x[i] - branches[j].x2) ** 2 + (y[i] - branches[j].y2) ** 2) if temp_dist < dist: dist = temp_dist closest_branch = j # removes scatter if dist < mindist: x = np.delete(x, i) y =
np.delete(y, i)
numpy.delete
import argparse import math import h5py import numpy as np import tensorflow as tf import socket import importlib import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, 'utils')) import provider import tf_util """ argument parser """ parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='model', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]') parser.add_argument('--log_dir', default='log', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=512, help='Point Number [256/512/1024/2048] [default: 1024]') parser.add_argument('--max_epoch', type=int, default=250, help='Epoch to run [default: 250]') parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 16]') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]') parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]') parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]') FLAGS = parser.parse_args() BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point MAX_EPOCH = FLAGS.max_epoch BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu MOMENTUM = FLAGS.momentum OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate """ model and training file """ MODEL = importlib.import_module(FLAGS.model) # import network module MODEL_FILE = os.path.join(BASE_DIR, FLAGS.model+'.py') LOG_DIR = FLAGS.log_dir if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure """ log """ LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') """ learning parameters """ MAX_NUM_POINT = 512 NUM_CLASSES = 8 BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 HOSTNAME = socket.gethostname() """ import train/test data set """ TRAIN_FILES = provider.getDataAllFiles( \ os.path.abspath(os.path.join(BASE_DIR, '../data/train'))) TEST_FILES = provider.getDataAllFiles(\ os.path.abspath(os.path.join(BASE_DIR, '../data/test'))) def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch * BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def train(): with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): pointclouds_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT) is_training_pl = tf.placeholder(tf.bool, shape=()) print(is_training_pl) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. batch = tf.Variable(0) bn_decay = get_bn_decay(batch) tf.summary.scalar('bn_decay', bn_decay) # Get model and loss pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay) loss = MODEL.get_loss(pred, labels_pl, end_points) tf.summary.scalar('loss', loss) correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl)) accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE) tf.summary.scalar('accuracy', accuracy) # Get training operator learning_rate = get_learning_rate(batch) tf.summary.scalar('learning_rate', learning_rate) if OPTIMIZER == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM) elif OPTIMIZER == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=batch) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Add summary writers #merged = tf.merge_all_summaries() merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph) test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test')) # Init variables init = tf.global_variables_initializer() # To fix the bug introduced in TF 0.12.1 as in # http://stackoverflow.com/questions/41543774/invalidargumenterror-for-tensor-bool-tensorflow-0-12-1 #sess.run(init) sess.run(init, {is_training_pl: True}) ops = {'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl, 'is_training_pl': is_training_pl, 'pred': pred, 'loss': loss, 'train_op': train_op, 'merged': merged, 'step': batch} for epoch in range(MAX_EPOCH): log_string('**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() train_one_epoch(sess, ops, train_writer) eval_one_epoch(sess, ops, test_writer) # Save the variables to disk. if epoch % 10 == 0: save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt")) log_string("Model saved in file: %s" % save_path) def train_one_epoch(sess, ops, train_writer): """ ops: dict mapping from string to tf ops """ is_training = True # Shuffle train files train_file_idxs = np.arange(0, len(TRAIN_FILES)) np.random.shuffle(train_file_idxs) for fn in range(len(TRAIN_FILES)): log_string('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]]) current_data = current_data[:,0:NUM_POINT,:] current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) current_label =
np.squeeze(current_label)
numpy.squeeze
# from __future__ import division #------------------------------------- # # Started at 06/08/2018 (YuE) # # This script based on the previous script # threeApproachesComparison_v6.py # ## Upgraded version of python (python3.4): script was rewritten to take into # account some differences in the descriptions and using of some functions # (version cma_v3 and more earlier scripts are written under python2). # # 07/24/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # # But nevertheless, the dependences of the transmitted energy on the impact # parameter are close to the inverse quadratic (as it should be!) at all velocities. # # 07/27/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # The investigation of that is in progress. # # Some features were improved, some figures were corrected. # #------------------------------------- #======================================================== # # This code compairs two approaches: "classical" (from [1]) and # "magnus" (from [2]). # # For "classical" approach the magnetized interaction between ion # and electron is considered for ion velocities V_i > rmsTrnsvVe. # # References: # # [1] <NAME>, <NAME>, <NAME>, <NAME>. # "Physics guide of BETACOOL code. Version 1.1". C-A/AP/#262, November # 2006, Brookhaven National Laboratory, Upton, NY 11973. # [2] <NAME>, <NAME>. "New Algorithm for Dynamical Friction # of Ions in a Magnetized Electron Beam". AIP Conf. Proc. 1812, 05006 (2017). # #======================================================== ######################################################### # # Main issues of the calculations: # # 1) Friction force (FF) is calculated in the (P)article (R)est (F)rame, # i.e. in the frame moving together with both (cooled and cooling) # beams at a velocity V0; # 2) Friction force is calculated for each value of ion velocity # in the interval from .1*rmsTrnsvVe till 10*rmsTrnsvVe; # 3) Initially assumped that all electrons have a logitudinal # velocity rmsLongVe and transversal velocity rmsTrnsvVe; # 4) For each ion velocity the minimal and maximal values of the # impact parameter are defined. Radius of the shielding of the # electric field of the ion equals to the value of the maximal # impact parameter; # 5) For each impact parameter in the interval from minimal till # maximal values the transfered momenta deltap_x,y,z are # calculated; # 6) Founded transfered momenta allow to calculate the transfered # energy delta_E =deltap^2/(2*m_e) and to integrate it over # impact parameter; then (expressions (3.4), (3.5) from [1]): # FF =-2*pi*n_e*integral_rhoMin^rhoMax delta_E*rho*drho; # 7) For taking into account the velocity distribution of the # electrons it is necessary to repeat these calculations for # each value of the electron's velocity and then integrate result # over distribution of the velocities. # # 10/26/2018: # # 8) Item 6 is wrong and correct expression for transfered # energy delta_E will be used; # 9) Method (my own) Least Squares Method - LSM is used to fit the # dependence of transferred momenta on impact parameter; # # # 11/08/2018: # # 10) Two functions ('fitting' and 'errFitAB' are defined to realize # my LSM to find the parameters of the fitting end error of this # fitting; # # 11) Analys of different dependeces between values; graphical # presentation of these dependences; # ######################################################### import os, sys import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm from matplotlib import ticker from matplotlib import markers import matplotlib as mpl from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D import scipy.integrate as integrate from scipy.integrate import quad, nquad, dblquad from scipy.constants import pi from scipy import optimize from statistics import mean from array import array # # All physical constants have its dimension in units in the system CI. # This code uses units in the system CGS! # from scipy.constants import speed_of_light as clight from scipy.constants import epsilon_0 as eps0 from scipy.constants import mu_0 as mu0 from scipy.constants import elementary_charge as qe from scipy.constants import electron_mass as me from scipy.constants import proton_mass as mp from scipy.constants import Boltzmann as kB pi=3.14159265358 # # Physical constants: # m_e=9.10938356e-28 # electron mass, g m_elec=m_e # to keep variable from previous script m_p=1.672621898e-24 # electron mass, g M_ion = m_p # to keep variable from previous script q_e=4.803204673e-10 # electron charge, CGSE unit: sqrt(g*cm^3/sec^2) q_elec=q_e # to keep variable from previous script Z_ion = q_e # to keep variable from previous script cLight=2.99792458e10 # speed of light, cm/sec eVtoErg=1.6021766208e-12 # 1 eV = 1.6...e-12 erg CtoPart=2.99792458e9 # 1 C = 1 A*sec = 2.9...e9 particles m_e_eV = m_e*cLight**2/eVtoErg # # Electron beam parameters: # Ekin=3.0e4 # kinetic energy, eV curBeam=0.5 # current density, A/cm^2 dBeam=3.0 # beam diameter, cm angSpread=3.0 # angular spread, mrad trnsvT=0.5 # transversal temperature, eV longT=2.0e-4 # longitudinal temperature, eV (was 2.0e-4) nField=1 # number ov values of the magnetic field fieldB=np.zeros(nField) # magnetic field fieldB[0]=3.e3 # Gs omega_p=1.0e9 # plasma frequency, 1/sec n_e=omega_p**2*m_e/(4.*pi*q_e**2) # plasma density, 3.1421e+08 cm-3 n_e1=8.e7 # plasma density, cm-3 omega_p1=np.sqrt(4.*pi*n_e1*q_e**2/m_e) # plasma frequency, 5.0459e+08 1/s # # Cooling system parameter: # coolLength=150.0 # typical length of the coolong section, cm # # HESR: # Ekin=90.8e4 # HESR kinetic energy, eV curBeam=0.5 # HESR current beam, A dBeam=2.0 # HESR beam diameter, cm angSpread=0.0 # HESR angular spread, mrad trnsvT=0.2 # HESR transversal temperature, eV longT=1.0e-2 # HESR longitudinal temperature, eV (was 2.0e-4) fieldB[0]=1.e3 # HESR, Gs coolLength=270.0 # HESR typical length of the coolong section, cm # # EIC: # angSpread=0.0 # EIC angular spread, mrad fieldB[0]=5.e4 # EIC, Gs coolLength=300.0 # EIC typical length of the coolong section, cm # # Calculated parameters of the electron beam: # V0 = cLight*np.sqrt(Ekin/m_e_eV*(Ekin/m_e_eV+2.))/(Ekin/m_e_eV+1.) print ('V0 =%e' % V0) tetaV0=0. # angle between V0 and magnetic field, rad B_mag=fieldB[0]*np.cos(tetaV0) # magnetic field acting on an electron, Gs rmsTrnsvVe=np.sqrt(2.*trnsvT*eVtoErg/m_e) # RMS transversal velocity, cm/s rmsLongVe=np.sqrt(2.*longT*eVtoErg/m_e) # RMS longitudinal velocity, cm/s # HESR: dens=curBeam*(CtoPart/q_e)/(pi*(.5*dBeam)**2*V0) # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('HESR: dens = %e,omega_p = %e' % (dens,omega_p)) # EIC: rmsLongVe = 1.0e+7 # cm/s longT = .5*m_e*rmsLongVe**2/eVtoErg rmsTrnsvVe = 4.2e+7 # cm/s trnsvT = .5*m_e*rmsTrnsvVe**2/eVtoErg print ('EIC: rmsLongVe = %e, longT = %e, rmsTrnsvVe = %e, trnsvT = %e' % \ (rmsLongVe,longT,rmsTrnsvVe,trnsvT)) dens=2.e9 # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('EIC: dens = %e,omega_p = %e' % (dens,omega_p)) cyclFreq=q_e*B_mag/(m_e*cLight) # cyclotron frequency, 1/s rmsRoLarm=rmsTrnsvVe*cyclFreq**(-1) # RMS Larmor radius, cm dens=omega_p**2*m_e/(4.*pi*q_e**2) # density, 1/cm^3 likeDebyeR=(3./dens)**(1./3.) # "Debye" sphere with 3 electrons, cm eTempTran=trnsvT # to keep variable from previous script eTempLong=longT # to keep variable from previous script coolPassTime=coolLength/V0 # time pass through cooling section, cm thetaVi=0. # polar angle ion and cooled electron beams, rad phiVi=0. # azimuth angle ion and cooled electron beams, rad powV0=round(np.log10(V0)) mantV0=V0/(10**powV0) pow_n_e=round(np.log10(n_e)) mant_n_e=n_e/(10**pow_n_e) # # Formfactor ffForm for friction force: # # ffForm = 2*pi*dens*q_e**4/(m_e*V0**2)= # = 0.5*omega_p**2*q_e**2/V0**2 # # Dimension of ffForm is force: g*cm/sec**2=erg/cm # # 1 MeV/m = 1.e6*eVtoErg/100. g*cm/sec**2 = 1.e4*eVtoErg erg/cm MeV_mToErg_cm=1.e4*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/MeV_mToErg_cm # MeV/m eV_mToErg_m=100.*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/eV_mToErg_m # =-6.8226e-12 eV/m eV_mInErg_cm=100.*eVtoErg ffForm=-.5*omega_p**2*q_e**2/V0**2/eVtoErg # =-6.8226e-10 eV/cm ffForm=100.*ffForm # =-6.8226e-08 eV/m ergToEV = 1./1.60218e-12 # # Relative velocities of electrons: # relVeTrnsv=rmsTrnsvVe/V0 relVeLong=rmsLongVe/V0 print ('V0=%e cm/s, rmsTrnsvVe=%e cm/s (rel = %e), rmsLongVe=%e cm/s (rel = %e)' % \ (V0,rmsTrnsvVe,relVeTrnsv,rmsLongVe,relVeLong)) # Indices: (Ix, Ipx, Iy, Ipy, Iz, Ipz) = range(6) stepsNumberOnGyro = 25 # number of the steps on each Larmour period ''' # # Opening the input file: # inputFile='areaOfImpactParameter_tAC-v6_fig110.data' print ('Open input file "%s"...' % inputFile) inpfileFlag=0 try: inpfile = open(inputFile,'r') inpfileFlag=1 except: print ('Problem to open input file "%s"' % inputFile) if inpfileFlag == 1: print ('No problem to open input file "%s"' % inputFile) lines=0 # Number of current line from input file dataNumber=0 # Number of current value of any types of Data xAboundary=np.zeros(100) xBboundary=np.zeros(100) while True: lineData=inpfile.readline() # print ('line=%d: %s' % (lines,lineData)) if not lineData: break lines += 1 if lines > 4: words=lineData.split() nWords=len(words) # print ('Data from %d: words=%s, number of entries = %d' % (lines,words,nWords)) xAboundary[dataNumber]=float(words[0]) xBboundary[dataNumber]=float(words[1]) dataNumber += 1 inpfile.close() print ('Close input file "%s"' % inputFile) ''' #==================================================================== # #------------------ Begin of defined functions ----------------------- # # Larmor frequency electron: # def omega_Larmor(mass,B_mag): return (q_elec)*B_mag/(mass*clight*1.e+2) # rad/sec # # Derived quantities: # omega_L = omega_Larmor(m_elec,B_mag) # rad/sec T_larm = 2*pi/omega_L # sec timeStep = T_larm/stepsNumberOnGyro # time step, sec print ('omega_Larmor= %e rad/sec, T_larm = %e sec, timeStep = %e sec' % \ (omega_L,T_larm,timeStep)) nLarmorAvrgng=10 # number of averaged Larmor rotations # # Data to integrate transferred momemta over the track: # timeStep_c=nLarmorAvrgng*stepsNumberOnGyro*timeStep # sec print ('timeStep_c = %e s' % timeStep_c) eVrmsTran = np.sqrt(2.*eTempTran*eVtoErg/m_elec) # cm/sec eVrmsLong = np.sqrt(2.*eTempLong*eVtoErg/m_elec) # cm/sec kinEnergy = m_elec*(eVrmsTran**2+eVrmsLong**2)/2. # kinetic energy; erg print ('eVrmsTran = %e cm/sec, eVrmsLong = %e cm/sec, kinEnergy = %e eV' % \ (eVrmsTran,eVrmsLong,ergToEV*kinEnergy)) ro_larmRMS = eVrmsTran/omega_L # cm print ('ro_larmRMS =%e mkm' % (1.e4*ro_larmRMS)) # # Electrons are magnetized for impact parameter >> rhoCrit: # rhoCrit=math.pow(q_elec**2/(m_elec*omega_L**2),1./3) # cm print ('rhoCrit (mkm) = ' , 1.e+4*rhoCrit) # # Convertion from 6-vector of relectron's "coordinates" to 6-vector # of guiding-center coordinates: # z_e=(x_e,px_e,y_e,py_e,z_e,pz_e) --> zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e); # def toGuidingCenter(z_e): mOmega=m_elec*omega_L # g/sec zgc_e=z_e.copy() # 6-vector zgc_e[Ix] = np.arctan2(z_e[Ipx]+mOmega*z_e[Iy],z_e[Ipy]) # radians zgc_e[Ipx]= (((z_e[Ipx]+mOmega*z_e[Iy])**2+z_e[Ipy]**2)/(2.*mOmega)) # g*cm**2/sec zgc_e[Iy] =-z_e[Ipx]/mOmega # cm zgc_e[Ipy]= z_e[Ipy]+mOmega*z_e[Ix] # g/sec return zgc_e # # Convertion from 6-vector of guiding-center coordinates to 6-vector # of electron's "coordinates": # zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e) --> z_e=(x_e,px_e,y_e,py_e,z_e,pz_e); # def fromGuidingCenter(zgc_e): mOmega=m_elec*omega_L # g/sec rho_larm=np.sqrt(2.*zgc_e[Ipx]/mOmega) # cm z_e = zgc_e.copy() # 6-vector z_e[Ix] = zgc_e[Ipy]/mOmega-rho_larm*np.cos(zgc_e[Ix]) # cm z_e[Ipx]=-mOmega*zgc_e[Iy] # g*cm/sec z_e[Iy] = zgc_e[Iy]+rho_larm*np.sin(zgc_e[Ix]) # cm z_e[Ipy]= mOmega*rho_larm*np.cos(zgc_e[Ix]) # g*cm/sec return z_e # # Matrix to dragg electron through the solenoid with field 'B_mag' # during time interval 'deltaT': # def solenoid_eMatrix(B_mag,deltaT): slndMtrx=np.identity(6) omega_L=omega_Larmor(m_elec,B_mag) # rad/sec mOmega= m_elec*omega_L # g/sec phi=omega_L*deltaT # phase, rad cosPhi=math.cos(phi) # dimensionless sinPhi=math.sin(phi) # dimensionless cosPhi_1=2.*math.sin(phi/2.)**2 # dimensionless slndMtrx[Iy, Iy ]= cosPhi # dimensionless slndMtrx[Ipy,Ipy]= cosPhi # dimensionless slndMtrx[Iy, Ipy]= sinPhi/mOmega # sec/g slndMtrx[Ipy,Iy ]=-mOmega*sinPhi # g/sec slndMtrx[Iz, Ipz]= deltaT/m_elec # sec/g slndMtrx[Ix, Ipx]= sinPhi/mOmega # sec/g slndMtrx[Ix, Iy ]= sinPhi # dimensionless slndMtrx[Ix, Ipy]= cosPhi_1/mOmega # sec/g slndMtrx[Iy, Ipx]=-cosPhi_1/mOmega # sec/g slndMtrx[Ipy,Ipx]=-sinPhi # dimensionless return slndMtrx # # Matrix to dragg particle through the drift during time interval 'deltaT': # def drift_Matrix(M_prtcl,deltaT): driftMtrx = np.identity(6) for i in (Ix,Iy,Iz): driftMtrx[i,i+1]=deltaT/M_prtcl # sec/g return driftMtrx # # Matrix to dragg electron in the "guiding center" system during time interval 'deltaT': # def guidingCenter_Matrix(deltaT): gcMtrx = np.identity(6) gcMtrx[Iz,Ipz]=deltaT/m_elec # sec/g return gcMtrx # # Description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron: # def guidingCenterCollision(vectrElec_gc,vectrIon,deltaT): dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3/2) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec b_gc=np.sqrt((vectrIon[0]-x_gc)**2+ \ (vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-dpFactor_gc*deltaT*(vectrIon[0]-x_gc)/b_gc**3 dpIon[1]=-dpFactor_gc*deltaT*(vectrIon[2]-vectrElec_gc[2])/b_gc**3 dpIon[2]=-dpFactor_gc*deltaT*(vectrIon[4]-vectrElec_gc[4])/b_gc**3 dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,b_gc # # "Magnus expansion" description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron and electron y_gc coordinate # as well calculated parameters C1,C2,C3,b,D1,D2,q for testing: # def MagnusExpansionCollision(vectrElec_gc,vectrIon,deltaT): # print ('Ion: x=%e, y=%e, z=%e' % (vectrIon[0],vectrIon[2],vectrIon[4])) # print ('Electron: x=%e, y=%e, z=%e' % # (vectrElec_gc[0],vectrElec_gc[4],vectrElec_gc[4])) dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3./2.) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec # C1=np.sqrt((vectrIon[0]-x_gc)**2+ \ # (vectrIon[2]-vectrElec_gc[2])**2+ \ # (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm^2 C1=(vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm # cm^2 C2=2.*((vectrIon[0]-x_gc)*vectrIon[1]/M_ion+ \ (vectrIon[2]-vectrElec_gc[2])*vectrIon[3]/M_ion+ \ (vectrIon[4]-vectrElec_gc[4])* \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)) # cm^2/sec C3=(vectrIon[1]/M_ion)**2+(vectrIon[3]/M_ion)**2+ \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)**2 # cm^2/sec^2 b=np.sqrt(C1+C2*deltaT+C3*deltaT**2) # cm D1=(2.*C3*deltaT+C2)/b-C2/np.sqrt(C1) # cm/sec D2=(C2*deltaT+2.*C1)/b-2.*np.sqrt(C1) # cm q=4.*C1*C3-C2**2 # cm^4/sec^2 # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-2.*dpFactor_gc/q*((vectrIon[0]-x_gc)*D1-vectrIon[1]/M_ion*D2) dpIon[1]=-2.*dpFactor_gc/q*((vectrIon[2]-vectrElec_gc[2])*D1- \ vectrIon[3]/M_ion*D2) dpIon[2]=-2.*dpFactor_gc/q*((vectrIon[4]-vectrElec_gc[4])*D1- \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)*D2) dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] dy_gc=dpIon[0]/mOmegaLarm # cm # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,dy_gc,C1,C2,C3,b,D1,D2,q # # Minimized functional (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # Funcional = {log10(funcY) - [fitB*log10(argX) + fitA]}^2 # def fitting(nPar1,nPar2,argX,funcY): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) for i in range(nVion): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) sumFuncY = np.zeros(nPar2) sumArgXfuncY= np.zeros(nPar2) fitA = np.zeros(nPar2) fitB = np.zeros(nPar2) for i in range(nPar2): for n in range(nPar1): sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 sumFuncY[i] += log10funcY[n,i] sumArgXfuncY[i] += log10argX[n,i]*log10funcY[n,i] delta = sumArgX[i]**2-nPar1*sumArgX2[i] fitA[i] = (sumArgX[i]*sumArgXfuncY[i]-sumArgX2[i]*sumFuncY[i])/delta fitB[i] = (sumArgX[i]*sumFuncY[i]-nPar1*sumArgXfuncY[i])/delta # print ('fitA(%d) = %e, fitB(%d) = %e' % (i,fitA[i],i,fitB[i])) argXfit = np.zeros((nPar1,nPar2)) funcYfit = np.zeros((nPar1,nPar2)) funcHi2 = np.zeros(nPar2) for i in range(nPar2): factorA = math.pow(10.,fitA[i]) for n in range(nPar1): argXfit[n,i] = math.pow(10.,log10argX[n,i]) funcYfit[n,i] = factorA*math.pow(argXfit[n,i],fitB[i]) funcHi2[i] += (np.log10(abs(funcY[n,i])) - np.log10(abs(funcYfit[n,i])))**2 return fitA,fitB,funcHi2,argXfit,funcYfit # # +-Errors for fitied parameters fitA and fitB: # def errFitAB(nPar1,nPar2,argX,funcY,fitA,fitB,funcHi2,errVar,errType): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) posErrFit = np.zeros(nPar2) negErrFit = np.zeros(nPar2) # return posErrFit,negErrFit stepA = 5.e-4*mean(funcHi2) stepB = 1.e-4*mean(funcHi2) # print ('errFitAB: mean(funcHi2) = %e, stepA = %e, stepB = %e' % (mean(funcHi2),stepA,stepB)) for i in range(nPar2): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); positive error) for %d' % (errVar,i)) break # print ('i=%d: fitParamtr = %e, funcHi2 = %e' % (i,fitParamtr[i], funcHi2[i])) curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] + k*stepA curFuncHi2 = 0. factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] + k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): posErrFit[i] = abs(curFitA - fitA[i]) else: posErrFit[i] = abs(curFitB - fitB[i]) func1sigma2 = funcHi2[i]/(nPar2-3) if (int(errVar) == 1): fitSigma = np.sqrt(sumArgX2[i]/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) else: fitSigma = np.sqrt(nPar2/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) if (int(errType) == 2): posErrFit[i] = fitSigma # if (int(errVar) == 1): # print ('i=%d: fitA = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); negative error) for %d' % (errVar,i)) break curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] - k*stepA factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] - k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): negErrFit[i] = abs(curFitA - fitA[i]) else: negErrFit[i] = abs(curFitB - fitB[i]) if (int(errType) == 2): negErrFit[i] = posErrFit[i] # if (errVar == 1): # print ('i=%d: fitA = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],negErrFit[i],funcHi2[i],k,curFuncHi2)) return posErrFit,negErrFit def fittedGKintegration(xMin,xMax,fitA,fitB): # # "Gauss-Kronrod" method of integration (GK) # # # Points (psi_i) and weigths (w_i) to integrate for interval from -1 to 1; # These data are from <NAME>. "Handbook of Mathematical Science". # 5th Edition, CRC Press, Inc, 1978. # # To integrate for interval from 0 to 1 it is necessary to change points # psi_i with points ksi_i=(1+psi_i)/2; # # For method with order N for function F(x): # int_(-1)^1 = sum_1^N [w_i* F(psi_i)]; # # In case of integration over interval from a to b: # int_(a)^b = (b-a)/2 * sum_1^N [w_i* F(x_i)], where # x_i = (b-a)*psi_i/2+(a+b)/2. # #---------------------------------------------------- # # Data for GK: # #---------------------------------------------------- nPoints_GK = 16 psi_16=np.array([-0.9894009, -0.9445750, -0.8656312, -0.7554044, -0.6178762, \ -0.4580168, -0.2816036, -0.0950125, 0.0950125, 0.2816036, \ 0.4580168, 0.6178762, 0.7554044, 0.8656312, 0.9445750, \ 0.9894009]) w_16 =np.array([ 0.0271525, 0.0622535, 0.0951585, 0.1246290, 0.1495960, \ 0.1691565, 0.1826034, 0.1894506, 0.1894506, 0.1826034, \ 0.1691565, 0.1495960, 0.1246290, 0.0951585, 0.0622535, \ 0.0271525]) y = np.zeros(nPoints_GK) yIntegrated = 0. for n in range(nPoints_GK): xCrrnt = psi_16[n]*(xMax-xMin)/2 + (xMax+xMin)/2. factorA = math.pow(10.,fitA) y[n] = factorA*math.pow(xCrrnt,fitB) yIntegrated += (xMax-xMin)*w_16[n]*y[n]*xCrrnt return y,yIntegrated #------------------ End of defined functions ----------------------- # #==================================================================== sphereNe=3. R_e=math.pow(sphereNe/n_e,1./3) # cm print ('R_e (cm)=%e' % R_e) ro_Larm = eVrmsTran/omega_L # cm print ('ro_Larm (cm)=%e' % ro_Larm) impctPrmtrMin=2.*ro_Larm # rhoDependenceFlag = 1 # skip calculation of rho dependence if = 0! #============ Important flags =========================== # # Taking into account the transfer of momenta for both particles # (for "classical" only): dpTransferFlag = 1 # no taking into account if = 0! # saveFilesFlag = 0 # no saving if = 0! # plotFigureFlag = 1 # plot if = 1! # #======================================================== nVion=50 Vion=np.zeros(nVion) VionLong=np.zeros(nVion) VionTrnsv=np.zeros(nVion) VionRel=np.zeros(nVion) vIonMin=4.e-3*eVrmsTran vIonMax=10.*eVrmsTran vIonMinRel=vIonMin/V0 vIonMaxRel=vIonMax/V0 print ('VionMin=%e (vIonMinRel=%e), vIonMax=%e (vIonMaxRel=%e)' % \ (vIonMin,vIonMinRel,vIonMax,vIonMaxRel)) vIonLogStep=math.log10(vIonMax/vIonMin)/(nVion-1) R_debye=np.zeros(nVion) R_pass=np.zeros(nVion) R_pass_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. impctPrmtrMax=np.zeros(nVion) impctPrmtrMax_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. for i in range(nVion): crrntLogVionRel=math.log10(vIonMinRel)+i*vIonLogStep VionRel[i]=math.pow(10.,crrntLogVionRel) Vion[i]=VionRel[i]*V0 VionLong[i]=Vion[i]*np.cos(thetaVi) VionTrnsv[i]=Vion[i]*np.sin(thetaVi) R_debye[i]=np.sqrt(Vion[i]**2+eVrmsTran**2+eVrmsLong**2)/omega_p R_pass[i]=np.sqrt(Vion[i]**2+eVrmsLong**2)*coolPassTime R_pass_1[i]=np.sqrt(Vion[i]**2+0.*eVrmsLong**2)*coolPassTime help=max(R_debye[i],R_e) impctPrmtrMax[i]=min(help,R_pass[i]) impctPrmtrMax_1[i]=min(help,R_pass_1[i]) #----------------------------------------------------------------- # Checking of corection of the maximal impact parameter on depence # of preset number of minimal Larmor turns # larmorTurnsMin=[10,20,30,40] impctPrmtrMaxCrrctd=np.zeros((nVion,4)) impctPrmtrMaxCrrctdRel=np.zeros((nVion,4)) for n in range (4): for i in range(nVion): impctPrmtrMaxCrrctd[i,n]=impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurnsMin[n]*eVrmsLong/omega_L/impctPrmtrMax[i])**2) impctPrmtrMaxCrrctdRel[i,n]=impctPrmtrMaxCrrctd[i,n]/impctPrmtrMax[i] # # First plotting: # if (plotFigureFlag == 0): fig10 = plt.figure(10) plt.semilogx(impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,0],'-r', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,1],'-b', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,2],'-g', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,3],'-m',linewidth=2) plt.grid(True) hold=True plt.xlabel('Maximal Impact parameter $R_{max}$, cm',color='m',fontsize=16) plt.ylabel('$R_{max}^{Crrctd}/R_{Max}$',color='m',fontsize=16) # plt.xlim([.9*min(impctPrmtrMax),1.1*max(impctPrmtrMax)]) plt.xlim([1.e-2,1.1*max(impctPrmtrMax)]) plt.ylim([.986,1.001]) titleHeader='$R_{max}^{Crrctd}=R_{Max} \cdot [1-(\pi\cdot N_{Larm} \cdot' titleHeader += '\Delta_{e||}/(\omega_{Larm} \cdot R_{max})]^{1/2}$' plt.title(titleHeader,color='m',fontsize=16) plt.legend([('$N_{Larm}=$%2d' % larmorTurnsMin[0]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[1]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[2]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[3])],loc='lower center',fontsize=14) if (saveFilesFlag == 1): fig10.savefig('picturesCMA/correctedRmax_fig10cma.png') print ('File "picturesCMA/correctedRmax_fig10cma.png" is written') xLimit=[.9*VionRel[0],1.1*VionRel[nVion-1]] # # Typs of collisions: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'Types of Collisions: $V_{e0}=%4.2f\cdot10^{%2d}$ cm/s, $B=%6.1f$ Gs' plt.title(titleHeader % (mantV0,powV0,fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,.0018,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-4,1.75e-3,'$R_{min}=2\cdot<rho_\perp>$',color='k',fontsize=16) plt.text(7.e-4,5.e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.85e-5,3.3e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(1.e-4,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(1.e-4,10.e-4,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.25e-5,.275,'Collisions are Screened',color='r',fontsize=20) plt.text(1.6e-5,1.e-3,'$ \cong 20\cdot R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') # # Picture for HESR: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'HESR Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(4.4e-4,8.4e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.e-4,8.4e-4,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.7e-6,3.4e-3,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(2.8e-4,.1,'$R_{max}$',color='k',fontsize=16) plt.text(1.e-4,1.8e-2,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(6.8e-5,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(2.3e-5,1.95e-3,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.e-5,.275,'Screened Collisions',color='r',fontsize=20) plt.text(3.58e-6,2.05e-3,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('HESRimpctPrmtr_fig3151cma.png') print ('File "HESRimpctPrmtr_fig3151cma.png" is written') # # Picture for EIC: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'EIC Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[5.e-5,.3] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(9.e-4,4.e-5,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.7e-4,3.e-5,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(6.3e-6,1.1e-4,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(1.e-4,2.1e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.57e-5,5.e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(2.3e-5,1.e-3,'Magnetized Collisions',color='r',fontsize=20) # plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(1.1e-5,5.7e-5,'Weak or Adiabatic or Fast Collisions',color='r',fontsize=16) plt.text(2.e-5,.15,'Screened Collisions',color='r',fontsize=20) plt.text(2.5e-3,1.7e-4,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('EICimpctPrmtr_fig3151cma.png') print ('File "EICimpctPrmtr_fig3151cma.png" is written') # plt.show() # sys.exit() # # Magnetized collisions: # if (plotFigureFlag == 0): fig209=plt.figure (209) plt.loglog(VionRel,R_debye,'-r',VionRel,R_pass,'-b', \ VionRel,R_pass_1,'--b',linewidth=2) plt.grid(True) hold=True plt.plot([VionRel[0],VionRel[nVion-1]],[R_e,R_e],color='m',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$R_{Debye}$, $R_{Pass}$, $R_e$, cm',color='m',fontsize=16) # titleHeader='Magnetized Collision: $R_{Debye}$, $R_{Pass}$, $R_e$: $V_{e0}=%5.3f\cdot10^{%2d}$cm/s' # plt.title(titleHeader % (mantV0,powV0),color='m',fontsize=16) plt.title('Magnetized Collisions: $R_{Debye}$, $R_{Pass}$, $R_e$',color='m',fontsize=16) plt.xlim(xLimit) yLimit=[1.e-3,10.] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.5e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,0.001175,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-5,2.45e-3,'$R_e$',color='k',fontsize=16) plt.text(3.e-5,5.e-2,'$R_{Debye}$',color='k',fontsize=16) plt.text(3.e-5,1.8e-2,'$R_{Pass}$',color='k',fontsize=16) plt.text(4.5e-5,4.8e-3,'$R_{Pass}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.text(8.3e-5,4.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) if (saveFilesFlag == 1): fig209.savefig('picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png') print ('File "picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png" is written') # # Coulomb logarithm evaluation: # clmbLog = np.zeros(nVion) for i in range(nVion): clmbLog[i] = math.log(impctPrmtrMax[i]/impctPrmtrMin) # clmbLog[i] = math.log(impctPrmtrMax_1[i]/impctPrmtrMin) if (plotFigureFlag == 0): fig3155=plt.figure (3155) plt.semilogx(VionRel,clmbLog,'-xr',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Coulomb Logarithm $L_c$',color='m',fontsize=14) plt.title('Coulomb Logarithm: $L_c$ = $ln(R_{max}/R_{min})$',color='m',fontsize=16) yLimit=[min(clmbLog)-.1,max(clmbLog)+.1] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.4e-5,5.,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3155.savefig('picturesCMA_v7/coulombLogrthm_fig3155cma.png') print ('File "picturesCMA_v7/coulombLogrthm_fig3155cma.png" is written') # # matrix for electron with .5*timeStep_c: # matr_elec_c=guidingCenter_Matrix(.5*timeStep_c) # # matrix for ion with mass M_ion and .5*timeStep_c: # matr_ion_c=drift_Matrix(M_ion,.5*timeStep_c) larmorTurns = 10 nImpctPrmtr = 50 rhoMin = impctPrmtrMin rhoMax = np.zeros(nVion) log10rhoMin = math.log10(rhoMin) crrntImpctPrmtr = np.zeros(nImpctPrmtr) halfLintr = np.zeros((nImpctPrmtr,nVion)) pointAlongTrack = np.zeros((nImpctPrmtr,nVion)) totalPoints = 0 for i in range(nVion): rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! # print ('rhoMax(%d) = %e' % (i,rhoMax[i])) log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # print (' rhoCrrnt(%d) = %e' % (n,rhoCrrnt)) halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm timeHalfPath = halfLintr[n,i]/eVrmsLong # 0.5 time of interaction; sec numbLarmor = int(2.*timeHalfPath/T_larm) pointAlongTrack[n,i] = int(2.*timeHalfPath/timeStep_c) totalPoints += pointAlongTrack[n,i] # print (' %d: rhoCrrnt = %e, numbLarmor = %d, pointAlongTrack = %d' % \ # (n,rhoCrrnt,numbLarmor,pointAlongTrack[n,i])) # print ('totalPoints = %d' % totalPoints) totalPoints = int(totalPoints) nnTotalPoints=np.arange(0,2*totalPoints-1,1) arrayA=np.zeros(2*totalPoints) arrayB=np.zeros(2*totalPoints) bCrrnt_c = np.zeros(2*totalPoints) # # Variables for different testing: # b_gc = np.zeros(totalPoints) action_gc = np.zeros(totalPoints) C1test = np.zeros(totalPoints) C2test = np.zeros(totalPoints) C3test = np.zeros(totalPoints) b_ME = np.zeros(totalPoints) D1test = np.zeros(totalPoints) D2test = np.zeros(totalPoints) qTest = np.zeros(totalPoints) action_ME = np.zeros(totalPoints) actn_gc_ME_rel = np.zeros(totalPoints) indxTest = 0 rhoInit = np.zeros((nImpctPrmtr,nVion)) # # "Classical" approach: # deltaPx_c = np.zeros((nImpctPrmtr,nVion)) deltaPy_c = np.zeros((nImpctPrmtr,nVion)) deltaPz_c = np.zeros((nImpctPrmtr,nVion)) ionVx_c = np.zeros((nImpctPrmtr,nVion)) ionVy_c = np.zeros((nImpctPrmtr,nVion)) ionVz_c = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_c = np.zeros((nImpctPrmtr,nVion)) # # "Magnus Expand" approach: # deltaPx_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_m = np.zeros((nImpctPrmtr,nVion)) ionVx_m = np.zeros((nImpctPrmtr,nVion)) ionVy_m = np.zeros((nImpctPrmtr,nVion)) ionVz_m = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m = np.zeros((nImpctPrmtr,nVion)) # # Comparison of approaches (ratio deltaEnrgIon_c/deltaEnrgIon_m): # deltaPx_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_c_m = np.zeros((nImpctPrmtr,nVion)) dEion_c_m = np.zeros((nImpctPrmtr,nVion)) # # Factor to calculate transferred energy to ion # (the friction force is defined by this transfered energy): # deFactor = 0.5/M_ion # 1/g frctnForce_cSM = np.zeros(nVion) # integration, using Simpson method frctnForce_mSM = np.zeros(nVion) # integration, using Simpson method numberWrongSign_c=0 numberWrongSign_m=0 posSignDeltaEnrgIon_c=0 negSignDeltaEnrgIon_c=0 posSignDeltaEnrgIon_m=0 negSignDeltaEnrgIon_m=0 timeRun = np.zeros(nVion) totalTimeRun = 0. indx = 0 # ----------------- Main simulation --------------- # for i in range(nVion): # Taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) # Without taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) timeStart=os.times() for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # rhoInit[i*nImpctPrmtr+n] = rhoCrrnt rhoInit[n,i] = rhoCrrnt halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm z_ionCrrnt_c = np.zeros(6) # Zeroing out of vector for ion ("GC"-approach) z_elecCrrnt_c = np.zeros(6) # Zeroing out of vector for electron ("GC"-approach) z_ionCrrnt_m = np.zeros(6) # Zeroing out of vector for ion ("ME"-approach) z_elecCrrnt_m = np.zeros(6) # Zeroing out of vector for electron ("ME"-approach) # Zeroing out of "guiding center" vector for electron (both approaches): z_elecCrrnt_gc_c = np.zeros(6) z_elecCrrnt_gc_m = np.zeros(6) # Current values of transfered momemta # (second index numerates "Guiding Center", (if 0) and # "Magnus Expantion" (if 1) approaches: dpCrrnt = np.zeros((3,2)) # Intermediate arrays: dpIon_c = np.zeros(3) dpIon_m = np.zeros(3) dpElec_c = np.zeros(3) dpElec_m = np.zeros(3) # Current initial vector for electron: z_elecCrrnt_c[Ix] = rhoCrrnt # x, cm z_elecCrrnt_c[Iz] = -halfLintr[n,i] # z, cm z_elecCrrnt_c[Ipy] = m_elec*eVrmsTran # py, g*cm/sec z_elecCrrnt_c[Ipz] = m_elec*eVrmsLong # pz, g*cm/sec z_elecCrrnt_m[Ix] = rhoCrrnt # x, cm z_elecCrrnt_m[Iz] = -halfLintr[n,i] # z, cm z_elecCrrnt_m[Ipy] = m_elec*eVrmsTran # py, g*cm/sec z_elecCrrnt_m[Ipz] = m_elec*eVrmsLong # pz, g*cm/sec # Current initial vector for ion velocity for both approaches: ionVx_c[n,i] = VionTrnsv[i]*np.cos(phiVi) ionVy_c[n,i] = VionTrnsv[i]*np.sin(phiVi) ionVz_c[n,i] = VionLong[i] ionVx_m[n,i] = VionTrnsv[i]*np.cos(phiVi) ionVy_m[n,i] = VionTrnsv[i]*np.sin(phiVi) ionVz_m[n,i] = VionLong[i] # transfer to system of guiding center: z_elecCrrnt_gc_c=toGuidingCenter(z_elecCrrnt_c) z_elecCrrnt_gc_m=toGuidingCenter(z_elecCrrnt_m) # # Main loop along the each track: # for k in range(int(pointAlongTrack[n,i])): # # Dragging both particles through first half of the step of the track: # z_elecCrrnt_gc_c = np.dot(matr_elec_c,z_elecCrrnt_gc_c) # electron z_elecCrrnt_gc_m = np.dot(matr_elec_c,z_elecCrrnt_gc_m) # electron z_ionCrrnt_c = np.dot(matr_ion_c,z_ionCrrnt_c) # ion z_ionCrrnt_m = np.dot(matr_ion_c,z_ionCrrnt_m) # ion # transfer from system of guiding center: z_elecCrrnt_c=fromGuidingCenter(z_elecCrrnt_gc_c) z_elecCrrnt_m=fromGuidingCenter(z_elecCrrnt_gc_m) # Current distance between ion and electron; cm: bCrrnt_c[indx]=np.sqrt((z_ionCrrnt_c[0]-z_elecCrrnt_c[0])**2+ \ (z_ionCrrnt_c[2]-z_elecCrrnt_c[2])**2+ \ (z_ionCrrnt_c[4]-z_elecCrrnt_c[4])**2) # Current values of parameters A,B: arrayA[indx] = math.log10(ro_Larm/bCrrnt_c[indx]) arrayB[indx] = math.log10((q_elec**2/bCrrnt_c[indx])/kinEnergy) indx += 1 # # Dragging both particles through interaction during this step of track # (for both approaches): # # "Guiding Center": dpIon_c,dpElec_c,action,b_gc_c = \ guidingCenterCollision(z_elecCrrnt_gc_c,z_ionCrrnt_c,timeStep_c) # "Magnus Expantion": dpIon_m,dpElec_m,actionME,dy_gc_m,C1,C2,C3,b,D1,D2,q = \ MagnusExpansionCollision(z_elecCrrnt_gc_m,z_ionCrrnt_m,timeStep_c) # Save data for testing: b_gc[indxTest] = b_gc_c # "Guiding Center" approach action_gc[indxTest] = action # -"- -"- -"- -"- -"- -"- C1test[indxTest] = C1 # "Magnus expansion" approach C2test[indxTest] = abs(C2) # -"- -"- -"- -"- -"- -"- C3test[indxTest] = C3 # -"- -"- -"- -"- -"- -"- b_ME[indxTest] = b # -"- -"- -"- -"- -"- -"- D1test[indxTest] = D1 # -"- -"- -"- -"- -"- -"- D2test[indxTest] = D2 # -"- -"- -"- -"- -"- -"- qTest[indxTest] = q #-"- -"- -"- -"- -"- -"- action_ME[indxTest] = actionME #-"- -"- -"- -"- -"- -"- indxTest += 1 indxTestMax = indxTest # # Taking into account transfer of momentum for both particles: # if (dpTransferFlag == 1): for ic in range(3): z_ionCrrnt_c[2*ic+1] += dpIon_c[ic] z_elecCrrnt_c[2*ic+1] += dpElec_c[ic] z_ionCrrnt_m[2*ic+1] += dpIon_m[ic] z_elecCrrnt_m[2*ic+1] += dpElec_m[ic] # transfer to system of guiding center: z_elecCrrnt_gc_c=toGuidingCenter(z_elecCrrnt_c) z_elecCrrnt_gc_m=toGuidingCenter(z_elecCrrnt_m) # Accumulation of the transfered momenta to ion along the track for both approaches: for ic in range(3): # if i == 0: # print ('dpIon_c[%2d] = %20.14e, dpIon_m[%2d] = %20.14e' % \ # (ic,dpIon_c[ic],ic,dpIon_m[ic])) dpCrrnt[ic,0] += dpIon_c[ic] # "Guiding Center", g*cm/sec dpCrrnt[ic,1] += dpIon_m[ic] # "Magnus Expansion", g*cm/sec # # Ion's elocity change along the track - both approaches: # ionVx_c[n,i] += dpCrrnt[0,0]/M_ion # cm/sec ionVy_c[n,i] += dpCrrnt[1,0]/M_ion # cm/sec ionVz_c[n,i] += dpCrrnt[2,0]/M_ion # cm/sec ionVx_m[n,i] += dpCrrnt[0,1]/M_ion # cm/sec ionVy_m[n,i] += dpCrrnt[1,1]/M_ion # cm/sec ionVz_m[n,i] += dpCrrnt[2,1]/M_ion # cm/sec # # Dragging both particles through second half of the step of the track: # z_elecCrrnt_gc_c = np.dot(matr_elec_c,z_elecCrrnt_gc_c) # electron z_ionCrrnt_c = np.dot(matr_ion_c,z_ionCrrnt_c) # ion z_elecCrrnt_gc_m = np.dot(matr_elec_c,z_elecCrrnt_gc_m) # electron z_ionCrrnt_m = np.dot(matr_ion_c,z_ionCrrnt_m) # ion # transfer from system of guiding center: z_elecCrrnt_c=fromGuidingCenter(z_elecCrrnt_gc_c) z_elecCrrnt_m=fromGuidingCenter(z_elecCrrnt_gc_m) # Current distance between ion and electron; cm: bCrrnt_c[indx]=np.sqrt((z_ionCrrnt_c[0]-z_elecCrrnt_c[0])**2+ \ (z_ionCrrnt_c[2]-z_elecCrrnt_c[2])**2+ \ (z_ionCrrnt_c[4]-z_elecCrrnt_c[4])**2) # Current values of parameters A,B: arrayA[indx] = math.log10(ro_Larm/bCrrnt_c[indx]) arrayB[indx] = math.log10((q_elec**2/bCrrnt_c[indx])/kinEnergy) indx += 1 # # Transferred momenta along the track - "Guiding Center" approach: # deltaPx_c[n,i] = dpCrrnt[0,0] # dpx, g*cm/sec # if deltaPx_c[n,i] <= 0.: # print ('deltaPx_c[%2d,%2d] = %e, dpCrrnt[%2d,%2d] = %e' % \ # (n,i,deltaPx_c[n,i],n,i,dpCrrnt[0,0])) deltaPy_c[n,i] = dpCrrnt[1,0] # dpy, g*cm/sec # if deltaPy_c[n,i] <= 0.: # print ('deltaPy_c[%2d,%2d] = %e' % (n,i,deltaPy_c[n,i])) deltaPz_c[n,i] = dpCrrnt[2,0] # dpz, g*cm/sec # if deltaPz_c[n,i] <= 0.: # print ('deltaPz_c[%2d,%2d] = %e' % (n,i,deltaPz_c[n,i])) # Incorrect value: # deltaEnrgIon_c[n,i] = (dpCrrnt[0,0]**2+dpCrrnt[1,0]**2+dpCrrnt[2,0]**2)* \ # deFactor/eVtoErg # eV # Correct value: crrntDeltaEnrg = (dpCrrnt[0,0]*ionVx_c[n,i]+ \ dpCrrnt[1,0]*ionVy_c[n,i]+ \ dpCrrnt[2,0]*ionVz_c[n,i])*deFactor/eVtoErg # eV absDeltaEnrgIon_c = abs(crrntDeltaEnrg) if (crrntDeltaEnrg != 0.): signDeltaEnrgIon_c = crrntDeltaEnrg/abs(crrntDeltaEnrg) deltaEnrgIon_c[n,i] = crrntDeltaEnrg if (deltaEnrgIon_c[n,i] > 0.): posSignDeltaEnrgIon_c += 1 else: negSignDeltaEnrgIon_c += 1 # # Transferred momenta along the track - "Magnus expansion" approach: # deltaPx_m[n,i] = dpCrrnt[0,1] # dpx, g*cm/sec # if deltaPx_m[n,i] <= 0.: # print ('deltaPx_m[%2d,%2d] = %e' % (n,i,deltaPx_m[n,i])) deltaPy_m[n,i] = dpCrrnt[1,1] # if deltaPy_m[n,i] <= 0.: # print ('deltaPy_m[%2d,%2d] = %e' % (n,i,deltaPy_m[n,i])) deltaPz_m[n,i] = dpCrrnt[2,1] # if deltaPz_m[n,i] <= 0.: # print ('deltaPz_m[%2d,%2d] = %e' % (n,i,deltaPz_m[n,i])) # Incorrect value: # deltaEnrgIon_m[n,i] = (dpCrrnt[0,1]**2+dpCrrnt[1,1]**2+dpCrrnt[2,1]**2)* \ # deFactor/eVtoErg # eV # Correct value absolute value): crrntDeltaEnrg = (dpCrrnt[0,1]*ionVx_m[n,i]+ \ dpCrrnt[1,1]*ionVy_m[n,i]+ \ dpCrrnt[2,1]*ionVz_m[n,i])*deFactor/eVtoErg # eV absDeltaEnrgIon_m = abs(crrntDeltaEnrg) if (crrntDeltaEnrg != 0.): signDeltaEnrgIon_m = crrntDeltaEnrg/abs(crrntDeltaEnrg) deltaEnrgIon_m[n,i] = crrntDeltaEnrg if (deltaEnrgIon_m[n,i] > 0.): posSignDeltaEnrgIon_m += 1 else: negSignDeltaEnrgIon_m += 1 # # Comparison of the approaches (%): # if (deltaPx_m[n,i] != 0.): deltaPx_c_m[n,i] = 100.*(deltaPx_c[n,i]/deltaPx_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPx_m[%d,%d] = ' % (n,i)) if (deltaPy_m[n,i] != 0.): deltaPy_c_m[n,i] = 100.*(deltaPy_c[n,i]/deltaPy_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPy_m[%d,%d] = ' % (n,i)) if (deltaPz_m[n,i] != 0.): deltaPz_c_m[n,i] = 100.*(deltaPz_c[n,i]/deltaPz_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPz_m[%d,%d] = ' % (n,i)) if (deltaEnrgIon_m[n,i] != 0.): dEion_c_m[n,i] = 100.*(deltaEnrgIon_c[n,i]/deltaEnrgIon_m[n,i]-1.) else: print ('Bad value (=0.) of deltaEnrgIon_m[%d,%d] = ' % (n,i)) # # Integration using Simpson method: # if (n > 0): frctnForce_cSM[i] += pi*n_e*100.*(deltaEnrgIon_c[n,i]+deltaEnrgIon_c[n-1,i])* \ .5*(rhoInit[n,i]+rhoInit[n-1,i])* \ (rhoInit[n,i]-rhoInit[n-1,i]) # eV/m frctnForce_mSM[i] += pi*n_e*100.*(deltaEnrgIon_m[n,i]+deltaEnrgIon_m[n-1,i])* \ .5*(rhoInit[n,i]+rhoInit[n-1,i])* \ (rhoInit[n,i]-rhoInit[n-1,i]) # eV/m timeEnd = os.times() timeRun[i] = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec totalTimeRun += timeRun[i] print ('timeRun(%2d) = %6.3f seconds' % (i,timeRun[i])) print ('Total time (icluding Simpson integration) = %6.3f seconds' % totalTimeRun) print ('deltaEnrgIon_c: nPos=%d, nNeg=%d; deltaEnrgIon_m: nPos=%d, nNeg=%d' % \ (posSignDeltaEnrgIon_c,negSignDeltaEnrgIon_c, \ posSignDeltaEnrgIon_m,negSignDeltaEnrgIon_m)) # # Output for checking: # # print \ # ('n Px_c Px_m Py_c Py_m Pz_c Pz_m Pz_c_m') # for i in range(10,11,1): # for n in range(nImpctPrmtr): # print ('%d: %e %e %e %e %e %e %e' % \ # (n,deltaPx_c[n,i],deltaPx_m[n,i],deltaPy_c[n,i], \ # deltaPy_m[n,i],deltaPz_c[n,i],deltaPz_m[n,i],deltaPz_c_m[n,i])) # print ('n dEion_c dEion_m') # for i in range(10,11,1): # for n in range(nImpctPrmtr): # print ('%d: %e %e ' % (n,deltaEnrgIon_c[n,i],deltaEnrgIon_m[n,i])) # print ('indxTestMax = %d' % indxTestMax) # # Plotting of the tests: # nn=np.arange(0,indxTestMax-1,1) # # C1: # if (plotFigureFlag == 0): fig2020=plt.figure (2020) plt.plot(nn,C1test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C1$, $cm^2$',color='m',fontsize=16) plt.title('$C1=[x_{gc}^2+y_{gc}^2+z_e^2+2J/(m_e \cdot \Omega_e)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2020.savefig('picturesCMA_v7/magnusExpansion_C1_fig2020cma.png') print ('File "picturesCMA_v7/magnusExpansion_C1_fig2020cma.png" is written') # # C2: # if (plotFigureFlag == 0): fig2030=plt.figure (2030) plt.plot(nn,1.e-5*C2test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C2$, $\cdot 10^5$ $cm^2/s$',color='m',fontsize=16) plt.title('$C2=2\cdot[V_{ix}\cdot(x_i-x_{gc})+V_{iy}\cdot(y_i-y_{gc})+(V_{iz}-V_{ez})\cdot(z_i-z_e)]$', \ color='m',fontsize=14) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2030.savefig('picturesCMA_v7/magnusExpansion_C2_fig2030cma.png') print ('File "picturesCMA_v7/magnusExpansion_C2_fig2030cma.png" is written') # # C3: # if (plotFigureFlag == 0): fig2040=plt.figure (2040) plt.plot(nn,1e-11*C3test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C3$, $\cdot 10^{11}$ $cm^2/s^2$',color='m',fontsize=16) plt.title('$C3=V_{ix}^2+V_{iy}^2+(V_{iz}-V_{ez})^2$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2040.savefig('picturesCMA_v7/magnusExpansion_C3_fig2040cma.png') print ('File "picturesCMA_v7/magnusExpansion_C3_fig2040cma.png" is written') # # D1: # if (plotFigureFlag == 0): fig2025=plt.figure (2025) plt.plot(nn,1.e-5*D1test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^{-5}\cdot D1$, $cm/s$',color='m',fontsize=16) plt.title('$D1=(2C_3\cdot \Delta t+C_2)/b_{ME}$ $-$ $C_2/C_1^{0.5}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2025.savefig('picturesCMA_v7/magnusExpansion_D1_fig2025cma.png') print ('File "picturesCMA_v7/magnusExpansion_D1_fig2025cma.png" is written') # # D2: # if (plotFigureFlag == 0): fig2035=plt.figure (2035) plt.plot(nn,1.e4*D2test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^4\cdot D2$, $cm$',color='m',fontsize=16) plt.title('$D2=(2C_1+C_2\cdot \Delta t)/b_{ME}$ $-$ $2C_1^{0.5}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2035.savefig('picturesCMA_v7/magnusExpansion_D2_fig2035cma.png') print ('File "picturesCMA_v7/magnusExpansion_D2_fig2035cma.png" is written') # # Distance b_ME between particles for "ME" approach: # if (plotFigureFlag == 0): fig2050=plt.figure (2050) plt.plot(nn,b_ME[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{ME}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{ME}$ between Particles for "ME" Approach', color='m',fontsize=16) plt.text(3500,.4,'$b_{ME}=[C1+C2\cdot \Delta t +C3 \cdot \Delta t^2]^{0.5}$', \ color='m',fontsize=16) plt.text(33000,.36,('$(\Delta t=%8.2e$ $s)$' % timeStep_c),color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2050.savefig('picturesCMA_v7/particleDistance_me_fig2050cma.png') print ('File "picturesCMA_v7/particleDistance_me_fig2050cma.png" is written') # # Distance b_gc between particles for "GC" approach: # if (plotFigureFlag == 0): fig2055=plt.figure (2055) plt.plot(nn,b_gc[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{GC}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{GC}$ between Particles for "GC" Approach', color='m',fontsize=16) plt.text(0,.4,'$b_{GC}=[(x_i-x_{gc})^2+(y_i-y_{gc})^2+$',color='m',fontsize=16) plt.text(55500,.36,'$+(z_i-z_e)^2+2J/(m_e \cdot \Omega_e)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2055.savefig('picturesCMA/particleDistance_gc_fig2055cma.png') print ('File "picturesCMA/particleDistance_gc_fig2055cma.png" is written') # # Comparison of bCrrnt_c from "Guiding Center" with bTest from # "Magnus expansion" approaches: # bCrrnt_cTest = np.zeros(indxTestMax) bCrrnt_cTestRel = np.zeros(indxTestMax) b_gc_ME_rel = np.zeros(indxTestMax) for k in range(indxTestMax): bCrrnt_cTest[k] = .5*(bCrrnt_c[2*k]+bCrrnt_c[2*k+1]) # bCrrnt_cTestRel[k] = bCrrnt_cTest[k]/b_ME[k] b_gc_ME_rel[k] = b_gc[k]/b_ME[k] actn_gc_ME_rel[k] = 1.e7*(action_gc[k]/action_ME[k]-1.) if (plotFigureFlag == 0): fig2060=plt.figure (2060) # plt.semilogy(nn,bCrrnt_cTest[0:indxTestMax-1],'.r') plt.plot(nn,bCrrnt_cTest[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('Test $b_{crrntTest}$, $cm$',color='m',fontsize=16) plt.title('Test $b_{crrntTest} = .5 \cdot [b_{crrnt}(k)+b_{crrnt}(k+1)]$',color='m', \ fontsize=16) plt.xlim([-5000,indxTestMax+5000]) # plt.ylim([.9*min(bCrrnt_cTest),1.1*max(bCrrnt_cTest)]) plt.grid(True) # # Ratio b_gc/b_ME (absolute value): # if (plotFigureFlag == 0): fig2070=plt.figure (2070) # plt.semilogy(nn,b_gc_ME_rel[0:indxTestMax-1],'.r') plt.plot(nn,b_gc_ME_rel[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{GC}/b_{ME}$',color='m',fontsize=16) plt.title('Comparison of Distances $b_{GC}$ and $b_{ME}$ between Particles',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) # plt.ylim([.9*min(b_gc_ME_rel),1.1*max(b_gc_ME_rel)]) plt.grid(True) if (saveFilesFlag == 1): fig2070.savefig('picturesCMA_v7/particleDistanceComprsn_gc_me_fig2070cma.png') print ('File "picturesCMA_v7/particleDistanceComprsn_gc_me_fig2070cma.png" is written') # # Ratio b_gc/b_ME (relative value): # if (plotFigureFlag == 0): fig2080=plt.figure (2080) # plt.semilogy(nn,actn_gc_ME_rel[0:indxTestMax-1],'.r') plt.plot(nn,actn_gc_ME_rel[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^7\cdot (J_{GC}/J_{ME}$ $-$ $1)$',color='m',fontsize=16) plt.title('Comparison of Actions $J_{GC}$ and $J_{ME}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.ylim([.99*min(actn_gc_ME_rel),1.01*max(actn_gc_ME_rel)]) plt.grid(True) if (saveFilesFlag == 1): fig2080.savefig('picturesCMA_v7/actionComprsn_gc_me_fig2080cma.png') print ('File "picturesCMA_v7/actionComprsn_gc_me_fig2080cma.png" is written') # # Total length of interaction (1/2 of value): # nn=np.arange(0,nVion*nImpctPrmtr,1) halfLintrTest = np.zeros(nVion*nImpctPrmtr) for i in range(nVion): for n in range(nImpctPrmtr): halfLintrTest[nVion*i+n] = halfLintr[i,n] if (plotFigureFlag == 0): fig2090=plt.figure (2090) plt.semilogy(nn,halfLintrTest,'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$0.5 \cdot L_{Intrctn}$, $cm$',color='m',fontsize=16) plt.title('Total Length of Interaction: $L_{Intrctn}=2 \cdot [R_{max}^2-rho_{Init}^2)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-100,nVion*nImpctPrmtr+100]) plt.ylim([.9*min(halfLintrTest),1.1*max(halfLintrTest)]) plt.grid(True) if (saveFilesFlag == 1): fig2090.savefig('picturesCMA/totalLengthIntrsctn_fig2090cma.png') print ('File "picturesCMA/totalLengthIntrsctn_fig2090cma.png" is written') #=================================================== # # There is fitting for correct values of deltaEnrgIon_m # #=================================================== # # Fitting for figures with deltaEnrgIon_m (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # # Fittied function: # # |deltaEnrgIon| = 10^fitA * rho^fitB, # so that # # log10(|deltaEnrgIon|) = fitB*log10(rho) + fitA # # So, the dimension of expression (10^fitA * rho^fitB) is the same # as deltaEnrgIon, i.e. eV # timeStart = os.times() fitA_dEion = np.zeros(nVion) # dimensionless fitB_dEion = np.zeros(nVion) # dimensionless rhoInitFit_dEion = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m_fit = np.zeros((nImpctPrmtr,nVion)) funcHi2_dEion = np.zeros(nVion) fitA_dEion,fitB_dEion,funcHi2_dEion,rhoInitFit_dEion, deltaEnrgIon_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m) dPosA_dEion = np.zeros(nVion) dNegA_dEion = np.zeros(nVion) dPosA_dEion,dNegA_dEion = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m_fit,fitA_dEion,fitB_dEion,funcHi2_dEion,1,2) dPosB_dEion = np.zeros(nVion) dNegB_dEion = np.zeros(nVion) dPosB_dEion,dNegB_dEion = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m_fit,fitA_dEion,fitB_dEion,funcHi2_dEion,2,2) # print ('Fitting for deltaEion:') # for i in range(nVion): # print ('i=%2d: fitA_dEion = %e (+%e,-%e), fitB_dEion = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_dEion[i],dPosA_dEion[i],dNegA_dEion[i], \ # fitB_dEion[i],dPosB_dEion[i],dNegB_dEion[i],funcHi2_dEion[i])) # # Analytical Integration of the fitted dependence 10**A*rho**B. # # For this dependece on rho: # # Friction force = 10**A*n_e*integral_rhoMin^rhoMax (rho**B*rho)*dRho = # = 10**A*n_e/(B+2)*[rhoMax**(B+2)-rhoMax**(B+2)] (dimension=eV/cm): # frctnForce_AI = np.zeros(nVion) for i in range(nVion): factorA1 = math.pow(10.,fitA_dEion[i]) factorB1 = 2.+fitB_dEion[i] frctnForce_AI[i] = 2.*pi*n_e*100.*factorA1/factorB1* \ (math.pow(impctPrmtrMax[i],factorB1)- \ math.pow(impctPrmtrMin,factorB1)) # eV/m timeEnd = os.times() timeFitting = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec print ('Time of integration = %6.3f seconds' % timeFitting) # # Dependences of transferred energy to ion on ion velocity for # different initial impact parameters: # rhoSlctd = [.004,.02,.06,.1] nRhoSlctd = len(rhoSlctd) deltaEnrgIon_dpnd_Vi = np.zeros((nRhoSlctd,nVion)) npStart = np.zeros((nRhoSlctd,), dtype=int) for k in range(nRhoSlctd): slctdFlag = 0 for i in range(nVion): if (slctdFlag == 0): for n in range(nImpctPrmtr): if (rhoInit[n,i] >= rhoSlctd[k]): npStart[k] = i slctdFlag = 1 break for k in range(nRhoSlctd): for i in range(npStart[k],nVion,1): factorA = math.pow(10.,fitA_dEion[i]) deltaEnrgIon_dpnd_Vi[k,i] = factorA*math.pow(rhoSlctd[k],fitB_dEion[i]) # print ('deltaEnrgIon_dpnd_Vi[%d,%d] = %e' %(k,i,deltaEnrgIon_dpnd_Vi[k,i])) #=================================================== # # There is fitting of deltaPz_m (these values > 0 always) !!! # #=================================================== # # Fitting for figures with deltaPz_m (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # # Fittied function: # # deltaPz_m = 10^fitA_pz * rho^fitB_pz, # so that # # log10(deltaPz_m) = fitB_pz*log10(rho) + fitA_pz # # So, the dimension of expression (10^fitA_pz * rho^fitB_pz) is the same # as deltaPz_m, i.e. eV # fitA_pz = np.zeros(nVion) # dimensionless fitB_pz = np.zeros(nVion) # dimensionless rhoInitFit_pz = np.zeros((nImpctPrmtr,nVion)) deltaPz_m_fit = np.zeros((nImpctPrmtr,nVion)) fitA_pz,fitB_pz,funcHi2_pz,rhoInitFit_pz, deltaPz_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaPz_m) dPosA_pz = np.zeros(nVion) dNegA_pz = np.zeros(nVion) dPosA_pz,dNegA_pz = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPz_m_fit,fitA_pz,fitB_pz,funcHi2_pz,1,2) dPosB_pz = np.zeros(nVion) dNegB_pz = np.zeros(nVion) dPosB_pz,dNegB_pz = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPz_m_fit,fitA_pz,fitB_pz,funcHi2_pz,2,2) # print ('Fitting fordeltaPz_m:') # for i in range(nVion): # print ('i=%2d: fitA_pz = %e (+%e,-%e), fitB_pz = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_pz[i],dPosA_pz[i],dNegA_pz[i], \ # fitB_pz[i],dPosB_pz[i],dNegB_pz[i],funcHi2_pz[i])) # print ('<fitA_pz> = %e +- %e' % (mean(fitA_pz),mean(dNegA_pz))) # print ('<fitB_pz> = %e +- %e' % (mean(fitB_pz),mean(dNegB_pz))) #=================================================== # # There is fitting of deltaPx_m (these values > 0 always) !!! # #=================================================== # rhoInitFit_px = np.zeros((nImpctPrmtr,nVion)) deltaPx_m_fit = np.zeros((nImpctPrmtr,nVion)) funcHi2__px = np.zeros(nVion) fitA_px = np.zeros(nVion) # dimensionless fitB_px = np.zeros(nVion) # dimensionless fitA_px,fitB_px,funcHi2_px,rhoInitFit_px, deltaPx_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaPx_m) dPosA_px = np.zeros(nVion) dNegA_px = np.zeros(nVion) dPosA_px,dNegA_px = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPx_m_fit,fitA_px,fitB_px,funcHi2_px,1,2) dPosB_px = np.zeros(nVion) dNegB_px = np.zeros(nVion) dPosB_px,dNegB_px = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPx_m_fit,fitA_px,fitB_px,funcHi2_px,2,2) # print ('Fitting for deltaPx_m:') # for i in range(nVion): # print ('i=%2d: fitA_px = %e (+%e,-%e), fitB_px = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_px[i],dPosA_px[i],dNegA_px[i], \ # fitB_px[i],dPosB_px[i],dNegB_px[i],funcHi2_px[i])) xLimit = [1.015*np.log10(VionRel[0]),.95*np.log10(VionRel[nVion-1])] yLimMin = 0. yLimMax = 10.*min(fitA_pz) if (min(fitA_pz) > 0): yLimMin = 10.*max(fitA_pz) yLimMax = 0. for i in range(nVion): if (fitA_pz[i] - dNegA_pz[i]) < yLimMin: yLimMin = fitA_pz[i] - dNegA_pz[i] if (fitA_pz[i] + dPosA_pz[i]) > yLimMax: yLimMax = fitA_pz[i] + dPosA_pz[i] # print ('Exponent A (pz): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.25,yLimMax+.25] if (plotFigureFlag == 0): fig3000=plt.figure (3000) plt.errorbar(np.log10(VionRel),fitA_pz,yerr=[dNegA_pz,dPosA_pz],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $A$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_z$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-26.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-4.0,-28.,('<A>=%7.3f $\pm$ %5.3f' % (mean(fitA_pz),mean(dNegA_pz))), \ color='r',fontsize=16) # plt.text(-3.25,-29.65,('$-$%5.3f' % (mean(dNegA_pz))),color='r',fontsize=12) # plt.text(-3.25,-29.15,('$+$%5.3f' % (mean(dPosA_pz))),color='r',fontsize=12) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-28.25,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-28.25,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3000.savefig('picturesCMA_v7/fitA_dPz_fig3000cma.png') print ('File "picturesCMA_v7/fitA_dPz_fig3000cma.png" is written') yLimMin = 0. yLimMax = 10.*min(fitB_pz) if (min(fitB_pz) > 0): yLimMin = 10.*max(fitB_pz) yLimMax = 0. for i in range(nVion): if (fitB_pz[i] - dNegB_pz[i]) < yLimMin: yLimMin = fitB_pz[i] - dNegB_pz[i] if (fitB_pz[i] + dPosB_pz[i]) > yLimMax: yLimMax = fitB_pz[i] + dPosB_pz[i] # print ('Exponent B (pz): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.1,yLimMax+.1] if (plotFigureFlag == 0): fig3010=plt.figure (3010) plt.errorbar(np.log10(VionRel),fitB_pz,yerr=[dNegB_pz,dPosB_pz],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $B$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_z$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-.87,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-3.9,-1.55,('<B>=%6.3f $\pm$ %5.3f' % (mean(fitB_pz),mean(dNegB_pz))), \ color='r',fontsize=16) # plt.text(-2.85,-2.25,('$-$%5.3f' % (mean(dNegB_pz))),color='r',fontsize=12) # plt.text(-2.85,-1.75,('$+$%5.3f' % (mean(dPosB_pz))),color='r',fontsize=12) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-1.74,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-1.74,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3010.savefig('picturesCMA_v7/fitB_dPz_fig3010cma.png') print ('File "picturesCMA_v7/fitB_dPz_fig3010cma.png" is written') yLimMin = 0. yLimMax = 10.*min(fitA_px) if (min(fitA_px) > 0): yLimMin = 10.*max(fitA_px) yLimMax = 0. for i in range(nVion): if (fitA_px[i] - dNegA_px[i]) < yLimMin: yLimMin = fitA_px[i] - dNegA_px[i] if (fitA_px[i] + dPosA_px[i]) > yLimMax: yLimMax = fitA_px[i] + dPosA_px[i] # print ('Exponent A (px): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.15,yLimMax+.15] if (plotFigureFlag == 0): fig3020=plt.figure (3020) plt.errorbar(np.log10(VionRel),fitA_px,yerr=[dNegA_px,dPosA_px],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $A$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_x$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-24.2,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-3.9,-24.8,('<A>=%6.3f $\pm$ %5.3f' % (mean(fitA_px),mean(dNegA_px))), \ color='r',fontsize=16) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-25.05,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-25.05,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3020.savefig('picturesCMA_v7/fitA_dPx_fig3020cma.png') print ('File "picturesCMA_v7/fitA_dPx_fig3020cma.png" is written') yLimMin = 0. yLimMax = 10.*min(fitB_px) if (min(fitB_px) > 0): yLimMin = 10.*max(fitB_px) yLimMax = 0. for i in range(nVion): if (fitB_px[i] - dNegB_px[i]) < yLimMin: yLimMin = fitB_px[i] - dNegB_px[i] if (fitB_px[i] + dPosB_px[i]) > yLimMax: yLimMax = fitB_px[i] + dPosB_px[i] # print ('Exponent B (px): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.05,yLimMax+.05] if (plotFigureFlag == 0): fig3030=plt.figure (3030) plt.errorbar(np.log10(VionRel),fitB_px,yerr=[dNegB_px,dPosB_px],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $B$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_x$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-.95,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-3.9,-1.15,('<B>=%6.3f $\pm$ %5.3f' % (mean(fitB_px),mean(dNegB_px))), \ color='r',fontsize=16) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-1.22,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-1.22,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3030.savefig('picturesCMA_v7/fitB_dPx_fig3030cma.png') print ('File "picturesCMA/_v7/fitB_dPx_fig3030cma.png" is written') # plt.show() # sys.exit() # #======================================================= # # Main plotting: # if (plotFigureFlag == 0): fig110=plt.figure (110) plt.plot(arrayA,arrayB,'.r') plt.xlabel('$A=log_{10}(q_e^2/b/E_{kin})$',color='m',fontsize=16) plt.ylabel('$B=log_{10}(R_{Larm}/b)$',color='m',fontsize=16) plt.title('Map of Parameters A,B', color='m',fontsize=16) # plt.xlim([minA,maxA]) # plt.ylim([minB,maxB]) plt.grid(True) if (saveFilesFlag == 1): fig110.savefig('picturesCMA/mapA-B_fig110cma.png') print ('File "picturesCMA/mapA-B_fig110cma.png" is written') if (plotFigureFlag == 0): fig20=plt.figure (20) plt.plot(nnTotalPoints,bCrrnt_c[0:2*totalPoints-1],'.r') # plt.semilogy(nn,bCrrnt_c[0:2*totalPoints-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{Lab.Sys}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{Lab.Sys}$ between Particles in Lab.System', color='m',fontsize=16) plt.xlim([-5000,2*totalPoints+5000]) # plt.xlim([0,2000]) plt.grid(True) if (saveFilesFlag == 1): fig20.savefig('picturesCMA/particleDistance_ls_fig20cma.png') print ('File "picturesCMA/particleDistance_ls_fig20cma.png" is written') if (plotFigureFlag == 0): fig30=plt.figure (30) plt.plot(nnTotalPoints,arrayA[0:2*totalPoints-1],'.r', \ nnTotalPoints,arrayB[0:2*totalPoints-1],'.b') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$A$, $B$',color='m',fontsize=16) plt.title('$A=log_{10}(q_e^2/b/E_{kin})$, $B=log_{10}(R_{Larm}/b)$',color='m',fontsize=16) plt.xlim([-5000,2*totalPoints+5000]) # plt.ylim([minB,maxB]) plt.grid(True) plt.legend(['A','B'],loc='lower left',fontsize=14) if (saveFilesFlag == 1): fig30.savefig('picturesCMA/parametersA-B_fig30cma.png') print ('File "picturesCMA/parametersA-B_fig30cma.png" is written') xVionRel = np.zeros((nImpctPrmtr,nVion)) for i in range(nVion): for n in range(nImpctPrmtr): xVionRel[n,i] = VionRel[i] if (plotFigureFlag == 0): fig40=plt.figure (40) for i in range(nVion): plt.semilogx(xVionRel[0:nImpctPrmtr,i],rhoInit[0:nImpctPrmtr,i],'.r') plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$rho_{Init}$, cm',color='m',fontsize=16) plt.title('Subdivisions for $rho_{Init}$ for Integration: Simpson Method', \ color='m',fontsize=16) plt.grid(True) yLimit=[0.,.405] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,-.026,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.9e-5,.05,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig40.savefig('picturesCMA/initialImpactParameter_SM_fig40cma.png') print ('File "picturesCMA/initialImpactParameter_SM_fig40cma.png" is written') if (plotFigureFlag == 0): fig45=plt.figure (45) for i in range(nVion): plt.loglog(xVionRel[0:nImpctPrmtr,i],rhoInit[0:nImpctPrmtr,i],'.r') plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$rho_{Init}$, cm',color='m',fontsize=16) plt.title('Subdivisions for $rho_{Init}$ for Integration: Simpson Method', \ color='m',fontsize=16) plt.grid(True) yLimit=[1.3e-3,.45] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,.15,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.9e-5,.15,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig45.savefig('picturesCMA/initialImpactParameter_SM_fig45cma.png') print ('File "picturesCMA/initialImpactParameter_SM_fig45cma.png" is written') ''' # # Figure compares calculated values of of deltaEnrgIon (their dependences # on impact parameter for different ion velocities) for two approaches # (figure numbrFigures[0]+1 is the same and taking into account positive and # negative values of the deltaEnrgIon_c for guiding center approach): # VionCrrnt = V0*VionRel[0] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (50) plt.loglog(rhoInit[0:nImpctPrmtr-1,0],deltaEnrgIon_c[0:nImpctPrmtr-1,0],'-xr', \ rhoInit[0:nImpctPrmtr-1,0],deltaEnrgIon_m[0:nImpctPrmtr-1,0],'--or', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,0],1.05*rhoInit[nImpctPrmtr-1,0]]) plt.grid(True) xRhoInitPx_c = np.zeros(nImpctPrmtr*nVion) xRhoInitPx_m = np.zeros(nImpctPrmtr*nVion) yDeltaPx_c = np.zeros(nImpctPrmtr*nVion) yDeltaPx_m = np.zeros(nImpctPrmtr*nVion) indx_c = 0 indx_m = 0 for n in range(nImpctPrmtr): if deltaPx_c[n,0] > 0.: xRhoInitPx_c[indx_c] = rhoInit[n,0] yDeltaPx_c[indx_c] = deltaPx_c[n,0] # print ('n_c=%2d: xRhoInitPx_c = %e, yDeltaPx_c = %e' % \ # (indx_c,xRhoInitPx_c[indx_c],yDeltaPx_c[indx_c])) indx_c += 1 if deltaPx_m[n,0] > 0.: xRhoInitPx_m[indx_c] = rhoInit[n,0] yDeltaPx_m[indx_c] = deltaPx_m[n,0] # print ('n_m=%2d: xRhoInitPx_m = %e, yDeltaPx_m = %e' % \ # (indx_m,xRhoInitPx_m[indx_m],yDeltaPx_m[indx_m])) indx_m += 1 maxIndx_c = indx_c-1 maxIndx_m = indx_m-1 # print ('maxIndx_c = %d, maxIndx_m = %d' % (maxIndx_c,maxIndx_m)) # # Figure compares calculated values of of deltaPx (their dependences # on impact parameter for different ion velocities) for two approaches # (figure numbrFigures[0]+2 is the same and taking into account positive and # negative values of the deltaPx_c for guiding center approach): # plt.figure (51) plt.loglog(xRhoInitPx_c[0:maxIndx_c],yDeltaPx_c[0:maxIndx_c],'-xr', \ xRhoInitPx_m[0:maxIndx_m],yDeltaPx_m[0:maxIndx_m],'--or', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$, $cm$', \ color='m',fontsize=16) plt.ylabel('$\Delta P_{ix}$, $g\cdot cm/s$', color='m',fontsize=16) titleHeader = 'Transferred Momenta $\Delta P_{ix}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*min(xRhoInitPx_c[0],xRhoInitPx_m[0]), \ 1.05*max(xRhoInitPx_c[maxIndx_c],xRhoInitPx_m[maxIndx_m])]) plt.grid(True) xRhoInitPz_c = np.zeros(nImpctPrmtr*nVion) xRhoInitPz_m = np.zeros(nImpctPrmtr*nVion) yDeltaPz_c = np.zeros(nImpctPrmtr*nVion) yDeltaPz_m = np.zeros(nImpctPrmtr*nVion) indx_c = 0 indx_m = 0 for n in range(nImpctPrmtr): if deltaPz_c[n,0] > 0.: xRhoInitPz_c[indx_c] = rhoInit[n,0] yDeltaPz_c[indx_c] = deltaPz_c[n,0] # print ('n_c=%2d: xRhoInitPz_c = %e, yDeltaPz_c = %e' % \ # (indx_c,xRhoInitPz_c[indx_c],yDeltaPz_c[indx_c])) indx_c += 1 if deltaPz_m[n,0] > 0.: xRhoInitPz_m[indx_c] = rhoInit[n,0] yDeltaPz_m[indx_c] = deltaPz_m[n,0] # print ('n_m=%2d: xRhoInitPz_m = %e, yDeltaPz_m = %e' % \ # (indx_m,xRhoInitPz_m[indx_m],yDeltaPz_m[indx_m])) indx_m += 1 maxIndx_c = indx_c-1 maxIndx_m = indx_m-1 # print ('maxIndx_c = %d, maxIndx_m = %d' % (maxIndx_c,maxIndx_m)) # # Figure compares calculated values of of deltaPz (their dependences # on impact parameter for different ion velocities) for two approaches # (figure numbrFigures[0]+5): # plt.figure (53) plt.loglog(xRhoInitPz_c[0:maxIndx_c],yDeltaPz_c[0:maxIndx_c],'-xr', \ xRhoInitPz_m[0:maxIndx_m],yDeltaPz_m[0:maxIndx_m],'--or', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$, $cm$', \ color='m',fontsize=16) plt.ylabel('$\Delta P_{iz}$, $g\cdot cm/s$', color='m',fontsize=16) titleHeader = 'Transferred Momenta $\Delta P_{iz}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*min(xRhoInitPz_c[0],xRhoInitPz_m[0]), \ 1.05*max(xRhoInitPz_c[maxIndx_c],xRhoInitPz_m[maxIndx_m])]) plt.grid(True) ''' # # Figures 60,70,80, and 90 compare calculated values of of deltaEnrgIon # (their dependences on impact parameter for first values of ion velocities) # for two approaches (figure numbrFigures[*]+1 is the same and taking into # account positive and negative values of the deltaEnrgIon_c for guiding center approach): # ''' VionCrrnt = V0*VionRel[1] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (60) plt.loglog(rhoInit[0:nImpctPrmtr-1,1],deltaEnrgIon_c[0:nImpctPrmtr-1,1],'-xb', \ rhoInit[0:nImpctPrmtr-1,1],deltaEnrgIon_m[0:nImpctPrmtr-1,1],'--ob', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', \ color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,1],1.05*rhoInit[nImpctPrmtr-1,1]]) plt.grid(True) VionCrrnt = V0*VionRel[2] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (70) plt.loglog(rhoInit[0:nImpctPrmtr-1,2],deltaEnrgIon_c[0:nImpctPrmtr-1,2],'-xg', \ rhoInit[0:nImpctPrmtr-1,2],deltaEnrgIon_m[0:nImpctPrmtr-1,2],'--og', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', \ color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,2],1.05*rhoInit[nImpctPrmtr-1,2]]) plt.grid(True) VionCrrnt = V0*VionRel[3] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (80) plt.loglog(rhoInit[0:nImpctPrmtr-1,3],deltaEnrgIon_c[0:nImpctPrmtr-1,3],'-xk', \ rhoInit[0:nImpctPrmtr-1,3],deltaEnrgIon_m[0:nImpctPrmtr-1,3],'--ok', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', \ color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,3],1.05*rhoInit[nImpctPrmtr-2,3]]) plt.grid(True) VionCrrnt = V0*VionRel[4] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (90) plt.loglog(rhoInit[0:nImpctPrmtr-1,4],deltaEnrgIon_c[0:nImpctPrmtr-1,4],'-xm', \ rhoInit[0:nImpctPrmtr-1,4],deltaEnrgIon_m[0:nImpctPrmtr-1,4],'--om', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', \ color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,4],1.05*rhoInit[nImpctPrmtr-1,4]]) plt.grid(True) ''' # # Dependences of transferred energy to ion and different momenta on initial # impact parameter for different ion velocity (calculated and fitted values): # indxFigures = [0,9,12,18,19,23,27,29,31,34,39,49] numbrFigures = [500,600,630,660,700,730,760,800,830,860,900,1000] xPos = [.00218,.0022,.0024,.0027,.0026,.00265,.00265,.00265,.00265,.0028,.0029,.0035] yPos = [6.4e-9,6.7e-9,6.4e-9,5.9e-9,6.2e-9,5.6e-9,5.8e-9,6.3e-9,5.8e-9,5.9e-9,5.8e-9,4.7e-9] if (plotFigureFlag == 0): for i in range(12): VionCrrnt = V0*VionRel[indxFigures[i]] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) # # Pz: # posPz_c = np.zeros((12,nImpctPrmtr)) rhoPosPz_c = np.zeros((12,nImpctPrmtr)) negPz_c = np.zeros((12,nImpctPrmtr)) rhoNegPz_c = np.zeros((12,nImpctPrmtr)) posPz_m = np.zeros((12,nImpctPrmtr)) rhoPosPz_m = np.zeros((12,nImpctPrmtr)) negPz_m = np.zeros((12,nImpctPrmtr)) rhoNegPz_m = np.zeros((12,nImpctPrmtr)) nPosPz_c = array('i',[0]*12) nNegPz_c = array('i',[0]*12) nPosPz_m = array('i',[0]*12) nNegPz_m = array('i',[0]*12) for i in range(12): nPosPz_c[i] = -1 nNegPz_c[i] = -1 nPosPz_m[i] = -1 nNegPz_m[i] = -1 for k in range(nImpctPrmtr): if (deltaPz_c[k,indxFigures[i]] > 0): nPosPz_c[i] += 1 rhoPosPz_c[i,nPosPz_c[i]] = rhoInit[k,indxFigures[i]] posPz_c[i,nPosPz_c[i]] = deltaPz_c[k,indxFigures[i]] if (deltaPz_c[k,indxFigures[i]] <= 0): nNegPz_c[i] += 1 rhoNegPz_c[i,nNegPz_c[i]] = rhoInit[k,indxFigures[i]] negPz_c[i,nNegPz_c[i]] = abs(deltaPz_c[k,indxFigures[i]]) if (deltaPz_m[k,indxFigures[i]] > 0): nPosPz_m[i] += 1 rhoPosPz_m[i,nPosPz_m[i]] = rhoInit[k,indxFigures[i]] posPz_m[i,nPosPz_m[i]] = deltaPz_m[k,indxFigures[i]] if (deltaPz_m[k,indxFigures[i]] <= 0): nNegPz_m[i] += 1 rhoNegPz_m[i,nNegPz_m[i]] = rhoInit[k,indxFigures[i]] negPz_m[i,nNegPz_m[i]] = abs(deltaPz_m[k,indxFigures[i]]) # print ('i=%d: nPosPz_c=%d, nNegPz_c=%d, nPosPz_m=%d, nNegPz_m=%d' % \ # (i,nPosPz_c[i],nNegPz_c[i],nPosPz_m[i],nNegPz_m[i])) # # Figures to compare calculated values of of deltaPz (their dependences # on impact parameter for different ion velocities) for two approaches # if (plotFigureFlag == 0): for i in range(12): VionCrrnt = V0*VionRel[indxFigures[i]] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) helpValue_c = int(nPosPz_c[i]) helpValue_m = int(nPosPz_m[i]) figCrrnt = plt.figure(numbrFigures[i]+1) plt.loglog(rhoPosPz_c[i,0:nPosPz_c[i]],posPz_c[i,0:nPosPz_c[i]] ,'xb', \ rhoNegPz_c[i,0:nPosPz_c[i]],negPz_c[i,0:nPosPz_c[i]] ,'ob', \ rhoPosPz_m[i,0:nPosPz_m[i]],posPz_m[i,0:nPosPz_m[i]] ,'xr', \ rhoNegPz_m[i,0:nPosPz_m[i]],negPz_m[i,0:nPosPz_m[i]] ,'or',linewidth=2) plt.ylabel('$|\Delta P_z|$, $eV$', color='m',fontsize=14) plt.legend(['$\Delta P_z > 0$ (CG)','$\Delta P_z < 0$ (CG)', \ '$\Delta P_z > 0$ (ME)','$\Delta P_z < 0$ (ME)'], \ loc='lower left',fontsize=10) plt.xlabel('Initial Impact Parameter $rho_{Init}$, $cm$',color='m',fontsize=14) titleHeader = 'Transferred Momenta $\Delta P_z$ to Single Ion:' titleHeader += ' $V_{ion}=%3.1f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=14) plt.xlim([.95*rhoInit[0,indxFigures[i]],1.05*rhoInit[nImpctPrmtr-1,indxFigures[i]]]) # plt.text(xPos[i],yPos[i],'Fitted $\Delta E_{ion}$ are proportional to $rho_{Init}^{-B}$', \ # color='m',fontsize=16) plt.grid(True) if (saveFilesFlag == 1): fileName = 'picturesCMA/deltaEtransf_indxPlot-'+str(indxFigures[i])+'_fig' fileName += str(numbrFigures[i])+'cma.png' figCrrnt.savefig(fileName) print ('File "',fileName,'" is written') # # Px: # posPx_c = np.zeros((12,nImpctPrmtr)) rhoPosPx_c = np.zeros((12,nImpctPrmtr)) negPx_c = np.zeros((12,nImpctPrmtr)) rhoNegPx_c = np.zeros((12,nImpctPrmtr)) posPx_m = np.zeros((12,nImpctPrmtr)) rhoPosPx_m = np.zeros((12,nImpctPrmtr)) negPx_m = np.zeros((12,nImpctPrmtr)) rhoNegPx_m = np.zeros((12,nImpctPrmtr)) nPosPx_c = array('i',[0]*12) nNegPx_c = array('i',[0]*12) nPosPx_m = array('i',[0]*12) nNegPx_m = array('i',[0]*12) for i in range(12): nPosPx_c[i] = -1 nNegPx_c[i] = -1 nPosPx_m[i] = -1 nNegPx_m[i] = -1 for k in range(nImpctPrmtr): if (deltaPx_c[k,indxFigures[i]] > 0): nPosPx_c[i] += 1 rhoPosPx_c[i,nPosPx_c[i]] = rhoInit[k,indxFigures[i]] posPx_c[i,nPosPx_c[i]] = deltaPx_c[k,indxFigures[i]] if (deltaPx_c[k,indxFigures[i]] <= 0): nNegPx_c[i] += 1 rhoNegPx_c[i,nRegPx_c[i]] = rhoInit[k,indxFigures[i]] negPx_c[i,nRegPx_c[i]] = abs(deltaPx_c[k,indxFigures[i]]) if (deltaPx_m[k,indxFigures[i]] > 0): nPosPx_m[i] += 1 rhoPosPx_m[i,nPosPx_m[i]] = rhoInit[k,indxFigures[i]] posPx_m[i,nPosPx_m[i]] = deltaPx_m[k,indxFigures[i]] if (deltaPx_m[k,indxFigures[i]] <= 0): nNegPx_m[i] += 1 rhoNegPx_m[i,nNegPx_m[i]] = rhoInit[k,indxFigures[i]] negPx_m[i,nNegPx_m[i]] = abs(deltaPx_m[k,indxFigures[i]]) # print ('nPosPx_c=%d, nNegPx_c=%d, nPosPx_m=%d, nNegPx_m=%d' % \ # (nPosPx_c,nNegPx_c,nPosPx_m,nNegPx_m)) # # Comparison of calculated values of deltaPx (their dependences # on impact parameter for different ion velocities) for two approaches: # if (plotFigureFlag == 0): for i in range(12): VionCrrnt = V0*VionRel[indxFigures[i]] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) figCrrnt = plt.figure(numbrFigures[i]+2) plt.loglog(rhoPosPx_c[i,0:nPosPx_c[i]],.99*posPx_c[i,0:nPosPx_c[i]] ,'xb', \ rhoPosPx_m[i,0:nPosPx_m[i]],1.01*posPx_m[i,0:nPosPx_m[i]] ,'xr',linewidth=2) # plt.loglog(rhoPosPx_c[i,0:nPosPx_c[i]],.99*posPx_c[i,0:nPosPx_c[i]] ,'xb', \ # rhoNegPx_c[i,0:nNegPx_c[i]],.99*negPx_c[i,0:nNegPx_c[i]] ,'ob', \ # rhoPosPx_m[i,0:nPosPx_m[i]],1.01*posPx_m[i,0:nPosPx_m[i]] ,'xr', \ # rhoNegPx_m[i,0:nNegPx_m[i]],1.01*negPx_m[i,0:nNegPx_m[i]] ,'or',linewidth=2) plt.ylabel('$\Delta P_x$, $eV$', color='m',fontsize=14) # plt.ylabel('$|\Delta P_x|$, $eV$', color='m',fontsize=14) plt.legend(['$0.99\cdot\Delta P_x$: CG - Center Guide', \ '$1.01\cdot\Delta P_x$: ME - Magnus Expansion'],loc='lower left',fontsize=10) # plt.legend(['$\Delta P_x > 0$ (CG)','$\Delta P_x < 0$ (CG)', \ # '$\Delta P_x > 0$ (ME)','$\Delta P_x < 0$ (ME)'], \ # loc='lower left',fontsize=11) plt.xlabel('Initial Impact Parameter $rho_{Init}$, $cm$',color='m',fontsize=14) titleHeader = 'Transferred Momenta $\Delta P_x$ to Single Ion:' titleHeader += ' $V_{ion}=%3.1f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=14) plt.xlim([.95*rhoInit[0,indxFigures[i]],1.05*rhoInit[nImpctPrmtr-1,indxFigures[i]]]) # plt.text(xPos[i],yPos[i],'Fitted $\Delta E_{ion}$ are proportional to $rho_{Init}^{-B}$', \ # color='m',fontsize=16) plt.grid(True) if (saveFilesFlag == 1): fileName = 'picturesCMA/deltaEtransf_indxPlot-'+str(indxFigures[i])+'_fig' fileName += str(numbrFigures[i])+'cma.png' figCrrnt.savefig(fileName) print ('File "',fileName,'" is written') timeEnd = os.times() timeIntgrtn = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec print ('Time of plotting = %6.3f seconds' % timeIntgrtn) yPosText = [-2.12,-2.12,-2.12,-2.20,-2.12,-2.12,-2.12,-2.20,-2.12,-2.12,-2.12,-2.12] # # Dependence of calculated and fitted values of deltaPz on impact parameter # for different ion velocities: # if (plotFigureFlag == 0): for i in range(12): VionCrrnt = V0*VionRel[indxFigures[i]] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) figCrrnt = plt.figure(numbrFigures[i]+5) plt.loglog(rhoInit[0:nImpctPrmtr,indxFigures[i]], \ 1.e24*deltaPz_m[0:nImpctPrmtr,indxFigures[i]],'xr', \ rhoInitFit_pz[0:nImpctPrmtr,indxFigures[i]], \ 1.e24*deltaPz_m_fit[0:nImpctPrmtr,indxFigures[i]],'ob',linewidth=2) plt.xlabel('Initial Impact Parameter $rho_{Init}$, $cm$',color='m',fontsize=14) plt.ylabel('$10^{24} \cdot \Delta P_z$, $eV$', color='m',fontsize=14) titleHeader = 'Transferred Momenta $\Delta P_z$ to Single Ion:' titleHeader += ' $V_{ion}=%3.1f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=14) plt.xlim([.95*rhoInit[0,indxFigures[i]],1.05*rhoInit[nImpctPrmtr-1,indxFigures[i]]]) plt.ylim([ .9e24*deltaPz_m[nImpctPrmtr-1,indxFigures[i]], \ 1.1e24*deltaPz_m_fit[0,indxFigures[i]]]) plt.legend(['Calculated Data', \ ('Fitting: $\Delta P_z=10^A\cdot$rho$_{init}^B$; B = %5.3f $\pm$ %5.3f' % \ (fitB_pz[indxFigures[i]],dNegB_pz[indxFigures[i]]))],loc='lower left',fontsize=11) # plt.text(xPos[i],yPos[i],'Fitted $\Delta P_z$ are proportional to $rho_{Init}^{-B}$', \ # color='m',fontsize=16) plt.grid(True) if (saveFilesFlag == 1): fileName = 'picturesCMA_v7/dPz_withFit_indxPlot'+str(indxFigures[i])+'_fig' fileName += str(numbrFigures[i]+5)+'cma.png' figCrrnt.savefig(fileName) print ('File "',fileName,'" is written') # # Dependence of calculated and fitted values of deltaPx on impact parameter # for different ion velocities: # if (plotFigureFlag == 0): for i in range(12): VionCrrnt = V0*VionRel[indxFigures[i]] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) figCrrnt = plt.figure(numbrFigures[i]+7) plt.loglog(rhoInit[0:nImpctPrmtr,indxFigures[i]], \ deltaPx_m[0:nImpctPrmtr,indxFigures[i]],'xr', \ rhoInitFit_px[0:nImpctPrmtr,indxFigures[i]], \ deltaPx_m_fit[0:nImpctPrmtr,indxFigures[i]],'ob',linewidth=2) plt.xlabel('Initial Impact Parameter $rho_{Init}$, $cm$',color='m',fontsize=14) plt.ylabel('$\Delta P_x$, $eV$', color='m',fontsize=14) titleHeader = 'Transferred Momenta $\Delta P_x$ to Single Ion:' titleHeader += ' $V_{ion}=%3.1f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=14) plt.xlim([.95*rhoInit[0,indxFigures[i]],1.05*rhoInit[nImpctPrmtr-1,indxFigures[i]]]) plt.ylim([ .9*deltaPx_m[nImpctPrmtr-1,indxFigures[i]], \ 1.1*deltaPx_m_fit[0,indxFigures[i]]]) plt.legend(['Calculated Data', \ ('Fitting: $\Delta P_x=10^A\cdot rho_{init}^B$; B = %5.3f $\pm$ %5.3f' % \ (fitB_px[indxFigures[i]],dNegB_px[indxFigures[i]]))],loc='lower left',fontsize=11) # plt.text(xPos[i],yPos[i],'Fitted $\Delta P_x$ are proportional to $rho_{Init}^{-B}$', \ # color='m',fontsize=16) plt.grid(True) if (saveFilesFlag == 1): fileName = 'picturesCMA_v7/dPx_withFit_indxPlot-'+str(indxFigures[i])+'_fig' fileName += str(numbrFigures[i]+7)+'cma.png' figCrrnt.savefig(fileName) print ('File "',fileName,'" is written') # # Dependence of calculated and fitted values of deltaEnrgIon # on impact parameter for different ion velocities: # if (plotFigureFlag == 0): for i in range(12): VionCrrnt = V0*VionRel[indxFigures[i]] powVionCrrnt = math.floor(
np.log10(VionCrrnt)
numpy.log10
#!/usr/bin/env python import rospy import numpy as np import sys import os import tf from dbw_mkz_msgs.msg import SteeringReport from sensor_msgs.msg import Image from derived_object_msgs.msg import ObjectWithCovarianceArray from std_msgs.msg import String from sensor_msgs.msg import Imu from geometry_msgs.msg import Pose from geometry_msgs.msg import Twist from geometry_msgs.msg import TwistStamped from nav_msgs.msg import Odometry from std_msgs.msg import Header from darknet_ros_msgs.msg import BoundingBoxes from darknet_ros_msgs.msg import ObjectCount from nuscenes2bag.msg import RadarObjects from utils import Mat_buildROS from utils import Mat_extractROS from flir_adk_multi.msg import trackArrayRdr from flir_adk_multi.msg import trackRdr from flir_adk_multi.msg import trackArrayCam from flir_adk_multi.msg import trackCam from sensor_msgs.msg import PointCloud2 from dbw_mkz_msgs.msg import WheelSpeedReport from utils import CamObj from utils import RadarObj from utils import RadarObjMKZ from std_msgs.msg import Float32MultiArray from std_msgs.msg import MultiArrayDimension from cv_bridge import CvBridge, CvBridgeError import cv2 from itertools import permutations import time def main(): rospy.init_node('jpda', anonymous=True) DataSetType=sys.argv[1] Method=sys.argv[2] PlotArg=sys.argv[3] # 0-No Plot; 1-Combined; 2-Cam; 3-Rdr; 4-Both Cam&Rdr fusInst=jpda_class(DataSetType,Method,PlotArg) try: rospy.spin() except KeyboardInterrupt: print("Shutting down") class jpda_class(): def __init__(self,DataSetType,Method,PlotArg): self.TrackPubRdr=rospy.Publisher("dataAssocRdr",trackArrayRdr, queue_size=2) self.TrackPubCam=rospy.Publisher("dataAssocCam",trackArrayCam, queue_size=2) self.image_pub=rospy.Publisher("fusedImage",Image, queue_size=2) filePathPrefix=str("/home/vamsi/Tracking/py-motmetrics/motmetrics/res_dir/") self.DestF=open((filePathPrefix+'seq1'+'.txt'),"w") # self.YoloClassList=[0,1,2,3,5,7] # For NuSc # self.YoloClassList=[0,1,2] # For Yolov3_flir self.YoloClassList=[2] # For Matlab Sim Data self.GateThreshRdr =1# Scaling factor, threshold for gating self.GateThreshCam=10# TODO: adjust? self.trackInitRdrThresh=0.5 # For track initiation self.trackInitCamThresh=20 # Radius of 15 pixels allowed self.CombGateThresh=10# in pixels (added to radius buffer) self.bridge=CvBridge() self.font=cv2.FONT_HERSHEY_SIMPLEX # Initializing parameters: self.Q_rdr=np.array([[10,0,0,0],[0,10,0,0],[0,0,5,0],[0,0,0,1]]) self.R_rdr=np.array([[3,0,0],[0,3,0],[0,0,3]]) # self.Q_cam=np.diag([10,10,15,15,10,10,15,15]) self.Q_cam=np.diag([5,5,10,10,10,10,20,20]) self.R_cam=np.array([[5,0,0,0],[0,5,0,0],[0,0,5,0],[0,0,0,5]]) self.CamMsrtmMatrixH=np.array([[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],\ [0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]) # Only positions and w/h are measured) self.Vt=0.0 self.velY=0.0 self.velX=0.0 self.psi=0.0 self.psiD=0.0# psiDot self.Method=Method self.PlotArg=PlotArg self.HorzOffset=0# For translation from radar to cam coordinates, manual offset self.CamXOffset=2.36#=93 inches, measured b/w cam and Rdr, in x direction self.CamZoffset=1 # Roughly 40 inches self.imageTime=Header() self.BBoxStore=BoundingBoxes() #Params for writing tracks to TXT: self.delta_x = 0 self.delta_y = 0 # Assuming that the radar and camera are on same centerline self.delta_z = 1.0414/2 self.H_FOV=190 self.V_FOV=41 #Calculated based on aspect ratio self.HorzOffsetTXT=0 # Manual horizontal (Y-direction) offset for radar in pixels self.VertOffsetTXT=-30 # Manual vertical (Z-direction) offset for radar in pixels self.ImageExists=0 self.BBheight=90 self.BBWidth=90 # For now, static self.FrameInit=1 self.UseCamTracksOnly=1 #1 if using only camera tracks, 0 if using combined tracks for eval if DataSetType=="NuSc": rospy.Subscriber('/cam_front/raw', Image, self.buildImage) rospy.Subscriber('/vel', Twist, self.Odom1NuSc) rospy.Subscriber('/odom', Odometry, self.Odom2NuSc) rospy.Subscriber('/imu', Imu, self.Odom3NuSc) rospy.Subscriber('/radar_front', BoundingBoxes, self.RdrMsrmtsNuSc) elif DataSetType=="MKZ": self.CamFOV=190.0 rospy.Subscriber('/Thermal_Panorama', Image, self.buildImage) rospy.Subscriber('/imu/data', Imu, self.Odom2MKZ) # TODO: fix after IMU is available rospy.Subscriber('/vehicle/twist', TwistStamped,self.Odom3MKZ) rospy.Subscriber('/darknet_ros/bounding_boxes', BoundingBoxes,self.BBoxBuilder) rospy.Subscriber('/os_cloud_node/points', PointCloud2,self.writeToFile) #Only write to file everytime a new lidar PCL is published rate=rospy.Rate(10) # 20 Hz while not rospy.is_shutdown(): # CycleStartTime=time.time() # startTime=time.time() # rospy.Subscriber('/as_tx/objects', ObjectWithCovarianceArray,self.RdrMsrmtsMKZ) # rospy.Subscriber('/darknet_ros/found_object', ObjectCount,self.CamMsrmts) self.RdrMsrmtsMKZ(rospy.wait_for_message('/as_tx/objects', ObjectWithCovarianceArray)) self.CamMsrmts(rospy.wait_for_message('/darknet_ros/found_object', ObjectCount)) # # print('TOTAL for RDR:' + str(time.time()-startTime)) # # startTime=time.time() # try: # rospy.Subscriber('/darknet_ros/found_object', ObjectCount,self.CamMsrmts) # except: # rospy.loginfo('No Camera Data/Bounding Boxes found') # pass # print('TOTAL for CAM:' + str(time.time()-startTime)) # startTimeCom=time.time() # print('Time Combining:' + str(time.time()-startTimeCom)) # print('Total Cycle Time:' + str(time.time()-CycleStartTime)) self.CamRdrCombine() rate.sleep() elif DataSetType=="matlab": self.CamFOV=50 rospy.Subscriber('/Thermal_Panorama', Image, self.buildImage) rospy.Subscriber('/imu/data', Imu, self.Odom2MKZ) # TODO: fix after IMU is available rospy.Subscriber('/vehicle/twist', TwistStamped,self.Odom3MKZ) rospy.Subscriber('/darknet_ros/bounding_boxes', BoundingBoxes,self.BBoxBuilder) rate=rospy.Rate(10) # 20 Hz while not rospy.is_shutdown(): # CycleStartTime=time.time() # startTime=time.time() # rospy.Subscriber('/as_tx/objects', ObjectWithCovarianceArray,self.RdrMsrmtsMKZ) # rospy.Subscriber('/darknet_ros/found_object', ObjectCount,self.CamMsrmts) self.RdrMsrmtsMKZ(rospy.wait_for_message('/as_tx/objects', ObjectWithCovarianceArray)) self.CamMsrmts(rospy.wait_for_message('/darknet_ros/found_object', ObjectCount)) # # print('TOTAL for RDR:' + str(time.time()-startTime)) # # startTime=time.time() # try: # rospy.Subscriber('/darknet_ros/found_object', ObjectCount,self.CamMsrmts) # except: # rospy.loginfo('No Camera Data/Bounding Boxes found') # pass # print('TOTAL for CAM:' + str(time.time()-startTime)) # startTimeCom=time.time() # print('Time Combining:' + str(time.time()-startTimeCom)) # print('Total Cycle Time:' + str(time.time()-CycleStartTime)) self.CamRdrCombine() rate.sleep() def buildImage(self,data): if not(hasattr(self,'image')): self.image=[] self.image=self.bridge.imgmsg_to_cv2(data, "rgb8") self.imageTime=data.header self.ImageExists=1 def Odom1NuSc(self,data): self.Vt =data.linear.x def Odom2NuSc(self,data): self.psi=data.pose.pose.orientation.z def Odom3NuSc(self,data): self.psiD=data.angular_velocity.z def Odom1MKZ(self,data): # REMOVE self.Vt=data.speed def Odom2MKZ(self,data): self.psi=tf.transformations.euler_from_quaternion([data.orientation.x,data.orientation.y,data.orientation.z,data.orientation.w])[2] # psi above is in radians, with 0 facing due EAST, not north def Odom3MKZ(self,data): self.psiD=data.twist.angular.z self.Vt=data.twist.linear.x self.velX=self.Vt # For use in calculating velocity of cut in vehicle(tracking target), Vc def writeToFile(self,data): # print('Writing ToFile') if not hasattr(self,'CombinedTracks'): return # self.Readoings=[] # n=len(self.RadarTracks) RadarAnglesH=0.0 RadarAnglesV=0.0 frame=self.FrameInit self.FrameInit+=1 if self.UseCamTracksOnly==1: writeTracks=self.CurrentCamTracks else: writeTracks=self.CombinedTracks for idx in range(len(writeTracks.tracks)): # if (data.objects[idx].pose.pose.position.x==0.0) and (data.objects[idx].pose.pose.position.y==0.0) and (data.objects[idx].pose.covariance[0]==0.0): # continue #Zero entry, so skip it # else: #write to file # <frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>, <z> id=int(idx+1) # TODO: This is temp, not true ID of car # RadarX=data.objects[idx].pose.pose.position.x+self.delta_x # RadarY=data.objects[idx].pose.pose.position.y # RadarZ=0.0+self.delta_z # RadarAnglesH=-np.degrees(np.arctan(np.divide(RadarY,RadarX))) # RadarAnglesV=np.abs(np.degrees(np.arctan(np.divide(RadarZ,RadarX)))) #will always be negative, so correct for it if self.ImageExists==1: # imageTemp = self.image # print(imageTemp.shape) # CameraX=RadarAnglesH*(self.image.shape[1]/self.H_FOV) + self.image.shape[1]/2 +self.HorzOffsetTXT# Number of pixels per degree,adjusted for shifting origin from centerline to top left # CameraY=RadarAnglesV*(self.image.shape[0]/self.V_FOV) +256 +self.VertOffsetTXT -RadarX*np.sin(np.radians(4)) # Number of pixels per degree,adjusted for shifting origin from centerline to top left #Write to File bb_left=int(writeTracks.tracks[idx].yPx.data) bb_top=int(writeTracks.tracks[idx].zPx.data) bb_width=int(writeTracks.tracks[idx].width.data) bb_height=int(writeTracks.tracks[idx].height.data) x=-1 # Fillers y=-1 z=-1 conf=1 outLine=str(frame)+' '+str(id)+' '+str(bb_left)+' '+str(bb_top)+' '+str(bb_width)+' '+str(bb_height)+' '+str(conf)+' '+str(x)+' '+str(y)+' '+str(z)+'\n' # print(outLine) self.DestF.write(outLine) def CamIOUcheck(self,checkIdx): #Return boolean. checks if IOU of given SensorIndex over any Current tracks is greater than threshold # if it is, then returns false outBool2=True # By default #TODO: perform check if required return outBool2 def trackInitiator(self,SensorData): if not any(SensorData): return elif isinstance(SensorData[0],CamObj): if hasattr(self, 'InitiatedCamTracks'): # Then, move to current tracks based on NN-style gating toDel=[] InitiatedCamTracks=self.InitiatedCamTracks # first build array of all sensor indices that are within validation gate of current tracks if hasattr(self,'CurrentCamTracks'): TempCurrTracks=self.CurrentCamTracks SensorIndicesInit=[] for cdx in range(len(TempCurrTracks.tracks)): SensorIndicesInit.append(self.ValidationGate(SensorData,TempCurrTracks.tracks[cdx])) else: SensorIndicesInit=[] for idx in range(len(InitiatedCamTracks.tracks)): R=[] if len(SensorData)==0: continue for jdx in range(len(SensorData)): # If the Sensor Data is already in validatation gate of any of the currentTracks, skip adding that into InitiatedTracks if self.InitSensorValidator(SensorIndicesInit,jdx): continue else: R.append(np.sqrt((InitiatedCamTracks.tracks[idx].yPx.data-(SensorData[jdx].xmax+SensorData[jdx].xmin)/2)**2 \ +(InitiatedCamTracks.tracks[idx].zPx.data-(SensorData[jdx].ymax+SensorData[jdx].ymin)/2)**2)) if len(R)==0: R=9000 #Arbitrarily large value R=np.asarray(R) # print() # print(R) if (np.min(R)<self.trackInitCamThresh): # Then move this to current track # Inherent assumption here is that only one will be suitable jdx=np.argmin(R) if not hasattr(self, 'CurrentCamTracks'): self.CurrentCamTracks=trackArrayCam() delT=self.imageTime.stamp-InitiatedCamTracks.header.stamp delT=delT.to_sec() self.CurrentCamTracks.header=SensorData[jdx].header InitiatedCamTracks.tracks[idx].Stat.data=1 # Moving to current track # Update the track with new sensor data before pushing to Current tracks InitiatedCamTracks.tracks[idx].VyPx.data=\ (InitiatedCamTracks.tracks[idx].yPx.data-(SensorData[jdx].xmax+SensorData[jdx].xmin)/2)/delT InitiatedCamTracks.tracks[idx].VzPx.data=\ (InitiatedCamTracks.tracks[idx].zPx.data-(SensorData[jdx].ymax+SensorData[jdx].ymin)/2)/delT InitiatedCamTracks.tracks[idx].widthDot.data=\ (InitiatedCamTracks.tracks[idx].width.data-(SensorData[jdx].xmax-SensorData[jdx].xmin))/delT InitiatedCamTracks.tracks[idx].heightDot.data=\ (InitiatedCamTracks.tracks[idx].height.data-(SensorData[jdx].ymax-SensorData[jdx].ymin))/delT InitiatedCamTracks.tracks[idx].height.data=(SensorData[jdx].ymax-SensorData[jdx].ymin) InitiatedCamTracks.tracks[idx].width.data=(SensorData[jdx].xmax-SensorData[jdx].xmin) InitiatedCamTracks.tracks[idx].yPx.data=(SensorData[jdx].xmax+SensorData[jdx].xmin)/2 InitiatedCamTracks.tracks[idx].zPx.data=(SensorData[jdx].ymax+SensorData[jdx].ymin)/2 InitiatedCamTracks.tracks[idx].confidence=SensorData[jdx].confidence Pk=np.diag([5,5,5,5,50,50,50,50]) # Initial covariance matrix InitiatedCamTracks.tracks[idx].P=Mat_buildROS(Pk) self.CurrentCamTracks.tracks=np.append(self.CurrentCamTracks.tracks,InitiatedCamTracks.tracks[idx]) toDel.append(idx) SensorData=np.delete(SensorData,np.argmin(R)) else: # for this idx of InitiatedCamTrack, the last jdx, so no measurements are nearby; delete the idx toDel.append(idx) #Clean all InitiatedCamTracks using toDel self.InitiatedCamTracks.tracks=np.delete(InitiatedCamTracks.tracks,toDel) #Remove old initiated tracks (if idle for more than 3 time steps): toDel2=[] for idx in range(len(self.InitiatedCamTracks.tracks)): self.InitiatedCamTracks.tracks[idx].Stat.data=self.InitiatedCamTracks.tracks[idx].Stat.data-1 if self.InitiatedCamTracks.tracks[idx].Stat.data<0: toDel2.append(idx) self.InitiatedCamTracks.tracks=np.delete(self.InitiatedCamTracks.tracks,toDel2) # Then concatenate remaining sensor Data for future initation if len(SensorData)==0: return self.InitiatedCamTracks.header=SensorData[0].header for idx in range(len(SensorData)): self.InitiatedCamTracks.tracks=np.append(self.InitiatedCamTracks.tracks,trackCam()) self.InitiatedCamTracks.tracks[-1].Stat.data= -1 # InitiatedTrack self.InitiatedCamTracks.tracks[-1].yPx.data=(SensorData[idx].xmax+SensorData[idx].xmin)/2 self.InitiatedCamTracks.tracks[-1].zPx.data=(SensorData[idx].ymax+SensorData[idx].ymin)/2 self.InitiatedCamTracks.tracks[-1].VyPx.data=0 self.InitiatedCamTracks.tracks[-1].VzPx.data=0 self.InitiatedCamTracks.tracks[-1].width.data=(SensorData[idx].xmax-SensorData[idx].xmin) self.InitiatedCamTracks.tracks[-1].widthDot.data=0 self.InitiatedCamTracks.tracks[-1].height.data=(SensorData[idx].ymax-SensorData[idx].ymin) self.InitiatedCamTracks.tracks[-1].heightDot.data=0 self.InitiatedCamTracks.tracks[-1].confidence=SensorData[idx].confidence else: # Start of algorithm, no tracks self.InitiatedCamTracks=trackArrayCam() self.InitiatedCamTracks.header=SensorData[0].header for idx in range(len(SensorData)): self.InitiatedCamTracks.tracks=np.append(self.InitiatedCamTracks.tracks,trackCam()) self.InitiatedCamTracks.tracks[-1].Stat.data=-1 # Initiated Track self.InitiatedCamTracks.tracks[-1].yPx.data=(SensorData[idx].xmax+SensorData[idx].xmin)/2 self.InitiatedCamTracks.tracks[-1].zPx.data=(SensorData[idx].ymax+SensorData[idx].ymin)/2 self.InitiatedCamTracks.tracks[-1].VyPx.data=0 self.InitiatedCamTracks.tracks[-1].VzPx.data=0 self.InitiatedCamTracks.tracks[-1].width.data=(SensorData[idx].xmax-SensorData[idx].xmin) self.InitiatedCamTracks.tracks[-1].widthDot.data=0 self.InitiatedCamTracks.tracks[-1].height.data=(SensorData[idx].ymax-SensorData[idx].ymin) self.InitiatedCamTracks.tracks[-1].heightDot.data=0 self.InitiatedCamTracks.tracks[-1].confidence=SensorData[idx].confidence elif isinstance(SensorData[0],RadarObj) or isinstance(SensorData[0],RadarObjMKZ): if hasattr(self, 'InitiatedRdrTracks'):# Some (or Zer0) tracks already exists (i.e, not start of algorithm) toDel=[] InitiatedRdrTracks=self.InitiatedRdrTracks # first build array of all sensor indices that are within validation gate of current tracks if hasattr(self,'CurrentRdrTracks'): TempCurrTracksRdr=self.CurrentRdrTracks SensorIndicesInitRdr=[] for cdx in range(len(TempCurrTracksRdr.tracks)): SensorIndicesInitRdr.append(self.ValidationGate(SensorData,TempCurrTracksRdr.tracks[cdx])) else: SensorIndicesInitRdr=[] for idx in range(len(self.InitiatedRdrTracks.tracks)): gateValX=[] gateValY=[] gateValRMS=[] # Find all sensor objects within some gate if len(SensorData)==0: continue for jdx in range(len(SensorData)): if self.InitSensorValidator(SensorIndicesInitRdr,jdx): continue else: gateValX.append(np.abs(SensorData[jdx].pose.position.x-self.InitiatedRdrTracks.tracks[idx].x.data)) gateValY.append(np.abs(SensorData[jdx].pose.position.y-self.InitiatedRdrTracks.tracks[idx].y.data)) gateValRMS.append(np.sqrt((gateValX[-1])**2+(gateValY[-1])**2)) if len(gateValRMS)==0: gateValRMS=1000# Arbitrary large value, greater than trackInitRdrThresh if (np.min(np.array(gateValRMS))<=self.trackInitRdrThresh): # @50Hz, 20m/s in X dir and 10m/s in Y-Direction as validation gate #If gate is satisfied, move to CurrentRdrTracks after initiating P and deleting that SensorData[idx] self.InitiatedRdrTracks.tracks[idx].P=Mat_buildROS(np.array([[3,0,0,0],[0,3,0,0],[0,0,3,0],[0,0,0,1]])) #(Large uncertainity given to Beta. Others conservatively picked based on Delphi ESR spec sheet) self.InitiatedRdrTracks.tracks[idx].Stat.data=1# Moving to CurrentRdrTracks x=self.InitiatedRdrTracks.tracks[idx].x.data y=self.InitiatedRdrTracks.tracks[idx].y.data Vc=self.InitiatedRdrTracks.tracks[idx].Vc.data Beta=self.InitiatedRdrTracks.tracks[idx].B.data psi=np.array([self.psi]) psiD=np.array([self.psiD]) Vt=self.Vt posNorm=np.sqrt(x**2+y**2) H31=(Vc*np.sin((psi-Beta).astype(float))*y**2-x*y*(Vc*np.cos((psi-Beta).astype(float))-Vt))/(posNorm**3) H32=(-Vc*np.sin((psi-Beta).astype(float))*x*y+x**2*(Vc*np.cos((psi-Beta).astype(float))-Vt))/(posNorm**3) H33=x*np.sin((psi-Beta).astype(float))/posNorm+y*np.cos((psi-Beta).astype(float))/posNorm H34=(-x*Vc*np.cos((psi-Beta).astype(float))+y*Vc*np.sin((psi-Beta).astype(float)))/posNorm Hk=np.array([[1,0,0,0],[x/posNorm,y/posNorm,0,0],[H31,H32,H33,H34]]) self.InitiatedRdrTracks.tracks[idx].H=Mat_buildROS(Hk) if hasattr(self, 'CurrentRdrTracks'): pass else: self.CurrentRdrTracks=trackArrayRdr() self.CurrentRdrTracks.header=self.InitiatedRdrTracks.header self.CurrentRdrTracks.tracks=np.append(self.CurrentRdrTracks.tracks,self.InitiatedRdrTracks.tracks[idx]) #Build Arrays for deletion: toDel.append(idx) #Also Delete the corresponding SensorData value: SensorData=np.delete(SensorData,np.argmin(gateValRMS)) else: # none of the SensorData is close to InitiatedRdrTracks[idx], so delete it toDel.append(idx) # Clean all InitiatedRdrTracks with status 1 self.InitiatedRdrTracks.tracks=np.delete(self.InitiatedRdrTracks.tracks,toDel) #Remove old initiated tracks:(if idle for more than 2 time steps): toDel2=[] for idx in range(len(self.InitiatedRdrTracks.tracks)): self.InitiatedRdrTracks.tracks[idx].Stat.data=self.InitiatedRdrTracks.tracks[idx].Stat.data-1 if self.InitiatedRdrTracks.tracks[idx].Stat.data<=-3: toDel2.append(idx) self.InitiatedRdrTracks.tracks=np.delete(self.InitiatedRdrTracks.tracks,toDel2) # Then concatenate remaining sensor Data for future initation if len(SensorData)==0: return self.InitiatedRdrTracks.header=SensorData[0].header for idx in range(len(SensorData)): self.InitiatedRdrTracks.tracks=np.append(self.InitiatedRdrTracks.tracks,trackRdr()) self.InitiatedRdrTracks.tracks[-1].Stat.data= -1 # InitiatedTrack self.InitiatedRdrTracks.tracks[-1].x.data=SensorData[idx].pose.position.x self.InitiatedRdrTracks.tracks[-1].y.data=SensorData[idx].pose.position.y self.InitiatedRdrTracks.tracks[-1].Vc.data=np.sqrt(SensorData[idx].vx_comp**2+SensorData[idx].vy_comp**2) self.InitiatedRdrTracks.tracks[-1].B.data=self.psi -(np.arctan(SensorData[idx].pose.position.y/(0.0001 if (SensorData[idx].pose.position.x)==0.0 else (SensorData[idx].pose.position.x)))) # TODO: Improve Beta estimate by taking into account relative Vx(invert heading if object istraveling towards car) else: # Start of algorithm, no tracks self.InitiatedRdrTracks=trackArrayRdr() self.InitiatedRdrTracks.header=SensorData[0].header for idx in range(len(SensorData)): self.InitiatedRdrTracks.tracks=np.append(self.InitiatedRdrTracks.tracks,trackRdr()) self.InitiatedRdrTracks.tracks[-1].Stat.data= -1 # InitiatedTrack self.InitiatedRdrTracks.tracks[-1].x.data=SensorData[idx].pose.position.x self.InitiatedRdrTracks.tracks[-1].y.data=SensorData[idx].pose.position.y self.InitiatedRdrTracks.tracks[-1].Vc.data=np.sqrt(SensorData[idx].vx_comp**2+SensorData[idx].vy_comp**2) self.InitiatedRdrTracks.tracks[-1].B.data=self.psi -(np.arctan(SensorData[idx].pose.position.y/(0.0001 if (SensorData[idx].pose.position.x)==0.0 else (SensorData[idx].pose.position.x)))) # TODO: Improve Beta estimate by taking into account relative Vx(invert heading if object istraveling towards car) def trackDestructor(self,SensorData): if not any(SensorData): return if isinstance(SensorData[0],CamObj): if not (hasattr(self,'CurrentCamTracks')): return toDel=[] for idx in range(len(self.CurrentCamTracks.tracks)): if self.CurrentCamTracks.tracks[idx].Stat.data>=2:# Testing, made less persistent toDel.append(idx) self.CurrentCamTracks.tracks=np.delete(self.CurrentCamTracks.tracks,toDel) elif isinstance(SensorData[0],RadarObj) or isinstance(SensorData[0],RadarObjMKZ): if not(hasattr(self,'CurrentRdrTracks')): return toDel=[] for idx in range(len(self.CurrentRdrTracks.tracks)): if self.CurrentRdrTracks.tracks[idx].Stat.data>=4: # If no measurements associated for 4 steps toDel.append(idx) self.CurrentRdrTracks.tracks=np.delete(self.CurrentRdrTracks.tracks,toDel) def trackMaintenance(self,SensorData): if not any(SensorData): return if isinstance(SensorData[0],CamObj): if not hasattr(self, 'CurrentCamTracks'): return SensorIndices=[] for idx in range(len(self.CurrentCamTracks.tracks)): SensorIndices.append(self.ValidationGate(SensorData,self.CurrentCamTracks.tracks[idx]))#Clean the incoming data - outputs 2D python array # Above yields array of possible measurments (only indices) corresponding to a particular track # startTime1=time.time() self.KalmanEstimate(SensorData,SensorIndices, self.Method) # Includes DataAssociation Calcs # print('Time for KalmanEstimate:' + str(time.time()-startTime1)) # startTime2=time.time() self.KalmanPropagate(SensorData) # print('Time for KalmanPropagate:' + str(time.time()-startTime2)) self.TrackPubCam.publish(self.CurrentCamTracks) elif isinstance(SensorData[0],RadarObj) or isinstance(SensorData[0],RadarObjMKZ): if not hasattr(self, 'CurrentRdrTracks'): return SensorIndices=[] for idx in range(len(self.CurrentRdrTracks.tracks)): SensorIndices.append(self.ValidationGate(SensorData,self.CurrentRdrTracks.tracks[idx]))#Clean the incoming data - outputs 2D python array # Above yields array of possible measurments (only indices) corresponding to a particular track # startTimeKE=time.time() self.KalmanEstimate(SensorData,SensorIndices, self.Method) # Includes DataAssociation Calcs # print('Time for KalmanEstimate:' + str(time.time()-startTimeKE)) # startTimeKP=time.time() self.KalmanPropagate(SensorData) # print('Time for KalmanPropagate:' + str(time.time()-startTimeKP)) # self.TrackPubRdr.publish(header=self.CurrentRdrTracks.header, tracks =self.CurrentRdrTracks.tracks) # rospy.loginfo_once('Current tracks published to topic /dataAssoc') def InitSensorValidator(self,SensorIndicesInit,jdx): #takes SensorIndices 2 D python array and current Sensor index being checked; # returns true if the current index is in the 2D array outBool=False # By default if len(SensorIndicesInit)==0: return outBool for sens_idx in range(len(SensorIndicesInit)): if jdx in SensorIndicesInit[sens_idx]: outBool=True return outBool def trackPlotter(self): if not (hasattr(self,'image')) or (self.PlotArg=='0'): return # Skip function call if image is not available or plotting is disabled LocalImage=self.image if (self.PlotArg=='3') or (self.PlotArg=='4'): # Then, plot Radar stuff if not hasattr(self,'CurrentRdrTracks'): return # Skip CurrentRdrTracks=self.CurrentRdrTracks n=len(CurrentRdrTracks.tracks) RadarAnglesH=np.zeros((n,1)) RadarAnglesV=np.zeros((n,1)) # Camera Coordinates: X is horizontal, Y is vertical starting from left top corner CirClr=[] for idx1 in range(len(CurrentRdrTracks.tracks)): temp1=np.divide(CurrentRdrTracks.tracks[idx1].y.data,CurrentRdrTracks.tracks[idx1].x.data) RadarAnglesH[idx1]=-np.degrees(np.arctan(temp1.astype(float))) temp2=np.divide(self.CamZoffset,CurrentRdrTracks.tracks[idx1].x.data+self.CamXOffset) RadarAnglesV[idx1]=np.abs(np.degrees(np.arctan(temp2.astype(float)))) #will always be negative, so correct for it if (CurrentRdrTracks.tracks[idx1].Stat.data>=1) and (CurrentRdrTracks.tracks[idx1].Stat.data<14): #Current Track- green CirClr.append(np.array([0,255,0])) elif CurrentRdrTracks.tracks[idx1].Stat.data<=0: # Candidate Tracks for initialization - blue CirClr.append(np.array([255,0,0])) else: # Candidate for Destructor-orange CirClr.append(np.array([0,165,255])) CameraX=np.dot(RadarAnglesH,(self.image.shape[1]/self.CamFOV)) + self.image.shape[1]/2 # Number of pixels per degree,adjusted for shifting origin from centerline to top left CameraY=np.dot(RadarAnglesV,(self.image.shape[0]/(39.375))) +480/2 # Number of pixels per degree,adjusted for shifting origin from centerline to top left CirClr=np.array(CirClr) CameraX=np.array(CameraX) for idx3 in range(len(CameraX)): if (CameraX[idx3]<=self.image.shape[1]): LocalImage=cv2.circle(LocalImage, (int(CameraX[idx3]),int(CameraY[idx3])), 12, CirClr[idx3].tolist(),3) LocalImage=cv2.putText(LocalImage,str(idx3),(int(CameraX[idx3]),int(CameraY[idx3])),self.font,1,(255,105,180),2) #Now Plot Camera Trakcs: if (self.PlotArg=='2') or (self.PlotArg=='4'): # Then, plot Cam stuff if not hasattr(self,'CurrentCamTracks'): return # Skip CurrentCamTracks=self.CurrentCamTracks RectClr=[] for jdx in range(len(CurrentCamTracks.tracks)): if (CurrentCamTracks.tracks[jdx].Stat.data>=1) and (CurrentCamTracks.tracks[jdx].Stat.data<14): #Current Track- green RectClr.append(np.array([0,255,0])) elif CurrentCamTracks.tracks[jdx].Stat.data<=0: # Candidate Tracks for initialization - blue RectClr.append(np.array([255,0,0])) else: # Candidate for Destructor-orange RectClr.append(np.array([0,165,255])) for idx2 in range(len(CurrentCamTracks.tracks)): start=(int(CurrentCamTracks.tracks[idx2].yPx.data-CurrentCamTracks.tracks[idx2].width.data/2),int(CurrentCamTracks.tracks[idx2].zPx.data-CurrentCamTracks.tracks[idx2].height.data/2)) end= (int(CurrentCamTracks.tracks[idx2].yPx.data+CurrentCamTracks.tracks[idx2].width.data/2),int(CurrentCamTracks.tracks[idx2].zPx.data+CurrentCamTracks.tracks[idx2].height.data/2)) LocalImage=cv2.rectangle(LocalImage,start,end,RectClr[idx2].tolist(),2) if (self.PlotArg=='1') or (self.PlotArg=='4'): # Only plot self.CombinedTracks if not hasattr(self,'CombinedTracks'): return currCombinedTracks=self.CombinedTracks RectClr=[] for jdx in range(len(currCombinedTracks.tracks)): RectClr.append(np.array([102,255,255])) # Yellow for idx2 in range(len(currCombinedTracks.tracks)): start=(int(currCombinedTracks.tracks[idx2].yPx.data-currCombinedTracks.tracks[idx2].width.data/2),int(currCombinedTracks.tracks[idx2].zPx.data-currCombinedTracks.tracks[idx2].height.data/2)) end= (int(currCombinedTracks.tracks[idx2].yPx.data+currCombinedTracks.tracks[idx2].width.data/2),int(currCombinedTracks.tracks[idx2].zPx.data+currCombinedTracks.tracks[idx2].height.data/2)) LocalImage=cv2.rectangle(LocalImage,start,end,RectClr[idx2].tolist(),2) self.image_pub.publish(self.bridge.cv2_to_imgmsg(LocalImage, "bgr8")) rospy.loginfo_once('Image is being published') def CamRdrCombine(self): if not hasattr(self,'CurrentCamTracks') or (not hasattr(self,'CurrentRdrTracks')): return self.CombinedTracks=trackArrayCam() n=len(self.CurrentCamTracks.tracks) LocalRdrYArr=[] for rdx in range(len(self.CurrentRdrTracks.tracks)): temp1=np.divide(self.CurrentRdrTracks.tracks[rdx].y.data,self.CurrentRdrTracks.tracks[rdx].x.data) temp2=-np.degrees(np.arctan(temp1.astype(float))) LocalRdrYArr.append(np.dot(temp2,(self.image.shape[1]/self.CamFOV)) + self.image.shape[1]/2+self.HorzOffset) # Gives all Y-coord (pixels) of all radar tracks for jdx in range(n): radius=(self.CurrentCamTracks.tracks[jdx].width.data+self.CurrentCamTracks.tracks[jdx].height.data)/2+self.CombGateThresh centerY=self.CurrentCamTracks.tracks[jdx].yPx.data for Rdx in range(len(LocalRdrYArr)): if (abs(LocalRdrYArr[Rdx]-centerY)<=radius) or (self.CurrentCamTracks.tracks[jdx].confidence>=0.36): self.CurrentCamTracks.tracks[jdx].Stat.data=99 #To indicate that the status is combined/validated #TODO: Create a custom CombinedTracks Message that has both radar and Camera info? self.CombinedTracks.tracks.append(self.CurrentCamTracks.tracks[jdx]) break else: continue def trackManager(self,SensorData): # startTime01=time.time() self.trackMaintenance(SensorData) # print('Time for Track Maint:' + str(time.time()-startTime01)) # startTime02=time.time() self.trackInitiator(SensorData) # print('Time for Track Init:' + str(time.time()-startTime02)) # startTime03=time.time() self.trackDestructor(SensorData) # print('Time for Track Destr:' + str(time.time()-startTime03)) # startTime04=time.time() self.trackPlotter() # print('Time for Track Plotter:' + str(time.time()-startTime04)) # startTime05=time.time() if hasattr(self,'CurrentCamTracks') or hasattr(self,'CurrentRdrTracks'): s= '# Cam Tracks: ' + (str(len(self.CurrentCamTracks.tracks)) if hasattr(self,'CurrentCamTracks') else 'None') + \ '; Rdr Tracks: ' + (str(len(self.CurrentRdrTracks.tracks)) if hasattr(self,'CurrentRdrTracks') else 'None') +'; # Combined Tracks:'\ +(str(len(self.CombinedTracks.tracks)) if hasattr(self,'CombinedTracks') else 'None') print(s) # print('Time printing in track manager:' + str(time.time()-startTime05)) def DataAssociation(self,SensorData,SensorIndices,Method): if Method=="Hungarian": pass elif Method=="JPDA": #Build A Validation Matrix if there are sufficient sensor data and tracks if (len(SensorData)<1) or (len(self.CurrentRdrTracks.tracks)<1): Yk=[] else: Yk=[] #create empty Yk list, with given number of targets (currentTracks): for l_dx in range(len(self.CurrentRdrTracks.tracks)): Yk.append([]) C=3 # Number of false measurements per unit volume (assume), clutter density Pd=0.9 #Probability of detection # Create Clusters by cycling through SensorIndices, maintain OpenList=[] ClusterList=[] for tempdx in range(len(self.CurrentRdrTracks.tracks)): OpenList.append(tempdx) OpenList=np.array(OpenList) while any(OpenList): tempClusterList=[] tempClusterList.append(OpenList[0]) SensorRdgList=np.array(SensorIndices[OpenList[0]]).flatten() OpenList=np.delete(OpenList,0) # Remove this element from searchable list of tracks, will be added later to ClusterList # Chase down all other tracks that share common sensor measurements n_meas=len(SensorData) # Total number of possible measurements for m_dx in range(n_meas): if m_dx in SensorRdgList: ToDelOpenList=[] for cluster_dx in OpenList: indices = [i for i, obj in enumerate(SensorIndices[cluster_dx]) if obj == m_dx] if any(indices) and (not (cluster_dx in tempClusterList)) : tempClusterList.append(cluster_dx) ToDelOpenList.append(cluster_dx) # To be Deleted from OpenList np.append(SensorRdgList,SensorIndices[cluster_dx]).flatten() OpenList=np.setdiff1d(OpenList,ToDelOpenList) # Remove from OpenList else: continue # Now add this cluster to ClusterList ClusterList.append(tempClusterList) ### Directly calculate Bjt if cluster size is 1:4 as per Bose Paper # First calculate Yjt and Sjt: for tdx in range(len(self.CurrentRdrTracks.tracks)): # Calculate Y_jt and S_jt # First Sjt, since it only depends on t, not j Sjt=np.zeros((len(self.CurrentRdrTracks.tracks),3,3)) Hk=Mat_extractROS(self.CurrentRdrTracks.tracks[tdx].H) Pk=Mat_extractROS(self.CurrentRdrTracks.tracks[tdx].P) Sjt[tdx]=np.matmul(np.matmul(Hk,Pk),Hk.T)+self.R_rdr def PjtCalc(meas_dx,target_dx,YjtLocal,Sjt): if meas_dx in SensorIndices[target_dx]: Pjt=Pd*np.exp(-np.matmul(np.matmul(YjtLocal[:,meas_dx].T,Sjt[target_dx]),YjtLocal[:,meas_dx])/2)/(np.sqrt((2*np.pi)*np.linalg.det(Sjt[target_dx]))) else: Pjt=0 return Pjt def GjCal(meas_dx,target_dx1, target_dx2,YjtLocal,Sjt): Gj=PjtCalc(meas_dx,target_dx1,YjtLocal,Sjt)*PjtCalc(meas_dx,target_dx2,YjtLocal,Sjt) return Gj def YjtCalc(t_idx): yt=np.array([self.CurrentRdrTracks.tracks[t_idx].x.data,self.CurrentRdrTracks.tracks[t_idx].y.data, \ self.CurrentRdrTracks.tracks[t_idx].Vc.data]).reshape(3,1) Yjt=np.zeros((3,len(SensorIndices[t_idx]))) for jdx in range(len(SensorIndices[t_idx])): yjt=np.array([SensorData[SensorIndices[t_idx][jdx]].pose.position.x,SensorData[SensorIndices[t_idx][jdx]].pose.position.y, \ np.sqrt(SensorData[SensorIndices[t_idx][jdx]].vx_comp**2+SensorData[SensorIndices[t_idx][jdx]].vy_comp**2)]).reshape(3,1) Yjt[:,jdx]=(yjt-yt).reshape(3) return Yjt for clusterItem in ClusterList: if len(clusterItem)==1: B0t=C*(1-Pd) Yjt=YjtCalc(clusterItem[0]) c=B0t if len(SensorIndices[clusterItem[0]])>0: Z_temp=np.zeros_like(Yjt[:,0]) for j_idx in range(len(SensorIndices[clusterItem[0]])): Bjt=PjtCalc(j_idx,clusterItem[0],Yjt,Sjt) c=c+Bjt Z_temp=Z_temp+Bjt*Yjt[:,j_idx] Yk[clusterItem[0]]=Z_temp/c else: # No measurement associated with this particular object in clusterItem pass # Already Yk[clusterItem[0]] =[] by default elif len(clusterItem)==2: P0=C*(1-Pd) P1=P0 P2=P0 #Build P1: Yjt1=YjtCalc(clusterItem[0]) for jdx in range(len(SensorIndices[clusterItem[0]])): P1=P1+PjtCalc(jdx,clusterItem[0],Yjt1,Sjt) # Build P2: Yjt2=YjtCalc(clusterItem[1]) for jdx in range(len(SensorIndices[clusterItem[1]])): P2=P2+PjtCalc(jdx,clusterItem[1],Yjt2,Sjt) # Now build Bjts: B0t1=P0*P2 c1=B0t1 # Calculate Bjt1: Z_temp=np.zeros_like(Yjt1[:,0]) for j_idx in range(len(SensorIndices[clusterItem[0]])): Bjt1=PjtCalc(j_idx,clusterItem[0],Yjt1,Sjt)*(P2-PjtCalc(j_idx,clusterItem[1],Yjt1,Sjt)) c1=c1+Bjt1 Z_temp=Z_temp+Bjt1*Yjt1[:,j_idx] # Add to Yk: Yk[clusterItem[0]]=Z_temp/c1 # Now Calculate Bjt2: B0t2=P0*P1 c2=B0t2 Z_temp=np.zeros_like(Yjt2[:,0]) for j_idx in range(len(SensorIndices[clusterItem[1]])): Bjt2=PjtCalc(j_idx,clusterItem[1],Yjt2,Sjt)*(P1-PjtCalc(j_idx,clusterItem[0],Yjt2,Sjt)) c2=c2+Bjt2 Z_temp=Z_temp+Bjt2*Yjt2[:,j_idx] # Add to Yk: Yk[clusterItem[1]]=Z_temp/c1 elif len(clusterItem)==2: # Build P's: P0=C*(1-Pd) P1=P0 P2=P0 P3=P0 #Build P1: Yjt1=YjtCalc(clusterItem[0]) for jdx in range(len(SensorIndices[clusterItem[0]])): P1=P1+PjtCalc(jdx,clusterItem[0],Yjt1,Sjt) # Build P2: Yjt2=YjtCalc(clusterItem[1]) for jdx in range(len(SensorIndices[clusterItem[1]])): P2=P2+PjtCalc(jdx,clusterItem[1],Yjt2,Sjt) # Build P3: Yjt3=YjtCalc(clusterItem[2]) for jdx in range(len(SensorIndices[clusterItem[2]])): P3=P3+PjtCalc(jdx,clusterItem[2],Yjt3,Sjt) # Now Build G's: G23=0 for jdx in range(len(SensorIndices[clusterItem[0]])): G23=G23+GjCal(jdx,1,2,Yjt1) G13=0 for jdx in range(len(SensorIndices[clusterItem[1]])): G13=G13+GjCal(jdx,0,2,Yjt2) G12=0 for jdx in range(len(SensorIndices[clusterItem[2]])): G12=G12+GjCal(jdx,0,1,Yjt3) # Now Build Bjt's: B0t1=P0*(P2*P3-G23) c1=B0t1 B0t2=P0*(P1*P3-G13) c2=B0t2 B0t3=P0*(P1*P2-G12) c3=B0t3 Z_temp=np.zeros_like(Yjt1[:,0]) for j_idx in range(len(SensorIndices[clusterItem[0]])): Bjt1=PjtCalc(j_idx,0,Yjt1,Sjt)*((P2-PjtCalc(j_idx,1,Yjt2,Sjt))*(P3-PjtCalc(meas_dx,2,Yjt3,Sjt))\ -(G23-GjCal(j_idx,1,2,Yjt1,Sjt))) c1=c1+Bjt1 Z_temp=Z_temp+Bjt1*Yjt1[:,j_idx] Yk[clusterItem[0]]=Z_temp/c1 Z_temp=np.zeros_like(Yjt2[:,0]) for j_idx in range(len(SensorIndices[clusterItem[0]])): Bjt2=PjtCalc(j_idx,1,Yjt2,Sjt)*((P1-PjtCalc(j_idx,0,Yjt1,Sjt))*(P3-PjtCalc(meas_dx,2,Yjt3,Sjt))\ -(G13-GjCal(j_idx,0,2,Yjt2,Sjt))) c2=c2+Bjt2 Z_temp=Z_temp+Bjt2*Yjt2[:,j_idx] Yk[clusterItem[1]]=Z_temp/c2 Z_temp=np.zeros_like(Yjt3[:,0]) for j_idx in range(len(SensorIndices[clusterItem[0]])): Bjt3=PjtCalc(j_idx,2,Yjt3,Sjt)*((P1-PjtCalc(j_idx,0,Yjt1,Sjt))*(P2-PjtCalc(meas_dx,1,Yjt2,Sjt))\ -(G12-GjCal(j_idx,0,1,Yjt3,Sjt))) c3=c3+Bjt3 Z_temp=Z_temp+Bjt3*Yjt3[:,j_idx] Yk[clusterItem[2]]=Z_temp/c3 # If cluster size is greater than 4, use approximation as per paper (TODO, if required) else: print('Large Cluster Density, Skipping Data Association!!') pass return Yk elif Method=="Greedy": # Simple method that just outputs the closest UNUSED measurement if isinstance(SensorData[0],RadarObj) or isinstance(SensorData[0],RadarObjMKZ): # Sensor indices is a 2D python list, not numpy array usedSensorIndices=[] Yk=[] # A python list of sensor measurements corresponding to each CurrentTrack for idx in range(len(self.CurrentRdrTracks.tracks)): gateValX=[] gateValY=[] gateValRMS=[] if len(SensorIndices[idx])==0: Yk.append([]) continue else: # print(len(SensorIndices[idx])) for jdx in range(len(SensorIndices[idx])): gateValX.append(np.abs(SensorData[SensorIndices[idx][jdx]].pose.position.x-self.CurrentRdrTracks.tracks[idx].x.data)) gateValY.append(np.abs(SensorData[SensorIndices[idx][jdx]].pose.position.y-self.CurrentRdrTracks.tracks[idx].y.data)) gateValRMS.append(np.sqrt(((gateValX[jdx])**2+(gateValY[jdx])**2).astype(float))) if np.min(gateValRMS)<=self.GateThreshRdr: sensIdx=int(np.argmin(
np.array(gateValRMS)
numpy.array
# Python 3.7.2 version of the ODELAY Image Pipeline import cv2 from fast_histogram import histogram1d import h5py import math import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import sqlalchemy as db import pathlib import re import scipy.io as sio from scipy.sparse import csr_matrix from scipy.optimize import minimize import time # internal libraries import tools.fileio as fio def readImage(fileName): imageData = fio.loadmatlab(fileName) # fhandle = h5py.File(fileName, 'r') return imageData def readExcelSheetDisc(fileName): if fileName == None: fileName = fio.openFileDialog() df = pd.read_excel('fileName', sheetname='Sheet1') print("Column headings:") print(df.columns) def readExpDisc(fileName): # Reture ExpObj if fileName ==None: fileName = fio.openFileDialog() expData = fio.loadData(fileName) return CurrExp def roiLoadState(monitorDataFile, roiFile): return None def initializeExperiment(imagePath, dataPath): ''' Write ODELAY Index File to initialize experiment and provide a list of roi to process as well as experiment variables. Critical variables: starting time--must be before all file time points magnification pixel size sensor size Future versions of the microscope control software will write this data into the images. 1. Make ROI Dict that includes Paths to files and number of images in each file. 2. Make Dict of microscope parameters magnification and pixel size and sensor data 3. Write those variables to a hdf5 file for retrival by workers processing each ROI individually. ''' # Parse argument and check to see if it is a path file. if isinstance(imagePath, str): imagePath = pathlib.Path(imagePath) if isinstance(dataPath, str): dataPath = pathlib.Path(dataPath) stageFile = imagePath / 'ODELAY_StageData.mat' expName = imagePath.parts[-1] stageData = fio.loadData(stageFile) roiIndex = stageData['mP']['wellIdx']-1 roiList = list(stageData['mP']['wellID'][roiIndex]) roiList.sort() # Read in which folders are there and check roiFiles = getRoiFileList(imagePath, roiList) backgroundImage = generateBackground(imagePath, roiList[:5]) # TODO: These need to be defined by the mocroscope # Magnificaton, pixel size, camera dimensions, image state, # and image orientation, stage direction possibly pass in image files. if backgroundImage.shape[0] == 2048: magnification = 10 pixSize = 6.5 else: magnification = 20 pixSize = 6.45 odelayDataPath = dataPath / 'ODELAY Roi Data' if not odelayDataPath.exists(): odelayDataPath.mkdir() initFileName = expName + '_Index_ODELAYData.hdf5' expInitFilePath = dataPath / initFileName expDictionary = { 'backgroundImage': backgroundImage, 'defaultFitRanges': np.array([0,0]), 'maxObj': 5000, 'numTimePoints': 320, # number of timeponts 'timerIncrement': 1800, # timer increment in seconds 'threshold_offset': 1, 'pixSize': pixSize, 'sensorSize': np.array(backgroundImage.shape,dtype='int32'), 'magnification': magnification, 'coarseness': 25, 'kernalerode': 3, 'kernalopen': 8, 'roiFiles': roiFiles, 'experiment_name': expName, 'odelayDataPath': str(odelayDataPath), 'expInitFilePath': str(expInitFilePath) } fio.saveDict(expInitFilePath, expDictionary) return expDictionary def generateBackground(imagePath, roiList): ''' Generate sensor background by averaging a number of initial images given by the length of the roiList. ''' # ToDo: add in multicolor support for fluorescent images numImage = len(roiList) roiPath = pathlib.Path('./'+ roiList[0]) imageFileName = pathlib.Path('./'+ roiList[0] + '_1.mat') imageFilePath = imagePath / roiPath / imageFileName imageData = fio.loadData(imageFilePath) imageDim = imageData['rawImage'].shape accumeImage = np.zeros(imageDim[0:2], dtype= 'float') imageDevisor = float(numImage * imageDim[2]) for im in range(numImage): roiPath = pathlib.Path('./'+ roiList[im]) imageFileName = pathlib.Path('./'+ roiList[im] + '_1.mat') imageFilePath = imagePath / roiPath / imageFileName imageData = fio.loadData(imageFilePath) for tile in range(imageDim[2]): floatImage = (1/imageDevisor) * imageData['rawImage'][:,:,tile].astype('float') accumeImage += floatImage accumeImage-= np.min(accumeImage) return accumeImage.astype('uint16') def roiProcess(imagepath, datapath, roiID, verbos = False): ''' Data from Experiment Dictionary or Object ''' if isinstance(imagepath, str): imagePath = pathlib.Path(imagepath) else: imagePath = imagepath if isinstance(datapath, str): dataPath = pathlib.Path(datapath) else: dataPath = datapath indexList = [k for k in dataPath.glob('*Index_ODELAYData.*')] if len(indexList)==1: expIndexPath = dataPath / indexList[0] else: print('Could not find the correct index file or there were more than one in the diretory') expData = fio.loadData(expIndexPath) ##################################### # Load Dictionary variables There has to be a way to dynamically add these ##################################### background = expData['backgroundImage'] defaultFitRanges = expData['defaultFitRanges'] maxObj = expData['maxObj'] numTimePoints = expData['numTimePoints'] # number of timeponts timerIncrement = expData['timerIncrement'] # timer increment in seconds threshold_offset = expData['threshold_offset'] pixSize = expData['pixSize'] sensorSize = expData['sensorSize'] magnification = expData['magnification'] coarseness = expData['coarseness'] kernalerode = expData['kernalerode'] kernalopen = expData['kernalopen'] roiFiles = expData['roiFiles'] experiment_name = expData['experiment_name'] odelayDataPath = dataPath / 'ODELAY Roi Data' ############################ # expData dictionary is a hdf5 file that will contain the correct information # initialize the experiment. Perhaps it should be an ini file but at the momement its not # defaultFitRanges = None # maxObj = 5000 # numTimePoints = 320 # number of timeponts # timerIncrement = 1800 # timer increment in seconds # threshold_offset = 1 # pixSize = 6.45 # magnification = 20 # courseness = 25 # kernalerode = 3 # kernalopen = 8 ############################ # monitorData = fio.loadmat(monitorDataFile) # % Load Well Data # TODO: loadWell State for cronjob or monitor data files # Load state from Database or create one if it doesn't exist # Check number of images analyzed and number not analyzed # NewLoadImage + # LoadOldImage + # ThresholdOldImage + # ThresholdNewImage + # PhaseCorrelate Old New Evaluate SampleDrift + # BlobAnalysis + # Object Track -+ # EnterData into ObjectNext and ObjectTrack Data -+ # Estimate Growth curves -+ # Save Low Bit Depth Image for display # Update well analysis # Shut down workers once caught up. ''' The following code is to initialize data for all wells ''' if isinstance(roiID, str): roiLabel = roiID elif isinstance(roiID, int): roiList = [*roiFiles] roiLabel = roiList[roiID] # Else this will crash roiPath = imagePath / roiLabel imageFileList = os.listdir(roiPath) # Understand this gem of a regular expression sort. imageFileList.sort(key=lambda var:[int(x) if x.isdigit() else x for x in re.findall(r'[^0-9]|[0-9]+', var)]) numImages = len(imageFileList) if numTimePoints<numImages: numTimePoints = numImages threshold = np.zeros(numTimePoints, dtype='uint16') # Array 1 x numTimePoints uint16 # imageFileList = []# List of strings stitchMeta = {} # Dictionary or list for image stitching data xyzTime = np.zeros((numTimePoints, 4), dtype ='float64') timePoints = np.full( numTimePoints, 'nan', dtype='float64') # Array dbl 1 x numTimePoints double objectNext = np.zeros((maxObj, numTimePoints), dtype='uint16') # Array maxObj x numTimePoints uint16 objectTrack = np.zeros((maxObj, numTimePoints), dtype='uint16') # Array maxObj x numTimePoints uint16 objectArea = np.zeros((maxObj, numTimePoints), dtype='uint32') # Array maxObj x numTimePoints double objectCentX = np.zeros((maxObj, numTimePoints), dtype='float64') # Array maxObj x numTimePoints double objectCentY = np.zeros((maxObj, numTimePoints), dtype='float64') # Array maxObj x numTimePoints double numObj = np.zeros(numTimePoints, dtype = 'float64') sumArea = np.zeros( numTimePoints, dtype = 'float64') fitData = np.zeros((maxObj, 17), dtype='float64') # Dictionary array maxObj x 17 double imageHist = np.zeros((numTimePoints, 2**16), dtype = 'uint32') analyzeIndex = np.zeros(numTimePoints, dtype = 'bool') xyDisp = np.zeros((numTimePoints, 4), dtype = 'int32') prImage ={} # End Initialization # processTime = np.zeros() tstart = time.time() print(f'The ROI is {roiID}') # Start Processing Data Here for aI in range(numImages): t0 = time.time() # load New Image imageFilePath = roiPath / imageFileList[aI] anImage = stitchImage(imageFilePath, pixSize, magnification, background) #TODO: Generate a thumbnail of the stitched image for use in the GUI later stitchMeta.update({f'{aI:03d}': anImage['stitchMeta']}) xyzTime[aI,:] = anImage['stitchMeta']['xyzTime'][0:4] xyDim = anImage['Bf'].shape sobelBf = SobelGradient(anImage['Bf']) sobelCent = SobelGradient(anImage['centIm']) threshold[aI] = thresholdImage(sobelBf, threshold_offset, coarseness) imageHist[aI,:] = histogram1d(sobelBf.ravel(), 2**16, [0,2**16], weights = None).astype('uint32') bwBf = np.greater(sobelBf, threshold[aI]).astype('uint8') akernel = np.array([[0, 0, 1, 0, 0], [0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], [0, 0, 1, 0, 0]], dtype='uint8') # dilate # fill # erode # open # bwBf = cv2.dilate(bwBf, akernel, iterations = 1) # okernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernalopen , kernalopen)) # bwBf = cv2.morphologyEx(bwBf, cv2.MORPH_CLOSE,okernel) # bwBf = cv2.erode( bwBf, akernel, iterations = 1) # bwBf = cv2.morphologyEx(bwBf, cv2.MORPH_OPEN, okernel) ####### # Python Implementation ekernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernalerode, kernalerode)) okernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernalopen , kernalopen)) bwBf = cv2.dilate(bwBf, ekernel, iterations = 1) bwBf = cv2.erode( bwBf, ekernel, iterations = 1) bwBf = cv2.morphologyEx(bwBf, cv2.MORPH_OPEN, okernel) bwBf = cv2.morphologyEx(bwBf, cv2.MORPH_CLOSE,okernel) bwBf[1, :] = 1 bwBf[:, 1] = 1 bwBf[:,-1] = 1 bwBf[-1,:] = 1 sumArea[aI] = np.sum(bwBf) anImage['sobelBf'] = sobelBf anImage['bwBf'] = bwBf imageStats = cv2.connectedComponentsWithStats(bwBf, 8, cv2.CV_32S) # imageStats[0] is the number of objects detected # imageStats[1] is the labeled image uint32 # imageStats[2] is a number of objects x 5 List that are object stats # imageStats[3] is object centroids # TODO: Extract Fluorescence data from Fluoresences image # This will be done either using the threshold areas in the # labeled Image to extract corresponding areas in the # fluoresence image and then summing those areas if aI != 0: # Centroid Association # Figure out what the image shift is from the previous Images bw1 = np.greater(sobelCent, threshold[aI]).astype('uint8') bw2 = np.greater(prImage['sobelCent'], threshold[aI]).astype('uint8') # Use FFT phase corelation to determin the offet fT = np.multiply(anImage['fTrans'], prImage['fTrans'].conj()) fTabs = np.divide(fT,abs(fT)) fmag1 = np.fft.ifft2(fTabs) fmag1[0,0] = 0 # The first index of fmag is always 1 so ignor it. r, c = np.where(fmag1 == fmag1.max()) xyDim = anImage['centIm'].shape row = [xyDim[0]-r[0], r[0]] col = [xyDim[1]-c[0], c[0]] rDisp = np.zeros((16,3), dtype = 'int32') cDisp = np.zeros((16,3), dtype = 'int32') cnt = 0 for r in row: for c in col: rDisp[cnt,:] = [r,0,r] cDisp[cnt,:] = [c,0,c] cnt += 1 rDisp[cnt,:] = [0,r,r] cDisp[cnt,:] = [0,c,c] cnt += 1 rDisp[cnt,:] = [r,0,r] cDisp[cnt,:] = [0,c,c] cnt += 1 rDisp[cnt,:] = [0,r,r] cDisp[cnt,:] = [c,0,c] cnt += 1 cond = np.zeros(16,dtype = 'int32') for n in range(16): sw1 = np.zeros((xyDim[0] + rDisp[n,2] , xyDim[1] + cDisp[n,2]), dtype = 'uint8') sw2 = np.zeros((xyDim[0] + rDisp[n,2] , xyDim[1] + cDisp[n,2]), dtype = 'uint8') swT = np.zeros((xyDim[0] + rDisp[n,2] , xyDim[1] + cDisp[n,2]), dtype = 'uint8') rs1 = rDisp[n,0] re1 = rDisp[n,0] + xyDim[0] cs1 = cDisp[n,0] ce1 = cDisp[n,0] + xyDim[1] rs2= rDisp[n,1] re2= rDisp[n,1] + xyDim[0] cs2= cDisp[n,1] ce2= cDisp[n,1] + xyDim[1] sw1[rs1:re1, cs1:ce1] = bw1 sw2[rs2:re2, cs2:ce2] = bw2 swT = sw1*sw2 cond[n] = swT.sum(axis = None, dtype = 'float') ind = cond.argmax() xyDisp[aI,:] = np.array((rDisp[ind,0],cDisp[ind,0],rDisp[ind,1],cDisp[ind,1]), dtype = 'int32') # this gives the overlap vector for aligning the images # Set image Dimensions so they are identical. xyDim = bwBf.shape xyDimP = prImage['bwBf'].shape maxDim = np.max([xyDim, xyDimP],axis = 0) maxDisp = np.array((xyDisp[aI,[0,2]].max(), xyDisp[aI,[1,3]].max()),dtype = 'int32') # To do include translation from images earlier. alDim = np.floor((maxDim-xyDim)/2).astype('int') auDim = maxDim-np.ceil((maxDim-xyDim)/2).astype('int') blDim = np.floor((maxDim-xyDimP)/2).astype('int') buDim = maxDim-np.ceil((maxDim-xyDimP)/2).astype('int') arsV = alDim[0] + xyDisp[aI,0] areV = auDim[0] + xyDisp[aI,0] acsV = alDim[1] + xyDisp[aI,1] aceV = auDim[1] + xyDisp[aI,1] brsV = blDim[0] + xyDisp[aI,2] breV = buDim[0] + xyDisp[aI,2] bcsV = blDim[1] + xyDisp[aI,3] bceV = buDim[1] + xyDisp[aI,3] A = np.zeros((maxDim + maxDisp),dtype = 'uint8') B = np.zeros((maxDim + maxDisp),dtype = 'uint8') aLbl = np.zeros((maxDim + maxDisp),dtype = 'uint16') bLbl = np.zeros((maxDim + maxDisp),dtype = 'uint16') A[arsV:areV,acsV:aceV] = bwBf B[brsV:breV,bcsV:bceV] = prImage['bwBf'] aLbl[arsV:areV,acsV:aceV] = imageStats[1] bLbl[brsV:breV,bcsV:bceV] = prevImStats[1] # % Multiply black and white Images together. This makes a mask # % where colonies overlap. M = A*B ALbl = aLbl*M # Current Labeled Image BLbl = bLbl*M # Prev Labeled Image ccM = cv2.connectedComponents(M, 8, cv2.CV_32S) numObj[aI] = ccM[0] if ccM[0] >5000: print('Number of objectes in ', aI, ' greater than 5000') # ccM is the total number of objects returned in the image ARvl = ALbl.ravel() BRvl = BLbl.ravel() MRvl = ccM[1].ravel() # Create a sparce matrix of the labeled connected component image smM = csr_matrix((MRvl, [MRvl, np.arange(MRvl.shape[0])] ), shape=(ccM[0],MRvl.shape[0])) # Get the indices of the non-zero elements of the connected # connected components. Use a list comprehension and # np.split to find the indicies of each labled area in the ccM # matrix. Then make sure that the lables of ALbl and BLbl are # unique by taking the absolute value of the difference between # all the Labeled pixels and summing them. If all pixels are # are identical then that function diffsum should return zero. # If both Labels in each image are unique then no merging of # overlaping objects has occured. trkInds = np.array(([ [ARvl[inds[0]], BRvl[inds[0]]] for inds in np.split(smM.indices, smM.indptr[1:-1]) if diffsum(ARvl[inds])==0 and diffsum(BRvl[inds])==0 ]), dtype = 'int') # Place objects that were linked in the Object Next list into an easier to # address Object Track List. if np.max(trkInds)>=5000: tempInds = trkInds>4999 trkInds[tempInds] = 0 objectNext[trkInds[:,1],aI-1] = trkInds[:,0] rc = objectNext.shape nextHist = histogram1d(objectNext[:,aI-1],rc[0],[0,rc[0]],weights = None).astype('int') discard = np.where(nextHist>1) for val in discard[0]: inds = np.where(objectNext[:,aI-1]==val) objectNext[inds,aI-1] = 0 curInds = np.arange(maxObj, dtype = 'int') curVec = curInds[objectTrack[:,aI-1]!=0] nextVec = objectTrack[curVec,aI-1] if nextVec.shape != 0: objectTrack[curVec,aI] = objectNext[nextVec,aI-1] curVec = curInds[objectTrack[:,aI]!=0] objVec = objectTrack[curVec,aI] objectArea[ curVec, aI] = imageStats[2][objVec,4] objectCentX[curVec, aI] = imageStats[3][objVec,0] objectCentY[curVec, aI] = imageStats[3][objVec,1] # Generate Timepoints for this Data-Set timePoints[aI] = (xyzTime[aI,3]-xyzTime[0,3])*1440 # Matlab stores data in fractional number of days. Convert to minutes number of minutes in a day elif aI == 0: curVec = np.arange(imageStats[0], dtype = 'int') timePoints[aI] = 0 objectTrack[0:imageStats[0],0] = np.arange(imageStats[0], dtype = 'uint16') objectArea[ curVec, aI] = imageStats[2][curVec,4] objectCentX[curVec, aI] = imageStats[3][curVec,0] objectCentY[curVec, aI] = imageStats[3][curVec,1] # set up for next Image by replacing the previous image information prImage = anImage prImage['sobelCent'] = sobelCent prevImStats = imageStats t1 = time.time() print('Image ', aI, ' took ', t1-t0, ' seconds') print((t1-tstart)/60, ' minutes have elapsed') # breakpoint() # This is a filter to get rid of very big stpes in the objectArea that # may be due to either loss of focus or other imaging problems log2Area = np.log2(objectArea.astype('float')) diffArea = np.diff(log2Area,axis=1,n=1, append=0) diffAreaAbs = np.abs( diffArea) dbInds = diffAreaAbs>1 bgSteps = np.cumsum(dbInds,axis=1)==0 objectArea[~bgSteps]= 0 indVec = np.arange(maxObj) numObs = np.sum(objectArea!=0, axis = 1) fitVec = indVec[numObs>5] for m in fitVec: (fitCols, fitData[m,0:16]) = fitGrowthCurves(timePoints, objectArea[m,:],defaultFitRanges) if len(fitVec)==0: fitCols = {'No Data Fit':1} # returnDict = {'anImage': anImage, # 'prImage': prImage, # 'background': background, # 'stitchMeta': stitchMeta, # 'imageHist': imageHist, # 'timePoints': timePoints, # 'objectArea': objectArea, # 'objectTrack': objectTrack, # 'objectCentX': objectCentX, # 'objectCentY': objectCentY, # 'objectNext': objectNext, # 'threshold': threshold, # 'numObj': numObj, # 'sumArea': sumArea, # 'xyDisp': xyDisp, # 'xyzTime': xyzTime, # 'fitData': fitData, # 'roiLabel': roiLabel # } returnDict = {'stitchMeta': stitchMeta, 'imageHist': imageHist, 'timePoints': timePoints, 'objectArea': objectArea, 'objectTrack': objectTrack, 'objectCentX': objectCentX, 'objectCentY': objectCentY, 'objectNext': objectNext, 'threshold': threshold, 'sumArea': sumArea, 'numObj': numObj, 'xyDisp': xyDisp, 'xyzTime': xyzTime, 'fitData': fitData, 'fitDataCols': fitCols, 'roiLabel': roiLabel } fio.saveROI(odelayDataPath, returnDict) return returnDict def roiMacInfo(imagepath, datapath, roiID, verbos = False): ''' Data from Experiment Dictionary or Object ''' if isinstance(imagepath, str): imagePath = pathlib.Path(imagepath) else: imagePath = imagepath if isinstance(datapath, str): dataPath = pathlib.Path(datapath) else: dataPath = datapath indexList = [k for k in dataPath.glob('*Index_ODELAYData.*')] if len(indexList)==1: expIndexPath = dataPath / indexList[0] else: print('Could not find the correct index file or there were more than one in the diretory') expData = fio.loadData(expIndexPath) ##################################### # Load Dictionary variables There has to be a way to dynamically add these ##################################### background = expData['backgroundImage'] defaultFitRanges = expData['defaultFitRanges'] maxObj = expData['maxObj'] numTimePoints = expData['numTimePoints'] # number of timeponts timerIncrement = expData['timerIncrement'] # timer increment in seconds threshold_offset = expData['threshold_offset'] pixSize = expData['pixSize'] sensorSize = expData['sensorSize'] magnification = expData['magnification'] coarseness = expData['coarseness'] kernalerode = expData['kernalerode'] kernalopen = expData['kernalopen'] roiFiles = expData['roiFiles'] experiment_name = expData['experiment_name'] roiSavePath = dataPath / 'ODELAY Roi Data' / f'{roiID}.hdf5' ''' The following code is to initialize data for all wells ''' roiPath = imagePath / roiID fileList = os.listdir(roiPath) imageFileList = [fileName for fileName in fileList if '.mat' in fileName] # Understand this gem of a regular expression sort. imageFileList.sort(key=lambda var:[int(x) if x.isdigit() else x for x in re.findall(r'[^0-9]|[0-9]+', var)]) numImages = len(imageFileList) if numTimePoints<numImages: numTimePoints = numImages imageInfo = {} # Start Processing Data Here for aI in range(numImages): # # load New Image imageFilePath = roiPath / imageFileList[aI] anImage = stitchImage(imageFilePath, pixSize, magnification, background) # TODO: Generate a thumbnail of the stitched image for use in the GUI later imageInfo[f'{aI:03d}'] = {} imageInfo[f'{aI:03d}']['stitchMeta'] = anImage['stitchMeta'] imageInfo[f'{aI:03d}']['index'] = aI+1 # for imType in anImage['imageLabels'].keys() # flourImageDict = {colList[val] : val for val in range(len(colList))} fluorImageList = [Lbl for Lbl in [*anImage['imageLabels']] if not Lbl=='Bf'] flourDict ={fluorImageList[im]: im for im in range(len(fluorImageList))} for flourIm in fluorImageList: threshold = thresholdImage(anImage[flourIm], threshold_offset, coarseness) flourBw = morphImage(anImage[flourIm], kernalerode, kernalopen, threshold) imageStats = cv2.connectedComponentsWithStats(flourBw, 8, cv2.CV_32S) FRvl = anImage[flourIm].ravel() MRvl = imageStats[1].ravel() # Create a sparce matrix of the labeled connected component image smM = csr_matrix((MRvl, [MRvl, np.arange(MRvl.shape[0])]), shape=(imageStats[0],MRvl.shape[0])) objIntensity = np.array(([ np.sum(FRvl[inds]) for inds in np.split(smM.indices, smM.indptr[1:-1]) ]), dtype = 'uint32') imageInfo[f'{aI:03d}'][flourIm] = {} imageInfo[f'{aI:03d}'][flourIm]['threshold'] = threshold imageInfo[f'{aI:03d}'][flourIm]['boundBox'] = imageStats[2] imageInfo[f'{aI:03d}'][flourIm]['centroids'] = imageStats[3] imageInfo[f'{aI:03d}'][flourIm]['objIntensity'] = objIntensity fio.saveDict(roiSavePath, imageInfo) return imageInfo def roiMacSeg(imagepath, datapath, roiID, verbos = False): ''' Data from Experiment Dictionary or Object ''' if isinstance(imagepath, str): imagePath = pathlib.Path(imagepath) else: imagePath = imagepath if isinstance(datapath, str): dataPath = pathlib.Path(datapath) else: dataPath = datapath indexList = [k for k in dataPath.glob('*Index_ODELAYData.*')] if len(indexList)==1: expIndexPath = dataPath / indexList[0] else: print('Could not find the correct index file or there were more than one in the diretory') deadDirPath = dataPath / 'DeadCells' if not deadDirPath.exists(): deadDirPath.mkdir() liveDirPath = dataPath / 'LiveCells' if not liveDirPath.exists(): liveDirPath.mkdir() expData = fio.loadData(expIndexPath) ##################################### # Load Dictionary variables There has to be a way to dynamically add these ##################################### background = expData['backgroundImage'] defaultFitRanges = expData['defaultFitRanges'] maxObj = expData['maxObj'] numTimePoints = expData['numTimePoints'] # number of timeponts timerIncrement = expData['timerIncrement'] # timer increment in seconds threshold_offset = expData['threshold_offset'] pixSize = expData['pixSize'] sensorSize = expData['sensorSize'] magnification = expData['magnification'] coarseness = expData['coarseness'] kernalerode = expData['kernalerode'] kernalopen = expData['kernalopen'] roiFiles = expData['roiFiles'] experiment_name = expData['experiment_name'] roiSavePath = dataPath / 'ODELAY Roi Data' / f'{roiID}.hdf5' if isinstance(roiID, str): roiLabel = roiID elif isinstance(roiID, int): roiList = [*roiFiles] roiLabel = roiList[roiID] # Else this will crash roiPath = imagePath / roiLabel imageFileList = os.listdir(roiPath) # Understand this gem of a regular expression sort. imageFileList.sort(key=lambda var:[int(x) if x.isdigit() else x for x in re.findall(r'[^0-9]|[0-9]+', var)]) numImages = len(imageFileList) if numTimePoints<numImages: numTimePoints = numImages threshold = np.zeros(numTimePoints, dtype='uint16') # Array 1 x numTimePoints uint16 # imageFileList = []# List of strings stitchMeta = {} # Dictionary or list for image stitching data xyzTime = np.zeros((numTimePoints, 4), dtype ='float64') timePoints = np.full( numTimePoints, 'nan', dtype='float64') # Array dbl 1 x numTimePoints double numObj = np.zeros(numTimePoints, dtype = 'float64') sumArea = np.zeros( numTimePoints, dtype = 'float64') fitData = np.zeros((maxObj, 17), dtype='float64') # Dictionary array maxObj x 17 double imageHist = np.zeros((numTimePoints, 2**16), dtype = 'uint32') analyzeIndex = np.zeros(numTimePoints, dtype = 'bool') xyDisp = np.zeros((numTimePoints, 4), dtype = 'int32') prImage ={} ''' The following code is to initialize data for all wells ''' roiPath = imagePath / roiID fileList = os.listdir(roiPath) imageFileList = [fileName for fileName in fileList if '.mat' in fileName] # Understand this gem of a regular expression sort. imageFileList.sort(key=lambda var:[int(x) if x.isdigit() else x for x in re.findall(r'[^0-9]|[0-9]+', var)]) numImages = len(imageFileList) if numTimePoints>numImages: numTimePoints = numImages imageInfo = {} liveCnt = 0 deadCnt = 0 # Start Processing Data Here for aI in range(numTimePoints): # # load New Image imageFilePath = roiPath / imageFileList[aI] anImage = opl.stitchImage(imageFilePath, pixSize, magnification, background) # TODO: Generate a thumbnail of the stitched image for use in the GUI later imageInfo[f'{aI:03d}'] = {} imageInfo[f'{aI:03d}']['stitchMeta'] = anImage['stitchMeta'] imageInfo[f'{aI:03d}']['index'] = aI+1 sobelBf = opl.SobelGradient(anImage['Bf']) threshold = opl.thresholdImage(sobelBf, 1.2, coarseness) imageHist[aI,:] = histogram1d(sobelBf.ravel(), 2**16, [0,2**16], weights = None).astype('uint32') bwBf1 = np.greater(sobelBf, threshold).astype('uint8') akernel = np.array([[0, 0, 1, 0, 0], [0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], [0, 0, 1, 0, 0]], dtype='uint8') ####### # Python Implementation kernalerode = 4 kernalopen = 3 ekernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernalerode, kernalerode)) okernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernalopen , kernalopen)) bwBf2 = cv2.dilate(bwBf1, ekernel, iterations = 2) bwBf3 = cv2.erode( bwBf2, ekernel, iterations = 2) bwBf3[1, :] = 1 bwBf3[:, 1] = 1 bwBf3[:,-1] = 1 bwBf3[-1,:] = 1 sumArea[aI] = np.sum(bwBf3) anImage['bwBf'] = bwBf2 bfImageStats = cv2.connectedComponentsWithStats(bwBf2, 8, cv2.CV_32S) scaledBf = scaleImage(anImage['Bf'], lowCut = 0.00001, highcut = 0.9995, scaleImage = 1) scaledSB = scaleImage(sobelBf, lowCut = 0.00001, highcut = 0.9995, scaleImage = 1) scaledCy5 = scaleImage(anImage['Cy5'], lowCut = 0.00001, highcut = 1, scaleImage = 1) scaledHst = scaleImage(anImage['DAPI'], lowCut = 0.00001, highcut = 1, scaleImage = 1) images = [scaledBf,scaledSB, anImage['bwBf'], scaledCy5, scaledHst] titles = ['scaledBF','scaledSB', "anImage['bwBf']", 'scaledCy5', 'scaledHst'] # for i in range(5): # plt.subplot(2,3,i+1),plt.imshow(images[i],'gray') # plt.title(titles[i]) # plt.xticks([]),plt.yticks([]) # plt.show() imageInfo[f'{aI:03d}']['Bf'] = {} imageInfo[f'{aI:03d}']['Bf']['threshold'] = threshold imageInfo[f'{aI:03d}']['Bf']['boundBox'] = bfImageStats[2] # upper left xy lower right xy imageInfo[f'{aI:03d}']['Bf']['centroids'] = bfImageStats[3] fluorImageList = [Lbl for Lbl in [*anImage['imageLabels']] if not Lbl=='Bf'] flourDict ={fluorImageList[im]: im for im in range(len(fluorImageList))} for flourIm in fluorImageList: threshold = opl.thresholdImage(anImage[flourIm], 1.3, coarseness) flourBw = opl.morphImage(anImage[flourIm], kernalerode, kernalopen, threshold) flImageStats = cv2.connectedComponentsWithStats(flourBw, 8, cv2.CV_32S) FRvl = anImage[flourIm].ravel() MRvl = flImageStats[1].ravel() # Create a sparce matrix of the labeled connected component image fluorPix = csr_matrix((MRvl, [MRvl, np.arange(MRvl.shape[0])]), shape=(flImageStats[0],MRvl.shape[0])) objIntensity = np.array(([ np.sum(FRvl[inds]) for inds in np.split(fluorPix.indices, fluorPix.indptr[1:-1]) ]), dtype = 'uint32') imageInfo[f'{aI:03d}'][flourIm] = {} imageInfo[f'{aI:03d}'][flourIm]['threshold'] = threshold imageInfo[f'{aI:03d}'][flourIm]['boundBox'] = flImageStats[2] imageInfo[f'{aI:03d}'][flourIm]['centroids'] = flImageStats[3] imageInfo[f'{aI:03d}'][flourIm]['objIntensity'] = objIntensity # figure out if image has fluorescent centroid in image. imToCheck = flourIm flCents = imageInfo[f'{aI:03d}'][flourIm]['centroids'] cellBounds = imageInfo[f'{aI:03d}']['Bf']['boundBox'] centIn = np.zeros((flCents.shape[0], cellBounds.shape[0]), dtype = 'bool') boundIn= np.zeros((flCents.shape[0], cellBounds.shape[0]), dtype = 'bool') for row in range(flCents.shape[0]): centIn[row,:] = checkCentroid(flCents[row,:], cellBounds, 40, 500) for col in range(cellBounds.shape[0]): boundIn[:,col] = checkBoundBox(flCents, cellBounds[col,:], 40, 500) imageInfo[f'{aI:03d}'][flourIm]['centIn'] = centIn imageInfo[f'{aI:03d}'][flourIm]['boundIn'] = boundIn dapiCents = np.sum(imageInfo[f'{aI:03d}']['DAPI']['centIn'], axis=0) cy5Cents = np.sum(imageInfo[f'{aI:03d}']['Cy5']['centIn'], axis=0) singleDapi = dapiCents == 1 singleCy5 = cy5Cents == 1 deadCell = singleDapi & singleCy5 liveCell = singleDapi & ~singleCy5 deadInds = np.where(deadCell==True) liveInds = np.where(liveCell==True) if type(deadInds[0]) is not tuple and type(liveInds[0]) is not tuple: imageInfo[f'{aI:03d}']['deadCellInds'] = deadInds[0] imageInfo[f'{aI:03d}']['liveCellInds'] = liveInds[0] deadCnt += deadInds[0].shape[0] liveCnt += liveInds[0].shape[0] uniqueDead = np.uinique(deadInds[0]) for ind in np.uinique(deadInds[0]): deadImagePath = deadDirPath / f'{roiID}_{aI:03d}_{ind}.tiff' bBox = cellBounds[ind,:] xi = bBox[0] xe = bBox[0]+bBox[2] yi = bBox[1] ye = bBox[1]+bBox[3] saveIm = anImage['Bf'][yi:ye, xi:xe] retVal = cv2.imwrite(str(deadImagePath), saveIm) uniqueLive = np.uinique(liveInds[0]) for ind in np.unique(liveInds[0]): liveImagePath = liveDirPath / f'{roiID}_{aI:03d}_{ind}.tiff' bBox = cellBounds[ind,:] xi = bBox[0] xe = bBox[0]+bBox[2] yi = bBox[1] ye = bBox[1]+bBox[3] saveIm = anImage['Bf'][yi:ye, xi:xe] retVal = cv2.imwrite(str(liveImagePath), saveIm) fio.saveDict(roiSavePath, imageInfo) return imageInfo def checkCentroid(cent, bB, minDim, maxDim): # check if centroid is within all bounding boxes. # Retruns logical index of which bounding box the centroid is in. x1 = bB[:,0] y1 = bB[:,1] x2 = bB[:,0]+bB[:,2] y2 = bB[:,1]+bB[:,3] test1 = x1<=cent[0] test2 = x2>=cent[0] test3 = y1<=cent[1] test4 = y2>=cent[1] test5 = bB[:,2]>=minDim test6 = bB[:,3]>=minDim test7 = bB[:,2]<=maxDim test8 = bB[:,3]<=maxDim return test1 & test2 & test3 & test4 & test5 & test6 & test7 & test8 def checkBoundBox(cent, bB, minDim, maxDim): # check if centroid is within all bounding boxes. # Retruns logical index of which bounding box the centroid is in. x1 = bB[0] y1 = bB[1] x2 = bB[0]+bB[2] y2 = bB[1]+bB[3] test1 = x1<=cent[:,0] test2 = x2>=cent[:,0] test3 = y1<=cent[:,1] test4 = y2>=cent[:,1] test5 = bB[2]>=minDim test6 = bB[3]>=minDim test7 = bB[2]<=maxDim test8 = bB[3]<=maxDim return test1 & test2 & test3 & test4 & test5 & test6 & test7 & test8 def refitGCs(imagepath, datapath, roiID): return None def gompMinBDt(x, tdata, idata): ''' ''' Klag = np.log((3+5**0.5)/2) a = x[0] b = x[1] tlag = x[2] dT = x[3] yn=a + b*np.exp(-np.exp((Klag/dT)*(dT+tlag-tdata))) vals = np.nansum((yn-idata)**2) return vals def gompBDt(x, tdata): ''' ''' Klag = np.log((3+5**0.5)/2) a = x[0] b = x[1] tlag = x[2] dT = x[3] vals=a + b*np.exp(-np.exp((Klag/dT)*(dT+tlag-tdata))) return vals def findPrmsGompBDt(vecB, vecTlag, vecDT, tdata, adata): ''' Corse-grid search for parameters of the Parameterized Gompertz function ------- Input Parameters vecB: array of B paramters to search vecTlag: array of lag times to search vecDT: array of DT times to search tData: ordered array of timepoints aData: corresponding area data Returns array of estamate parameters estVec[0] = a estimate estVec[1] = B estimate estVec[2] = lag time estimate estVec[3] = dT or time between max velocity and lag time ''' flag=False estVec = np.zeros(4, dtype = 'float') estVec[0] = np.nanmean(adata[0:5]) K = np.log((3+5**0.5)/2) tVec = np.arange(vecTlag.shape[0]) for B in vecB: for tp in tVec[:-1]: tlag = vecTlag[tp] vecDt = vecTlag[tp+1:]-vecTlag[tp] for dT in vecDt: yn=estVec[0]+B*np.exp(-np.exp((K/dT)*(dT+tlag-tdata))) ifunc = np.sum((adata-yn)**2) if (not flag) or (flag and ifunc < fmin): fmin = ifunc estVec[1] = B estVec[2] = tlag estVec[3] = dT flag = True return estVec def fitGrowthCurves(timeVec, areaData, defaultRanges): numTPs = np.sum(areaData!=0) aData = np.log2(areaData[:numTPs]) tData = timeVec[:numTPs] Nsteps = 40 areaMax = np.max(aData) factor=1.05 cumsum = np.cumsum(np.insert(aData, 0, 0)) smthArea = (cumsum[5:] - cumsum[:-5]) / 5 x = tData[:-4] y = smthArea m =
np.diff(y[[0,-1]])
numpy.diff
# -*- coding: utf-8 -*- """ Created on Sat Jun 8 14:12:07 2019 @Title: FrontierLab exchange program - BPS source code (for Bayesian Logistic Regression) @Author: <NAME> @Reference: <NAME>, <NAME>, and <NAME>, “The bouncy particle sampler: A non-reversible rejection-free markov chain monte carlo method,” 2015. """ import time import numpy as np import copy def expit(z): return np.exp(z) / (1 + np.exp(z)) def euclidean(z): return np.sum(z ** 2) class BPS: def __init__(self, X, Y, prior_var, ref, store_skip): # X: input # Y: output # prior_var : variance of prior (normal distribution with mu = 0) # ref : refresh rate (1/ref) # store_skip : (thinned factor, not used) # you may adjust the sample counts by ""sample_time"" in function "sampler" self.X = X self.Y = Y self.all_samples = [] self.prior_var = prior_var self.ref = ref self.store_skip = store_skip self.beta = np.random.normal(0,1,2) self.all_samples.append(self.beta) self.v = np.random.normal(0,1,2) self.count = 0 self.pre_beta = self.beta self.success = X[np.where(Y == 1)] self.failure = X[np.where(Y == 0)] # burnin time is computer time # not BPS clock self.burnin_time = 0 self.burnin_sample = 0 # for storage time checking self.all_storage_time = 0 self.after_burnin_storage_time = 0 self.after_burnin_switch = 0 def prior_local_upper_bound(self, t): # prior local upper bound calculation temp = np.max([0,np.dot((self.beta + self.v * t), self.v)]) * self.prior_var**-2 return temp def constant_int(self): # the likelihood bound term1 = np.abs(self.v[0]) * len(self.success) * (self.v[0] < 0) term2 = np.max([0, np.abs(self.v[1]) * np.sum(self.success)]) term3 = self.v[0] * len(self.failure) * (self.v[0] > 0) term4 = np.max([0, self.v[1] * np.sum(self.failure)]) return np.max([0, term1 + term2 + term3 + term4]) def R_prior(self): # velocity bounce formula for prior nominator = np.dot(self.beta* self.prior_var**-2, self.v) denominator = euclidean(self.beta* self.prior_var**-2) new_v = self.v - 2*(nominator/denominator) * self.beta * self.prior_var**-2 return new_v def g_constant(self): # exact likelihood intensity term_1 = np.sum(expit(self.beta[0] + self.beta[1]*self.success)) - len(self.success) term_2 = np.sum(self.success * (expit(self.beta[0] + self.beta[1]*self.success) -1)) term_3 = np.sum(expit(self.beta[0] + self.beta[1]*self.failure)) term_4 = np.sum(self.failure * (expit(self.beta[0] + self.beta[1]*self.failure))) gU = np.array([term_1 + term_3, term_2 + term_4]) return np.dot(gU, self.v) def R_constant(self): # velocity bounce formula for likelihood term_1 = np.sum(expit(self.beta[0] + self.beta[1]*self.success)) - len(self.success) term_2 = np.sum(self.success * (expit(self.beta[0] + self.beta[1]*self.success) -1)) term_3 = np.sum(expit(self.beta[0] + self.beta[1]*self.failure)) term_4 = np.sum(self.failure * (expit(self.beta[0] + self.beta[1]*self.failure))) gU = np.array([term_1 + term_3, term_2 + term_4]) nominator =
np.dot(gU, self.v)
numpy.dot
''' MixModel.py Bayesian parametric mixture model with fixed, finite number of components K Attributes ------- K : integer number of components alpha0 : scalar parameter of symmetric Dirichlet prior on mixture weights ''' import numpy as np from bnpy.allocmodel import AllocModel from bnpy.suffstats import SuffStatBag from bnpy.util import logsumexp, np2flatstr, flatstr2np from bnpy.util import gammaln, digamma, EPS class MixModel(AllocModel): ######################################################### Constructors ######################################################### def __init__(self, inferType, priorDict=dict()): self.inferType = inferType self.set_prior(**priorDict) self.K = 0 def set_prior(self, alpha0=1.0, **kwargs): self.alpha0 = alpha0 if self.alpha0 < 1.0 and self.inferType == 'EM': raise ValueError("Cannot perform MAP inference if param alpha0 < 1") ######################################################### Accessors ######################################################### def get_keys_for_memoized_local_params(self): ''' Return list of string names of the LP fields that this object needs to memoize across visits to a particular batch ''' return list() ######################################################### Local Params ######################################################### def calc_local_params(self, Data, LP, **kwargs): ''' Calculate local parameters for each data item and each component. This is part of the E-step. Args ------- Data : bnpy data object with Data.nObs observations LP : local param dict with fields E_log_soft_ev : Data.nObs x K array E_log_soft_ev[n,k] = log p(data obs n | comp k) Returns ------- LP : local param dict with fields resp : Data.nObs x K array whose rows sum to one resp[n,k] = posterior responsibility that comp. k has for data n ''' lpr = LP['E_log_soft_ev'] if self.inferType.count('VB') > 0: lpr += self.Elogw # Calculate exp in numerically stable manner (first subtract the max) # perform this in-place so no new allocations occur lpr -= np.max(lpr, axis=1)[:,np.newaxis] np.exp(lpr, out=lpr) # Normalize, so rows sum to one lpr /= lpr.sum(axis=1)[:,np.newaxis] elif self.inferType == 'EM' > 0: lpr +=
np.log(self.w)
numpy.log
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Image PROcessing """ from tqdm import tqdm, trange import os import math import numpy as np from scipy.io import readsav from astropy import wcs from astropy.io import ascii from astropy.table import Table from reproject import reproject_interp import subprocess as SP ## Local from iolib import (fitsext, csvext, ascext, fclean, read_fits, write_fits, # read_csv, write_csv, read_ascii, ) from arrlib import allist, closest from mathlib import nanavg, bsplinterpol from astrolib import fixwcs, get_pc savext = '.sav' ##----------------------------------------------- ## <improve> based tools ##----------------------------------------------- class improve: ''' IMage PROcessing VEssel ''' def __init__(self, filIN, wmod=0, verbose=False): ''' self: filIN, wmod, hdr, w, cdelt, pc, cd, Ndim, Nx, Ny, Nw, im, wvl ''' ## INPUTS self.filIN = filIN self.wmod = wmod self.verbose = verbose ## read image/cube ## self.hdr is a 2D (reduced) header ws = fixwcs(filIN) self.hdr = ws.header self.w = ws.wcs pcdelt = get_pc(wcs=ws.wcs) self.cdelt = pcdelt.cdelt self.pc = pcdelt.pc self.cd = pcdelt.cd self.Nx = self.hdr['NAXIS1'] self.Ny = self.hdr['NAXIS2'] self.Nw = None if verbose==True: print('<improve> file: ', filIN) print('Raw size (pix): {} * {}'.format(self.Nx, self.Ny)) ## 3D cube slicing ds = read_fits(filIN) self.im = ds.data self.wvl = ds.wave self.Ndim = self.im.ndim if self.Ndim==3: if self.im.shape[0]==1: self.Ndim = 2 # Nw=1 patch else: self.Nw = len(self.wvl) def rand_norm(self, file=None, unc=None, sigma=1., mu=0.): ''' Add random N(0,1) noise ''' if file is not None: unc = read_fits(file).data if unc is not None: ## unc should have the same dimension with im theta = np.random.normal(mu, sigma, self.im.shape) self.im += theta * unc return self.im def rand_splitnorm(self, file=None, unc=None, sigma=1., mu=0.): ''' Add random SN(0,lam,lam*tau) noise ------ INPUT ------ file 2 FITS files for unc of left & right sides unc 2 uncertainty ndarrays ------ OUTPUT ------ ''' if file is not None: unc = [] for f in file: unc.append(read_fits(f).data) if unc is not None: ## unc[i] should have the same dimension with self.im tau = unc[1]/unc[0] peak = 1/(1+tau) theta = np.random.normal(mu, sigma, self.im.shape) # ~N(0,1) flag = np.random.random(self.im.shape) # ~U(0,1) if self.Ndim==2: for x in range(self.Nx): for y in range(self.Ny): if flag[y,x]<peak[y,x]: self.im[y,x] += -abs(theta[y,x]) * unc[0][y,x] else: self.im[y,x] += abs(theta[y,x]) * unc[1][y,x] elif self.Ndim==3: for x in range(self.Nx): for y in range(self.Ny): for k in range(self.Nw): if flag[k,y,x]<peak[k,y,x]: self.im[k,y,x] += -abs( theta[k,y,x]) * unc[0][k,y,x] else: self.im[k,y,x] += abs( theta[k,y,x]) * unc[1][k,y,x] return self.im def slice(self, filSL, postfix=''): ## 3D cube slicing slist = [] if self.Ndim==3: hdr = self.hdr.copy() for kw in self.hdr.keys(): if '3' in kw: del hdr[kw] hdr['NAXIS'] = 2 for k in range(self.Nw): ## output filename list f = filSL+'_'+'0'*(4-len(str(k)))+str(k)+postfix slist.append(f) write_fits(f, hdr, self.im[k,:,:]) # gauss_noise inclu else: print('Input file is a 2D image which cannot be sliced! ') f = filSL+'_0000'+postfix slist.append(f) write_fits(f, self.hdr, self.im) # gauss_noise inclu print('Rewritten with only random noise added (if provided).') return slist def slice_inv_sq(self, filSL, postfix=''): ## Inversed square cube slicing inv_sq = 1./self.im**2 slist = [] if self.Ndim==3: hdr = self.hdr.copy() for kw in self.hdr.keys(): if '3' in kw: del hdr[kw] hdr['NAXIS'] = 2 for k in range(self.Nw): ## output filename list f = filSL+'_'+'0'*(4-len(str(k)))+str(k)+postfix slist.append(f) write_fits(f, hdr, inv_sq[k,:,:]) # gauss_noise inclu else: f = filSL+'_0000'+postfix slist.append(f) write_fits(f, self.hdr, inv_sq) # gauss_noise inclu return slist def crop(self, filOUT=None, \ sizpix=None, cenpix=None, sizval=None, cenval=None): ''' If pix and val co-exist, pix will be taken. ------ INPUT ------ filOUT output file sizpix crop size in pix (dx, dy) cenpix crop center in pix (x, y) sizval crop size in deg (dRA, dDEC) -> (dx, dy) cenval crop center in deg (RA, DEC) -> (x, y) ------ OUTPUT ------ self.im cropped image array ''' ## Crop center ##------------- if cenpix is None: if cenval is None: raise ValueError('Crop center unavailable! ') else: ## Convert coord try: cenpix = np.array(self.w.all_world2pix(cenval[0], cenval[1], 1)) except wcs.wcs.NoConvergence as e: cenpix = e.best_solution print("Best solution:\n{0}".format(e.best_solution)) print("Achieved accuracy:\n{0}".format(e.accuracy)) print("Number of iterations:\n{0}".format(e.niter)) else: cenval = self.w.all_pix2world(np.array([cenpix]), 1)[0] if not (0<cenpix[0]<self.Nx and 0<cenpix[1]<self.Ny): raise ValueError('Crop centre overpassed image border! ') ## Crop size ##----------- if sizpix is None: if sizval is None: raise ValueError('Crop size unavailable! ') else: ## CDELTn needed (Physical increment at the reference pixel) sizpix = np.array(sizval) / abs(self.cdelt) sizpix = np.array([math.floor(n) for n in sizpix]) else: sizval = np.array(sizpix) * abs(self.cdelt) if self.verbose==True: print('----------') print("Crop centre (RA, DEC): [{:.8}, {:.8}]".format(*cenval)) print("Crop size (dRA, dDEC): [{}, {}]\n".format(*sizval)) print("Crop centre (x, y): [{}, {}]".format(*cenpix)) print("Crop size (dx, dy): [{}, {}]".format(*sizpix)) print('----------') ## Lowerleft origin ##------------------ xmin = math.floor(cenpix[0] - sizpix[0]/2.) ymin = math.floor(cenpix[1] - sizpix[1]/2.) xmax = xmin + sizpix[0] ymax = ymin + sizpix[1] if not (xmin>=0 and xmax<=self.Nx and ymin>=0 and ymax<=self.Ny): raise ValueError('Crop region overpassed image border! ') ## OUTPUTS ##--------- ## New image if self.Ndim==3: self.im = self.im[:, ymin:ymax, xmin:xmax] # gauss_noise inclu ## recover 3D non-reduced header self.hdr = read_fits(self.filIN).header elif self.Ndim==2: self.im = self.im[ymin:ymax, xmin:xmax] # gauss_noise inclu ## Modify header ## Suppose no non-linear distortion self.hdr['CRPIX1'] = sizpix[0] / 2. self.hdr['CRPIX2'] = sizpix[1] / 2. self.hdr['CRVAL1'] = cenval[0] self.hdr['CRVAL2'] = cenval[1] ## Write cropped image/cube if filOUT is not None: # comment = "[ICROP]ped at centre: [{:.8}, {:.8}]. ".format(*cenval) # comment = "with size [{}, {}] (pix).".format(*sizpix) write_fits(filOUT, self.hdr, self.im, self.wvl, self.wmod) return self.im class islice(improve): ''' Slice a cube ------ INPUT ------ filIN input FITS filSL ouput path+basename filUNC input uncertainty FITS dist unc pdf slicetype Default: None None - normal slices 'inv_sq' - inversed square slices postfix postfix of output slice names ------ OUTPUT ------ self: slist, path_tmp, (filIN, wmod, hdr, w, cdelt, pc, cd, Ndim, Nx, Ny, Nw, im, wvl) ''' def __init__(self, filIN, filSL=None, filUNC=None, dist='norm', \ slicetype=None, postfix=''): super().__init__(filIN) if filSL is None: path_tmp = os.getcwd()+'/tmp_proc/' if not os.path.exists(path_tmp): os.makedirs(path_tmp) filSL = path_tmp+'slice' self.filSL = filSL if dist=='norm': self.rand_norm(filUNC) elif dist=='splitnorm': self.rand_splitnorm(filUNC) if slicetype is None: self.slist = self.slice(filSL, postfix) # gauss_noise inclu elif slicetype=='inv_sq': self.slist = self.slice_inv_sq(filSL, postfix) def image(self): return self.im def wave(self): return self.wvl def filenames(self): return self.slist def clean(self, file=None): if file is not None: fclean(file) else: fclean(self.filSL+'*') class icrop(improve): ''' CROP 2D image or 3D cube ''' def __init__(self, filIN, filOUT=None, \ sizpix=None, cenpix=None, sizval=None, cenval=None, \ filUNC=None, dist='norm', wmod=0, verbose=False): ## slicrop: slice super().__init__(filIN, wmod, verbose) if dist=='norm': self.rand_norm(filUNC) elif dist=='splitnorm': self.rand_splitnorm(filUNC) im_crop = self.crop(filOUT=filOUT, sizpix=sizpix, cenpix=cenpix, \ sizval=sizval, cenval=cenval) # gauss_noise inclu def image(self): return self.im def wave(self): return self.wvl class imontage(improve): ''' 2D image or 3D cube montage toolkit i means <improve>-based or initialize ------ INPUT ------ file FITS file (list, cf improve.filIN) filREF ref file (priority if co-exist with input header) hdREF ref header fmod output image frame mode 'ref' - same as ref frame (Default) 'rec' - recenter back to input frame 'ext' - cover both input and ref frame ext_pix number of pixels to extend to save edge tmpdir tmp file path ------ OUTPUT ------ ''' def __init__(self, file, filREF=None, hdREF=None, \ fmod='ref', ext_pix=0, tmpdir=None): ''' self: hdr_ref, path_tmp, (filIN, wmod, hdr, w, Ndim, Nx, Ny, Nw, im, wvl) ''' ## Set path of tmp files if tmpdir is None: path_tmp = os.getcwd()+'/tmp_proc/' else: path_tmp = tmpdir if not os.path.exists(path_tmp): os.makedirs(path_tmp) self.path_tmp = path_tmp ## Inputs self.file = file self.filREF = filREF self.hdREF = hdREF self.fmod = fmod self.ext_pix = ext_pix ## Init ref header self.hdr_ref = None def make_header(self, filIN, filREF=None, hdREF=None, fmod='ref', ext_pix=0): ''' Make header tool ------ INPUT ------ filIN single FITS file ''' super().__init__(filIN) ## Prepare reprojection header if filREF is not None: hdREF = read_fits(filREF).header # hdREF['EQUINOX'] = 2000.0 if hdREF is not None: ## Frame mode (fmod) options ##--------------------------- if fmod=='ref': pass else: ## Input WCS (old) pix_old = [[0, 0]] pix_old.append([0, self.Ny]) pix_old.append([self.Nx, 0]) pix_old.append([self.Nx, self.Ny]) world_arr = self.w.all_pix2world(np.array(pix_old), 1) ## Ref WCS (new) w = fixwcs(header=hdREF).wcs try: pix_new = w.all_world2pix(world_arr, 1) except wcs.wcs.NoConvergence as e: pix_new = e.best_solution print("Best solution:\n{0}".format(e.best_solution)) print("Achieved accuracy:\n{0}".format(e.accuracy)) print("Number of iterations:\n{0}".format(e.niter)) xmin = min(pix_new[:,0]) xmax = max(pix_new[:,0]) ymin = min(pix_new[:,1]) ymax = max(pix_new[:,1]) ## Modify ref header if fmod=='rec': hdREF['CRPIX1'] += -xmin hdREF['CRPIX2'] += -ymin hdREF['NAXIS1'] = math.ceil(xmax - xmin) hdREF['NAXIS2'] = math.ceil(ymax - ymin) elif fmod=='ext': if xmin<0: hdREF['CRPIX1'] += -xmin if ymin<0: hdREF['CRPIX2'] += -ymin hdREF['NAXIS1'] = math.ceil(max(xmax, hdREF['NAXIS1']-xmin, \ xmax-xmin, hdREF['NAXIS1'])) + ext_pix # save edges hdREF['NAXIS2'] = math.ceil(max(ymax, hdREF['NAXIS2']-ymin, \ ymax-ymin, hdREF['NAXIS2'])) + ext_pix ## Save hdREF self.hdr_ref = hdREF ## Test hdREF (Quick check: old=new or old<new) # w_new = fixwcs(header=hdREF).wcs # print('old: ', w.all_world2pix( # self.hdr['CRVAL1'], self.hdr['CRVAL2'], 1)) # print('new: ', w_new.all_world2pix( # self.hdr['CRVAL1'], self.hdr['CRVAL2'], 1)) # exit() else: raise ValueError('Cannot find projection reference! ') def make(self): ''' Preparation (make header) ''' file = self.file filREF = self.filREF hdREF = self.hdREF fmod = self.fmod ext_pix = self.ext_pix if isinstance(file, str): self.make_header(file, filREF, hdREF, fmod, ext_pix) elif isinstance(file, list): self.make_header(file[0], filREF, hdREF, fmod, ext_pix) if fmod=='ext': ## Refresh self.hdr_ref in every circle for f in file: self.make_header(filIN=f, filREF=None, \ hdREF=self.hdr_ref, fmod='ext', ext_pix=ext_pix) tqdm.write('<imontage> Making ref header...[done]') return self.hdr_ref def footprint(self, filOUT=None): ''' Save reprojection footprint ''' if filOUT is None: filOUT = self.path_tmp+'footprint' Nx = self.hdr_ref['NAXIS1'] Ny = self.hdr_ref['NAXIS2'] im_fp = np.ones((Ny, Nx)) comment = "<imontage> footprint" write_fits(filOUT, self.hdr_ref, im_fp, COMMENT=comment) return im_fp def reproject(self, filIN, filOUT=None, \ filUNC=None, dist='norm', postfix=''): ''' Reproject 2D image or 3D cube ------ INPUT ------ filIN single FITS file to reproject filOUT output FITS file filUNC unc files dist uncertainty distribution 'norm' - N(0,1) 'splitnorm' - SN(0,lam,lam*tau) postfix ------ OUTPUT ------ ''' super().__init__(filIN) if dist=='norm': self.rand_norm(filUNC) elif dist=='splitnorm': self.rand_splitnorm(filUNC) ## Set reprojection tmp path ##--------------------------- filename = os.path.basename(filIN) rep_tmp = self.path_tmp+filename+postfix+'/' if not os.path.exists(rep_tmp): os.makedirs(rep_tmp) self.slist = self.slice(rep_tmp+'slice', '_') # gauss_noise inclu ## Do reprojection ##----------------- cube_rep = [] # for k in range(self.Nw): # hdr = self.hdr.copy() # for kw in self.hdr.keys(): # if '3' in kw: # del hdr[kw] # hdr['NAXIS'] = 2 # phdu = fits.PrimaryHDU(header=hdr, data=self.im[k,:,:]) # im_rep = reproject_interp(phdu, self.hdr_ref)[0] for s in self.slist: im_rep = reproject_interp(s+fitsext, self.hdr_ref)[0] cube_rep.append(im_rep) write_fits(s+'rep_', self.hdr_ref, im_rep) fclean(s+fitsext) self.im = np.array(cube_rep) comment = "Reprojected by <imontage>. " if filOUT is None: filOUT = self.path_tmp+filename+postfix+'_rep' self.file_rep = filOUT write_fits(filOUT, self.hdr_ref, self.im, self.wvl, wmod=0, \ COMMENT=comment) return self.im def reproject_mc(self, filIN, filUNC, Nmc=0, dist='norm'): ''' Generate Monte-Carlo uncertainties for reprojected input file ''' dataset = type('', (), {})() hyperim = [] # [j,(w,)y,x] for j in trange(Nmc+1, leave=False, \ desc='<imontage> Reprojection (MC level)'): if j==0: im0 = self.reproject(filIN, \ filUNC=None, dist=dist) file_rep = self.file_rep else: hyperim.append(self.reproject(filIN, \ filUNC=filUNC, dist=dist, postfix='_'+str(j))) im0 = np.array(im0) hyperim = np.array(hyperim) unc = np.nanstd(hyperim, axis=0) comment = "An <imontage> production" write_fits(file_rep+'_unc', self.hdr_ref, unc, self.wvl, \ COMMENT=comment) dataset.im0 = im0 dataset.unc = unc dataset.hyperim = hyperim return dataset def combine(self, file, filOUT=None, method='avg', \ filUNC=None, do_rep=True, Nmc=0, dist='norm'): ''' Stitching input files (with the same wavelengths) to the ref WCS If filUNC is None, no MC If Nmc==0, no MC ''' dataset = type('', (), {})() wvl = read_fits(file[0]).wave dataset.wvl = wvl superim0 = [] # [i,(w,)y,x] superunc = [] # [i,(w,)y,x] superim = [] # [i,j,(w,)y,x] Nf = np.size(file) for i in trange(Nf, leave=False, \ desc='<imontage> Reprojection (file level)'): ## (Re)do reprojection ##--------------------- if do_rep==True: ## With MC if filUNC is not None: im0, unc, hyperim = self.reproject_mc(file[i], filUNC[i], \ Nmc=Nmc, dist=dist) superunc.append(unc) superim.append(hyperim) ## Without MC else: im0 = self.reproject(file[i]) superim0.append(im0) ## Read archives ##--------------- else: filename = os.path.basename(file[i]) file_rep = self.path_tmp+filename+'_rep' if filUNC is not None: hyperim = [] # [j,(w,)y,x] for j in range(Nmc+1): if j==0: superunc.append(read_fits(file_rep+'_unc').data) else: file_rep = self.path_tmp+filename+'_'+str(j)+'_rep' hyperim.append(read_fits(file_rep).data) hyperim = np.array(hyperim) superim.append(hyperim) superim0.append(read_fits(file_rep).data) superim0 = np.array(superim0) superunc = np.array(superunc) superim = np.array(superim) ## Combine images ##---------------- ## Think about using 'try - except' if filUNC is not None: inv_var = 1./superunc**2 hyperim_comb = [] for j in trange(Nmc+1, leave=False, \ desc='<imontage> Stitching'): if j==0: if method=='avg': im0_comb = nanavg(superim0, axis=0) elif method=='wgt_avg': im0_comb = nanavg(superim0, axis=0, weights=inv_var) else: if method=='avg': hyperim_comb.append(nanavg(superim[:,j-1], axis=0)) elif method=='wgt_avg': hyperim_comb.append( nanavg(superim[:,j-1], axis=0, weights=inv_var)) hyperim_comb = np.array(hyperim_comb) unc_comb = np.nanstd(hyperim_comb) else: ## If no unc, inverse variance weighted mean not available im0_comb = nanavg(superim0, axis=0) if filOUT is not None: comment = "An <imontage> production" write_fits(filOUT, self.hdr_ref, im0_comb, wvl, \ COMMENT=comment) write_fits(filOUT+'_unc', self.hdr_ref, im0_comb, wvl, \ COMMENT=comment) dataset.im0_comb = im0_comb dataset.unc_comb = unc_comb dataset.hyperim_comb = hyperim_comb dataset.superim0 = superim0 dataset.superunc = superunc dataset.superim = superim tqdm.write('<imontage> Combining images...[done]') return dataset def clean(self, file=None): if file is not None: fclean(file) else: fclean(self.path_tmp) class iswarp(improve): ''' SWarp drop-in image montage toolkit i means <improve>-based In competetion with its fully Python-based twin <imontage> ------ INPUT ------ filIN ref FITS files used to make header (footprint) center center of output image frame None - contains all input fields str('hh:mm:ss,dd:mm:ss') - manual input RA,DEC pixscale pixel scale (arcsec) None - median of pixscale at center input frames float() - in arcseconds verbose default: True tmpdir tmp file path ------ OUTPUT ------ coadd.fits By default, SWarp reprojects all input to a WCS with diag CD matrix. "To implement the unusual output features required, one must write a coadd.head ASCII file that contains a custom anisotropic scaling matrix. " ''' def __init__(self, filIN=None, refheader=None, center=None, pixscale=None, verbose=False, tmpdir=None): ''' self: path_tmp, verbose (filIN, wmod, hdr, w, Ndim, Nx, Ny, Nw, im, wvl) ''' if verbose==False: devnull = open(os.devnull, 'w') else: devnull = None self.verbose = verbose self.devnull = devnull ## Set path of tmp files if tmpdir is None: path_tmp = os.getcwd()+'/tmp_swp/' else: path_tmp = tmpdir if not os.path.exists(path_tmp): os.makedirs(path_tmp) self.path_tmp = path_tmp fclean(path_tmp+'coadd*') # remove previous coadd.fits/.head if filIN is None: if refheader is None: raise ValueError('No input!') else: self.refheader = refheader else: ## Input files in list format filIN = allist(filIN) ## Images image_files = ' ' for i in range(len(filIN)): image = read_fits(filIN[i]).data hdr = fixwcs(filIN[i]).header file_ref = filIN[i] if image.ndim==3: ## Extract 1st frame of the cube file_ref = path_tmp+os.path.basename(filIN[i])+'_ref' write_fits(file_ref, hdr, image[0]) image_files += file_ref+fitsext+' ' # input str for SWarp ## Create config file SP.call('swarp -d > swarp.cfg', \ shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) ## Config param list swarp_opt = ' -c swarp.cfg -SUBTRACT_BACK N -IMAGEOUT_NAME coadd.ref.fits ' if center is not None: swarp_opt += ' -CENTER_TYPE MANUAL -CENTER '+center if pixscale is not None: swarp_opt += ' -PIXELSCALE_TYPE MANUAL -PIXEL_SCALE '+str(pixscale) if verbose=='quiet': swarp_opt += ' -VERBOSE_TYPE QUIET ' ## Run SWarp SP.call('swarp '+swarp_opt+image_files, \ shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) ## Save ref header if refheader is None: self.refheader = read_fits(path_tmp+'coadd.ref').header else: self.refheader = refheader # fclean(path_tmp+'*_ref.fits') def footprint(self, filOUT=None): ''' Save reprojection footprint ''' if filOUT is None: filOUT = self.path_tmp+'footprint' Nx = self.refheader['NAXIS1'] Ny = self.refheader['NAXIS2'] im_fp = np.ones((Ny, Nx)) comment = "<iswarp> footprint" write_fits(filOUT, self.refheader, im_fp, COMMENT=comment) return im_fp def combine(self, file, combtype='med', \ keepedge=True, uncpdf=None, filOUT=None, tmpdir=None): ''' Combine ------ INPUT ------ file input FITS files should have the same wvl combtype combine type med - median avg - average wgt_avg - inverse variance weighted average keepedge default: False uncpdf add uncertainties (filename+'_unc.fits' needed) filOUT output FITS file ------ OUTPUT ------ coadd.head key for SWarp (inherit self.refheader) ''' ds = type('', (), {})() verbose = self.verbose devnull = self.devnull path_tmp = self.path_tmp if tmpdir is None: path_comb = path_tmp+'comb/' else: path_comb = tmpdir if not os.path.exists(path_comb): os.makedirs(path_comb) ## Input files in list format file = allist(file) ## Header ##-------- with open(path_tmp+'coadd.head', 'w') as f: f.write(str(self.refheader)) ## Images and weights ##-------------------- Nf = len(file) imshape = read_fits(file[0]).data.shape if len(imshape)==3: Nw = imshape[0] wvl = read_fits(file[0]).wave else: Nw = 1 wvl = None ## Build imlist & wgtlist (size=Nf) imlist = [] wgtlist = [] for i in range(Nf): filename = os.path.basename(file[i]) ## Set slice file file_slice = path_comb+filename ## Slice super().__init__(file[i]) if uncpdf=='norm': self.rand_norm(file[i]+'_unc') elif uncpdf=='splitnorm': self.rand_splitnorm([file[i]+'_unc_N', file[i]+'_unc_P']) imlist.append(self.slice(file_slice, '')) if combtype=='wgt_avg': super().__init__(file[i]+'_unc') wgtlist.append(self.slice_inv_sq(file_slice, '.weight')) ## Build image_files & weight_files (size=Nw) image_files = [' ']*Nw weight_files = [' ']*Nw ## Let's SWarp ##------------- hyperimage = [] for k in trange(Nw, leave=False, desc='<iswarp> Combining (by wvl)'): for i in range(Nf): image_files[k] += imlist[i][k]+fitsext+' ' if combtype=='wgt_avg': weight_files[k] += wgtlist[i][k]+fitsext+' ' ## Create config file SP.call('swarp -d > swarp.cfg', \ shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) ## Config param list swarp_opt = ' -c swarp.cfg -SUBTRACT_BACK N ' if combtype=='med': pass elif combtype=='avg': swarp_opt += ' -COMBINE_TYPE AVERAGE ' elif combtype=='wgt_avg': swarp_opt += ' -COMBINE_TYPE WEIGHTED ' swarp_opt += ' -WEIGHT_TYPE MAP_WEIGHT ' swarp_opt += ' -WEIGHT_SUFFIX .weight.fits ' # swarp_opt += ' -WEIGHT_IMAGE '+weight_files[k] # not worked if verbose=='quiet': swarp_opt += ' -VERBOSE_TYPE QUIET ' ## Run SWarp SP.call('swarp '+swarp_opt+' -RESAMPLING_TYPE LANCZOS3 '+image_files[k], \ shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) coadd = read_fits(path_tmp+'coadd') newimage = coadd.data newheader = coadd.header ## Add back in the edges because LANCZOS3 kills the edges ## Do it in steps of less and less precision if keepedge==True: oldweight = read_fits(path_tmp+'coadd.weight').data if np.sum(oldweight==0)!=0: SP.call('swarp '+swarp_opt+' -RESAMPLING_TYPE LANCZOS2 '+image_files[k], shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) edgeimage = read_fits(path_tmp+'coadd').data newweight = read_fits(path_tmp+'coadd.weight').data edgeidx = np.ma.array(oldweight, mask=np.logical_and(oldweight==0, newweight!=0)).mask if edgeidx.any(): newimage[edgeidx] = edgeimage[edgeidx] oldweight = read_fits(path_tmp+'coadd.weight').data if np.sum(oldweight==0)!=0: SP.call('swarp '+swarp_opt+' -RESAMPLING_TYPE BILINEAR '+image_files[k], shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) edgeimage = read_fits(path_tmp+'coadd').data newweight = read_fits(path_tmp+'coadd.weight').data edgeidx = np.ma.array(oldweight, mask=np.logical_and(oldweight==0, newweight!=0)).mask if edgeidx.any(): newimage[edgeidx] = edgeimage[edgeidx] oldweight = read_fits(path_tmp+'coadd.weight').data if np.sum(oldweight==0)!=0: SP.call('swarp '+swarp_opt+' -RESAMPLING_TYPE NEAREST '+image_files[k], shell=True, cwd=path_tmp, stdout=devnull, stderr=SP.STDOUT) edgeimage = read_fits(path_tmp+'coadd').data newweight = read_fits(path_tmp+'coadd.weight').data edgeidx = np.ma.array(oldweight, mask=np.logical_and(oldweight==0, newweight!=0)).mask if edgeidx.any(): newimage[edgeidx] = edgeimage[edgeidx] ## Astrometric flux-rescaling based on the local ratio of pixel scale ## Complementary for lack of FITS kw 'FLXSCALE' ## Because SWarp is conserving surface brightness/pixel oldcdelt = get_pc(wcs=fixwcs(file[i]).wcs).cdelt newcdelt = get_pc(wcs=fixwcs(path_tmp+'coadd').wcs).cdelt old_pixel_fov = abs(oldcdelt[0]*oldcdelt[1]) new_pixel_fov = abs(newcdelt[0]*newcdelt[1]) newimage = newimage * old_pixel_fov/new_pixel_fov ma_zero = np.ma.array(newimage, mask=(newimage==0)).mask newimage[ma_zero] = np.nan # write_fits(path_comb+'coadd_'+str(k), newheader, newimage) # tqdm.write(str(old_pixel_fov)) # tqdm.write(str(new_pixel_fov)) # tqdm.write(str(abs(newheader['CD1_1']*newheader['CD2_2']))) hyperimage.append(newimage) hyperimage = np.array(hyperimage) if filOUT is not None: write_fits(filOUT, newheader, hyperimage, wvl) ds.header = newheader ds.image = hyperimage ds.wvl = wvl return ds def clean(self, file=None): if file is not None: fclean(file) else: fclean(self.path_tmp) class iconvolve(improve): ''' Convolve 2D image or 3D cube with given kernels i means <improve>-based or IDL-based ------ INPUT ------ filIN input FITS file kfile convolution kernel(s) (tuple or list) klist CSV file storing kernel names filUNC unc file (add gaussian noise) psf PSF list convdir do_conv path (Default: None -> filIN path) filOUT output file ------ OUTPUT ------ ''' def __init__(self, filIN, kfile, klist, \ filUNC=None, dist='norm', psf=None, convdir=None, filOUT=None): ## INPUTS super().__init__(filIN) if dist=='norm': self.rand_norm(filUNC) elif dist=='splitnorm': self.rand_splitnorm(filUNC) ## Input kernel file in list format self.kfile = allist(kfile) ## doc (csv) file of kernel list self.klist = klist self.path_conv = convdir self.filOUT = filOUT ## INIT if psf is None: self.psf = [2.,2.5,3.,3.5,4.,4.5,5.,5.5,6.] else: self.psf = psf self.sigma_lam = None def spitzer_irs(self): ''' Spitzer/IRS PSF profil [ref] Pereira-Santaella, Miguel, <NAME>, <NAME>. Rieke, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. “Local Luminous Infrared Galaxies. I. Spatially Resolved Observations with the Spitzer Infrared Spectrograph.” The Astrophysical Journal Supplement Series 188, no. 2 (June 1, 2010): 447. doi:10.1088/0067-0049/188/2/447. ''' sim_par_wave = [0, 13.25, 40.] sim_par_fwhm = [2.8, 3.26, 10.1] sim_per_wave = [0, 15.5, 40.] sim_per_fwhm = [3.8, 3.8, 10.1] ## fwhm (arcsec) fwhm_par = np.interp(self.wvl, sim_par_wave, sim_par_fwhm) fwhm_per = np.interp(self.wvl, sim_per_wave, sim_per_fwhm) #fwhm_lam = np.sqrt(fwhm_par * fwhm_per) ## sigma (arcsec) sigma_par = fwhm_par / (2. * np.sqrt(2.*np.log(2.))) sigma_per = fwhm_per / (2. * np.sqrt(2.*np.log(2.))) self.sigma_lam = np.sqrt(sigma_par * sigma_per) # def choker(self, file): # ## <NAME>(s) # lst = [] # for i, image in enumerate(file): # ## check PSF profil (or is not a cube) # if self.sigma_lam is not None: # image = file[i] # ind = closest(self.psf, self.sigma_lam[i]) # kernel = self.kfile[ind] # else: # image = file[0] # kernel = self.kfile[0] # ## lst line elements: image, kernel # k = [image, kernel] # lst.append(k) # ## write csv file # write_csv(self.klist, header=['Images', 'Kernels'], dset=lst) def choker(self, file): ## CHOose KERnel(s) image = [] kernel = [] for i, filim in enumerate(file): ## check PSF profil (or is not a cube) if self.sigma_lam is not None: image.append(filim) ind = closest(self.psf, self.sigma_lam[i]) kernel.append(self.kfile[ind]) else: image.append(file[0]) kernel.append(self.kfile[0]) ## write csv file dataset = Table([image, kernel], names=['Images', 'Kernels']) ascii.write(dataset, self.klist+csvext, format='csv') def do_conv(self, idldir, verbose=False): ''' ------ INPUT ------ idldir path of IDL routines ------ OUTPUT ------ ''' if verbose==False: devnull = open(os.devnull, 'w') else: devnull = None filename = os.path.basename(self.filIN) if self.Ndim==3: if self.path_conv is not None: f2conv = self.slice(self.path_conv+filename) # gauss_noise inclu else: f2conv = self.slice(self.filIN) # gauss_noise inclu self.spitzer_irs() else: f2conv = [self.filIN] self.choker(f2conv) SP.call('idl conv.pro', \ shell=True, cwd=idldir, stdout=devnull, stderr=SP.STDOUT) ## OUTPUTS ##--------- if self.Ndim==3: im = [] self.slist = [] for f in f2conv: im.append(read_fits(f+'_conv').data) self.slist.append(f+'_conv') self.convim = np.array(im) ## recover 3D header cause the lost of WCS due to PS3_0='WCS-TAB' # self.hdr = read_fits(self.filIN).header else: self.convim = read_fits(self.filIN+'_conv').data if self.filOUT is not None: comment = "Convolved by G. Aniano's IDL routine." write_fits(self.filOUT, self.hdr, self.convim, self.wvl, COMMENT=comment) def image(self): return self.convim def wave(self): return self.wvl def filenames(self): return self.slist def clean(self, file=None): if file is not None: fclean(file) else: if self.path_conv is not None: fclean(self.path_conv) class sextract(improve): ''' AKARI/IRC spectroscopy slit coord extraction s means slit, spectral cube or SAV file ------ INPUT ------ filOUT output FITS file pathobs path of IRC dataset parobs[0] observation id parobs[1] slit name parobs[2] IRC N3 (long exp) frame (2MASS corrected; 90 deg rot) Nw num of wave Ny slit length Nx slit width ------ OUTPUT ------ ''' def __init__(self, pathobs=None, parobs=None, verbose=False): self.path = pathobs + parobs[0] + '/irc_specred_out_' + parobs[1]+'/' filIN = self.path + parobs[2] super().__init__(filIN) self.filSAV = self.path + parobs[0] + '.N3_NG.IRC_SPECRED_OUT' self.table = readsav(self.filSAV+savext, python_dict=True)['source_table'] ## Slit width will be corrected during reprojection if parobs[1]=='Ns': self.slit_width = 3 # 5"/1.446" = 3.458 pix (Ns) elif parobs[1]=='Nh': self.slit_width = 2 # 3"/1.446" = 2.075 pix (Nh) if verbose==True: print('\n----------') print('Slit extracted from ') print('obs_id: {} \nslit: {}'.format(parobs[0], parobs[1])) print('----------\n') def rand_pointing(self, sigma=0.): ''' Add pointing uncertainty to WCS ------ INPUT ------ sigma pointing accuracy (deg) ------ OUTPUT ------ ''' d_ro = abs(np.random.normal(0., sigma)) # N(0,sigma) d_phi = np.random.random() *2. * np.pi # U(0,2pi) self.hdr['CRVAL1'] += d_ro * np.cos(d_phi) self.hdr['CRVAL2'] += d_ro * np.sin(d_phi) return d_ro, d_phi def spec_build(self, filOUT=None, write_unc=True, Ny=32, Nsub=1, sig_pt=0.): ''' Build the spectral cube/slit from spectra extracted by IDL pipeline (see IRC_SPEC_TOOL, plot_spec_with_image) ------ INPUT ------ Ny number of pixels in spatial direction (Max=32) Y axis in N3 frame (X axis in focal plane arrays) Nsub number of subslits ''' Nx = self.slit_width ref_x = self.table['image_y'][0] # slit ref x ref_y = 512 - self.table['image_x'][0] # slit ref y ## Get slit coord from 2MASS corrected N3 frame ## Do NOT touch self.im (N3 frame, 2D) before this step self.crop(sizpix=(Nx, Ny), cenpix=(ref_x, ref_y)) # self.hdr['CTYPE3'] = 'WAVE-TAB' self.hdr['CUNIT1'] = 'deg' self.hdr['CUNIT2'] = 'deg' self.hdr['BUNIT'] = 'MJy/sr' self.hdr['EQUINOX'] = 2000.0 ## Add pointing unc self.rand_pointing(sig_pt) ## Read spec spec_arr = [] for i in range(Ny): ## Ny/Nsub should be integer, or there will be shift ispec = math.floor(i / (math.ceil(Ny/Nsub))) # spec_arr.append(read_ascii(self.path+'Y12spec'+str(ispec), '.spc', float)) spec_arr.append(ascii.read(self.path+'Y12spec'+str(ispec)+'.spc')) spec_arr = np.array(spec_arr) Nw = len(spec_arr[0,:,0]) ## Broaden cube width cube =
np.empty([Nw,Ny,Nx])
numpy.empty
import pyinduct as pi import numpy as np import sympy as sp import time import os import pyqtgraph as pg import matplotlib.pyplot as plt from pyinduct.visualization import PgDataPlot, get_colors # matplotlib configuration plt.rcParams.update({'text.usetex': True}) def pprint(expression="\n\n\n"): if isinstance(expression, np.ndarray): expression = sp.Matrix(expression) sp.pprint(expression, num_columns=180) def get_primal_eigenvector(according_paper=False): if according_paper: # some condensed parameters alpha = beta = sym.c / 2 tau0 = 1 / sp.sqrt(sym.a * sym.b) w = tau0 * sp.sqrt((sym.lam + alpha) ** 2 - beta ** 2) # matrix exponential expm_A = sp.Matrix([ [sp.cosh(w * sym.z), (sym.lam + sym.c) / sym.b / w * sp.sinh(w * sym.z)], [sym.lam / sym.a / w * sp.sinh(w * sym.z), sp.cosh(w * sym.z)] ]) else: # matrix A = sp.Matrix([[sp.Float(0), (sym.lam + sym.c) / sym.b], [sym.lam/sym.a, sp.Float(0)]]) # matrix exponential expm_A = sp.exp(A * sym.z) # inital values at z=0 (scaled by xi(s)) phi0 = sp.Matrix([[sp.Float(1)], [sym.lam / sym.d]]) # solution phi = expm_A * phi0 return phi def plot_eigenvalues(eigenvalues, return_figure=False): plt.figure(facecolor="white") plt.scatter(np.real(eigenvalues),
np.imag(eigenvalues)
numpy.imag
# Copyright 2020 Forschungszentrum Jülich GmbH and Aix-Marseille Université # "Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements; and to You under the Apache License, Version 2.0. " """ Defines a set Interface input and output of TVB. .. moduleauthor:: <NAME> <<EMAIL>> """ from tvb.simulator.monitors import Raw, NArray, Float from tvb.simulator.history import NDArray,Dim import numpy class Interface_co_simulation(Raw): id_proxy = NArray( dtype=numpy.int, label="Identifier of proxies", ) time_synchronize = Float( label="simulated time between receiving the value of the proxy", ) def __init__(self, **kwargs): super(Interface_co_simulation, self).__init__(**kwargs) def config_for_sim(self, simulator): # configuration of all monitor super(Interface_co_simulation, self).config_for_sim(simulator) # add some internal variable self._id_node = \ numpy.where(numpy.logical_not(numpy.isin(numpy.arange(0, simulator.number_of_nodes, 1), self.id_proxy)))[0] self._nb_step_time =
numpy.int(self.time_synchronize / simulator.integrator.dt)
numpy.int
"""Unit tests for pair module.""" import json import tempfile import unittest import numpy import relentless class test_PairParameters(unittest.TestCase): """Unit tests for relentless.pair.PairParameters""" def test_init(self): """Test creation from data""" types = ('A','B') pairs = (('A','B'), ('B','B'), ('A','A')) params = ('energy', 'mass') #test construction with tuple input m = relentless.potential.PairParameters(types=('A','B'), params=('energy','mass')) self.assertEqual(m.types, types) self.assertEqual(m.params, params) self.assertCountEqual(m.pairs, pairs) #test construction with list input m = relentless.potential.PairParameters(types=['A','B'], params=('energy','mass')) self.assertEqual(m.types, types) self.assertEqual(m.params, params) self.assertCountEqual(m.pairs, pairs) #test construction with mixed tuple/list input m = relentless.potential.PairParameters(types=('A','B'), params=['energy','mass']) self.assertEqual(m.types, types) self.assertEqual(m.params, params) self.assertCountEqual(m.pairs, pairs) #test construction with int type parameters with self.assertRaises(TypeError): m = relentless.potential.PairParameters(types=('A','B'), params=(1,2)) #test construction with mixed type parameters with self.assertRaises(TypeError): m = relentless.potential.PairParameters(types=('A','B'), params=('1',2)) def test_param_types(self): """Test various get and set methods on pair parameter types""" m = relentless.potential.PairParameters(types=('A','B'), params=('energy', 'mass')) self.assertEqual(m.shared['energy'], None) self.assertEqual(m.shared['mass'], None) self.assertEqual(m['A','A']['energy'], None) self.assertEqual(m['A','A']['mass'], None) self.assertEqual(m['A','B']['energy'], None) self.assertEqual(m['A','B']['mass'], None) self.assertEqual(m['B','B']['energy'], None) self.assertEqual(m['B','B']['mass'], None) self.assertEqual(m['A']['energy'], None) self.assertEqual(m['A']['mass'], None) self.assertEqual(m['B']['energy'], None) self.assertEqual(m['B']['mass'], None) #test setting shared params m.shared.update(energy=1.0, mass=2.0) self.assertEqual(m.shared['energy'], 1.0) self.assertEqual(m.shared['mass'], 2.0) self.assertEqual(m['A','A']['energy'], None) self.assertEqual(m['A','A']['mass'], None) self.assertEqual(m['A','B']['energy'], None) self.assertEqual(m['A','B']['mass'], None) self.assertEqual(m['B','B']['energy'], None) self.assertEqual(m['B','B']['mass'], None) self.assertEqual(m['A']['energy'], None) self.assertEqual(m['A']['mass'], None) self.assertEqual(m['B']['energy'], None) self.assertEqual(m['B']['mass'], None) #test setting per-pair params m['A','A'].update(energy=1.5, mass=2.5) m['A','B'].update(energy=2.0, mass=3.0) m['B','B'].update(energy=0.5, mass=0.7) self.assertEqual(m.shared['energy'], 1.0) self.assertEqual(m.shared['mass'], 2.0) self.assertEqual(m['A','A']['energy'], 1.5) self.assertEqual(m['A','A']['mass'], 2.5) self.assertEqual(m['A','B']['energy'], 2.0) self.assertEqual(m['A','B']['mass'], 3.0) self.assertEqual(m['B','B']['energy'], 0.5) self.assertEqual(m['B','B']['mass'], 0.7) self.assertEqual(m['A']['energy'], None) self.assertEqual(m['A']['mass'], None) self.assertEqual(m['B']['energy'], None) self.assertEqual(m['B']['mass'], None) #test setting per-type params m['A'].update(energy=0.1, mass=0.2) m['B'].update(energy=0.2, mass=0.1) self.assertEqual(m.shared['energy'], 1.0) self.assertEqual(m.shared['mass'], 2.0) self.assertEqual(m['A','A']['energy'], 1.5) self.assertEqual(m['A','A']['mass'], 2.5) self.assertEqual(m['A','B']['energy'], 2.0) self.assertEqual(m['A','B']['mass'], 3.0) self.assertEqual(m['B','B']['energy'], 0.5) self.assertEqual(m['B','B']['mass'], 0.7) self.assertEqual(m['A']['energy'], 0.1) self.assertEqual(m['A']['mass'], 0.2) self.assertEqual(m['B']['energy'], 0.2) self.assertEqual(m['B']['mass'], 0.1) class LinPot(relentless.potential.PairPotential): """Linear potential function used to test relentless.potential.PairPotential""" def __init__(self, types, params): super().__init__(types, params) def _energy(self, r, m, **params): r,u,s = self._zeros(r) u[:] = m*r if s: u = u.item() return u def _force(self, r, m, **params): r,f,s = self._zeros(r) f[:] = -m if s: f = f.item() return f def _derivative(self, param, r, **params): r,d,s = self._zeros(r) if param == 'm': d[:] = r if s: d = d.item() return d class TwoVarPot(relentless.potential.PairPotential): """Mock potential function used to test relentless.potential.PairPotential.derivative""" def __init__(self, types, params): super().__init__(types, params) def _energy(self, r, x, y, **params): pass def _force(self, r, x, y, **params): pass def _derivative(self, param, r, **params): #not real derivative, just used to test functionality r,d,s = self._zeros(r) if param == 'x': d[:] = 2*r elif param == 'y': d[:] = 3*r if s: d = d.item() return d class test_PairPotential(unittest.TestCase): """Unit tests for relentless.potential.PairPotential""" def test_init(self): """Test creation from data""" #test creation with only m p = LinPot(types=('1',), params=('m',)) p.coeff['1','1']['m'] = 3.5 coeff = relentless.potential.PairParameters(types=('1',), params=('m','rmin','rmax','shift')) coeff['1','1']['m'] = 3.5 coeff['1','1']['rmin'] = False coeff['1','1']['rmax'] = False coeff['1','1']['shift'] = False self.assertCountEqual(p.coeff.types, coeff.types) self.assertCountEqual(p.coeff.params, coeff.params) self.assertDictEqual(p.coeff.evaluate(('1','1')), coeff.evaluate(('1','1'))) #test creation with m and rmin p = LinPot(types=('1',), params=('m','rmin')) p.coeff['1','1']['m'] = 3.5 p.coeff['1','1']['rmin'] = 0.0 coeff = relentless.potential.PairParameters(types=('1',), params=('m','rmin','rmax','shift')) coeff['1','1']['m'] = 3.5 coeff['1','1']['rmin'] = 0.0 coeff['1','1']['rmax'] = False coeff['1','1']['shift'] = False self.assertCountEqual(p.coeff.types, coeff.types) self.assertCountEqual(p.coeff.params, coeff.params) self.assertDictEqual(p.coeff.evaluate(('1','1')), coeff.evaluate(('1','1'))) #test creation with m and rmax p = LinPot(types=('1',), params=('m','rmax')) p.coeff['1','1']['m'] = 3.5 p.coeff['1','1']['rmax'] = 1.0 coeff = relentless.potential.PairParameters(types=('1',), params=('m','rmin','rmax','shift')) coeff['1','1']['m'] = 3.5 coeff['1','1']['rmin'] = False coeff['1','1']['rmax'] = 1.0 coeff['1','1']['shift'] = False self.assertCountEqual(p.coeff.types, coeff.types) self.assertCountEqual(p.coeff.params, coeff.params) self.assertDictEqual(p.coeff.evaluate(('1','1')), coeff.evaluate(('1','1'))) #test creation with m and shift p = LinPot(types=('1',), params=('m','shift')) p.coeff['1','1']['m'] = 3.5 p.coeff['1','1']['shift'] = True coeff = relentless.potential.PairParameters(types=('1',), params=('m','rmin','rmax','shift')) coeff['1','1']['m'] = 3.5 coeff['1','1']['rmin'] = False coeff['1','1']['rmax'] = False coeff['1','1']['shift'] = True self.assertCountEqual(p.coeff.types, coeff.types) self.assertCountEqual(p.coeff.params, coeff.params) self.assertDictEqual(p.coeff.evaluate(('1','1')), coeff.evaluate(('1','1'))) #test creation with all params p = LinPot(types=('1',), params=('m','rmin','rmax','shift')) p.coeff['1','1']['m'] = 3.5 p.coeff['1','1']['rmin'] = 0.0 p.coeff['1','1']['rmax'] = 1.0 p.coeff['1','1']['shift'] = True coeff = relentless.potential.PairParameters(types=('1',), params=('m','rmin','rmax','shift')) coeff['1','1']['m'] = 3.5 coeff['1','1']['rmin'] = 0.0 coeff['1','1']['rmax'] = 1.0 coeff['1','1']['shift'] = True self.assertCountEqual(p.coeff.types, coeff.types) self.assertCountEqual(p.coeff.params, coeff.params) self.assertDictEqual(p.coeff.evaluate(('1','1')), coeff.evaluate(('1','1'))) def test_energy(self): """Test energy method""" p = LinPot(types=('1',), params=('m',)) p.coeff['1','1']['m'] = 2.0 #test with no cutoffs u = p.energy(pair=('1','1'), r=0.5) self.assertAlmostEqual(u, 1.0) u = p.energy(pair=('1','1'), r=[0.25,0.75]) numpy.testing.assert_allclose(u, [0.5,1.5]) #test with rmin set p.coeff['1','1']['rmin'] = 0.5 u = p.energy(pair=('1','1'), r=0.6) self.assertAlmostEqual(u, 1.2) u = p.energy(pair=('1','1'), r=[0.25,0.75]) numpy.testing.assert_allclose(u, [1.0,1.5]) #test with rmax set p.coeff['1','1'].update(rmin=False, rmax=1.5) u = p.energy(pair=('1','1'), r=1.0) self.assertAlmostEqual(u, 2.0) u = p.energy(pair=('1','1'), r=[0.25,1.75]) numpy.testing.assert_allclose(u, [0.5,3.0]) #test with rmin and rmax set p.coeff['1','1']['rmin'] = 0.5 u = p.energy(pair=('1','1'), r=0.75) self.assertAlmostEqual(u, 1.5) u = p.energy(pair=('1','1'), r=[0.25,0.5,1.5,1.75]) numpy.testing.assert_allclose(u, [1.0,1.0,3.0,3.0]) #test with shift set p.coeff['1','1'].update(shift=True) u = p.energy(pair=('1','1'), r=0.5) self.assertAlmostEqual(u, -2.0) u = p.energy(pair=('1','1'), r=[0.25,0.75,1.0,1.5]) numpy.testing.assert_allclose(u, [-2.0,-1.5,-1.0,0.0]) #test with shift set without rmax p.coeff['1','1'].update(rmax=False) with self.assertRaises(ValueError): u = p.energy(pair=('1','1'), r=0.5) def test_force(self): """Test force method""" p = LinPot(types=('1',), params=('m',)) p.coeff['1','1']['m'] = 2.0 #test with no cutoffs f = p.force(pair=('1','1'), r=0.5) self.assertAlmostEqual(f, -2.0) f = p.force(pair=('1','1'), r=[0.25,0.75]) numpy.testing.assert_allclose(f, [-2.0,-2.0]) #test with rmin set p.coeff['1','1']['rmin'] = 0.5 f = p.force(pair=('1','1'), r=0.6) self.assertAlmostEqual(f, -2.0) f = p.force(pair=('1','1'), r=[0.25,0.75]) numpy.testing.assert_allclose(f, [0.0,-2.0]) #test with rmax set p.coeff['1','1'].update(rmin=False, rmax=1.5) f = p.force(pair=('1','1'), r=1.0) self.assertAlmostEqual(f, -2.0) f = p.force(pair=('1','1'), r=[0.25,1.75]) numpy.testing.assert_allclose(f, [-2.0,0.0]) #test with rmin and rmax set p.coeff['1','1']['rmin'] = 0.5 f = p.force(pair=('1','1'), r=0.75) self.assertAlmostEqual(f, -2.0) f = p.force(pair=('1','1'), r=[0.25,0.5,1.5,1.75]) numpy.testing.assert_allclose(f, [0.0,-2.0,-2.0,0.0]) #test with shift set p.coeff['1','1'].update(shift=True) f = p.force(pair=('1','1'), r=0.5) self.assertAlmostEqual(f, -2.0) f = p.force(pair=('1','1'), r=[1.0,1.5]) numpy.testing.assert_allclose(f, [-2.0,-2.0]) def test_derivative_values(self): """Test derivative method with different param values""" p = LinPot(types=('1',), params=('m',)) x = relentless.variable.DesignVariable(value=2.0) p.coeff['1','1']['m'] = x #test with no cutoffs d = p.derivative(pair=('1','1'), var=x, r=0.5) self.assertAlmostEqual(d, 0.5) d = p.derivative(pair=('1','1'), var=x, r=[0.25,0.75]) numpy.testing.assert_allclose(d, [0.25,0.75]) #test with rmin set rmin = relentless.variable.DesignVariable(value=0.5) p.coeff['1','1']['rmin'] = rmin d = p.derivative(pair=('1','1'), var=x, r=0.6) self.assertAlmostEqual(d, 0.6) d = p.derivative(pair=('1','1'), var=x, r=[0.25,0.75]) numpy.testing.assert_allclose(d, [0.5,0.75]) #test with rmax set rmax = relentless.variable.DesignVariable(value=1.5) p.coeff['1','1'].update(rmin=False, rmax=rmax) d = p.derivative(pair=('1','1'), var=x, r=1.0) self.assertAlmostEqual(d, 1.0) d = p.derivative(pair=('1','1'), var=x, r=[0.25,1.75]) numpy.testing.assert_allclose(d, [0.25,1.5]) #test with rmin and rmax set p.coeff['1','1']['rmin'] = rmin d = p.derivative(pair=('1','1'), var=x, r=0.75) self.assertAlmostEqual(d, 0.75) d = p.derivative(pair=('1','1'), var=x, r=[0.25,0.5,1.5,1.75]) numpy.testing.assert_allclose(d, [0.5,0.5,1.5,1.5]) #test w.r.t. rmin and rmax d = p.derivative(pair=('1','1'), var=rmin, r=[0.25,1.0,2.0]) numpy.testing.assert_allclose(d, [2.0,0.0,0.0]) d = p.derivative(pair=('1','1'), var=rmax, r=[0.25,1.0,2.0]) numpy.testing.assert_allclose(d, [0.0,0.0,2.0]) #test parameter derivative with shift set p.coeff['1','1'].update(shift=True) d = p.derivative(pair=('1','1'), var=x, r=0.5) self.assertAlmostEqual(d, -1.0) d = p.derivative(pair=('1','1'), var=x, r=[0.25,1.0,1.5,1.75]) numpy.testing.assert_allclose(d, [-1.0,-0.5,0.0,0.0]) #test w.r.t. rmin and rmax, shift set d = p.derivative(pair=('1','1'), var=rmin, r=[0.25,1.0,2.0]) numpy.testing.assert_allclose(d, [2.0,0.0,0.0]) d = p.derivative(pair=('1','1'), var=rmax, r=[0.25,1.0,2.0]) numpy.testing.assert_allclose(d, [-2.0,-2.0,0.0]) def test_derivative_types(self): """Test derivative method with different param types.""" q = LinPot(types=('1',), params=('m',)) x = relentless.variable.DesignVariable(value=4.0) y = relentless.variable.DesignVariable(value=64.0) z = relentless.variable.GeometricMean(x, y) q.coeff['1','1']['m'] = z #test with respect to dependent variable parameter d = q.derivative(pair=('1','1'), var=z, r=2.0) self.assertAlmostEqual(d, 2.0) #test with respect to independent variable on which parameter is dependent d = q.derivative(pair=('1','1'), var=x, r=1.5) self.assertAlmostEqual(d, 3.0) d = q.derivative(pair=('1','1'), var=y, r=4.0) self.assertAlmostEqual(d, 0.5) #test invalid derivative w.r.t. scalar a = 2.5 q.coeff['1','1']['m'] = a with self.assertRaises(TypeError): d = q.derivative(pair=('1','1'), var=a, r=2.0) #test with respect to independent variable which is related to a SameAs variable r = TwoVarPot(types=('1',), params=('x','y')) r.coeff['1','1']['x'] = x r.coeff['1','1']['y'] = relentless.variable.SameAs(x) d = r.derivative(pair=('1','1'), var=x, r=4.0) self.assertAlmostEqual(d, 20.0) r.coeff['1','1']['y'] = x r.coeff['1','1']['x'] = relentless.variable.SameAs(x) d = r.derivative(pair=('1','1'), var=x, r=4.0) self.assertAlmostEqual(d, 20.0) def test_iteration(self): """Test iteration on PairPotential object""" p = LinPot(types=('1','2'), params=('m',)) for pair in p.coeff: p.coeff[pair]['m'] = 2.0 p.coeff[pair]['rmin'] = 0.0 p.coeff[pair]['rmax'] = 1.0 self.assertDictEqual(p.coeff['1','1'].todict(), {'m':2.0, 'rmin':0.0, 'rmax':1.0, 'shift':False}) self.assertDictEqual(p.coeff['1','2'].todict(), {'m':2.0, 'rmin':0.0, 'rmax':1.0, 'shift':False}) self.assertDictEqual(p.coeff['2','2'].todict(), {'m':2.0, 'rmin':0.0, 'rmax':1.0, 'shift':False}) def test_save(self): """Test saving to file""" temp = tempfile.NamedTemporaryFile() p = LinPot(types=('1',), params=('m','rmin','rmax')) p.coeff['1','1']['m'] = 2.0 p.coeff['1','1']['rmin'] = 0.0 p.coeff['1','1']['rmax'] = 1.0 p.coeff['1','1']['shift'] = True p.save(temp.name) with open(temp.name, 'r') as f: x = json.load(f) self.assertEqual(p.coeff['1','1']['m'], x["('1', '1')"]['m']) self.assertEqual(p.coeff['1','1']['rmin'], x["('1', '1')"]['rmin']) self.assertEqual(p.coeff['1','1']['rmax'], x["('1', '1')"]['rmax']) self.assertEqual(p.coeff['1','1']['shift'], x["('1', '1')"]['shift']) temp.close() class test_LennardJones(unittest.TestCase): """Unit tests for relentless.potential.LennardJones""" def test_init(self): """Test creation from data""" lj = relentless.potential.LennardJones(types=('1',)) coeff = relentless.potential.PairParameters(types=('1',), params=('epsilon','sigma','rmin','rmax','shift')) for pair in coeff.pairs: coeff[pair]['rmin'] = False coeff[pair]['rmax'] = False coeff[pair]['shift'] = False self.assertCountEqual(lj.coeff.types, coeff.types) self.assertCountEqual(lj.coeff.params, coeff.params) def test_energy(self): """Test _energy method""" lj = relentless.potential.LennardJones(types=('1',)) #test scalar r r_input = 0.5 u_actual = 0 u = lj._energy(r=r_input, epsilon=1.0, sigma=0.5) self.assertAlmostEqual(u, u_actual) #test array r r_input = numpy.array([0,1,1.5]) u_actual = numpy.array([numpy.inf,-0.061523438,-0.0054794417]) u = lj._energy(r=r_input, epsilon=1.0, sigma=0.5) numpy.testing.assert_allclose(u, u_actual) #test negative sigma with self.assertRaises(ValueError): u = lj._energy(r=r_input, epsilon=1.0, sigma=-1.0) def test_force(self): """Test _force method""" lj = relentless.potential.LennardJones(types=('1',)) #test scalar r r_input = 0.5 f_actual = 48 f = lj._force(r=r_input, epsilon=1.0, sigma=0.5) self.assertAlmostEqual(f, f_actual) #test array r r_input = numpy.array([0,1,1.5]) f_actual = numpy.array([numpy.inf,-0.36328125,-0.02188766]) f = lj._force(r=r_input, epsilon=1.0, sigma=0.5) numpy.testing.assert_allclose(f, f_actual) #test negative sigma with self.assertRaises(ValueError): u = lj._force(r=r_input, epsilon=1.0, sigma=-1.0) def test_derivative(self): """Test _derivative method""" lj = relentless.potential.LennardJones(types=('1',)) #w.r.t. epsilon #test scalar r r_input = 0.5 d_actual = 0 d = lj._derivative(param='epsilon', r=r_input, epsilon=1.0, sigma=0.5) self.assertAlmostEqual(d, d_actual) #test array r r_input = numpy.array([0,1,1.5]) d_actual = numpy.array([numpy.inf,-0.061523438,-0.0054794417]) d = lj._derivative(param='epsilon', r=r_input, epsilon=1.0, sigma=0.5) numpy.testing.assert_allclose(d, d_actual) #w.r.t. sigma #test scalar r r_input = 0.5 d_actual = 48 d = lj._derivative(param='sigma', r=r_input, epsilon=1.0, sigma=0.5) self.assertAlmostEqual(d, d_actual) #test array r r_input = numpy.array([0,1,1.5]) d_actual = numpy.array([numpy.inf,-0.7265625,-0.06566298]) d = lj._derivative(param='sigma', r=r_input, epsilon=1.0, sigma=0.5) numpy.testing.assert_allclose(d, d_actual) #test negative sigma with self.assertRaises(ValueError): u = lj._derivative(param='sigma', r=r_input, epsilon=1.0, sigma=-1.0) #test invalid param with self.assertRaises(ValueError): u = lj._derivative(param='simga', r=r_input, epsilon=1.0, sigma=1.0) class test_PairSpline(unittest.TestCase): """Unit tests for relentless.potential.PairSpline""" def test_init(self): """Test creation from data""" #test diff mode s = relentless.potential.PairSpline(types=('1',), num_knots=3) self.assertEqual(s.num_knots, 3) self.assertEqual(s.mode, 'diff') coeff = relentless.potential.PairParameters(types=('1',), params=('r-0','r-1','r-2','knot-0','knot-1','knot-2','rmin','rmax','shift')) self.assertCountEqual(s.coeff.types, coeff.types) self.assertCountEqual(s.coeff.params, coeff.params) #test value mode s = relentless.potential.PairSpline(types=('1',), num_knots=3, mode='value') self.assertEqual(s.num_knots, 3) self.assertEqual(s.mode, 'value') coeff = relentless.potential.PairParameters(types=('1',), params=('r-0','r-1','r-2','knot-0','knot-1','knot-2','rmin','rmax','shift')) self.assertCountEqual(s.coeff.types, coeff.types) self.assertCountEqual(s.coeff.params, coeff.params) #test invalid number of knots with self.assertRaises(ValueError): s = relentless.potential.PairSpline(types=('1',), num_knots=1) #test invalid mode with self.assertRaises(ValueError): s = relentless.potential.PairSpline(types=('1',), num_knots=3, mode='val') def test_from_array(self): """Test from_array method and knots generator""" r_arr = [1,2,3] u_arr = [9,4,1] u_arr_diff = [5,3,1] #test diff mode s = relentless.potential.PairSpline(types=('1',), num_knots=3) s.from_array(pair=('1','1'), r=r_arr, u=u_arr) for i,(r,k) in enumerate(s.knots(pair=('1','1'))): self.assertAlmostEqual(r.value, r_arr[i]) self.assertAlmostEqual(k.value, u_arr_diff[i]) self.assertEqual(r.const, True) if i == s.num_knots-1: self.assertEqual(k.const, True) else: self.assertEqual(k.const, False) #test value mode s = relentless.potential.PairSpline(types=('1',), num_knots=3, mode='value') s.from_array(pair=('1','1'), r=r_arr, u=u_arr) for i,(r,k) in enumerate(s.knots(pair=('1','1'))): self.assertAlmostEqual(r.value, r_arr[i]) self.assertAlmostEqual(k.value, u_arr[i]) self.assertEqual(r.const, True) if i == s.num_knots-1: self.assertEqual(k.const, True) else: self.assertEqual(k.const, False) #test invalid r and u shapes r_arr = [2,3] with self.assertRaises(ValueError): s.from_array(pair=('1','1'), r=r_arr, u=u_arr) r_arr = [1,2,3] u_arr = [1,2] with self.assertRaises(ValueError): s.from_array(pair=('1','1'), r=r_arr, u=u_arr) def test_energy(self): """Test energy method""" r_arr = [1,2,3] u_arr = [9,4,1] #test diff mode s = relentless.potential.PairSpline(types=('1',), num_knots=3) s.from_array(pair=('1','1'), r=r_arr, u=u_arr) u_actual = numpy.array([6.25,2.25,1]) u = s.energy(pair=('1','1'), r=[1.5,2.5,3.5]) numpy.testing.assert_allclose(u, u_actual) #test value mode s = relentless.potential.PairSpline(types=('1',), num_knots=3, mode='value') s.from_array(pair=('1','1'), r=r_arr, u=u_arr) u_actual = numpy.array([6.25,2.25,1]) u = s.energy(pair=('1','1'), r=[1.5,2.5,3.5]) numpy.testing.assert_allclose(u, u_actual) #test PairSpline with 2 knots s = relentless.potential.PairSpline(types=('1',), num_knots=2, mode='value') s.from_array(pair=('1','1'), r=[1,2], u=[4,2]) u = s.energy(pair=('1','1'), r=1.5) self.assertAlmostEqual(u, 3) def test_force(self): """Test force method""" r_arr = [1,2,3] u_arr = [9,4,1] #test diff mode s = relentless.potential.PairSpline(types=('1',), num_knots=3) s.from_array(pair=('1','1'), r=r_arr, u=u_arr) f_actual = numpy.array([5,3,0]) f = s.force(pair=('1','1'), r=[1.5,2.5,3.5]) numpy.testing.assert_allclose(f, f_actual) #test value mode s = relentless.potential.PairSpline(types=('1',), num_knots=3, mode='value') s.from_array(pair=('1','1'), r=r_arr, u=u_arr) f_actual = numpy.array([5,3,0]) f = s.force(pair=('1','1'), r=[1.5,2.5,3.5]) numpy.testing.assert_allclose(f, f_actual) #test PairSpline with 2 knots s = relentless.potential.PairSpline(types=('1',), num_knots=2, mode='value') s.from_array(pair=('1','1'), r=[1,2], u=[4,2]) f = s.force(pair=('1','1'), r=1.5) self.assertAlmostEqual(f, 2) def test_derivative(self): """Test derivative method""" r_arr = [1,2,3] u_arr = [9,4,1] #test diff mode s = relentless.potential.PairSpline(types=('1',), num_knots=3) s.from_array(pair=('1','1'), r=r_arr, u=u_arr) d_actual = numpy.array([1.125,0.625,0]) param = list(s.knots(('1','1')))[1][1] d = s.derivative(pair=('1','1'), var=param, r=[1.5,2.5,3.5]) numpy.testing.assert_allclose(d, d_actual) #test value mode s = relentless.potential.PairSpline(types=('1',), num_knots=3, mode='value') s.from_array(pair=('1','1'), r=r_arr, u=u_arr) d_actual = numpy.array([0.75,0.75,0]) param = list(s.knots(('1','1')))[1][1] d = s.derivative(pair=('1','1'), var=param, r=[1.5,2.5,3.5]) numpy.testing.assert_allclose(d, d_actual) class test_Yukawa(unittest.TestCase): """Unit tests for relentless.potential.Yukawa""" def test_init(self): """Test creation from data""" y = relentless.potential.Yukawa(types=('1',)) coeff = relentless.potential.PairParameters(types=('1',), params=('epsilon','kappa','rmin','rmax','shift')) for pair in coeff.pairs: coeff[pair]['rmin'] = False coeff[pair]['rmax'] = False coeff[pair]['shift'] = False self.assertCountEqual(y.coeff.types, coeff.types) self.assertCountEqual(y.coeff.params, coeff.params) def test_energy(self): """Test _energy method""" y = relentless.potential.Yukawa(types=('1',)) #test scalar r r_input = 0.5 u_actual = 1.5576016 u = y._energy(r=r_input, epsilon=1.0, kappa=0.5) self.assertAlmostEqual(u, u_actual) #test array r r_input = numpy.array([0,1,1.5]) u_actual = numpy.array([numpy.inf,0.60653066,0.31491104]) u = y._energy(r=r_input, epsilon=1.0, kappa=0.5) numpy.testing.assert_allclose(u, u_actual) #test negative kappa with self.assertRaises(ValueError): u = y._energy(r=r_input, epsilon=1.0, kappa=-1.0) def test_force(self): """Test _force method""" y = relentless.potential.Yukawa(types=('1',)) #test scalar r r_input = 0.5 f_actual = 3.8940039 f = y._force(r=r_input, epsilon=1.0, kappa=0.5) self.assertAlmostEqual(f, f_actual) #test array r r_input = numpy.array([0,1,1.5]) f_actual = numpy.array([numpy.inf,0.90979599,0.36739621]) f = y._force(r=r_input, epsilon=1.0, kappa=0.5) numpy.testing.assert_allclose(f, f_actual) #test negative kappa with self.assertRaises(ValueError): u = y._force(r=r_input, epsilon=1.0, kappa=-1.0) def test_derivative(self): """Test _derivative method""" y = relentless.potential.Yukawa(types=('1',)) #w.r.t. epsilon #test scalar r r_input = 0.5 d_actual = 1.5576016 d = y._derivative(param='epsilon', r=r_input, epsilon=1.0, kappa=0.5) self.assertAlmostEqual(d, d_actual) #test array r r_input = numpy.array([0,1,1.5]) d_actual = numpy.array([numpy.inf,0.60653066,0.31491104]) d = y._derivative(param='epsilon', r=r_input, epsilon=1.0, kappa=0.5) numpy.testing.assert_allclose(d, d_actual) #w.r.t. kappa #test scalar r r_input = 0.5 d_actual = -0.77880078 d = y._derivative(param='kappa', r=r_input, epsilon=1.0, kappa=0.5) self.assertAlmostEqual(d, d_actual) #test array r r_input = numpy.array([0,1,1.5]) d_actual = numpy.array([-1,-0.60653066,-0.47236655]) d = y._derivative(param='kappa', r=r_input, epsilon=1.0, kappa=0.5) numpy.testing.assert_allclose(d, d_actual) #test negative kappa with self.assertRaises(ValueError): u = y._derivative(param='kappa', r=r_input, epsilon=1.0, kappa=-1.0) #test invalid param with self.assertRaises(ValueError): u = y._derivative(param='kapppa', r=r_input, epsilon=1.0, kappa=1.0) class test_Depletion(unittest.TestCase): """Unit tests for relentless.potential.Depletion""" def test_init(self): """Test creation from data""" dp = relentless.potential.Depletion(types=('1','2')) coeff = relentless.potential.PairParameters(types=('1','2'), params=('P','sigma_i','sigma_j','sigma_d','rmin','rmax','shift')) self.assertCountEqual(dp.coeff.types, coeff.types) self.assertCountEqual(dp.coeff.params, coeff.params) def test_cutoff_init(self): """Test creation of Depletion.Cutoff from data""" #create object dependent on scalars w = relentless.potential.Depletion.Cutoff(sigma_i=1.0, sigma_j=2.0, sigma_d=0.25) self.assertAlmostEqual(w.value, 1.75) self.assertCountEqual(w.params, ('sigma_i','sigma_j','sigma_d')) self.assertDictEqual({p:v.value for p,v in w.depends}, {'sigma_i':1.0, 'sigma_j':2.0, 'sigma_d':0.25}) #change parameter value w.sigma_j.value = 4.0 self.assertAlmostEqual(w.value, 2.75) self.assertCountEqual(w.params, ('sigma_i','sigma_j','sigma_d')) self.assertDictEqual({p:v.value for p,v in w.depends}, {'sigma_i':1.0, 'sigma_j':4.0, 'sigma_d':0.25}) #create object dependent on variables a = relentless.variable.DesignVariable(value=1.0) b = relentless.variable.DesignVariable(value=2.0) c = relentless.variable.DesignVariable(value=0.25) w = relentless.potential.Depletion.Cutoff(sigma_i=a, sigma_j=b, sigma_d=c) self.assertAlmostEqual(w.value, 1.75) self.assertCountEqual(w.params, ('sigma_i','sigma_j','sigma_d')) self.assertDictEqual({p:v for p,v in w.depends}, {'sigma_i':a, 'sigma_j':b, 'sigma_d':c}) #change parameter value b.value = 4.0 self.assertAlmostEqual(w.value, 2.75) self.assertCountEqual(w.params, ('sigma_i','sigma_j','sigma_d')) self.assertDictEqual({p:v for p,v in w.depends}, {'sigma_i':a, 'sigma_j':b, 'sigma_d':c}) def test_cutoff_derivative(self): """Test Depletion.Cutoff._derivative method""" w = relentless.potential.Depletion.Cutoff(sigma_i=1.0, sigma_j=2.0, sigma_d=0.25) #calculate w.r.t. sigma_i dw = w._derivative('sigma_i') self.assertEqual(dw, 0.5) #calculate w.r.t. sigma_j dw = w._derivative('sigma_j') self.assertEqual(dw, 0.5) #calculate w.r.t. sigma_d dw = w._derivative('sigma_d') self.assertEqual(dw, 1.0) #invalid parameter calculation with self.assertRaises(ValueError): dw = w._derivative('sigma') def test_energy(self): """Test _energy and energy methods""" dp = relentless.potential.Depletion(types=('1',)) #test scalar r r_input = 3 u_actual = -4.6786414 u = dp._energy(r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) self.assertAlmostEqual(u, u_actual) #test array r r_input = numpy.array([1.75,4.25]) u_actual = numpy.array([-16.59621119,0]) u = dp._energy(r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) numpy.testing.assert_allclose(u, u_actual) #test negative sigma with self.assertRaises(ValueError): u = dp._energy(r=r_input, P=1, sigma_i=-1, sigma_j=1, sigma_d=1) with self.assertRaises(ValueError): u = dp._energy(r=r_input, P=1, sigma_i=1, sigma_j=-1, sigma_d=1) with self.assertRaises(ValueError): u = dp._energy(r=r_input, P=1, sigma_i=1, sigma_j=1, sigma_d=-1) #test energy outside of low/high bounds dp.coeff['1','1'].update(P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) r_input = numpy.array([1,5]) u_actual = numpy.array([-25.7514468,0]) u = dp.energy(pair=('1','1'), r=r_input) numpy.testing.assert_allclose(u, u_actual) self.assertAlmostEqual(dp.coeff['1','1']['rmax'].value, 4.25) def test_force(self): """Test _force and force methods""" dp = relentless.potential.Depletion(types=('1',)) #test scalar r r_input = 3 f_actual = -7.0682426 f = dp._force(r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) self.assertAlmostEqual(f, f_actual) #test array r r_input = numpy.array([1.75,4.25]) f_actual = numpy.array([-11.54054444,0]) f = dp._force(r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) numpy.testing.assert_allclose(f, f_actual) #test negative sigma with self.assertRaises(ValueError): f = dp._force(r=r_input, P=1, sigma_i=-1, sigma_j=1, sigma_d=1) with self.assertRaises(ValueError): f = dp._force(r=r_input, P=1, sigma_i=1, sigma_j=-1, sigma_d=1) with self.assertRaises(ValueError): f = dp._force(r=r_input, P=1, sigma_i=1, sigma_j=1, sigma_d=-1) #test force outside of low/high bounds dp.coeff['1','1'].update(P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) r_input = numpy.array([1,5]) f_actual = numpy.array([-12.5633027,0]) f = dp.force(pair=('1','1'), r=r_input) numpy.testing.assert_allclose(f, f_actual) self.assertAlmostEqual(dp.coeff['1','1']['rmax'].value, 4.25) def test_derivative(self): """Test _derivative and derivative methods""" dp = relentless.potential.Depletion(types=('1',)) #w.r.t. P #test scalar r r_input = 3 d_actual = -4.6786414 d = dp._derivative(param='P', r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) self.assertAlmostEqual(d, d_actual) #test array r r_input = numpy.array([1.75,4.25]) d_actual = numpy.array([-16.59621119,0]) d = dp._derivative(param='P', r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) numpy.testing.assert_allclose(d, d_actual) #w.r.t. sigma_i #test scalar r r_input = 3 d_actual = -4.25424005 d = dp._derivative(param='sigma_i', r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) self.assertAlmostEqual(d, d_actual) #test array r r_input = numpy.array([1.75,4.25]) d_actual = numpy.array([-8.975979,0]) d = dp._derivative(param='sigma_i', r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) numpy.testing.assert_allclose(d, d_actual) #w.r.t. sigma_j #test scalar r r_input = 3 d_actual = -4.04970928 d = dp._derivative(param='sigma_j', r=r_input, P=1, sigma_i=1.5, sigma_j=2, sigma_d=2.5) self.assertAlmostEqual(d, d_actual) #test array r r_input =
numpy.array([1.75,4.25])
numpy.array
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ """ import time as tm import gc import numpy as np from numba import njit, guvectorize, complex128, void, prange import sharedFunctions as shFncs from beamformer import faverage # The benchmark (created with scipy.weave) from beamformer_withoutMP import faverage_OhneMP #%% Numba - njit @njit(complex128[:,:,:](complex128[:,:,:], complex128[:,:])) def loops_Njit(csm, SpecAllChn): nFreqs = csm.shape[0] nMics = csm.shape[1] for cntFreq in range(nFreqs): for cntRow in range(nMics): temp = np.conj(SpecAllChn[cntFreq, cntRow]) for cntColumn in range(nMics): csm[cntFreq, cntRow, cntColumn] += temp * SpecAllChn[cntFreq, cntColumn] return csm @njit(complex128[:,:,:](complex128[:,:,:], complex128[:,:]), parallel=True) def loops_Njit_Parallel(csm, SpecAllChn): nFreqs = csm.shape[0] nMics = csm.shape[1] for cntFreq in range(nFreqs): for cntRow in range(nMics): temp = np.conj(SpecAllChn[cntFreq, cntRow]) for cntColumn in range(nMics): csm[cntFreq, cntRow, cntColumn] += temp * SpecAllChn[cntFreq, cntColumn] return csm @njit(complex128[:,:,:](complex128[:,:,:], complex128[:,:]), parallel=True) def loops_Njit_Parallel_Prange(csm, SpecAllChn): nFreqs = csm.shape[0] nMics = csm.shape[1] for cntFreq in range(nFreqs): for cntRow in prange(nMics): temp = np.conj(SpecAllChn[cntFreq, cntRow]) for cntColumn in range(nMics): csm[cntFreq, cntRow, cntColumn] += temp * SpecAllChn[cntFreq, cntColumn] return csm #%% create CSM via complex transpose of lower triangular matrix @njit(complex128[:,:,:](complex128[:,:,:], complex128[:,:])) def loopsComplexTranspose_Numpy(csm, SpecAllChn): nFreqs = csm.shape[0] for cntFreq in range(nFreqs): csm[cntFreq, :, :] += np.outer(np.conj(SpecAllChn[cntFreq, :]), SpecAllChn[cntFreq, :]) return csm @njit(complex128[:,:,:](complex128[:,:,:], complex128[:,:])) def loopsOnlyTriangularMatrix_Njit(csm, SpecAllChn): """ one could only build the lower triangular csm and then, after averaging over all the ensenbles creating the whole csm by complex transposing. One could maybe use sparse CSR/CSC matrices (even though the CSM is not too big, so advantages are maybe small.) """ nFreqs = csm.shape[0] nMics = csm.shape[1] for cntFreq in range(nFreqs): for cntRow in range(nMics): temp = np.conj(SpecAllChn[cntFreq, cntRow]) for cntColumn in range(cntRow): # only half of the operations in respect to 'loops_Njit' csm[cntFreq, cntRow, cntColumn] += temp * SpecAllChn[cntFreq, cntColumn] return csm #%% Numba - guvectorize # ============================================================================= # I don't think that parallelizing over the mics is in this case feasible. # At least i can't think of a way to abstract the faverage procedure on one level below. # It is however feasible to parallelize over the frequencies # ============================================================================= @guvectorize([void(complex128[:,:], complex128[:], complex128[:,:])], '(m,m),(m)->(m,m)', nopython=True, target='cpu') def loops_GuvectorizeOverFreqs_singleThreadedCPU(csm, SpecAllChn, result): nMics = csm.shape[0] for cntRow in range(nMics): temp = np.conj(SpecAllChn[cntRow]) for cntColumn in range(nMics): result[cntRow, cntColumn] = csm[cntRow, cntColumn] + temp * SpecAllChn[cntColumn] @guvectorize([void(complex128[:,:], complex128[:], complex128[:,:])], '(m,m),(m)->(m,m)', nopython=True, target='parallel') def loops_GuvectorizeOverFreqs_multiThreadedCPU(csm, SpecAllChn, result): nMics = csm.shape[0] for cntRow in range(nMics): temp = np.conj(SpecAllChn[cntRow]) for cntColumn in range(nMics): result[cntRow, cntColumn] = csm[cntRow, cntColumn] + temp * SpecAllChn[cntColumn] @guvectorize([void(complex128[:,:], complex128[:], complex128[:,:])], '(m,m),(m)->(m,m)', nopython=True, target='cpu') def loopsOnlyTriangularMatrix_GuvectorizeOverFreqs_singleThreadedCPU(csm, SpecAllChn, result): nMics = csm.shape[0] for cntRow in range(nMics): temp = np.conj(SpecAllChn[cntRow]) for cntColumn in range(cntRow): result[cntRow, cntColumn] = csm[cntRow, cntColumn] + temp * SpecAllChn[cntColumn] @guvectorize([void(complex128[:,:], complex128[:], complex128[:,:])], '(m,m),(m)->(m,m)', nopython=True, target='parallel') def loopsOnlyTriangularMatrix_GuvectorizeOverFreqs_multiThreadedCPU(csm, SpecAllChn, result): nMics = csm.shape[0] for cntRow in range(nMics): temp = np.conj(SpecAllChn[cntRow]) for cntColumn in range(cntRow): result[cntRow, cntColumn] = csm[cntRow, cntColumn] + temp * SpecAllChn[cntColumn] #%% MAIN listOfMics = [500, 700, 1000] # default: 64 listOfNFreqs = [2**cnt for cnt in range(4, 11)] # default: 2048 nTrials = 10 #============================================================================== # The benchmark function 'faverage' and also other implementations of # the beamformer create a lot of overhead, which influences the computational # effort of the succeding function. This is mostly the case, if concurrent # calculations are done (multiple cores). So often the first trial of a new # function takes some time longer than the other trials. #============================================================================== #funcsToTrial = [loopsComplexTranspose_Numpy, loops_Njit, loops_Njit_Parallel, loops_Njit_Parallel_Prange, # loopsOnlyTriangularMatrix_Njit, loops_GuvectorizeOverFreqs_singleThreadedCPU, # loops_GuvectorizeOverFreqs_multiThreadedCPU, # loopsOnlyTriangularMatrix_GuvectorizeOverFreqs_singleThreadedCPU, # loopsOnlyTriangularMatrix_GuvectorizeOverFreqs_multiThreadedCPU, # faverage_OhneMP, faverage] funcsToTrial = [loopsOnlyTriangularMatrix_Njit, faverage] for nMics in listOfMics: for nFreqs in listOfNFreqs: # Init print(10*'-' + 'New Test configuration: nMics=%s, nFreqs=%s' %(nMics, nFreqs) + 10*'-') print(10*'-' + 'Creation of inputInputs' + 10*'-') csm = np.zeros((nFreqs, nMics, nMics), np.complex128) spectrumInput = np.random.rand(nFreqs, nMics) + \ 1j*np.random.rand(nFreqs, nMics) nameOfFuncsToTrial = map(lambda x: x.__name__, funcsToTrial) nameOfFuncsForError = [funcName for funcName in nameOfFuncsToTrial if funcName != 'faverage'] maxRelativeDeviation = np.zeros((len(funcsToTrial), nTrials)) maxAbsoluteDeviation = np.zeros((len(funcsToTrial), nTrials)) timeConsumption = [[] for _ in range(len(funcsToTrial))] indOfBaselineFnc = nameOfFuncsToTrial.index('faverage') print(10*'-' + 'Onetime calculation of "faverage" for error reference' + 10*'-') faverage(csm, spectrumInput) resultReference = csm # For relative/absolute error gc.collect() # Testing print(10*'-' + 'Testing of functions' + 10*'-') cntFunc = 0 for func in funcsToTrial: print(func.__name__) for cntTrials in xrange(nTrials): csm = np.zeros((nFreqs, nMics, nMics), np.complex128) resultHelp = np.zeros((nFreqs, nMics, nMics), np.complex128) if func.__name__ == 'faverage' or func.__name__ == 'faverage_OhneMP': t0 = tm.time() func(csm, spectrumInput) t1 = tm.time() result = csm elif func.__name__ == 'loops_GuvectorizeOverFreqs': t0 = tm.time() func(csm, spectrumInput, resultHelp) t1 = tm.time() result = resultHelp else: t0 = tm.time() output = func(csm, spectrumInput) t1 = tm.time() result = output timeConsumption[cntFunc].append(t1 - t0) relativeDiffBetweenNewCodeAndRef = (result - resultReference) / (result + resultReference) * 2 # error in relation to the resulting value maxRelativeDeviation[cntFunc, cntTrials] = np.amax(np.amax(np.amax(abs(relativeDiffBetweenNewCodeAndRef), axis=0), axis=0), axis=0) + 10.0**-20 # relative error in inf-norm maxAbsoluteDeviation[cntFunc, cntTrials] = np.amax(np.amax(np.amax(abs(result - resultReference), axis=0), axis=0), axis=0) + 10.0**-20 # absolute error in inf-norm cntFunc += 1 factorTimeConsump = [
np.mean(timeConsumption[cnt])
numpy.mean
import os import math import numpy as np import tensorflow as tf from enum import Enum from time import time from configparser import ConfigParser from util.stats import DistributionInfo as Stat PROJECT_ROOT = str(__file__).replace("Networks\\q_learning.py", "") TEMP_DIR = PROJECT_ROOT + "util/temp/" LOG_DIR = PROJECT_ROOT + "util/logs/" DEFAULT_SAVE_PATH = PROJECT_ROOT + "Networks/saved/" class NeuralNetwork: def __init__(self, name, input_shape, n_classes, save_path=DEFAULT_SAVE_PATH): self.net_config = ConfigParser() self.net_config["Format"] = {"input_shape": str(input_shape).rstrip("]").lstrip("["), "n_classes": str(n_classes), "n_layers": 0} self.net_config["Options"] = {"save_path": save_path} self.net_config["Stats"] = {"total_steps": 0, "total_time": 0} self.name = name self.n_classes = n_classes self.save_path = save_path self.x = tf.placeholder(dtype=tf.float32, shape=[None] + input_shape, name="x") self.learning_rate = tf.placeholder(dtype=tf.float32, shape=[]) self.q_values_new = tf.placeholder(tf.float32, shape=[None, n_classes], name='q_values_new') self.output = self.x self.loss = None self.session = None self.saver = None self.optimizer = None self.merged_summary = None # todo adding file_writer produces error: "TypeError: Expected an event_pb2.Event proto, but got <class 'tensorflow.core.util.event_pb2.Event'>" # self.file_writer = tf.summary.FileWriter(LOG_DIR + self.name + "/tb") self.committed = False self.n_layers = 0 self.tf_config = tf.ConfigProto() self.tf_config.gpu_options.allow_growth = True def add_fc(self, size, activation, verbose=False): if self.committed: if verbose: print(self.name, "is already committed. Can not add fc layer") return if verbose: print("adding fc layer to {0:s} with size {1:d} and activation {2:s}".format(self.name, size, ActivationType.string_of(activation))) self.output = tf.layers.dense(self.output, units=size, activation=activation, kernel_initializer=tf.glorot_normal_initializer(), name="L"+str(self.n_layers)+"-fc", bias_initializer=tf.random_normal_initializer()) with tf.name_scope("L" + str(self.n_layers)): tf.summary.histogram("act", self.output) self.net_config["Layer" + str(self.n_layers)] = {"type": "fc", "size": size, "activation": ActivationType.string_of(activation)} self.n_layers += 1 self.net_config["Format"]["n_layers"] = str(self.n_layers) if verbose: print("Added fc layer to", self.name) def add_drop_out(self, rate, verbose=False): if self.committed: if verbose: print(self.name, "is already committed. Can not add drop out layer") return if verbose: print("adding drop out layer to {0:s} with rate {1:.2f}".format(self.name, rate)) self.output = tf.layers.dropout(self.output, rate, name="L"+str(self.n_layers)+"-do") with tf.name_scope("L" + str(self.n_layers)): tf.summary.histogram("act", self.output) self.net_config["Layer" + str(self.n_layers)] = {"type": "do", "rate": rate} self.n_layers += 1 self.net_config["Format"]["n_layers"] = str(self.n_layers) if verbose: print("Added drop out layer to", self.name) def commit(self, verbose=False): if self.committed: if verbose: print(self.name, "is already committed. Can not commit again") return self.output = tf.layers.dense(self.output, units=self.n_classes, activation=ActivationType.RELU, kernel_initializer=tf.glorot_normal_initializer(), name="out", bias_initializer=tf.random_normal_initializer()) squared_error = tf.square(self.output - self.q_values_new) sum_squared_error = tf.reduce_sum(squared_error, axis=1) self.loss = tf.reduce_mean(sum_squared_error) self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.loss) self.saver = tf.train.Saver() self.session = tf.Session(config=self.tf_config) self.session.run(tf.global_variables_initializer()) # print("merging summaries") self.merged_summary = tf.summary.merge_all() # print("adding graph") # self.file_writer.add_graph(self.session.graph) if verbose: print(self.name, "was successfully committed") def close(self): self.session.close() print(self.name, "was closed") def run(self, states): return self.session.run(self.output, feed_dict={self.x: states})[0] # todo remove [0] when more than one operation is run def train(self, trainining_data, batch_size, n_epochs, learning_rate=1e-3, save=True): steps = 0 start_time = time() n_batches = math.ceil(len(trainining_data[0]) / batch_size) for epoch in range(n_epochs): for i in range(n_batches): start = i*batch_size end = (i+1)*batch_size if i < n_batches else -1 # the last batch may not be full size, in this case all remaining elements will be chosen states_batch = trainining_data[0][start:end] q_values_batch = trainining_data[1][start:end] steps += len(states_batch) feed_dict = {self.x: states_batch, self.q_values_new: q_values_batch, self.learning_rate: learning_rate} _, summary = self.session.run([self.optimizer, self.merged_summary], feed_dict=feed_dict) # print("adding summary") # self.file_writer.add_summary(summary, global_step=self.get_step_count() + steps) self.net_config["Stats"]["total_steps"] = str(int(self.net_config["Stats"]["total_steps"]) + steps) self.net_config["Stats"]["total_time"] = str(float(self.net_config["Stats"]["total_time"]) + time() - start_time) if save: self.save() def save(self): if not os.path.isdir(self.save_path + self.name): os.makedirs(self.save_path + self.name) with open(self.save_path + self.name + "/net.cfg", "w") as cfg_file: self.net_config.write(cfg_file) save_path = self.saver.save(self.session, self.save_path + self.name + "/" + self.name) print("saved net to:", save_path) def load(self, ckp_file): self.saver.restore(self.session, save_path=ckp_file) @staticmethod def restore(name, path=DEFAULT_SAVE_PATH, new_name=None, verbose=False): """ restores a net from the file system :param name: the name of the saved net :param path: the directory the files associated with the saved net are stored :param new_name: optional, gives the net a new name :param verbose: en-/disables additional console output :return: the restored net object """ if verbose: print("restoring {0:s} from {1:s}".format(name, path)) print("config file:", path + name + "/net.cfg") print("tf checkpoint:", path + name + "/" + name + ".ckpt") config = ConfigParser() config.read(path + name + "/net.cfg") name_ = (name if new_name is None else new_name) input_shape = [int(s) for s in config["Format"]["input_shape"].split(",")] n_classes = int(config["Format"]["n_classes"]) net = NeuralNetwork(name_, input_shape, n_classes, save_path=path) n_layers = int(config["Format"]["n_layers"]) if verbose: print("N_Layers:", n_layers) for i in range(n_layers): l_type = config["Layer" + str(i)]["type"] if l_type == "fc": size = int(config["Layer" + str(i)]["size"]) activation = ActivationType.get(config["Layer" + str(i)]["activation"]) net.add_fc(size, activation, verbose=verbose) elif l_type == "do": rate = float(config["Layer" + str(i)]["rate"]) net.add_drop_out(rate, verbose=verbose) for key in config["Stats"]: net.net_config["Stats"][key] = config["Stats"][key] net.commit() net.load(path + name + "/" + name) # + ".ckpt") return net def get_step_count(self): return int(self.net_config["Stats"]["total_steps"]) class ActivationType(Enum): RELU = tf.nn.relu SIGMOID = tf.nn.sigmoid @staticmethod def get(act_type): if act_type == "RELU": return ActivationType.RELU if act_type == "SIGMOID": return ActivationType.SIGMOID @staticmethod def string_of(act_type): if act_type == ActivationType.RELU: return "RELU" if act_type == ActivationType.SIGMOID: return "SIGMOID" class ReplayMemory: def __init__(self, n_actions, discount_factor=0.97): self.n_actions = n_actions self.discount_factor = discount_factor self.size = 0 self.states = [] self.q_values = [] # each entry is a list of n_actions float values self.actions = [] self.rewards = [] self.predicted_q_values = [] self.estimation_errors = [] def add(self, state, q_values, action, reward): """ adds a new entry to memory :param state: the state of the environment :param q_values: the predicted q-values for every possible action in this state :param action: the action that was chosen :param reward: the reward received for the transition from state to next state through performing action :return: """ self.states.append(state) self.q_values.append(q_values) self.actions.append(action) self.rewards.append(reward) self.size += 1 def update_q_values(self, sarsa=False): """ calculates the actual q-values from the predicted ones. during play only the predicted values are stored as the real ones are not known (they depend on future states). ideally this method is called at the end of an episode -> no future states exist/have any influence on the value of current or past states. :param sarsa: whether the sarsa (state action reward state action) variant of q-value updates should be used the sarsa-variant uses the q-value of the selected next action instead of the highest q-value next action :return: """ if self.size < 1: return -1 # save a copy of the predicted values for analysis self.predicted_q_values = self.q_values[:] start_time = time() self.estimation_errors = np.zeros(shape=[self.size]) # the q-value of the last step should be the reward in that step self.q_values[-1][self.actions[-1]] = self.rewards[-1] # the update moves from the present to the past -> from the back to the front of the array for i in reversed(range(self.size-1)): action = self.actions[i] reward = self.rewards[i] # the q-value for the action is composed of the immediate reward + discounted future reward if sarsa: following_action = self.actions[i + 1] action_value = reward + self.discount_factor * self.q_values[i + 1][following_action] else: action_value = reward + self.discount_factor * np.max(self.q_values[i+1]) self.estimation_errors[i] = abs(action_value - self.q_values[i][action]) # only the q-value for the selected action can be updated self.q_values[i][action] = action_value end_time = time() print("Average estimation error:", Stat(self.estimation_errors)) return end_time - start_time def get_random_batch(self, batch_size, duplicates=False): """ get a batch of randomly selected state-q_value-pairs :param duplicates: whether duplicates are allowed :param batch_size: the number of state-q_value-pairs returned; if not enough entries are available and not duplicates are allowed less pairs are returned :return: a list of states and a list of q-values. corresponding entries have the same index """ if self.size <= 0: return None # if the batch size is greater than the size of the memory the entire memory is returned if batch_size > self.size-1 and not duplicates: return self.states, self.q_values selection = np.random.choice([i for i in range(self.size)], size=batch_size, replace=duplicates) states_batch = np.array(self.states)[selection] q_values_batch = np.array(self.q_values)[selection] return states_batch, q_values_batch def get_training_set(self, shuffle=False): """ :param shuffle: whether the set will be shuffled :return: a set of training data containing the entire contents of this replay memory """ if shuffle: ordering = [i for i in range(self.size)] np.random.shuffle(ordering) states = [self.states[i] for i in ordering] q_values = [self.q_values[i] for i in ordering] else: states = self.states q_values = self.q_values return states, q_values def clear(self): """ deletes all values from memory. only the number of actions and the discount factor are conserved :return: """ self.size = 0 self.states = [] self.q_values = [] self.actions = [] self.rewards = [] self.estimation_errors = [] def write(self): """ saves the contents of this replay memory to the file system :return: """ np.savetxt(TEMP_DIR + "estimation_errors.csv", self.estimation_errors, delimiter=",") # np.savetxt(TEMP_DIR + "rewards.csv", self.rewards, delimiter=",") # replaced with lines 187-189 np.savetxt(TEMP_DIR + "q_values.csv", self.q_values, delimiter=",")
np.savetxt(TEMP_DIR + "pred_q_values.csv", self.predicted_q_values, delimiter=",")
numpy.savetxt
from __future__ import absolute_import, division # External modules import logging, os, sys import numpy as np from astropy.table import Table, Column from astropy.cosmology import WMAP9 as cosmo from astropy import units as u if sys.version_info[0] >= 3: from io import StringIO else: from cStringIO import StringIO # Local modules from .convert_units import (DivideInterval, RadiiUnknown2Arcsec, RadiiUnknown2Parsec, RescaleArray) from ..stellar_module import StarGenerator from ..stellar_module import StarGenerator from ..utilities import GetStipsData from ..utilities import OffsetPosition from ..utilities import SelectParameter from ..utilities import StipsDataTable #----------- class SceneModule(object): #----------- def __init__(self, **kwargs): """ Noiseless scene generator module. :Author: <NAME> :Organization: Space Telescope Science Institute :History: * 2010/10/19 PLL created this module. * 2011/06/14 PLL added single star simulation. * 2011/06/28 PLL reorganized functions. * 2011/10/28 PLL added galaxies simulation. * 2014/02/14 BY modified the code to be instrument-independent Examples -------- >>> from stips import SceneModule Parameters ---------- self: obj Class instance. **kwargs: dictionary Additional arguments needed to make the scene """ self.out_path = SelectParameter('out_path', kwargs) self.prefix = kwargs.get('out_prefix', 'sim') self.cat_type = SelectParameter('cat_type', kwargs) if 'logger' in kwargs: self.logger = kwargs['logger'] else: self.logger = logging.getLogger('__stips__') log_level = SelectParameter('log_level', kwargs) print("Log level: {}".format(log_level)) self.logger.setLevel(getattr(logging, log_level)) if not len(self.logger.handlers): stream_handler = logging.StreamHandler(sys.stderr) stream_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s: %(message)s'))# [in %(pathname)s:%(lineno)d]')) self.logger.addHandler(stream_handler) if 'scene_general' in kwargs: self.ra = kwargs['scene_general'].get('ra', 0.0) self.dec = kwargs['scene_general'].get('dec', 0.0) self.seed = SelectParameter('seed', kwargs['scene_general']) else: self.ra = kwargs.get('ra', 0.0) self.dec = kwargs.get('dec', 0.0) self.seed = SelectParameter('seed', kwargs) self.params = [ 'Random seed: {}'.format(self.seed) ] msg = 'Centre (RA,DEC) = ({:.3f},{:.3f})' self.params += [ msg.format(self.ra, self.dec) ] self.catalogues = {} #----------- def CreatePopulation(self, pop, id=0): """ Generate a stellar population. Output list will have these columns: # ID # RA # DEC # Distance # Age # Metallicity # Mass # Count Rate (in the chosen instrument/filter), Absolute # Count Rate (in the chosen instrument/filter), Observed Parameters ---------- self: obj Class instance. pop: dictionary Information about the population. Includes: n_stars: int Number of stars age_low,age_high: floating point Minimum and maximum ages. z_low,z_high: floating point Minimum and maximum metallicities. imf: string Initial Mass Function for the population alpha: float Exponent (if imf = 'powerlaw') binary_fraction: float Binary Fraction distribution: string Stellar distribution in the sky (e.g. power law, inverse power law, uniform, etc.) clustered: bool Cluster higher masses to centre? radius: float Radius in (units) radius_units: string Units of radius (above) distance_low,distance_high: floating point Minimum and maximum distance (in kpc) of the 'cluster' offset_ra,offset_dec: floating point Offset of the cluster from the scene centre in arcseconds Returns ------- outList: string The catalogue file produced """ star_chunk = 100000 age_bins = DivideInterval("1.0e6,1.35e10,d5") met_bins = DivideInterval("-2.5,0.5,i0.1") out_file = "{}_stars_{:03d}.{}".format(self.prefix, id, self.cat_type) outList = os.path.join(self.out_path, out_file) if os.path.isfile(outList): os.remove(outList) # No append data_table = StipsDataTable.dataTableFromFile(outList) self._log("info","Creating catalogue {}".format(outList)) n_stars = int(pop['n_stars']) age_l = age_bins[(np.abs(age_bins-float(pop['age_low']))).argmin()] age_h = age_bins[(np.abs(age_bins-float(pop['age_high']))).argmin()] age_bins = age_bins[np.where((age_bins>=age_l) & (age_bins<=age_h))] met_l = met_bins[(np.abs(met_bins-float(pop['z_low']))).argmin()] met_h = met_bins[(np.abs(met_bins-float(pop['z_high']))).argmin()] met_bins = met_bins[np.where((met_bins>=met_l) & (met_bins<=met_h))] imf = pop['imf'] alpha = abs(float(pop['alpha'])) distribution = pop['distribution'] clustered = pop['clustered'] radius = float(pop['radius']) rad_units = pop['radius_units'] dist_l = float(pop['distance_low']) * 1.e3 #convert kpc to pc dist_h = float(pop['distance_high']) * 1.e3 #convert kpc to pc binary_fraction = float(pop['binary_fraction']) offset_ra = float(pop['offset_ra'])/3600. #offset in RA arcseconds, convert to degrees. offset_dec = float(pop['offset_dec'])/3600. #offset in DEC arcseconds, convert to degrees. metadata = {'type': 'phoenix', 'id': id, 'n_stars': n_stars, 'age_l': age_l, 'age_h': age_h, 'met_l': met_l, 'met_h': met_h, 'imf': imf, 'alpha': alpha, 'distribution': distribution, 'clustered': clustered, 'radius': radius, 'radius_units': rad_units, 'dist_l': dist_l, 'dist_h': dist_h, 'offset_ra': offset_ra, 'offset_dec': offset_dec, 'name': 'Phoenix Stellar Population Table', 'bandpass': 'johnson,i'} data_table.meta = metadata self._log("info","Creating age and metallicity numbers") # ages = np.random.RandomState(seed=self.seed).random_sample(size=len(age_bins)) ages = np.random.random_sample(size=len(age_bins)) ages /= ages.sum() # mets = np.random.RandomState(seed=self.seed).random_sample(size=len(met_bins)) mets = np.random.random_sample(size=len(met_bins)) mets /= mets.sum() self._log("info","Created age and metallicity numbers") self._log("info","Creating stars") #Generate star masses datasets = 0 total = 0 for i, age in enumerate(age_bins): self.logger.info("Age %g",age) n_age = int(round(n_stars * ages[i])) for j, met in enumerate(met_bins): self.logger.info("Metallicity %f",met) num_stars = int(round(n_age * mets[j])) if num_stars == 0: continue self.logger.info("Creating %d stars",num_stars) stargen = StarGenerator(age, met, imf=imf, alpha=alpha, seed=self.seed, logger=self.logger) all_masses, all_rates, all_temps, all_gravs = stargen.make_cluster(num_stars) all_x, all_y, all_z = self._MakeCoords(num_stars, radius, func=distribution, scale=2.8, do_z=True) # all_distances = np.random.RandomState(seed=self.seed).uniform(low=dist_l, high=dist_h, size=num_stars) all_distances = np.random.uniform(low=dist_l, high=dist_h, size=num_stars) if clustered: all_x, all_y, all_z = self._CenterObjByMass(all_x, all_y, all_masses, z=all_z) # all_binaries = np.random.RandomState(seed=self.seed).binomial(1,binary_fraction,len(all_masses)) all_binaries = np.random.binomial(1,binary_fraction,len(all_masses)) idx = np.where(all_binaries==1)[0] mb, rb, tb, gb = stargen.make_cluster(len(idx)) xb, yb, zb = all_x[idx], all_y[idx], all_z[idx] db = all_distances[idx] all_masses = np.insert(all_masses, idx, mb) all_rates = np.insert(all_rates, idx, rb) all_temps = np.insert(all_temps, idx, tb) all_gravs = np.insert(all_gravs, idx, gb) all_x = np.insert(all_x, idx, xb) all_y = np.insert(all_y, idx, yb) all_z = np.insert(all_z, idx, zb) all_distances = np.insert(all_distances, idx, db) all_binaries = np.insert(all_binaries, idx+1, 0) num_stars += len(idx) cached_ra = 0. cached_dec = 0. cached_distance = 0. cached = False for k in range(num_stars // star_chunk + 1): xl, xh = k * star_chunk, min(k * star_chunk + star_chunk, num_stars-1) star_set = xh - xl self._log("info", "Chunk {}: {} stars".format(k+1, star_set)) masses = all_masses[xl:xh] rates = all_rates[xl:xh] temps = all_temps[xl:xh] gravs = all_gravs[xl:xh] x, y, z = all_x[xl:xh], all_y[xl:xh], all_z[xl:xh] distances = all_distances[xl:xh] binaries = all_binaries[xl:xh] ids = np.arange(total + xl, total + xh) + 1 x = RadiiUnknown2Arcsec(x, rad_units, distances) y = RadiiUnknown2Arcsec(y ,rad_units, distances) z = RadiiUnknown2Parsec(z, rad_units, distances) distances += z ras = x/3600. #decimal degrees decs = y/3600. #decimal degrees base_ra,base_dec = OffsetPosition(self.ra,self.dec,offset_ra,offset_dec) decs += base_dec idxg = np.where(decs>90.) idxl = np.where(decs<-90.) decs[idxg] = 180. - decs[idxg] ras[idxg] = 180. + ras[idxg] decs[idxl] = -180. - decs[idxl] ras[idxl] = 180. + ras[idxl] ras = (ras + base_ra)%360 apparent_rates = rates + (5.0 * np.log10(distances) - 5.0) t = Table() t['id'] = Column(data=ids, format="%8d") t['ra'] = Column(data=ras, unit=u.deg, format="%17.9e") t['dec'] = Column(data=decs, unit=u.deg, format="%17.9e") t['distance'] = Column(data=distances, unit='pc', format="%17.9e") t['age'] = Column(data=np.full_like(ids, age), unit=u.yr, format="%17d") t['metallicity'] = Column(data=np.full_like(ras, met), format="%4.1f") t['mass'] = Column(data=masses,unit=u.Msun, format="%17.9e") t['teff'] = Column(data=temps, unit='K', format="%13.8f") t['log_g'] = Column(data=gravs, format="%12.9f") t['binary'] = Column(data=binaries, format="%3d") t['dataset'] = Column(data=np.full_like(ids, datasets), format="%6d") t['absolute'] = Column(data=rates,unit=u.mag, format="%14.6e") t['apparent'] = Column(data=apparent_rates,unit=u.mag, format="%12.4e") data_table.write_chunk(t) del t datasets += 1 total += num_stars self._log("info","Done creating catalogue") return outList #----------- def CreateGalaxies(self, gals, id=0): """ Generate galaxies list. Output list will have these columns: # ID # RA # DEC # Redshift # Model # Age # Profile # Half-flux_radius # Axial_ratio # Position_angle # Johnson,V absolute # Johnson,V apparent Parameters ---------- self: obj Class instance. gals: dictionary Information about the galaxies. Includes: n_gals: int Number of galaxies z_low,z_high: float Minimum and maximum redshifts (converted to distances?). rad_low,rad_high: float Minimum and maximum galactic half-light radii (in arcseconds) sb_v_low, sb_v_high: float Minimum and maximum V-band average surface brightness within rad distribution: string Stellar distribution in the sky (e.g. power law, inverse power law, uniform, etc.) clustered: bool Cluster higher masses to centre? radius: float Radius in (units) radius_units: string Units of radius (above) offset_ra,offset_dec: float Offset of cluster from scene centre in mas Returns ------- outList: string The catalogue file produced """ bc95_models = np.array(('a','b','c','d','e','f')) bc95_ages = np.array(("10E5","25E5","50E5","76E5","10E6","25E6","50E6","10E7","50E7","10E8","50E8","10E9")) out_file = "{}_gals_{:03d}.{}".format(self.prefix, id, self.cat_type) outList = os.path.join(self.out_path, out_file) if os.path.isfile(outList): os.remove(outList) # No append data_table = StipsDataTable.dataTableFromFile(outList) # Write star list (overwrite) self.logger.info("Creating catalogue %s",outList) # Generate galaxy list n_gals = int(gals['n_gals']) z_l = float(gals['z_low']) z_h = float(gals['z_high']) r_l = float(gals['rad_low']) r_h = float(gals['rad_high']) m_l = float(gals['sb_v_low']) m_h = float(gals['sb_v_high']) distribution = gals['distribution'] clustered = gals['clustered'] radius = float(gals['radius']) rad_units = gals['radius_units'] offset_ra = float(gals['offset_ra'])/3600. #offset in RA arcseconds, convert to degrees. offset_dec = float(gals['offset_dec'])/3600. #offset in DEC arcseconds, convert to degrees. self._log("info","Wrote preamble") self._log("info","Parameters are: {}".format(gals)) ids = np.arange(n_gals) # Roughly 50% spiral, 50% elliptical ellipRatio = 0.5 # binoDist = np.random.RandomState(seed=self.seed).binomial(1, ellipRatio, n_gals) binoDist = np.random.binomial(1, ellipRatio, n_gals) idx_ellip = np.where(binoDist == 1) idx_spiral = np.where(binoDist != 1) types = np.array( ['expdisk'] * n_gals ) types[idx_ellip] = 'devauc' n_ellip = len( idx_ellip[0] ) n_spiral = n_gals - n_ellip # Axial ratio # Spiral = 0.1 to 1 # Elliptical = 0.5 to 1 axialRatioSpiralMin, axialRatioSpiralMax = 0.1, 1.0 axialRatioEllipMin, axialRatioEllipMax = 0.5, 1.0 axials = np.zeros(n_gals) # axials[idx_spiral] = np.random.RandomState(seed=self.seed).uniform(axialRatioSpiralMin, axialRatioSpiralMax, n_spiral) # axials[idx_ellip] = np.random.RandomState(seed=self.seed).uniform(axialRatioEllipMin, axialRatioEllipMax, n_ellip) axials[idx_spiral] = np.random.uniform(axialRatioSpiralMin, axialRatioSpiralMax, n_spiral) axials[idx_ellip] = np.random.uniform(axialRatioEllipMin, axialRatioEllipMax, n_ellip) # Position angle posAngleAlgo = 'uniform' # angles = np.random.RandomState(seed=self.seed).uniform(0.0, 359.9, n_gals) angles = np.random.uniform(0.0, 359.9, n_gals) # Half-flux radius - uniform # rads = np.random.RandomState(seed=self.seed).uniform(r_l, r_h, n_gals) rads = np.random.uniform(r_l, r_h, n_gals) # Redshifts # If both z_low and z_high are zero, do local galaxies. Distance is 0.5 Mpc -- 50 Mpc. # In the future, offer an option for straight distance or redshift. if z_l == 0. and z_h == 0.: z_label = "distance" # distances = np.random.RandomState(seed=self.seed).uniform(5.e5, 5.e7, n_gals) distances = np.random.uniform(5.e5, 5.e7, n_gals) zs = distances / 1.e3 convs = np.log10(distances) else: z_label = "redshift" # zs = np.random.RandomState(seed=self.seed).uniform(z_l, z_h, n_gals) zs = np.random.uniform(z_l, z_h, n_gals) distances = np.array(cosmo.comoving_distance(zs).to(u.pc)) convs = np.log10(np.array(cosmo.luminosity_distance(zs).to(u.pc))) # Luminosity function - power law lumPow = -1.8 # vmags = np.random.RandomState(seed=self.seed).power(np.abs(lumPow)+1.0, size=n_gals) vmags = np.random.power(np.abs(lumPow)+1.0, size=n_gals) if lumPow < 0: vmags = 1.0 - vmags vmags = RescaleArray(vmags, m_l, m_h) vmags_abs = vmags - 5*(convs-1.) # models = np.random.RandomState(seed=self.seed).choice(bc95_models,size=n_gals) # ages = np.random.RandomState(seed=self.seed).choice(bc95_ages,size=n_gals) models = np.random.choice(bc95_models,size=n_gals) ages = np.random.choice(bc95_ages,size=n_gals) self._log("info","Making Co-ordinates") x,y = self._MakeCoords(n_gals,radius,func=distribution,scale=2.8) x = RadiiUnknown2Arcsec(x,rad_units,distances) y = RadiiUnknown2Arcsec(y,rad_units,distances) if clustered: self._log("info","Clustering") x,y = self._CenterObjByMass(x,y,1/vmags) self._log("info","Converting Co-ordinates into RA,DEC") ras = x/3600. #decimal degrees decs = y/3600. #decimal degrees base_ra,base_dec = OffsetPosition(self.ra,self.dec,offset_ra,offset_dec) decs += base_dec idxg = np.where(decs>90.) idxl = np.where(decs<-90.) decs[idxg] = 180. - decs[idxg] ras[idxg] = 180. + ras[idxg] decs[idxl] = -180. - decs[idxl] ras[idxl] = 180. + ras[idxl] ras = (ras + base_ra)%360 metadata = {'type': 'bc95', 'id': id, 'n_gals': n_gals, 'z_l': z_l, 'z_h': z_h, 'radius_l': r_l, 'radius_h': r_h, 'sb_v_l': m_l, 'sb_v_h': m_h, 'distribution': distribution, 'clustered': clustered, 'radius': radius, 'radius_units': rad_units, 'offset_ra': offset_ra, 'offset_dec': offset_dec, 'name': 'Galaxy Population Table', 'bandpass': 'johnson,v'} data_table.meta = metadata t = Table() t['id'] = Column(data=ids) t['ra'] = Column(data=ras,unit=u.deg) t['dec'] = Column(data=decs,unit=u.deg) t[z_label] = Column(data=zs) t['model'] = Column(data=models) t['age'] = Column(data=ages,unit=u.yr) t['profile'] = Column(data=types) t['radius'] = Column(data=rads) t['axial_ratio'] = Column(data=axials,unit=u.deg) t['pa'] = Column(data=angles,unit=u.deg) t['absolute_surface_brightness'] = Column(data=vmags_abs,unit=u.mag) t['apparent_surface_brightness'] = Column(data=vmags,unit=u.mag) data_table.write_chunk(t) self._log("info","Done creating catalogue") return outList #----------- def _CenterObjByMass(self, x, y, mass, z=None): """ Place slightly more massive stars near image center to simulate mass segragation. Parameters ---------- self: obj Class instance. x, y: array_like Initial coordinates of object placement. mass: array_like Stellar masses. z: array_like, optional Initial z co-ordinates of object placement. If provided, return 3D co-ordinates. Returns ------- new_x, new_y, [new_z]: array_like Re-ordered `x` and `y`. """ x_cen = 0. y_cen = 0. z_cen = 0. n_stars = x.size # Central coordinates will have smallest values dx = x - x_cen dy = y - y_cen if z is not None: dz = z - z_cen d = np.sqrt(dy*dy + dx*dx + dz*dz) else: d = np.sqrt(dy*dy + dx*dx) i_sorted = np.argsort(d) # Segregate mass m_cut = mass.max() * 0.75 # Arbitrary cut of low/high masses j_lo = np.where( mass <= m_cut )[0] j_hi = np.where( mass > m_cut )[0] # Place high masses with slightly more preference for center j_sorted =
np.zeros(n_stars, dtype='int')
numpy.zeros
#!/usr/bin/env python # encoding: utf-8 # General methods. # # https://github.com/LucaZampierin/ABABSE # # Adapted from Trusca, Wassenberg, Frasincar and Dekker (2020). Changes have been made to adapt the methods # to the current project and to adapt the scripts to TensorFlow 2.5. # https://github.com/mtrusca/HAABSA_PLUS_PLUS # # <NAME>., <NAME>., <NAME>., <NAME>. (2020). A Hybrid Approach for aspect-based sentiment analysis using # deep contextual word embeddings and hierarchical attention. 20th International Conference on Web Engineering (ICWE 2020) # (Vol.12128, pp. 365–380). Springer import numpy as np import random import string def batch_index(length, batch_size, neg_samples, n_iter=100, is_shuffle=True): """ Method adapted from Trusca et al. (2020). Select indeces of the observations to be used in a batch :param length: number of total observations :param batch_size: number of observations in a batch :param neg_samples: number of negative samples used for each observation :param n_iter: :param is_shuffle: shuffle or not the data, defaluts to True. :return: """ index = list(range(length)) for j in range(n_iter): if is_shuffle: np.random.shuffle(index) for i in range(int(length / batch_size) + (1 if length % batch_size else 0)): # yield index[i * batch_size:(i + 1) * batch_size] batch_index = index[i * batch_size:(i + 1) * batch_size] if i == 0: neg_batch_index = index[(i + 1) * batch_size:len(index)-1] elif i == int(length / batch_size) + (1 if length % batch_size else 0)-1: neg_batch_index = index[0 : i * batch_size] else: neg_batch_index = index[0:i * batch_size] + index[(i+1) * batch_size: len(index)-1] neg_batch_index = random.sample(neg_batch_index, len(batch_index)*neg_samples) yield batch_index, neg_batch_index def load_word_id_mapping(word_id_file, encoding='utf8'): """ Method obtained from Trusca et al. (2020). Loads the word-to-id mapping :param word_id_file: word-id mapping file path :param encoding: file's encoding, for changing to unicode :return: word-id mapping, like hello=5 """ word_to_id = dict() for line in open(word_id_file): line = line.decode(encoding, 'ignore').lower().split() word_to_id[line[0]] = int(line[1]) print('\nload word-id mapping done!\n') return word_to_id def index_to_word(w2v_file, index): """ :param w2v_file: :param index: :return: """ fp = open(w2v_file) cnt = 0 for line in fp: line = line.split() cnt+=1 if cnt==index: return line[0] def load_w2v(w2v_file, embedding_dim, is_skip=False): """ Method obtained from Trusca et al. (2020). Loads the embedding matrix. :param w2v_file: embedding path :param embedding_dim: embedding dimensions :param is_skip: :return: """ fp = open(w2v_file) if is_skip: fp.readline() w2v = [] word_dict = dict() # [0,0,...,0] represent absent words w2v.append([0.] * embedding_dim) cnt = 0 for line in fp: cnt += 1 line = line.split() # line = line.split() if len(line) != embedding_dim + 1: print('a bad word embedding: {}'.format(line[0])) continue w2v.append([float(v) for v in line[1:]]) word_dict[line[0]] = cnt w2v = np.asarray(w2v, dtype=np.float32) w2v_sum = np.sum(w2v, axis=0, dtype=np.float32) div = np.divide(w2v_sum, cnt, dtype=np.float32) w2v = np.row_stack((w2v, div)) # w2v = np.row_stack((w2v, np.sum(w2v, axis=0) / cnt)) print(np.shape(w2v)) word_dict['$t$'] = (cnt + 1) # w2v -= np.mean(w2v, axis=0) # w2v /= np.std(w2v, axis=0) print(word_dict['$t$'], len(w2v)) return word_dict, w2v def load_word_embedding(word_id_file, w2v_file, embedding_dim, is_skip=False): """ Method obtained from Trusca et al. (2020). Loads the word embeddings. :param word_id_file: :param w2v_file: :param embedding_dim: :param is_skip: :return: """ word_to_id = load_word_id_mapping(word_id_file) word_dict, w2v = load_w2v(w2v_file, embedding_dim, is_skip) cnt = len(w2v) for k in word_to_id.keys(): if k not in word_dict: word_dict[k] = cnt w2v = np.row_stack((w2v, np.random.uniform(-0.01, 0.01, (embedding_dim,)))) cnt += 1 print(len(word_dict), len(w2v)) return word_dict, w2v def load_aspect2id(input_file, word_id_mapping, w2v, embedding_dim): """ Method obtained from Trusca et al. (2020). :param input_file: :param word_id_mapping: :param w2v: :param embedding_dim: :return: """ aspect2id = dict() a2v = list() a2v.append([0.] * embedding_dim) cnt = 0 for line in open(input_file): line = line.lower().split() cnt += 1 aspect2id[' '.join(line[:-1])] = cnt tmp = [] for word in line: if word in word_id_mapping: tmp.append(w2v[word_id_mapping[word]]) if tmp: a2v.append(np.sum(tmp, axis=0) / len(tmp)) else: a2v.append(np.random.uniform(-0.01, 0.01, (embedding_dim,))) print(len(aspect2id), len(a2v)) return aspect2id, np.asarray(a2v, dtype=np.float32) def change_to_onehot(y, pos_neu_neg=True): """ Method adapted from Trusca et al. (2020). One-hot-encoding of sentiment and aspect categories :param y: vector to one-hot-encode :param pos_neu_neg: True if senitment, false if aspect category. (defaults to True) :return: """ from collections import Counter print(Counter(y)) if pos_neu_neg: class_set = ['1', '0', '-1'] else: class_set = ['1','2','3','4','5','6','7','8','9','10','11','12'] n_class = len(class_set) y_onehot_mapping = dict(zip(class_set, range(n_class))) # print('THIS IS THE DICTIONARY') # print(y_onehot_mapping) onehot = [] for label in y: tmp = [0] * n_class tmp[y_onehot_mapping[label]] = 1 onehot.append(tmp) return np.asarray(onehot, dtype=np.int32) def load_inputs_twitter(input_file, word_id_file, sentence_len, type_='', is_r=True, target_len=10, encoding='utf8'): """ Method adapted from Trusca et al. (2020). Loads data matrices. :param input_file: data path :param word_id_file: word-to-id mapping :param sentence_len: maximum sentence lenght :param type_: different types of data loading :param is_r: boolean reverse the sentence. defaults to True :param target_len: maximum target lenght :param encoding: defaults to 'utf8' :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('load word-to-id done!') x, y, aspect, sen_len = [], [], [], [] x_neg, sen_len_neg = [], [] x_r, sen_len_r = [], [] target_words = [] tar_len = [] # target_neg = [] all_target, all_sent, all_y, all_aspect = [], [], [], [] # read in txt file lines = open(input_file).readlines() for i in range(0, len(lines), 4): # targets words = lines[i + 1].lower().split() target = words target_word = [] for w in words: if w in word_to_id: target_word.append(word_to_id[w]) l = min(len(target_word), target_len) tar_len.append(l) # target_neg.append(target_word[:l]) target_words.append(target_word[:l] + [0] * (target_len - l)) # sentiment y.append(lines[i + 2].strip().split()[0]) # aspect aspect.append(lines[i + 3].strip().split()[0]) # left and right context # words = lines[i].lower() # words.translate(str.maketrans('', '', string.punctuation)) # words = words.split() words = lines[i].lower().split() sent = words words_l, words_r = [], [] flag = True for word in words: if word == '$t$': flag = False continue if flag: # if word == '.' or word == ',' or word == ';' or word == ':' or word == '!' or word == '?': # continue if word in word_to_id: words_l.append(word_to_id[word]) else: # if word == '.' or word == ',' or word == ';' or word == ':' or word == '!' or word == '?': # continue if word in word_to_id: words_r.append(word_to_id[word]) if type_ == 'TD' or type_ == 'TC' or type_ == 'LCR': # words_l.extend(target_word) words_neg = words_l + target_word + words_r words_l = words_l[:sentence_len] words_r = words_r[:sentence_len] words_neg = words_neg[:sentence_len] x_neg.append(words_neg + [0] * (sentence_len - len(words_neg))) sen_len_neg.append(len(words_neg)) sen_len.append(len(words_l)) x.append(words_l + [0] * (sentence_len - len(words_l))) # tmp = target_word + words_r tmp = words_r if is_r: tmp.reverse() sen_len_r.append(len(tmp)) x_r.append(tmp + [0] * (sentence_len - len(tmp))) all_sent.append(sent) all_target.append(target) else: words = words_l + words_r words = words[:sentence_len] sen_len.append(len(words)) x.append(words + [0] * (sentence_len - len(words))) words_neg = words_l + target_word + words_r words_neg = words_neg[:sentence_len] sen_len_neg.append(len(words_neg)) x_neg.append(words_neg + [0] * (sentence_len - len(words_neg))) all_sent.append(sent) all_target.append(target) all_y = y; y = change_to_onehot(y, pos_neu_neg=True) aspect = change_to_onehot(aspect, pos_neu_neg=False) if type_ == 'TD': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), \ np.asarray(sen_len_r), np.asarray(y) elif type_ == 'TC': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), np.asarray(sen_len_r), \ np.asarray(y), np.asarray(target_words), np.asarray(tar_len), np.asarray(all_sent), np.asarray( all_target), np.asarray(all_y) elif type_ == 'IAN': return np.asarray(x), np.asarray(sen_len), np.asarray(target_words), \ np.asarray(tar_len), np.asarray(y), np.asarray(aspect), np.asarray(all_y), np.asarray(x_neg), np.asarray(sen_len_neg) elif type_ == 'LCR': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), np.asarray(sen_len_r), np.asarray(target_words), \ np.asarray(tar_len), np.asarray(y), np.asarray(aspect), np.asarray(all_y), np.asarray(x_neg), np.asarray(sen_len_neg) else: return np.asarray(x), np.asarray(sen_len), np.asarray(y) def load_inputs_twitter_(input_file, word_id_file, sentence_len, type_='', is_r=True, target_len=10, encoding='utf8'): """ Method obtained from Trusca et al. (2020). NOTE: not used in this project :param input_file: :param word_id_file: :param sentence_len: :param type_: :param is_r: :param target_len: :param encoding: :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('load word-to-id done!') x, y, sen_len = [], [], [] x_r, sen_len_r = [], [] target_words = [] tar_len = [] lines = open(input_file).readlines() for i in range(0, len(lines), 3): words = lines[i + 1].decode(encoding).lower().split() # target_word = map(lambda w: word_to_id.get(w, 0), target_word) # target_words.append([target_word[0]]) target_word = [] for w in words: if w in word_to_id: target_word.append(word_to_id[w]) l = min(len(target_word), target_len) tar_len.append(l) target_words.append(target_word[:l] + [0] * (target_len - l)) y.append(lines[i + 2].strip().split()[0]) words = lines[i].decode(encoding).lower().split() words_l, words_r = [], [] flag = 0 puncs = [',', '.', '!', ';', '-', '('] for word in words: if word == '$t$': flag = 1 if flag == 1 and word in puncs: flag = 2 if flag == 2: if word in word_to_id: words_r.append(word_to_id[word]) else: if word == '$t$': words_l.extend(target_word) else: if word in word_to_id: words_l.append(word_to_id[word]) if type_ == 'TD' or type_ == 'TC': words_l = words_l[:sentence_len] sen_len.append(len(words_l)) x.append(words_l + [0] * (sentence_len - len(words_l))) tmp = words_r[:sentence_len] if is_r: tmp.reverse() sen_len_r.append(len(tmp)) x_r.append(tmp + [0] * (sentence_len - len(tmp))) else: words = words_l + target_word + words_r sen_len.append(len(words)) x.append(words + [0] * (sentence_len - len(words))) y = change_y_to_onehot(y) print(x) print(x_r) if type_ == 'TD': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), \ np.asarray(sen_len_r), np.asarray(y) elif type_ == 'TC': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), np.asarray(sen_len_r), \ np.asarray(y), np.asarray(target_words), np.asarray(tar_len) else: return np.asarray(x), np.asarray(sen_len), np.asarray(y) def extract_aspect_to_id(input_file, aspect2id_file): """ Method obtained from Trusca et al. (2020). NOTE: not used in this project :param input_file: :param aspect2id_file: :return: """ dest_fp = open(aspect2id_file, 'w') lines = open(input_file).readlines() targets = set() for i in range(0, len(lines), 3): target = lines[i + 1].lower().split() targets.add(' '.join(target)) aspect2id = list(zip(targets, range(1, len(lines) + 1))) for k, v in aspect2id: dest_fp.write(k + ' ' + str(v) + '\n') def load_inputs_twitter_at(input_file, word_id_file, aspect_id_file, sentence_len, type_='', encoding='utf8'): """ Method obtained from Trusca et al. (2020). NOTE: not used in this project :param input_file: :param word_id_file: :param aspect_id_file: :param sentence_len: :param type_: :param encoding: :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('load word-to-id done!') if type(aspect_id_file) is str: aspect_to_id = load_aspect2id(aspect_id_file) else: aspect_to_id = aspect_id_file print('load aspect-to-id done!') x, y, sen_len = [], [], [] aspect_words = [] lines = open(input_file).readlines() for i in range(0, len(lines), 3): aspect_word = ' '.join(lines[i + 1].lower().split()) aspect_words.append(aspect_to_id.get(aspect_word, 0)) y.append(lines[i + 2].split()[0]) words = lines[i].decode(encoding).lower().split() ids = [] for word in words: if word in word_to_id: ids.append(word_to_id[word]) # ids = list(map(lambda word: word_to_id.get(word, 0), words)) sen_len.append(len(ids)) x.append(ids + [0] * (sentence_len - len(ids))) cnt = 0 for item in aspect_words: if item > 0: cnt += 1 print('cnt=', cnt) y = change_y_to_onehot(y) for item in x: if len(item) != sentence_len: print('aaaaa=', len(item)) x = np.asarray(x, dtype=np.int32) return x, np.asarray(sen_len), np.asarray(aspect_words), np.asarray(y) def load_inputs_sentence(input_file, word_id_file, sentence_len, encoding='utf8'): """ Method obtained from Trusca et al. (2020). NOTE: not used in this project :param input_file: :param word_id_file: :param sentence_len: :param encoding: :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('load word-to-id done!') x, y, sen_len = [], [], [] for line in open(input_file): line = line.lower().decode('utf8', 'ignore').split('||') y.append(line[0]) words = ' '.join(line[1:]).split() xx = [] i = 0 for word in words: if word in word_to_id: xx.append(word_to_id[word]) i += 1 if i >= sentence_len: break sen_len.append(len(xx)) xx = xx + [0] * (sentence_len - len(xx)) x.append(xx) y = change_y_to_onehot(y) print('load input {} done!'.format(input_file)) return np.asarray(x), np.asarray(sen_len), np.asarray(y) def load_inputs_document(input_file, word_id_file, max_sen_len, max_doc_len, _type=None, encoding='utf8'): """ Method obtained from Trusca et al. (2020). NOTE: not used in this project :param input_file: :param word_id_file: :param max_sen_len: :param max_doc_len: :param _type: :param encoding: :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('load word-to-id done!') x, y, sen_len, doc_len = [], [], [], [] for line in open(input_file): line = line.lower().decode('utf8', 'ignore').split('||') # y.append(line[0]) t_sen_len = [0] * max_doc_len t_x = np.zeros((max_doc_len, max_sen_len)) doc = ' '.join(line[1:]) sentences = doc.split('<sssss>') i = 0 pre = '' flag = False for sentence in sentences: j = 0 if _type == 'CNN': sentence = pre + ' ' + sentence if len(sentence.split()) < 5: pre = sentence continue else: pre = '' for word in sentence.split(): if j < max_sen_len: if word in word_to_id: t_x[i, j] = word_to_id[word] j += 1 else: break t_sen_len[i] = j i += 1 flag = True if i >= max_doc_len: break if flag: doc_len.append(i) sen_len.append(t_sen_len) x.append(t_x) y.append(line[0]) y = change_y_to_onehot(y) print('load input {} done!'.format(input_file)) return np.asarray(x), np.asarray(y), np.asarray(sen_len), np.asarray(doc_len) def load_inputs_document_nohn(input_file, word_id_file, max_sen_len, _type=None, encoding='utf8'): """ Method obtained from Trusca et al. (2020). NOTE: not used in this project :param input_file: :param word_id_file: :param max_sen_len: :param _type: :param encoding: :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('load word-to-id done!') x, y, sen_len = [], [], [] for line in open(input_file): line = line.lower().decode('utf8', 'ignore').split('||') words = ' '.join(line[1:]).split() i = 0 tx = [] for word in words: if i < max_sen_len: if word in word_to_id: tx.append(word_to_id[word]) i += 1 sen_len.append(i) x.append(tx + [0] * (max_sen_len - i)) y.append(line[0]) y = change_y_to_onehot(y) print('load input {} done!'.format(input_file)) return np.asarray(x), np.asarray(y), np.asarray(sen_len) def load_sentence(src_file, word2id, max_sen_len, freq=5): """ Method obtained from Trusca et al. (2020). NOTE: not used in this project :param src_file: :param word2id: :param max_sen_len: :param freq: :return: """ sf = open(src_file) x1, x2, len1, len2, y = [], [], [], [], [] def get_q_id(q): i = 0 tx = [] for word in q: if i < max_sen_len and word in word2id: tx.append(word2id[word]) i += 1 tx += ([0] * (max_sen_len - i)) return tx, i for line in sf: line = line.lower().split(' || ') q1 = line[0].split() q2 = line[1].split() is_d = line[2][0] tx, l = get_q_id(q1) x1.append(tx) len1.append(l) tx, l = get_q_id(q2) x2.append(tx) len2.append(l) y.append(is_d) index = range(len(y)) # np.random.shuffle(index) x1 = np.asarray(x1, dtype=np.int32) x2 = np.asarray(x2, dtype=np.int32) len1 = np.asarray(len1, dtype=np.int32) len2 = np.asarray(len2, dtype=np.int32) y = change_y_to_onehot(y) return x1, x2, len1, len2, y def load_inputs_full(input_file, word_id_file, sentence_len, type_='', is_r=True, target_len=10, encoding='utf8'): """ Method obtained from Trusca et al. (2020). NOTE: not used in this project :param input_file: :param word_id_file: :param sentence_len: :param type_: :param is_r: :param target_len: :param encoding: :return: """ if type(word_id_file) is str: word_to_id = load_word_id_mapping(word_id_file) else: word_to_id = word_id_file print('load word-to-id done!') x, y, sen_len = [], [], [] x_r, sen_len_r = [], [] sent_final = [] target_words = [] tar_len = [] lines = open(input_file).readlines() for i in range(0, len(lines), 3): words = lines[i + 1].lower().split() # target_word = map(lambda w: word_to_id.get(w, 0), target_word) # target_words.append([target_word[0]]) target_word = [] for w in words: if w in word_to_id: target_word.append(word_to_id[w]) l = min(len(target_word), target_len) tar_len.append(l) target_words.append(target_word[:l] + [0] * (target_len - l)) y.append(lines[i + 2].strip().split()[0]) words = lines[i].lower().split() words_l, words_r, sent = [], [], [] flag = True for word in words: if word == '$t$': flag = False continue if flag: if word in word_to_id: words_l.append(word_to_id[word]) else: if word in word_to_id: words_r.append(word_to_id[word]) if type_ == 'TD' or type_ == 'TC': # words_l.extend(target_word) words_l = words_l[:sentence_len] words_r = words_r[:sentence_len] sent.extend(words_l + target_word + words_r) sen_len.append(len(words_l)) x.append(words_l + [0] * (sentence_len - len(words_l))) # tmp = target_word + words_r tmp = words_r if is_r: tmp.reverse() sen_len_r.append(len(tmp)) x_r.append(tmp + [0] * (sentence_len - len(tmp))) sent_final.append(sent + [0] * (sentence_len - len(sent))) else: words = words_l + target_word + words_r words = words[:sentence_len] sen_len.append(len(words)) x.append(words + [0] * (sentence_len - len(words))) y = change_y_to_onehot(y) if type_ == 'TD': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), \ np.asarray(sen_len_r), np.asarray(y) elif type_ == 'TC': return np.asarray(x), np.asarray(sen_len), np.asarray(x_r), np.asarray(sen_len_r), \ np.asarray(y), np.asarray(target_words), np.asarray(tar_len), np.asarray(sent_final) elif type_ == 'IAN': return np.asarray(x), np.asarray(sen_len),
np.asarray(target_words)
numpy.asarray
import numpy as np from .qnumber import is_qsparse __all__ = ['retained_bond_indices', 'split_matrix_svd', 'qr'] def retained_bond_indices(s, tol): """ Indices of retained singular values based on given tolerance. """ w = np.linalg.norm(s) if w == 0: return np.array([], dtype=int) # normalized squares s = (s / w)**2 # accumulate values from smallest to largest sort_idx = np.argsort(s) s[sort_idx] = np.cumsum(s[sort_idx]) return np.where(s > tol)[0] def split_matrix_svd(A, q0, q1, tol): """ Split a matrix by singular value decomposition, taking block sparsity structure dictated by quantum numbers into account, and truncate small singular values based on tolerance. """ assert A.ndim == 2 assert len(q0) == A.shape[0] assert len(q1) == A.shape[1] assert is_qsparse(A, [q0, -q1]) # find common quantum numbers qis = np.intersect1d(q0, q1) if len(qis) == 0: assert
np.linalg.norm(A)
numpy.linalg.norm
import numpy as np import pandas as pd import scipy as sp from scipy import optimize import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') prop_cycle = plt.rcParams["axes.prop_cycle"] colors = prop_cycle.by_key()["color"] class OLG: """ The Class contain the OLG model """ ######################### # The M Definitions # ######################### def __init__(self, **kwargs): self.baseline_parameters() # A struct containing the parameters self.primitive_functions() self.update_parameters(kwargs) self.population_growth() # Gather the natual and predicted growth rate (1950-2100) def baseline_parameters(self): # Demographics #self.n = 0.51 # Initial growth rate #self.N_iniY = 0.35 #self.N = [self.N_iniY,self.N_iniY/(1+self.n),self.N_iniY/(1+self.n)**2] # Initial population # Household self.rho = 0.2 # Discount rate self.beta = 1/(1+self.rho) # Discount factor self.phi = 0.8 # Leisure preference intensity # Initial allocation assumption of middel aged self.l1_m = 0.4 self.s1_m = 2 self.t = 0 # Production self.alpha = 1/3 # Capital share in production self.A = 5 # Tecnology level self.delta = 0.2 # Depreciation rate # Human Capital self.delta_h = 0.072 # Depreciation self.theta = 1 # Positive Scale self.kappa = 0.8 # HC inheritance share self.H = 1 self.E_share = 0.05 self.E = self.E_share * 5 self.epsilon = 0.10 # elasticity of education spending self.gamma = 0.70 # elasticity of time allocation (gives weird results) # Government self.tau_k = 0.35 # Taxation of capital self.tau_w = 0.2 # Taxation of labour self.pi = 0.3 # Pension contribution rate # Code Convenience self.k_min = 1e-10 self.k_max = 20 # Note: Make sure capital wont reach this level and that the convergence is true (not to low density) self.seed = 1999 self.T = 20 # Plot self.Density = 30 self.y_axis_min = 0 self.x_axis_min = 0 def primitive_functions(self): eps = 1e-12 # Minimum evaluation # Utility Function (note: add leisure as a optimal function of c in same period) self.u = lambda c,l,h: np.log(np.fmax(c,eps))+self.phi*np.log(np.fmax(l,eps)*np.fmax(h,eps)) # Production Function self.f = lambda k: self.A*np.fmax(k,eps)**self.alpha*self.L**(1-self.alpha) self.fprime = lambda k: self.alpha*self.A*np.fmax(k,eps)**(self.alpha-1)*self.L**(1-self.alpha) # Human Capital Accumulation self.h = lambda h,e: (1-self.delta_h) * h + self.theta * e**self.gamma * h * self.E**self.epsilon # Effictive Wages self.W = lambda w,h,tau_p: (1-self.tau_w-tau_p) * w * h def update_parameters(self, kwargs): # For interactive plots (widgets) for key, value in kwargs.items(): setattr(self, key, value) ########################## # Gather the growth rate # ########################## def population_growth(self): # a. Import the CSV file with population from UN population division df = pd.read_csv('WPP2019_TotalPopulationBySex.csv') # b. Choose the World population and Medium-variant projection based A = df.loc[df['Location']=='World'] A = A.loc[df['VarID']==2] # c. Find the Growth rate from 1950-2100 Pop = pd.concat([A['Time'],A['PopTotal']],axis=1) Growth = Pop.PopTotal.pct_change().rename('Difference') Growth = Growth[1:] # removes the first NaN (150 observation left) # d. Find the 25 year average growth rate five_year_growth_rate = Growth.groupby(np.arange(len(Growth))//25).mean() self.n_data = (1+five_year_growth_rate.to_numpy())**25-1 # Setting the last periods to a constant growth rate #self.n_data = np.append(self.n_data,[0.02]*(self.T-len(self.n_data))) #self.n_data = np.append([0.1,0.18947953,0.33223047,0.50601531],self.n_data) # Baseline Model self.nfuture = -0.06 self.n_data = self.n_data[:] self.n_data = np.append(self.n_data,[self.nfuture]*(self.T+1-len(self.n_data))) # Setting the first growth rate #self.n = self.n_data[0] Init_young = 0.35 Init_growth = 0.4 self.N = [Init_young,Init_young/(1+Init_growth),Init_young/(1+Init_growth)**2] # Creaating the Population self.N_Pop = np.ndarray([self.T+2,3]) self.N_Pop[0,:]= self.N for i in range(self.T+1): self.N[2] = self.N[1] self.N[1] = self.N[0] self.N[0] = self.N[0]*(1+self.n_data[i]) self.N_Pop[i+1,:] = self.N ##################### # Solving the Model # ##################### def Pop_work(self,l0,e0,l1_m,h0): self.L = self.N[0]*(1-l0-e0)*h0 + self.N[1]*(1-l1_m)*self.h(self.H/self.kappa,0) return self.L def solve_firm_problem(self,k,TA,h0,t=0): # Unpack time allocations l0, e0 ,l1_m = TA # Update working population self.Pop_work(l0,e0,l1_m,h0) # Interest Rate R = 1+self.fprime(k)-self.delta # Wage Rate w = self.f(k)*(1/self.L)-self.fprime(k)*(k/self.L) return R, w def Household_variables(self,c0,l0,e0,k,k_plus,kg): # Gather the middel aged allocations l1_m = self.l1_m # Human capital h0 = self.h(self.H,e0) h1 = self.h(h0,0) h2 = self.h(h1,0) # Growth in h hg = kg*0 #1.2 # ((self.H/self.kappa)-h0)/h0 k_plus2 = k_plus*1.04 # Define Timeallocations (We assume optimal allocation and doesnt change with time) TA = [l0,e0,l1_m] # Current time allocations # Current and future prices tau_p = (self.N[2]/(self.N[0]+self.N[1]))*self.pi R0, w0 = self.solve_firm_problem(k,TA,h0) self.N = self.N_Pop[self.t+1,:] tau_p1 = (self.N[2]/(self.N[0]+self.N[1]))*self.pi h01 = self.h(h0*self.kappa,e0) R1, w1 = self.solve_firm_problem(k_plus,TA,h01) R2 = R1 w2 = w1 self.N = self.N_Pop[self.t,:] # Future pension benefits h1_mid = self.h(self.H/self.kappa,0) Pens2 = self.pi * w2 * (h1 * (1-l1_m) + h0 * (1-l0-e0)) # Find leisure middel age (Optimal rule used) W0 = self.W(w0, h0, tau_p) W1 = self.W(w1, h1, tau_p1) l1 = self.beta * (1+R1*(1-self.tau_k)) * (W0/W1)* l0 # Define Consumption middel age (Optimal rule used) c1 = self.beta * (1+R1*(1-self.tau_k)) * c0 # Define savings for the two periods s0 = (1-self.tau_w-tau_p) * (1-l0-e0) * w0 * h0 - c0 s1 = (1+R1*(1-self.tau_k))*s0 + (1-self.tau_w-tau_p1)*(1-l1)*w1*h1-c1 # Define consumption in the last period c2 = (1+R2*(1-self.tau_k))*s1+Pens2 return h0, h1, h2, l1, c1, c2, s0, s1, tau_p def lifetime_utility_young(self,x,k,k_plus,kg): # Unpack the allocation parameters c0 = x[0] l0 = x[1] e0 = x[2] # gather the implication of the choices I = self.Household_variables(c0,l0,e0,k,k_plus,kg) # Find human capital initial h0 = I[0] h1 = I[1] h2 = I[2] # Future leisure l1 = I[3] l2 = 1 # Future consumption c1 = I[4] c2 = I[5] U = self.u(c0,l0,h0)+self.beta*self.u(c1,l1,h1) + self.beta**2*self.u(c2,l2,h2) return -U def solve_household_problem(self,k,k_plus): # Assume we are in steady state kg = ((k_plus-k)/k)#((self.N[0]-self.N[1])/self.N[0]) if kg >=2: kg = 1 # Initial Guess x0 = [1,0.2,0.2] # Bounds bound_c = (0,k) bound_l = (0,0.9) bound_e = (0,1) bnds = (bound_c,bound_l,bound_e) # Constraints def constraint1(x,k): # Constraint c to be maximum equal wage ( w >= c) TA = [x[1],x[2],self.l1_m] h0 = self.h(self.H,x[2]) return self.solve_firm_problem(k,TA,h0)[1]*(1-self.tau_w)-x[0] def constraint2(x): # (1 >= l + e) return 1-x[1]-x[2] con1 = {'type': 'ineq', 'args': (k, ), 'fun':constraint1} con2 = {'type': 'ineq', 'fun':constraint2} cons = [con1,con2] # Optimization result = optimize.minimize(self.lifetime_utility_young, x0, method = "SLSQP",\ args = (k, k_plus,kg, ), bounds = bnds, constraints=cons) # a. Unpack c0,l0,e0 = result.x # b. Gather the savings Answer = self.Household_variables(c0,l0,e0,k,k_plus,kg) s0 = Answer[6] s1 = self.s1_m # current saving of middel aged # e. Aggregated savings S = s0 * self.N[0] + s1*self.N[1] return S, s0, s1, c0, l0, e0, Answer def find_equilibrium(self, k_plus,disp=0): # b objective function to minimize def obj(k): # saving S = self.solve_household_problem(k,k_plus)[0] # deviation of capital to day vs tomorrow return (k_plus-S)**2 k_min = 0 k_max = self.k_max+1 k = optimize.fminbound(obj,k_min,k_max,disp=disp) # Update mid age return k ############################## # Find the transition Curve # ############################## def find_transition_curve(self): # a determine the k_plus grid as all possible points self.k_plus_grid = np.linspace(self.k_min, self.k_max, self.Density) # b. implid current capital self.k_grid = np.empty(self.Density) for i, k_plus in enumerate(self.k_plus_grid): k = self.find_equilibrium(k_plus) self.k_grid[i] = k ######################### # Simulating the Model # ######################### def simulate(self, reset_seed=True, k_initial=1, shock = False, shock_permanent = True): if reset_seed: np.random.seed(self.seed) self.find_transition_curve() # a. initialize # Capital and output self.sim_k = np.empty(self.T) self.sim_k[0] = k_initial self.y_output = np.empty(self.T) self.y_output[0] = self.f(k_initial) # Population self.pop = np.empty(self.T) self.pop[0] = np.sum(self.N_Pop[0,:]) self.sim_n = np.empty(self.T) self.sim_n[0] = self.n_data[0] #self.N_overview = np.ndarray((self.T,3)) #self.N_overview[0,:] = self.N # Variables at interest self.sim_k_plus = np.empty(self.T) self.sim_w = np.empty(self.T) self.sim_r = np.empty(self.T) self.sim_s0 = np.empty(self.T) self.sim_s1 = np.empty(self.T) self.sim_c0 = np.empty(self.T) self.sim_c1 = np.empty(self.T) self.sim_c2 = np.empty(self.T) self.sim_l0 = np.empty(self.T) self.sim_l1 = np.empty(self.T) self.sim_e0 = np.empty(self.T) self.sim_h0 =
np.empty(self.T)
numpy.empty
"""Functions for DSC processing. Created 15 October 2021 @authors: <NAME> @institution: Barrow Neurological Institute Translated from jupyter notebook DSCpipeline.ipynb by <NAME> Functions: estimate_R2s estimate_delta_R2s estimate_delta_R2s_dual_echo """ import numpy as np def estimate_R2s(s1, s2, te1, te2): """Estimate R2* and TE=0 signal from dual echo signals. Parameters ---------- s1 : float Signal (first echo). s2 : float Signal (second echo). te1 : float First echo time (s). te2 : float Second echo time (s). Returns ------- s_te0 : float Signal at zero echo time. R2s : float R2* (s^-1). """ R2s = (1/(te2 - te1)) * np.log(s1 / s2) s_te0 = s1 *
np.exp(te1 * R2s)
numpy.exp
import openpnm as op import numpy as _np from numpy.testing import assert_allclose from openpnm.utils import remove_prop_deep class HydraulicConductanceTest: def setup_class(self): self.net = op.network.Cubic(shape=[5, 5, 5], spacing=1.0) self.geo = op.geometry.GenericGeometry(network=self.net, pores=self.net.Ps, throats=self.net.Ts) self.geo['pore.diameter'] = 1.0 self.geo['throat.diameter'] = 0.5 self.geo['pore.area'] = 1.0 self.geo['throat.cross_sectional_area'] = 0.5 self.phase = op.phase.GenericPhase(network=self.net) self.phase['pore.viscosity'] = 1e-5 self.phys = op.physics.GenericPhysics(network=self.net, phase=self.phase, geometry=self.geo) self.size_factors_dict = {"pore1": 0.123, "throat": 0.981, "pore2": 0.551} def teardown_class(self): mgr = op.Workspace() mgr.clear() def test_generic_hydraulic_size_factors_as_dict(self): self.geo['throat.hydraulic_size_factors'] = self.size_factors_dict mod = op.models.physics.hydraulic_conductance.generic_hydraulic self.phys.add_model(propname='throat.g_hydraulic_conductance', model=mod) self.phys.regenerate_models() actual = self.phys['throat.g_hydraulic_conductance'].mean() assert_allclose(actual, desired=9120.483231751232) remove_prop_deep(self.geo, "throat.hydraulic_size_factors") def test_generic_hydraulic_size_factors_as_array(self): self.geo['throat.hydraulic_size_factors'] = 0.896 self.phys.regenerate_models("throat.g_hydraulic_conductance") actual = self.phys['throat.g_hydraulic_conductance'].mean()
assert_allclose(actual, desired=89600.0)
numpy.testing.assert_allclose
# finufft module, ie python-user-facing access to (no-data-copy) interfaces # # Some default opts are stated here (in arg list, but not docstring). # Barnett 10/31/17: changed all type-2 not to have ms,etc as an input but infer # from size of f. # Barnett 2018?: google-style docstrings for napoleon. # Lu 03/10/20: added guru interface calls # Anden 8/18/20: auto-made docstrings for the 9 simple/many routines import numpy as np import warnings import numbers from ctypes import byref from ctypes import c_longlong from ctypes import c_void_p import finufft._finufft as _finufft ### Plan class definition class Plan: r""" A non-uniform fast Fourier transform (NUFFT) plan The ``Plan`` class lets the user exercise more fine-grained control over the execution of an NUFFT. First, the plan is created with a certain set of parameters (type, mode configuration, tolerance, sign, number of simultaneous transforms, and so on). Then the nonuniform points are set (source or target depending on the type). Finally, the plan is executed on some data, yielding the desired output. In the simple interface, all these steps are executed in a single call to the ``nufft*`` functions. The benefit of separating plan creation from execution is that it allows for plan reuse when certain parameters (like mode configuration) or nonuniform points remain the same between different NUFFT calls. This becomes especially important for small inputs, where execution time may be dominated by initialization steps such as allocating and FFTW plan and sorting the nonuniform points. Example: :: import numpy as np import finufft # set up parameters n_modes = (1000, 2000) n_pts = 100000 nufft_type = 1 n_trans = 4 # generate nonuniform points x = 2 * np.pi * np.random.uniform(size=n_pts) y = 2 * np.pi * np.random.uniform(size=n_pts) # generate source strengths c = (np.random.standard_normal(size=(n_trans, n_pts)), + 1J * np.random.standard_normal(size=(n_trans, n_pts))) # initialize the plan plan = finufft.Plan(nufft_type, n_modes, n_trans) # set the nonuniform points plan.setpts(x, y) # execute the plan f = plan.execute(c) Also see ``python/examples/guru1d1.py`` and ``python/examples/guru2d1.py``. Args: nufft_type (int): type of NUFFT (1, 2, or 3). n_modes_or_dim (int or tuple of ints): if ``nufft_type`` is 1 or 2, this should be a tuple specifying the number of modes in each dimension (for example, ``(50, 100)``), otherwise, if `nufft_type`` is 3, this should be the number of dimensions (between 1 and 3). n_trans (int, optional): number of transforms to compute simultaneously. eps (float, optional): precision requested (>1e-16). isign (int, optional): if non-negative, uses positive sign exponential, otherwise negative sign. **kwargs (optional): for more options, see :ref:`opts`. """ def __init__(self,nufft_type,n_modes_or_dim,n_trans=1,eps=1e-6,isign=None,**kwargs): # set default isign based on if isign is None if isign==None: if nufft_type==2: isign = -1 else: isign = 1 # set opts and check precision type opts = _finufft.NufftOpts() _finufft._default_opts(opts) is_single = setkwopts(opts,**kwargs) # construct plan based on precision type and eps default value plan = c_void_p(None) # setting n_modes and dim for makeplan n_modes = np.ones([3], dtype=np.int64) if nufft_type==3: npdim = np.asarray(n_modes_or_dim, dtype=np.int64) if npdim.size != 1: raise RuntimeError('FINUFFT type 3 plan n_modes_or_dim must be one number, the dimension') dim = int(npdim) else: npmodes = np.asarray(n_modes_or_dim, dtype=np.int64) if npmodes.size>3 or npmodes.size<1: raise RuntimeError("FINUFFT n_modes dimension must be 1, 2, or 3") dim = int(npmodes.size) n_modes[0:dim] = npmodes[::-1] n_modes = (c_longlong * 3)(*n_modes) if is_single: self._makeplan = _finufft._makeplanf self._setpts = _finufft._setptsf self._execute = _finufft._executef self._destroy = _finufft._destroyf else: self._makeplan = _finufft._makeplan self._setpts = _finufft._setpts self._execute = _finufft._execute self._destroy = _finufft._destroy ier = self._makeplan(nufft_type, dim, n_modes, isign, n_trans, eps, byref(plan), opts) # check error if ier != 0: err_handler(ier) # set C++ side plan as inner_plan self.inner_plan = plan # set properties self.type = nufft_type self.dim = dim self.n_modes = n_modes self.n_trans = n_trans self.is_single = is_single ### setpts def setpts(self,x=None,y=None,z=None,s=None,t=None,u=None): r""" Set the nonuniform points For type 1, this sets the coordinates of the ``M`` nonuniform source points, for type 2, it sets the coordinates of the ``M`` target points, and for type 3 it sets both the ``M`` source points and the ``N`` target points. The dimension of the plan determines the number of arguments supplied. For example, if ``dim == 2``, we provide ``x`` and ``y`` (as well as ``s`` and ``t`` for a type-3 transform). Args: x (float[M]): first coordinate of the nonuniform points (source for type 1 and 3, target for type 2). y (float[M], optional): second coordinate of the nonuniform points (source for type 1 and 3, target for type 2). z (float[M], optional): third coordinate of the nonuniform points (source for type 1 and 3, target for type 2). s (float[N], optional): first coordinate of the nonuniform points (target for type 3). t (float[N], optional): second coordinate of the nonuniform points (target for type 3). u (float[N], optional): third coordinate of the nonuniform points (target for type 3). """ if self.is_single: # array sanity check self._xj = _rchkf(x) self._yj = _rchkf(y) self._zj = _rchkf(z) self._s = _rchkf(s) self._t = _rchkf(t) self._u = _rchkf(u) else: # array sanity check self._xj = _rchk(x) self._yj = _rchk(y) self._zj = _rchk(z) self._s = _rchk(s) self._t = _rchk(t) self._u = _rchk(u) # valid sizes dim = self.dim tp = self.type (self.nj, self.nk) = valid_setpts(tp, dim, self._xj, self._yj, self._zj, self._s, self._t, self._u) # call set pts for single prec plan if self.dim == 1: ier = self._setpts(self.inner_plan, self.nj, self._xj, self._yj, self._zj, self.nk, self._s, self._t, self._u) elif self.dim == 2: ier = self._setpts(self.inner_plan, self.nj, self._yj, self._xj, self._zj, self.nk, self._t, self._s, self._u) elif self.dim == 3: ier = self._setpts(self.inner_plan, self.nj, self._zj, self._yj, self._xj, self.nk, self._u, self._t, self._s) else: raise RuntimeError("FINUFFT dimension must be 1, 2, or 3") if ier != 0: err_handler(ier) ### execute def execute(self,data,out=None): r""" Execute the plan Performs the NUFFT specified at plan instantiation with the points set by ``setpts``. For type-1 and type-3 transforms, the input is a set of source strengths, while for a type-2 transform, it consists of an array of size ``n_modes``. If ``n_transf`` is greater than one, ``n_transf`` inputs are expected, stacked along the first axis. Args: data (complex[M], complex[n_transf, M], complex[n_modes], or complex[n_transf, n_modes]): The input source strengths (type 1 and 3) or source modes (type 2). out (complex[n_modes], complex[n_transf, n_modes], complex[M], or complex[n_transf, M], optional): The array where the output is stored. Must be of the right size. Returns: complex[n_modes], complex[n_transf, n_modes], complex[M], or complex[n_transf, M]: The output array of the transform(s). """ if self.is_single: _data = _cchkf(data) _out = _cchkf(out) else: _data = _cchk(data) _out = _cchk(out) tp = self.type n_trans = self.n_trans nj = self.nj nk = self.nk dim = self.dim if tp==1 or tp==2: ms = self.n_modes[0] mt = self.n_modes[1] mu = self.n_modes[2] # input shape and size check if tp==2: valid_fshape(data.shape,n_trans,dim,ms,mt,mu,None,2) else: valid_cshape(data.shape,nj,n_trans) # out shape and size check if out is not None: if tp==1: valid_fshape(out.shape,n_trans,dim,ms,mt,mu,None,1) if tp==2: valid_cshape(out.shape,nj,n_trans) if tp==3: valid_fshape(out.shape,n_trans,dim,None,None,None,nk,3) # allocate out if None if out is None: if self.is_single: pdtype=np.complex64 else: pdtype=np.complex128 if tp==1: _out = np.squeeze(np.zeros([n_trans, mu, mt, ms], dtype=pdtype, order='C')) if tp==2: _out = np.squeeze(np.zeros([n_trans, nj], dtype=pdtype, order='C')) if tp==3: _out = np.squeeze(np.zeros([n_trans, nk], dtype=pdtype, order='C')) # call execute based on type and precision type if tp==1 or tp==3: ier = self._execute(self.inner_plan, _data.ctypes.data_as(c_void_p), _out.ctypes.data_as(c_void_p)) elif tp==2: ier = self._execute(self.inner_plan, _out.ctypes.data_as(c_void_p), _data.ctypes.data_as(c_void_p)) else: ier = 10 # check error if ier != 0: err_handler(ier) # return out if out is None: return _out else: _copy(_out,out) return out def __del__(self): destroy(self) self.inner_plan = None ### End of Plan class definition ### <NAME>'s functions for checking input and output variables def _rchk(x): """ Check if array x is of the appropriate type (float64, C-contiguous in memory) If not, produce a copy """ if x is not None and x.dtype is not np.dtype('float64'): raise RuntimeError('FINUFFT data type must be float64 for double precision, data may have mixed precision types') return np.array(x, dtype=np.float64, order='C', copy=False) def _cchk(x): """ Check if array x is of the appropriate type (complex128, C-contiguous in memory) If not, produce a copy """ if x is not None and (x.dtype is not np.dtype('complex128') and x.dtype is not np.dtype('float64')): raise RuntimeError('FINUFFT data type must be complex128 for double precision, data may have mixed precision types') return np.array(x, dtype=np.complex128, order='C', copy=False) def _rchkf(x): """ Check if array x is of the appropriate type (float64, C-contiguous in memory) If not, produce a copy """ if x is not None and x.dtype is not np.dtype('float32'): raise RuntimeError('FINUFFT data type must be float32 for single precision, data may have mixed precision types') return np.array(x, dtype=np.float32, order='C', copy=False) def _cchkf(x): """ Check if array x is of the appropriate type (complex128, C-contiguous in memory) If not, produce a copy """ if x is not None and (x.dtype is not np.dtype('complex64') and x.dtype is not np.dtype('float32')): raise RuntimeError('FINUFFT data type must be complex64 for single precision, data may have mixed precision types') return np.array(x, dtype=np.complex64, order='C', copy=False) def _copy(_x, x): """ Copy _x to x, only if the underlying data of _x differs from that of x """ if _x.data != x.data: x[:] = _x ### error handler (keep up to date with FINUFFT/include/defs.h) def err_handler(ier): switcher = { 1: 'FINUFFT eps tolerance too small to achieve', 2: 'FINUFFT malloc size requested greater than MAX_NF', 3: 'FINUFFT spreader fine grid too small compared to kernel width', 4: 'FINUFFT spreader nonuniform point out of range [-3pi,3pi]^d in type 1 or 2', 5: 'FINUFFT spreader malloc error', 6: 'FINUFFT spreader illegal direction (must be 1 or 2)', 7: 'FINUFFT opts.upsampfac not > 1.0', 8: 'FINUFFT opts.upsampfac not a value with known Horner polynomial rule', 9: 'FINUFFT number of transforms ntrans invalid', 10: 'FINUFFT transform type invalid', 11: 'FINUFFT general malloc failure', 12: 'FINUFFT number of dimensions dim invalid', 13: 'FINUFFT spread_thread option invalid', } err_msg = switcher.get(ier,'Unknown error') if ier == 1: warnings.warn(err_msg, Warning) else: raise RuntimeError(err_msg) ### valid sizes when setpts def valid_setpts(tp,dim,x,y,z,s,t,u): if x.ndim != 1: raise RuntimeError('FINUFFT x must be a vector') nj = x.size if tp == 3: nk = s.size if s.ndim != 1: raise RuntimeError('FINUFFT s must be a vector') else: nk = 0 if dim > 1: if y.ndim != 1: raise RuntimeError('FINUFFT y must be a vector') if y.size != nj: raise RuntimeError('FINUFFT y must have same length as x') if tp==3: if t.ndim != 1: raise RuntimeError('FINUFFT t must be a vector') if t.size != nk: raise RuntimeError('FINUFFT t must have same length as s') if dim > 2: if z.ndim != 1: raise RuntimeError('FINUFFT z must be a vector') if z.size != nj: raise RuntimeError('FINUFFT z must have same length as x') if tp==3: if u.ndim != 1: raise RuntimeError('FINUFFT u must be a vector') if u.size != nk: raise RuntimeError('FINUFFT u must have same length as s') return (nj, nk) ### ntransf for type 1 and type 2 def valid_ntr_tp12(dim,shape,n_transin,n_modesin): if len(shape) == dim+1: n_trans = shape[0] n_modes = shape[1:dim+1] elif len(shape) == dim: n_trans = 1 n_modes = shape else: raise RuntimeError('FINUFFT type 1 output dimension or type 2 input dimension must be either dim or dim+1(n_trans>1)') if n_transin is not None and n_trans != n_transin: raise RuntimeError('FINUFFT input n_trans and output n_trans do not match') if n_modesin is not None: if n_modes != n_modesin: raise RuntimeError('FINUFFT input n_modes and output n_modes do not match') return (n_trans,n_modes) ### valid number of transforms def valid_ntr(x,c): n_trans = int(c.size/x.size) if n_trans*x.size != c.size: raise RuntimeError('FINUFFT c.size must be divisible by x.size') valid_cshape(c.shape,x.size,n_trans) return n_trans ### valid shape of c def valid_cshape(cshape,xsize,n_trans): if n_trans == 1: if len(cshape) != 1: raise RuntimeError('FINUFFT c.ndim must be 1 if n_trans = 1') if cshape[0] != xsize: raise RuntimeError('FINUFFT c.size must be same as x.size if n_trans = 1') if n_trans > 1: if len(cshape) != 2: raise RuntimeError('FINUFFT c.ndim must be 2 if n_trans > 1') if cshape[1] != xsize or cshape[0] != n_trans: raise RuntimeError('FINUFFT c.shape must be (n_trans, x.size) if n_trans > 1') ### valid shape of f def valid_fshape(fshape,n_trans,dim,ms,mt,mu,nk,tp): if tp == 3: if n_trans == 1: if len(fshape) != 1: raise RuntimeError('FINUFFT f.ndim must be 1 for type 3 if n_trans = 1') if fshape[0] != nk: raise RuntimeError('FINUFFT f.size of must be nk if n_trans = 1') if n_trans > 1: if len(fshape) != 2: raise RuntimeError('FINUFFT f.ndim must be 2 for type 3 if n_trans > 1') if fshape[1] != nk or fshape[0] != n_trans: raise RuntimeError('FINUFFT f.shape must be (n_trans, nk) if n_trans > 1') else: if n_trans == 1: if len(fshape) != dim: raise RuntimeError('FINUFFT f.ndim must be same as the problem dimension for type 1 or 2 if n_trans = 1') if n_trans > 1: if len(fshape) != dim+1: raise RuntimeError('FINUFFT f.ndim must be same as the problem dimension + 1 for type 1 or 2 if n_trans > 1') if fshape[0] != n_trans: raise RuntimeError('FINUFFT f.shape[0] must be n_trans for type 1 or 2 if n_trans > 1') if fshape[-1] != ms: raise RuntimeError('FINUFFT f.shape is not consistent with n_modes') if dim>1: if fshape[-2] != mt: raise RuntimeError('FINUFFT f.shape is not consistent with n_modes') if dim>2: if fshape[-3] != mu: raise RuntimeError('FINUFFT f.shape is not consistent with n_modes') ### check if dtype is single or double def is_single_dtype(dtype): dtype = np.dtype(dtype) if dtype == np.dtype('float64') or dtype ==
np.dtype('complex128')
numpy.dtype
""" functions to handle data loading TO DO: data augmentation for xyz coordinates data augmentation by adding gaussian noise """ import numpy as np import copy import tensorflow as tf from collections import Counter from numpy.linalg import norm class Data_Loader: input_mean = None input_std = None output_mean = None output_std = None datatype = np.float32 def __init__( self, filename="data.npz", shuffle=True, input_label=["xyz"], target_label=["pe"], n_sample=10000, test_sample=1000, batch_size=100, num_epoch=10, weight_by_pe=True, weight_by_label=True, ngrid=100, test_only=False, input_norm=True, output_norm=True, ): """load the data from npz file :param filename: str, root dir of .npy data :param shuffle, boolean, whether or not to shuffle training data :param input_label: list of str that define the input :param target_label: list of str that define the output :param n_sample: int, number of training samples to use """ # load data from data.npz data = dict(np.load(filename)) for k in input_label + target_label: data[k] = data[k].astype(self.datatype) n_config = data[input_label[0]].shape[0] # if n_sample is too big if (n_sample+test_sample) > n_config: if test_sample < n_config: n_sample = n_config - test_sample else: n_sample = n_config //2 test_sample = n_config - n_sample # shuffle data and target with the same permutation if shuffle: r = np.random.permutation(n_config) else: r = np.arange(n_config) for k in data.keys(): np.take(data[k], r, axis=0, out=data[k]) data[k] = data[k][:n_sample+test_sample] if "label" in data.keys(): minlabel = np.min(data["label"]) if minlabel != 0: print(f"WARNING, the data label will be shifted {minlabel}") data["label"] =
np.int32(data["label"] - minlabel)
numpy.int32
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for cartesian_4d_velocity_effector.py.""" import copy from absl.testing import absltest from absl.testing import parameterized from dm_control import mjcf from dm_robotics.geometry import geometry from dm_robotics.geometry import mujoco_physics from dm_robotics.moma.effectors import cartesian_4d_velocity_effector from dm_robotics.moma.effectors import test_utils from dm_robotics.moma.models.robots.robot_arms import sawyer import numpy as np class Cartesian4DVelocityEffectorTest(parameterized.TestCase): def test_zero_xy_rot_vel_pointing_down(self): # When the arm is pointing straight down, the default effector shouldn't # apply any X or Y rotations. arm = sawyer.Sawyer(with_pedestal=False) physics = mjcf.Physics.from_mjcf_model(arm.mjcf_model) effector_6d = test_utils.Spy6dEffector(arm.wrist_site) effector_4d = cartesian_4d_velocity_effector.Cartesian4dVelocityEffector( effector_6d, element=arm.wrist_site, effector_prefix='sawyer_4d') arm.set_joint_angles( physics, joint_angles=test_utils.SAFE_SAWYER_JOINTS_POS) physics.step() # propagate the changes to the rest of the physics. # Send an XYZ + Z rot command. We shouldn't see any XY rotation components. effector_4d.set_control(physics, command=np.ones(4) * 0.1) np.testing.assert_allclose(effector_6d.previous_action, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1], atol=1e-3, rtol=0.0) def test_nonzero_xy_rot_vel_not_pointing_down(self): # When the arm is NOT pointing straight down, the default effector should # apply X and Y rotations to push it back to the desired quat. arm = sawyer.Sawyer(with_pedestal=False) physics = mjcf.Physics.from_mjcf_model(arm.mjcf_model) effector_6d = test_utils.Spy6dEffector(arm.wrist_site) effector_4d = cartesian_4d_velocity_effector.Cartesian4dVelocityEffector( effector_6d, element=arm.wrist_site, effector_prefix='sawyer_4d') # random offset to all joints. joint_angles = test_utils.SAFE_SAWYER_JOINTS_POS + 0.1 arm.set_joint_angles(physics, joint_angles=joint_angles) physics.step() # propagate the changes to the rest of the physics. # Send an XYZ + Z rot command. We SHOULD see XY rotation components. effector_4d.set_control(physics, command=np.ones(4) * 0.1) xy_rot_components = effector_6d.previous_action[3:5] self.assertFalse(np.any(np.isclose(xy_rot_components, np.zeros(2)))) def test_limiting_to_workspace(self): arm = sawyer.Sawyer(with_pedestal=False) physics = mjcf.Physics.from_mjcf_model(arm.mjcf_model) effector_6d = test_utils.Spy6dEffector(arm.wrist_site) effector_4d = cartesian_4d_velocity_effector.Cartesian4dVelocityEffector( effector_6d, element=arm.wrist_site, effector_prefix='sawyer_4d') arm.set_joint_angles( physics, joint_angles=test_utils.SAFE_SAWYER_JOINTS_POS) physics.step() # propagate the changes to the rest of the physics. # The arm is pointing down in front of the base. Create a workspace # that encompasses it, and check that all commands are valid. min_workspace_limits = np.array([0.0, -0.5, 0.0]) max_workspace_limits = np.array([0.9, 0.5, 0.5]) effector_with_limits = cartesian_4d_velocity_effector.limit_to_workspace( effector_4d, arm.wrist_site, min_workspace_limits, max_workspace_limits) effector_with_limits.set_control(physics, command=np.ones(4) * 0.1) np.testing.assert_allclose(effector_6d.previous_action, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1], atol=1e-3, rtol=0.0) # The arm is pointing down in front of the base. Create a workspace # where the X position is in bounds, but Y and Z are out of bounds. min_workspace_limits = np.array([0.0, -0.9, 0.5]) max_workspace_limits = np.array([0.9, -0.5, 0.9]) effector_with_limits = cartesian_4d_velocity_effector.limit_to_workspace( effector_4d, arm.wrist_site, min_workspace_limits, max_workspace_limits) # The action should only affect DOFs that are out of bounds and are moving # away from where they should. effector_with_limits.set_control(physics, command=np.ones(4) * 0.1) np.testing.assert_allclose(effector_6d.previous_action, [0.1, 0.0, 0.1, 0.0, 0.0, 0.1], atol=1e-3, rtol=0.0) def test_limiting_wrist_rotation(self): arm = sawyer.Sawyer(with_pedestal=False) physics = mjcf.Physics.from_mjcf_model(arm.mjcf_model) effector_6d = test_utils.Spy6dEffector(arm.wrist_site) effector_4d = cartesian_4d_velocity_effector.Cartesian4dVelocityEffector( effector_6d, element=arm.wrist_site, effector_prefix='sawyer_4d') arm.set_joint_angles( physics, joint_angles=test_utils.SAFE_SAWYER_JOINTS_POS) physics.step() # propagate the changes to the rest of the physics. # The arm is pointing down in front of the base. Create a workspace # that encompasses it. min_workspace_limits =
np.array([0.0, -0.5, 0.0])
numpy.array
# -*- coding: utf-8 -*- """World Fertility Survey: Fiji""" __all__ = ['COPYRIGHT','TITLE','SOURCE','DESCRSHORT','DESCRLONG','NOTE', 'load'] __docformat__ = 'restructuredtext' COPYRIGHT = """Available for use in academic research. See SOURCE.""" TITLE = __doc__ SOURCE = """ The source data was obtained from <NAME>'s web site at Princeton http://data.princeton.edu/wws509/datasets/#ceb, with the following refernce. :: Little, <NAME>. (1978). Generalized Linear Models for Cross-Classified Data from the WFS. World Fertility Survey Technical Bulletins, Number 5. It originally comes from the World Fertility Survey for Fiji http://opr.princeton.edu/archive/wfs/fj.aspx. The terms of use for the original dataset are: Data may be used for academic research, provided that credit is given in any publication resulting from the research to the agency that conducted the survey and that two copies of any publication are sent to:: Mr. <NAME> Government Statistician Bureau of Statistics Government Buildings P.O. Box 2221 Suva Fiji """ DESCRSHORT = """Fiji Fertility Survey""" DESCRLONG = """World Fertily Surveys: Fiji Fertility Survey. Data represents grouped individual data.""" #suggested notes NOTE = """ Number of observations - 70 Number of variables - 7 Variable name definitions:: totchild - total number of children ever born in the group dur - marriage duration (1=0-4, 2=5-9, 3=10-14, 4=15-19, 5=20-24, 6=25-29) res - residence (1=Suva, 2=Urban, 3=Rural) edu - education (1=none, 2=lower primary, 3=upper primary, 4=secondary+) nwomen - number of women in the group """ from numpy import recfromtxt, column_stack, array from scikits.statsmodels.datasets import Dataset from os.path import dirname, abspath from scikits.statsmodels.tools import categorical def load(): """ Load the Fiji WFS data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ filepath = dirname(abspath(__file__)) ##### EDIT THE FOLLOWING TO POINT TO DatasetName.csv ##### data = recfromtxt(open(filepath + '/wfs.csv', 'rb'), delimiter=",", names=True, dtype=float, usecols=(1,2,3,4,6)) names = ["totchild"] + list(data.dtype.names) ##### SET THE INDEX ##### endog =
array(data[names[4]]*data[names[5]], dtype=float)
numpy.array
from PIL import Image from toolz.curried import get import numpy as np import torch from ignite.metrics import Metric from horch.legacy.train.metrics import Average class MeanIoU(Metric): def __init__(self, num_classes, ignore_index=None): self.num_classes = num_classes self.ignore_index = ignore_index super().__init__(self.output_transform) def reset(self): self.total_cm = np.zeros(self.num_classes, self.num_classes) def update(self, output): cm = output self.total_cm += cm def output_transform(self, output): y_true, y_pred = get(["y_true", "y_pred"], output) c = self.num_classes if isinstance(y_true, Image.Image): y_true = [
np.array(img)
numpy.array
import numpy as np from abc import ABCMeta, abstractmethod from scipy import signal from typing import List from scipy import signal from scipy.spatial.transform import Rotation as R class Target(ABCMeta): def __init__(self): pass @abstractmethod def find_projection_along_path(self, current_point): pass @abstractmethod def spin(self, timestep, n1, n2, dims): pass class Circle(Target): def __init__(self, wavelength = 500, amplitude = 0.025, \ center = [0.0, 0.0, 0.0]): self.wavelength = wavelength self.amplitude = amplitude self.center = center def find_projection_along_path(self, current_point): ang1 = np.arctan2(self.center[0], self.center[2]) ang2 = np.arctan2(self.center[0], self.center[2]) return (ang1 - ang2) % (2. * np.pi) def spin(self, timestep, n1, n2, dims, current_point): target =
np.empty([n2 - n1, dims])
numpy.empty
## @ingroup Components-Energy-Storages-Batteries-Constant_Mass # Lithium_Ion_LiNiMnCoO2_18650.py # # Created: Feb 2020, <NAME> # Modified: Sep 2021, <NAME> # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- import SUAVE from SUAVE.Core import Units , Data from .Lithium_Ion import Lithium_Ion from SUAVE.Methods.Power.Battery.Cell_Cycle_Models.LiNiMnCoO2_cell_cycle_model import compute_NMC_cell_state_variables from SUAVE.Methods.Power.Battery.compute_net_generated_battery_heat import compute_net_generated_battery_heat import numpy as np import os from scipy.integrate import cumtrapz from scipy.interpolate import RegularGridInterpolator ## @ingroup Components-Energy-Storages-Batteries-Constant_Mass class Lithium_Ion_LiNiMnCoO2_18650(Lithium_Ion): """ Specifies discharge/specific energy characteristics specific 18650 lithium-nickel-manganese-cobalt-oxide battery cells Assumptions: Convective Thermal Conductivity Coefficient corresponds to forced air cooling in 35 m/s air Source: Automotive Industrial Systems Company of Panasonic Group, Technical Information of NCR18650G, URL https://www.imrbatteries.com/content/panasonic_ncr18650g.pdf convective heat transfer coefficient, h Jeon, Dong Hyup, and Seung Man Baek. "Thermal modeling of cylindrical lithium ion battery during discharge cycle." Energy Conversion and Management 52.8-9 (2011): 2973-2981. thermal conductivity, k Yang, Shuting, et al. "A Review of Lithium-Ion Battery Thermal Management System Strategies and the Evaluate Criteria." Int. J. Electrochem. Sci 14 (2019): 6077-6107. specific heat capacity, Cp (axial and radial) <NAME>, et al. "A Review of Lithium-Ion Battery Thermal Management System Strategies and the Evaluate Criteria." Int. J. Electrochem. Sci 14 (2019): 6077-6107. # Electrode Area Muenzel, Valentin, et al. "A comparative testing study of commercial 18650-format lithium-ion battery cells." Journal of The Electrochemical Society 162.8 (2015): A1592. Inputs: None Outputs: None Properties Used: N/A """ def __defaults__(self): self.tag = 'Lithium_Ion_LiNiMnCoO2_Cell' self.cell.diameter = 0.0185 # [m] self.cell.height = 0.0653 # [m] self.cell.mass = 0.048 * Units.kg # [kg] self.cell.surface_area = (np.pi*self.cell.height*self.cell.diameter) + (0.5*np.pi*self.cell.diameter**2) # [m^2] self.cell.volume = np.pi*(0.5*self.cell.diameter)**2*self.cell.height self.cell.density = self.cell.mass/self.cell.volume # [kg/m^3] self.cell.electrode_area = 0.0342 # [m^2] self.cell.max_voltage = 4.2 # [V] self.cell.nominal_capacity = 3.55 # [Amp-Hrs] self.cell.nominal_voltage = 3.6 # [V] self.cell.charging_voltage = self.cell.nominal_voltage # [V] self.watt_hour_rating = self.cell.nominal_capacity * self.cell.nominal_voltage # [Watt-hours] self.specific_energy = self.watt_hour_rating*Units.Wh/self.cell.mass # [J/kg] self.specific_power = self.specific_energy/self.cell.nominal_capacity # [W/kg] self.resistance = 0.025 # [Ohms] self.specific_heat_capacity = 1108 # [J/kgK] self.cell.specific_heat_capacity = 1108 # [J/kgK] self.cell.radial_thermal_conductivity = 0.4 # [J/kgK] self.cell.axial_thermal_conductivity = 32.2 # [J/kgK] # estimated battery_raw_data = load_battery_results() self.discharge_performance_map = create_discharge_performance_map(battery_raw_data) return def energy_calc(self,numerics,battery_discharge_flag = True ): '''This is an electric cycle model for 18650 lithium-nickel-manganese-cobalt-oxide battery cells. The model uses experimental data performed by the Automotive Industrial Systems Company of Panasonic Group Sources: Internal Resistance Model: <NAME>., <NAME>., <NAME>., and <NAME>., "Combined State of Charge and State of Health estimation over lithium-ion battery cellcycle lifespan for electric vehicles,"Journal of Power Sources, Vol. 273, 2015, pp. 793-803. doi:10.1016/j.jpowsour.2014.09.146,URLhttp://dx.doi.org/10.1016/j.jpowsour.2014.09.146. Battery Heat Generation Model and Entropy Model: Jeon, <NAME>, and <NAME>. "Thermal modeling of cylindrical lithium ion battery during discharge cycle." Energy Conversion and Management 52.8-9 (2011): 2973-2981. Assumtions: 1) All battery modules exhibit the same themal behaviour. Inputs: battery. I_bat (max_energy) [Joules] cell_mass (battery cell mass) [kilograms] Cp (battery cell specific heat capacity) [J/(K kg)] t (battery age in days) [days] T_ambient (ambient temperature) [Kelvin] T_current (pack temperature) [Kelvin] T_cell (battery cell temperature) [Kelvin] E_max (max energy) [Joules] E_current (current energy) [Joules] Q_prior (charge throughput) [Amp-hrs] R_growth_factor (internal resistance growth factor) [unitless] inputs. I_bat (current) [amps] P_bat (power) [Watts] Outputs: battery. current_energy [Joules] cell_temperature [Kelvin] resistive_losses [Watts] load_power [Watts] current [Amps] battery_voltage_open_circuit [Volts] cell_charge_throughput [Amp-hrs] internal_resistance [Ohms] battery_state_of_charge [unitless] depth_of_discharge [unitless] battery_voltage_under_load [Volts] ''' # Unpack varibles battery = self I_bat = battery.inputs.current P_bat = battery.inputs.power_in electrode_area = battery.cell.electrode_area As_cell = battery.cell.surface_area T_current = battery.pack_temperature T_cell = battery.cell_temperature E_max = battery.max_energy E_current = battery.current_energy Q_prior = battery.cell_charge_throughput battery_data = battery.discharge_performance_map I = numerics.time.integrate D = numerics.time.differentiate # --------------------------------------------------------------------------------- # Compute battery electrical properties # --------------------------------------------------------------------------------- # Calculate the current going into one cell n_series = battery.pack_config.series n_parallel = battery.pack_config.parallel n_total = battery.pack_config.total Nn = battery.module_config.normal_count Np = battery.module_config.parallel_count n_total_module = Nn*Np if battery_discharge_flag: I_cell = I_bat/n_parallel else: I_cell = -I_bat/n_parallel # State of charge of the battery initial_discharge_state = np.dot(I,P_bat) + E_current[0] SOC_old = np.divide(initial_discharge_state,E_max) # Make sure things do not break by limiting current, temperature and current SOC_old[SOC_old < 0.] = 0. SOC_old[SOC_old > 1.] = 1. T_cell[T_cell<272.65] = 272.65 T_cell[T_cell>322.65] = 322.65 battery.cell_temperature = T_cell battery.pack_temperature = T_cell # --------------------------------------------------------------------------------- # Compute battery cell temperature # --------------------------------------------------------------------------------- # Determine temperature increase sigma = 139 # Electrical conductivity n = 1 F = 96485 # C/mol Faraday constant delta_S = -496.66*(SOC_old)**6 + 1729.4*(SOC_old)**5 + -2278 *(SOC_old)**4 + 1382.2 *(SOC_old)**3 + \ -380.47*(SOC_old)**2 + 46.508*(SOC_old) + -10.692 i_cell = I_cell/electrode_area # current intensity q_dot_entropy = -(T_cell)*delta_S*i_cell/(n*F) q_dot_joule = (i_cell**2)/sigma Q_heat_gen = (q_dot_joule + q_dot_entropy)*As_cell q_joule_frac = q_dot_joule/(q_dot_joule + q_dot_entropy) q_entropy_frac = q_dot_entropy/(q_dot_joule + q_dot_entropy) # Compute cell temperature T_current = compute_net_generated_battery_heat(n_total,battery,Q_heat_gen,numerics) # Power going into the battery accounting for resistance losses P_loss = n_total*Q_heat_gen P = P_bat - np.abs(P_loss) # Compute State Variables V_ul = compute_NMC_cell_state_variables(battery_data,SOC_old,T_cell,I_cell) # Li-ion battery interal resistance R_0 = 0.01483*(SOC_old**2) - 0.02518*SOC_old + 0.1036 # Voltage under load: V_oc = V_ul + (I_cell * R_0) # --------------------------------------------------------------------------------- # Compute updates state of battery # --------------------------------------------------------------------------------- # Possible Energy going into the battery: energy_unmodified = np.dot(I,P) # Available capacity capacity_available = E_max - battery.current_energy[0] # How much energy the battery could be overcharged by delta = energy_unmodified -capacity_available delta[delta<0.] = 0. # Power that shouldn't go in ddelta = np.dot(D,delta) # Power actually going into the battery P[P>0.] = P[P>0.] - ddelta[P>0.] E_bat = np.dot(I,P) E_bat = np.reshape(E_bat,
np.shape(E_current)
numpy.shape
# -*- coding: utf-8 -*- """ Created on Mon Dec 3 17:27:46 2018 @author: <NAME> Implementation of information representation based multi-layer classifier using GFMM Note: Currently, all samples in the dataset must be normalized to the range of [0, 1] before using this class """ import sys, os sys.path.insert(0, os.path.pardir) import numpy as np import math import ast import time import multiprocessing from functionhelper.bunchdatatype import Bunch from functionhelper.membershipcalc import memberG, asym_similarity_one_many from functionhelper.preprocessinghelper import read_file_in_chunks_group_by_label, read_file_in_chunks, string_to_boolean, loadDataset from functionhelper.hyperboxadjustment import isOverlap, hyperboxOverlapTest, modifiedIsOverlap, hyperboxContraction from concurrent.futures import ProcessPoolExecutor, as_completed def get_num_cpu_cores(): num_cores = multiprocessing.cpu_count() if num_cores >= 4: num_cores = num_cores - 2 return num_cores class Info_Presentation_Multi_Layer_Classifier_GFMM(object): def __init__(self, teta = [0.1, 0.5], gamma = 1, simil_thres = 0.5, oper = 'min'): self.gamma = gamma self.teta_onl = teta[0] self.higher_teta = teta[1:] self.oper = oper self.simil_thres = simil_thres def homogeneous_hyperbox_expansion(self, X_l, X_u, patClassId, current_hyperboxes): """ Expand current hyperboxes to cover input patterns, all input samples have the same label with each other as well as current hyperboxes (if exists) Update the number of patterns contained in the hyperboxes and their centroids of samples INPUT Xl Input data lower bounds (rows = objects, columns = features) Xu Input data upper bounds (rows = objects, columns = features) patClassId Input data class labels (crisp). patClassId[i] = 0 corresponds to an unlabeled item current_hyperboxes A list of current hyperboxes in the Bunch datatype (properties: lower, upper, classId, no_pat, centroid) OUTPUT result A bunch data size with lower and upper bounds, class labels of hyperboxes """ yX = X_l.shape[0] V = current_hyperboxes.lower W = current_hyperboxes.upper classId = current_hyperboxes.classId no_Pats = current_hyperboxes.no_pat centroid = current_hyperboxes.centroid # for each input sample for i in range(yX): classOfX = patClassId[i] if V.size == 0: # no model provided - starting from scratch V = np.array([X_l[i]]) W = np.array([X_u[i]]) classId = np.array([patClassId[i]]) no_Pats = np.array([1]) centroid = np.array([(X_l[i] + X_u[i]) / 2]) else: b = memberG(X_l[i], X_u[i], V, W, self.gamma, self.oper) index = np.argsort(b)[::-1] bSort = b[index]; if bSort[0] != 1: adjust = False for j in index: # test violation of max hyperbox size and class labels if ((np.maximum(W[j], X_u[i]) - np.minimum(V[j], X_l[i])) <= self.teta_onl).all() == True: # adjust the j-th hyperbox V[j] = np.minimum(V[j], X_l[i]) W[j] = np.maximum(W[j], X_u[i]) no_Pats[j] = no_Pats[j] + 1 centroid[j] = centroid[j] + (((X_l[i] + X_u[i]) / 2) - centroid[j]) / no_Pats[j] adjust = True if classOfX != 0 and classId[j] == 0: classId[j] = classOfX break # if i-th sample did not fit into any existing box, create a new one if not adjust: V = np.concatenate((V, X_l[i].reshape(1, -1)), axis = 0) W = np.concatenate((W, X_u[i].reshape(1, -1)), axis = 0) classId = np.concatenate((classId, [classOfX])) no_Pats = np.concatenate((no_Pats, [1])) new_Central_Sample = (X_l[i] + X_u[i]) / 2 centroid = np.concatenate((centroid, new_Central_Sample.reshape(1, -1)), axis = 0) return Bunch(lower=V, upper=W, classId=classId, no_pat=no_Pats, centroid=centroid) def heterogeneous_hyperbox_expansion(self, X_l, X_u, patClassId, current_hyperboxes): """ Expand current hyperboxes to cover input patterns, input samples contains different labels Update the number of patterns contained in the hyperboxes and their centroids of samples INPUT Xl Input data lower bounds (rows = objects, columns = features) Xu Input data upper bounds (rows = objects, columns = features) patClassId Input data class labels (crisp). patClassId[i] = 0 corresponds to an unlabeled item current_hyperboxes A list of current hyperboxes in the Bunch datatype (properties: lower, upper, classId, no_pat, centroid) OUTPUT result A bunch data size with lower and upper bounds, class labels of hyperboxes """ yX = X_l.shape[0] V = current_hyperboxes.lower W = current_hyperboxes.upper classId = current_hyperboxes.classId no_Pats = current_hyperboxes.no_pat centroid = current_hyperboxes.centroid # for each input sample for i in range(yX): classOfX = patClassId[i] if V.size == 0: # no model provided - starting from scratch V = np.array([X_l[0]]) W = np.array([X_u[0]]) classId = np.array([patClassId[0]]) no_Pats = np.array([1]) centroid = np.array([(X_l[0] + X_u[0]) / 2]) else: id_lb_sameX = np.logical_or(classId == classOfX, classId == 0) if id_lb_sameX.any() == True: V_sameX = V[id_lb_sameX] W_sameX = W[id_lb_sameX] lb_sameX = classId[id_lb_sameX] id_range = np.arange(len(classId)) id_processing = id_range[id_lb_sameX] b = memberG(X_l[i], X_u[i], V_sameX, W_sameX, self.gamma, self.oper) index = np.argsort(b)[::-1] bSort = b[index] if bSort[0] != 1 or (classOfX != lb_sameX[index[0]] and classOfX != 0): adjust = False for j in id_processing[index]: # test violation of max hyperbox size and class labels if (classOfX == classId[j] or classId[j] == 0 or classOfX == 0) and ((np.maximum(W[j], X_u[i]) - np.minimum(V[j], X_l[i])) <= self.teta_onl).all() == True: # adjust the j-th hyperbox V[j] = np.minimum(V[j], X_l[i]) W[j] = np.maximum(W[j], X_u[i]) no_Pats[j] = no_Pats[j] + 1 centroid[j] = centroid[j] + (((X_l[i] + X_u[i]) / 2) - centroid[j]) / no_Pats[j] adjust = True if classOfX != 0 and classId[j] == 0: classId[j] = classOfX break # if i-th sample did not fit into any existing box, create a new one if not adjust: V = np.concatenate((V, X_l[i].reshape(1, -1)), axis = 0) W = np.concatenate((W, X_u[i].reshape(1, -1)), axis = 0) classId = np.concatenate((classId, [classOfX])) no_Pats = np.concatenate((no_Pats, [1])) new_Central_Sample = (X_l[i] + X_u[i]) / 2 centroid = np.concatenate((centroid, new_Central_Sample.reshape(1, -1)), axis = 0) else: # new class lable => create new pattern V = np.concatenate((V, X_l[i].reshape(1, -1)), axis = 0) W = np.concatenate((W, X_u[i].reshape(1, -1)), axis = 0) classId = np.concatenate((classId, [classOfX])) no_Pats = np.concatenate((no_Pats, [1])) new_Central_Sample = (X_l[i] + X_u[i]) / 2 centroid = np.concatenate((centroid, new_Central_Sample.reshape(1, -1)), axis = 0) return Bunch(lower=V, upper=W, classId=classId, no_pat=no_Pats, centroid=centroid) def homogeneous_worker_distribution_chunk_by_class(self, chunk_data, dic_current_hyperboxes, nprocs): """ Distribute data in the current chunk to each worker according to class labels in turn INPUT chunk_data a dictionary contains input data with key being label and value being respective bunch data (properties: data, label) dic_current_hyperboxes a dictionary contains current coordinates of hyperboxes with labels as keys and values being a list of nprocs bunches of hyperboxes nprocs number of processes needs to be generated OUTPUT dic_results a dictionary contains new coordinates of hyperboxes with labels as keys and values being a list of nprocs bunches of hyperboxe """ dic_results = dic_current_hyperboxes with ProcessPoolExecutor(max_workers=nprocs) as executor: for key in chunk_data: futures = [] # get list of current hyperboxes or initialize empty list if not exist list or input key if len(dic_current_hyperboxes) > 0 and (key in dic_current_hyperboxes): boxes = dic_current_hyperboxes[key] else: boxes = np.empty(nprocs, dtype=Bunch) for j in range(nprocs): boxes[j] = Bunch(lower=np.array([]), upper=np.array([]), classId=np.array([]), no_pat=0, centroid=np.array([])) values = chunk_data[key] num_samples = len(values.data) if num_samples >= nprocs: chunksize = int(math.ceil(num_samples / float(nprocs))) for i in range(nprocs): X_l = values.data[(chunksize * i) : (chunksize * (i + 1))] X_u = values.data[(chunksize * i) : (chunksize * (i + 1))] patClassId = values.label[(chunksize * i) : (chunksize * (i + 1))] futures.append(executor.submit(self.homogeneous_hyperbox_expansion, X_l, X_u, patClassId, boxes[i])) else: futures.append(executor.submit(self.homogeneous_hyperbox_expansion, values, boxes[0])) # Instruct workers to process results as they come, when all are completed as_completed(futures) # wait all workers completed lst_current_boxes = [] for future in futures: lst_current_boxes.append(future.result()) dic_results[key] = lst_current_boxes return dic_results def heterogeneous_worker_distribution_chunk(self, lst_chunk_data, lst_current_hyperboxes, nprocs): """ Distribute data in the current chunk to each worker according to the order of patterns INPUT lst_chunk_data a list contains input data with key being label and value being respective bunch data (properties: data, label) lst_current_hyperboxes a list contains current coordinates of hyperboxes (the number of hyperboxes is respective to the number of init cores) nprocs number of processes needs to be generated OUTPUT lst_result a list of newly generated coordinates of hyperboxes """ lst_results = [] futures = [] if len(lst_current_hyperboxes) == 0: lst_current_hyperboxes = np.empty(nprocs, dtype=Bunch) for j in range(nprocs): lst_current_hyperboxes[j] = Bunch(lower=np.array([]), upper=np.array([]), classId=np.array([]), no_pat=0, centroid=np.array([])) with ProcessPoolExecutor(max_workers=nprocs) as executor: chunksize = int(math.ceil(len(lst_chunk_data.label) / float(nprocs))) for i in range(nprocs): X_l = lst_chunk_data.data[(chunksize * i) : (chunksize * (i + 1))] X_u = lst_chunk_data.data[(chunksize * i) : (chunksize * (i + 1))] patClassId = lst_chunk_data.label[(chunksize * i) : (chunksize * (i + 1))] futures.append(executor.submit(self.heterogeneous_hyperbox_expansion, X_l, X_u, patClassId, lst_current_hyperboxes[i])) # Instruct workers to process results as they come, when all are completed as_completed(futures) # wait all workers completed: for future in futures: lst_results.append(future.result()) return lst_results def removeContainedHyperboxes_UpdateCentroid(self): """ Remove all hyperboxes contained in other hyperboxes with the same class label and update centroids of larger hyperboxes This operation is performed on the values of lower and upper bounds, labels, and instance variables """ numBoxes = len(self.classId) indtokeep = np.ones(numBoxes, dtype=np.bool) # position of all hyperboxes kept no_removed_boxes = 0 for i in range(numBoxes): # Filter hypeboxes with the sample label as hyperbox i id_hyperbox_same_label = self.classId == self.classId[i] id_hyperbox_same_label[i] = False # remove hyperbox i if id_hyperbox_same_label.any() == True: # exist at least one hyperbox with the same label as hyperbox i V_same = self.V[id_hyperbox_same_label] W_same = self.W[id_hyperbox_same_label] memValue = memberG(self.V[i], self.W[i], V_same, W_same, self.gamma, self.oper) equal_one_index = memValue == 1 if np.sum(equal_one_index) > 0: original_index = np.arange(0, numBoxes) original_index_same_label = original_index[id_hyperbox_same_label] index_Parent_Hyperbox = original_index_same_label[np.nonzero(equal_one_index)[0]] # Find indices of hyperboxes that contain hyperbox i isIncluded = len(index_Parent_Hyperbox) > 0 if isIncluded == True: indtokeep[i] = False no_removed_boxes = no_removed_boxes + 1 # Update centroid of larger hyperbox if len(index_Parent_Hyperbox) == 1: parent_selection = index_Parent_Hyperbox[0] elif len(index_Parent_Hyperbox) > 1: # Compute the distance from the centroid of hyperbox i to centroids of other hyperboxes and choose the hyperbox with the smallest distance to merge min_dis = np.linalg.norm(self.centroid[i] - self.centroid[index_Parent_Hyperbox[0]]) parent_selection = index_Parent_Hyperbox[0] for jj in range(1, len(index_Parent_Hyperbox)): dist = np.linalg.norm(self.centroid[i] - self.centroid[index_Parent_Hyperbox[jj]]) if min_dis < dist: min_dis = dist parent_selection = index_Parent_Hyperbox[jj] # Merge centroids and number of hyperboxes self.centroid[parent_selection] = (self.no_pat[parent_selection] * self.centroid[parent_selection] + self.no_pat[i] * self.centroid[i]) / (self.no_pat[i] + self.no_pat[parent_selection]) self.no_pat[parent_selection] = self.no_pat[parent_selection] + self.no_pat[i] # remove hyperboxes contained in other hyperboxes self.V = self.V[indtokeep, :] self.W = self.W[indtokeep, :] self.classId = self.classId[indtokeep] self.centroid = self.centroid[indtokeep] self.no_pat = self.no_pat[indtokeep] self.no_contained_boxes = no_removed_boxes def predict_val(self, XlT, XuT, patClassIdTest, no_predicted_samples_hyperboxes): """ GFMM classification for validation (validation routine) with hyperboxes stored in self. V, W, classId, centroid, no_pat result = predict_val(XlT,XuT,patClassIdTest) INPUT XlT Test data lower bounds (rows = objects, columns = features) XuT Test data upper bounds (rows = objects, columns = features) patClassIdTest Test data class labels (crisp) no_predicted_samples_hyperboxes A matrix contains the number of right and wrong predicted samples of current hyperboxes, column 1: right, column 2: wrong OUTPUT A matrix contains number of samples predicted right and wrong in hyperboxes (first column: right, second column: wrong) """ #initialization yX = XlT.shape[0] mem = np.zeros((yX, self.V.shape[0])) # classifications for i in range(yX): mem[i, :] = memberG(XlT[i, :], XuT[i, :], self.V, self.W, self.gamma, self.oper) # calculate memberships for all hyperboxes bmax = mem[i,:].max() # get max membership value maxVind = np.nonzero(mem[i,:] == bmax)[0] # get indexes of all hyperboxes with max membership if len(maxVind) == 1: # Only one hyperbox with the highest membership function if self.classId[maxVind[0]] == patClassIdTest[i]: no_predicted_samples_hyperboxes[maxVind[0], 0] = no_predicted_samples_hyperboxes[maxVind[0], 0] + 1 else: no_predicted_samples_hyperboxes[maxVind[0], 1] = no_predicted_samples_hyperboxes[maxVind[0], 1] + 1 else: # More than one hyperbox with highest membership => compare with centroid centroid_input_pat = (XlT[i] + XuT[i]) / 2 id_min = maxVind[0] min_dist = np.linalg.norm(self.centroid[id_min] - centroid_input_pat) for j in range(1, len(maxVind)): id_j = maxVind[j] dist_j = np.linalg.norm(self.centroid[id_j] - centroid_input_pat) if dist_j < min_dist or (dist_j == min_dist and self.no_pat[id_j] > self.no_pat[id_min]): id_min = id_j min_dist = dist_j if self.classId[id_min] != patClassIdTest[i] and patClassIdTest[i] != 0: no_predicted_samples_hyperboxes[id_min, 1] = no_predicted_samples_hyperboxes[id_min, 1] + 1 else: no_predicted_samples_hyperboxes[id_min, 0] = no_predicted_samples_hyperboxes[id_min, 0] + 1 return no_predicted_samples_hyperboxes def pruningHandling(self, valFile_Path, chunk_size, isPhase1 = True, accuracy_threshold = 0.5): """ Pruning for hyperboxes in the current lists: V, W, classid, centroid Criteria: The accuracy rate < 0.5 INPUT chunk_size The size of each reading chunk to be handled valFile_Path The path to the validation file including filename and its extension accuracy_threshold The minimum accuracy for each hyperbox isPhase1 True: Pruning using minPatternsPerBox, otherwise => do not use minPatternsPerBox """ # delete hyperboxes containing the number of patterns fewer than minPatternsPerBox # currenNoHyperbox = len(self.classId) # index_Kept = np.ones(currenNoHyperbox).astype(bool) # isExistPrunedBox = False # if isPhase1 == True: # for i in range(currenNoHyperbox): # if self.no_pat[i] < minPatternsPerBox: # index_Kept[i] = False # isExistPrunedBox = True # if isExistPrunedBox == True: # self.V = self.V[index_Kept] # self.W = self.W[index_Kept] # self.classId = self.classId[index_Kept] # self.centroid = self.centroid[index_Kept] # self.no_pat = self.no_pat[index_Kept] # pruning using validation set currenNoHyperbox = len(self.classId) if currenNoHyperbox > 0: # index_Kept = np.ones(currenNoHyperbox).astype(bool) # recompute the marking matrix chunk_id = 0 # init two lists containing number of patterns classified correctly and incorrectly for each hyperbox no_predicted_samples_hyperboxes = np.zeros((len(self.classId), 2)) while True: # handle in chunks chunk_data = read_file_in_chunks(valFile_Path, chunk_id, chunk_size) if chunk_data != None: chunk_id = chunk_id + 1 # carried validation no_predicted_samples_hyperboxes = self.predict_val(chunk_data.data, chunk_data.data, chunk_data.label, no_predicted_samples_hyperboxes) else: break # pruning handling based on the validation results tmp_no_box = no_predicted_samples_hyperboxes.shape[0] accuracy_larger_half = np.zeros(tmp_no_box).astype(np.bool) for i in range(tmp_no_box): if (no_predicted_samples_hyperboxes[i, 0] + no_predicted_samples_hyperboxes[i, 1] != 0) and no_predicted_samples_hyperboxes[i, 0] / (no_predicted_samples_hyperboxes[i, 0] + no_predicted_samples_hyperboxes[i, 1]) >= accuracy_threshold: accuracy_larger_half[i] = True # Pruning self.V = self.V[accuracy_larger_half] self.W = self.W[accuracy_larger_half] self.classId = self.classId[accuracy_larger_half] self.centroid = self.centroid[accuracy_larger_half] self.no_pat = self.no_pat[accuracy_larger_half] def granular_phase_one_classifier(self, dataFilePath, chunk_size, type_chunk = 1, isPruning = False, valFile_Path = '', accuracyPerBox = 0.5, XlT = None, XuT = None, patClassIdTest = None, file_object_save = None): """ This method is to read the dataset in chunks and build base hyperboxes from the input data INPUT dataFilePath The path to the training dataset file including file name and its extension chunk_size The size of each reading chunk to be handled type_chunk The type of data contained in each chunk: + 1: heterogeneous data with different class label + otherwise: data are grouped by class labels isPruning True: apply the pruning process False: not use the pruning process valFile_Path The path to the validation file including filename and its extension accuracyPerBox Minimum accuracy of each hyperbox w.r.t validation set XlT Test data lower bounds (rows = objects, columns = features) XuT Test data upper bounds (rows = objects, columns = features) patClassIdTest Test data class labels (crisp) """ chunk_id = 0 nprocs = get_num_cpu_cores() # get number of cores in cpu for handling data print("No. cores =", nprocs) if file_object_save != None: file_object_save.write("No. cores = %d \n" % nprocs) # Initialize hyperboxes for each core if type_chunk == 1: current_hyperboxes = [] # empty list else: current_hyperboxes = {} # empty hashtable time_start = time.perf_counter() while True: chunk_data = read_file_in_chunks(dataFilePath, chunk_id, chunk_size) if type_chunk == 1 else read_file_in_chunks_group_by_label(dataFilePath, chunk_id, chunk_size) if chunk_data != None: if type_chunk == 1: current_hyperboxes = self.heterogeneous_worker_distribution_chunk(chunk_data, current_hyperboxes, nprocs) else: current_hyperboxes = self.homogeneous_worker_distribution_chunk_by_class(chunk_data, current_hyperboxes, nprocs) chunk_id = chunk_id + 1 else: break # Merge all generated hyperboxes and then remove all hyperboxes insider larger hyperboxes and update their centroids if type_chunk == 1: self.V = current_hyperboxes[0].lower self.W = current_hyperboxes[0].upper self.classId = current_hyperboxes[0].classId self.no_pat = current_hyperboxes[0].no_pat self.centroid = current_hyperboxes[0].centroid num_Eles = len(current_hyperboxes) for kk in range(1, num_Eles): self.V = np.concatenate((self.V, current_hyperboxes[kk].lower), axis=0) self.W = np.concatenate((self.W, current_hyperboxes[kk].upper), axis=0) self.classId = np.concatenate((self.classId, current_hyperboxes[kk].classId)) self.no_pat = np.concatenate((self.no_pat, current_hyperboxes[kk].no_pat)) self.centroid = np.concatenate((self.centroid, current_hyperboxes[kk].centroid), axis=0) else: self.V = [] for key in current_hyperboxes: for value in current_hyperboxes[key]: if len(self.V) == 0: self.V = value.lower self.W = value.upper self.classId = value.classId self.no_pat = value.no_pat self.centroid = value.centroid else: if len(value.lower) > 0: self.V = np.concatenate((self.V, value.lower), axis=0) self.W = np.concatenate((self.W, value.upper), axis=0) self.classId = np.concatenate((self.classId, value.classId)) self.no_pat = np.concatenate((self.no_pat, value.no_pat)) self.centroid = np.concatenate((self.centroid, value.centroid), axis=0) # delete hyperboxes contained in other hyperboxes and update the centroids of larger hyperboxes self.removeContainedHyperboxes_UpdateCentroid() numBoxes_before_pruning = len(self.classId) self.phase1_elapsed_training_time = time.perf_counter() - time_start self.training_time_before_pruning = self.phase1_elapsed_training_time if (XlT is not None) and (len(self.classId) > 0): numTestSample = XlT.shape[0] result_testing = self.predict_test(XlT, XuT, patClassIdTest) if (result_testing is not None) and file_object_save is not None: file_object_save.write("Phase 1 before pruning: \n") file_object_save.write("Number of testing samples = %d \n" % numTestSample) file_object_save.write("Number of wrong predicted samples = %d \n" % result_testing.summis) file_object_save.write("Error Rate = %f \n" % (np.round(result_testing.summis / numTestSample * 100, 4))) file_object_save.write("No. samples use centroid for prediction = %d \n" % result_testing.use_centroid) file_object_save.write("No. samples use centroid but wrong prediction = %d \n" % result_testing.use_centroid_wrong) if isPruning: time_start = time.perf_counter() self.pruningHandling(valFile_Path, chunk_size, True, accuracyPerBox) numBoxes_after_pruning = len(self.classId) self.phase1_elapsed_training_time = self.phase1_elapsed_training_time + (time.perf_counter() - time_start) if (XlT is not None) and len(self.classId) > 0: result_testing = self.predict_test(XlT, XuT, patClassIdTest) if result_testing is not None and file_object_save is not None: file_object_save.write("Phase 1 after pruning: \n") file_object_save.write("Number of wrong predicted samples = %d \n" % result_testing.summis) file_object_save.write("Error Rate = %f \n" % (np.round(result_testing.summis / numTestSample * 100, 4))) file_object_save.write("No. samples use centroid for prediction = %d \n" % result_testing.use_centroid) file_object_save.write("No. samples use centroid but wrong prediction = %d \n" % result_testing.use_centroid_wrong) if file_object_save is not None: file_object_save.write("No. hyperboxes before pruning: %d \n" % numBoxes_before_pruning) if isPruning and file_object_save is not None: file_object_save.write("No. hyperboxes after pruning: %d \n" % numBoxes_after_pruning) if file_object_save is not None: file_object_save.write('Phase 1 running time = %f \n' % self.phase1_elapsed_training_time) file_object_save.write('Running time before pruning = %f \n' % self.training_time_before_pruning) return self # def granular_phase_two_classifier(self, isAllowedOverlap = False): # """ # Phase 2 in the classifier: using agglomerative learning to aggregate smaller hyperboxes with the same class # # granular_phase_two_classifier(isAllowedOverlap) # # INPUT # isAllowedOverlap + True: the aggregated hyperboxes are allowed to overlap with hyperboxes represented other classes # + False: no overlap among hyperboxes allowed # # OUTPUT # V, W, classId, centroid, no_pat are adjusted # """ # yX, xX = self.V.shape # time_start = time.perf_counter() # # training # isTraining = True # while isTraining: # isTraining = False # # k = 0 # input pattern index # while k < len(self.classId): # idx_same_classes = np.logical_or(self.classId == self.classId[k], self.classId == 0) # idx_same_classes[k] = False # remove element in the position k # idex = np.arange(len(self.classId)) # idex = idex[idx_same_classes] # keep the indices of elements retained # V_same_class = self.V[idx_same_classes] # W_same_class = self.W[idx_same_classes] # # if self.simil_type == 'short': # b = memberG(self.W[k], self.V[k], V_same_class, W_same_class, self.gamma, self.oper) # elif self.simil_type == 'long': # b = memberG(self.V[k], self.W[k], W_same_class, V_same_class, self.gamma, self.oper) # else: # b = asym_similarity_one_many(self.V[k], self.W[k], V_same_class, W_same_class, self.gamma, self.oper_asym, self.oper) # # indB = np.argsort(b)[::-1] # idex = idex[indB] # sortB = b[indB] # # maxB = sortB[sortB >= self.simil_thres] # apply membership threshold # # if len(maxB) > 0: # idexmax = idex[sortB >= self.simil_thres] # # pairewise_maxb = np.concatenate((np.minimum(k, idexmax)[:, np.newaxis], np.maximum(k,idexmax)[:, np.newaxis], maxB[:, np.newaxis]), axis=1) # # for i in range(pairewise_maxb.shape[0]): # # calculate new coordinates of k-th hyperbox by including pairewise_maxb(i,1)-th box, scrap the latter and leave the rest intact # # agglomorate pairewise_maxb(i, 0) and pairewise_maxb(i, 1) by adjusting pairewise_maxb(i, 0) # # remove pairewise_maxb(i, 1) by getting newV from 1 -> pairewise_maxb(i, 0) - 1, new coordinates for pairewise_maxb(i, 0), from pairewise_maxb(i, 0) + 1 -> pairewise_maxb(i, 1) - 1, pairewise_maxb(i, 1) + 1 -> end # ind_hyperbox_1 = int(pairewise_maxb[i, 0]) # ind_hyperbox_2 = int(pairewise_maxb[i, 1]) # newV = np.concatenate((self.V[:ind_hyperbox_1], np.minimum(self.V[ind_hyperbox_1], self.V[ind_hyperbox_2]).reshape(1, -1), self.V[ind_hyperbox_1 + 1:ind_hyperbox_2], self.V[ind_hyperbox_2 + 1:]), axis=0) # newW = np.concatenate((self.W[:ind_hyperbox_1], np.maximum(self.W[ind_hyperbox_1], self.W[ind_hyperbox_2]).reshape(1, -1), self.W[ind_hyperbox_1 + 1:ind_hyperbox_2], self.W[ind_hyperbox_2 + 1:]), axis=0) # newClassId = np.concatenate((self.classId[:ind_hyperbox_2], self.classId[ind_hyperbox_2 + 1:])) # ## index_remain = np.ones(len(self.classId)).astype(np.bool) ## index_remain[ind_hyperbox_2] = False ## newV = self.V[index_remain] ## newW = self.W[index_remain] ## newClassId = self.classId[index_remain] ## if ind_hyperbox_1 < ind_hyperbox_2: ## tmp_row = ind_hyperbox_1 ## else: ## tmp_row = ind_hyperbox_1 - 1 ## newV[tmp_row] = np.minimum(self.V[ind_hyperbox_1], self.V[ind_hyperbox_2]) ## newW[tmp_row] = np.maximum(self.W[ind_hyperbox_1], self.W[ind_hyperbox_2]) ## # # adjust the hyperbox if no overlap and maximum hyperbox size is not violated # # position of adjustment is pairewise_maxb[i, 0] in new bounds # no_overlap = True # if isAllowedOverlap == False: # no_overlap = not isOverlap(newV, newW, pairewise_maxb[i, 0].astype(np.int64), newClassId) # # if no_overlap and (((newW[pairewise_maxb[i, 0].astype(np.int64)] - newV[pairewise_maxb[i, 0].astype(np.int64)]) <= self.teta_agglo).all() == True): # self.V = newV # self.W = newW # self.classId = newClassId # # # merge centroids and tune the number of patterns contained in the newly aggregated hyperbox, delete data of the eliminated hyperbox # self.centroid[ind_hyperbox_1] = (self.no_pat[ind_hyperbox_1] * self.centroid[ind_hyperbox_1] + self.no_pat[ind_hyperbox_2] * self.centroid[ind_hyperbox_2]) / (self.no_pat[ind_hyperbox_1] + self.no_pat[ind_hyperbox_2]) # # delete centroid of hyperbox ind_hyperbox_2 # self.centroid = np.concatenate((self.centroid[:ind_hyperbox_2], self.centroid[ind_hyperbox_2 + 1:]), axis=0) # # self.no_pat[ind_hyperbox_1] = self.no_pat[ind_hyperbox_1] + self.no_pat[ind_hyperbox_2] # self.no_pat = np.concatenate((self.no_pat[:ind_hyperbox_2], self.no_pat[ind_hyperbox_2 + 1:])) # # isTraining = True # # if k != pairewise_maxb[i, 0]: # position pairewise_maxb[i, 1] (also k) is removed, so next step should start from pairewise_maxb[i, 1] # k = k - 1 # # break # if hyperbox adjusted there's no need to look at other hyperboxes # # # k = k + 1 # # self.phase2_elapsed_training_time = time.perf_counter() - time_start # print("No. hyperboxes after phase 2: ", len(self.classId)) # print('Phase 2 running time =', self.phase2_elapsed_training_time) def granular_phase_two_classifier(self, XlT, XuT, patClassIdTest, file_object_save=None): """ Phase 2 in the classifier: using modified online learning to aggregate smaller hyperboxes with the same class granular_phase_two_classifier(max_hyperbox_size) INPUT XlT Test data lower bounds (rows = objects, columns = features) XuT Test data upper bounds (rows = objects, columns = features) patClassIdTest Test data class labels (crisp) file_object_save The file object to write down the results OUTPUT V, W, classId, centroid, no_pat are adjusted """ self.phase2_elapsed_training_time = 0 for teta in self.higher_teta: V = [] if len(self.classId) > 1: start_t = time.perf_counter() for i in range(len(self.classId)): if len(V) == 0: V = np.array([self.V[i]]) W = np.array([self.W[i]]) classId = np.array([self.classId[i]]) no_pat = np.array([self.no_pat[i]]) centroid = np.array([self.centroid[i]]) else: classOfX = self.classId[i] id_lb_sameX = np.logical_or(classId == classOfX, classId == 0) isAddNew = False if id_lb_sameX.any() == True: V_sameX = V[id_lb_sameX] W_sameX = W[id_lb_sameX] lb_sameX = classId[id_lb_sameX] id_range = np.arange(len(classId)) id_processing = id_range[id_lb_sameX] b = memberG(self.V[i], self.W[i], V_sameX, W_sameX, self.gamma) index = np.argsort(b)[::-1] bSort = b[index] if bSort[0] != 1 or (classOfX != lb_sameX[index[0]] and classOfX != 0): adjust = False maxB = bSort[bSort >= self.simil_thres] # apply membership threshold if len(maxB) > 0: indexmax = index[bSort >= self.simil_thres] for j in id_processing[indexmax]: # test violation of max hyperbox size and class labels if (classOfX == classId[j] or classId[j] == 0 or classOfX == 0) and ((np.maximum(W[j], self.W[i]) - np.minimum(V[j], self.V[i])) <= teta).all() == True: # save old value Vj_old = V[j].copy() Wj_old = W[j].copy() classId_old = classId[j] # adjust the j-th hyperbox V[j] = np.minimum(V[j], self.V[i]) W[j] = np.maximum(W[j], self.W[i]) if classOfX != 0 and classId[j] == 0: classId[j] = classOfX # Test overlap if modifiedIsOverlap(V, W, j, classId) == True: # overlap test # revert change and Choose other hyperbox V[j] = Vj_old W[j] = Wj_old classId[j] = classId_old else: # Keep changes and update centroid, stopping the process of choosing hyperboxes no_pat[j] = no_pat[j] + self.no_pat[i] centroid[j] = centroid[j] + (self.no_pat[i] / no_pat[j]) * (self.centroid[i] - centroid[j]) adjust = True break # if i-th sample did not fit into any existing box, create a new one if not adjust: isAddNew = True else: isAddNew = True if isAddNew == True: V = np.concatenate((V, self.V[i].reshape(1, -1)), axis = 0) W = np.concatenate((W, self.W[i].reshape(1, -1)), axis = 0) classId = np.concatenate((classId, [classOfX])) no_pat = np.concatenate((no_pat, [self.no_pat[i]])) centroid = np.concatenate((centroid, self.centroid[i].reshape(1, -1)), axis = 0) # Test overlap and do contraction with current hyperbox because phase 1 create overlapping regions indOfWinner = len(classId) - 1 for ii in range(V.shape[0]): if ii != indOfWinner and classId[ii] != classId[indOfWinner]: caseDim = hyperboxOverlapTest(V, W, indOfWinner, ii) # overlap test if caseDim.size > 0: V, W = hyperboxContraction(V, W, caseDim, ii, indOfWinner) self.V = V self.W = W self.classId = classId self.no_pat = no_pat self.centroid = centroid sub_space_time = time.perf_counter() - start_t self.phase2_elapsed_training_time = self.phase2_elapsed_training_time + sub_space_time if file_object_save is not None: file_object_save.write("=> teta = %f \n" % teta) file_object_save.write("Num hyperboxes = %d \n" % len(self.classId)) file_object_save.write("Running time = %f \n" % sub_space_time) # Do testing result_testing = self.predict_test(XlT, XuT, patClassIdTest) if (result_testing is not None) and (file_object_save is not None): numTestSample = XlT.shape[0] file_object_save.write("Number of testing samples = %d \n" % numTestSample) file_object_save.write("Number of wrong predicted samples = %d \n" % result_testing.summis) file_object_save.write("Error Rate = %f \n" % (np.round(result_testing.summis / numTestSample * 100, 4))) file_object_save.write("No. samples use centroid for prediction = %d \n" % result_testing.use_centroid) file_object_save.write("No. samples use centroid but wrong prediction = %d \n" % result_testing.use_centroid_wrong) if file_object_save is not None: file_object_save.write("Phase 2 training time = %f \n" % self.phase2_elapsed_training_time) def predict(self, Xl, Xu): """ Predict the class of the input layer result = predict_test(XlT,XuT) INPUT Xl Input data lower bounds (rows = objects, columns = features) Xu Input data upper bounds (rows = objects, columns = features) OUTPUT result A list of predicted results for input samples """ #initialization yX = Xl.shape[0] result = np.empty(yX) mem = np.zeros((yX, self.V.shape[0])) # classifications for i in range(yX): mem[i, :] = memberG(Xl[i, :], Xu[i, :], self.V, self.W, self.gamma, self.oper) # calculate memberships for all hyperboxes bmax = mem[i,:].max() # get max membership value maxVind = np.nonzero(mem[i,:] == bmax)[0] # get indexes of all hyperboxes with max membership if len(maxVind) == 1: # only one hyperbox with the highest membership value result[i] = self.classId[maxVind[0]] else: # More than one hyperbox with the highest membership value => compare with centroid same_first_el_class = maxVind[self.classId[maxVind] == self.classId[maxVind[0]]] if len(maxVind) == len(same_first_el_class): # all membership in maxVind have the same class result[i] = self.classId[maxVind[0]] else: # at least one pair of hyperboxes with different class => compare the centroid, and classify the input to the hyperboxes with nearest distance to the input pattern centroid_input_pat = (Xl[i] + Xu[i]) / 2 id_min = maxVind[0] min_dist =
np.linalg.norm(self.centroid[id_min] - centroid_input_pat)
numpy.linalg.norm
# This script is used to calculate some statistics for the Green View Results # Copyright(C) <NAME>, <NAME>, <NAME>, Senseable City Lab, MIT def Read_GSVinfo_Text(GVI_Res_txt): ''' This function is used to read the information in text files or folders the fundtion will remove the duplicate sites and only select those sites have GSV info in green month. Return: panoIDLst,panoDateLst,panoLonLst,panoLatLst,greenViewLst Pamameters: GVI_Res_txt: the file name of the GSV information txt file ''' import os,os.path # empty list to save the GVI result and GSV metadata panoIDLst = [] panoDateLst = [] panoLonLst = [] panoLatLst = [] greenViewLst = [] # read the green view index result txt files lines = open(GVI_Res_txt,"r") for line in lines: # check the completeness of each line, each line include attribute of, panoDate, lon, lat,greenView if "panoDate" not in line or "greenview" not in line: continue panoID = line.split(" panoDate")[0][-22:] panoDate = line.split(" longitude")[0][-7:] coordinate = line.split("longitude: ")[1] lon = coordinate.split(" latitude: ")[0] latView = coordinate.split(" latitude: ")[1] lat = latView.split(', greenview:')[0] greenView = line.split("greenview:")[1] # check if the greeView data is valid if len(greenView)<2: continue elif float(greenView) <= 0: ## print(greenView) continue # remove the duplicated panorama id if panoID not in panoIDLst: panoIDLst.append(panoID) panoDateLst.append(panoDate) panoLonLst.append(lon) panoLatLst.append(lat) greenViewLst.append(greenView) return panoIDLst,panoDateLst,panoLonLst,panoLatLst,greenViewLst # read the green view index files into list, the input can be file or folder def Read_GVI_res(GVI_Res): ''' This function is used to read the information in text files or folders the fundtion will remove the duplicate sites and only select those sites have GSV info in green month. Return: panoIDLst,panoDateLst,panoLonLst,panoLatLst,greenViewLst Pamameters: GVI_Res: the file name of the GSV information text, could be folder or txt file last modified by <NAME>, March 27, 2018 ''' import os,os.path # empty list to save the GVI result and GSV metadata panoIDLst = [] panoDateLst = [] panoLonLst = [] panoLatLst = [] greenViewLst = [] # if the input gvi result is a folder if os.path.isdir(GVI_Res): allTxtFiles = os.listdir(GVI_Res) for txtfile in allTxtFiles: print('k') # only read the text file if not txtfile.endswith('.txt'): continue txtfilename = os.path.join(GVI_Res,txtfile) # call the function to read txt file to a list [panoIDLst_tem,panoDateLst_tem,panoLonLst_tem,panoLatLst_tem,greenViewLst_tem] = Read_GSVinfo_Text(txtfilename) panoIDLst = panoIDLst + panoIDLst_tem panoDateLst = panoDateLst + panoDateLst_tem panoLonLst = panoLonLst + panoLonLst_tem panoLatLst = panoLatLst + panoLatLst_tem greenViewLst = greenViewLst + greenViewLst_tem else: #for single txt file [panoIDLst_tem,panoDateLst_tem,panoLonLst_tem,panoLatLst_tem,greenViewLst_tem] = Read_GSVinfo_Text(txtfilename) return panoIDLst,panoDateLst,panoLonLst,panoLatLst,greenViewLst ## ----------------- Main function ------------------------ if __name__ == "__main__": import os import sys import numpy as np import matplotlib.pyplot as plt import seaborn as sns inputGVIres = r'C:\\Users\\rangu_uhpmatw\\Documents\\GitHub\\customs\\Treepedia_Public\\SA\\SA_GVR' outputShapefile = 'C:\\Users\\rangu_uhpmatw\\Documents\\GitHub\\customs\\Treepedia_Public\\SA\\SA_GVR.shp' lyrname = 'greenView' [_,_,_,_,SA] = Read_GVI_res(inputGVIres) print ('The length of the SA is:', len(SA)) SA = np.array(SA).astype(np.float) print(np.average(SA)) print(np.percentile(SA, 0)) print(np.percentile(SA, 25)) print(
np.percentile(SA, 50)
numpy.percentile
"""Operations for dannce.""" import numpy as np import cv2 import time from typing import Text import torch import torch.nn.functional as F class Camera: def __init__(self, R, t, K, tdist, rdist, name=""): self.R = np.array(R).copy() assert self.R.shape == (3, 3) self.t = np.array(t).copy() assert self.t.shape == (1, 3) self.K = np.array(K).copy() assert self.K.shape == (3, 3) self.M = np.concatenate((R, t), axis=0) @ self.K self.tdist = tdist self.rdist = rdist self.name = name def update_after_crop(self, bbox): left, upper, right, lower = bbox cx, cy = self.K[2, 0], self.K[2, 1] new_cx = cx - left new_cy = cy - upper self.K[2, 0], self.K[2, 1] = new_cx, new_cy def update_after_resize(self, image_shape, new_image_shape): height, width = image_shape new_height, new_width = new_image_shape fx, fy, cx, cy = self.K[0, 0], self.K[1, 1], self.K[2, 0], self.K[2, 1] new_fx = fx * (new_width / width) new_fy = fy * (new_height / height) new_cx = cx * (new_width / width) new_cy = cy * (new_height / height) self.K[0, 0], self.K[1, 1], self.K[2, 0], self.K[2, 1] = new_fx, new_fy, new_cx, new_cy @property def camera_matrix(self): return self.extrinsics.dot(self.K) @property def extrinsics(self): return np.concatenate((self.R, self.t), axis=0) def camera_matrix(K: np.ndarray, R: np.ndarray, t: np.ndarray) -> np.ndarray: """Derive the camera matrix. Derive the camera matrix from the camera intrinsic matrix (K), and the extrinsic rotation matric (R), and extrinsic translation vector (t). Note that this uses the matlab convention, such that M = [R;t] * K """ return np.concatenate((R, t), axis=0) @ K def world_to_cam(pts, M, device): M = M.to(device=device) pts1 = torch.ones(pts.shape[0], 1, dtype=torch.float32, device=device) projPts = torch.matmul(torch.cat((pts, pts1), 1), M) return projPts def project_to2d(pts, M: np.ndarray, device: Text) -> torch.Tensor: """Project 3d points to 2d. Projects a set of 3-D points, pts, into 2-D using the camera intrinsic matrix (K), and the extrinsic rotation matric (R), and extrinsic translation vector (t). Note that this uses the matlab convention, such that M = [R;t] * K, and pts2d = pts3d * M """ # pts = torch.Tensor(pts.copy()).to(device) M = M.to(device=device) pts1 = torch.ones(pts.shape[0], 1, dtype=torch.float32, device=device) projPts = torch.matmul(torch.cat((pts, pts1), 1), M) projPts[:, :2] = projPts[:, :2] / projPts[:, 2:] return projPts def sample_grid_nearest( im: np.ndarray, projPts: np.ndarray, device: Text ) -> torch.Tensor: """Unproject features.""" # im_x, im_y are the x and y coordinates of each projected 3D position. # These are concatenated here for every image in each batch, feats = torch.as_tensor(im.copy(), device=device) grid = projPts c = int(round(projPts.shape[0] ** (1 / 3.0))) fh, fw, fdim = list(feats.shape) # # make sure all projected indices fit onto the feature map im_x = torch.clamp(grid[:, 0], 0, fw - 1) im_y = torch.clamp(grid[:, 1], 0, fh - 1) im_xr = im_x.round().type(torch.long) im_yr = im_y.round().type(torch.long) im_xr[im_xr < 0] = 0 im_yr[im_yr < 0] = 0 Ir = feats[im_yr, im_xr] return Ir.reshape((c, c, c, -1)).permute(3, 0, 1, 2).unsqueeze(0) def sample_grid_linear( im: np.ndarray, projPts: np.ndarray, device: Text ) -> torch.Tensor: """Unproject features.""" # im_x, im_y are the x and y coordinates of each projected 3D position. # These are concatenated here for every image in each batch, feats = torch.as_tensor(im.copy(), device=device) grid = projPts c = int(round(projPts.shape[0] ** (1 / 3.0))) fh, fw, fdim = list(feats.shape) # # make sure all projected indices fit onto the feature map im_x = torch.clamp(grid[:, 0], 0, fw - 1) im_y = torch.clamp(grid[:, 1], 0, fh - 1) # round all indices im_x0 = torch.floor(im_x).type(torch.long) # new array with rounded projected indices + 1 im_x1 = im_x0 + 1 im_y0 = torch.floor(im_y).type(torch.long) im_y1 = im_y0 + 1 # Convert from int to float -- but these are still round # numbers because of rounding step above im_x0_f, im_x1_f = im_x0.type(torch.float), im_x1.type(torch.float) im_y0_f, im_y1_f = im_y0.type(torch.float), im_y1.type(torch.float) # Gather values # Samples all featuremaps at the projected indices, # and their +1 counterparts. Stop at Ia for nearest neighbor interpolation. # need to clip the corner indices because they might be out of bounds... # This could lead to different behavior compared to TF/numpy, which return 0 # when an index is out of bounds im_x1_safe = torch.clamp(im_x1, 0, fw - 1) im_y1_safe = torch.clamp(im_y1, 0, fh - 1) im_x1[im_x1 < 0] = 0 im_y1[im_y1 < 0] = 0 im_x0[im_x0 < 0] = 0 im_y0[im_y0 < 0] = 0 im_x1_safe[im_x1_safe < 0] = 0 im_y1_safe[im_y1_safe < 0] = 0 Ia = feats[im_y0, im_x0] Ib = feats[im_y0, im_x1_safe] Ic = feats[im_y1_safe, im_x0] Id = feats[im_y1_safe, im_x1_safe] # To recaptiulate behavior in numpy/TF, zero out values that fall outside bounds Ib[im_x1 > fw - 1] = 0 Ic[im_y1 > fh - 1] = 0 Id[(im_x1 > fw - 1) | (im_y1 > fh - 1)] = 0 # Calculate bilinear weights # We've now sampled the feature maps at corners around the projected values # Here, the corners are weighted by distance from the projected value wa = (im_x1_f - im_x) * (im_y1_f - im_y) wb = (im_x1_f - im_x) * (im_y - im_y0_f) wc = (im_x - im_x0_f) * (im_y1_f - im_y) wd = (im_x - im_x0_f) * (im_y - im_y0_f) Ibilin = ( wa.unsqueeze(1) * Ia + wb.unsqueeze(1) * Ib + wc.unsqueeze(1) * Ic + wd.unsqueeze(1) * Id ) return Ibilin.reshape((c, c, c, -1)).permute(3, 0, 1, 2).unsqueeze(0) def sample_grid(im: np.ndarray, projPts: np.ndarray, device: Text, method: Text = "linear"): """Transfer 3d features to 2d by projecting down to 2d grid, using torch. Use 2d interpolation to transfer features to 3d points that have projected down onto a 2d grid Note that function expects proj_grid to be flattened, so results should be reshaped after being returned """ if method == "nearest" or method == "out2d": proj_rgb = sample_grid_nearest(im, projPts, device) elif method == "linear" or method == "bilinear": proj_rgb = sample_grid_linear(im, projPts, device) else: raise Exception("{} not a valid interpolation method".format(method)) return proj_rgb def unDistortPoints( pts, intrinsicMatrix, radialDistortion, tangentDistortion, rotationMatrix, translationVector, ): """Remove lens distortion from the input points. Input is size (M,2), where M is the number of points """ dcoef = radialDistortion.ravel()[:2].tolist() + tangentDistortion.ravel().tolist() if len(radialDistortion.ravel()) == 3: dcoef = dcoef + [radialDistortion.ravel()[-1]] else: dcoef = dcoef + [0] ts = time.time() pts_u = cv2.undistortPoints( np.reshape(pts, (-1, 1, 2)).astype("float32"), intrinsicMatrix.T, np.array(dcoef), P=intrinsicMatrix.T, ) pts_u =
np.reshape(pts_u, (-1, 2))
numpy.reshape
import numpy import scipy.stats import math def one_hot(array, N): """ Convert an array of numbers to an array of one-hot vectors. :param array: classes to convert :type array: numpy.ndarray :param N: number of classes :type N: int :return: one-hot vectors :rtype: numpy.ndarray """ array = array.astype(int) assert numpy.max(array) < N assert numpy.min(array) >= 0 one_hot = numpy.zeros((array.shape[0], N)) one_hot[numpy.arange(array.shape[0]), array] = 1 return one_hot def expand_as(array, array_as): """ Expands the tensor using view to allow broadcasting. :param array: input tensor :type array: numpy.ndarray :param array_as: reference tensor :type array_as: torch.Tensor or torch.autograd.Variable :return: tensor expanded with singelton dimensions as tensor_as :rtype: torch.Tensor or torch.autograd.Variable """ shape = list(array.shape) for i in range(len(array.shape), len(array_as.shape)): shape.append(1) return array.reshape(shape) def concatenate(array1, array2, axis=0): """ Basically a wrapper for numpy.concatenate, with the exception that the array itself is returned if its None or evaluates to False. :param array1: input array or None :type array1: mixed :param array2: input array :type array2: numpy.ndarray :param axis: axis to concatenate :type axis: int :return: concatenated array :rtype: numpy.ndarray """ assert isinstance(array2, numpy.ndarray) if array1 is not None: assert isinstance(array1, numpy.ndarray) return numpy.concatenate((array1, array2), axis=axis) else: return array2 def exponential_norm(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly by norm and direction separately. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon truncated_normal = scipy.stats.truncexpon.rvs(1, loc=0, scale=0.9, size=(batch_size, 1)) random *= numpy.repeat(truncated_normal, axis=1, repeats=dim) return random def uniform_norm(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly by norm and direction separately. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon uniform = numpy.random.uniform(0, 1, (batch_size, 1)) # exponent is only difference! random *= numpy.repeat(uniform, axis=1, repeats=dim) return random def uniform_ball(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly in the n-ball. See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon uniform = numpy.random.uniform(0, 1, (batch_size, 1)) ** (1. / dim) random *= numpy.repeat(uniform, axis=1, repeats=dim) return random def uniform_sphere(batch_size, dim, epsilon=1, ord=2): """ Sample vectors uniformly on the n-sphere. See Harman et al., On decompositional algorithms for uniform sampling from n-spheres and n-balls. :param batch_size: how many vectors to sample :type batch_size: int :param dim: dimensionality of vectors :type dim: int :param epsilon: epsilon-ball :type epsilon: float :param ord: norm to use :type ord: int :return: batch_size x dim tensor :rtype: numpy.ndarray """ random = numpy.random.randn(batch_size, dim) random /= numpy.repeat(numpy.linalg.norm(random, ord=ord, axis=1).reshape(-1, 1), axis=1, repeats=dim) random *= epsilon return random def truncated_normal(size, lower=-2, upper=2): """ Sample from truncated normal. See https://stackoverflow.com/questions/18441779/how-to-specify-upper-and-lower-limits-when-using-numpy-random-normal. :param size: size of vector :type size: [int] :param lower: lower bound :type lower: float :param upper: upper bound :type upper: float :return: batch_size x dim tensor :rtype: numpy.ndarray """ return scipy.stats.truncnorm.rvs(lower, upper, size=size) def project_simplex(v, s=1): """ Taken from https://gist.github.com/daien/1272551/edd95a6154106f8e28209a1c7964623ef8397246. Compute the Euclidean projection on a positive simplex Solves the optimisation problem (using the algorithm from [1]): min_w 0.5 * || w - v ||_2^2 , s.t. \sum_i w_i = s, w_i >= 0 Parameters ---------- v: (n,) numpy array, n-dimensional vector to project s: int, optional, default: 1, radius of the simplex Returns ------- w: (n,) numpy array, Euclidean projection of v on the simplex Notes ----- The complexity of this algorithm is in O(n log(n)) as it involves sorting v. Better alternatives exist for high-dimensional sparse vectors (cf. [1]) However, this implementation still easily scales to millions of dimensions. References ---------- [1] Efficient Projections onto the .1-Ball for Learning in High Dimensions <NAME>, <NAME>, <NAME>, and <NAME>. International Conference on Machine Learning (ICML 2008) http://www.cs.berkeley.edu/~jduchi/projects/DuchiSiShCh08.pdf """ assert s > 0, "Radius s must be strictly positive (%d <= 0)" % s n, = v.shape # will raise ValueError if v is not 1-D # check if we are already on the simplex if v.sum() == s and numpy.alltrue(v >= 0): # best projection: itself! return v # get the array of cumulative sums of a sorted (decreasing) copy of v u = numpy.sort(v)[::-1] cssv = numpy.cumsum(u) # get the number of > 0 components of the optimal solution rho = numpy.nonzero(u * numpy.arange(1, n+1) > (cssv - s))[0][-1] # compute the Lagrange multiplier associated to the simplex constraint theta = float(cssv[rho] - s) / rho # compute the projection by thresholding v using theta w = (v - theta).clip(min=0) return w def projection_simplex_sort(v, z=1): n_features = v.shape[0] u = numpy.sort(v)[::-1] cssv = numpy.cumsum(u) - z ind = numpy.arange(n_features) + 1 cond = u - cssv / ind > 0 rho = ind[cond][-1] theta = cssv[cond][-1] / float(rho) w = numpy.maximum(v - theta, 0) return w def projection_simplex_pivot(v, z=1, random_state=None): rs = numpy.random.RandomState(random_state) n_features = len(v) U = numpy.arange(n_features) s = 0 rho = 0 while len(U) > 0: G = [] L = [] k = U[rs.randint(0, len(U))] ds = v[k] for j in U: if v[j] >= v[k]: if j != k: ds += v[j] G.append(j) elif v[j] < v[k]: L.append(j) drho = len(G) + 1 if s + ds - (rho + drho) * v[k] < z: s += ds rho += drho U = L else: U = G theta = (s - z) / float(rho) return numpy.maximum(v - theta, 0) def projection_simplex_bisection(v, z=1, tau=0.0001, max_iter=1000): lower = 0 upper = numpy.max(v) current = numpy.inf for it in xrange(max_iter): if numpy.abs(current) / z < tau and current < 0: break theta = (upper + lower) / 2.0 w = numpy.maximum(v - theta, 0) current = numpy.sum(w) - z if current <= 0: upper = theta else: lower = theta return w def project_ball(array, epsilon=1, ord=2): """ Compute the orthogonal projection of the input tensor (as vector) onto the L_ord epsilon-ball. **Assumes the first dimension to be batch dimension, which is preserved.** :param array: array :type array: numpy.ndarray :param epsilon: radius of ball. :type epsilon: float :param ord: order of norm :type ord: int :return: projected vector :rtype: torch.autograd.Variable or torch.Tensor """ assert isinstance(array, numpy.ndarray), 'given tensor should be numpy.ndarray' if ord == 0: assert epsilon >= 1 size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) sorted = numpy.sort(array, axis=1) k = int(math.ceil(epsilon)) thresholds = sorted[:, -k] mask = (array >= expand_as(thresholds, array)).astype(float) array *= mask elif ord == 1: size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) for i in range(array.shape[0]): # compute the vector of absolute values u = numpy.abs(array[i]) # check if v is already a solution if u.sum() <= epsilon: # L1-norm is <= s continue # v is not already a solution: optimum lies on the boundary (norm == s) # project *u* on the simplex #w = project_simplex(u, s=epsilon) w = projection_simplex_sort(u, z=epsilon) # compute the solution to the original problem on v w *= numpy.sign(array[i]) array[i] = w if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) elif ord == 2: size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) clamped = numpy.clip(epsilon/numpy.linalg.norm(array, 2, axis=1), a_min=None, a_max=1) clamped = clamped.reshape(-1, 1) array = array * clamped if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) elif ord == float('inf'): array = numpy.clip(array, a_min=-epsilon, a_max=epsilon) else: raise NotImplementedError() return array def project_sphere(array, epsilon=1, ord=2): """ Compute the orthogonal projection of the input tensor (as vector) onto the L_ord epsilon-ball. **Assumes the first dimension to be batch dimension, which is preserved.** :param array: variable or tensor :type array: torch.autograd.Variable or torch.Tensor :param epsilon: radius of ball. :type epsilon: float :param ord: order of norm :type ord: int :return: projected vector :rtype: torch.autograd.Variable or torch.Tensor """ assert isinstance(array, numpy.ndarray), 'given tensor should be numpy.ndarray' size = array.shape flattened_size = numpy.prod(numpy.array(size[1:])) array = array.reshape(-1, flattened_size) array = array/numpy.linalg.norm(array, axis=1, ord=ord).reshape(-1, 1) array *= epsilon if len(size) == 4: array = array.reshape(-1, size[1], size[2], size[3]) elif len(size) == 2: array = array.reshape(-1, size[1]) return array def project_orthogonal(basis, vectors, rank=None): """ Project the given vectors on the basis using an orthogonal projection. :param basis: basis vectors to project on :type basis: numpy.ndarray :param vectors: vectors to project :type vectors: numpy.ndarray :return: projection :rtype: numpy.ndarray """ # The columns of Q are an orthonormal basis of the columns of basis Q, R = numpy.linalg.qr(basis) if rank is not None and rank > 0: Q = Q[:, :rank] # As Q is orthogonal, the projection is beta = Q.T.dot(vectors) projection = Q.dot(beta) return projection def project_lstsq(basis, vectors): """ Project using least squares. :param basis: basis vectors to project on :type basis: numpy.ndarray :param vectors: vectors to project :type vectors: numpy.ndarray :return: projection :rtype: numpy.ndarray """ x, _, _, _ = numpy.linalg.lstsq(basis, vectors) projection = basis.dot(x) return projection def angles(vectors_a, vectors_b): """ Compute angle between two sets of vectors. See https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf. :param vectors_a: :param vectors_b: :return: """ if len(vectors_b.shape) == 1: vectors_b = vectors_b.reshape(-1, 1) # Normalize vector norms_a = numpy.linalg.norm(vectors_a, ord=2, axis=0) norms_b = numpy.linalg.norm(vectors_b, ord=2, axis=0) norms_a = numpy.repeat(norms_a.reshape(1, -1), vectors_a.shape[0], axis=0) norms_b = numpy.repeat(norms_b.reshape(1, -1), vectors_b.shape[0], axis=0) vectors_a /= norms_a vectors_b /= norms_b term_1 =
numpy.multiply(vectors_a, norms_b)
numpy.multiply
from __future__ import print_function, division, absolute_import import time import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import cv2 import shapely import shapely.geometry import imgaug as ia from imgaug.testutils import reseed def main(): time_start = time.time() test_is_np_array() test_is_single_integer() test_is_single_float() test_is_single_number() test_is_iterable() test_is_string() test_is_single_bool() test_is_integer_array() test_is_float_array() test_is_callable() test_caller_name() test_seed() test_current_random_state() test_new_random_state() test_dummy_random_state() test_copy_random_state() test_derive_random_state() test_derive_random_states() test_forward_random_state() # test_quokka() # test_quokka_square() # test_angle_between_vectors() # test_draw_text() test_imresize_many_images() test_imresize_single_image() test_pad() test_compute_paddings_for_aspect_ratio() test_pad_to_aspect_ratio() test_pool() test_avg_pool() test_max_pool() test_draw_grid() # test_show_grid() # test_do_assert() # test_HooksImages_is_activated() # test_HooksImages_is_propagating() # test_HooksImages_preprocess() # test_HooksImages_postprocess() test_Keypoint() test_KeypointsOnImage() test_BoundingBox() test_BoundingBoxesOnImage() # test_HeatmapsOnImage_get_arr() # test_HeatmapsOnImage_find_global_maxima() test_HeatmapsOnImage_draw() test_HeatmapsOnImage_draw_on_image() test_HeatmapsOnImage_invert() test_HeatmapsOnImage_pad() # test_HeatmapsOnImage_pad_to_aspect_ratio() test_HeatmapsOnImage_avg_pool() test_HeatmapsOnImage_max_pool() test_HeatmapsOnImage_scale() # test_HeatmapsOnImage_to_uint8() # test_HeatmapsOnImage_from_uint8() # test_HeatmapsOnImage_from_0to1() # test_HeatmapsOnImage_change_normalization() # test_HeatmapsOnImage_copy() # test_HeatmapsOnImage_deepcopy() test_SegmentationMapOnImage_bool() test_SegmentationMapOnImage_get_arr_int() # test_SegmentationMapOnImage_get_arr_bool() test_SegmentationMapOnImage_draw() test_SegmentationMapOnImage_draw_on_image() test_SegmentationMapOnImage_pad() test_SegmentationMapOnImage_pad_to_aspect_ratio() test_SegmentationMapOnImage_scale() test_SegmentationMapOnImage_to_heatmaps() test_SegmentationMapOnImage_from_heatmaps() test_SegmentationMapOnImage_copy() test_SegmentationMapOnImage_deepcopy() test_Polygon___init__() test_Polygon_xx() test_Polygon_yy() test_Polygon_xx_int() test_Polygon_yy_int() test_Polygon_is_valid() test_Polygon_area() test_Polygon_project() test_Polygon__compute_inside_image_point_mask() test_Polygon_is_fully_within_image() test_Polygon_is_partly_within_image() test_Polygon_is_out_of_image() test_Polygon_cut_out_of_image() test_Polygon_clip_out_of_image() test_Polygon_shift() test_Polygon_draw_on_image() test_Polygon_extract_from_image() test_Polygon_to_shapely_polygon() test_Polygon_to_bounding_box() test_Polygon_from_shapely() test_Polygon_copy() test_Polygon_deepcopy() test_Polygon___repr__() test_Polygon___str__() # test_Batch() test_BatchLoader() # test_BackgroundAugmenter.get_batch() # test_BackgroundAugmenter._augment_images_worker() # test_BackgroundAugmenter.terminate() time_end = time.time() print("<%s> Finished without errors in %.4fs." % (__file__, time_end - time_start,)) def test_is_np_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.uint8), np.zeros((64, 64, 3), dtype=np.uint8), np.zeros((1, 2), dtype=np.float32), np.zeros((100,), dtype=np.float64) ] values_false = [ "A", "BC", "1", True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4 ] for value in values_true: assert ia.is_np_array(value) is True for value in values_false: assert ia.is_np_array(value) is False def test_is_single_integer(): assert ia.is_single_integer("A") is False assert ia.is_single_integer(None) is False assert ia.is_single_integer(1.2) is False assert ia.is_single_integer(1.0) is False assert ia.is_single_integer(np.ones((1,), dtype=np.float32)[0]) is False assert ia.is_single_integer(1) is True assert ia.is_single_integer(1234) is True assert ia.is_single_integer(np.ones((1,), dtype=np.uint8)[0]) is True assert ia.is_single_integer(np.ones((1,), dtype=np.int32)[0]) is True def test_is_single_float(): assert ia.is_single_float("A") is False assert ia.is_single_float(None) is False assert ia.is_single_float(1.2) is True assert ia.is_single_float(1.0) is True assert ia.is_single_float(np.ones((1,), dtype=np.float32)[0]) is True assert ia.is_single_float(1) is False assert ia.is_single_float(1234) is False assert ia.is_single_float(np.ones((1,), dtype=np.uint8)[0]) is False assert ia.is_single_float(np.ones((1,), dtype=np.int32)[0]) is False def test_caller_name(): assert ia.caller_name() == 'test_caller_name' def test_is_single_number(): class _Dummy(object): pass values_true = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4] values_false = ["A", "BC", "1", True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_single_number(value) is True for value in values_false: assert ia.is_single_number(value) is False def test_is_iterable(): class _Dummy(object): pass values_true = [ [0, 1, 2], ["A", "X"], [[123], [456, 789]], [], (1, 2, 3), (1,), tuple(), "A", "ABC", "", np.zeros((100,), dtype=np.uint8) ] values_false = [1, 100, 0, -100, -1, 1.2, -1.2, True, False, _Dummy()] for value in values_true: assert ia.is_iterable(value) is True, value for value in values_false: assert ia.is_iterable(value) is False def test_is_string(): class _Dummy(object): pass values_true = ["A", "BC", "1", ""] values_false = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_string(value) is True for value in values_false: assert ia.is_string(value) is False def test_is_single_bool(): class _Dummy(object): pass values_true = [False, True] values_false = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8), np.zeros((1,), dtype=bool)] for value in values_true: assert ia.is_single_bool(value) is True for value in values_false: assert ia.is_single_bool(value) is False def test_is_integer_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.uint8), np.zeros((100,), dtype=np.uint8), np.zeros((1, 2), dtype=np.uint16), np.zeros((1, 2), dtype=np.int32), np.zeros((1, 2), dtype=np.int64) ] values_false = [ "A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.float16), np.zeros((100,), dtype=np.float32), np.zeros((1, 2), dtype=np.float64), np.zeros((1, 2), dtype=np.bool) ] for value in values_true: assert ia.is_integer_array(value) is True for value in values_false: assert ia.is_integer_array(value) is False def test_is_float_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.float16), np.zeros((100,), dtype=np.float32), np.zeros((1, 2), dtype=np.float64) ] values_false = [ "A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8), np.zeros((100,), dtype=np.uint8), np.zeros((1, 2), dtype=np.uint16), np.zeros((1, 2), dtype=np.int32), np.zeros((1, 2), dtype=np.int64), np.zeros((1, 2), dtype=np.bool) ] for value in values_true: assert ia.is_float_array(value) is True for value in values_false: assert ia.is_float_array(value) is False def test_is_callable(): def _dummy_func(): pass _dummy_func2 = lambda x: x class _Dummy1(object): pass class _Dummy2(object): def __call__(self): pass values_true = [_dummy_func, _dummy_func2, _Dummy2()] values_false = ["A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy1(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_callable(value) == True for value in values_false: assert ia.is_callable(value) == False def test_seed(): ia.seed(10017) rs = np.random.RandomState(10017) assert ia.CURRENT_RANDOM_STATE.randint(0, 1000*1000) == rs.randint(0, 1000*1000) reseed() def test_current_random_state(): assert ia.current_random_state() == ia.CURRENT_RANDOM_STATE def test_new_random_state(): seed = 1000 ia.seed(seed) rs_observed = ia.new_random_state(seed=None, fully_random=False) rs_expected = np.random.RandomState(np.random.RandomState(seed).randint(0, 10**6, 1)[0]) assert rs_observed.randint(0, 10**6) == rs_expected.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=None, fully_random=False) rs_observed2 = ia.new_random_state(seed=None, fully_random=False) assert rs_observed1.randint(0, 10**6) != rs_observed2.randint(0, 10**6) ia.seed(seed) np.random.seed(seed) rs_observed = ia.new_random_state(seed=None, fully_random=True) rs_not_expected = np.random.RandomState(np.random.RandomState(seed).randint(0, 10**6, 1)[0]) assert rs_observed.randint(0, 10**6) != rs_not_expected.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=None, fully_random=True) rs_observed2 = ia.new_random_state(seed=None, fully_random=True) assert rs_observed1.randint(0, 10**6) != rs_observed2.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=1234) rs_observed2 = ia.new_random_state(seed=1234) rs_expected = np.random.RandomState(1234) assert rs_observed1.randint(0, 10**6) == rs_observed2.randint(0, 10**6) == rs_expected.randint(0, 10**6) def test_dummy_random_state(): assert ia.dummy_random_state().randint(0, 10**6) == np.random.RandomState(1).randint(0, 10**6) def test_copy_random_state(): rs = np.random.RandomState(1017) rs_copy = ia.copy_random_state(rs) assert rs != rs_copy assert rs.randint(0, 10**6) == rs_copy.randint(0, 10**6) assert ia.copy_random_state(np.random) == np.random assert ia.copy_random_state(np.random, force_copy=True) != np.random def test_derive_random_state(): rs = np.random.RandomState(1017) rs_observed = ia.derive_random_state(np.random.RandomState(1017)) rs_expected = np.random.RandomState(np.random.RandomState(1017).randint(0, 10**6)) assert rs_observed.randint(0, 10**6) == rs_expected.randint(0, 10**6) def test_derive_random_states(): rs_observed1, rs_observed2 = ia.derive_random_states(np.random.RandomState(1017), n=2) seed = np.random.RandomState(1017).randint(0, 10**6) rs_expected1 = np.random.RandomState(seed+0) rs_expected2 = np.random.RandomState(seed+1) assert rs_observed1.randint(0, 10**6) == rs_expected1.randint(0, 10**6) assert rs_observed2.randint(0, 10**6) == rs_expected2.randint(0, 10**6) def test_forward_random_state(): rs1 = np.random.RandomState(1017) rs2 = np.random.RandomState(1017) ia.forward_random_state(rs1) rs2.uniform() assert rs1.randint(0, 10**6) == rs2.randint(0, 10**6) def test_imresize_many_images(): interpolations = [None, "nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC] for c in [1, 3]: image1 = np.zeros((16, 16, c), dtype=np.uint8) + 255 image2 = np.zeros((16, 16, c), dtype=np.uint8) image3 = np.pad( np.zeros((8, 8, c), dtype=np.uint8) + 255, ((4, 4), (4, 4), (0, 0)), mode="constant", constant_values=0 ) image1_small = np.zeros((8, 8, c), dtype=np.uint8) + 255 image2_small = np.zeros((8, 8, c), dtype=np.uint8) image3_small = np.pad( np.zeros((4, 4, c), dtype=np.uint8) + 255, ((2, 2), (2, 2), (0, 0)), mode="constant", constant_values=0 ) image1_large = np.zeros((32, 32, c), dtype=np.uint8) + 255 image2_large = np.zeros((32, 32, c), dtype=np.uint8) image3_large = np.pad( np.zeros((16, 16, c), dtype=np.uint8) + 255, ((8, 8), (8, 8), (0, 0)), mode="constant", constant_values=0 ) images = np.uint8([image1, image2, image3]) images_small = np.uint8([image1_small, image2_small, image3_small]) images_large = np.uint8([image1_large, image2_large, image3_large]) for images_this_iter in [images, list(images)]: # test for ndarray and list(ndarray) input for interpolation in interpolations: images_same_observed = ia.imresize_many_images(images_this_iter, (16, 16), interpolation=interpolation) for image_expected, image_observed in zip(images_this_iter, images_same_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) assert np.sum(diff) == 0 for interpolation in interpolations: images_small_observed = ia.imresize_many_images(images_this_iter, (8, 8), interpolation=interpolation) for image_expected, image_observed in zip(images_small, images_small_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 for interpolation in interpolations: images_large_observed = ia.imresize_many_images(images_this_iter, (32, 32), interpolation=interpolation) for image_expected, image_observed in zip(images_large, images_large_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 # test size given as single int images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 8) assert observed.shape == (1, 8, 8, 3) # test size given as single float images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 2.0) assert observed.shape == (1, 8, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 0.5) assert observed.shape == (1, 2, 2, 3) # test size given as (float, float) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 2.0)) assert observed.shape == (1, 8, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (0.5, 0.5)) assert observed.shape == (1, 2, 2, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 0.5)) assert observed.shape == (1, 8, 2, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (0.5, 2.0)) assert observed.shape == (1, 2, 8, 3) # test size given as int+float or float+int images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (11, 2.0)) assert observed.shape == (1, 11, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 11)) assert observed.shape == (1, 8, 11, 3) # test no channels images = np.zeros((1, 4, 4), dtype=np.uint8) images_rs = ia.imresize_many_images(images, (2, 2)) assert images_rs.shape == (1, 2, 2) images = [np.zeros((4, 4), dtype=np.uint8)] images_rs = ia.imresize_many_images(images, (2, 2)) assert isinstance(images_rs, list) assert images_rs[0].shape == (2, 2) # test len 0 input observed = ia.imresize_many_images(np.zeros((0, 8, 8, 3), dtype=np.uint8), (4, 4)) assert ia.is_np_array(observed) assert observed.dtype.type == np.uint8 assert len(observed) == 0 observed = ia.imresize_many_images([], (4, 4)) assert isinstance(observed, list) assert len(observed) == 0 # test images with zero height/width images = [np.zeros((0, 4, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception images = [np.zeros((4, 0, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception images = [np.zeros((0, 0, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception # test invalid sizes sizes_all = [(-1, 2), (0, 2)] sizes_all = sizes_all\ + [(float(a), b) for a, b in sizes_all]\ + [(a, float(b)) for a, b in sizes_all]\ + [(float(a), float(b)) for a, b in sizes_all]\ + [(-a, -b) for a, b in sizes_all]\ + [(-float(a), -b) for a, b in sizes_all]\ + [(-a, -float(b)) for a, b in sizes_all]\ + [(-float(a), -float(b)) for a, b in sizes_all] sizes_all = sizes_all\ + [(b, a) for a, b in sizes_all] sizes_all = sizes_all\ + [-1.0, 0.0, -1, 0] for sizes in sizes_all: images = [np.zeros((4, 4, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=sizes) except Exception as exc: assert "value is zero or lower than zero." in str(exc) got_exception = True assert got_exception # test list input but all with same shape images = [np.zeros((8, 8, 3), dtype=np.uint8) for _ in range(2)] observed = ia.imresize_many_images(images, (4, 4)) assert isinstance(observed, list) assert all([image.shape == (4, 4, 3) for image in observed]) assert all([image.dtype.type == np.uint8 for image in observed]) def test_imresize_single_image(): for c in [-1, 1, 3]: image1 = np.zeros((16, 16, abs(c)), dtype=np.uint8) + 255 image2 = np.zeros((16, 16, abs(c)), dtype=np.uint8) image3 = np.pad( np.zeros((8, 8, abs(c)), dtype=np.uint8) + 255, ((4, 4), (4, 4), (0, 0)), mode="constant", constant_values=0 ) image1_small = np.zeros((8, 8, abs(c)), dtype=np.uint8) + 255 image2_small = np.zeros((8, 8, abs(c)), dtype=np.uint8) image3_small = np.pad( np.zeros((4, 4, abs(c)), dtype=np.uint8) + 255, ((2, 2), (2, 2), (0, 0)), mode="constant", constant_values=0 ) image1_large = np.zeros((32, 32, abs(c)), dtype=np.uint8) + 255 image2_large = np.zeros((32, 32, abs(c)), dtype=np.uint8) image3_large = np.pad( np.zeros((16, 16, abs(c)), dtype=np.uint8) + 255, ((8, 8), (8, 8), (0, 0)), mode="constant", constant_values=0 ) images = np.uint8([image1, image2, image3]) images_small = np.uint8([image1_small, image2_small, image3_small]) images_large = np.uint8([image1_large, image2_large, image3_large]) if c == -1: images = images[:, :, 0] images_small = images_small[:, :, 0] images_large = images_large[:, :, 0] interpolations = [None, "nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC] for interpolation in interpolations: for image in images: image_observed = ia.imresize_single_image(image, (16, 16), interpolation=interpolation) diff = np.abs(image.astype(np.int32) - image_observed.astype(np.int32)) assert np.sum(diff) == 0 for interpolation in interpolations: for image, image_expected in zip(images, images_small): image_observed = ia.imresize_single_image(image, (8, 8), interpolation=interpolation) diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 for interpolation in interpolations: for image, image_expected in zip(images, images_large): image_observed = ia.imresize_single_image(image, (32, 32), interpolation=interpolation) diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 def test_pad(): # ------- # uint8, int32 # ------- for dtype in [np.uint8, np.int32]: arr = np.zeros((3, 3), dtype=dtype) + 255 arr_pad = ia.pad(arr) assert arr_pad.shape == (3, 3) assert arr_pad.dtype.type == dtype assert np.array_equal(arr_pad, arr) arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 0) arr_pad = ia.pad(arr, right=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[:, -1] == 0) arr_pad = ia.pad(arr, bottom=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[-1, :] == 0) arr_pad = ia.pad(arr, left=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[:, 0] == 0) arr_pad = ia.pad(arr, top=1, right=2, bottom=3, left=4) assert arr_pad.shape == (3+(1+3), 3+(2+4)) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 0) assert np.all(arr_pad[:, -2:] == 0) assert np.all(arr_pad[-3:, :] == 0) assert np.all(arr_pad[:, :4] == 0) arr_pad = ia.pad(arr, top=1, cval=10) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 10) arr = np.zeros((3, 3, 3), dtype=dtype) + 128 arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :, 0] == 0) assert np.all(arr_pad[0, :, 1] == 0) assert np.all(arr_pad[0, :, 2] == 0) arr = np.zeros((3, 3), dtype=dtype) + 128 arr[1, 1] = 200 arr_pad = ia.pad(arr, top=1, mode="maximum") assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 128 assert arr_pad[0, 1] == 200 assert arr_pad[0, 2] == 128 arr = np.zeros((3, 3), dtype=dtype) arr_pad = ia.pad(arr, top=1, mode="constant", cval=123) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 123 assert arr_pad[0, 1] == 123 assert arr_pad[0, 2] == 123 assert arr_pad[1, 0] == 0 arr = np.zeros((1, 1), dtype=dtype) + 100 arr_pad = ia.pad(arr, top=4, mode="linear_ramp", cval=200) assert arr_pad.shape == (5, 1) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 200 assert arr_pad[1, 0] == 175 assert arr_pad[2, 0] == 150 assert arr_pad[3, 0] == 125 assert arr_pad[4, 0] == 100 # ------- # float32, float64 # ------- for dtype in [np.float32, np.float64]: arr = np.zeros((3, 3), dtype=dtype) + 1.0 arr_pad = ia.pad(arr) assert arr_pad.shape == (3, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad, arr) arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :], dtype([0, 0, 0])) arr_pad = ia.pad(arr, right=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[:, -1], dtype([0, 0, 0])) arr_pad = ia.pad(arr, bottom=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[-1, :], dtype([0, 0, 0])) arr_pad = ia.pad(arr, left=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[:, 0], dtype([0, 0, 0])) arr_pad = ia.pad(arr, top=1, right=2, bottom=3, left=4) assert arr_pad.shape == (3+(1+3), 3+(2+4)) assert arr_pad.dtype.type == dtype assert 0 - 1e-6 < np.max(arr_pad[0, :]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[:, -2:]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[-3, :]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[:, :4]) < 0 + 1e-6 arr_pad = ia.pad(arr, top=1, cval=0.2) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :], dtype([0.2, 0.2, 0.2])) arr = np.zeros((3, 3, 3), dtype=dtype) + 0.5 arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :, 0], dtype([0, 0, 0])) assert np.allclose(arr_pad[0, :, 1], dtype([0, 0, 0])) assert np.allclose(arr_pad[0, :, 2], dtype([0, 0, 0])) arr = np.zeros((3, 3), dtype=dtype) + 0.5 arr[1, 1] = 0.75 arr_pad = ia.pad(arr, top=1, mode="maximum") assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert 0.50 - 1e-6 < arr_pad[0, 0] < 0.50 + 1e-6 assert 0.75 - 1e-6 < arr_pad[0, 1] < 0.75 + 1e-6 assert 0.50 - 1e-6 < arr_pad[0, 2] < 0.50 + 1e-6 arr = np.zeros((3, 3), dtype=dtype) arr_pad = ia.pad(arr, top=1, mode="constant", cval=0.4) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert 0.4 - 1e-6 < arr_pad[0, 0] < 0.4 + 1e-6 assert 0.4 - 1e-6 < arr_pad[0, 1] < 0.4 + 1e-6 assert 0.4 - 1e-6 < arr_pad[0, 2] < 0.4 + 1e-6 assert 0.0 - 1e-6 < arr_pad[1, 0] < 0.0 + 1e-6 arr = np.zeros((1, 1), dtype=dtype) + 0.6 arr_pad = ia.pad(arr, top=4, mode="linear_ramp", cval=1.0) assert arr_pad.shape == (5, 1) assert arr_pad.dtype.type == dtype assert 1.0 - 1e-6 < arr_pad[0, 0] < 1.0 + 1e-6 assert 0.9 - 1e-6 < arr_pad[1, 0] < 0.9 + 1e-6 assert 0.8 - 1e-6 < arr_pad[2, 0] < 0.8 + 1e-6 assert 0.7 - 1e-6 < arr_pad[3, 0] < 0.7 + 1e-6 assert 0.6 - 1e-6 < arr_pad[4, 0] < 0.6 + 1e-6 def test_compute_paddings_for_aspect_ratio(): arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 0 assert bottom == 0 assert left == 0 arr = np.zeros((1, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 2 assert right == 0 assert bottom == 1 assert left == 0 arr = np.zeros((4, 1), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 2 assert bottom == 0 assert left == 1 arr = np.zeros((2, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 1 assert right == 0 assert bottom == 1 assert left == 0 arr = np.zeros((4, 2), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 1 assert bottom == 0 assert left == 1 arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 0.5) assert top == 2 assert right == 0 assert bottom == 2 assert left == 0 arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 2.0) assert top == 0 assert right == 2 assert bottom == 0 assert left == 2 def test_pad_to_aspect_ratio(): for dtype in [np.uint8, np.int32, np.float32]: # aspect_ratio = 1.0 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((1, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((4, 1), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((2, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((4, 2), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 # aspect_ratio != 1.0 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 2.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 0.5) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 8 assert arr_pad.shape[1] == 4 # 3d arr arr = np.zeros((4, 2, 3), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 assert arr_pad.shape[2] == 3 # cval arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[:, 0:2]) == 0 assert np.max(arr_pad[:, -2:]) == 0 assert np.max(arr_pad[:, 2:-2]) == 128 arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=10) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[:, 0:2]) == 10 assert np.max(arr_pad[:, -2:]) == 10 assert np.max(arr_pad[:, 2:-2]) == 128 arr = np.zeros((4, 4), dtype=np.float32) + 0.5 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=0.0) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert 0 - 1e-6 <= np.max(arr_pad[:, 0:2]) <= 0 + 1e-6 assert 0 - 1e-6 <= np.max(arr_pad[:, -2:]) <= 0 + 1e-6 assert 0.5 - 1e-6 <= np.max(arr_pad[:, 2:-2]) <= 0.5 + 1e-6 arr = np.zeros((4, 4), dtype=np.float32) + 0.5 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=0.1) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert 0.1 - 1e-6 <= np.max(arr_pad[:, 0:2]) <= 0.1 + 1e-6 assert 0.1 - 1e-6 <= np.max(arr_pad[:, -2:]) <= 0.1 + 1e-6 assert 0.5 - 1e-6 <= np.max(arr_pad[:, 2:-2]) <= 0.5 + 1e-6 # mode arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr[1:3, 1:3] = 200 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, mode="maximum") assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[0:1, 0:2]) == 128 assert np.max(arr_pad[1:3, 0:2]) == 200 assert np.max(arr_pad[3:, 0:2]) == 128 assert np.max(arr_pad[0:1, -2:]) == 128 assert np.max(arr_pad[1:3, -2:]) == 200 assert np.max(arr_pad[3:, -2:]) == 128 # TODO add tests for return_pad_values=True def test_pool(): # basic functionality with uint8, int32, float32 arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) arr = np.int32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) arr = np.float32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert np.allclose(arr_pooled[0, 0], np.average([0, 1, 4, 5])) assert np.allclose(arr_pooled[0, 1], np.average([2, 3, 6, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 9, 12, 13])) assert np.allclose(arr_pooled[1, 1], np.average([10, 11, 14, 15])) # preserve_dtype off arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average, preserve_dtype=False) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == np.float64 assert np.allclose(arr_pooled[0, 0], np.average([0, 1, 4, 5])) assert np.allclose(arr_pooled[0, 1], np.average([2, 3, 6, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 9, 12, 13])) assert np.allclose(arr_pooled[1, 1], np.average([10, 11, 14, 15])) # maximum function arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.max) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.max([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.max([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.max([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.max([10, 11, 14, 15])) # 3d array arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr = np.tile(arr[..., np.newaxis], (1, 1, 3)) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2, 3) assert np.array_equal(arr_pooled[..., 0], arr_pooled[..., 1]) assert np.array_equal(arr_pooled[..., 1], arr_pooled[..., 2]) arr_pooled = arr_pooled[..., 0] assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) # block_size per axis arr = np.float32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, (2, 1), np.average) assert arr_pooled.shape == (2, 4) assert arr_pooled.dtype == arr.dtype.type assert np.allclose(arr_pooled[0, 0], np.average([0, 4])) assert np.allclose(arr_pooled[0, 1], np.average([1, 5])) assert np.allclose(arr_pooled[0, 2], np.average([2, 6])) assert np.allclose(arr_pooled[0, 3], np.average([3, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 12])) assert np.allclose(arr_pooled[1, 1], np.average([9, 13])) assert np.allclose(arr_pooled[1, 2], np.average([10, 14])) assert np.allclose(arr_pooled[1, 3], np.average([11, 15])) # cval arr = np.uint8([ [0, 1, 2], [4, 5, 6], [8, 9, 10] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 0, 6, 0])) assert arr_pooled[1, 0] == int(np.average([8, 9, 0, 0])) assert arr_pooled[1, 1] == int(np.average([10, 0, 0, 0])) arr = np.uint8([ [0, 1], [4, 5] ]) arr_pooled = ia.pool(arr, (4, 1), np.average) assert arr_pooled.shape == (1, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 4, 0, 0])) assert arr_pooled[0, 1] == int(np.average([1, 5, 0, 0])) arr = np.uint8([ [0, 1, 2], [4, 5, 6], [8, 9, 10] ]) arr_pooled = ia.pool(arr, 2, np.average, cval=22) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 22, 6, 22])) assert arr_pooled[1, 0] == int(np.average([8, 9, 22, 22])) assert arr_pooled[1, 1] == int(np.average([10, 22, 22, 22])) def test_avg_pool(): # very basic test, as avg_pool() just calls pool(), which is tested in test_pool() arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.avg_pool(arr, 2) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) def test_max_pool(): # very basic test, as avg_pool() just calls pool(), which is tested in test_pool() arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.max_pool(arr, 2) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.max([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.max([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.max([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.max([10, 11, 14, 15])) def test_draw_grid(): image = np.zeros((2, 2, 3), dtype=np.uint8) image[0, 0] = 64 image[0, 1] = 128 image[1, 0] = 192 image[1, 1] = 256 grid = ia.draw_grid([image], rows=1, cols=1) assert np.array_equal(grid, image) grid = ia.draw_grid(np.uint8([image]), rows=1, cols=1) assert np.array_equal(grid, image) grid = ia.draw_grid([image, image, image, image], rows=2, cols=2) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image], rows=1, cols=2) expected = np.hstack([image, image]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=2, cols=None) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=None, cols=2) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=None, cols=None) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) def test_Keypoint(): eps = 1e-8 # x/y/x_int/y_int kp = ia.Keypoint(y=1, x=2) assert kp.y == 1 assert kp.x == 2 assert kp.y_int == 1 assert kp.x_int == 2 kp = ia.Keypoint(y=1.1, x=2.7) assert 1.1 - eps < kp.y < 1.1 + eps assert 2.7 - eps < kp.x < 2.7 + eps assert kp.y_int == 1 assert kp.x_int == 3 # project kp = ia.Keypoint(y=1, x=2) kp2 = kp.project((10, 10), (10, 10)) assert kp2.y == 1 assert kp2.x == 2 kp2 = kp.project((10, 10), (20, 10)) assert kp2.y == 2 assert kp2.x == 2 kp2 = kp.project((10, 10), (10, 20)) assert kp2.y == 1 assert kp2.x == 4 kp2 = kp.project((10, 10), (20, 20)) assert kp2.y == 2 assert kp2.x == 4 # shift kp = ia.Keypoint(y=1, x=2) kp2 = kp.shift(y=1) assert kp2.y == 2 assert kp2.x == 2 kp2 = kp.shift(y=-1) assert kp2.y == 0 assert kp2.x == 2 kp2 = kp.shift(x=1) assert kp2.y == 1 assert kp2.x == 3 kp2 = kp.shift(x=-1) assert kp2.y == 1 assert kp2.x == 1 kp2 = kp.shift(y=1, x=2) assert kp2.y == 2 assert kp2.x == 4 # __repr__ / __str_ kp = ia.Keypoint(y=1, x=2) assert kp.__repr__() == kp.__str__() == "Keypoint(x=2.00000000, y=1.00000000)" kp = ia.Keypoint(y=1.2, x=2.7) assert kp.__repr__() == kp.__str__() == "Keypoint(x=2.70000000, y=1.20000000)" def test_KeypointsOnImage(): eps = 1e-8 kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] # height/width kpi = ia.KeypointsOnImage(keypoints=kps, shape=(10, 20, 3)) assert kpi.height == 10 assert kpi.width == 20 # image instead of shape kpi = ia.KeypointsOnImage(keypoints=kps, shape=np.zeros((10, 20, 3), dtype=np.uint8)) assert kpi.shape == (10, 20, 3) # on() kpi2 = kpi.on((10, 20, 3)) assert all([kp_i.x == kp_j.x and kp_i.y == kp_j.y for kp_i, kp_j in zip(kpi.keypoints, kpi2.keypoints)]) kpi2 = kpi.on((20, 40, 3)) assert kpi2.keypoints[0].x == 2 assert kpi2.keypoints[0].y == 4 assert kpi2.keypoints[1].x == 6 assert kpi2.keypoints[1].y == 8 kpi2 = kpi.on(np.zeros((20, 40, 3), dtype=np.uint8)) assert kpi2.keypoints[0].x == 2 assert kpi2.keypoints[0].y == 4 assert kpi2.keypoints[1].x == 6 assert kpi2.keypoints[1].y == 8 # draw_on_image kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=3, copy=True, raise_if_out_of_image=False) kps_mask_size3 = np.copy(kps_mask) kps_mask_size3[2-1:2+1+1, 1-1:1+1+1] = 1 kps_mask_size3[4-1:4+1+1, 3-1:3+1+1] = 1 assert np.all(image_kps[kps_mask_size3] == [0, 255, 0]) assert np.all(image_kps[~kps_mask_size3] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=[0, 0, 255], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 0, 255]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=255, size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [255, 255, 255]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image2 = np.copy(image) image_kps = kpi.draw_on_image(image2, color=[0, 255, 0], size=1, copy=False, raise_if_out_of_image=False) assert np.all(image2 == image_kps) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) assert np.all(image2[kps_mask] == [0, 255, 0]) assert np.all(image2[~kps_mask] == [10, 10, 10]) kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=100, y=100)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=100, y=100)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 got_exception = False try: image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=True) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) except Exception: got_exception = True assert got_exception kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=5, y=5)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) got_exception = False try: image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=True) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) except Exception: got_exception = True assert got_exception # shift kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.shift(x=0, y=0) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(x=1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x + 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x + 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(x=-1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x - 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x - 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(y=1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y + 1 assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y + 1 kpi2 = kpi.shift(y=-1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y - 1 assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y - 1 kpi2 = kpi.shift(x=1, y=2) assert kpi2.keypoints[0].x == kpi.keypoints[0].x + 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y + 2 assert kpi2.keypoints[1].x == kpi.keypoints[1].x + 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y + 2 # get_coords_array kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) observed = kpi.get_coords_array() expected = np.float32([ [1, 2], [3, 4] ]) assert np.allclose(observed, expected) # from_coords_array arr = np.float32([ [1, 2], [3, 4] ]) kpi = ia.KeypointsOnImage.from_coords_array(arr, shape=(5, 5, 3)) assert 1 - eps < kpi.keypoints[0].x < 1 + eps assert 2 - eps < kpi.keypoints[0].y < 2 + eps assert 3 - eps < kpi.keypoints[1].x < 3 + eps assert 4 - eps < kpi.keypoints[1].y < 4 + eps # to_keypoint_image kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) image = kpi.to_keypoint_image(size=1) image_size3 = kpi.to_keypoint_image(size=3) kps_mask = np.zeros((5, 5, 2), dtype=np.bool) kps_mask[2, 1, 0] = 1 kps_mask[4, 3, 1] = 1 kps_mask_size3 = np.zeros_like(kps_mask) kps_mask_size3[2-1:2+1+1, 1-1:1+1+1, 0] = 1 kps_mask_size3[4-1:4+1+1, 3-1:3+1+1, 1] = 1 assert np.all(image[kps_mask] == 255) assert np.all(image[~kps_mask] == 0) assert np.all(image_size3[kps_mask] == 255) assert np.all(image_size3[kps_mask_size3] >= 128) assert np.all(image_size3[~kps_mask_size3] == 0) # from_keypoint_image() kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 255 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == 4 assert kpi2.keypoints[1].x == 3 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords={"x": -1, "y": -2}, threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == -2 assert kpi2.keypoints[1].x == -1 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords=(-1, -2), threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == -2 assert kpi2.keypoints[1].x == -1 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords=None, threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 got_exception = False try: kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 _ = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords="exception-please", threshold=20, nb_channels=3) except Exception as exc: assert "Expected if_not_found_coords to be" in str(exc) got_exception = True assert got_exception # copy() kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.copy() assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 kps[0].x = 100 assert kpi2.keypoints[0].x == 100 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 # deepcopy() kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.deepcopy() assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 kps[0].x = 100 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 # repr/str kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) expected = "KeypointsOnImage([Keypoint(x=1.00000000, y=2.00000000), Keypoint(x=3.00000000, y=4.00000000)], " \ + "shape=(5, 5, 3))" assert kpi.__repr__() == kpi.__str__() == expected def test_BoundingBox(): eps = 1e-8 # properties with ints bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 30 assert bb.x2_int == 40 assert bb.width == 40 - 20 assert bb.height == 30 - 10 center_x = bb.x1 + (bb.x2 - bb.x1)/2 center_y = bb.y1 + (bb.y2 - bb.y1)/2 assert center_x - eps < bb.center_x < center_x + eps assert center_y - eps < bb.center_y < center_y + eps # wrong order of y1/y2, x1/x2 bb = ia.BoundingBox(y1=30, x1=40, y2=10, x2=20, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 30 assert bb.x2_int == 40 # properties with floats bb = ia.BoundingBox(y1=10.1, x1=20.1, y2=30.9, x2=40.9, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 31 assert bb.x2_int == 41 assert bb.width == 40.9 - 20.1 assert bb.height == 30.9 - 10.1 center_x = bb.x1 + (bb.x2 - bb.x1)/2 center_y = bb.y1 + (bb.y2 - bb.y1)/2 assert center_x - eps < bb.center_x < center_x + eps assert center_y - eps < bb.center_y < center_y + eps # area bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.area == (30-10) * (40-20) # project bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.project((10, 10), (10, 10)) assert 10 - eps < bb2.y1 < 10 + eps assert 20 - eps < bb2.x1 < 20 + eps assert 30 - eps < bb2.y2 < 30 + eps assert 40 - eps < bb2.x2 < 40 + eps bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.project((10, 10), (20, 20)) assert 10*2 - eps < bb2.y1 < 10*2 + eps assert 20*2 - eps < bb2.x1 < 20*2 + eps assert 30*2 - eps < bb2.y2 < 30*2 + eps assert 40*2 - eps < bb2.x2 < 40*2 + eps bb2 = bb.project((10, 10), (5, 5)) assert 10*0.5 - eps < bb2.y1 < 10*0.5 + eps assert 20*0.5 - eps < bb2.x1 < 20*0.5 + eps assert 30*0.5 - eps < bb2.y2 < 30*0.5 + eps assert 40*0.5 - eps < bb2.x2 < 40*0.5 + eps bb2 = bb.project((10, 10), (10, 20)) assert 10*1 - eps < bb2.y1 < 10*1 + eps assert 20*2 - eps < bb2.x1 < 20*2 + eps assert 30*1 - eps < bb2.y2 < 30*1 + eps assert 40*2 - eps < bb2.x2 < 40*2 + eps bb2 = bb.project((10, 10), (20, 10)) assert 10*2 - eps < bb2.y1 < 10*2 + eps assert 20*1 - eps < bb2.x1 < 20*1 + eps assert 30*2 - eps < bb2.y2 < 30*2 + eps assert 40*1 - eps < bb2.x2 < 40*1 + eps # extend bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.extend(all_sides=1) assert bb2.y1 == 10-1 assert bb2.y2 == 30+1 assert bb2.x1 == 20-1 assert bb2.x2 == 40+1 bb2 = bb.extend(all_sides=-1) assert bb2.y1 == 10-(-1) assert bb2.y2 == 30+(-1) assert bb2.x1 == 20-(-1) assert bb2.x2 == 40+(-1) bb2 = bb.extend(top=1) assert bb2.y1 == 10-1 assert bb2.y2 == 30+0 assert bb2.x1 == 20-0 assert bb2.x2 == 40+0 bb2 = bb.extend(right=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+0 assert bb2.x1 == 20-0 assert bb2.x2 == 40+1 bb2 = bb.extend(bottom=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+1 assert bb2.x1 == 20-0 assert bb2.x2 == 40+0 bb2 = bb.extend(left=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+0 assert bb2.x1 == 20-1 assert bb2.x2 == 40+0 # intersection bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=39, y2=30, x2=59, label=None) bb_inter = bb1.intersection(bb2) assert bb_inter.x1 == 39 assert bb_inter.x2 == 40 assert bb_inter.y1 == 10 assert bb_inter.y2 == 30 bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=41, y2=30, x2=61, label=None) bb_inter = bb1.intersection(bb2, default=False) assert bb_inter is False # union bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=39, y2=30, x2=59, label=None) bb_union = bb1.union(bb2) assert bb_union.x1 == 20 assert bb_union.x2 == 59 assert bb_union.y1 == 10 assert bb_union.y2 == 30 # iou bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) iou = bb1.iou(bb2) assert 1.0 - eps < iou < 1.0 + eps bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=41, y2=30, x2=61, label=None) iou = bb1.iou(bb2) assert 0.0 - eps < iou < 0.0 + eps bb1 = ia.BoundingBox(y1=10, x1=10, y2=20, x2=20, label=None) bb2 = ia.BoundingBox(y1=15, x1=15, y2=25, x2=25, label=None) iou = bb1.iou(bb2) area_union = 10 * 10 + 10 * 10 - 5 * 5 area_intersection = 5 * 5 iou_expected = area_intersection / area_union assert iou_expected - eps < iou < iou_expected + eps # is_fully_within_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_fully_within_image((100, 100, 3)) is True assert bb.is_fully_within_image((20, 100, 3)) is False assert bb.is_fully_within_image((100, 30, 3)) is False assert bb.is_fully_within_image((1, 1, 3)) is False # is_partly_within_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_partly_within_image((100, 100, 3)) is True assert bb.is_partly_within_image((20, 100, 3)) is True assert bb.is_partly_within_image((100, 30, 3)) is True assert bb.is_partly_within_image((1, 1, 3)) is False # is_out_of_image() bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_out_of_image((100, 100, 3), partly=True, fully=True) is False assert bb.is_out_of_image((100, 100, 3), partly=False, fully=True) is False assert bb.is_out_of_image((100, 100, 3), partly=True, fully=False) is False assert bb.is_out_of_image((20, 100, 3), partly=True, fully=True) is True assert bb.is_out_of_image((20, 100, 3), partly=False, fully=True) is False assert bb.is_out_of_image((20, 100, 3), partly=True, fully=False) is True assert bb.is_out_of_image((100, 30, 3), partly=True, fully=True) is True assert bb.is_out_of_image((100, 30, 3), partly=False, fully=True) is False assert bb.is_out_of_image((100, 30, 3), partly=True, fully=False) is True assert bb.is_out_of_image((1, 1, 3), partly=True, fully=True) is True assert bb.is_out_of_image((1, 1, 3), partly=False, fully=True) is True assert bb.is_out_of_image((1, 1, 3), partly=True, fully=False) is False # cut_out_of_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb_cut = bb.cut_out_of_image((100, 100, 3)) eps = np.finfo(np.float32).eps assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image(np.zeros((100, 100, 3), dtype=np.uint8)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image((20, 100, 3)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert 20 - 2*eps < bb_cut.y2 < 20 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image((100, 30, 3)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert 30 - 2*eps < bb_cut.x2 < 30 # shift bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb_top = bb.shift(top=0) bb_right = bb.shift(right=0) bb_bottom = bb.shift(bottom=0) bb_left = bb.shift(left=0) assert bb_top.y1 == 10 assert bb_top.x1 == 20 assert bb_top.y2 == 30 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20 assert bb_right.y2 == 30 assert bb_right.x2 == 40 assert bb_bottom.y1 == 10 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20 assert bb_left.y2 == 30 assert bb_left.x2 == 40 bb_top = bb.shift(top=1) bb_right = bb.shift(right=1) bb_bottom = bb.shift(bottom=1) bb_left = bb.shift(left=1) assert bb_top.y1 == 10+1 assert bb_top.x1 == 20 assert bb_top.y2 == 30+1 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20-1 assert bb_right.y2 == 30 assert bb_right.x2 == 40-1 assert bb_bottom.y1 == 10-1 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30-1 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20+1 assert bb_left.y2 == 30 assert bb_left.x2 == 40+1 bb_top = bb.shift(top=-1) bb_right = bb.shift(right=-1) bb_bottom = bb.shift(bottom=-1) bb_left = bb.shift(left=-1) assert bb_top.y1 == 10-1 assert bb_top.x1 == 20 assert bb_top.y2 == 30-1 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20+1 assert bb_right.y2 == 30 assert bb_right.x2 == 40+1 assert bb_bottom.y1 == 10+1 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30+1 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20-1 assert bb_left.y2 == 30 assert bb_left.x2 == 40-1 bb_mix = bb.shift(top=1, bottom=2, left=3, right=4) assert bb_mix.y1 == 10+1-2 assert bb_mix.x1 == 20+3-4 assert bb_mix.y2 == 30+3-4 assert bb_mix.x2 == 40+1-2 # draw_on_image() image = np.zeros((10, 10, 3), dtype=np.uint8) bb = ia.BoundingBox(y1=1, x1=1, y2=3, x2=3, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[1:3+1, 1] = True bb_mask[1:3+1, 3] = True bb_mask[1, 1:3+1] = True bb_mask[3, 1:3+1] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) assert np.all(image == 0) image_bb = bb.draw_on_image(image, color=[255, 0, 0], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 0, 0]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) image_bb = bb.draw_on_image(image, color=128, alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [128, 128, 128]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) image_bb = bb.draw_on_image(image+100, color=[200, 200, 200], alpha=0.5, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [150, 150, 150]) assert np.all(image_bb[~bb_mask] == [100, 100, 100]) image_bb = bb.draw_on_image((image+100).astype(np.float32), color=[200, 200, 200], alpha=0.5, thickness=1, copy=True, raise_if_out_of_image=False) assert np.sum(np.abs((image_bb - [150, 150, 150])[bb_mask])) < 0.1 assert np.sum(np.abs((image_bb - [100, 100, 100])[~bb_mask])) < 0.1 image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=False, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) assert np.all(image[bb_mask] == [255, 255, 255]) assert np.all(image[~bb_mask] == [0, 0, 0]) image = np.zeros_like(image) bb = ia.BoundingBox(y1=-1, x1=-1, y2=2, x2=2, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[2, 0:3] = True bb_mask[0:3, 2] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=1, x1=1, y2=3, x2=3, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[0:5, 0:5] = True bb_mask[2, 2] = False image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=2, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=-1, x1=-1, y2=1, x2=1, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[0:1+1, 1] = True bb_mask[1, 0:1+1] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=-1, x1=-1, y2=1, x2=1, label=None) got_exception = False try: _ = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=True) except Exception: got_exception = True assert got_exception is False bb = ia.BoundingBox(y1=-5, x1=-5, y2=-1, x2=-1, label=None) got_exception = False try: _ = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=True) except Exception: got_exception = True assert got_exception is True # extract_from_image() image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3, :]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) image_pad = np.pad(image, ((0, 1), (0, 1), (0, 0)), mode="constant", constant_values=0) bb = ia.BoundingBox(y1=8, y2=11, x1=8, x2=11, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image_pad[8:11, 8:11, :]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) image_pad = np.pad(image, ((1, 0), (1, 0), (0, 0)), mode="constant", constant_values=0) bb = ia.BoundingBox(y1=-1, y2=3, x1=-1, x2=4, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image_pad[0:4, 0:5, :]) # to_keypoints() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) kps = bb.to_keypoints() assert kps[0].y == 1 assert kps[0].x == 1 assert kps[1].y == 1 assert kps[1].x == 3 assert kps[2].y == 3 assert kps[2].x == 3 assert kps[3].y == 3 assert kps[3].x == 1 # copy() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label="test") bb2 = bb.copy() assert bb2.y1 == 1 assert bb2.y2 == 3 assert bb2.x1 == 1 assert bb2.x2 == 3 assert bb2.label == "test" bb2 = bb.copy(y1=10, x1=20, y2=30, x2=40, label="test2") assert bb2.y1 == 10 assert bb2.x1 == 20 assert bb2.y2 == 30 assert bb2.x2 == 40 assert bb2.label == "test2" # deepcopy() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=["test"]) bb2 = bb.deepcopy() assert bb2.y1 == 1 assert bb2.y2 == 3 assert bb2.x1 == 1 assert bb2.x2 == 3 assert bb2.label[0] == "test" # BoundingBox_repr() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) assert bb.__repr__() == "BoundingBox(x1=1.0000, y1=1.0000, x2=3.0000, y2=3.0000, label=None)" # test_BoundingBox_str() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) assert bb.__str__() == "BoundingBox(x1=1.0000, y1=1.0000, x2=3.0000, y2=3.0000, label=None)" def test_BoundingBoxesOnImage(): reseed() # test height/width bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) assert bbsoi.height == 40 assert bbsoi.width == 50 bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=np.zeros((40, 50, 3), dtype=np.uint8)) assert bbsoi.height == 40 assert bbsoi.width == 50 # on() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=np.zeros((40, 50, 3), dtype=np.uint8)) bbsoi_projected = bbsoi.on((40, 50)) assert bbsoi_projected.bounding_boxes[0].y1 == 10 assert bbsoi_projected.bounding_boxes[0].x1 == 20 assert bbsoi_projected.bounding_boxes[0].y2 == 30 assert bbsoi_projected.bounding_boxes[0].x2 == 40 assert bbsoi_projected.bounding_boxes[1].y1 == 15 assert bbsoi_projected.bounding_boxes[1].x1 == 25 assert bbsoi_projected.bounding_boxes[1].y2 == 35 assert bbsoi_projected.bounding_boxes[1].x2 == 45 bbsoi_projected = bbsoi.on((40*2, 50*2, 3)) assert bbsoi_projected.bounding_boxes[0].y1 == 10*2 assert bbsoi_projected.bounding_boxes[0].x1 == 20*2 assert bbsoi_projected.bounding_boxes[0].y2 == 30*2 assert bbsoi_projected.bounding_boxes[0].x2 == 40*2 assert bbsoi_projected.bounding_boxes[1].y1 == 15*2 assert bbsoi_projected.bounding_boxes[1].x1 == 25*2 assert bbsoi_projected.bounding_boxes[1].y2 == 35*2 assert bbsoi_projected.bounding_boxes[1].x2 == 45*2 bbsoi_projected = bbsoi.on(np.zeros((40*2, 50*2, 3), dtype=np.uint8)) assert bbsoi_projected.bounding_boxes[0].y1 == 10*2 assert bbsoi_projected.bounding_boxes[0].x1 == 20*2 assert bbsoi_projected.bounding_boxes[0].y2 == 30*2 assert bbsoi_projected.bounding_boxes[0].x2 == 40*2 assert bbsoi_projected.bounding_boxes[1].y1 == 15*2 assert bbsoi_projected.bounding_boxes[1].x1 == 25*2 assert bbsoi_projected.bounding_boxes[1].y2 == 35*2 assert bbsoi_projected.bounding_boxes[1].x2 == 45*2 # draw_on_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) image = bbsoi.draw_on_image(np.zeros(bbsoi.shape, dtype=np.uint8), color=[0, 255, 0], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image[10-1, 20-1, :] == [0, 0, 0]) assert np.all(image[10-1, 20-0, :] == [0, 0, 0]) assert np.all(image[10-0, 20-1, :] == [0, 0, 0]) assert np.all(image[10-0, 20-0, :] == [0, 255, 0]) assert np.all(image[10+1, 20+1, :] == [0, 0, 0]) assert np.all(image[30-1, 40-1, :] == [0, 0, 0]) assert np.all(image[30+1, 40-0, :] == [0, 0, 0]) assert np.all(image[30+0, 40+1, :] == [0, 0, 0]) assert np.all(image[30+0, 40+0, :] == [0, 255, 0]) assert np.all(image[30+1, 40+1, :] == [0, 0, 0]) assert np.all(image[15-1, 25-1, :] == [0, 0, 0]) assert np.all(image[15-1, 25-0, :] == [0, 0, 0]) assert np.all(image[15-0, 25-1, :] == [0, 0, 0]) assert np.all(image[15-0, 25-0, :] == [0, 255, 0]) assert np.all(image[15+1, 25+1, :] == [0, 0, 0]) assert np.all(image[35-1, 45-1, :] == [0, 0, 0]) assert np.all(image[35+1, 45+0, :] == [0, 0, 0]) assert np.all(image[35+0, 45+1, :] == [0, 0, 0]) assert np.all(image[35+0, 45+0, :] == [0, 255, 0]) assert np.all(image[35+1, 45+1, :] == [0, 0, 0]) # remove_out_of_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_slim = bbsoi.remove_out_of_image(fully=True, partly=True) assert len(bbsoi_slim.bounding_boxes) == 1 assert bbsoi_slim.bounding_boxes[0] == bb1 # cut_out_of_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) eps = np.finfo(np.float32).eps bbsoi_cut = bbsoi.cut_out_of_image() assert len(bbsoi_cut.bounding_boxes) == 2 assert bbsoi_cut.bounding_boxes[0].y1 == 10 assert bbsoi_cut.bounding_boxes[0].x1 == 20 assert bbsoi_cut.bounding_boxes[0].y2 == 30 assert bbsoi_cut.bounding_boxes[0].x2 == 40 assert bbsoi_cut.bounding_boxes[1].y1 == 15 assert bbsoi_cut.bounding_boxes[1].x1 == 25 assert bbsoi_cut.bounding_boxes[1].y2 == 35 assert 50 - 2*eps < bbsoi_cut.bounding_boxes[1].x2 < 50 # shift() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_shifted = bbsoi.shift(right=1) assert len(bbsoi_cut.bounding_boxes) == 2 assert bbsoi_shifted.bounding_boxes[0].y1 == 10 assert bbsoi_shifted.bounding_boxes[0].x1 == 20 - 1 assert bbsoi_shifted.bounding_boxes[0].y2 == 30 assert bbsoi_shifted.bounding_boxes[0].x2 == 40 - 1 assert bbsoi_shifted.bounding_boxes[1].y1 == 15 assert bbsoi_shifted.bounding_boxes[1].x1 == 25 - 1 assert bbsoi_shifted.bounding_boxes[1].y2 == 35 assert bbsoi_shifted.bounding_boxes[1].x2 == 51 - 1 # copy() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_copy = bbsoi.copy() assert len(bbsoi.bounding_boxes) == 2 assert bbsoi_copy.bounding_boxes[0].y1 == 10 assert bbsoi_copy.bounding_boxes[0].x1 == 20 assert bbsoi_copy.bounding_boxes[0].y2 == 30 assert bbsoi_copy.bounding_boxes[0].x2 == 40 assert bbsoi_copy.bounding_boxes[1].y1 == 15 assert bbsoi_copy.bounding_boxes[1].x1 == 25 assert bbsoi_copy.bounding_boxes[1].y2 == 35 assert bbsoi_copy.bounding_boxes[1].x2 == 51 bbsoi.bounding_boxes[0].y1 = 0 assert bbsoi_copy.bounding_boxes[0].y1 == 0 # deepcopy() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_copy = bbsoi.deepcopy() assert len(bbsoi.bounding_boxes) == 2 assert bbsoi_copy.bounding_boxes[0].y1 == 10 assert bbsoi_copy.bounding_boxes[0].x1 == 20 assert bbsoi_copy.bounding_boxes[0].y2 == 30 assert bbsoi_copy.bounding_boxes[0].x2 == 40 assert bbsoi_copy.bounding_boxes[1].y1 == 15 assert bbsoi_copy.bounding_boxes[1].x1 == 25 assert bbsoi_copy.bounding_boxes[1].y2 == 35 assert bbsoi_copy.bounding_boxes[1].x2 == 51 bbsoi.bounding_boxes[0].y1 = 0 assert bbsoi_copy.bounding_boxes[0].y1 == 10 # repr() / str() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bb1_expected = "BoundingBox(x1=20.0000, y1=10.0000, x2=40.0000, y2=30.0000, label=None)" bb2_expected = "BoundingBox(x1=25.0000, y1=15.0000, x2=51.0000, y2=35.0000, label=None)" expected = "BoundingBoxesOnImage([%s, %s], shape=(40, 50, 3))" % (bb1_expected, bb2_expected) assert bbsoi.__repr__() == bbsoi.__str__() == expected def test_HeatmapsOnImage_draw(): heatmaps_arr = np.float32([ [0.5, 0.0, 0.0, 0.5], [0.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.5, 0.0, 0.0, 0.5], ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_drawn = heatmaps.draw()[0] assert heatmaps_drawn.shape == (4, 4, 3) v1 = heatmaps_drawn[0, 1] v2 = heatmaps_drawn[0, 0] v3 = heatmaps_drawn[1, 1] for y, x in [(0, 1), (0, 2), (1, 0), (1, 3), (2, 0), (2, 3), (3, 1), (3, 2)]: assert np.allclose(heatmaps_drawn[y, x], v1) for y, x in [(0, 0), (0, 3), (3, 0), (3, 3)]: assert np.allclose(heatmaps_drawn[y, x], v2) for y, x in [(1, 1), (1, 2), (2, 1), (2, 2)]: assert np.allclose(heatmaps_drawn[y, x], v3) # size differs from heatmap array size heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) heatmaps_drawn = heatmaps.draw(size=(4, 4))[0] assert heatmaps_drawn.shape == (4, 4, 3) v1 = heatmaps_drawn[0, 0] v2 = heatmaps_drawn[0, -1] for y in range(4): for x in range(2): assert np.allclose(heatmaps_drawn[y, x], v1) for y in range(4): for x in range(2, 4): assert np.allclose(heatmaps_drawn[y, x], v2) def test_HeatmapsOnImage_draw_on_image(): heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) image = np.uint8([ [0, 0, 0, 255], [0, 0, 0, 255], [0, 0, 0, 255], [0, 0, 0, 255] ]) image = np.tile(image[..., np.newaxis], (1, 1, 3)) heatmaps_drawn = heatmaps.draw_on_image(image, alpha=0.5, cmap=None)[0] assert heatmaps_drawn.shape == (4, 4, 3) assert np.all(heatmaps_drawn[0:4, 0:2, :] == 0) assert np.all(heatmaps_drawn[0:4, 2:3, :] == 128) or np.all(heatmaps_drawn[0:4, 2:3, :] == 127) assert np.all(heatmaps_drawn[0:4, 3:4, :] == 255) or np.all(heatmaps_drawn[0:4, 3:4, :] == 254) image = np.uint8([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0] ]) image = np.tile(image[..., np.newaxis], (1, 1, 3)) heatmaps_drawn = heatmaps.draw_on_image(image, alpha=0.5, resize="image", cmap=None)[0] assert heatmaps_drawn.shape == (2, 2, 3) assert np.all(heatmaps_drawn[0:2, 0, :] == 0) assert np.all(heatmaps_drawn[0:2, 1, :] == 128) or np.all(heatmaps_drawn[0:2, 1, :] == 127) def test_HeatmapsOnImage_invert(): heatmaps_arr = np.float32([ [0.0, 5.0, 10.0], [-1.0, -2.0, 7.5] ]) expected = np.float32([ [8.0, 3.0, -2.0], [9.0, 10.0, 0.5] ]) # (H, W) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 3), min_value=-2.0, max_value=10.0) assert np.allclose(heatmaps.get_arr(), heatmaps_arr) assert np.allclose(heatmaps.invert().get_arr(), expected) # (H, W, 1) heatmaps = ia.HeatmapsOnImage(heatmaps_arr[..., np.newaxis], shape=(2, 3), min_value=-2.0, max_value=10.0) assert np.allclose(heatmaps.get_arr(), heatmaps_arr[..., np.newaxis]) assert np.allclose(heatmaps.invert().get_arr(), expected[..., np.newaxis]) def test_HeatmapsOnImage_pad(): heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) heatmaps_padded = heatmaps.pad(top=1, right=2, bottom=3, left=4) assert heatmaps_padded.arr_0to1.shape == (2+(1+3), 2+(4+2), 1) assert np.allclose( heatmaps_padded.arr_0to1[:, :, 0], np.float32([ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ]) ) heatmaps_padded = heatmaps.pad(top=1, right=2, bottom=3, left=4, cval=0.5) assert heatmaps_padded.arr_0to1.shape == (2+(1+3), 2+(4+2), 1) assert np.allclose( heatmaps_padded.arr_0to1[:, :, 0], np.float32([ [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.0, 1.0, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.0, 1.0, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5] ]) ) heatmaps_padded = heatmaps.pad(top=1, right=2, bottom=3, left=4, mode="edge") assert heatmaps_padded.arr_0to1.shape == (2+(1+3), 2+(4+2), 1) assert np.allclose( heatmaps_padded.arr_0to1[:, :, 0], np.float32([ [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0] ]) ) def test_HeatmapsOnImage_avg_pool(): heatmaps_arr = np.float32([ [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_pooled = heatmaps.avg_pool(2) assert heatmaps_pooled.arr_0to1.shape == (2, 2, 1) assert np.allclose( heatmaps_pooled.arr_0to1[:, :, 0], np.float32([[0.0, 0.75], [0.0, 0.75]]) ) def test_HeatmapsOnImage_max_pool(): heatmaps_arr = np.float32([ [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_pooled = heatmaps.max_pool(2) assert heatmaps_pooled.arr_0to1.shape == (2, 2, 1) assert np.allclose( heatmaps_pooled.arr_0to1[:, :, 0], np.float32([[0.0, 1.0], [0.0, 1.0]]) ) def test_HeatmapsOnImage_scale(): heatmaps_arr = np.float32([ [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_scaled = heatmaps.scale((4, 4), interpolation="nearest") assert heatmaps_scaled.arr_0to1.shape == (4, 4, 1) assert heatmaps_scaled.arr_0to1.dtype.type == np.float32 assert np.allclose( heatmaps_scaled.arr_0to1[:, :, 0], np.float32([ [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0] ]) ) heatmaps_arr = np.float32([ [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_scaled = heatmaps.scale(2.0, interpolation="nearest") assert heatmaps_scaled.arr_0to1.shape == (2, 4, 1) assert heatmaps_scaled.arr_0to1.dtype.type == np.float32 assert np.allclose( heatmaps_scaled.arr_0to1[:, :, 0], np.float32([ [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0] ]) ) def test_SegmentationMapOnImage_bool(): # Test for #189 (boolean mask inputs into SegmentationMapOnImage not working) arr = np.array([ [0, 0, 0], [0, 1, 0], [0, 0, 0] ], dtype=bool) assert arr.dtype.type == np.bool_ segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3)) observed = segmap.get_arr_int() assert observed.dtype.type == np.int32 assert np.array_equal(arr, observed) arr = np.array([ [0, 0, 0], [0, 1, 0], [0, 0, 0] ], dtype=np.bool) assert arr.dtype.type == np.bool_ segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3)) observed = segmap.get_arr_int() assert observed.dtype.type == np.int32 assert np.array_equal(arr, observed) def test_SegmentationMapOnImage_get_arr_int(): arr = np.int32([ [0, 0, 1], [0, 2, 1], [1, 3, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=4) observed = segmap.get_arr_int() assert observed.dtype.type == np.int32 assert np.array_equal(arr, observed) arr_c0 = np.float32([ [0.1, 0.1, 0.1], [0.1, 0.9, 0.1], [0.0, 0.1, 0.0] ]) arr_c1 = np.float32([ [0.2, 1.0, 0.2], [0.2, 0.8, 0.2], [0.0, 0.0, 0.0] ]) arr_c2 = np.float32([ [0.0, 0.0, 0.0], [0.3, 0.7, 0.3], [0.1, 0.0, 0.0001] ]) arr = np.concatenate([ arr_c0[..., np.newaxis], arr_c1[..., np.newaxis], arr_c2[..., np.newaxis] ], axis=2) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3)) observed = segmap.get_arr_int() expected = np.int32([ [2, 2, 2], [3, 1, 3], [3, 1, 0] ]) assert observed.dtype.type == np.int32 assert np.array_equal(observed, expected) got_exception = False try: _ = segmap.get_arr_int(background_class_id=2) except Exception as exc: assert "The background class id may only be changed if " in str(exc) got_exception = True assert got_exception observed = segmap.get_arr_int(background_threshold=0.21) expected = np.int32([ [0, 2, 0], [3, 1, 3], [0, 0, 0] ]) assert observed.dtype.type == np.int32 assert np.array_equal(observed, expected) def test_SegmentationMapOnImage_draw(): arr = np.int32([ [0, 1, 1], [0, 1, 1], [0, 1, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=2) # simple example with 2 classes observed = segmap.draw() col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) assert np.array_equal(observed, expected) # same example, with resizing to 2x the size observed = segmap.draw(size=(6, 6)) expected = ia.imresize_single_image(expected, (6, 6), interpolation="nearest") assert np.array_equal(observed, expected) # custom choice of colors col0 = (10, 10, 10) col1 = (50, 51, 52) observed = segmap.draw(colors=[col0, col1]) expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) assert np.array_equal(observed, expected) # background_threshold, background_class and foreground mask arr_c0 = np.float32([ [0, 0, 0], [1.0, 0, 0], [0, 0, 0] ]) arr_c1 = np.float32([ [0, 1, 1], [0, 1, 1], [0.1, 1, 1] ]) arr = np.concatenate([ arr_c0[..., np.newaxis], arr_c1[..., np.newaxis] ], axis=2) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3)) observed, observed_fg = segmap.draw(background_threshold=0.01, return_foreground_mask=True) col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] col2 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[2] expected = np.uint8([ [col0, col2, col2], [col1, col2, col2], [col2, col2, col2] ]) expected_fg = np.array([ [False, True, True], [True, True, True], [True, True, True] ], dtype=np.bool) assert np.array_equal(observed, expected) assert np.array_equal(observed_fg, expected_fg) # background_threshold, background_class and foreground mask # here with higher threshold so that bottom left pixel switches to background observed, observed_fg = segmap.draw(background_threshold=0.11, return_foreground_mask=True) col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] col2 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[2] expected = np.uint8([ [col0, col2, col2], [col1, col2, col2], [col0, col2, col2] ]) expected_fg = np.array([ [False, True, True], [True, True, True], [False, True, True] ], dtype=np.bool) assert np.array_equal(observed, expected) assert np.array_equal(observed_fg, expected_fg) def test_SegmentationMapOnImage_draw_on_image(): arr = np.int32([ [0, 1, 1], [0, 1, 1], [0, 1, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=2) image = np.uint8([ [0, 10, 20], [30, 40, 50], [60, 70, 80] ]) image = np.tile(image[:, :, np.newaxis], (1, 1, 3)) # only image visible observed = segmap.draw_on_image(image, alpha=0) assert np.array_equal(observed, image) # only segmap visible observed = segmap.draw_on_image(image, alpha=1.0, draw_background=True) col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) assert np.array_equal(observed, expected) # only segmap visible - in foreground observed = segmap.draw_on_image(image, alpha=1.0, draw_background=False) col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] expected = np.uint8([ [image[0, 0, :], col1, col1], [image[1, 0, :], col1, col1], [image[2, 0, :], col1, col1] ]) assert np.array_equal(observed, expected) # overlay without background drawn a1 = 0.7 a0 = 1.0 - a1 observed = segmap.draw_on_image(image, alpha=a1, draw_background=False) col1 = np.uint8(ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1]) expected = np.float32([ [image[0, 0, :], a0*image[0, 1, :] + a1*col1, a0*image[0, 2, :] + a1*col1], [image[1, 0, :], a0*image[1, 1, :] + a1*col1, a0*image[1, 2, :] + a1*col1], [image[2, 0, :], a0*image[2, 1, :] + a1*col1, a0*image[2, 2, :] + a1*col1] ]) d_max = np.max(np.abs(observed.astype(np.float32) - expected)) assert observed.shape == expected.shape assert d_max <= 1.0 + 1e-4 # overlay with background drawn a1 = 0.7 a0 = 1.0 - a1 observed = segmap.draw_on_image(image, alpha=a1, draw_background=True) col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) expected = a0 * image + a1 * expected d_max = np.max(np.abs(observed.astype(np.float32) - expected.astype(np.float32))) assert observed.shape == expected.shape assert d_max <= 1.0 + 1e-4 # resizing of segmap to image arr = np.int32([ [0, 1, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=2) image = np.uint8([ [0, 10, 20], [30, 40, 50], [60, 70, 80] ]) image = np.tile(image[:, :, np.newaxis], (1, 1, 3)) a1 = 0.7 a0 = 1.0 - a1 observed = segmap.draw_on_image(image, alpha=a1, draw_background=True, resize="segmentation_map") expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) expected = a0 * image + a1 * expected d_max = np.max(np.abs(observed.astype(np.float32) - expected.astype(np.float32))) assert observed.shape == expected.shape assert d_max <= 1.0 + 1e-4 # resizing of image to segmap arr = np.int32([ [0, 1, 1], [0, 1, 1], [0, 1, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(1, 3), nb_classes=2) image = np.uint8([ [0, 10, 20] ]) image = np.tile(image[:, :, np.newaxis], (1, 1, 3)) image_rs = ia.imresize_single_image(image, arr.shape[0:2], interpolation="cubic") a1 = 0.7 a0 = 1.0 - a1 observed = segmap.draw_on_image(image, alpha=a1, draw_background=True, resize="image") expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) expected = a0 * image_rs + a1 * expected d_max = np.max(np.abs(observed.astype(np.float32) - expected.astype(np.float32))) assert observed.shape == expected.shape assert d_max <= 1.0 + 1e-4 def test_SegmentationMapOnImage_pad(): arr = np.int32([ [0, 1, 1], [0, 2, 1], [0, 1, 3] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=4) segmap_padded = segmap.pad(top=1, right=2, bottom=3, left=4) observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 3), (4, 2), (0, 0)), mode="constant", constant_values=0) assert np.allclose(observed, expected) segmap_padded = segmap.pad(top=1, right=2, bottom=3, left=4, cval=1.0) observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 3), (4, 2), (0, 0)), mode="constant", constant_values=1.0) assert np.allclose(observed, expected) segmap_padded = segmap.pad(top=1, right=2, bottom=3, left=4, mode="edge") observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 3), (4, 2), (0, 0)), mode="edge") assert np.allclose(observed, expected) def test_SegmentationMapOnImage_pad_to_aspect_ratio(): arr = np.int32([ [0, 1, 1], [0, 2, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(2, 3), nb_classes=3) segmap_padded = segmap.pad_to_aspect_ratio(1.0) observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 0), (0, 0), (0, 0)), mode="constant", constant_values=0) assert np.allclose(observed, expected) segmap_padded = segmap.pad_to_aspect_ratio(1.0, cval=1.0) observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 0), (0, 0), (0, 0)), mode="constant", constant_values=1.0) assert np.allclose(observed, expected) segmap_padded = segmap.pad_to_aspect_ratio(1.0, mode="edge") observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 0), (0, 0), (0, 0)), mode="edge") assert np.allclose(observed, expected) segmap_padded = segmap.pad_to_aspect_ratio(0.5) observed = segmap_padded.arr expected = np.pad(segmap.arr, ((2, 2), (0, 0), (0, 0)), mode="constant", constant_values=0) assert np.allclose(observed, expected) segmap_padded, pad_amounts = segmap.pad_to_aspect_ratio(0.5, return_pad_amounts=True) observed = segmap_padded.arr expected = np.pad(segmap.arr, ((2, 2), (0, 0), (0, 0)), mode="constant", constant_values=0) assert np.allclose(observed, expected) assert pad_amounts == (2, 0, 2, 0) def test_SegmentationMapOnImage_scale(): arr = np.int32([ [0, 1], [0, 2] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2), nb_classes=3) segmap_scaled = segmap.scale((4, 4)) observed = segmap_scaled.arr expected = np.clip(ia.imresize_single_image(segmap.arr, (4, 4), interpolation="cubic"), 0, 1.0) assert np.allclose(observed, expected) assert np.array_equal(segmap_scaled.get_arr_int(), np.int32([ [0, 0, 1, 1], [0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 2, 2], ])) segmap_scaled = segmap.scale((4, 4), interpolation="nearest") observed = segmap_scaled.arr expected = ia.imresize_single_image(segmap.arr, (4, 4), interpolation="nearest") assert np.allclose(observed, expected) assert np.array_equal(segmap_scaled.get_arr_int(), np.int32([ [0, 0, 1, 1], [0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 2, 2], ])) segmap_scaled = segmap.scale(2.0) observed = segmap_scaled.arr expected = np.clip(ia.imresize_single_image(segmap.arr, 2.0, interpolation="cubic"), 0, 1.0) assert np.allclose(observed, expected) assert np.array_equal(segmap_scaled.get_arr_int(), np.int32([ [0, 0, 1, 1], [0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 2, 2], ])) def test_SegmentationMapOnImage_to_heatmaps(): arr = np.int32([ [0, 1], [0, 2] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2), nb_classes=3) heatmaps = segmap.to_heatmaps() expected_c0 = np.float32([ [1.0, 0.0], [1.0, 0.0] ]) expected_c1 = np.float32([ [0.0, 1.0], [0.0, 0.0] ]) expected_c2 = np.float32([ [0.0, 0.0], [0.0, 1.0] ]) expected = np.concatenate([ expected_c0[..., np.newaxis], expected_c1[..., np.newaxis], expected_c2[..., np.newaxis] ], axis=2) assert np.allclose(heatmaps.arr_0to1, expected) # only_nonempty when all are nonempty heatmaps, class_indices = segmap.to_heatmaps(only_nonempty=True) expected_c0 = np.float32([ [1.0, 0.0], [1.0, 0.0] ]) expected_c1 = np.float32([ [0.0, 1.0], [0.0, 0.0] ]) expected_c2 = np.float32([ [0.0, 0.0], [0.0, 1.0] ]) expected = np.concatenate([ expected_c0[..., np.newaxis], expected_c1[..., np.newaxis], expected_c2[..., np.newaxis] ], axis=2) assert np.allclose(heatmaps.arr_0to1, expected) assert len(class_indices) == 3 assert [idx in class_indices for idx in [0, 1, 2]] # only_nonempty when one is empty and two are nonempty arr = np.int32([ [0, 2], [0, 2] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2), nb_classes=3) heatmaps, class_indices = segmap.to_heatmaps(only_nonempty=True) expected_c0 = np.float32([ [1.0, 0.0], [1.0, 0.0] ]) expected_c2 = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) expected = np.concatenate([ expected_c0[..., np.newaxis], expected_c2[..., np.newaxis] ], axis=2) assert np.allclose(heatmaps.arr_0to1, expected) assert len(class_indices) == 2 assert [idx in class_indices for idx in [0, 2]] # only_nonempty when all are empty arr_c0 = np.float32([ [0.0, 0.0], [0.0, 0.0] ]) arr = arr_c0[..., np.newaxis] segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2), nb_classes=3) heatmaps, class_indices = segmap.to_heatmaps(only_nonempty=True) assert heatmaps is None assert len(class_indices) == 0 # only_nonempty when all are empty and not_none_if_no_nonempty is True arr_c0 = np.float32([ [0.0, 0.0], [0.0, 0.0] ]) arr = arr_c0[..., np.newaxis] segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2), nb_classes=3) heatmaps, class_indices = segmap.to_heatmaps(only_nonempty=True, not_none_if_no_nonempty=True) assert np.allclose(heatmaps.arr_0to1, np.zeros((2, 2), dtype=np.float32)) assert len(class_indices) == 1 assert [idx in class_indices for idx in [0]] def test_SegmentationMapOnImage_from_heatmaps(): arr_c0 = np.float32([ [1.0, 0.0], [1.0, 0.0] ]) arr_c1 = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) arr = np.concatenate([arr_c0[..., np.newaxis], arr_c1[..., np.newaxis]], axis=2) heatmaps = ia.HeatmapsOnImage.from_0to1(arr, shape=(2, 2)) segmap = ia.SegmentationMapOnImage.from_heatmaps(heatmaps) assert np.allclose(segmap.arr, arr) # with class_indices arr_c0 = np.float32([ [1.0, 0.0], [1.0, 0.0] ]) arr_c2 = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) arr = np.concatenate([arr_c0[..., np.newaxis], arr_c2[..., np.newaxis]], axis=2) heatmaps = ia.HeatmapsOnImage.from_0to1(arr, shape=(2, 2)) segmap = ia.SegmentationMapOnImage.from_heatmaps(heatmaps, class_indices=[0, 2], nb_classes=4) expected_c0 = np.copy(arr_c0) expected_c1 = np.zeros(arr_c0.shape) expected_c2 = np.copy(arr_c2) expected_c3 = np.zeros(arr_c0.shape) expected = np.concatenate([ expected_c0[..., np.newaxis], expected_c1[..., np.newaxis], expected_c2[..., np.newaxis], expected_c3[..., np.newaxis] ], axis=2) assert np.allclose(segmap.arr, expected) def test_SegmentationMapOnImage_copy(): arr_c0 = np.float32([ [1.0, 0.0], [1.0, 0.0] ]) arr_c1 = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) arr = np.concatenate([arr_c0[..., np.newaxis], arr_c1[..., np.newaxis]], axis=2) segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2)) observed = segmap.copy() assert np.allclose(observed.arr, segmap.arr) assert observed.shape == (2, 2) assert observed.nb_classes == segmap.nb_classes assert observed.input_was == segmap.input_was arr = np.int32([ [0, 1], [2, 3] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2), nb_classes=10) observed = segmap.copy() assert np.array_equal(observed.get_arr_int(), arr) assert observed.shape == (2, 2) assert observed.nb_classes == 10 assert observed.input_was == segmap.input_was def test_SegmentationMapOnImage_deepcopy(): arr_c0 = np.float32([ [1.0, 0.0], [1.0, 0.0] ]) arr_c1 = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) arr = np.concatenate([arr_c0[..., np.newaxis], arr_c1[..., np.newaxis]], axis=2) segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2)) observed = segmap.deepcopy() assert np.allclose(observed.arr, segmap.arr) assert observed.shape == (2, 2) assert observed.nb_classes == segmap.nb_classes assert observed.input_was == segmap.input_was segmap.arr[0, 0, 0] = 0.0 assert not np.allclose(observed.arr, segmap.arr) arr = np.int32([ [0, 1], [2, 3] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(2, 2), nb_classes=10) observed = segmap.deepcopy() assert np.array_equal(observed.get_arr_int(), segmap.get_arr_int()) assert observed.shape == (2, 2) assert observed.nb_classes == 10 assert observed.input_was == segmap.input_was segmap.arr[0, 0, 0] = 0.0 segmap.arr[0, 0, 1] = 1.0 assert not np.array_equal(observed.get_arr_int(), segmap.get_arr_int()) def test_Polygon___init__(): # exterior is list of Keypoint or poly = ia.Polygon([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=0.5, y=2.5)]) assert poly.exterior.dtype.type == np.float32 assert np.allclose( poly.exterior, np.float32([ [0.0, 0.0], [1.0, 1.0], [0.5, 2.5] ]) ) # exterior is list of tuple of floats poly = ia.Polygon([(0.0, 0.0), (1.0, 1.0), (0.5, 2.5)]) assert poly.exterior.dtype.type == np.float32 assert np.allclose( poly.exterior, np.float32([ [0.0, 0.0], [1.0, 1.0], [0.5, 2.5] ]) ) # exterior is list of tuple of integer poly = ia.Polygon([(0, 0), (1, 1), (1, 3)]) assert poly.exterior.dtype.type == np.float32 assert np.allclose( poly.exterior, np.float32([ [0.0, 0.0], [1.0, 1.0], [1.0, 3.0] ]) ) # exterior is (N,2) ndarray poly = ia.Polygon( np.float32([ [0.0, 0.0], [1.0, 1.0], [0.5, 2.5] ]) ) assert poly.exterior.dtype.type == np.float32 assert np.allclose( poly.exterior, np.float32([ [0.0, 0.0], [1.0, 1.0], [0.5, 2.5] ]) ) # exterior is (N,2) ndarray in float64 poly = ia.Polygon( np.float64([ [0.0, 0.0], [1.0, 1.0], [0.5, 2.5] ]) ) assert poly.exterior.dtype.type == np.float32 assert np.allclose( poly.exterior, np.float32([ [0.0, 0.0], [1.0, 1.0], [0.5, 2.5] ]) ) # arrays without points poly = ia.Polygon([]) assert poly.exterior.dtype.type == np.float32 assert poly.exterior.shape == (0, 2) poly = ia.Polygon(np.zeros((0, 2), dtype=np.float32)) assert poly.exterior.dtype.type == np.float32 assert poly.exterior.shape == (0, 2) # bad array shape got_exception = False try: _ = ia.Polygon(np.zeros((8,), dtype=np.float32)) except: got_exception = True assert got_exception # label poly = ia.Polygon([(0, 0)]) assert poly.label is None poly = ia.Polygon([(0, 0)], label="test") assert poly.label == "test" def test_Polygon_xx(): poly = ia.Polygon([(0, 0), (1, 0), (1.5, 0), (4.1, 1), (2.9, 2.0)]) assert poly.xx.dtype.type == np.float32 assert np.allclose(poly.xx, np.float32([0.0, 1.0, 1.5, 4.1, 2.9])) poly = ia.Polygon([]) assert poly.xx.dtype.type == np.float32 assert poly.xx.shape == (0,) def test_Polygon_yy(): poly = ia.Polygon([(0, 0), (0, 1), (0, 1.5), (1, 4.1), (2.0, 2.9)]) assert poly.yy.dtype.type == np.float32 assert np.allclose(poly.yy, np.float32([0.0, 1.0, 1.5, 4.1, 2.9])) poly = ia.Polygon([]) assert poly.yy.dtype.type == np.float32 assert poly.yy.shape == (0,) def test_Polygon_xx_int(): poly = ia.Polygon([(0, 0), (1, 0), (1.5, 0), (4.1, 1), (2.9, 2.0)]) assert poly.xx_int.dtype.type == np.int32 assert np.allclose(poly.xx_int, np.int32([0, 1, 2, 4, 3])) poly = ia.Polygon([]) assert poly.xx_int.dtype.type == np.int32 assert poly.xx_int.shape == (0,) def test_Polygon_yy_int(): poly = ia.Polygon([(0, 0), (0, 1), (0, 1.5), (1, 4.1), (2.0, 2.9)]) assert poly.yy_int.dtype.type == np.int32 assert np.allclose(poly.yy_int, np.int32([0, 1, 2, 4, 3])) poly = ia.Polygon([]) assert poly.yy_int.dtype.type == np.int32 assert poly.yy_int.shape == (0,) def test_Polygon_is_valid(): poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) assert poly.is_valid poly = ia.Polygon([]) assert not poly.is_valid poly = ia.Polygon([(0, 0)]) assert not poly.is_valid poly = ia.Polygon([(0, 0), (1, 0)]) assert not poly.is_valid poly = ia.Polygon([(0, 0), (1, 0), (-1, 0.5), (1, 1), (0, 1)]) assert not poly.is_valid poly = ia.Polygon([(0, 0), (1, 0), (1, 0), (1, 1), (0, 1)]) assert poly.is_valid def test_Polygon_area(): poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) assert poly.area == 1 assert 1.0 - 1e-8 < poly.area < 1.0 + 1e-8 poly = ia.Polygon([(0, 0), (2, 0), (2, 1), (0, 1)]) assert poly.area == 2 assert 2.0 - 1e-8 < poly.area < 2.0 + 1e-8 poly = ia.Polygon([(0, 0), (1, 1), (0, 1)]) assert 1/2 - 1e-8 < poly.area < 1/2 + 1e-8 def test_Polygon_project(): poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) poly_proj = poly.project((1, 1), (1, 1)) assert poly_proj.exterior.dtype.type == np.float32 assert poly_proj.exterior.shape == (4, 2) assert np.allclose( poly_proj.exterior, np.float32([ [0, 0], [1, 0], [1, 1], [0, 1] ]) ) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) poly_proj = poly.project((1, 1), (2, 2)) assert poly_proj.exterior.dtype.type == np.float32 assert poly_proj.exterior.shape == (4, 2) assert np.allclose( poly_proj.exterior, np.float32([ [0, 0], [2, 0], [2, 2], [0, 2] ]) ) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) poly_proj = poly.project((1, 1), (2, 1)) assert poly_proj.exterior.dtype.type == np.float32 assert poly_proj.exterior.shape == (4, 2) assert np.allclose( poly_proj.exterior, np.float32([ [0, 0], [1, 0], [1, 2], [0, 2] ]) ) poly = ia.Polygon([]) poly_proj = poly.project((1, 1), (2, 2)) assert poly_proj.exterior.dtype.type == np.float32 assert poly_proj.exterior.shape == (0, 2) def test_Polygon__compute_inside_image_point_mask(): poly = ia.Polygon([(0, 0), (0.999, 0), (0.999, 0.999), (0, 0.999)]) mask = poly._compute_inside_image_point_mask((1, 1, 3)) assert np.array_equal(mask, np.array([True, True, True, True], dtype=bool)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) mask = poly._compute_inside_image_point_mask((1, 1, 3)) assert np.array_equal(mask, np.array([True, False, False, False], dtype=bool)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) mask = poly._compute_inside_image_point_mask((1, 1)) assert np.array_equal(mask, np.array([True, False, False, False], dtype=bool)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) mask = poly._compute_inside_image_point_mask(np.zeros((1, 1, 3), dtype=np.uint8)) assert np.array_equal(mask, np.array([True, False, False, False], dtype=bool)) def test_Polygon_is_fully_within_image(): poly = ia.Polygon([(0, 0), (0.999, 0), (0.999, 0.999), (0, 0.999)]) assert poly.is_fully_within_image((1, 1, 3)) poly = ia.Polygon([(0, 0), (0.999, 0), (0.999, 0.999), (0, 0.999)]) assert poly.is_fully_within_image((1, 1)) poly = ia.Polygon([(0, 0), (0.999, 0), (0.999, 0.999), (0, 0.999)]) assert poly.is_fully_within_image(np.zeros((1, 1, 3), dtype=np.uint8)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) assert not poly.is_fully_within_image((1, 1, 3)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) assert not poly.is_fully_within_image((1, 1)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) assert not poly.is_fully_within_image(np.zeros((1, 1, 3), dtype=np.uint8)) poly = ia.Polygon([(100, 100), (101, 100), (101, 101), (100, 101)]) assert not poly.is_fully_within_image((1, 1, 3)) def test_Polygon_is_partly_within_image(): poly = ia.Polygon([(0, 0), (0.999, 0), (0.999, 0.999), (0, 0.999)]) assert poly.is_partly_within_image((1, 1, 3)) poly = ia.Polygon([(0, 0), (0.999, 0), (0.999, 0.999), (0, 0.999)]) assert poly.is_partly_within_image((1, 1)) poly = ia.Polygon([(0, 0), (0.999, 0), (0.999, 0.999), (0, 0.999)]) assert poly.is_partly_within_image(np.zeros((1, 1, 3), dtype=np.uint8)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) assert poly.is_partly_within_image((1, 1, 3)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) assert poly.is_partly_within_image((1, 1)) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) assert poly.is_partly_within_image(np.zeros((1, 1, 3), dtype=np.uint8)) poly = ia.Polygon([(100, 100), (101, 100), (101, 101), (100, 101)]) assert not poly.is_partly_within_image((1, 1, 3)) poly = ia.Polygon([(100, 100), (101, 100), (101, 101), (100, 101)]) assert not poly.is_partly_within_image((1, 1)) poly = ia.Polygon([(100, 100), (101, 100), (101, 101), (100, 101)]) assert not poly.is_partly_within_image(np.zeros((1, 1, 3), dtype=np.uint8)) def test_Polygon_is_out_of_image(): for shape in [(1, 1, 3), (1, 1), np.zeros((1, 1, 3), dtype=np.uint8)]: poly = ia.Polygon([(0, 0), (0.999, 0), (0.999, 0.999), (0, 0.999)]) assert not poly.is_out_of_image(shape, partly=False, fully=False) assert not poly.is_out_of_image(shape, partly=True, fully=False) assert not poly.is_out_of_image(shape, partly=False, fully=True) assert not poly.is_out_of_image(shape, partly=True, fully=True) poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]) shape = np.zeros((1, 1, 3), dtype=np.uint8) assert not poly.is_out_of_image(shape, partly=False, fully=False) assert poly.is_out_of_image(shape, partly=True, fully=False) assert not poly.is_out_of_image(shape, partly=False, fully=True) assert poly.is_out_of_image(shape, partly=True, fully=True) poly = ia.Polygon([(100, 100), (101, 100), (101, 101), (100, 101)]) shape = (1, 1, 3) assert not poly.is_out_of_image(shape, partly=False, fully=False) assert not poly.is_out_of_image(shape, partly=True, fully=False) assert poly.is_out_of_image(shape, partly=False, fully=True) assert poly.is_out_of_image(shape, partly=True, fully=True) def test_Polygon_cut_out_of_image(): _test_Polygon_cut_clip(lambda poly, image: poly.cut_out_of_image(image)) def test_Polygon_clip_out_of_image(): _test_Polygon_cut_clip(lambda poly, image: poly.clip_out_of_image(image)) def _test_Polygon_cut_clip(func): # poly inside image poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)], label=None) image = np.zeros((1, 1, 3), dtype=np.uint8) multipoly_clipped = func(poly, image) assert isinstance(multipoly_clipped, ia.MultiPolygon) assert len(multipoly_clipped.geoms) == 1 assert multipoly_clipped.geoms[0].exterior_almost_equals(poly.exterior) assert multipoly_clipped.geoms[0].label is None # square poly shifted by x=0.5, y=0.5 => half out of image poly = ia.Polygon([(0.5, 0.5), (1.5, 0.5), (1.5, 1.5), (0.5, 1.5)], label="test") image = np.zeros((1, 1, 3), dtype=np.uint8) multipoly_clipped = func(poly, image) assert isinstance(multipoly_clipped, ia.MultiPolygon) assert len(multipoly_clipped.geoms) == 1 assert multipoly_clipped.geoms[0].exterior_almost_equals(np.float32([ [0.5, 0.5], [1.0, 0.5], [1.0, 1.0], [0.5, 1.0] ])) assert multipoly_clipped.geoms[0].label == "test" # non-square poly, with one rectangle on the left side of the image and one on the right side, # both sides are connected by a thin strip below the image # after clipping it should become two rectangles poly = ia.Polygon([(-0.1, 0.0), (0.4, 0.0), (0.4, 1.1), (0.6, 1.1), (0.6, 0.0), (1.1, 0.0), (1.1, 1.2), (-0.1, 1.2)], label="test") image = np.zeros((1, 1, 3), dtype=np.uint8) multipoly_clipped = func(poly, image) assert isinstance(multipoly_clipped, ia.MultiPolygon) assert len(multipoly_clipped.geoms) == 2 assert multipoly_clipped.geoms[0].exterior_almost_equals(np.float32([ [0.0, 0.0], [0.4, 0.0], [0.4, 1.0], [0.0, 1.0] ])) assert multipoly_clipped.geoms[0].label == "test" assert multipoly_clipped.geoms[1].exterior_almost_equals(np.float32([ [0.6, 0.0], [1.0, 0.0], [1.0, 1.0], [0.6, 1.0] ])) assert multipoly_clipped.geoms[0].label == "test" def test_Polygon_shift(): poly = ia.Polygon([(0, 0), (1, 0), (1, 1), (0, 1)], label="test") # make sure that shift does not change poly inplace poly_shifted = poly.shift(top=1) assert np.allclose(poly.exterior, np.float32([ [0, 0], [1, 0], [1, 1], [0, 1] ])) assert np.allclose(poly_shifted.exterior, np.float32([ [0, 1], [1, 1], [1, 2], [0, 2] ])) for v in [1, 0, -1, 0.5]: # top/bottom poly_shifted = poly.shift(top=v) assert np.allclose(poly_shifted.exterior, np.float32([ [0, 0 + v], [1, 0 + v], [1, 1 + v], [0, 1 + v] ])) assert poly_shifted.label == "test" poly_shifted = poly.shift(bottom=v) assert np.allclose(poly_shifted.exterior, np.float32([ [0, 0 - v], [1, 0 - v], [1, 1 - v], [0, 1 - v] ])) assert poly_shifted.label == "test" poly_shifted = poly.shift(top=v, bottom=-v) assert np.allclose(poly_shifted.exterior, np.float32([ [0, 0 + 2*v], [1, 0 + 2*v], [1, 1 + 2*v], [0, 1 + 2*v] ])) assert poly_shifted.label == "test" # left/right poly_shifted = poly.shift(left=v) assert np.allclose(poly_shifted.exterior, np.float32([ [0 + v, 0], [1 + v, 0], [1 + v, 1], [0 + v, 1] ])) assert poly_shifted.label == "test" poly_shifted = poly.shift(right=v) assert np.allclose(poly_shifted.exterior, np.float32([ [0 - v, 0], [1 - v, 0], [1 - v, 1], [0 - v, 1] ])) assert poly_shifted.label == "test" poly_shifted = poly.shift(left=v, right=-v) assert np.allclose(poly_shifted.exterior, np.float32([ [0 + 2 * v, 0], [1 + 2 * v, 0], [1 + 2 * v, 1], [0 + 2 * v, 1] ])) assert poly_shifted.label == "test" def test_Polygon_draw_on_image(): image = np.tile(np.arange(100).reshape(10, 10, 1), (1, 1, 3)).astype(np.uint8) # simple drawing of square poly = ia.Polygon([(2, 2), (8, 2), (8, 8), (2, 8)]) image_poly = poly.draw_on_image(image, color=[32, 128, 32], color_perimeter=[0, 255, 0], alpha=1.0, alpha_perimeter=1.0, raise_if_out_of_image=False) assert image_poly.dtype.type == np.uint8 assert image_poly.shape == (10, 10, 3) assert np.sum(image) == 3 * np.sum(np.arange(100)) # draw did not change original image (copy=True) for c_idx, value in enumerate([0, 255, 0]): assert np.all(image_poly[2:9, 2:3, c_idx] == np.zeros((7, 1), dtype=np.uint8) + value) # left boundary assert np.all(image_poly[2:9, 8:9, c_idx] == np.zeros((7, 1), dtype=np.uint8) + value) # right boundary assert np.all(image_poly[2:3, 2:9, c_idx] == np.zeros((1, 7), dtype=np.uint8) + value) # top boundary assert np.all(image_poly[8:9, 2:9, c_idx] == np.zeros((1, 7), dtype=np.uint8) + value) # bottom boundary expected = np.tile(np.uint8([32, 128, 32]).reshape((1, 1, 3)), (5, 5, 1)) assert np.all(image_poly[3:8, 3:8, :] == expected) # TODO test drawing on float32, float64 image # drawing of poly that is half out of image poly = ia.Polygon([(2, 2+5), (8, 2+5), (8, 8+5), (2, 8+5)]) image_poly = poly.draw_on_image(image, color=[32, 128, 32], color_perimeter=[0, 255, 0], alpha=1.0, alpha_perimeter=1.0, raise_if_out_of_image=False) assert image_poly.dtype.type == np.uint8 assert image_poly.shape == (10, 10, 3) assert np.sum(image) == 3 * np.sum(np.arange(100)) # draw did not change original image (copy=True) for c_idx, value in enumerate([0, 255, 0]): assert np.all(image_poly[2+5:, 2:3, c_idx] == np.zeros((3, 1), dtype=np.uint8) + value) # left boundary assert np.all(image_poly[2+5:, 8:9, c_idx] == np.zeros((3, 1), dtype=np.uint8) + value) # right boundary assert np.all(image_poly[2+5:3+5, 2:9, c_idx] == np.zeros((1, 7), dtype=np.uint8) + value) # top boundary expected = np.tile(np.uint8([32, 128, 32]).reshape((1, 1, 3)), (2, 5, 1)) assert np.all(image_poly[3+5:, 3:8, :] == expected) # drawing of poly that is half out of image, with raise_if_out_of_image=True poly = ia.Polygon([(2, 2+5), (8, 2+5), (8, 8+5), (0, 8+5)]) got_exception = False try: _ = poly.draw_on_image(image, color=[32, 128, 32], color_perimeter=[0, 255, 0], alpha=1.0, alpha_perimeter=1.0, raise_if_out_of_image=True) except Exception as exc: assert "Cannot draw polygon" in str(exc) got_exception = True assert not got_exception # only polygons fully outside of the image plane lead to exceptions # drawing of poly that is fully out of image poly = ia.Polygon([(100, 100), (100+10, 100), (100+10, 100+10), (100, 100+10)]) image_poly = poly.draw_on_image(image, color=[32, 128, 32], color_perimeter=[0, 255, 0], alpha=1.0, alpha_perimeter=1.0, raise_if_out_of_image=False) assert np.array_equal(image_poly, image) # drawing of poly that is fully out of image, with raise_if_out_of_image=True poly = ia.Polygon([(100, 100), (100+10, 100), (100+10, 100+10), (100, 100+10)]) got_exception = False try: _ = poly.draw_on_image(image, color=[32, 128, 32], color_perimeter=[0, 255, 0], alpha=1.0, alpha_perimeter=1.0, raise_if_out_of_image=True) except Exception as exc: assert "Cannot draw polygon" in str(exc) got_exception = True assert got_exception # face invisible via alpha poly = ia.Polygon([(2, 2), (8, 2), (8, 8), (2, 8)]) image_poly = poly.draw_on_image(image, color=[32, 128, 32], color_perimeter=[0, 255, 0], alpha=0.0, alpha_perimeter=1.0, raise_if_out_of_image=False) assert image_poly.dtype.type == np.uint8 assert image_poly.shape == (10, 10, 3) assert np.sum(image) == 3 * np.sum(np.arange(100)) # draw did not change original image (copy=True) for c_idx, value in enumerate([0, 255, 0]): assert np.all(image_poly[2:9, 2:3, c_idx] == np.zeros((7, 1), dtype=np.uint8) + value) # left boundary assert np.all(image_poly[3:8, 3:8, :] == image[3:8, 3:8, :]) # boundary invisible via alpha poly = ia.Polygon([(2, 2), (8, 2), (8, 8), (2, 8)]) image_poly = poly.draw_on_image(image, color=[32, 128, 32], color_perimeter=[0, 255, 0], alpha=1.0, alpha_perimeter=0.0, raise_if_out_of_image=False) assert image_poly.dtype.type == np.uint8 assert image_poly.shape == (10, 10, 3) assert np.sum(image) == 3 * np.sum(np.arange(100)) # draw did not change original image (copy=True) expected = np.tile(np.uint8([32, 128, 32]).reshape((1, 1, 3)), (6, 6, 1)) assert np.all(image_poly[2:8, 2:8, :] == expected) # copy=False # test deactivated as the function currently does not offer a copy argument """ image_cp = np.copy(image) poly = ia.Polygon([(2, 2), (8, 2), (8, 8), (2, 8)]) image_poly = poly.draw_on_image(image_cp, color_face=[32, 128, 32], color_boundary=[0, 255, 0], alpha_face=1.0, alpha_boundary=1.0, raise_if_out_of_image=False) assert image_poly.dtype.type == np.uint8 assert image_poly.shape == (10, 10, 3) assert np.all(image_cp == image_poly) assert not np.all(image_cp == image) for c_idx, value in enumerate([0, 255, 0]): assert np.all(image_poly[2:9, 2:3, c_idx] == np.zeros((6, 1, 3), dtype=np.uint8) + value) # left boundary assert np.all(image_cp[2:9, 2:3, c_idx] == np.zeros((6, 1, 3), dtype=np.uint8) + value) # left boundary expected = np.tile(np.uint8([32, 128, 32]).reshape((1, 1, 3)), (5, 5, 1)) assert np.all(image_poly[3:8, 3:8, :] == expected) assert np.all(image_cp[3:8, 3:8, :] == expected) """ def test_Polygon_extract_from_image(): image = np.arange(20*20*2).reshape(20, 20, 2).astype(np.int32) # inside image and completely covers it poly = ia.Polygon([(0, 0), (10, 0), (10, 10), (0, 10)]) subimage = poly.extract_from_image(image) assert np.array_equal(subimage, image[0:10, 0:10, :]) # inside image, subpart of it (not all may be extracted) poly = ia.Polygon([(1, 1), (9, 1), (9, 9), (1, 9)]) subimage = poly.extract_from_image(image) assert np.array_equal(subimage, image[1:9, 1:9, :]) # inside image, two image areas that don't belong to the polygon but have to be extracted poly = ia.Polygon([(0, 0), (10, 0), (10, 5), (20, 5), (20, 20), (10, 20), (10, 5), (0, 5)]) subimage = poly.extract_from_image(image) expected = np.copy(image) expected[:5, 10:, :] = 0 # top right block expected[5:, :10, :] = 0 # left bottom block assert np.array_equal(subimage, expected) # partially out of image poly = ia.Polygon([(-5, 0), (5, 0), (5, 10), (-5, 10)]) subimage = poly.extract_from_image(image) expected = np.zeros((10, 10, 2), dtype=np.int32) expected[0:10, 5:10, :] = image[0:10, 0:5, :] assert np.array_equal(subimage, expected) # fully out of image poly = ia.Polygon([(30, 0), (40, 0), (40, 10), (30, 10)]) subimage = poly.extract_from_image(image) expected = np.zeros((10, 10, 2), dtype=np.int32) assert np.array_equal(subimage, expected) # inside image, subpart of it # float coordinates, rounded so that the whole image will be extracted poly = ia.Polygon([(0.4, 0.4), (9.6, 0.4), (9.6, 9.6), (0.4, 9.6)]) subimage = poly.extract_from_image(image) assert np.array_equal(subimage, image[0:10, 0:10, :]) # inside image, subpart of it # float coordinates, rounded so that x/y 0<=i<9 will be extracted (instead of 0<=i<10) poly = ia.Polygon([(0.5, 0.5), (9.4, 0.5), (9.4, 9.4), (0.5, 9.4)]) subimage = poly.extract_from_image(image) assert np.array_equal(subimage, image[0:9, 0:9, :]) # inside image, subpart of it # float coordinates, rounded so that x/y 1<=i<9 will be extracted (instead of 0<=i<10) poly = ia.Polygon([(0.51, 0.51), (9.4, 0.51), (9.4, 9.4), (0.51, 9.4)]) subimage = poly.extract_from_image(image) assert np.array_equal(subimage, image[1:9, 1:9, :]) def test_Polygon_change_first_point_by_coords(): poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) poly_reordered = poly.change_first_point_by_coords(x=0, y=0) assert np.allclose(poly.exterior, poly_reordered.exterior) poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) poly_reordered = poly.change_first_point_by_coords(x=1, y=0) # make sure that it does not reorder inplace assert np.allclose(poly.exterior, np.float32([[0, 0], [1, 0], [1, 1]])) assert np.allclose(poly_reordered.exterior, np.float32([[1, 0], [1, 1], [0, 0]])) poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) poly_reordered = poly.change_first_point_by_coords(x=1, y=1) assert np.allclose(poly_reordered.exterior, np.float32([[1, 1], [0, 0], [1, 0]])) # inaccurate point, but close enough poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) poly_reordered = poly.change_first_point_by_coords(x=1.0, y=0.01, max_distance=0.1) assert np.allclose(poly_reordered.exterior, np.float32([[1, 0], [1, 1], [0, 0]])) # inaccurate point, but close enough (infinite max distance) poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) poly_reordered = poly.change_first_point_by_coords(x=1.0, y=0.01, max_distance=None) assert np.allclose(poly_reordered.exterior, np.float32([[1, 0], [1, 1], [0, 0]])) # point too far away poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) got_exception = False try: _ = poly.change_first_point_by_coords(x=1.0, y=0.01, max_distance=0.001) except Exception as exc: assert "Closest found point " in str(exc) got_exception = True assert got_exception # reorder with two points poly = ia.Polygon([(0, 0), (1, 0)]) poly_reordered = poly.change_first_point_by_coords(x=1, y=0) assert np.allclose(poly_reordered.exterior, np.float32([[1, 0], [0, 0]])) # reorder with one point poly = ia.Polygon([(0, 0)]) poly_reordered = poly.change_first_point_by_coords(x=0, y=0) assert np.allclose(poly_reordered.exterior, np.float32([[0, 0]])) def test_Polygon_change_first_point_by_index(): poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) poly_reordered = poly.change_first_point_by_index(0) assert np.allclose(poly.exterior, poly_reordered.exterior) poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) poly_reordered = poly.change_first_point_by_index(1) # make sure that it does not reorder inplace assert np.allclose(poly.exterior, np.float32([[0, 0], [1, 0], [1, 1]])) assert np.allclose(poly_reordered.exterior, np.float32([[1, 0], [1, 1], [0, 0]])) poly = ia.Polygon([(0, 0), (1, 0), (1, 1)]) poly_reordered = poly.change_first_point_by_index(2) assert np.allclose(poly_reordered.exterior, np.float32([[1, 1], [0, 0], [1, 0]])) # reorder with two points poly = ia.Polygon([(0, 0), (1, 0)]) poly_reordered = poly.change_first_point_by_index(1) assert np.allclose(poly_reordered.exterior, np.float32([[1, 0], [0, 0]])) # reorder with one point poly = ia.Polygon([(0, 0)]) poly_reordered = poly.change_first_point_by_index(0) assert np.allclose(poly_reordered.exterior,
np.float32([[0, 0]])
numpy.float32
import copy import numpy as np from Classes.Uncertainty import Uncertainty from Classes.QComp import QComp from Classes.MovingBedTests import MovingBedTests from Classes.TransectData import TransectData class QAData(object): """Evaluates and stores quality assurance characteristics and messages. Attributes ---------- q_run_threshold_caution: int Caution threshold for interpolated discharge for a run of invalid ensembles, in percent. q_run_threshold_warning: int Warning threshold for interpolated discharge for a run of invalid ensembles, in percent. q_total_threshold_caution: int Caution threshold for total interpolated discharge for invalid ensembles, in percent. q_total_threshold_warning: int Warning threshold for total interpolated discharge for invalid ensembles, in percent. transects: dict Dictionary of quality assurance checks for transects system_tst: dict Dictionary of quality assurance checks on the system test(s) compass: dict Dictionary of quality assurance checks on compass calibration and evaluations temperature: dict Dictionary of quality assurance checks on temperature comparions and variation movingbed: dict Dictionary of quality assurance checks on moving-bed tests user: dict Dictionary of quality assurance checks on user input data boat: dict Dictionary of quality assurance checks on boat velocities bt_vel: dict Dictionary of quality assurance checks on bottom track velocities gga_vel: dict Dictionary of quality assurance checks on gga boat velocities vtg_vel: dict Dictionary of quality assurance checks on vtg boat velocities w_vel: dict Dictionary of quality assurance checks on water track velocities extrapolation: dict Dictionary of quality assurance checks on extrapolations edges: dict Dictionary of quality assurance checks on edges """ def __init__(self, meas, mat_struct=None, compute=True): """Checks the measurement for all quality assurance issues. Parameters ---------- meas: Measurement Object of class Measurement """ # Set default thresholds self.q_run_threshold_caution = 3 self.q_run_threshold_warning = 5 self.q_total_threshold_caution = 10 self.q_total_threshold_warning = 25 # Initialize instance variables self.transects = dict() self.system_tst = dict() self.compass = dict() self.temperature = dict() self.movingbed = dict() self.user = dict() self.depths = dict() self.boat = dict() self.bt_vel = dict() self.gga_vel = dict() self.vtg_vel = dict() self.w_vel = dict() self.extrapolation = dict() self.edges = dict() self.settings_dict = dict() self.settings_dict['tab_compass'] = 'Default' self.settings_dict['tab_tempsal'] = 'Default' self.settings_dict['tab_mbt'] = 'Default' self.settings_dict['tab_bt'] = 'Default' self.settings_dict['tab_gps'] = 'Default' self.settings_dict['tab_depth'] = 'Default' self.settings_dict['tab_wt'] = 'Default' self.settings_dict['tab_extrap'] = 'Default' self.settings_dict['tab_edges'] = 'Default' if compute: # Apply QA checks self.transects_qa(meas) self.system_tst_qa(meas) self.compass_qa(meas) self.temperature_qa(meas) self.moving_bed_qa(meas) self.user_qa(meas) self.depths_qa(meas) self.boat_qa(meas) self.water_qa(meas) self.extrapolation_qa(meas) self.edges_qa(meas) self.check_bt_setting(meas) self.check_wt_settings(meas) self.check_depth_settings(meas) self.check_gps_settings(meas) self.check_edge_settings(meas) self.check_extrap_settings(meas) self.check_tempsal_settings(meas) self.check_mbt_settings(meas) self.check_compass_settings(meas) else: self.populate_from_qrev_mat(meas, mat_struct) def populate_from_qrev_mat(self, meas, meas_struct): """Populates the object using data from previously saved QRev Matlab file. Parameters ---------- meas: Measurement Object of Measurement meas_struct: mat_struct Matlab data structure obtained from sio.loadmat """ # Generate a new QA object using the measurement data and the current QA code. # When QA checks from the current QA are not available from old QRev files, these # checks will be included to supplement the old QRev file data. new_qa = QAData(meas) if hasattr(meas_struct, 'qa'): # Set default thresholds self.q_run_threshold_caution = meas_struct.qa.qRunThresholdCaution self.q_run_threshold_warning = meas_struct.qa.qRunThresholdWarning self.q_total_threshold_caution = meas_struct.qa.qTotalThresholdCaution self.q_total_threshold_warning = meas_struct.qa.qTotalThresholdWarning # Initialize instance variables self.transects = dict() self.transects['duration'] = meas_struct.qa.transects.duration self.transects['messages'] = self.make_list(meas_struct.qa.transects.messages) self.transects['number'] = meas_struct.qa.transects.number self.transects['recip'] = meas_struct.qa.transects.recip self.transects['sign'] = meas_struct.qa.transects.sign self.transects['status'] = meas_struct.qa.transects.status self.transects['uncertainty'] = meas_struct.qa.transects.uncertainty self.system_tst = dict() self.system_tst['messages'] = self.make_list(meas_struct.qa.systemTest.messages) self.system_tst['status'] = meas_struct.qa.systemTest.status self.compass = dict() self.compass['messages'] = self.make_list(meas_struct.qa.compass.messages) self.compass['status'] = meas_struct.qa.compass.status self.compass['status1'] = meas_struct.qa.compass.status1 self.compass['status2'] = meas_struct.qa.compass.status2 # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'magvar'): self.compass['magvar'] = meas_struct.qa.compass.magvar else: self.compass['magvar'] = new_qa.compass['magvar'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'magvarIdx'): self.compass['magvar_idx'] = self.make_array(meas_struct.qa.compass.magvarIdx) else: self.compass['magvar_idx'] = new_qa.compass['magvar_idx'] # Changed mag_error_idx from bool to int array in QRevPy self.compass['mag_error_idx'] = new_qa.compass['mag_error_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'pitchMeanWarningIdx'): self.compass['pitch_mean_warning_idx'] = self.make_array(meas_struct.qa.compass.pitchMeanWarningIdx) else: self.compass['pitch_mean_warning_idx'] = new_qa.compass['pitch_mean_warning_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'rollMeanWarningIdx'): self.compass['roll_mean_warning_idx'] = self.make_array(meas_struct.qa.compass.rollMeanWarningIdx) else: self.compass['roll_mean_warning_idx'] = new_qa.compass['roll_mean_warning_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'pitchMeanCautionIdx'): self.compass['pitch_mean_caution_idx'] = self.make_array(meas_struct.qa.compass.pitchMeanCautionIdx) else: self.compass['pitch_mean_caution_idx'] = new_qa.compass['pitch_mean_caution_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'rollMeanCautionIdx'): self.compass['roll_mean_caution_idx'] = self.make_array(meas_struct.qa.compass.rollMeanCautionIdx) else: self.compass['roll_mean_caution_idx'] = new_qa.compass['roll_mean_caution_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'pitchStdCautionIdx'): self.compass['pitch_std_caution_idx'] = self.make_array(meas_struct.qa.compass.pitchStdCautionIdx) else: self.compass['pitch_std_caution_idx'] = new_qa.compass['pitch_std_caution_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'rollStdCautionIdx'): self.compass['roll_std_caution_idx'] = self.make_array(meas_struct.qa.compass.rollStdCautionIdx) else: self.compass['roll_std_caution_idx'] = new_qa.compass['roll_std_caution_idx'] self.temperature = dict() self.temperature['messages'] = self.make_list(meas_struct.qa.temperature.messages) self.temperature['status'] = meas_struct.qa.temperature.status self.movingbed = dict() self.movingbed['messages'] = self.make_list(meas_struct.qa.movingbed.messages) self.movingbed['status'] = meas_struct.qa.movingbed.status self.movingbed['code'] = meas_struct.qa.movingbed.code self.user = dict() self.user['messages'] = self.make_list(meas_struct.qa.user.messages) self.user['sta_name'] = bool(meas_struct.qa.user.staName) self.user['sta_number'] = bool(meas_struct.qa.user.staNumber) self.user['status'] = meas_struct.qa.user.status # If QA check not available, get check from new QA self.depths = self.create_qa_dict(self, meas_struct.qa.depths) if 'draft' not in self.depths: self.depths['draft'] = new_qa.depths['draft'] if 'all_invalid' not in self.depths: self.depths['all_invalid'] = new_qa.depths['all_invalid'] # If QA check not available, get check from new QA self.bt_vel = self.create_qa_dict(self, meas_struct.qa.btVel, ndim=2) if 'all_invalid' not in self.bt_vel: self.bt_vel['all_invalid'] = new_qa.bt_vel['all_invalid'] # If QA check not available, get check from new QA self.gga_vel = self.create_qa_dict(self, meas_struct.qa.ggaVel, ndim=2) if 'all_invalid' not in self.gga_vel: self.gga_vel['all_invalid'] = new_qa.gga_vel['all_invalid'] # If QA check not available, get check from new QA self.vtg_vel = self.create_qa_dict(self, meas_struct.qa.vtgVel, ndim=2) if 'all_invalid' not in self.vtg_vel: self.vtg_vel['all_invalid'] = new_qa.vtg_vel['all_invalid'] # If QA check not available, get check from new QA self.w_vel = self.create_qa_dict(self, meas_struct.qa.wVel, ndim=2) if 'all_invalid' not in self.w_vel: self.w_vel['all_invalid'] = new_qa.w_vel['all_invalid'] self.extrapolation = dict() self.extrapolation['messages'] = self.make_list(meas_struct.qa.extrapolation.messages) self.extrapolation['status'] = meas_struct.qa.extrapolation.status self.edges = dict() self.edges['messages'] = self.make_list(meas_struct.qa.edges.messages) self.edges['status'] = meas_struct.qa.edges.status self.edges['left_q'] = meas_struct.qa.edges.leftQ self.edges['right_q'] = meas_struct.qa.edges.rightQ self.edges['left_sign'] = meas_struct.qa.edges.leftSign self.edges['right_sign'] = meas_struct.qa.edges.rightSign self.edges['left_zero'] = meas_struct.qa.edges.leftzero self.edges['right_zero'] = meas_struct.qa.edges.rightzero self.edges['left_type'] = meas_struct.qa.edges.leftType self.edges['right_type'] = meas_struct.qa.edges.rightType # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'rightDistMovedIdx'): self.edges['right_dist_moved_idx'] = self.make_array(meas_struct.qa.edges.rightDistMovedIdx) else: self.edges['right_dist_moved_idx'] = new_qa.edges['right_dist_moved_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'leftDistMovedIdx'): self.edges['left_dist_moved_idx'] = self.make_array(meas_struct.qa.edges.leftDistMovedIdx) else: self.edges['left_dist_moved_idx'] = new_qa.edges['left_dist_moved_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'leftQIdx'): self.edges['left_q_idx'] = self.make_array(meas_struct.qa.edges.leftQIdx) else: self.edges['left_q_idx'] = new_qa.edges['left_q_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'rightQIdx'): self.edges['right_q_idx'] = self.make_array(meas_struct.qa.edges.rightQIdx) else: self.edges['right_q_idx'] = new_qa.edges['right_q_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'leftZeroIdx'): self.edges['left_zero_idx'] = self.make_array(meas_struct.qa.edges.leftZeroIdx) else: self.edges['left_zero_idx'] = new_qa.edges['left_zero_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'rightZeroIdx'): self.edges['right_zero_idx'] = self.make_array(meas_struct.qa.edges.rightZeroIdx) else: self.edges['right_zero_idx'] = new_qa.edges['right_zero_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'invalid_transect_left_idx'): self.edges['invalid_transect_left_idx'] = \ self.make_array(meas_struct.qa.edges.invalid_transect_left_idx) elif hasattr(meas_struct.qa.edges, 'invalidTransLeftIdx'): self.edges['invalid_transect_left_idx'] = \ self.make_array(meas_struct.qa.edges.invalidTransLeftIdx) else: self.edges['invalid_transect_left_idx'] = new_qa.edges['invalid_transect_left_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'invalid_transect_right_idx'): self.edges['invalid_transect_right_idx'] = \ self.make_array(meas_struct.qa.edges.invalid_transect_right_idx) elif hasattr(meas_struct.qa, 'invalidTransRightIdx'): self.edges['invalid_transect_right_idx'] = \ self.make_array(meas_struct.qa.edges.invalidTransRightIdx) else: self.edges['invalid_transect_right_idx'] = new_qa.edges['invalid_transect_right_idx'] if hasattr(meas_struct.qa, 'settings_dict'): self.settings_dict = dict() self.settings_dict['tab_compass'] = meas_struct.qa.settings_dict.tab_compass self.settings_dict['tab_tempsal'] = meas_struct.qa.settings_dict.tab_tempsal self.settings_dict['tab_mbt'] = meas_struct.qa.settings_dict.tab_mbt self.settings_dict['tab_bt'] = meas_struct.qa.settings_dict.tab_bt self.settings_dict['tab_gps'] = meas_struct.qa.settings_dict.tab_gps self.settings_dict['tab_depth'] = meas_struct.qa.settings_dict.tab_depth self.settings_dict['tab_wt'] = meas_struct.qa.settings_dict.tab_wt self.settings_dict['tab_extrap'] = meas_struct.qa.settings_dict.tab_extrap self.settings_dict['tab_edges'] = meas_struct.qa.settings_dict.tab_edges @staticmethod def create_qa_dict(self, mat_data, ndim=1): """Creates the dictionary used to store QA checks associated with the percent of discharge estimated by interpolation. This dictionary is used by BT, GPS, Depth, and WT. Parameters ---------- self: QAData Object of QAData mat_data: mat_struct Matlab data from QRev file """ # Initialize dictionary qa_dict = dict() # Populate dictionary from Matlab data qa_dict['messages'] = QAData.make_list(mat_data.messages) # allInvalid not available in older QRev data if hasattr(mat_data, 'allInvalid'): qa_dict['all_invalid'] = self.make_array(mat_data.allInvalid, 1).astype(bool) qa_dict['q_max_run_caution'] = self.make_array(mat_data.qRunCaution, ndim).astype(bool) qa_dict['q_max_run_warning'] = self.make_array(mat_data.qRunWarning, ndim).astype(bool) qa_dict['q_total_caution'] = self.make_array(mat_data.qTotalCaution, ndim).astype(bool) qa_dict['q_total_warning'] = self.make_array(mat_data.qTotalWarning, ndim).astype(bool) qa_dict['status'] = mat_data.status # q_max_run and q_total not available in older QRev data try: qa_dict['q_max_run'] = self.make_array(mat_data.qMaxRun, ndim) qa_dict['q_total'] = self.make_array(mat_data.qTotal, ndim) except AttributeError: qa_dict['q_max_run'] = np.tile(np.nan, (len(mat_data.qRunCaution), 6)) qa_dict['q_total'] = np.tile(np.nan, (len(mat_data.qRunCaution), 6)) return qa_dict @staticmethod def make_array(num_in, ndim=1): """Ensures that num_in is an array and if not makes it an array. num_in: any Any value or array """ if type(num_in) is np.ndarray: if len(num_in.shape) < 2 and ndim > 1: num_in = np.reshape(num_in, (1, num_in.shape[0])) return num_in else: return num_in else: return np.array([num_in]) @staticmethod def make_list(array_in): """Converts a string or array to a list. Parameters ---------- array_in: any Data to be converted to list. Returns ------- list_out: list List of array_in data """ list_out = [] # Convert string to list if type(array_in) is str: list_out = [array_in] else: # Empty array if array_in.size == 0: list_out = [] # Single message with integer codes at end elif array_in.size == 3: if type(array_in[1]) is int or len(array_in[1].strip()) == 1: temp = array_in.tolist() if len(temp) > 0: internal_list = [] for item in temp: internal_list.append(item) list_out = [internal_list] else: list_out = array_in.tolist() # Either multiple messages with or without integer codes else: list_out = array_in.tolist() return list_out def transects_qa(self, meas): """Apply quality checks to transects Parameters ---------- meas: Measurement Object of class Measurement """ # Assume good results self.transects['status'] = 'good' # Initialize keys self.transects['messages'] = [] self.transects['recip'] = 0 self.transects['sign'] = 0 self.transects['duration'] = 0 self.transects['number'] = 0 self.transects['uncertainty'] = 0 # Initialize lists checked = [] discharges = [] start_edge = [] # Populate lists for n in range(len(meas.transects)): checked.append(meas.transects[n].checked) if meas.transects[n].checked: discharges.append(meas.discharge[n]) start_edge.append(meas.transects[n].start_edge) num_checked = np.nansum(np.asarray(checked)) # Check duration total_duration = 0 if num_checked >= 1: for transect in meas.transects: if transect.checked: total_duration += transect.date_time.transect_duration_sec # Check duration against USGS policy if total_duration < 720: self.transects['status'] = 'caution' self.transects['messages'].append( ['Transects: Duration of selected transects is less than 720 seconds;', 2, 0]) self.transects['duration'] = 1 # Check transects for missing ensembles for transect in meas.transects: if transect.checked: # Determine number of missing ensembles if transect.adcp.manufacturer == 'SonTek': # Determine number of missing ensembles for SonTek data idx_missing = np.where(transect.date_time.ens_duration_sec > 1.5)[0] if len(idx_missing) > 0: average_ensemble_duration = (np.nansum(transect.date_time.ens_duration_sec) - np.nansum(transect.date_time.ens_duration_sec[idx_missing])) \ / (len(transect.date_time.ens_duration_sec) - len(idx_missing)) num_missing = np.round(np.nansum(transect.date_time.ens_duration_sec[idx_missing]) / average_ensemble_duration) - len(idx_missing) else: num_missing = 0 else: # Determine number of lost ensembles for TRDI data idx_missing = np.where(np.isnan(transect.date_time.ens_duration_sec) == True)[0] num_missing = len(idx_missing) - 1 # Save caution message if num_missing > 0: self.transects['messages'].append(['Transects: ' + str(transect.file_name) + ' is missing ' + str(int(num_missing)) + ' ensembles;', 2, 0]) self.transects['status'] = 'caution' # Check number of transects checked if num_checked == 0: # No transects selected self.transects['status'] = 'warning' self.transects['messages'].append(['TRANSECTS: No transects selected;', 1, 0]) self.transects['number'] = 2 elif num_checked == 1: # Only one transect selected self.transects['status'] = 'caution' self.transects['messages'].append(['Transects: Only one transect selected;', 2, 0]) self.transects['number'] = 2 else: self.transects['number'] = num_checked if num_checked == 2: # Only 2 transects selected cov, _ = Uncertainty.uncertainty_q_random(discharges, 'total') # Check uncertainty if cov > 2: self.transects['status'] = 'caution' self.transects['messages'].append( ['Transects: Uncertainty would be reduced by additional transects;', 2, 0]) # Check for consistent sign q_positive = [] for q in discharges: if q.total >= 0: q_positive.append(True) else: q_positive.append(False) if len(np.unique(q_positive)) > 1: self.transects['status'] = 'warning' self.transects['messages'].append( ['TRANSECTS: Sign of total Q is not consistent. One or more start banks may be incorrect;', 1, 0]) # Check for reciprocal transects num_left = start_edge.count('Left') num_right = start_edge.count('Right') if not num_left == num_right: self.transects['status'] = 'warning' self.transects['messages'].append(['TRANSECTS: Transects selected are not reciprocal transects;', 1, 0]) # Check for zero discharge transects q_zero = False for q in discharges: if q.total == 0: q_zero = True if q_zero: self.transects['status'] = 'warning' self.transects['messages'].append(['TRANSECTS: One or more transects have zero Q;', 1, 0]) def system_tst_qa(self, meas): """Apply QA checks to system test. Parameters ---------- meas: Measurement Object of class Measurement """ self.system_tst['messages'] = [] self.system_tst['status'] = 'good' # Determine if a system test was recorded if not meas.system_tst: # No system test data recorded self.system_tst['status'] = 'warning' self.system_tst['messages'].append(['SYSTEM TEST: No system test;', 1, 3]) else: pt3_fail = False num_tests_with_failure = 0 for test in meas.system_tst: if hasattr(test, 'result'): # Check for presence of pt3 test if 'pt3' in test.result and test.result['pt3'] is not None: # Check hard_limit, high gain, wide bandwidth if 'hard_limit' in test.result['pt3']: if 'high_wide' in test.result['pt3']['hard_limit']: corr_table = test.result['pt3']['hard_limit']['high_wide']['corr_table'] if len(corr_table) > 0: # All lags past lag 2 should be less than 50% of lag 0 qa_threshold = corr_table[0, :] * 0.5 all_lag_check = np.greater(corr_table[3::, :], qa_threshold) # Lag 7 should be less than 25% of lag 0 lag_7_check = np.greater(corr_table[7, :], corr_table[0, :] * 0.25) # If either condition is met for any beam the test fails if np.sum(np.sum(all_lag_check)) + np.sum(lag_7_check) > 1: pt3_fail = True if test.result['sysTest']['n_failed'] is not None and test.result['sysTest']['n_failed'] > 0: num_tests_with_failure += 1 # pt3 test failure message if pt3_fail: self.system_tst['status'] = 'caution' self.system_tst['messages'].append( ['System Test: One or more PT3 tests in the system test indicate potential EMI;', 2, 3]) # Check for failed tests if num_tests_with_failure == len(meas.system_tst): # All tests had a failure self.system_tst['status'] = 'warning' self.system_tst['messages'].append( ['SYSTEM TEST: All system test sets have at least one test that failed;', 1, 3]) elif num_tests_with_failure > 0: self.system_tst['status'] = 'caution' self.system_tst['messages'].append( ['System Test: One or more system test sets have at least one test that failed;', 2, 3]) def compass_qa(self, meas): """Apply QA checks to compass calibration and evaluation. Parameters ---------- meas: Measurement Object of class Measurement """ self.compass['messages'] = [] checked = [] for transect in meas.transects: checked.append(transect.checked) if np.any(checked): heading = np.unique(meas.transects[checked.index(1)].sensors.heading_deg.internal.data) else: heading = np.array([0]) # Initialize variable as if ADCP has no compass self.compass['status'] = 'inactive' self.compass['status1'] = 'good' self.compass['status2'] = 'good' self.compass['magvar'] = 0 self.compass['magvar_idx'] = [] self.compass['mag_error_idx'] = [] self.compass['pitch_mean_warning_idx'] = [] self.compass['pitch_mean_caution_idx'] = [] self.compass['pitch_std_caution_idx'] = [] self.compass['roll_mean_warning_idx'] = [] self.compass['roll_mean_caution_idx'] = [] self.compass['roll_std_caution_idx'] = [] if len(heading) > 1 and np.any(np.not_equal(heading, 0)): # ADCP has a compass # A compass calibration is required if a loop test or GPS are used # Check for loop test loop = False for test in meas.mb_tests: if test.type == 'Loop': loop = True # Check for GPS data gps = False if meas.transects[checked.index(True)].boat_vel.gga_vel is not None or \ meas.transects[checked.index(True)].boat_vel.vtg_vel is not None: gps = True if gps or loop: # Compass calibration is required # Determine the ADCP manufacturer if meas.transects[checked.index(True)].adcp.manufacturer == 'SonTek': # SonTek ADCP if len(meas.compass_cal) == 0: # No compass calibration self.compass['status1'] = 'warning' self.compass['messages'].append(['COMPASS: No compass calibration;', 1, 4]) elif meas.compass_cal[-1].result['compass']['error'] == 'N/A': # If the error cannot be decoded from the calibration assume the calibration is good self.compass['status1'] = 'good' else: if meas.compass_cal[-1].result['compass']['error'] <= 0.2: self.compass['status1'] = 'good' else: self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: Calibration result > 0.2 deg;', 2, 4]) elif meas.transects[checked.index(True)].adcp.manufacturer == 'TRDI': # TRDI ADCP if len(meas.compass_cal) == 0: # No compass calibration if len(meas.compass_eval) == 0: # No calibration or evaluation self.compass['status1'] = 'warning' self.compass['messages'].append(['COMPASS: No compass calibration or evaluation;', 1, 4]) else: # No calibration but an evaluation was completed self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: No compass calibration;', 2, 4]) else: # Compass was calibrated if len(meas.compass_eval) == 0: # No compass evaluation self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: No compass evaluation;', 2, 4]) else: # Check results of evaluation try: if float(meas.compass_eval[-1].result['compass']['error']) <= 1: self.compass['status1'] = 'good' else: self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: Evaluation result > 1 deg;', 2, 4]) except ValueError: self.compass['status1'] = 'good' else: # Compass not required if len(meas.compass_cal) == 0 and len(meas.compass_eval) == 0: # No compass calibration or evaluation self.compass['status1'] = 'default' else: # Compass was calibrated and evaluated self.compass['status1'] = 'good' # Check for consistent magvar and pitch and roll mean and variation magvar = [] align = [] mag_error_exceeded = [] pitch_mean = [] pitch_std = [] pitch_exceeded = [] roll_mean = [] roll_std = [] roll_exceeded = [] transect_idx = [] for n, transect in enumerate(meas.transects): if transect.checked: transect_idx.append(n) heading_source_selected = getattr( transect.sensors.heading_deg, transect.sensors.heading_deg.selected) pitch_source_selected = getattr(transect.sensors.pitch_deg, transect.sensors.pitch_deg.selected) roll_source_selected = getattr(transect.sensors.roll_deg, transect.sensors.roll_deg.selected) magvar.append(transect.sensors.heading_deg.internal.mag_var_deg) if transect.sensors.heading_deg.external is not None: align.append(transect.sensors.heading_deg.external.align_correction_deg) pitch_mean.append(np.nanmean(pitch_source_selected.data)) pitch_std.append(np.nanstd(pitch_source_selected.data, ddof=1)) roll_mean.append(np.nanmean(roll_source_selected.data)) roll_std.append(np.nanstd(roll_source_selected.data, ddof=1)) # SonTek G3 compass provides pitch, roll, and magnetic error parameters that can be checked if transect.adcp.manufacturer == 'SonTek': if heading_source_selected.pitch_limit is not None: # Check for bug in SonTek data where pitch and roll was n x 3 use n x 1 if len(pitch_source_selected.data.shape) == 1: pitch_data = pitch_source_selected.data else: pitch_data = pitch_source_selected.data[:, 0] idx_max = np.where(pitch_data > heading_source_selected.pitch_limit[0])[0] idx_min = np.where(pitch_data < heading_source_selected.pitch_limit[1])[0] if len(idx_max) > 0 or len(idx_min) > 0: pitch_exceeded.append(True) else: pitch_exceeded.append(False) if heading_source_selected.roll_limit is not None: if len(roll_source_selected.data.shape) == 1: roll_data = roll_source_selected.data else: roll_data = roll_source_selected.data[:, 0] idx_max = np.where(roll_data > heading_source_selected.pitch_limit[0])[0] idx_min =
np.where(roll_data < heading_source_selected.pitch_limit[1])
numpy.where
#!/usr/bin/env python """ Code to create the batch files for fitting """ from __future__ import print_function import os import glob import argparse import tables ##### import numpy as np from astropy.table import Table from astropy.io import fits ##### def setup_batch_beast_fit(projectname, datafile, num_percore=5, nice=None, overwrite_logfile=True, prefix=None): """ Sets up batch files for submission to the 'at' queue on linux (or similar) systems Parameters ---------- project : string project name to use (basename for files) datafile : string file with the observed data (FITS file) - the observed photometry, not the sub-files num_percore : int (default = 5) number of fitting runs per core nice : int (default = None) set this to an integer (-20 to 20) to prepend a "nice" level to the fitting command overwrite_logfile : boolean (default = True) if True, will overwrite the log file; if False, will append to existing log file prefix : string (default=None) Set this to a string (such as 'source activate astroconda') to prepend to each batch file (use '\n's to make multiple lines) Returns ------- run_info_dict : dict Dictionary indicating which catalog files have complete modeling, and which job files need to be run """ project = projectname cat_files = np.array(sorted(glob.glob(datafile.replace('.fits', '*_sub*.fits')))) datafile_basename = datafile.split('/')[-1].replace('.fits', '') n_cat_files = len(cat_files) n_pernode_files = num_percore # setup the subdirectory for the batch and log files job_path = project+'/fit_batch_jobs/' if not os.path.isdir(job_path): os.mkdir(job_path) log_path = job_path+'logs/' if not os.path.isdir(log_path): os.mkdir(log_path) pf_open = False cur_f = 0 cur_total_size = 0.0 j = -1 # keep track of which files are done running run_info_dict = {'cat_file': cat_files, 'done': np.full(n_cat_files, False), 'files_to_run': []} # cat_files = cat_files[0:2] for i, cat_file in enumerate(cat_files): # get the sd number dpos = cat_file.find('SD_') spos = cat_file.find('sub') ppos = cat_file.rfind('.') sd_num = cat_file[dpos+3:spos-1] sub_num = cat_file[spos+3:ppos] # read the stats file and see if this subregion is done yet # results_path = project + '/' basename = "%s/%s_sd%s_sub%s" % (project, project, sd_num, sub_num) stats_file = basename + '_stats.fits' pdf1d_file = basename + '_pdf1d.fits' lnp_file = basename + '_lnp.hd5' reg_run = False run_done = False if not os.path.isfile(stats_file): reg_run = True print('no stats file') if not os.path.isfile(pdf1d_file): reg_run = True print('no pdf1d file') if not os.path.isfile(lnp_file): reg_run = True print('no lnp file') # first check if the pdf1d mass spacing is correct if not reg_run: hdulist = fits.open(pdf1d_file) delta1 = (hdulist['M_ini'].data[-1, 1] - hdulist['M_ini'].data[-1, 0]) if delta1 > 1.0: # old linear spacing print('pdf1d lin mass spacing - full refitting needed') old_mass_spacing = True else: old_mass_spacing = False print('pdf1d log mass spacing - ok') if old_mass_spacing: run_done = False reg_run = True # now check if the number of results is the same as # the number of observations if not reg_run: # get the observed catalog obs = Table.read(cat_file) # get the fit results catalog t = Table.read(stats_file) # get the number of stars that have been fit indxs, = np.where(t['Pmax'] != 0.0) # get the number of entries in the lnp file f = tables.open_file(lnp_file, 'r') nlnp = f.root._v_nchildren - 2 f.close() print('# obs, stats, lnp = ', len(obs), len(indxs), nlnp) if (len(indxs) == len(obs)) & (nlnp == len(obs)): # final check, is the pdf1d file correctly populated tot_prob =
np.sum(hdulist['M_ini'].data, axis=1)
numpy.sum
from functools import partial import numpy as np from deep_np import layers, losses, utils def _init_fc_weights(in_dim, out_dim, include_bias=True): weights = np.random.randn(in_dim, out_dim) / np.sqrt(in_dim / 2.) if include_bias: return weights, np.zeros((1, out_dim)) return weights def _init_conv_weights(n_filters, n_channels, filter_size, include_bias=True): weights = np.random.randn(n_filters, n_channels, filter_size, filter_size) / np.sqrt(n_filters / 2.) if include_bias: return weights, np.zeros((n_filters, 1)) return weights class NeuralNetwork(object): def __init__(self, *args, **kwargs): pass def predict_proba(self, X): logits, _ = self.forward(X, train=False) return utils.softmax(logits) def predict(self, X): return np.argmax(self.predict_proba(X), axis=1) def train_step(self, X_train, y_train): logits, cache = self.forward(X_train) loss = losses.cross_entropy(logits, y_train) grad = self.backward(logits, y_train, cache) return grad, loss def forward(self, X, train=True): raise NotImplementedError() def backward(self, logits, y_train, cache): raise NotImplementedError() # Network for pong policy gradient class PongNetwork(NeuralNetwork): def __init__(self, input_dim, hidden_dim=128, n_cls=3): W1, b1 = _init_fc_weights(input_dim, hidden_dim) W2, b2 = _init_fc_weights(hidden_dim, n_cls) self.model = dict(W1=W1, b1=b1, W2=W2, b2=b2) def forward(self, X, train=True): h1, h1_cache = layers.fc_forward(X, self.model["W1"], self.model["b1"]) h1, nl1_cache = layers.relu_forward(h1) logits, logits_cache = layers.fc_forward(h1, self.model["W2"], self.model["b2"]) return logits, dict(h1=h1_cache, nl1=nl1_cache, logits=logits_cache) # slightly different API to accomodate policy gradient def backward(self, grad_y, cache): dh1, dW2, db2 = layers.fc_backward(grad_y, cache["logits"]) dh1 = layers.relu_backward(dh1, cache["nl1"]) dX, dW1, db1 = layers.fc_backward(dh1, cache["h1"]) grad = dict(W1=dW1, b1=db1, W2=dW2, b2=db2) return grad class FeedForwardNetwork(NeuralNetwork): def __init__(self, in_dim=784, hidden_dim=128, p_dropout=0.7, n_cls=10): self.p_dropout = p_dropout W1, b1 = _init_fc_weights(in_dim, hidden_dim) beta1 = np.ones((1, hidden_dim)) gamma1 = np.ones((1, hidden_dim)) W2, b2 = _init_fc_weights(hidden_dim, hidden_dim) beta2 = np.ones((1, hidden_dim)) gamma2 = np.ones((1, hidden_dim)) W3, b3 = _init_fc_weights(hidden_dim, n_cls) self.model = dict( W1=W1, b1=b1, beta1=beta1, gamma1=gamma1, W2=W2, b2=b2, beta2=beta2, gamma2=gamma2, W3=W3, b3=b3) self.bn_caches = dict( b1_mean=np.zeros((1, H)), b1_var=np.zeros((1, H)), b2_mean=np.zeros((1, H)), b2_var=
np.zeros((1, H))
numpy.zeros
import open3d import numpy as np import cv2 import scipy.io as sio from transforms3d.quaternions import quat2mat, mat2quat global cnt cnt = 0 def visualize(im, depth, label, centers, cls_indexes): global cnt cnt += 1 h,w = label.shape label_m = np.zeros((h,w,3), dtype=np.uint8) for cls in cls_indexes: #np.unique(label): label_m[label==cls] = np.random.randint(0,255,size=3) for c in centers: cv2.circle(im, tuple(c.astype(np.int32)), 3, (0,255,0), -1) bboxes = get_bboxes(label, cls_indexes) for bbox in bboxes: cv2.rectangle(im, tuple(bbox[:2]), tuple(bbox[2:]), (0,255,0)) cv2.imshow('im%d'%(cnt), im) cv2.imshow('depth', depth) cv2.imshow('label', label_m) def visualize_pose(im, cls_indexes, poses, points, intrinsic_matrix): im_copy = im.copy() for ix,cls in enumerate(cls_indexes): color = np.random.randint(0,255,size=(3)) cls_pts = points[cls] x3d = np.ones((4, len(cls_pts)), dtype=np.float32) x3d[0, :] = cls_pts[:,0] x3d[1, :] = cls_pts[:,1] x3d[2, :] = cls_pts[:,2] # projection RT = np.zeros((3, 4), dtype=np.float32) pose = poses[ix] RT[:,:3] = pose[:, :3] RT[:,3] = pose[:, 3] print(RT) x2d = np.matmul(intrinsic_matrix, np.matmul(RT, x3d)) x2d[0, :] = np.divide(x2d[0, :], x2d[2, :]) x2d[1, :] = np.divide(x2d[1, :], x2d[2, :]) x = np.transpose(x2d[:2,:], [1,0]).astype(np.int32) for px in x: # im_copy[px[1],px[0]] = color cv2.circle(im_copy, tuple(px), 3, color, -1) # plt.plot(x2d[0, :], x2d[1, :], '.', color=np.divide(colors[cls], 255.0), alpha=0.5) cv2.imshow("proj_poses%d"%(cnt), im_copy) def get_bboxes(label, cls_indexes): bboxes = [] for cls in cls_indexes: y, x =
np.where(label==cls)
numpy.where
""" Module containing classes for ray tracing through the ice. Ray tracer classes correspond to ray trace path classes, where the ray tracer is responsible for calculating the existence and launch angle of paths between points, and the ray tracer path objects are responsible for returning information about propagation along their respective path. """ import logging import numpy as np import scipy.constants import scipy.fft import scipy.optimize from pyrex.internal_functions import normalize, LazyMutableClass, lazy_property from pyrex.ice_model import AntarcticIce, UniformIce, ice logger = logging.getLogger(__name__) class BasicRayTracePath(LazyMutableClass): """ Class for representing a single ray-trace solution between points. Stores parameters of the ray path with calculations performed by integrating z-steps of size ``dz``. Most properties are lazily evaluated to save on computation time. If any attributes of the class instance are changed, the lazily-evaluated properties will be cleared. Parameters ---------- parent_tracer : BasicRayTracer Ray tracer for which this path is a solution. launch_angle : float Launch angle (radians) of the ray path. direct : boolean Whether the ray path is direct. If ``True`` this means the path does not "turn over". If ``False`` then the path does "turn over" by either reflection or refraction after reaching some maximum depth. Attributes ---------- from_point : ndarray The starting point of the ray path. to_point : ndarray The ending point of the ray path. theta0 : float The launch angle of the ray path at `from_point`. ice The ice model used for the ray tracer. dz : float The z-step (m) to be used for integration of the ray path attributes. direct : boolean Whether the ray path is direct. If ``True`` this means the path does not "turn over". If ``False`` then the path does "turn over" by either reflection or refraction after reaching some maximum depth. emitted_direction received_direction path_length tof coordinates See Also -------- pyrex.internal_functions.LazyMutableClass : Class with lazy properties which may depend on other class attributes. BasicRayTracer : Class for calculating the ray-trace solutions between points. Notes ----- Even more attributes than those listed are available for the class, but are mainly for internal use. These attributes can be found by exploring the source code. """ def __init__(self, parent_tracer, launch_angle, direct): self.from_point = parent_tracer.from_point self.to_point = parent_tracer.to_point self.theta0 = launch_angle self.ice = parent_tracer.ice self.dz = parent_tracer.dz self.direct = direct super().__init__() @property def _metadata(self): """Metadata dictionary for writing `BasicRayTracePath` information.""" return { "n0": self.n0, "dz": self.dz, "emitted_x": self.emitted_direction[0], "emitted_y": self.emitted_direction[1], "emitted_z": self.emitted_direction[2], "received_x": self.received_direction[0], "received_y": self.received_direction[1], "received_z": self.received_direction[2], "launch_angle": np.arccos(self.emitted_direction[2]), "receiving_angle": np.pi-np.arccos(self.received_direction[2]), "path_length": self.path_length, "tof": self.tof } @property def z_turn_proximity(self): """ Parameter for how closely path approaches z_turn. Necessary to avoid diverging integrals which occur at z_turn. """ # Best value of dz/10 determined empirically by checking errors return self.dz/10 @property def z0(self): """Depth (m) of the launching point.""" return self.from_point[2] @property def z1(self): """Depth (m) of the receiving point.""" return self.to_point[2] @lazy_property def n0(self): """Index of refraction of the ice at the launching point.""" return self.ice.index(self.z0) @lazy_property def rho(self): """Radial distance (m) between the endpoints.""" u = self.to_point - self.from_point return np.sqrt(u[0]**2 + u[1]**2) @lazy_property def phi(self): """Azimuthal angle (radians) between the endpoints.""" u = self.to_point - self.from_point return np.arctan2(u[1], u[0]) @lazy_property def beta(self): """Launching beta parameter (n(z0) * sin(theta0)).""" return self.n0 * np.sin(self.theta0) @lazy_property def z_turn(self): """Turning depth (m) of the path.""" return self.ice.depth_with_index(self.beta) # @property # def exists(self): # """Boolean of whether the path between the points with the # given launch angle exists.""" # return True @lazy_property def emitted_direction(self): """Direction in which ray is emitted.""" return np.array([np.sin(self.theta0) * np.cos(self.phi), np.sin(self.theta0) * np.sin(self.phi), np.cos(self.theta0)]) @lazy_property def received_direction(self): """Direction ray is travelling when it is received.""" if self.direct: sign = np.sign(np.cos(self.theta0)) return np.array([np.sin(self.theta(self.z1)) * np.cos(self.phi), np.sin(self.theta(self.z1)) * np.sin(self.phi), sign*np.cos(self.theta(self.z1))]) else: return np.array([np.sin(self.theta(self.z1)) * np.cos(self.phi), np.sin(self.theta(self.z1)) * np.sin(self.phi), -np.cos(self.theta(self.z1))]) def theta(self, z): """ Polar angle of the ray at the given depths. Calculates the polar angle of the ray's direction at the given depth in the ice. Note that the ray could be travelling upward or downward at this polar angle. Parameters ---------- z : array_like (Negative-valued) depths (m) in the ice. Returns ------- array_like Polar angle at the given values of `z`. """ return np.arcsin(np.sin(self.theta0) * self.n0/self.ice.index(z)) # Log-scaled zs (commented out below and in z_integral method) seemed # like a good idea for reducing dimensionality, but didn't work out. # Kept here in case it works out better in the future # @lazy_property # def dn(self): # return np.abs(self.ice.gradient(-10)[2])*self.dz # def _log_scale_zs(self, z0, z1): # # Base dn on dz at 10 meter depth # n0 = self.ice.index(z0) # n1 = self.ice.index(z1) # n_steps = int(np.abs(n1-n0)/self.dn) # ns = np.linspace(n0, n1, n_steps+2) # return self.ice.depth_with_index(ns) def z_integral(self, integrand): """ Calculate the numerical integral of the given integrand. For the integrand as a function of z, the numerical integral is calculated along the ray path. Parameters ---------- integrand : function Function returning the values of the integrand at a given array of values for the depth z. Returns ------- float The value of the numerical integral along the ray path. """ if self.direct: n_zs = int(np.abs(self.z1-self.z0)/self.dz) zs, dz = np.linspace(self.z0, self.z1, n_zs+1, retstep=True) return np.trapz(integrand(zs), dx=np.abs(dz), axis=0) # zs = self._log_scale_zs(self.z0, self.z1) # return np.trapz(integrand(zs), x=zs, axis=0) else: n_zs_1 = int(np.abs(self.z_turn-self.z_turn_proximity-self.z0)/self.dz) zs_1, dz_1 = np.linspace(self.z0, self.z_turn-self.z_turn_proximity, n_zs_1+1, retstep=True) n_zs_2 = int(np.abs(self.z_turn-self.z_turn_proximity-self.z1)/self.dz) zs_2, dz_2 = np.linspace(self.z_turn-self.z_turn_proximity, self.z1, n_zs_2+1, retstep=True) return (np.trapz(integrand(zs_1), dx=np.abs(dz_1), axis=0) + np.trapz(integrand(zs_2), dx=np.abs(dz_2), axis=0)) # zs_1 = self._log_scale_zs(self.z0, self.z_turn-self.z_turn_proximity) # zs_2 = self._log_scale_zs(self.z1, self.z_turn-self.z_turn_proximity) # return (np.trapz(integrand(zs_1), x=zs_1, axis=0) + # np.trapz(integrand(zs_2), x=zs_2, axis=0)) @lazy_property def path_length(self): """Length (m) of the ray path.""" return self.z_integral(lambda z: 1/np.cos(self.theta(z))) @lazy_property def tof(self): """Time of flight (s) along the ray path.""" return self.z_integral(lambda z: self.ice.index(z) / scipy.constants.c / np.cos(self.theta(z))) @lazy_property def fresnel(self): """ Fresnel factors for reflection off the ice surface. The fresnel reflectance calculated is the square root (ratio of amplitudes, not powers) for reflection off ice surface (1 if doesn't reach surface). Stores the s and p polarized reflectances, respectively. """ if self.direct or self.z_turn<self.ice.valid_range[1]: return 1, 1 else: n_1 = self.ice.index(self.ice.valid_range[1]) n_2 = self.ice.index_above theta_1 = self.theta(self.ice.valid_range[1]) cos_1 = np.cos(theta_1) sin_2 = n_1/n_2*np.sin(theta_1) if sin_2<=1: # Plain reflection with real coefficients cos_2 = np.sqrt(1 - (sin_2)**2) else: # Total internal reflection off the surface, results in complex # fresnel factors encoding the phase data cos_2 = np.sqrt((sin_2)**2 - 1)*1j # TODO: Confirm sign convention here r_s = (n_1*cos_1 - n_2*cos_2) / (n_1*cos_1 + n_2*cos_2) r_p = (n_2*cos_1 - n_1*cos_2) / (n_2*cos_1 + n_1*cos_2) return r_s, r_p def attenuation(self, f): """ Calculate the attenuation factor for signal frequencies. Calculates the attenuation factor to be multiplied by the signal amplitude at the given frequencies. Parameters ---------- f : array_like Frequencies (Hz) at which to calculate signal attenuation. Returns ------- array_like Attenuation factors for the signal at the frequencies `f`. """ fa = np.abs(f) def integrand(z): partial_integrand = 1 / np.cos(self.theta(z)) alen = self.ice.attenuation_length(z, fa) return (partial_integrand / alen.T).T return np.exp(-np.abs(self.z_integral(integrand))) def propagate(self, signal=None, polarization=None, attenuation_interpolation=None): """ Propagate the signal with optional polarization along the ray path. Applies the frequency-dependent signal attenuation along the ray path and shifts the times according to the ray time of flight. Additionally provides the s and p polarization directions. Parameters ---------- signal : Signal, optional ``Signal`` object to propagate. polarization : array_like, optional Vector representing the linear polarization of the `signal`. attenuation_interpolation: float, optional Logarithmic (base 10) interpolation step to be used for interpolating attenuation along the ray path. If `None`, no interpolation is applied and the attenuation is pre-calculated at the expected signal frequencies. Returns ------- tuple of Signal Tuple of ``Signal`` objects representing the s and p polarizations of the original `signal` attenuated along the ray path. Only returned if `signal` was not ``None``. tuple of ndarray Tuple of polarization vectors representing the s and p polarization directions of the `signal` at the end of the ray path. Only returned if `polarization` was not ``None``. See Also -------- pyrex.Signal : Base class for time-domain signals. """ if polarization is None: if signal is None: return else: new_signal = signal.copy() new_signal.shift(self.tof) # Pre-calculate attenuation at the designated frequencies to # save on heavy computation time of the attenuation method freqs = scipy.fft.fftfreq(2*len(signal.times), d=signal.dt) if attenuation_interpolation is None: freqs.sort() else: logf_min = np.log10(np.min(freqs[freqs>0])) logf_max = np.log10(np.max(freqs)) n_steps = int((logf_max - logf_min) / attenuation_interpolation) if (logf_max-logf_min)%attenuation_interpolation: n_steps += 1 logf = np.logspace(logf_min, logf_max, n_steps+1) freqs = np.concatenate((-np.flipud(logf), [0], logf)) atten_vals = self.attenuation(freqs) attenuation = lambda f: np.interp(f, freqs, atten_vals) new_signal.filter_frequencies(attenuation) return new_signal else: # Unit vectors perpendicular and parallel to plane of incidence # at the launching point u_s0 = normalize(np.cross(self.emitted_direction, [0, 0, 1])) u_p0 = normalize(np.cross(u_s0, self.emitted_direction)) # Unit vector parallel to plane of incidence at the receiving point # (perpendicular vector stays the same) u_p1 = normalize(np.cross(u_s0, self.received_direction)) if signal is None: return (u_s0, u_p1) else: # Amplitudes of s and p components pol_s = np.dot(polarization, u_s0) pol_p = np.dot(polarization, u_p0) # Fresnel reflectances of s and p components r_s, r_p = self.fresnel # Pre-calculate attenuation at the designated frequencies to # save on heavy computation time of the attenuation method freqs = scipy.fft.fftfreq(2*len(signal.times), d=signal.dt) if attenuation_interpolation is None: freqs.sort() else: logf_min = np.log10(np.min(freqs[freqs>0])) logf_max = np.log10(np.max(freqs)) n_steps = int((logf_max - logf_min) / attenuation_interpolation) if (logf_max-logf_min)%attenuation_interpolation: n_steps += 1 logf = np.logspace(logf_min, logf_max, n_steps+1) freqs = np.concatenate((-np.flipud(logf), [0], logf)) atten_vals = self.attenuation(freqs) # Apply fresnel s and p coefficients in addition to attenuation attenuation_s = lambda f: np.interp(f, freqs, atten_vals) * r_s attenuation_p = lambda f: np.interp(f, freqs, atten_vals) * r_p signal_s = signal * pol_s signal_p = signal * pol_p signal_s.shift(self.tof) signal_p.shift(self.tof) signal_s.filter_frequencies(attenuation_s, force_real=True) signal_p.filter_frequencies(attenuation_p, force_real=True) return (signal_s, signal_p), (u_s0, u_p1) @lazy_property def coordinates(self): """ x, y, and z-coordinates along the path (using dz step). Coordinates are provided for plotting purposes only, and are not vetted for use in calculations. """ if self.direct: n_zs = int(np.abs(self.z1-self.z0)/self.dz) zs, dz = np.linspace(self.z0, self.z1, n_zs+1, retstep=True) integrand = np.tan(self.theta(zs)) rs = np.zeros(len(integrand)) trap_areas = (integrand[:-1] + np.diff(integrand)/2) * dz rs[1:] += np.abs(np.cumsum(trap_areas)) else: n_zs_1 = int(np.abs(self.z_turn-self.z_turn_proximity-self.z0) / self.dz) zs_1, dz_1 = np.linspace(self.z0, self.z_turn-self.z_turn_proximity, n_zs_1+1, retstep=True) integrand_1 = np.tan(self.theta(zs_1)) n_zs_2 = int(np.abs(self.z_turn-self.z_turn_proximity-self.z1) / self.dz) zs_2, dz_2 = np.linspace(self.z_turn-self.z_turn_proximity, self.z1, n_zs_2+1, retstep=True) integrand_2 = np.tan(self.theta(zs_2)) rs_1 = np.zeros(len(integrand_1)) trap_areas = ((integrand_1[:-1] + np.diff(integrand_1)/2) * np.abs(dz_1)) rs_1[1:] += np.cumsum(trap_areas) rs_2 = np.zeros(len(integrand_2)) + rs_1[-1] trap_areas = ((integrand_2[:-1] + np.diff(integrand_2)/2) * np.abs(dz_2)) rs_2[1:] += np.cumsum(trap_areas) rs = np.concatenate((rs_1, rs_2[1:])) zs = np.concatenate((zs_1, zs_2[1:])) xs = self.from_point[0] + rs*np.cos(self.phi) ys = self.from_point[1] + rs*np.sin(self.phi) return xs, ys, zs class SpecializedRayTracePath(BasicRayTracePath): """ Class for representing a single ray-trace solution between points. Stores parameters of the ray path with calculations performed analytically (with the exception of attenuation). These calculations require the index of refraction of the ice to be of the form n(z)=n0-k*exp(a*z). However this restriction allows for most of the integrations to be performed analytically. The attenuation is the only attribute which is still calculated by numerical integration with z-steps of size ``dz``. Most properties are lazily evaluated to save on computation time. If any attributes of the class instance are changed, the lazily-evaluated properties will be cleared. Parameters ---------- parent_tracer : SpecializedRayTracer Ray tracer for which this path is a solution. launch_angle : float Launch angle (radians) of the ray path. direct : boolean Whether the ray path is direct. If ``True`` this means the path does not "turn over". If ``False`` then the path does "turn over" by either reflection or refraction after reaching some maximum depth. Attributes ---------- from_point : ndarray The starting point of the ray path. to_point : ndarray The ending point of the ray path. theta0 : float The launch angle of the ray path at `from_point`. ice The ice model used for the ray tracer. dz : float The z-step (m) to be used for integration of the ray path attributes. direct : boolean Whether the ray path is direct. If ``True`` this means the path does not "turn over". If ``False`` then the path does "turn over" by either reflection or refraction after reaching some maximum depth. uniformity_factor : float Factor (<1) of the base index of refraction (n0 in the ice model) beyond which calculations start to break down numerically. beta_tolerance : float ``beta`` value (near 0) below which calculations start to break down numerically. emitted_direction received_direction path_length tof coordinates See Also -------- pyrex.internal_functions.LazyMutableClass : Class with lazy properties which may depend on other class attributes. SpecializedRayTracer : Class for calculating the ray-trace solutions between points. Notes ----- Even more attributes than those listed are available for the class, but are mainly for internal use. These attributes can be found by exploring the source code. The requirement that the ice model go as n(z)=n0-k*exp(a*z) is implemented by requiring the ice model to inherit from `AntarcticIce`. Obviously this is not fool-proof, but likely the ray tracing will obviously fail if the index follows a very different functional form. """ # Factor of index of refraction at which calculations may break down uniformity_factor = 0.99999 # Beta value below which calculations may break down beta_tolerance = 0.005 @lazy_property def valid_ice_model(self): """Whether the ice model being used supports this specialization.""" return ((isinstance(self.ice, type) and issubclass(self.ice, AntarcticIce)) or isinstance(self.ice, AntarcticIce)) @lazy_property def z_uniform(self): """ Depth (m) beyond which the ice should be treated as uniform. Calculated based on the ``uniformity_factor``. Necessary due to numerical rounding issues at indices close to the index limit. """ return self.ice.depth_with_index(self.ice.n0 * self.uniformity_factor) @staticmethod def _z_int_uniform_correction(z0, z1, z_uniform, beta, ice, integrand, integrand_kwargs={}, numerical=False, dz=None, derivative_special_case=False): """ Function to perform a z-integration with a uniform ice correction. Can be an analytic or numerical integration. Takes into account the effect of treating the ice as uniform beyond some depth. Parameters ---------- z0 : float (Negative-valued) depth (m) of the left limit of the integral. z1 : float (Negative-valued) depth (m) of the right limit of the integral. z_uniform : float (Negative-valued) depth (m) below which the ice is assumed to have a uniform index. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. integrand : function Function returning the values of the integrand at a given array of values for the depth z. integrand_kwargs : dict, optional A dictionary of keyword arguments to be passed into the `integrand` function. numerical : boolean, optional Whether to use the numerical integral instead of an analytic one. If ``False`` the analytic integral is calculated. If ``True`` the numerical integral is calculated. dz : float, optional The z-step to use for numerical integration. Only needed when `numerical` is ``True``. derivative_special_case : boolean, optional Boolean controlling whether the special case of doing the distance integral beta derivative should be used. Returns ------- Integral of the given `integrand` along the path from `z0` to `z1`. """ # Suppress numpy RuntimeWarnings with np.errstate(divide='ignore', invalid='ignore'): if numerical: if dz is None: raise ValueError("Argument dz must be specified for "+ "numerical integrals") if (z0<z_uniform)==(z1<z_uniform): # z0 and z1 on same side of z_uniform n_zs = int(np.abs(z1-z0)/dz) if n_zs<10: n_zs = 10 zs = np.linspace(z0, z1, n_zs+1) return integrand(zs, beta=beta, ice=ice, deep=z0<z_uniform, **integrand_kwargs) else: n_zs_1 = int(np.abs(z_uniform-z0)/dz) if n_zs_1<10: n_zs_1 = 10 zs_1 = np.linspace(z0, z_uniform, n_zs_1+1) n_zs_2 = int(np.abs(z1-z_uniform)/dz) if n_zs_2<10: n_zs_2 = 10 zs_2 = np.linspace(z_uniform, z1, n_zs_2+1) return (integrand(zs_1, beta=beta, ice=ice, deep=z0<z_uniform, **integrand_kwargs) + integrand(zs_2, beta=beta, ice=ice, deep=z1<z_uniform, **integrand_kwargs)) # Analytic integrals int_z0 = integrand(z0, beta, ice, deep=z0<z_uniform, **integrand_kwargs) int_z1 = integrand(z1, beta, ice, deep=z1<z_uniform, **integrand_kwargs) if not derivative_special_case: if (z0<z_uniform)==(z1<z_uniform): # z0 and z1 on same side of z_uniform return int_z1 - int_z0 else: int_diff = ( integrand(z_uniform, beta, ice, deep=True, **integrand_kwargs) - integrand(z_uniform, beta, ice, deep=False, **integrand_kwargs) ) if z0<z1: # z0 below z_uniform, z1 above z_uniform return int_z1 - int_z0 + int_diff else: # z0 above z_uniform, z1 below z_uniform return int_z1 - int_z0 - int_diff else: # Deal with special case of doing distance integral beta derivative # which includes two bounds instead of just giving indef. integral # FIXME: Somewhat inaccurate, should probably be done differently z_turn = np.log((ice.n0-beta)/ice.k)/ice.a if (z0<z_uniform)==(z1<z_uniform)==(z_turn<z_uniform): # All on same side of z_uniform return int_z0 + int_z1 else: int_diff = ( integrand(z_uniform, beta, ice, deep=True, **integrand_kwargs) - integrand(z_uniform, beta, ice, deep=False, **integrand_kwargs) ) if (z0<z_uniform)==(z1<z_uniform): # z0 and z1 below z_uniform, but z_turn above return int_z0 + int_z1 - 2*int_diff else: # z0 or z1 below z_uniform, others above return int_z0 + int_z1 - int_diff def z_integral(self, integrand, integrand_kwargs={}, numerical=False): """ Calculate the integral of the given integrand. For the integrand as a function of z, the analytic or numerical integral is calculated along the ray path. Parameters ---------- integrand : function Function returning the values of the integrand at a given array of values for the depth z. integrand_kwargs : dict, optional A dictionary of keyword arguments to be passed into the `integrand` function. numerical : boolean, optional Whether to use the numerical integral instead of an analytic one. If ``False`` the analytic integral is calculated. If ``True`` the numerical integral is calculated. Returns ------- float The value of the integral along the ray path. Raises ------ TypeError If the ice model is not valid for the specialized analytic integrations. """ if not self.valid_ice_model: raise TypeError("Ice model must inherit methods from "+ "pyrex.AntarcticIce") if self.direct: return self._z_int_uniform_correction(self.z0, self.z1, self.z_uniform, self.beta, self.ice, integrand, integrand_kwargs, numerical, self.dz) else: int_1 = self._z_int_uniform_correction(self.z0, self.z_turn, self.z_uniform, self.beta, self.ice, integrand, integrand_kwargs, numerical, self.dz) int_2 = self._z_int_uniform_correction(self.z1, self.z_turn, self.z_uniform, self.beta, self.ice, integrand, integrand_kwargs, numerical, self.dz) return int_1 + int_2 @staticmethod def _int_terms(z, beta, ice): """ Useful pre-calculated substitutions for integrations. Parameters ---------- z : array_like (Negative-valued) depth (m) in the ice. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. Returns ------- alpha : float ``n0``^2 - `beta`^2 n_z : float Index at depth `z`. gamma : float `n_z`^2 - `beta`^2 log_term_1 : float ``n0``*`n_z` - `beta`^2 - sqrt(`alpha`*`gamma`) log_term_2 : float `n_z` + sqrt(`gamma`) """ alpha = ice.n0**2 - beta**2 n_z = ice.n0 - ice.k*np.exp(ice.a*z) gamma = n_z**2 - beta**2 # Prevent errors when gamma is a very small negative number due to # numerical rounding errors. This could cause other problems for cases # where a not-tiny negative gamma would have meant nans but now leads to # non-nan values. It appears this only occurs when the launch angle # is greater than the maximum value allowed in the ray tracer however, # so it's likely alright. If problems arise, replace with gamma<0 and # np.isclose(gamma, 0) or similar gamma = np.where(gamma<0, 0, gamma) log_term_1 = ice.n0*n_z - beta**2 - np.sqrt(alpha*gamma) log_term_2 = -n_z - np.sqrt(gamma) return alpha, n_z, gamma, log_term_1, -log_term_2 @classmethod def _distance_integral(cls, z, beta, ice, deep=False): """ Indefinite z-integral for calculating radial distance. Calculates the indefinite z-integral of tan(arcsin(beta/n(z))), which between two z values gives the radial distance of the direct path between the z values. Parameters ---------- z : array_like (Negative-valued) depth (m) in the ice. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. deep : boolean, optional Whether or not the integral is calculated in deep (uniform) ice. Returns ------- array_like The value of the indefinite integral at `z`. """ alpha, n_z, gamma, log_1, log_2 = cls._int_terms(z, beta, ice) if deep: return beta * z / np.sqrt(alpha) else: return np.where(np.isclose(beta, 0, atol=cls.beta_tolerance), 0, beta / np.sqrt(alpha) * (-z + np.log(log_1)/ice.a)) @classmethod def _distance_integral_derivative(cls, z, beta, ice, deep=False): """ Beta derivative of indefinite z-integral for radial distance. Calculates the beta derivative of the indefinite z-integral of tan(arcsin(beta/n(z))), which is used for finding the maximum distance integral value as a function of launch angle. This function actually gives the integral from z to the turning point ``z_turn``, since that is what's needed for finding the peak angle. Parameters ---------- z : array_like (Negative-valued) depth (m) in the ice. beta : float ``beta`` value of the ray path. ice Ice model to be used for ray tracing. deep : boolean, optional Whether or not the integral is calculated in deep (uniform) ice. Returns ------- array_like The value of the indefinite integral derivative at `z`. """ alpha, n_z, gamma, log_1, log_2 = cls._int_terms(z, beta, ice) z_turn = np.log((ice.n0-beta)/ice.k)/ice.a if deep: if z_turn<ice.valid_range[1]: return ((np.log((ice.n0-beta)/ice.k)/ice.a - z - beta/(ice.a*(ice.n0-beta))) / np.sqrt(alpha)) else: return -z / np.sqrt(alpha) else: if z_turn<ice.valid_range[1]: term_1 = ((1+beta**2/alpha)/np.sqrt(alpha) * (z + np.log(beta*ice.k/log_1) / ice.a)) term_2 = -(beta**2+ice.n0*n_z) / (ice.a*alpha*
np.sqrt(gamma)
numpy.sqrt
import os, sys import numpy as np from . import fishnet as fn from osgeo import gdal, osr, ogr class NHGtools(object): """ Parameters ----------------------- ext: dictionary of four keys and values for 'll':lowerleft, 'lr':lowerright, 'ur': upper right, 'ul': upper left' of desired extent fc: string, output file name fctype: string, output format, may be 'gpkg' or 'shp' fac: float, mult or division factor to resize grid """ def __init__(self, ext=None, fac=1, fctype='gpkg', fc='natlGrid1km'): self.NHGextent() self.fctype = fctype self.fac = fac self.fc = fc # self.__proj ='+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23.0 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs' # self.__proj ='+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23.0 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +towgs84=1,1,-1,0,0,0,0 +units=m +no_defs' self.__proj ='+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23.0 +lon_0=-96 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs' self.__projWkt = 'PROJCS["Albers NHG", \ GEOGCS["GCS_WGS_1984", \ DATUM["D_WGS_1984", \ SPHEROID["WGS_1984",6378137,298.257223563, \ AUTHORITY["EPSG","7030"]], \ TOWGS84[0,0,0,0,0,0,0], \ AUTHORITY["EPSG","6326"]], \ PRIMEM["Greenwich",0, \ AUTHORITY["EPSG","8901"]], \ UNIT["degree",0.0174532925199433, \ AUTHORITY["EPSG","9122"]], \ AUTHORITY["EPSG","4326"]], \ PROJECTION["Albers_Conic_Equal_Area"], \ PARAMETER["standard_parallel_1",29.5], \ PARAMETER["standard_parallel_2",45.5], \ PARAMETER["latitude_of_origin",23], \ PARAMETER["central_meridian",-96], \ PARAMETER["false_easting",0], \ PARAMETER["false_northing",0], \ UNIT["Meter",1]]' # assign defaults self.__cellsize = self.__natCellsize self.__icol = self.__ngcols self.__irow = self.__ngrows if ext != None: self.ext = ext else: self.ext = self.__natlExt self.__newext = self.__natlExt def NHGextent(self): # coordinates of each corner of the NHG self.__natlExt = {'ll': [-2553045.0, -92715.0], 'lr': [2426955.0, -92715.0], 'ur': [2426955.0, 3907285.0], 'ul': [-2553045.0, 3907285.0]} self.__ngrows = 4000 self.__ngcols = 4980 self.__natCellsize = 1000 def customPolyGrid(self): #ext, cellsize, icol, irow, grd, proj=5070, fctype='gpkg'): """ creates a polygon grid from given spatial location and dimensions. can write shapefile, sqlite, or geopackage feature class """ self.fit2national() delr = [self.__cellsize for x in range(self.__irow)] delc = [self.__cellsize for x in range(self.__icol)] theta = 0.0 print('new cols and rows', self.__icol, self.__irow) # irow and icol are .... fn.mkGrid(self.fc, self.__newext['ll'], delc, delr, self.__ngcolNum, self.__ngrowNum, theta, self.__projWkt, self.fctype, ngcols=self.__ngcols) def NationalPoly(self): delr = [self.__natCellsize for x in range(self.__ngrows)] delc = [self.__natCellsize for x in range(self.__ngcols)] icol = 1 irow = 1 theta = 0. fn.mkGrid(self.fc, self.__natlExt['ll'], delc, delr, icol, irow, theta, self.__projWkt, fctype=self.fctype, ngcols=self.__ngcols) def fit2national(self): print('national grid') print(self.__natlExt) if isinstance(self.fac, int): res = self.__natCellsize * self.fac # if fac != 1: # raise Exception('expecting factor of 1') if self.fac != 1: print('NOTE: row, column, and cell number \ attributes labeled as NHG will not \ currently match NHG') elif isinstance(self.fac, str): if self.fac == '1/2': res = self.__natCellsize / 2 elif self.fac == '1/4': res = self.__natCellsize / 4 elif self.fac == '1/8': res = self.__natCellsize / 8 elif self.fac == '1/10': res = self.__natCellsize / 10 else: res = 0 print('this aint gonna work') else: res = 0 print('this also aint gonna work') newext = {} syoff = (self.ext['ll'][1] - self.__natlExt['ll'][1]) / res y = self.__natlExt['ll'][1] + int(syoff) * res sxoff = (self.ext['ll'][0] - self.__natlExt['ll'][0]) / res x = self.__natlExt['ll'][0] + (int(sxoff)) * res newext['ll'] = [x, y] syoff = (self.ext['ur'][1] - self.__natlExt['ll'][1]) / res y = self.__natlExt['ll'][1] + int(syoff) * res + res sxoff = (self.ext['ur'][0] - self.__natlExt['ll'][0]) / res x = self.__natlExt['ll'][0] + (int(sxoff) + 1) * res newext['ur'] = [x, y] newext['lr'] = [x, newext['ll'][1]] newext['ul'] = [newext['ll'][0], y] print('new local extent') print(newext) self.__newext = newext self.__ngcolNum = int(abs(self.__natlExt['ul'][0] - newext['ul'][0]) / res ) + 1 self.__ngrowNum = int(abs(self.__natlExt['ul'][1] - newext['ul'][1]) / res) + 1 self.__cellsize = res print('starting row and col of national grid') print(self.__ngrowNum, self.__ngcolNum) # number of rows and cols of new grid self.__irow, self.__icol = fn.calcRowCol(self.__newext['ll'], self.__newext['lr'], self.__newext['ur'], self.__cellsize) print('number of rows, columns, and cellsize of new grid') print(self.__irow, self.__icol, self.__cellsize) def readGrid(self, grid): g = gdal.Open(grid) gt = g.GetGeoTransform() rsize = (g.RasterXSize, g.RasterYSize) a = g.GetRasterBand(1).ReadAsArray() return(gt, rsize, a) def createRaster(self, fc=None, rasterName='natlGrid1km.tif', raster=None): """ new, empty raster """ # steal geotransform from existing grid if raster != None: gt, rsize, a = self.readGrid(raster) else: gt = (self.__newext['ul'][0], self.__cellsize, 0.0, self.__newext['ul'][1], 0.0, -self.__cellsize) rsize = (self.__icol, self.__irow) srs = osr.SpatialReference() srs.ImportFromProj4(self.__proj) drv = gdal.GetDriverByName('GTiff') self.__rvds = drv.Create(rasterName, rsize[0], rsize[1], 1, gdal.GDT_Int32) self.__rvds.SetGeoTransform(gt) self.__rvds.SetProjection(srs.ExportToWkt()) self.__rvds.GetRasterBand(1).SetNoDataValue(0) def rasterizer(self, lyrName='modelgrid', attribute='cellnum', rasterName='natlGrid1km.tif'): self.fit2national() self.createRaster(rasterName=rasterName) ds = ogr.Open('{}.{}'.format(self.fc, self.fctype)) if lyrName != None: lyr = ds.GetLayerByName(lyrName) else: lyr = ds.GetLayer(0) if self.fctype == 'shp': lyr = ds.GetLayer(0) gdal.RasterizeLayer(self.__rvds, [1], lyr, None, None, [1], ['ATTRIBUTE={}'.format(attribute)]) print('Rasterizification complete') self.__rvds = None def writeBand(self): self.__rvds.GetRasterBand(1).WriteArray(self.__grid) # self.__rvds.GetRasterBand(1).SetNoDataValue(np.nan) self.__rvds = None print('Raster complete') def makeCellNumRaster(self): cells = [] for j in range(self.__irow): for i in range(self.__icol): irow = self.__irow - j icol = i + 1 cellNum = (self.__irow - j - 1) * self.__icol + i + 1 cells.append(cellNum) cells = np.array(cells) cells = cells.reshape((self.__irow, self.__icol)) self.__grid =
np.flipud(cells)
numpy.flipud
#! python3 # -*- coding: utf-8 -*- import numpy as np lis = np.array([4, 6]) #L0 Norm print('norm 0') print(np.linalg.norm(lis, ord=0)) #L1 Norm #単純にベクトルの各要素の絶対値を足し合わせる。 #X=4, Y=6の場合、 4+6 となる print('norm 1') print(np.linalg.norm(lis, ord=1)) #L2 Norm #原点からベクトルを終点とした直線距離を求める。←の実際の長さを計算する。 print('norm 2') print(
np.linalg.norm(lis, ord=2)
numpy.linalg.norm
# -*- coding: utf-8 -*- """ Various geometry operations of geometric pythonocc primitives for OCC_AirCONICS Created on Fri Dec 4 11:58:52 2015 @author: pchambers """ # Geometry Manipulation libraries: #import OCC.Core.Bnd from OCC.Core.Bnd import Bnd_B2d, Bnd_Box from OCC.Core.AIS import AIS_WireFrame, AIS_Shape from OCC.Core.Geom import Geom_BezierCurve from OCC.Core.GeomAPI import (GeomAPI_PointsToBSpline, GeomAPI_IntCS, GeomAPI_Interpolate) from OCC.Core.BRepBndLib import brepbndlib_Add from OCC.Core.TColgp import (TColgp_Array1OfPnt, TColgp_HArray1OfPnt, TColgp_Array1OfVec) from OCC.Core.TColStd import TColStd_HArray1OfBoolean from OCC.Core.BRepOffsetAPI import (BRepOffsetAPI_ThruSections, BRepOffsetAPI_MakePipeShell) from OCC.Core.BRepBuilderAPI import (BRepBuilderAPI_MakeWire, BRepBuilderAPI_MakeEdge, BRepBuilderAPI_Transform, BRepBuilderAPI_MakeFace, BRepBuilderAPI_GTransform, BRepBuilderAPI_MakeVertex) from OCC.Core.BRepPrimAPI import (BRepPrimAPI_MakeBox, BRepPrimAPI_MakeCone, BRepPrimAPI_MakeHalfSpace, BRepPrimAPI_MakeSphere) from OCC.Core.BRepAlgoAPI import BRepAlgoAPI_Section, BRepAlgoAPI_Cut from OCC.Core.gp import (gp_Trsf, gp_Ax2, gp_Pnt, gp_Dir, gp_Vec, gp_Pln, gp_GTrsf, gp_Mat, gp_XYZ) from OCC.Core.GeomAbs import GeomAbs_C2 from OCC.Core.TopoDS import TopoDS_Shape, topods_Vertex, topods_Face, topods_Edge from OCC.Core.TopAbs import TopAbs_EDGE, TopAbs_FACE, TopAbs_VERTEX from OCC.Core.TopExp import TopExp_Explorer from OCC.Core.GC import GC_MakeCircle, GC_MakeSegment from OCC.Core.Approx import Approx_ChordLength from OCC.Core.GCPnts import GCPnts_UniformAbscissa from OCC.Core.GeomAdaptor import GeomAdaptor_Curve, GeomAdaptor_HCurve from OCC.Core.GeomPlate import (GeomPlate_CurveConstraint, GeomPlate_BuildPlateSurface, GeomPlate_MakeApprox) from OCC.Core.BRepAdaptor import BRepAdaptor_Curve from OCC.Core.BRepFeat import BRepFeat_SplitShape from OCC.Core.TopTools import TopTools_ListIteratorOfListOfShape from OCC.Core.BRepProj import BRepProj_Projection # FileIO libraries: from OCC.Core.STEPCAFControl import STEPCAFControl_Writer from OCC.Core.STEPControl import STEPControl_Writer, STEPControl_AsIs from OCC.Core.Interface import Interface_Static_SetCVal from OCC.Core.IFSelect import IFSelect_RetDone from OCC.Core.TDF import TDF_LabelSequence from OCC.Core.TCollection import TCollection_ExtendedString from OCC.Core.TDocStd import TDocStd_Document from OCC.Core.XCAFApp import XCAFApp_Application from OCC.Core.XCAFDoc import (XCAFDoc_DocumentTool_ShapeTool, XCAFDoc_DocumentTool_ColorTool, XCAFDoc_DocumentTool_LayerTool, XCAFDoc_DocumentTool_MaterialTool) from OCCUtils.Construct import make_edge, make_face, make_pipe, make_wire # Standard Python libraries #from six.moves import range import numpy as np def coerce_handle(obj): ''' coerces an object that has a GetHandle method to call this method and return its handle ''' try: handle = obj except: # If we reach here, assume that the object is already a handle handle = obj return handle class assert_isdone(object): ''' raises an assertion error when IsDone() returns false, with the error specified in error_statement -> this is from the pythonocc-utils utility-may not use it? ''' def __init__(self, to_check, error_statement): self.to_check = to_check self.error_statement = error_statement def __enter__(self, ): if self.to_check.IsDone(): pass else: raise AssertionError(self.error_statement) def __exit__(self, type, value, traceback): pass # TODO: Add TE function (required for creating tip face) # def AddTEtoOpenAirfoil(Airfoil): # """If the airfoil curve given as an argument is open at the trailing edge, # adds a line between the ends of the curve and joins this with the rest # of the curve. """ # assert(hasattr(Airfoil, 'Curve')), 'Input object does not have a Curve atribute' # # handle = Airfoil.Curve # if not handle.IsClosed(): # try: # EP = handle.EndPoint() # SP = handle.StartPoint() # Closure = gp_Lin(Ep, SP) # shapeconstruct # else: # print("Curve is already closed") # # assert(handle.IsClosed()), "Failed to Add Trailing Edge" # # return None def ObjectsExtents(breps, tol=1e-6, as_vec=False): """Compute the extents in the X, Y and Z direction (in the current coordinate system) of the objects listed in the argument. Parameters ---------- breps : list of TopoDS_Shape The shapes to be added for bounding box calculation tol : float (default=1e-6) Tolerance for bounding box calculation as_vec : bool (default=False) If true, returns minimum and maximum points as tuple of gp_Vec Returns ------- xmin, ymin, zmin, xmax, ymax, zmax : scalar the min and max points of bbox (returned if as_vec=False) ( gp_Vec(xmin, ymin, zmin), gp_Vec(xmax, ymax, zmax) ) : tuple of gp_Vec the min and max points of bbox (returned in as_vec=True) Notes ----- Due to the underlying OCC.Bnd.Bnd_Box functions, the bounding box is calculated via triangulation of the shapes to avoid inclusion of the control points of NURBS curves in bounding box calculation """ bbox = Bnd_Box() bbox.SetGap(tol) try: for shape in breps: brepbndlib_Add(shape, bbox, True) except TypeError: # Assume not iterable: brepbndlib_Add(breps, bbox, True) xmin, ymin, zmin, xmax, ymax, zmax = bbox.Get() if as_vec is False: return xmin, ymin, zmin, xmax, ymax, zmax else: return gp_Vec(xmin, ymin, zmin), gp_Vec(xmax, ymax, zmax) def BBox_FromExtents(xmin, ymin, zmin, xmax, ymax, zmax): """Generates the Wire Edges defining the Bounding Box defined in the input arguments: Can be used to display the bounding box""" s = BRepPrimAPI_MakeBox(gp_Pnt(xmin, ymin, zmin), gp_Pnt(xmax, ymax, zmax)).Shape() ais_bbox = AIS_Shape(s) ais_bbox.SetDisplayMode(AIS_WireFrame) return ais_bbox def point_array_to_TColgp_PntArrayType(array, _type=TColgp_Array1OfPnt): """Function to return curve from numpy array Parameters ---------- array : array (Npts x 3) or list Array of xyz points for which to fit a bspline _type : type of TColgp array Tested inputs are, - TColgp_Array1OfPnt - TColgp_HArray1OfPnt See Notes for more information Returns ------- pt_arr : TCOLgp_Array1OfPnt OCC type array of points Notes ----- USe TColgp_Harray when interpolating a curve from points with the GeomAPI_Interpolate. Use TColgp_Array when interpolating a curve from points with the GeomAPI_PointsToBspline """ try: dims = np.shape(array) # Attempt to tranpose if x, y, z points span columns (should span rows) if dims[0] == 3: array = array.T elif dims[1] != 3: raise ValueError("Array must have dimension Npnts x 3 (x, y, z)") N = np.shape(array)[0] pt_arr = _type(1, N) for i, pt in enumerate(array): pt_arr.SetValue(i + 1, gp_Pnt(*pt.tolist())) except: # Input pnts are likely to be a list of gp_Pnt: N = len(array) pt_arr = _type(1, N) for i, pt in enumerate(array): pt_arr.SetValue(i + 1, pt) return pt_arr def points_to_bspline(pnts, deg=3, periodic=False, tangents=None, scale=False, continuity=GeomAbs_C2): """ Points to bspline: originally from pythonocc-utils, changed to allow numpy arrays as input Paramters --------- pnts : list or numpy array array of x, y, z points deg : integer degree of the fitted bspline periodic : Bool (default=False) If true, OCC.GeomAPI_Interpolate will be used instead of the GeomAPI_PointsToBspline. Curve tangent vectors can then be enforced at the interpolation pnts tangents : array (default=None) list of [x,y,z] tangent vectors to be specificied at points: if only 2 tangents are specified, these will be enforced at the start and end points, otherwise tangents should have the same length as pnts and will be enforced at each point. Scale : Bool (default=False) Will scale the tangents (gives a smoother Periodic curve if False) continuity : OCC.GeomAbs.GeomAbs_XX type (default C2) The order of continuity (C^0, C^1, C^2, G^0, ....) Returns ------- crv : OCC.Geom.BSplineCurve Notes ----- """ if not periodic and (tangents is None): _type = TColgp_Array1OfPnt pnts = point_array_to_TColgp_PntArrayType(pnts, _type) # Fit the curve to the point array deg_min = deg deg_max = deg crv = GeomAPI_PointsToBSpline( pnts, deg_min, deg_max, continuity).Curve() else: _type = TColgp_HArray1OfPnt pnts = point_array_to_TColgp_PntArrayType(pnts, _type) tol = 0.001 interp = GeomAPI_Interpolate(pnts, periodic, tol) if tangents is not None: N = tangents.shape[0] if N == 2: try: interp.Load(gp_Vec(*tangents[0, :]), gp_Vec(*tangents[1, :]), scale) except: # Python 3 issue: using * on numpy array breaks gp_Vec interp.Load(gp_Vec(*tangents[0, :].tolist()), gp_Vec(*tangents[1, :].tolist()), scale) else: tan_array = TColgp_Array1OfVec(1, N) for i in range(1, N + 1): try: tan_array.SetValue(i, gp_Vec(*tangents[i - 1, :])) except TypeError: # Python 3 issue: using * on numpy array breaks gp_Vec tan_array.SetValue( i, gp_Vec(*tangents[i - 1, :].tolist())) tan_flags = TColStd_HArray1OfBoolean(1, N) tan_flags.Init(True) # Set all true i.e. enforce all tangents interp.Load(tan_array, tan_flags, scale) interp.Perform() crv = interp.Curve() return crv def points_to_BezierCurve(pnts): """ Creates a Bezier curve from an array of points. Parameters ---------- pnts : array or list x, y, z for an array of points. Allowable inputs are numpy arrays (with dimensions (Npoints x 3)), python list with elements [xi, yi, zi] or list of OCC.gp.gp_Pnt objects Returns ------- crv : OCC.Geom.Geom_BezierCurve """ pnts = point_array_to_TColgp_PntArrayType(pnts, TColgp_Array1OfPnt) # Fit the curve to the point array crv = Geom_BezierCurve(pnts) return crv def scale_uniformal(brep, pnt, factor, copy=False): ''' translate a brep over a vector : from pythonocc-utils Paramters --------- brep : TopoDS_Shape the TopoDS_Shape to scale pnt : gp_Pnt Origin of scaling factor : scalar Scaling factor copy : bool copies to brep if True ''' trns = gp_Trsf() trns.SetScale(pnt, factor) brep_trns = BRepBuilderAPI_Transform(brep, trns, copy) brep_trns.Build() return brep_trns.Shape() def transform_nonuniformal(brep, factors, vec=[0, 0, 0], copy=False): """Nonuniformly scale brep with respect to pnt by the x y z scaling factors provided in 'factors', and translate by vector 'vec' Parameters ---------- factors : List of factors [Fx, Fy, Fz] Scaling factors with respect to origin (0,0,0) vec : List of x,y,z or gp_Vec the translation vector (default is [0,0,0]) Notes ----- * Only tested on 3d shapes * Assumes factors are define with respect to the origin (0,0,0) """ assert(len(factors) == 3),\ ("factors should have [Fx, Fy, Fz] scaling factors: Found length ", len(factors)) M = np.diag(factors).flatten() trns_M = gp_Mat(*M) try: V = gp_XYZ(*vec) except NotImplementedError: V = gp_XYZ(vec.X(), vec.Y(), vec.Z()) trns = gp_GTrsf(trns_M, V) brep_trns = BRepBuilderAPI_GTransform(brep, trns, copy) brep_trns.Build() return brep_trns.Shape() def FilletFaceCorners(face, radius): """Fillets the corners of the input face Parameters ---------- face : TopoDS_Face radius : the Fillet radius Returns ------- """ vert_explorer = TopExp_Explorer(face, TopAbs_VERTEX) from OCC.Core.BRepFilletAPI import BRepFilletAPI_MakeFillet2d fillet = BRepFilletAPI_MakeFillet2d(face) while vert_explorer.More(): vertex = topods_Vertex(vert_explorer.Current()) fillet.AddFillet(vertex, radius) # Note: Needed two next statements here as faces have a vertex on # either side vert_explorer.Next() vert_explorer.Next() fillet.Build() face = fillet.Shape() return face def ExtrudeFace(face, vec=gp_Vec(1, 0, 0)): """Extrudes a face by input vector Parameters ---------- face : TopoDS_Face vec : OCC.gp.gp_Vec The offset vector to extrude through Returns ------- shape : TopoDS_Shape The extruded shape Notes ----- Uses BRepBuilderAPI_MakePrism """ from OCC.Core.BRepPrimAPI import BRepPrimAPI_MakePrism builder = BRepPrimAPI_MakePrism(face, vec) builder.Build() return builder.Shape() def SplitShapeFromProjection(shape, wire, direction, return_section=True): """Splits shape by the projection of wire onto its face Parameters ---------- shape : TopoDS_Shape the brep to subtract from wire : TopoDS_Wire the tool to use for projection and splitting direction: OCC.gp.gp_Dir the direction to project the wire return_section : bool returns the split shape Returns ------- newshape : TopoDS_Shape input shape with wire subtracted section : the shape which was substracted (returned only if return_section is true) Notes ----- Currently assumes splits the first face only """ # get the face from the shape exp = TopExp_Explorer(shape, TopAbs_FACE) face = topods_Face(exp.Current()) # Perform the projection proj = BRepProj_Projection(wire, face, direction) wire = proj.Current() splitter = BRepFeat_SplitShape(face) splitter.Add(wire, face) splitter.Build() section_list = splitter.DirectLeft() iterator = TopTools_ListIteratorOfListOfShape(section_list) section = iterator.Value() # assume here that only 1 section is produced mod_list = splitter.Modified(face) iterator = TopTools_ListIteratorOfListOfShape(mod_list) newshape = iterator.Value() if return_section: return newshape, wire else: return newshape def coslin(TransitionPoint, NCosPoints=24, NLinPoints=24): """Creates a series of abscissas with cosine spacing from 0 to a TransitionPoint and a linear spacing thereafter, up to 1. The TransitionPoint corresponds to pi. Distribution suitable for airfoils defined by points. TransitionPoint must be in the range [0,1]. Parameters ---------- TransitionPoint : scalar Point to transition from cosine to linear distribution in range (0, 1) NCosPoints : int Number of points to space by cosine law between 0 and TransitionPoint NLinPoints : int Number of points to space by linear law between TransitionPoint and 1 Returns ------- Abscissa : numpy array The generated abscissa NCosPoints : int Number of cosine points used (same as input) """ angles = np.linspace(0, np.pi / 2., NCosPoints) cos_pts = TransitionPoint * (1. - np.cos(angles)) lin_pts = np.linspace(TransitionPoint, 1., NLinPoints + 1) # Combine points and Remove first linear point (already in cos_pts): Abscissa = np.hstack((cos_pts, lin_pts[1:])) return Abscissa, NCosPoints def export_STEPFile(shapes, filename): """Exports a .stp file containing the input shapes Parameters ---------- shapes : list of TopoDS_Shape Shapes to write to file filename : string The output filename """ # initialize the STEP exporter step_writer = STEPControl_Writer() # Interface_Static_SetCVal("write.step.schema", "AP214") # Use default? # transfer shapes for shape in shapes: step_writer.Transfer(shape, STEPControl_AsIs) status = step_writer.Write(filename) assert(status == IFSelect_RetDone) return status # def export_STLFile(AC_Shapes, filename): # """Writes a component stl file for each shape in input AirCONICS shapes""" # try: # for shape in AC_Shapes: # status = shape.WriteComponents(filename) # except: # # Assume error was raised as AC_Shapes contains only one shape # status = shape.WriteComponents(filename)[0] # return status def export_STEPFile_Airconics(AirconicsShapes, filename): """ Writes a Step file with names defined in the AirconicsShapes. This function is not fully tested and should not yet be used. Notes ----- Work in progress """ print("This function is a work in progress. For now, use export_STEPFile") # create an handle to a document h_doc = TDocStd_Document() # Create the application app = XCAFApp_Application.GetApplication() app.NewDocument(TCollection_ExtendedString("MDTV-CAF"), h_doc) # Get root assembly doc = h_doc shape_tool = XCAFDoc_DocumentTool_ShapeTool(doc.Main()) # l_colors = XCAFDoc_DocumentTool_ColorTool(doc.Main()) # l_layers = XCAFDoc_DocumentTool_LayerTool(doc.Main()) # l_materials = XCAFDoc_DocumentTool_MaterialTool(doc.Main()) step_writer = STEPCAFControl_Writer() step_writer.SetColorMode(True) step_writer.SetLayerMode(True) step_writer.SetNameMode(True) # step_writer.SetMaterialMode(True) for ACshape in AirconicsShapes: for comp in ACshape.Components: print("Writing {} to {}".format(comp, filename)) lbl = shape_tool.AddShape(ACshape.Components[comp]) name = TCollection_ExtendedString(comp) # tdn = TDataStd_Name() # tdn.Set(lbl, name) step_writer.Transfer(lbl, STEPControl_AsIs) status = step_writer.Write(filename) assert(status == IFSelect_RetDone) return status # def import_STEPFile(shapes, filename): # # TODO: initialize the STEP importer # step_writer = STEPControl_Reader() # # status = step_reader.ReadFile(filename) # # assert(status == IFSelect_RetDone) # return status def AddSurfaceLoft(objs, continuity=GeomAbs_C2, check_compatibility=True, solid=True, first_vertex=None, last_vertex=None, max_degree=8, close_sections=True): """Create a lift surface through curve objects Parameters ---------- objs : list of python classes Each obj is expected to have an obj.Curve attribute : see airconics.primitives.airfoil class continuity : OCC.GeomAbs.GeomAbs_XX type (default C2) The order of continuity (C^0, C^1, C^2, G^0, ....) check_compatibility : bool (default=True) Adds a surface compatibility check to the builder solid : bool (default=True) Creates a solid object from the loft if True first_vertex : TopoDS_Vertex (optional, default=None) The starting vertex of the surface to add to the 'ThruSections' algorithm last_vertex : TopoDS_Vertex (optional, default=None) The end vertex of the surface to add to the 'ThruSections' algorithm max_degree : int (default=8) The order of the fitted NURBS surface close_sections : bool (default=True): Connects the start and end point of the loft rib curves if true. This has the same effect as adding an airfoil trailing edge. Returns ------- shape : TopoDS_Shape The generated loft surface Notes ----- Uses OCC.BRepOffsetAPI.BRepOffsetAPI_ThruSections. This function is ORDER DEPENDANT, i.e. add elements in the order through which they should be lofted """ assert(len(objs) >= 2), 'Loft Failed: Less than two input curves' # Note: This is to give a smooth loft. ruled = False pres3d = 1e-6 args = [solid, ruled, pres3d] # args (in order) for ThruSections generator = BRepOffsetAPI_ThruSections(*args) generator.SetMaxDegree(max_degree) # from OCC.Core.GeomAbs import GeomAbs_G1 generator.SetParType(Approx_ChordLength) if first_vertex: generator.AddVertex(first_vertex) for obj in objs: try: # Check if this is an airconics object with a GeomBspline handle # as its 'Curve' attribute obj = obj.Curve # edge = [make_edge(obj)] except: # Assume the object is already a geombspline handle pass # try: # # If working with an airconics object, the OCC curve is stored # # in obj.Curve: edges = [make_edge(obj)] if close_sections: crv = obj if crv.IsClosed() is False: # Add Finite TE edge TE = make_edge(crv.Value(1), crv.Value(0)) edges.append(TE) generator.AddWire(BRepBuilderAPI_MakeWire(*edges).Wire()) # else: # generator if last_vertex: generator.AddVertex(last_vertex) generator.CheckCompatibility(check_compatibility) generator.SetContinuity(continuity) generator.Build() with assert_isdone(generator, 'failed lofting'): return generator.Shape() def Generate_InterpFunction(Values, EpsArray=None, uniform=True): """Generates a lookup interpolation function. Given an array of spanwise coordinates epsilon along a curvilinear leading-edge attached coordinate system, and a set of values describing e.g. Chord, Sweep at each station, generate and return a function f(epsilon) which will give the interpolated value. Parameters ---------- Values : array of float Values of e.g. chordlength, sweep at each spanwise location in EpsArray EpsArray : array of float Distribution of spanwise coordinates at which the Values are known uniform : bool If True, assumes that Values corresponds to uniformly distribution epsilon locations along the lifting surface span Returns ------- f : function the function which returns the interpolated epsilon """ if EpsArray is None: EpsArray = np.linspace(0, 1, len(Values)) def f(Epsilon): return np.interp(Epsilon, EpsArray, Values) return f def translate_topods_from_vector(brep_or_iterable, vec, copy=False): ''' Function Originally from pythonocc-utils, modified to work on objects translates a brep over a vector Parameters ---------- brep : the Topo_DS to translate vec : the vector defining the translation copy : copies to brep if True ''' trns = gp_Trsf() trns.SetTranslation(vec) if issubclass(brep_or_iterable.__class__, TopoDS_Shape): brep_trns = BRepBuilderAPI_Transform(brep_or_iterable, trns, copy) brep_trns.Build() return brep_trns.Shape() else: return [translate_topods_from_vector(brep_or_iterable, vec, copy) for i in brep_or_iterable] def Uniform_Points_on_Curve(curve, NPoints): """Returns a list of uniformly spaced points on a curve Parameters ---------- crv : OCC.Geom curve type NPoints : int number of sampling points along the curve""" try: adapt = GeomAdaptor_Curve(curve) except: # Allow the algorithm to deal with TopoDS_Edge and Wire shapes: adapt = BRepAdaptor_Curve(curve) absc = GCPnts_UniformAbscissa(adapt, NPoints) return [adapt.Value(absc.Parameter(i)) for i in range(1, NPoints + 1)] def rotate(brep, axe, degree, copy=False): """Rotates the brep Originally from pythonocc-utils : might add dependency on this? Parameters ---------- brep : shape to rotate axe : axis of rotation degree : Number of degrees to rotate through copy : bool (default=False) Returns ------- BRepBuilderAPI_Transform.Shape : Shape handle The handle to the rotated shape """ trns = gp_Trsf() trns.SetRotation(axe, np.radians(degree)) brep_trns = BRepBuilderAPI_Transform(brep, trns, copy) brep_trns.Build() return brep_trns.Shape() def mirror(brep, plane='xz', axe2=None, copy=False): """Originally from pythonocc-utils : might add dependency on this? Mirrors object Parameters ---------- brep : OCC.TopoDS.TopoDS_Shape The shape to mirror plane : string (default = 'xz') The name of the plane in which to mirror objects. Acceptable inputs are any of 'xy', 'yx' , 'zy', 'yz', 'yz', 'zy'. Overwritten if axe2 is defined. axe2 : OCC.gp.gp_Ax2 The axes through which to mirror (overwrites input 'plane') copy : bool Returns ------- BRepBuilderAPI_Transform.Shape : TopoDS_Shape The reflected shape Notes ----- Pchambers: Added a functionality here to specify a plane using a string so that users could avoid interacting with core occ objects""" if axe2: plane = None else: Orig = gp_Pnt(0., 0., 0.) if plane in ['xz', 'zx']: ydir = gp_Dir(0, 1, 0) axe2 = gp_Ax2(Orig, ydir) elif plane in ['yz', 'zy']: xdir = gp_Dir(1, 0, 0) axe2 = gp_Ax2(Orig, xdir) elif plane in ['xy', 'yx']: zdir = gp_Dir(0, 0, 1) axe2 = gp_Ax2(Orig, zdir) else: raise(ValueError, "Unknown mirror plane string,", plane) trns = gp_Trsf() trns.SetMirror(axe2) brep_trns = BRepBuilderAPI_Transform(brep, trns, copy) return brep_trns.Shape() # TODO: Curve fairing functions # def batten_curve(pt1, pt2, height, slope, angle1, angle2): # fc = FairCurve_MinimalVariation(pt1, pt2, height, slope) # fc.SetConstraintOrder1(2) # fc.SetConstraintOrder2(2) # fc.SetAngle1(angle1) # fc.SetAngle2(angle2) # fc.SetHeight(height) # fc.SetSlope(slope) # fc.SetFreeSliding(True) # print(fc.DumpToString()) # status = fc.Compute() # print(error_code(status[0]), error_code(status[1])) # return fc.Curve() # # # def faircurve(event=None): # pt1 = gp_Pnt2d(0., 0.) # pt2 = gp_Pnt2d(0., 120.) # height = 100. # pl = Geom_Plane(gp_Pln()) # for i in range(0, 40): # # TODO: the parameter slope needs to be visualized # slope = i/100. # bc = batten_curve(pt1, pt2, height, slope, # math.radians(i), math.radians(-i)) # display.EraseAll() # edge = BRepBuilderAPI_MakeEdge(bc, pl).Edge() # display.DisplayShape(edge, update=True) # time.sleep(0.21) def make_pipe_shell(spine, profiles, support=None): try: spine = make_wire(make_edge(spine)) except: pass pipe = BRepOffsetAPI_MakePipeShell(spine) for profile in profiles: try: pipe.Add(profile) except: wire = make_wire(make_edge(profile)) pipe.Add(wire) if support: pipe.SetMode(support) pipe.Build() return pipe.Shape() def make_vertex(*args): vert = BRepBuilderAPI_MakeVertex(*args) result = vert.Vertex() return result def make_ellipsoid(centre_pt, dx, dy, dz): """Creates an ellipsoid from non-uniformly scaled unit sphere""" sphere = BRepPrimAPI_MakeSphere(gp_Pnt(0, 0, 0), 0.5) ellipsoid = transform_nonuniformal(sphere.Shape(), [dx, dy, dz], vec=centre_pt) return ellipsoid def make_circle3pt(pt1, pt2, pt3): """Makes a circle allowing python lists as input points""" try: pt1 = gp_Pnt(*pt1) pt2 = gp_Pnt(*pt2) pt3 = gp_Pnt(*pt3) except: pass return GC_MakeCircle(pt1, pt2, pt3).Value() def CalculateSurfaceArea(shape): """Calculates the surface area of input shape Parameters ---------- shape : TopoDS_Shape Returns ------- Area : scalar Calculated surface area """ from OCC.Core.BRepGProp import brepgprop_SurfaceProperties from OCC.Core.GProp import GProp_GProps System = GProp_GProps() brepgprop_SurfaceProperties(shape, System) Area = System.Mass() return Area def PlanarSurf(geomcurve): """Adds a planar surface to curve Parameters ---------- geomcurve : OCC.Geom type curve The edge of the profile Returns ------- surf : TopoDS_face the planar surface """ try: wire = make_wire(make_edge(geomcurve)) except: # If the geomcurve is passed directly rather than by it's handle: wire = make_wire(make_edge(geomcurve)) face = make_face(wire) return face def project_curve_to_plane(curve, plane, direction): """ Computes and returns the cylindrically projected curve onto input plane Parameters ---------- curve - geom_Curve plane - Geom_Plane dir - gp_Dir (default None) The cylindrical projection direction. If None, the project will be normal to the plane Returns ------- Hproj_curve : Geom_Curve """ from OCC.Core.GeomProjLib import geomprojlib_ProjectOnPlane hc = coerce_handle(curve) h_pln = coerce_handle(plane) Hproj_curve = geomprojlib_ProjectOnPlane(hc, h_pln, direction, True) return Hproj_curve def project_curve_to_surface(curve, surface, dir): ''' Returns a curve as cylindrically projected onto the surface shape Parameters ---------- curve : Geom_curve or TopoDS_Edge/Wire surface : TopoDS_Shape dir : gp_Dir the direction of projection Returns ------- res_curve : geom_curve (bspline only?) ''' try: edge = make_edge(curve) except: # if converting to edge didn't work, assume curve is already an edge edge = curve wire = make_wire(edge) # This will return wire is curve is already a wire from OCC.Core.BRepProj import BRepProj_Projection from OCC.Core.BRepAdaptor import BRepAdaptor_CompCurve proj = BRepProj_Projection(wire, surface, dir) res_wire = proj.Current() res_curve = BRepAdaptor_CompCurve(res_wire).BSpline() return res_curve def points_from_intersection(plane, curve): ''' Find intersection points between plane and curve. Parameters ---------- plane : Geom_Plane The Plane curve : Geom_*Curve The Curve Returns ------- P : Point or list of points A single intersection point (OCC.gp.gp_Pnt) if one intersection is found, or list of points if more than one is found. - If No Intersection points were found, returns None Notes ----- The plane is first converted to a surface As the GeomAPI_IntCS class requires this. ''' intersector = GeomAPI_IntCS(curve, plane) with assert_isdone(intersector, 'failed to calculate intersection'): nb_results = intersector.NbPoints() if nb_results == 1: return intersector.Point(1) elif nb_results >= 1: P = [] for i in range(1, nb_results + 1): P.append(intersector.Point(i)) else: return None # TODO: Network surface function needs fixing # def Add_Network_Surface(curvenet, deg=3, initsurf=None): # '''Adds a surface from curve network using the OCC plate surface algorithm # This function is in development and currently raises an error # Parameters # ---------- # curvenet : list of GeomCurve # Notes # ----- # ''' # raise NotImplementedError('This function is not yet safe for general use') # # fill = BRepFill_Filling(deg) # # for curve in curvenet: # # try: # # fill.Add(make_edge(curve), continuity) # # except TypeError: # # # If curve is given as object rather than handle # # fill.Add(make_edge(curve), continuity) # # fill.Build() # # face = fill.Face() # # return face # print("This function is not tested and should not be used with certainty") # builder = GeomPlate_BuildPlateSurface(deg, 15, 5) # if initsurf is not None: # "Loading Initial Surface" # builder.LoadInitSurface() # "Initial Surface loaded" # for curve in curvenet: # print(type(curve)) # adaptor = GeomAdaptor_Curve(curve) # Hadapter = GeomAdaptor_HCurve(adaptor) # constr = GeomPlate_CurveConstraint(Hadapter, 0) # builder.Add(constr) # # first didnt work... attempt 2 : # # edge = make_edge(curve) # # C = BRepAdaptor_HCurve() # # C.ChangeCurve().Initialize(edge) # # Cont = BRepFill_CurveConstraint(C, 0) # # builder.Add(Cont) # # # # Try adding from wires instead.. attempt 3: # # exp = # builder.Perform() # with assert_isdone(builder, 'Failed to create Plate Surface'): # # Approximate the surface into a bspline surface # surf = builder.Surface() # approx = GeomPlate_MakeApprox(surf, 0.001, 10, 8, 0.001, 0).Surface() # Umin, Umax, Vmin, Vmax = surf.Bounds() # print(Umin, Umax, Vmin, Vmax) # print("about to make face:") # face = make_face(approx, 0.1) # Umin, Umax, Vmin, Vmax, 0.1) # print("Face made") # return face def CutSect(Shape, SpanStation): """ Parameters ---------- Shape : TopoDS_Shape The Shape to find planar cut section (parallel to xz plane) SpanStation : scalar in range (0, 1) y-direction location at which to cut Shape Returns ------- Section : result of OCC.BRepAlgoAPI.BRepAlgoAPI_Section (TopoDS_Shape) The cut section of shape given a cut plane parallel to xz at input Spanstation. Chord : result of OCC.GC.GC_MakeSegment.Value (Geom_TrimmedCurve) The Chord line between x direction extremeties """ (Xmin, Ymin, Zmin, Xmax, Ymax, Zmax) = ObjectsExtents([Shape]) YStation = Ymin + (Ymax - Ymin) * SpanStation OriginX = Xmin - 1 OriginZ = Zmin - 1 P = gp_Pln(gp_Pnt(OriginX, YStation, OriginZ), gp_Dir(gp_Vec(0, 1, 0))) # Note: using 2*extents here as previous +1 trimmed plane too short CutPlaneSrf = make_face(P, 0, Zmax + 2, 0, Xmax + 2) I = BRepAlgoAPI_Section(Shape, CutPlaneSrf) I.ComputePCurveOn1(True) I.Approximation(True) I.Build() Section = I.Shape() (Xmin, Ymin, Zmin, Xmax, Ymax, Zmax) = ObjectsExtents([Section]) # Currently assume only one edge exists in the intersection: exp = TopExp_Explorer(Section, TopAbs_EDGE) edge = topods_Edge(exp.Current()) # Find the apparent chord of the section (that is, the line connecting the # fore most and aftmost points on the curve DivPoints = Uniform_Points_on_Curve(edge, 200) Xs = np.array([pt.X() for pt in DivPoints]) min_idx =
np.argmin(Xs)
numpy.argmin
# Utility functions for the course Robot Modelling # <NAME> (<EMAIL>), sept. 2016 # # Additional functions added for more functionality # <NAME> (<EMAIL>), sept. 2018 # <NAME> (<EMAIL>), sept. 2018 ############################################################################### import numpy as np from numpy import cos, sin # Checks if a matrix is a valid rotation matrix. def isRotationMatrix(R): """ Check if input is a correct matrix :param R: :return: """ Rt = np.transpose(R.copy()) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype = R.dtype) n = np.linalg.norm(I - shouldBeIdentity) return n < 1e-6 def inverse_kinematics_wrist(R): """ Calculates the inverse kinematics of the wrist of the robot :param R: :return: """ minplus = 1 t5 = np.arctan2(minplus * np.sqrt(1 - (R[2, 2]**2)), R[2, 2]) t4 = np.arctan2(minplus * R[1, 2], minplus * R[0, 2]) t6 = np.arctan2(minplus * R[2, 1], minplus * -R[2, 0]) R_check = np.array([[cos(t4) * cos(t5) * cos(t6) - sin(t4) * sin(t6) - R[0, 0], -cos(t4) * cos(t5) * sin(t6) - sin(t4) * cos(t6) - R[0, 1], cos(t4) * sin(t5) - R[0, 2]], [sin(t4) * cos(t5) * cos(t6) + cos(t4) * sin(t6) - R[1, 0], -sin(t4) * cos(t5) * sin(t6) + cos(t4) * cos(t6) - R[1, 1], sin(t4) * sin(t5) - R[1, 2]], [-sin(t5) * cos(t6) - R[2, 0], sin(t5) * sin(t6) - R[2, 1], cos(t5) - R[2, 2]]]) return np.array([t4, t5, t6]), R_check def make_rotation_matrix(axis, angle): """ make a rotation matrix based on an angle and specified axis :param axis: string that specifies over which axis will be rotated :param angle: rotation angle in radians :return: rotation matrix """ if axis == "x": return np.array([[1, 0, 0], [0, cos(angle), -sin(angle)], [0, sin(angle), cos(angle)]]) elif axis == "y": return np.array([[cos(angle), 0, -sin(angle)], [0, 1, 0], [sin(angle), 0, cos(angle)]]) elif axis == "z": return np.array([[cos(angle), -sin(angle), 0], [sin(angle), cos(angle), 0], [0, 0, 1]]) def make_DH_matrix(DH_parameters): """ make a homogenious matrix based on the Denavit Hartenberg Convention :param DH_parameters: array of 4 with all DH parameters :return: DH matrix """ from numpy import cos, sin length = DH_parameters[0] twist = DH_parameters[1] offset = DH_parameters[2] angle = DH_parameters[3] return np.array([[cos(angle), -sin(angle) * cos(twist), sin(angle) * sin(twist), length * cos(angle)], [sin(angle), cos(angle) * cos(twist), -cos(angle) * sin(twist), length * sin(angle)], [0, sin(twist), cos(twist), offset], [0, 0, 0, 1]]) def interpolate(values, precision): """Create positionvalues within the given trajectory precision = amount of subvalues""" nr_values = len(values) solution = [] for nr in range(0, nr_values): if nr < nr_values - 1: delta_val = np.subtract(values[nr + 1], values[nr]) x_val = np.true_divide(delta_val, precision) for x in range(0, precision): solution.append(np.add(values[nr], np.multiply(x_val, x))) else: break solution = np.array(solution) return solution def make_homogenious_matrix(rotation, translation): return np.vstack((np.hstack((rotation, translation)), np.array([0, 0, 0, 1]))) # function for the inverse kinematics of a 3DOF robot def inverse_algorithm_3DOF(arms, points, elbow_down=False): """Inverse kinematics of a scara robot. Inputs: arms: 3-element array/list with arm lengths point2: 3-element array with (x,y,z) coordinate of end point elbow_down (optional): True/False boolean to determine which solution needs to be returned Output: angles: 3-element array/list with angles in radians(!) """ x = points[0] y = points[1] z = points[2] d1 = arms[0] d2 = arms[1] d3 = arms[2] s = z - d1 r = np.sqrt(x**2 + y**2) c = np.sqrt(r**2 + s**2) beta = np.arctan2(s, r) alpha = np.arccos(np.minimum(1, ((-d3**2 + d2**2 + c**2) / (2 * d2 * c)))) theta1 = np.arctan2(y, x) upper_cos = (-c**2 + d3**2 + d2**2) lower_cos = (2 * d3 * d2) if abs(upper_cos) > abs(lower_cos): return [0, 0, 0], True if elbow_down: theta2 = beta - alpha theta3 = np.radians(180) - np.arccos(np.minimum(1, (upper_cos / lower_cos))) else: theta2 = beta + alpha theta3 = -(np.radians(180) - np.arccos(np.minimum(1, (upper_cos / lower_cos)))) angles = [theta1, theta2, theta3, 0] return angles, False def kin_planar_forward(arms, angles): """Forward kinematics of a 2-link planar robot. Inputs: arms: 2-element array/list with arm lengths angles: 2-element array/list with angles in radians(!) Output: point2: 2-element numpy array with (x,y) coordinate of end point """ x1 = arms[0] * np.cos(angles[0]) y1 = arms[0] * np.sin(angles[0]) x2 = x1 + arms[1] * np.cos(angles[0] + angles[1]) y2 = y1 + arms[1] * np.sin(angles[0] + angles[1]) points = np.array([x2, y2]) return points def kin_planar_inverse(arms, points, elbow_down=True): """Inverse kinematics of a 2-link planar robot. Inputs: arms: 2-element array/list with arm lengths point2: 2-element array with (x,y) coordinate of end point elbow_down (optional): True/False boolean to determine which solution needs to be returned Output: angles: 2-element array/list with angles in radians(!) """ x = points[0] y = points[1] a1 = arms[0] a2 = arms[1] D = (x ** 2 + y ** 2 - a1 ** 2 - a2 ** 2) / (2 * a1 * a2) f = np.sqrt(1 - (D ** 2)) if elbow_down: theta2 = np.arctan2(f, D) else: theta2 = np.arctan2(-f, D) theta1 = np.arctan2(y, x) - np.arctan2((a2 * np.sin(theta2)), (a1 + a2 * np.cos(theta2))) angles = np.array([theta1, theta2]) return angles def sphere(): import pyqtgraph.opengl as gl sphere_data= gl.MeshData.sphere(rows=8, cols=16) obj = gl.GLMeshItem(meshdata=sphere_data, smooth=False, drawFaces=True, faceColor=(0.2, 0.3, 0.4, 1), drawEdges=False, edgeColor=(0.2, 0.3, 0.4, 1)) return obj # cylinder is a convenience function to create a cylinder shape in # pyqtgraph/OpenGL, it gives you a number of vertices distributed over the # surface of the cylinder and triangular shaped faces that cover the whole # surface of the cylinder # cylinders are being used to visualize joints def cylinder(radius, height, N): """Calculates vertices and faces for a cylinder for visualisation in pyqtgraph/OpenGL. Inputs: radius: radius of the cylinder height: height of the cylinder N: number of segments to approximate the circular shape of the cylinder Outputs: vertices: array with on each row the (x,y,z) coordinates of the vertices faces: array with triangular faces of the cylinder Note: The cylinder is a circle in the x,y plane with center at (0,0) that is extruded along the z-axis. """ import scipy.spatial t = np.linspace(0, 2 * np.pi, N, endpoint=False).reshape(N, 1) vertices = np.zeros((2 * N, 3)) vertices[0:N, :] = np.hstack((radius * np.cos(t), radius * np.sin(t), np.zeros((N, 1)))) vertices[N:2 * N, :] = vertices[0:N, :] + np.hstack((np.zeros((N, 2)), height * np.ones((N, 1)))) faces = np.zeros((N - 2 + 2 * N + N - 2, 3), dtype=np.uint) # bottom, makes use of Delaunay triangulation contained in Scipy's # submodule spatial (which on its turn makes use of the Qhull library) faces[0:N - 2, :] = scipy.spatial.Delaunay(vertices[0:N, 0:2], furthest_site=True, qhull_options='QJ').simplices[:, -1::-1] # sides for i in range(N - 1): faces[N - 2 + 2 * i, :] = np.array([i, i + 1, N + i + 1], dtype=np.uint) faces[N - 2 + 2 * i + 1, :] = np.array([i, N + i + 1, N + i], dtype=np.uint) # final one between the last and the first: faces[N - 2 + 2 * (N - 1), :] = np.array([N - 1, 0, N], dtype=np.uint) faces[N - 2 + 2 * (N - 1) + 1, :] = np.array([N - 1, N, 2 * N - 1], dtype=np.uint) # top faces[N - 2 + 2 * N:N - 2 + 2 * N + N - 2, :] = N + faces[0:N - 2, -1::-1] return vertices, faces # simular to the cylinder, but not for creating a box-shaped object # boxes are used to visualize links def box(size=(1, 1, 1)): """Calculates vertices and faces for a box for visualisation in pyqtgraph/OpenGL. Inputs: size: 3 element array/list with the width,depth,height, i.e. the dimensions along the x, y and z-axis. Outputs: vertices: array with on each row the (x,y,z) coordinates of the vertices faces: array with triangular faces of the box Note: The box is between (0,0,0) and (size[0],size[1],size[2]), note that negative sizes are not prevented but result in strange artifacts because it changes the orientation of the faces of the box (inside becomes outside). """ vertices = np.zeros((8, 3)) faces = np.zeros((12, 3), dtype=np.uint) xdim = size[0] ydim = size[1] zdim = size[2] vertices[0, :] = np.array([0, ydim, 0]) vertices[1, :] = np.array([xdim, ydim, 0]) vertices[2, :] = np.array([xdim, 0, 0]) vertices[3, :] = np.array([0, 0, 0]) vertices[4, :] = np.array([0, ydim, zdim]) vertices[5, :] = np.array([xdim, ydim, zdim]) vertices[6, :] = np.array([xdim, 0, zdim]) vertices[7, :] = np.array([0, 0, zdim]) faces = np.array([ # bottom (clockwise, while looking from top) [2, 1, 0], [3, 2, 0], # sides (counter-clock-wise) [0, 1, 5], [0, 5, 4], [1, 2, 6], [1, 6, 5], [2, 3, 7], [2, 7, 6], [3, 0, 4], [3, 4, 7], # top (counter-clockwise) [4, 5, 6], [4, 6, 7] ], dtype=np.uint) return vertices, faces def rotate_xyz(angles): """ Calculates the rotations matrix for xyz angles (x,y,z) :param angles: :return: """ x, y, z = angles rotate_x = np.array([[1, 0, 0], [0, np.cos(x), np.sin(x)], [0, -np.sin(x), np.cos(x)]]) rotate_y = np.array([[np.cos(y), 0, -np.sin(y)], [0, 1, 0], [
np.sin(y)
numpy.sin
# -*- coding: utf-8 -*- """ Copyright () 2018 All rights reserved FILE: cifar10_resnet.py AUTHOR: tianyuningmou DATE CREATED: @Time : 2018/5/22 下午2:26 DESCRIPTION: . VERSION: : #1 CHANGED By: : tianyuningmou CHANGE: : MODIFIED: : @Time : 2018/5/22 下午2:26 """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras.models import Model from keras.datasets import cifar10 import numpy as np import os batch_size = 32 epochs = 200 data_augmentation = True num_classes = 10 subtract_pixel_mean = True n = 3 version = 1 if version == 1: depth = n * 6 + 2 elif version == 2: depth = n * 9 + 2 model_type = 'ResNet{depth}v{version}'.format(depth=depth, version=version) (x_train, y_train), (x_test, y_test) = cifar10.load_data() input_shape = x_train.shape[1:] x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 if subtract_pixel_mean: x_train_mean =
np.mean(x_train, axis=0)
numpy.mean
"""Preprocessing data methods.""" import random import numpy as np import pandas as pd from autots.tools.impute import FillNA, df_interpolate from autots.tools.seasonal import date_part, seasonal_int class EmptyTransformer(object): """Base transformer returning raw data.""" def __init__(self, name: str = 'EmptyTransformer', **kwargs): self.name = name def _fit(self, df): """Learn behavior of data to change. Args: df (pandas.DataFrame): input dataframe """ return df def fit(self, df): """Learn behavior of data to change. Args: df (pandas.DataFrame): input dataframe """ self._fit(df) return self def transform(self, df): """Return changed data. Args: df (pandas.DataFrame): input dataframe """ return df def inverse_transform(self, df, trans_method: str = "forecast"): """Return data to original *or* forecast form. Args: df (pandas.DataFrame): input dataframe """ return df def fit_transform(self, df): """Fits and Returns *Magical* DataFrame. Args: df (pandas.DataFrame): input dataframe """ return self._fit(df) def __repr__(self): """Print.""" return 'Transformer ' + str(self.name) + ', uses standard .fit/.transform' @staticmethod def get_new_params(method: str = 'random'): """Generate new random parameters""" if method == 'test': return {'test': random.choice([1, 2])} else: return {} def remove_outliers(df, std_threshold: float = 3): """Replace outliers with np.nan. https://stackoverflow.com/questions/23199796/detect-and-exclude-outliers-in-pandas-data-frame Args: df (pandas.DataFrame): DataFrame containing numeric data, DatetimeIndex std_threshold (float): The number of standard deviations away from mean to count as outlier. """ df = df[np.abs(df - df.mean()) <= (std_threshold * df.std())] return df def clip_outliers(df, std_threshold: float = 3): """Replace outliers above threshold with that threshold. Axis = 0. Args: df (pandas.DataFrame): DataFrame containing numeric data std_threshold (float): The number of standard deviations away from mean to count as outlier. """ df_std = df.std(axis=0, skipna=True) df_mean = df.mean(axis=0, skipna=True) lower = df_mean - (df_std * std_threshold) upper = df_mean + (df_std * std_threshold) df2 = df.clip(lower=lower, upper=upper, axis=1) return df2 def simple_context_slicer(df, method: str = 'None', forecast_length: int = 30): """Condensed version of context_slicer with more limited options. Args: df (pandas.DataFrame): training data frame to slice method (str): Option to slice dataframe 'None' - return unaltered dataframe 'HalfMax' - return half of dataframe 'ForecastLength' - return dataframe equal to length of forecast '2ForecastLength' - return dataframe equal to twice length of forecast (also takes 4, 6, 8, 10 in addition to 2) 'n' - any integer length to slice by '-n' - full length less this amount "0.n" - this percent of the full data """ if method in [None, "None"]: return df df = df.sort_index(ascending=True) if 'forecastlength' in str(method).lower(): len_int = int([x for x in str(method) if x.isdigit()][0]) return df.tail(len_int * forecast_length) elif method == 'HalfMax': return df.tail(int(len(df.index) / 2)) elif str(method).replace("-", "").replace(".", "").isdigit(): method = float(method) if method >= 1: return df.tail(int(method)) elif method > -1: return df.tail(int(df.shape[0] * abs(method))) else: return df.tail(int(df.shape[0] + method)) else: print("Context Slicer Method not recognized") return df class Detrend(EmptyTransformer): """Remove a linear trend from the data.""" def __init__(self, model: str = 'GLS', **kwargs): super().__init__(name='Detrend') self.model = model self.need_positive = ['Poisson', 'Gamma', 'Tweedie'] @staticmethod def get_new_params(method: str = 'random'): if method == "fast": choice = random.choices( [ "GLS", "Linear", ], [ 0.5, 0.5, ], k=1, )[0] else: choice = random.choices( [ "GLS", "Linear", "Poisson", "Tweedie", "Gamma", "TheilSen", "RANSAC", "ARD", ], [0.24, 0.2, 0.1, 0.1, 0.1, 0.02, 0.02, 0.02], k=1, )[0] return { "model": choice, } def _retrieve_detrend(self, detrend: str = "Linear"): if detrend == 'Linear': from sklearn.linear_model import LinearRegression return LinearRegression(fit_intercept=True) elif detrend == "Poisson": from sklearn.linear_model import PoissonRegressor from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor( PoissonRegressor(fit_intercept=True, max_iter=200) ) elif detrend == 'Tweedie': from sklearn.linear_model import TweedieRegressor from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor(TweedieRegressor(power=1.5, max_iter=200)) elif detrend == 'Gamma': from sklearn.linear_model import GammaRegressor from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor( GammaRegressor(fit_intercept=True, max_iter=200) ) elif detrend == 'TheilSen': from sklearn.linear_model import TheilSenRegressor from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor(TheilSenRegressor()) elif detrend == 'RANSAC': from sklearn.linear_model import RANSACRegressor return RANSACRegressor() elif detrend == 'ARD': from sklearn.linear_model import ARDRegression from sklearn.multioutput import MultiOutputRegressor return MultiOutputRegressor(ARDRegression()) else: from sklearn.linear_model import LinearRegression return LinearRegression() def fit(self, df): """Fits trend for later detrending. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") Y = df.values X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values if self.model == 'GLS': from statsmodels.regression.linear_model import GLS self.trained_model = GLS(Y, X, missing='drop').fit() else: self.trained_model = self._retrieve_detrend(detrend=self.model) if self.model in self.need_positive: self.trnd_trans = PositiveShift( log=False, center_one=True, squared=False ) Y = pd.DataFrame(self.trnd_trans.fit_transform(df)).values X = X.reshape((-1, 1)) self.trained_model.fit(X, Y) self.shape = df.shape return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values if self.model != "GLS": X = X.reshape((-1, 1)) # df = df.astype(float) - self.model.predict(X) if self.model in self.need_positive: temp = pd.DataFrame( self.trained_model.predict(X), index=df.index, columns=df.columns ) temp = self.trnd_trans.inverse_transform(temp) df = df - temp else: df = df - self.trained_model.predict(X) return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values if self.model != "GLS": X = X.reshape((-1, 1)) if self.model in self.need_positive: temp = pd.DataFrame( self.trained_model.predict(X), index=df.index, columns=df.columns ) df = df + self.trnd_trans.inverse_transform(temp) else: df = df + self.trained_model.predict(X) # df = df.astype(float) + self.trained_model.predict(X) return df class StatsmodelsFilter(EmptyTransformer): """Irreversible filters. Args: method (str): bkfilter or cffilter """ def __init__(self, method: str = 'bkfilter', **kwargs): super().__init__(name="StatsmodelsFilter") self.method = method def fit(self, df): """Fits filter. Args: df (pandas.DataFrame): input dataframe """ return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") if self.method == 'bkfilter': from statsmodels.tsa.filters import bk_filter cycles = bk_filter.bkfilter(df, K=1) cycles.columns = df.columns df = (df - cycles).fillna(method='ffill').fillna(method='bfill') elif self.method == 'cffilter': from statsmodels.tsa.filters import cf_filter cycle, trend = cf_filter.cffilter(df) cycle.columns = df.columns df = df - cycle return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ return df class SinTrend(EmptyTransformer): """Modelling sin.""" def __init__(self, **kwargs): super().__init__(name="SinTrend") def fit_sin(self, tt, yy): """Fit sin to the input time sequence, and return fitting parameters "amp", "omega", "phase", "offset", "freq", "period" and "fitfunc" from user unsym @ https://stackoverflow.com/questions/16716302/how-do-i-fit-a-sine-curve-to-my-data-with-pylab-and-numpy """ import scipy.optimize tt = np.array(tt) yy = np.array(yy) ff = np.fft.fftfreq(len(tt), (tt[1] - tt[0])) # assume uniform spacing Fyy = abs(np.fft.fft(yy)) guess_freq = abs( ff[np.argmax(Fyy[1:]) + 1] ) # excluding the zero frequency "peak", which is related to offset guess_amp = np.std(yy) * 2.0 ** 0.5 guess_offset = np.mean(yy) guess = np.array([guess_amp, 2.0 * np.pi * guess_freq, 0.0, guess_offset]) def sinfunc(t, A, w, p, c): return A * np.sin(w * t + p) + c popt, pcov = scipy.optimize.curve_fit(sinfunc, tt, yy, p0=guess, maxfev=10000) A, w, p, c = popt # f = w/(2.*np.pi) # fitfunc = lambda t: A * np.sin(w*t + p) + c return { "amp": A, "omega": w, "phase": p, "offset": c, } # , "freq": f, "period": 1./f, "fitfunc": fitfunc, "maxcov": np.max(pcov), "rawres": (guess,popt,pcov)} def fit(self, df): """Fits trend for later detrending Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values self.sin_params = pd.DataFrame() # make this faster (250 columns in 2.5 seconds isn't bad, though) for column in df.columns: try: y = df[column].values vals = self.fit_sin(X, y) current_param = pd.DataFrame(vals, index=[column]) except Exception as e: print(f"SinTrend failed with {repr(e)}") current_param = pd.DataFrame( {"amp": 0, "omega": 1, "phase": 1, "offset": 1}, index=[column] ) self.sin_params = pd.concat([self.sin_params, current_param], axis=0) self.shape = df.shape return self def fit_transform(self, df): """Fits and Returns Detrended DataFrame Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Returns detrended data Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values sin_df = pd.DataFrame() # make this faster for index, row in self.sin_params.iterrows(): yy = pd.DataFrame( row['amp'] * np.sin(row['omega'] * X + row['phase']) + row['offset'], columns=[index], ) sin_df = pd.concat([sin_df, yy], axis=1) df_index = df.index df = df.astype(float).reset_index(drop=True) - sin_df.reset_index(drop=True) df.index = df_index return df def inverse_transform(self, df): """Returns data to original form Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values sin_df = pd.DataFrame() # make this faster for index, row in self.sin_params.iterrows(): yy = pd.DataFrame( row['amp'] * np.sin(row['omega'] * X + row['phase']) + row['offset'], columns=[index], ) sin_df = pd.concat([sin_df, yy], axis=1) df_index = df.index df = df.astype(float).reset_index(drop=True) + sin_df.reset_index(drop=True) df.index = df_index return df class PositiveShift(EmptyTransformer): """Shift each series if necessary to assure all values >= 1. Args: log (bool): whether to include a log transform. center_one (bool): whether to shift to 1 instead of 0. squared (bool): whether to square (**2) values after shift. """ def __init__( self, log: bool = False, center_one: bool = True, squared=False, **kwargs ): super().__init__(name="PositiveShift") self.log = log self.center_one = center_one self.squared = squared def fit(self, df): """Fits shift interval. Args: df (pandas.DataFrame): input dataframe """ if self.log or self.center_one: shift_amount = df.min(axis=0) - 1 else: shift_amount = df.min(axis=0) self.shift_amount = shift_amount.where(shift_amount < 0, 0).abs() return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ df = df + self.shift_amount if self.squared: df = df ** 2 if self.log: df_log = pd.DataFrame(np.log(df)) return df_log else: return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ if self.log: df = pd.DataFrame(np.exp(df)) if self.squared: df = df ** 0.5 df = df - self.shift_amount return df class IntermittentOccurrence(EmptyTransformer): """Intermittent inspired binning predicts probability of not center. Does not inverse to original values! Args: center (str): one of "mean", "median", "midhinge" """ def __init__(self, center: str = "median", **kwargs): super().__init__(name="IntermittentOccurrence") self.center = center @staticmethod def get_new_params(method: str = 'random'): if method == "fast": choice = "mean" else: choice = random.choices( [ "mean", "median", "midhinge", ], [0.4, 0.3, 0.3], k=1, )[0] return { "center": choice, } def fit(self, df): """Fits shift interval. Args: df (pandas.DataFrame): input dataframe """ if self.center == "mean": self.df_med = df.mean(axis=0) elif self.center == "midhinge": self.df_med = (df.quantile(0.75, axis=0) + df.quantile(0.25, axis=0)) / 2 else: self.df_med = df.median(axis=0, skipna=True) self.upper_mean = df[df > self.df_med].mean(axis=0) - self.df_med self.lower_mean = df[df < self.df_med].mean(axis=0) - self.df_med self.lower_mean.fillna(0, inplace=True) self.upper_mean.fillna(0, inplace=True) return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """0 if Median. 1 if > Median, -1 if less. Args: df (pandas.DataFrame): input dataframe """ temp = df.where(df >= self.df_med, -1) temp = temp.where(df <= self.df_med, 1).where(df != self.df_med, 0) return temp def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ invtrans_df = df.copy() invtrans_df = invtrans_df.where(df <= 0, self.upper_mean * df, axis=1) invtrans_df = invtrans_df.where( df >= 0, (self.lower_mean * df).abs() * -1, axis=1 ) invtrans_df = invtrans_df + self.df_med invtrans_df = invtrans_df.where(df != 0, self.df_med, axis=1) return invtrans_df class RollingMeanTransformer(EmptyTransformer): """Attempt at Rolling Mean with built-in inverse_transform for time series inverse_transform can only be applied to the original series, or an immediately following forecast Does not play well with data with NaNs Inverse transformed values returned will also not return as 'exactly' equals due to floating point imprecision. Args: window (int): number of periods to take mean over """ def __init__(self, window: int = 10, fixed: bool = False, **kwargs): super().__init__(name="RollingMeanTransformer") self.window = window self.fixed = fixed @staticmethod def get_new_params(method: str = 'random'): bool_c = bool(random.getrandbits(1)) if method == "fast": choice = random.choice([3, 7, 10, 12]) else: choice = seasonal_int(include_one=False) return {"fixed": bool_c, "window": choice} def fit(self, df): """Fits. Args: df (pandas.DataFrame): input dataframe """ self.shape = df.shape self.last_values = ( df.tail(self.window).fillna(method='ffill').fillna(method='bfill') ) self.first_values = ( df.head(self.window).fillna(method='ffill').fillna(method='bfill') ) df = df.tail(self.window + 1).rolling(window=self.window, min_periods=1).mean() self.last_rolling = df.tail(1) return self def transform(self, df): """Returns rolling data Args: df (pandas.DataFrame): input dataframe """ df = df.rolling(window=self.window, min_periods=1).mean() # self.last_rolling = df.tail(1) return df def fit_transform(self, df): """Fits and Returns Magical DataFrame Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def inverse_transform(self, df, trans_method: str = "forecast"): """Returns data to original *or* forecast form Args: df (pandas.DataFrame): input dataframe trans_method (str): whether to inverse on original data, or on a following sequence - 'original' return original data to original numbers - 'forecast' inverse the transform on a dataset immediately following the original """ if self.fixed: return df else: window = self.window if trans_method == 'original': staged = self.first_values diffed = ((df.astype(float) - df.shift(1).astype(float)) * window).tail( len(df.index) - window ) temp_cols = diffed.columns for n in range(len(diffed.index)): temp_index = diffed.index[n] temp_row = diffed.iloc[n].reset_index(drop=True) + staged.iloc[ n ].reset_index(drop=True).astype(float) temp_row = pd.DataFrame( temp_row.values.reshape(1, len(temp_row)), columns=temp_cols ) temp_row.index = pd.DatetimeIndex([temp_index]) staged = pd.concat([staged, temp_row], axis=0) return staged # current_inversed = current * window - cumsum(window-1 to previous) if trans_method == 'forecast': staged = self.last_values df = pd.concat([self.last_rolling, df], axis=0) diffed = ((df.astype(float) - df.shift(1).astype(float)) * window).tail( len(df.index) ) diffed = diffed.tail(len(diffed.index) - 1) temp_cols = diffed.columns for n in range(len(diffed.index)): temp_index = diffed.index[n] temp_row = diffed.iloc[n].reset_index(drop=True) + staged.iloc[ n ].reset_index(drop=True).astype(float) temp_row = pd.DataFrame( temp_row.values.reshape(1, len(temp_row)), columns=temp_cols ) temp_row.index = pd.DatetimeIndex([temp_index]) staged = pd.concat([staged, temp_row], axis=0) staged = staged.tail(len(diffed.index)) return staged """ df = df_wide_numeric.tail(60).head(50).fillna(0) df_forecast = (df_wide_numeric).tail(10).fillna(0) forecats = transformed.tail(10) test = RollingMeanTransformer().fit(df) transformed = test.transform(df) inverse = test.inverse_transform(forecats, trans_method = 'forecast') df == test.inverse_transform(test.transform(df), trans_method = 'original') inverse == df_wide_numeric.tail(10) """ """ df = df_wide_numeric.tail(60).fillna(0) test = SeasonalDifference().fit(df) transformed = test.transform(df) forecats = transformed.tail(10) df == test.inverse_transform(transformed, trans_method = 'original') df = df_wide_numeric.tail(60).head(50).fillna(0) test = SeasonalDifference().fit(df) inverse = test.inverse_transform(forecats, trans_method = 'forecast') inverse == df_wide_numeric.tail(10).fillna(0) """ class SeasonalDifference(EmptyTransformer): """Remove seasonal component. Args: lag_1 (int): length of seasonal period to remove. method (str): 'LastValue', 'Mean', 'Median' to construct seasonality """ def __init__(self, lag_1: int = 7, method: str = 'LastValue', **kwargs): super().__init__(name="SeasonalDifference") self.lag_1 = int(abs(lag_1)) self.method = method @staticmethod def get_new_params(method: str = 'random'): method_c = random.choice(['LastValue', 'Mean', "Median"]) if method == "fast": choice = random.choice([7, 12]) else: choice = seasonal_int(include_one=False) return {"lag_1": choice, "method": method_c} def fit(self, df): """Fits. Args: df (pandas.DataFrame): input dataframe """ df_length = df.shape[0] if self.method in ['Mean', 'Median']: df2 = df.copy() tile_index = np.tile(
np.arange(self.lag_1)
numpy.arange
import numpy as np import time import sys import logging import csv from h2o4gpu.solvers import TruncatedSVDH2O print(sys.path) logging.basicConfig(level=logging.DEBUG) def func_bench(m=2000, n = 20, k = 5): np.random.seed(1234) X = np.random.rand(m,n) #Warm start W = np.random.rand(1000,5) print('Cusolver Warm Start') h2o4gpu_tsvd_cusolver = TruncatedSVDH2O(n_components=3, algorithm="cusolver", random_state=42) h2o4gpu_tsvd_cusolver.fit(W) print('Power Warm Start') h2o4gpu_tsvd_power = TruncatedSVDH2O(n_components=3, algorithm="power", tol = 1e-5, n_iter=100, random_state=42, verbose=True) h2o4gpu_tsvd_power.fit(W) print("SVD on " + str(X.shape[0]) + " by " + str(X.shape[1]) + " matrix with k=" + str(k)) print("\n") cusolver_sum_time = 0 power_sum_time = 0 for i in range(5): start_time_cusolver = time.time() print("CUSOLVER Bencmark on iteration " + str(i)) h2o4gpu_tsvd_cusolver.n_components = k h2o4gpu_tsvd_cusolver.fit(X) end_time_cusolver = time.time() - start_time_cusolver cusolver_sum_time +=end_time_cusolver print("Took cusolver " + str(end_time_cusolver) + " seconds on iteration " + str(i)) print("Sleep before Power on iteration " + str(i)) time.sleep(5) start_time_power = time.time() print("POWER Bencmark on iteration " + str(i)) h2o4gpu_tsvd_power.n_components = k h2o4gpu_tsvd_power.fit(X) end_time_power = time.time() - start_time_power power_sum_time += end_time_power print("Took power method " + str(end_time_power) + " seconds on iteration " + str(i)) #Benchmarks ######################################################################## dim = str(m) + "by" + str(n) with open('power_cusolver_avg_run.csv', 'a', newline='') as csvfile: csvwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) csvwriter.writerow(['cusolver', str(cusolver_sum_time/5), dim, str(k)]) csvwriter.writerow(['power', str(power_sum_time/5), dim, str(k)]) csvfile.close() ######################################################################### def func(m=2000, n = 20, k = 5): np.random.seed(1234) X = np.random.rand(m,n) print("SVD on " + str(X.shape[0]) + " by " + str(X.shape[1]) + " matrix") print("\n") start_time_cusolver = time.time() print("CUSOLVER") h2o4gpu_tsvd_cusolver = TruncatedSVDH2O(n_components=k, algorithm="cusolver", random_state=42) h2o4gpu_tsvd_cusolver.fit(X) end_time_cusolver = time.time() - start_time_cusolver print("Took cusolver " + str(end_time_cusolver) + " seconds") start_time_power = time.time() print("POWER") h2o4gpu_tsvd_power = TruncatedSVDH2O(n_components=k, algorithm="power", tol = 1E-50, n_iter=2000, random_state=42, verbose=True) h2o4gpu_tsvd_power.fit(X) end_time_power = time.time() - start_time_power print("Took power method " + str(end_time_power) + " seconds") print("h2o4gpu cusolver components") print(h2o4gpu_tsvd_cusolver.components_) print("h2o4gpu cusolver singular values") print(h2o4gpu_tsvd_cusolver.singular_values_) print("h2o4gpu tsvd cusolver Explained Variance") print(h2o4gpu_tsvd_cusolver.explained_variance_) print("h2o4gpu tsvd cusolver Explained Variance Ratio") print(h2o4gpu_tsvd_cusolver.explained_variance_ratio_) print("h2o4gpu power components") print(h2o4gpu_tsvd_power.components_) print("h2o4gpu power singular values") print(h2o4gpu_tsvd_power.singular_values_) print("h2o4gpu tsvd power Explained Variance") print(h2o4gpu_tsvd_power.explained_variance_) print("h2o4gpu tsvd power Explained Variance Ratio") print(h2o4gpu_tsvd_power.explained_variance_ratio_) print("Checking singular values") rtol = 1E-5 assert np.allclose(h2o4gpu_tsvd_cusolver.singular_values_, h2o4gpu_tsvd_power.singular_values_, rtol=rtol) print("Checking explained variance") rtol = 1E-3 assert
np.allclose(h2o4gpu_tsvd_cusolver.explained_variance_, h2o4gpu_tsvd_power.explained_variance_, rtol=rtol)
numpy.allclose
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
import numpy as np import matplotlib.pyplot as plt from scipy.integrate import solve_ivp from init_state import init_state from quadEOM import quadEOM from globals import flag, hover_t, hover_z, hover_x, hover_y from globals import t, s from globals import systemParameters from globals import fort_t, fort_x, fort_y, fort_z, backt_t, cruise_z, cruise_x, cruise_y, cruise_t, backt_x, backt_y, backt_z, max_time from time_traj_land import time_traj_land from time_traj_backtrans import time_traj_backtrans from time_traj_cruise import time_traj_cruise from time_traj_fortrans import time_traj_fortrans from time_traj_hover import time_traj_hover from utils import stateToQd end=-1 def sim_3d(trajhandle, controlhandle): max_time = 1; #controlhandle =Controller() # parameters for simulation BQ = systemParameters() # *********************** INITIAL CONDITIONS *********************** print('Setting initial conditions...') tstep = 0.01 # this determines the time step at which the solution is given %0.02 cstep = 0.01 # image capture time interval 0.06 max_iter = max_time/cstep # max iteration #max_iter = 1 nstep = int(cstep/tstep) time = 0 # current time # Get start position # des_start = trajhandle(0, []); # x0 = init_state(des_start.pos,des_start.vel,des_start.rot,des_start.omega) store_shape = int(max_iter*nstep) xtraj =
np.zeros((store_shape, 12))
numpy.zeros
import numpy as np import matplotlib.pyplot as plt #import pymc3 as mcmc #import emcee from scipy.optimize import minimize import h5py as h5 import sys, os from parser import parse_input import argparse from matplotlib.colors import Normalize from matplotlib.cm import get_cmap from matplotlib import colorbar from particle_spectra import default_values from particle_spectra import default_turbulence_values from particle_spectra import create_spectra #from comp_spectra import find_min #from comp_spectra import find_max def model_f2(theta, x): psi, zeta, K = theta gam0 = 200.0 gamth = 1.1 C = 1.0 A = C/gamth gamcool = ( ((3.0-psi)/A)*zeta*gam0**(2.0-psi) )**(1./(3.0-psi)) return K*np.exp(-(x/gamcool)**(3.0-psi)) def find_min(xx, th): i1 = 0 for i,x in enumerate(xx): if x >= th: i1 = i break return i1 #def model_f(theta, x): # psi, gamcool, K = theta # return K*np.exp(-(x/gamcool)**(3.0-psi)) def model_f(theta, x): psi, gamcool, K, p = theta #plaw = K*x**(-p) #plaw = K*x**(0) #plaw = K/x plaw = K return plaw*np.exp(-(x/gamcool)**(3.0-psi)) def log_likelihood(theta, x, y): model = model_f(theta, x) nw = len(x) sigma2 = np.ones(nw) #sigma2 = y return -0.5*np.sum((y-model)**2/sigma2 +
np.log(sigma2)
numpy.log
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 25 16:40:54 2019 @author: self-driver """ import numpy as np from matplotlib import pyplot as plt import Bezier def bezier_n_curve(points, n, nTimes=1000): #print("points is : \n",points) #print(" n is : ",n) np.set_printoptions(formatter={'float': '{: 0.3f}'.format}) print("points is : \n",points) nPoints = len(points) count = 0 if((nPoints - 1)%n): count = n - (nPoints - 1)%n print('count is : ',count) # insert Point ''' while(count): points_insert = points[-1]+(points[-1]-points[-2])*0.1*count points = np.insert(points,len(points),values=points_insert, axis=0) count = count - 1 ''' result =
np.transpose(points)
numpy.transpose
#!/usr/bin/env python """Provides class Simulation that initialises all the elements of the controllers and structures the execution of the different components. Simulation initialises all the components of the controller, namely the System, the Incremental Model, the Actor and the Critic, as well as building the required Neural Networks. It counts with a method that executes in the required order each of the controller elements during a complete iteration. """ import numpy as np import matplotlib as mpl mpl.use('TkAgg') # or can use 'TkAgg', whatever you have/prefer "----------------------------------------------------------------------------------------------------------------------" __author__ = "<NAME>" __copyright__ = "Copyright (C) 2020 <NAME>" __credits__ = [] __license__ = "MIT" __version__ = "2.0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" "----------------------------------------------------------------------------------------------------------------------" class Simulation: def __init__(self, iterations, selected_inputs, selected_states, selected_outputs, number_time_steps, initial_states, reference_signals, actor, critic, system, incremental_model, discretisation_time=0.5, tracking_states=['alpha']): # Attributes regarding the simulation self.iterations = iterations self.number_time_steps = number_time_steps self.time_step = 0 self.discretisation_time = discretisation_time self.time = list(np.arange(0, self.number_time_steps * self.discretisation_time, self.discretisation_time)) self.iteration = 0 # Attributes regarding the system self.selected_inputs = selected_inputs self.selected_states = selected_states self.selected_outputs = selected_outputs self.initial_states = initial_states self.tracking_states = tracking_states self.indices_tracking_states = [self.selected_states.index(self.tracking_states[i]) for i in range(len(self.tracking_states))] self.reference_signals = reference_signals # Initialise all the elements of the simulation self.actor = actor self.critic = critic self.system = system self.incremental_model = incremental_model # Cyclic parameters self.xt = self.initial_states self.xt_track = np.reshape(self.xt[self.indices_tracking_states, self.time_step], [-1, 1]) self.xt_ref =
np.reshape(self.reference_signals[:, self.time_step], [-1, 1])
numpy.reshape
from collections.abc import Sequence import random import cv2 import torch import numpy as np def set_all_randomness(seed, set_for_cuda=True): """Sets the random seed for numpy, pytorch, python.random """ random.seed(seed)
np.random.seed(seed)
numpy.random.seed
"""TNQMetro: Tensor-network based package for efficient quantum metrology computations.""" # Table of Contents # # 1 Functions for finite size systems......................................29 # 1.1 High level functions...............................................37 # 1.2 Low level functions...............................................257 # 1.2.1 Problems with exact derivative.............................1207 # 1.2.2 Problems with discrete approximation of the derivative.....2411 # 2 Functions for infinite size systems..................................3808 # 2.1 High level functions.............................................3816 # 2.2 Low level functions..............................................4075 # 3 Auxiliary functions..................................................5048 import itertools import math import warnings import numpy as np from ncon import ncon ######################################## # # # # # 1 Functions for finite size systems. # # # # # ######################################## ############################# # # # 1.1 High level functions. # # # ############################# def fin(N, so_before_list, h, so_after_list, BC='O', L_ini=None, psi0_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True, D_psi0_max=100, D_psi0_max_forced=False): """ Optimization of the QFI over operator L (in MPO representation) and wave function psi0 (in MPS representation) and check of convergence in their bond dimensions. Function for finite size systems. User has to provide information about the dynamics by specifying the quantum channel. It is assumed that the quantum channel is translationally invariant and is built from layers of quantum operations. User has to provide one defining operation for each layer as a local superoperator. These local superoperators have to be input in order of their action on the system. Parameter encoding is a stand out quantum operation. It is assumed that the parameter encoding acts only once and is unitary so the user has to provide only its generator h. Generator h has to be diagonal in computational basis, or in other words, it is assumed that local superoperators are expressed in the eigenbasis of h. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). so_before_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites a particular local superoperator acts List of local superoperators (in order) which act before unitary parameter encoding. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Dimension d is the dimension of local Hilbert space (dimension of physical index). Generator h has to be diagonal in the computational basis, or in other words, it is assumed that local superoperators are expressed in the eigenbasis of h. so_after_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act after unitary parameter encoding. BC: 'O' or 'P', optional Boundary conditions, 'O' for OBC, 'P' for PBC. L_ini: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC, optional Initial MPO for L. psi0_ini: list of length N of ndarrays of a shape (Dl_psi0,Dr_psi0,d) for OBC (Dl_psi0, Dr_psi0 can vary between sites) or ndarray of a shape (D_psi0,D_psi0,d,N) for PBC, optional Initial MPS for psi0. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for MPO representing L). D_L_max_forced: bool, optional True if D_L_max has to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge has to be imposed on MPO representing L, otherwise False. D_psi0_max: integer, optional Maximal value of D_psi0 (D_psi0 is bond dimension for MPS representing psi0). D_psi0_max_forced: bool, optional True if D_psi0_max has to be reached, otherwise False. Returns: result: float Optimal value of figure of merit. result_m: ndarray Matrix describing the figure of merit as a function of bond dimensions of respectively L [rows] and psi0 [columns]. L: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC Optimal L in MPO representation. psi0: list of length N of ndarrays of a shape (Dl_psi0,Dr_psi0,d) for OBC (Dl_psi0, Dr_psi0 can vary between sites) or ndarray of a shape (D_psi0,D_psi0,d,N) for PBC Optimal psi0 in MPS representation. """ if np.linalg.norm(h - np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h.') d = np.shape(h)[0] ch = fin_create_channel(N, d, BC, so_before_list + so_after_list) ch2 = fin_create_channel_derivative(N, d, BC, so_before_list, h, so_after_list) result, result_m, L, psi0 = fin_gen(N, d, BC, ch, ch2, None, L_ini, psi0_ini, imprecision, D_L_max, D_L_max_forced, L_herm, D_psi0_max, D_psi0_max_forced) return result, result_m, L, psi0 def fin_gen(N, d, BC, ch, ch2, epsilon=None, L_ini=None, psi0_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True, D_psi0_max=100, D_psi0_max_forced=False): """ Optimization of the figure of merit (usually interpreted as the QFI) over operator L (in MPO representation) and wave function psi0 (in MPS representation) and check of convergence when increasing their bond dimensions. Function for finite size systems. User has to provide information about the dynamics by specifying a quantum channel ch and its derivative ch2 (or two channels separated by small parameter epsilon) as superoperators in MPO representation. There are no constraints on the structure of the channel but the complexity of calculations highly depends on the channel's bond dimension. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. ch: list of length N of ndarrays of a shape (Dl_ch,Dr_ch,d**2,d**2) for OBC (Dl_ch, Dr_ch can vary between sites) or ndarray of a shape (D_ch,D_ch,d**2,d**2,N) for PBC Quantum channel as a superoperator in MPO representation. ch2: list of length N of ndarrays of a shape (Dl_ch2,Dr_ch2,d**2,d**2) for OBC (Dl_ch2, Dr_ch2 can vary between sites) or ndarray of a shape (D_ch2,D_ch2,d**2,d**2,N) for PBC Interpretiaon depends on whether epsilon is specifed (2) or not (1, default approach): 1) derivative of the quantum channel as a superoperator in the MPO representation, 2) the quantum channel as superoperator in the MPO representation for the value of estimated parameter shifted by epsilon in relation to ch. epsilon: float, optional If specified then interpeted as value of a separation between estimated parameters encoded in ch and ch2. L_ini: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC, optional Initial MPO for L. psi0_ini: list of length N of ndarrays of a shape (Dl_psi0,Dr_psi0,d) for OBC (Dl_psi0, Dr_psi0 can vary between sites) or ndarray of a shape (D_psi0,D_psi0,d,N) for PBC, optional Initial MPS for psi0. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for MPO representing L). D_L_max_forced: bool, optional True if D_L_max has to be reached, otherwise False. L_herm: bool, optional True if the Hermitian gauge has to be imposed on MPO representing L, otherwise False. D_psi0_max: integer, optional Maximal value of D_psi0 (D_psi0 is bond dimension for MPS representing psi0). D_psi0_max_forced: bool, optional True if D_psi0_max has to be reached, otherwise False. Returns: result: float Optimal value of the figure of merit. result_m: ndarray Matrix describing the figure of merit as a function of bond dimensions of respectively L [rows] and psi0 [columns]. L: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC Optimal L in MPO representation. psi0: list of length N of ndarrays of a shape (Dl_psi0,Dr_psi0,d) for OBC (Dl_psi0, Dr_psi0 can vary between sites) or ndarray of a shape (D_psi0,D_psi0,d,N) for PBC Optimal psi0 in MPS representation. """ if epsilon is None: result, result_m, L, psi0 = fin_FoM_FoMD_optbd(N, d, BC, ch, ch2, L_ini, psi0_ini, imprecision, D_L_max, D_L_max_forced, L_herm, D_psi0_max, D_psi0_max_forced) else: result, result_m, L, psi0 = fin2_FoM_FoMD_optbd(N, d, BC, ch, ch2, epsilon, L_ini, psi0_ini, imprecision, D_L_max, D_L_max_forced, L_herm, D_psi0_max, D_psi0_max_forced) return result, result_m, L, psi0 def fin_state(N, so_before_list, h, so_after_list, rho0, BC='O', L_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True): """ Optimization of the QFI over operator L (in MPO representation) and check of convergence when increasing its bond dimension. Function for finite size systems and fixed state of the system. User has to provide information about the dynamics by specifying a quantum channel. It is assumed that the quantum channel is translationally invariant and is built from layers of quantum operations. User has to provide one defining operation for each layer as a local superoperator. Those local superoperator have to be input in order of their action on the system. Parameter encoding is a stand out quantum operation. It is assumed that parameter encoding acts only once and is unitary so the user has to provide only its generator h. Generator h has to be diagonal in the computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). so_before_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act before unitary parameter encoding. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Dimension d is the dimension of local Hilbert space (dimension of physical index). Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. so_after_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act after unitary parameter encoding. rho0: list of length N of ndarrays of a shape (Dl_rho0,Dr_rho0,d,d) for OBC (Dl_rho0, Dr_rho0 can vary between sites) or ndarray of a shape (D_rho0,D_rho0,d,d,N) for PBC Density matrix describing initial state of the system in MPO representation. BC: 'O' or 'P', optional Boundary conditions, 'O' for OBC, 'P' for PBC. L_ini: list of length N of ndarrays of shape (Dl_L,Dr_L,d,d) for OBC, (Dl_L, Dr_L can vary between sites) or ndarray of shape (D_L,D_L,d,d,N) for PBC, optional Initial MPO for L. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for MPO representing L). D_L_max_forced: bool, optional True if D_L_max has to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge has to be imposed on MPO representing L, otherwise False. Returns: result: float Optimal value of figure of merit. result_v: ndarray Vector describing figure of merit in function of bond dimensions of L. L: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC Optimal L in the MPO representation. """ if np.linalg.norm(h - np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h.') d = np.shape(h)[0] ch = fin_create_channel(N, d, BC, so_before_list + so_after_list) ch2 = fin_create_channel_derivative(N, d, BC, so_before_list, h, so_after_list) rho = channel_acting_on_operator(ch, rho0) rho2 = channel_acting_on_operator(ch2, rho0) result, result_v, L = fin_state_gen(N, d, BC, rho, rho2, None, L_ini, imprecision, D_L_max, D_L_max_forced, L_herm) return result, result_v, L def fin_state_gen(N, d, BC, rho, rho2, epsilon=None, L_ini=None, imprecision=10**-2, D_L_max=100, D_L_max_forced=False, L_herm=True): """ Optimization of the the figure of merit (usually interpreted as the QFI) over operator L (in MPO representation) and check of convergence when increasing its bond dimension. Function for finite size systems and fixed state of the system. User has to provide information about the dynamics by specifying a quantum channel ch and its derivative ch2 (or two channels separated by small parameter epsilon) as superoperators in the MPO representation. There are no constraints on the structure of the channel but the complexity of calculations highly depends on channel's bond dimension. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. rho: list of length N of ndarrays of a shape (Dl_rho,Dr_rho,d,d) for OBC (Dl_rho, Dr_rho can vary between sites) or ndarray of a shape (D_rho,D_rho,d,d,N) for PBC Density matrix at the output of the quantum channel in the MPO representation. rho2: list of length N of ndarrays of a shape (Dl_rho2,Dr_rho2,d,d) for OBC (Dl_rho2, Dr_rho2 can vary between sites) or ndarray of a shape (D_rho2,D_rho2,d,d,N) for PBC Interpretaion depends on whether epsilon is specifed (2) or not (1, default approach): 1) derivative of density matrix at the output of quantum channel in MPO representation, 2) density matrix at the output of quantum channel in MPO representation for the value of estimated parameter shifted by epsilon in relation to rho. epsilon: float, optional If specified then it is interpeted as the value of separation between estimated parameters encoded in rho and rho2. L_ini: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC, optional Initial MPO for L. imprecision: float, optional Expected relative imprecision of the end results. D_L_max: integer, optional Maximal value of D_L (D_L is bond dimension for MPO representing L). D_L_max_forced: bool, optional True if D_L_max has to be reached, otherwise False. L_herm: bool, optional True if Hermitian gauge has to be imposed on MPO representing L, otherwise False. Returns: result: float Optimal value of figure of merit. result_v: ndarray Vector describing figure of merit as a function of bond dimensions of L. L: list of length N of ndarrays of a shape (Dl_L,Dr_L,d,d) for OBC (Dl_L, Dr_L can vary between sites) or ndarray of a shape (D_L,D_L,d,d,N) for PBC Optimal L in MPO representation. """ if epsilon is None: result, result_v, L = fin_FoM_optbd(N, d, BC, rho, rho2, L_ini, imprecision, D_L_max, D_L_max_forced, L_herm) else: result, result_v, L = fin2_FoM_optbd(N, d, BC, rho, rho2, epsilon, L_ini, imprecision, D_L_max, D_L_max_forced, L_herm) return result, result_v, L ############################ # # # 1.2 Low level functions. # # # ############################ def fin_create_channel(N, d, BC, so_list, tol=10**-10): """ Creates MPO for a superoperator describing translationally invariant quantum channel from list of local superoperators. Function for finite size systems. For OBC, tensor-network length N has to be at least 2k-1, where k is the correlation length (number of sites on which acts the biggest local superoperator). Local superoperators acting on more then 4 neighbouring sites are not currently supported. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). For OBC tensor-network length N has to be at least 2k-1 where k is the correlation length (number of sites on which acts the biggest local superoperator). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. so_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites a particular local superoperator acts List of local superoperators in order of their action on the system. Local superoperators acting on more then 4 neighbour sites are not currently supported. tol: float, optional Factor which after multiplication by the highest singular value gives a cutoff on singular values that are treated as nonzero. Returns: ch: list of length N of ndarrays of shape (Dl_ch,Dr_ch,d**2,d**2) for OBC (Dl_ch, Dr_ch can vary between sites) or ndarray of shape (D_ch,D_ch,d**2,d**2,N) for PBC Quantum channel as a superoperator in the MPO representation. """ if so_list == []: if BC == 'O': ch = np.eye(d**2,dtype=complex) ch = ch[np.newaxis,np.newaxis,:,:] ch = [ch]*N elif BC == 'P': ch = np.eye(d**2,dtype=complex) ch = ch[np.newaxis,np.newaxis,:,:,np.newaxis] ch = np.tile(ch,(1,1,1,1,N)) return ch if BC == 'O': ch = [0]*N kmax = max([int(math.log(np.shape(so_list[i])[0],d**2)) for i in range(len(so_list))]) if N < 2*kmax-1: warnings.warn('For OBC tensor-network length N have to be at least 2k-1 where k is correlation length (number of sites on which acts the biggest local superoperator).') for x in range(N): if x >= kmax and N-x >= kmax: ch[x] = ch[x-1] continue for i in range(len(so_list)): so = so_list[i] k = int(math.log(np.shape(so)[0],d**2)) if np.linalg.norm(so-np.diag(np.diag(so))) < 10**-10: so = np.diag(so) if k == 1: bdchil = 1 bdchir = 1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): chi[:,:,nx,nx] = so[nx] elif k == 2: so = np.reshape(so,(d**2,d**2),order='F') u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh if x == 0: bdchil = 1 bdchir = bdchi chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us[nx,:]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x > 0 and x < N-1: bdchil = bdchi bdchir = bdchi chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv[:,nx],us[nx,:]] legs = [[-1],[-2]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-1: bdchil = bdchi bdchir = 1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv[:,nx]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif k == 3: so = np.reshape(so,(d**2,d**4),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**2),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 if x == 0: bdchil = 1 bdchir = bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us1[nx,:]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == 1: bdchil = bdchi1 bdchir = bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us2[:,nx,:],us1[nx,:]] legs = [[-1,-2],[-3]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x > 1 and x < N-2: bdchil = bdchi2*bdchi1 bdchir = bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-3],[-4]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-2: bdchil = bdchi2*bdchi1 bdchir = bdchi2 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx],us2[:,nx,:]] legs = [[-1],[-2,-3]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-1: bdchil = bdchi2 bdchir = 1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif k == 4: so = np.reshape(so,(d**2,d**6),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**2,d**2),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 if x == 0: bdchil = 1 bdchir = bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us1[nx,:]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == 1: bdchil = bdchi1 bdchir = bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us2[:,nx,:],us1[nx,:]] legs = [[-1,-2],[-3]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == 2: bdchil = bdchi2*bdchi1 bdchir = bdchi3*bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [us3[:,nx,:],us2[:,nx,:],us1[nx,:]] legs = [[-1,-3],[-2,-4],[-5]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x > 2 and x < N-3: bdchil = bdchi3*bdchi2*bdchi1 bdchir = bdchi3*bdchi2*bdchi1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-4],[-3,-5],[-6]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-3: bdchil = bdchi3*bdchi2*bdchi1 bdchir = bdchi3*bdchi2 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:],us2[:,nx,:]] legs = [[-1],[-2,-4],[-3,-5]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-2: bdchil = bdchi3*bdchi2 bdchir = bdchi3 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:]] legs = [[-1],[-2,-3]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') elif x == N-1: bdchil = bdchi3 bdchir = 1 chi = np.zeros((bdchil,bdchir,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx]] legs = [[-1]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchil,bdchir),order='F') else: warnings.warn('Local superoperators acting on more then 4 neighbour sites are not currently supported.') else: if k == 1: bdchil = 1 bdchir = 1 chi = so[np.newaxis,np.newaxis,:,:] elif k == 2: u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh us = np.reshape(us,(d**2,d**2,bdchi),order='F') sv = np.reshape(sv,(bdchi,d**2,d**2),order='F') tensors = [sv,us] legs = [[-1,-3,1],[1,-4,-2]] chi = ncon(tensors,legs) if x == 0: tensors = [us] legs = [[-2,-3,-1]] chi = ncon(tensors,legs) bdchil = 1 bdchir = bdchi elif x > 0 and x < N-1: tensors = [sv,us] legs = [[-1,-3,1],[1,-4,-2]] chi = ncon(tensors,legs) bdchil = bdchi bdchir = bdchi elif x == N-1: tensors = [sv] legs = [[-1,-2,-3]] chi = ncon(tensors,legs) bdchil = bdchi bdchir = 1 chi = np.reshape(chi,(bdchil,bdchir,d**2,d**2),order='F') elif k == 3: so = np.reshape(so,(d**4,d**8),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2,d**2,d**2),order='F') if x == 0: tensors = [us1] legs = [[-2,-3,-1]] chi = ncon(tensors,legs) bdchil = 1 bdchir = bdchi1 elif x == 1: tensors = [us2,us1] legs = [[-1,-5,1,-2],[1,-6,-3]] chi = ncon(tensors,legs) bdchil = bdchi1 bdchir = bdchi2*bdchi1 elif x > 1 and x < N-2: tensors = [sv2,us2,us1] legs = [[-1,-5,1],[-2,1,2,-3],[2,-6,-4]] chi = ncon(tensors,legs) bdchil = bdchi2*bdchi1 bdchir = bdchi2*bdchi1 elif x == N-2: tensors = [sv2,us2] legs = [[-1,-4,1],[-2,1,-5,-3]] chi = ncon(tensors,legs) bdchil = bdchi2*bdchi1 bdchir = bdchi2 elif x == N-1: tensors = [sv2] legs = [[-1,-2,-3]] chi = ncon(tensors,legs) bdchil = bdchi2 bdchir = 1 chi = np.reshape(chi,(bdchil,bdchir,d**2,d**2),order='F') elif k == 4: so = np.reshape(so,(d**4,d**12),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**8),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**4,d**4),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 sv3 = np.reshape(sv3,(bdchi3,d**2,d**2),order='F') if x == 0: tensors = [us1] legs = [[-2,-3,-1]] chi = ncon(tensors,legs) bdchil = 1 bdchir = bdchi1 elif x == 1: tensors = [us2,us1] legs = [[-1,-4,1,-2],[1,-5,-3]] chi = ncon(tensors,legs) bdchil = bdchi1 bdchir = bdchi2*bdchi1 elif x == 2: tensors = [us3,us2,us1] legs = [[-1,-6,1,-3],[-2,1,2,-4],[2,-7,-5]] chi = ncon(tensors,legs) bdchil = bdchi2*bdchi1 bdchir = bdchi3*bdchi2*bdchi1 elif x > 2 and x < N-3: tensors = [sv3,us3,us2,us1] legs = [[-1,-7,1],[-2,1,2,-4],[-3,2,3,-5],[3,-8,-6]] chi = ncon(tensors,legs) bdchil = bdchi3*bdchi2*bdchi1 bdchir = bdchi3*bdchi2*bdchi1 elif x == N-3: tensors = [sv3,us3,us2] legs = [[-1,-6,1],[-2,1,2,-4],[-3,2,-7,-5]] chi = ncon(tensors,legs) bdchil = bdchi3*bdchi2*bdchi1 bdchir = bdchi3*bdchi2 elif x == N-2: tensors = [sv3,us3] legs = [[-1,-4,1],[-2,1,-5,-3]] chi = ncon(tensors,legs) bdchil = bdchi3*bdchi2 bdchir = bdchi3 elif x == N-1: tensors = [sv3] legs = [[-1,-2,-3]] chi = ncon(tensors,legs) bdchil = bdchi3 bdchir = 1 chi = np.reshape(chi,(bdchi,bdchi,d**2,d**2),order='F') else: warnings.warn('Local superoperators acting on more then 4 neighbour sites are not currently supported.') if i == 0: bdchl = bdchil bdchr = bdchir ch[x] = chi else: bdchl = bdchil*bdchl bdchr = bdchir*bdchr tensors = [chi,ch[x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] ch[x] = ncon(tensors,legs) ch[x] = np.reshape(ch[x],(bdchl,bdchr,d**2,d**2),order='F') elif BC == 'P': for i in range(len(so_list)): so = so_list[i] k = int(math.log(np.shape(so)[0],d**2)) if np.linalg.norm(so-np.diag(np.diag(so))) < 10**-10: so = np.diag(so) if k == 1: bdchi = 1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): chi[:,:,nx,nx] = so[nx] elif k == 2: so = np.reshape(so,(d**2,d**2),order='F') u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): chi[:,:,nx,nx] = np.outer(sv[:,nx],us[nx,:]) elif k == 3: so = np.reshape(so,(d**2,d**4),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**2),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 bdchi = bdchi2*bdchi1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv2[:,nx],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-3],[-4]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchi,bdchi),order='F') elif k == 4: so = np.reshape(so,(d**2,d**6),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 sv1 = np.reshape(sv1,(bdchi1*d**2,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**2,d**2),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 bdchi = bdchi3*bdchi2*bdchi1 chi = np.zeros((bdchi,bdchi,d**2,d**2),dtype=complex) for nx in range(d**2): tensors = [sv3[:,nx],us3[:,nx,:],us2[:,nx,:],us1[nx,:]] legs = [[-1],[-2,-4],[-3,-5],[-6]] chi[:,:,nx,nx] = np.reshape(ncon(tensors,legs),(bdchi,bdchi),order='F') else: warnings.warn('Local superoperators acting on more then 4 neighbour sites are not currently supported.') else: if k == 1: bdchi = 1 chi = so[np.newaxis,np.newaxis,:,:] elif k == 2: u,s,vh = np.linalg.svd(so) s = s[s > s[0]*tol] bdchi = np.shape(s)[0] u = u[:,:bdchi] vh = vh[:bdchi,:] us = u @ np.diag(np.sqrt(s)) sv = np.diag(np.sqrt(s)) @ vh us = np.reshape(us,(d**2,d**2,bdchi),order='F') sv = np.reshape(sv,(bdchi,d**2,d**2),order='F') tensors = [sv,us] legs = [[-1,-3,1],[1,-4,-2]] chi = ncon(tensors,legs) elif k == 3: so = np.reshape(so,(d**4,d**8),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**4),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2,d**2,d**2),order='F') tensors = [sv2,us2,us1] legs = [[-1,-5,1],[-2,1,2,-3],[2,-6,-4]] chi = ncon(tensors,legs) bdchi = bdchi2*bdchi1 chi = np.reshape(chi,(bdchi,bdchi,d**2,d**2),order='F') elif k == 4: so = np.reshape(so,(d**4,d**12),order='F') u1,s1,vh1 = np.linalg.svd(so,full_matrices=False) s1 = s1[s1 > s1[0]*tol] bdchi1 = np.shape(s1)[0] u1 = u1[:,:bdchi1] vh1 = vh1[:bdchi1,:] us1 = u1 @ np.diag(np.sqrt(s1)) sv1 = np.diag(np.sqrt(s1)) @ vh1 us1 = np.reshape(us1,(d**2,d**2,bdchi1),order='F') sv1 = np.reshape(sv1,(bdchi1*d**4,d**8),order='F') u2,s2,vh2 = np.linalg.svd(sv1,full_matrices=False) s2 = s2[s2 > s2[0]*tol] bdchi2 = np.shape(s2)[0] u2 = u2[:,:bdchi2] vh2 = vh2[:bdchi2,:] us2 = u2 @ np.diag(np.sqrt(s2)) us2 = np.reshape(us2,(bdchi1,d**2,d**2,bdchi2),order='F') sv2 = np.diag(np.sqrt(s2)) @ vh2 sv2 = np.reshape(sv2,(bdchi2*d**4,d**4),order='F') u3,s3,vh3 = np.linalg.svd(sv2,full_matrices=False) s3 = s3[s3 > s3[0]*tol] bdchi3 = np.shape(s3)[0] u3 = u3[:,:bdchi3] vh3 = vh3[:bdchi3,:] us3 = u3 @ np.diag(np.sqrt(s3)) us3 = np.reshape(us3,(bdchi2,d**2,d**2,bdchi3),order='F') sv3 = np.diag(np.sqrt(s3)) @ vh3 sv3 = np.reshape(sv3,(bdchi3,d**2,d**2),order='F') tensors = [sv3,us3,us2,us1] legs = [[-1,-7,1],[-2,1,2,-4],[-3,2,3,-5],[3,-8,-6]] chi = ncon(tensors,legs) bdchi = bdchi3*bdchi2*bdchi1 chi = np.reshape(chi,(bdchi,bdchi,d**2,d**2),order='F') else: warnings.warn('Local superoperators acting on more then 4 neighbour sites are not currently supported.') if i == 0: bdch = bdchi ch = chi else: bdch = bdchi*bdch tensors = [chi,ch] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] ch = ncon(tensors,legs) ch = np.reshape(ch,(bdch,bdch,d**2,d**2),order='F') ch = ch[:,:,:,:,np.newaxis] ch = np.tile(ch,(1,1,1,1,N)) return ch def fin_create_channel_derivative(N, d, BC, so_before_list, h, so_after_list): """ Creates a MPO for the derivative (over estimated parameter) of the superoperator describing the quantum channel. Function for finite size systems. Function for translationally invariant channels with unitary parameter encoding generated by h. Generator h has to be diagonal in the computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. so_before_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act before unitary parameter encoding. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h. so_after_list: list of ndarrays of a shape (d**(2*k),d**(2*k)) where k describes on how many sites particular local superoperator acts List of local superoperators (in order) which act after unitary parameter encoding. Returns: chd: list of length N of ndarrays of a shape (Dl_chd,Dr_chd,d**2,d**2) for OBC (Dl_chd, Dr_chd can vary between sites) or ndarray of a shape (D_chd,D_chd,d**2,d**2,N) for PBC Derivative of superoperator describing quantum channel in MPO representation. """ if np.linalg.norm(h-np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that local superoperators are expressed in the eigenbasis of h.') if len(so_before_list) == 0: if BC == 'O': ch1 = np.eye(d**2,dtype=complex) ch1 = ch1[np.newaxis,np.newaxis,:,:] ch1 = [ch1]*N elif BC == 'P': ch1 = np.eye(d**2,dtype=complex) ch1 = ch1[np.newaxis,np.newaxis,:,:,np.newaxis] ch1 = np.tile(ch1,(1,1,1,1,N)) ch1d = fin_commutator(N,d,BC,ch1,h,1j) ch2 = fin_create_channel(N,d,BC,so_after_list) if BC == 'O': chd = [0]*N for x in range(N): bdch1dl = np.shape(ch1d[x])[0] bdch1dr = np.shape(ch1d[x])[1] bdch2l = np.shape(ch2[x])[0] bdch2r = np.shape(ch2[x])[1] tensors = [ch2[x],ch1d[x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] chd[x] = np.reshape(ncon(tensors,legs),(bdch1dl*bdch2l,bdch1dr*bdch2r,d**2,d**2),order='F') elif BC == 'P': bdch1d = np.shape(ch1d)[0] bdch2 = np.shape(ch2)[0] chd = np.zeros((bdch1d*bdch2,bdch1d*bdch2,d**2,d**2,N),dtype=complex) for x in range(N): tensors = [ch2[:,:,:,:,x],ch1d[:,:,:,:,x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] chd[:,:,:,:,x] = np.reshape(ncon(tensors,legs),(bdch1d*bdch2,bdch1d*bdch2,d**2,d**2),order='F') elif len(so_after_list) == 0: ch1 = fin_create_channel(N,d,BC,so_before_list) chd = fin_commutator(N,d,BC,ch1,h,1j) else: ch1 = fin_create_channel(N,d,BC,so_before_list) ch1d = fin_commutator(N,d,BC,ch1,h,1j) ch2 = fin_create_channel(N,d,BC,so_after_list) if BC == 'O': chd = [0]*N for x in range(N): bdch1dl = np.shape(ch1d[x])[0] bdch1dr = np.shape(ch1d[x])[1] bdch2l = np.shape(ch2[x])[0] bdch2r = np.shape(ch2[x])[1] tensors = [ch2[x],ch1d[x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] chd[x] = np.reshape(ncon(tensors,legs),(bdch1dl*bdch2l,bdch1dr*bdch2r,d**2,d**2),order='F') elif BC == 'P': bdch1d = np.shape(ch1d)[0] bdch2 = np.shape(ch2)[0] chd = np.zeros((bdch1d*bdch2,bdch1d*bdch2,d**2,d**2,N),dtype=complex) for x in range(N): tensors = [ch2[:,:,:,:,x],ch1d[:,:,:,:,x]] legs = [[-1,-3,-5,1],[-2,-4,1,-6]] chd[:,:,:,:,x] = np.reshape(ncon(tensors,legs),(bdch1d*bdch2,bdch1d*bdch2,d**2,d**2),order='F') return chd def fin_commutator(N, d, BC, a, h, c): """ Calculate MPO for commutator b = [a, c*sum{h}] of MPO a with sum of local generators h and with arbitrary multiplicative scalar factor c. Generator h have to be diagonal in computational basis, or in other words it is assumed that a is expressed in the eigenbasis of h. Parameters: N: integer Number of sites in the chain of tensors (usually number of particles). d: integer Dimension of local Hilbert space (dimension of physical index). BC: 'O' or 'P' Boundary conditions, 'O' for OBC, 'P' for PBC. a: list of length N of ndarrays of a shape (Dl_a,Dr_a,d,d) for OBC (Dl_a, Dr_a can vary between sites) or ndarray of a shape (D_a,D_a,d,d,N) for PBC MPO. h: ndarray of a shape (d,d) Generator of unitary parameter encoding. Generator h have to be diagonal in computational basis, or in other words it is assumed that a is expressed in the eigenbasis of h. c: complex Scalar factor which multiplies sum of local generators. Returns: b: list of length N of ndarrays of a shape (Dl_b,Dr_b,d,d) for OBC (Dl_b, Dr_b can vary between sites) or ndarray of a shape (D_b,D_b,d,d,N) for PBC Commutator [a, c*sum{h}] in MPO representation. """ if np.linalg.norm(h-np.diag(np.diag(h))) > 10**-10: warnings.warn('Generator h have to be diagonal in computational basis, or in other words it is assumed that a is expressed in the eigenbasis of h.') if BC == 'O': bh = [0]*N b = [0]*N for x in range(N): da = np.shape(a[x])[2] bda1 = np.shape(a[x])[0] bda2 = np.shape(a[x])[1] if x == 0: bdbh1 = 1 bdbh2 = 2 bh[x] = np.zeros((bdbh1,bdbh2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): bh[x][:,:,nx,nxp] = np.array([[c*(h[nxp,nxp]-h[nx,nx]),1]]) elif x > 0 and x < N-1: bdbh1 = 2 bdbh2 = 2 bh[x] = np.zeros((bdbh1,bdbh2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): bh[x][:,:,nx,nxp] = np.array([[1,0],[c*(h[nxp,nxp]-h[nx,nx]),1]]) elif x == N-1: bdbh1 = 2 bdbh2 = 1 bh[x] = np.zeros((bdbh1,bdbh2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): bh[x][:,:,nx,nxp] = np.array([[1],[c*(h[nxp,nxp]-h[nx,nx])]]) if da == d: # a is operator b[x] = np.zeros((bdbh1*bda1,bdbh2*bda2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): b[x][:,:,nx,nxp] = np.kron(bh[x][:,:,nx,nxp],a[x][:,:,nx,nxp]) elif da == d**2: # a is superoperator (vectorized channel) bh[x] = np.reshape(bh[x],(bdbh1,bdbh2,d**2),order='F') b[x] = np.zeros((bdbh1*bda1,bdbh2*bda2,d**2,d**2),dtype=complex) for nx in range(d**2): for nxp in range(d**2): b[x][:,:,nx,nxp] = np.kron(bh[x][:,:,nx],a[x][:,:,nx,nxp]) elif BC == 'P': da = np.shape(a)[2] bda = np.shape(a)[0] if N == 1: bdbh = 1 else: bdbh = 2 bh = np.zeros((bdbh,bdbh,d,d,N),dtype=complex) for nx in range(d): for nxp in range(d): if N == 1: bh[:,:,nx,nxp,0] = c*(h[nxp,nxp]-h[nx,nx]) else: bh[:,:,nx,nxp,0] = np.array([[c*(h[nxp,nxp]-h[nx,nx]),1],[0,0]]) for x in range(1,N-1): bh[:,:,nx,nxp,x] = np.array([[1,0],[c*(h[nxp,nxp]-h[nx,nx]),1]]) bh[:,:,nx,nxp,N-1] = np.array([[1,0],[c*(h[nxp,nxp]-h[nx,nx]),0]]) if da == d: # a is operator b = np.zeros((bdbh*bda,bdbh*bda,d,d,N),dtype=complex) for nx in range(d): for nxp in range(d): for x in range(N): b[:,:,nx,nxp,x] = np.kron(bh[:,:,nx,nxp,x],a[:,:,nx,nxp,x]) elif da == d**2: # a is superoperator (vectorized channel) bh = np.reshape(bh,(bdbh,bdbh,d**2,N),order='F') b = np.zeros((bdbh*bda,bdbh*bda,d**2,d**2,N),dtype=complex) for nx in range(d**2): for nxp in range(d**2): for x in range(N): b[:,:,nx,nxp,x] = np.kron(bh[:,:,nx,x],a[:,:,nx,nxp,x]) return b def fin_enlarge_bdl(cold,factor): """ Enlarge bond dimension of SLD MPO. Function for finite size systems. Parameters: cold: SLD MPO, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC factor: factor which determine on average relation between old and newly added values of SLD MPO Returns: c: SLD MPO with bd += 1 """ rng = np.random.default_rng() if type(cold) is list: n = len(cold) if n == 1: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: c = [0]*n x = 0 d = np.shape(cold[x])[2] bdl1 = 1 bdl2 = np.shape(cold[x])[1]+1 c[x] = np.zeros((bdl1,bdl2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): meanrecold = np.sum(np.abs(np.real(cold[x][:,:,nx,nxp])))/(bdl2-1) meanimcold = np.sum(np.abs(np.imag(cold[x][:,:,nx,nxp])))/(bdl2-1) c[x][:,:,nx,nxp] = (meanrecold*rng.random((bdl1,bdl2))+1j*meanimcold*rng.random((bdl1,bdl2)))*factor c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[x][0:bdl1-1,0:bdl2-1,:,:] = cold[x] for x in range(1,n-1): d = np.shape(cold[x])[2] bdl1 = np.shape(cold[x])[0]+1 bdl2 = np.shape(cold[x])[1]+1 c[x] = np.zeros((bdl1,bdl2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): meanrecold = np.sum(np.abs(np.real(cold[x][:,:,nx,nxp])))/((bdl1-1)*(bdl2-1)) meanimcold = np.sum(np.abs(np.imag(cold[x][:,:,nx,nxp])))/((bdl1-1)*(bdl2-1)) c[x][:,:,nx,nxp] = (meanrecold*rng.random((bdl1,bdl2))+1j*meanimcold*rng.random((bdl1,bdl2)))*factor c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[x][0:bdl1-1,0:bdl2-1,:,:] = cold[x] x = n-1 d = np.shape(cold[x])[2] bdl1 = np.shape(cold[x])[0]+1 bdl2 = 1 c[x] = np.zeros((bdl1,bdl2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): meanrecold = np.sum(np.abs(np.real(cold[x][:,:,nx,nxp])))/(bdl1-1) meanimcold = np.sum(np.abs(np.imag(cold[x][:,:,nx,nxp])))/(bdl1-1) c[x][:,:,nx,nxp] = (meanrecold*rng.random((bdl1,bdl2))+1j*meanimcold*rng.random((bdl1,bdl2)))*factor c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[x][0:bdl1-1,0:bdl2-1,:,:] = cold[x] elif type(cold) is np.ndarray: n = np.shape(cold)[4] d = np.shape(cold)[2] bdl = np.shape(cold)[0]+1 c = np.zeros((bdl,bdl,d,d,n),dtype=complex) for nx in range(d): for nxp in range(d): for x in range(n): meanrecold = np.sum(np.abs(np.real(cold[:,:,nx,nxp,x])))/(bdl-1)**2 meanimcold = np.sum(np.abs(np.imag(cold[:,:,nx,nxp,x])))/(bdl-1)**2 c[:,:,nx,nxp,x] = (meanrecold*rng.random((bdl,bdl))+1j*meanimcold*rng.random((bdl,bdl)))*factor c = (c + np.conj(np.moveaxis(c,2,3)))/2 c[0:bdl-1,0:bdl-1,:,:,:] = cold return c def fin_enlarge_bdpsi(a0old,factor): """ Enlarge bond dimension of wave function MPS. Function for finite size systems. Parameters: a0old: wave function MPS, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC ratio: factor which determine on average relation between last and next to last values of diagonals of wave function MPS Returns: a0: wave function MPS with bd += 1 """ rng = np.random.default_rng() if type(a0old) is list: n = len(a0old) if n == 1: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: a0 = [0]*n x = 0 d = np.shape(a0old[x])[2] bdpsi1 = 1 bdpsi2 = np.shape(a0old[x])[1]+1 a0[x] = np.zeros((bdpsi1,bdpsi2,d),dtype=complex) for nx in range(d): meanrea0old = np.sum(np.abs(np.real(a0old[x][:,:,nx])))/(bdpsi2-1) meanima0old = np.sum(np.abs(np.imag(a0old[x][:,:,nx])))/(bdpsi2-1) a0[x][:,:,nx] = (meanrea0old*rng.random((bdpsi1,bdpsi2))+1j*meanima0old*rng.random((bdpsi1,bdpsi2)))*factor a0[x][0:bdpsi1-1,0:bdpsi2-1,:] = a0old[x] for x in range(1,n-1): d = np.shape(a0old[x])[2] bdpsi1 = np.shape(a0old[x])[0]+1 bdpsi2 = np.shape(a0old[x])[1]+1 a0[x] = np.zeros((bdpsi1,bdpsi2,d),dtype=complex) for nx in range(d): meanrea0old = np.sum(np.abs(np.real(a0old[x][:,:,nx])))/((bdpsi1-1)*(bdpsi2-1)) meanima0old = np.sum(np.abs(np.imag(a0old[x][:,:,nx])))/((bdpsi1-1)*(bdpsi2-1)) a0[x][:,:,nx] = (meanrea0old*rng.random((bdpsi1,bdpsi2))+1j*meanima0old*rng.random((bdpsi1,bdpsi2)))*factor a0[x][0:bdpsi1-1,0:bdpsi2-1,:] = a0old[x] x = n-1 d = np.shape(a0old[x])[2] bdpsi1 = np.shape(a0old[x])[0]+1 bdpsi2 = 1 a0[x] = np.zeros((bdpsi1,bdpsi2,d),dtype=complex) for nx in range(d): meanrea0old = np.sum(np.abs(np.real(a0old[x][:,:,nx])))/(bdpsi1-1) meanima0old = np.sum(np.abs(np.imag(a0old[x][:,:,nx])))/(bdpsi1-1) a0[x][:,:,nx] = (meanrea0old*rng.random((bdpsi1,bdpsi2))+1j*meanima0old*rng.random((bdpsi1,bdpsi2)))*factor a0[x][0:bdpsi1-1,0:bdpsi2-1,:] = a0old[x] tensors = [np.conj(a0[n-1]),a0[n-1]] legs = [[-1,-3,1],[-2,-4,1]] r1 = ncon(tensors,legs) a0[n-1] = a0[n-1]/np.sqrt(np.linalg.norm(np.reshape(r1,-1,order='F'))) tensors = [np.conj(a0[n-1]),a0[n-1]] legs = [[-1,-3,1],[-2,-4,1]] r2 = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[x]),a0[x],r2] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] r1 = ncon(tensors,legs) a0[x] = a0[x]/np.sqrt(np.linalg.norm(np.reshape(r1,-1,order='F'))) tensors = [np.conj(a0[x]),a0[x],r2] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] r2 = ncon(tensors,legs) tensors = [np.conj(a0[0]),a0[0],r2] legs = [[4,2,1],[5,3,1],[2,3,4,5]] r1 = ncon(tensors,legs) a0[0] = a0[0]/np.sqrt(np.abs(r1)) elif type(a0old) is np.ndarray: n = np.shape(a0old)[3] d = np.shape(a0old)[2] bdpsi = np.shape(a0old)[0]+1 a0 = np.zeros((bdpsi,bdpsi,d,n),dtype=complex) for nx in range(d): for x in range(n): meanrea0old = np.sum(np.abs(np.real(a0old[:,:,nx,x])))/(bdpsi-1)**2 meanima0old = np.sum(np.abs(np.imag(a0old[:,:,nx,x])))/(bdpsi-1)**2 a0[:,:,nx,x] = (meanrea0old*rng.random((bdpsi,bdpsi))+1j*meanima0old*rng.random((bdpsi,bdpsi)))*factor a0[0:bdpsi-1,0:bdpsi-1,:,:] = a0old if n == 1: tensors = [np.conj(a0[:,:,:,0]),a0[:,:,:,0]] legs = [[2,2,1],[3,3,1]] r1 = ncon(tensors,legs) a0[:,:,:,0] = a0[:,:,:,0]/np.sqrt(np.abs(r1)) else: tensors = [np.conj(a0[:,:,:,n-1]),a0[:,:,:,n-1]] legs = [[-1,-3,1],[-2,-4,1]] r1 = ncon(tensors,legs) a0[:,:,:,n-1] = a0[:,:,:,n-1]/np.sqrt(np.linalg.norm(np.reshape(r1,-1,order='F'))) tensors = [np.conj(a0[:,:,:,n-1]),a0[:,:,:,n-1]] legs = [[-1,-3,1],[-2,-4,1]] r2 = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[:,:,:,x]),a0[:,:,:,x],r2] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] r1 = ncon(tensors,legs) a0[:,:,:,x] = a0[:,:,:,x]/np.sqrt(np.linalg.norm(np.reshape(r1,-1,order='F'))) tensors = [np.conj(a0[:,:,:,x]),a0[:,:,:,x],r2] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] r2 = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),a0[:,:,:,0],r2] legs = [[4,2,1],[5,3,1],[2,3,4,5]] r1 = ncon(tensors,legs) a0[:,:,:,0] = a0[:,:,:,0]/np.sqrt(np.abs(r1)) return a0 ######################################### # 1.2.1 Problems with exact derivative. # ######################################### def fin_FoM_FoMD_optbd(n,d,bc,ch,chp,cini=None,a0ini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True,bdpsimax=100,alwaysbdpsimax=False): """ Iterative optimization of FoM/FoMD over SLD MPO and initial wave function MPS and also check of convergence in bond dimensions. Function for finite size systems. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC ch: MPO for quantum channel, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC chp: MPO for generalized derivative of quantum channel, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC cini: initial MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0ini: initial MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for SLD MPO, default value is 100 alwaysbdlmax: boolean value, True if maximal value of bd for SLD MPO have to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False bdpsimax: maximal value of bd for initial wave function MPS, default value is 100 alwaysbdpsimax: boolean value, True if maximal value of bd for initial wave function MPS have to be reached, otherwise False (default value) Returns: result: optimal value of FoM/FoMD resultm: matrix describing FoM/FoMD in function of bd of respectively SLD MPO [rows] and initial wave function MPS [columns] c: optimal MPO for SLD a0: optimal MPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine if bc == 'O': a0 = a0[np.newaxis,np.newaxis,:] a0 = [a0]*n elif bc == 'P': a0 = a0[np.newaxis,np.newaxis,:,np.newaxis] a0 = np.tile(a0,(1,1,1,n)) else: a0 = a0ini if bc == 'O': bdpsi = max([np.shape(a0[i])[0] for i in range(n)]) a0 = [a0[i].astype(complex) for i in range(n)] elif bc == 'P': bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) if cini is None: bdl = 1 rng = np.random.default_rng() if bc == 'O': c = [0]*n c[0] = (rng.random((1,bdl,d,d)) + 1j*rng.random((1,bdl,d,d)))/bdl c[0] = (c[0] + np.conj(np.moveaxis(c[0],2,3)))/2 for x in range(1,n-1): c[x] = (rng.random((bdl,bdl,d,d)) + 1j*rng.random((bdl,bdl,d,d)))/bdl c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[n-1] = (rng.random((bdl,1,d,d)) + 1j*rng.random((bdl,1,d,d)))/bdl c[n-1] = (c[n-1] + np.conj(np.moveaxis(c[n-1],2,3)))/2 elif bc == 'P': c = (rng.random((bdl,bdl,d,d,n)) + 1j*rng.random((bdl,bdl,d,d,n)))/bdl c = (c + np.conj(np.moveaxis(c,2,3)))/2 else: c = cini if bc == 'O': bdl = max([np.shape(c[i])[0] for i in range(n)]) c = [c[i].astype(complex) for i in range(n)] elif bc == 'P': bdl = np.shape(c)[0] c = c.astype(complex) resultm = np.zeros((bdlmax,bdpsimax),dtype=float) resultm[bdl-1,bdpsi-1],c,a0 = fin_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,imprecision,lherm) if bc == 'O' and n == 1: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] return result,resultm,c,a0 factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: while True: if bdpsi == bdpsimax: break else: a0old = a0 bdpsi += 1 i = 0 while True: a0 = fin_enlarge_bdpsi(a0,factorv[i]) resultm[bdl-1,bdpsi-1],cnew,a0new = fin_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-1,bdpsi-2]: break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdpsimax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-1,bdpsi-2]: bdpsi += -1 a0 = a0old a0copy = a0new ccopy = cnew break else: a0 = a0new c = cnew if problem: break if bdl == bdlmax: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi] break else: bdl += 1 i = 0 while True: c = fin_enlarge_bdl(c,factorv[i]) resultm[bdl-1,bdpsi-1],cnew,a0new = fin_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-2,bdpsi-1]: a0 = a0new c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-2,bdpsi-1]: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: if resultm[bdl-1,bdpsi-1] < resultm[bdl-2,bdpsi]: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] bdl += -1 bdpsi += 1 result = resultm[bdl-1,bdpsi-1] else: resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi-1] break if not(problem): break return result,resultm,c,a0 def fin_FoM_optbd(n,d,bc,a,b,cini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True): """ Optimization of FoM over SLD MPO and also check of convergence in bond dimension. Function for finite size systems. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC a: MPO for density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC b: MPO for generalized derivative of density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC cini: initial MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for SLD MPO, default value is 100 alwaysbdlmax: boolean value, True if maximal value of bd for SLD MPO have to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: result: optimal value of FoM resultv: vector describing FoM in function of bd of SLD MPO c: optimal MPO for SLD """ while True: if cini is None: bdl = 1 rng = np.random.default_rng() if bc == 'O': c = [0]*n c[0] = (rng.random((1,bdl,d,d)) + 1j*rng.random((1,bdl,d,d)))/bdl c[0] = (c[0] + np.conj(np.moveaxis(c[0],2,3)))/2 for x in range(1,n-1): c[x] = (rng.random((bdl,bdl,d,d)) + 1j*rng.random((bdl,bdl,d,d)))/bdl c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[n-1] = (rng.random((bdl,1,d,d)) + 1j*rng.random((bdl,1,d,d)))/bdl c[n-1] = (c[n-1] + np.conj(np.moveaxis(c[n-1],2,3)))/2 elif bc == 'P': c = (rng.random((bdl,bdl,d,d,n)) + 1j*rng.random((bdl,bdl,d,d,n)))/bdl c = (c + np.conj(np.moveaxis(c,2,3)))/2 else: c = cini if bc == 'O': bdl = max([np.shape(c[i])[0] for i in range(n)]) c = [c[i].astype(complex) for i in range(n)] elif bc == 'P': bdl = np.shape(c)[0] c = c.astype(complex) resultv = np.zeros(bdlmax,dtype=float) if bc == 'O': resultv[bdl-1],c = fin_FoM_OBC_optm(a,b,c,imprecision,lherm) if n == 1: resultv = resultv[0:bdl] result = resultv[bdl-1] return result,resultv,c elif bc == 'P': resultv[bdl-1],c = fin_FoM_PBC_optm(a,b,c,imprecision,lherm) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: if bdl == bdlmax: resultv = resultv[0:bdl] result = resultv[bdl-1] break else: bdl += 1 i = 0 while True: c = fin_enlarge_bdl(c,factorv[i]) if bc == 'O': resultv[bdl-1],cnew = fin_FoM_OBC_optm(a,b,c,imprecision,lherm) elif bc == 'P': resultv[bdl-1],cnew = fin_FoM_PBC_optm(a,b,c,imprecision,lherm) if resultv[bdl-1] >= resultv[bdl-2]: c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultv[bdl-1] < (1+imprecision)*resultv[bdl-2]: resultv = resultv[0:bdl] result = resultv[bdl-1] break if not(problem): break return result,resultv,c def fin_FoMD_optbd(n,d,bc,c2d,cpd,a0ini=None,imprecision=10**-2,bdpsimax=100,alwaysbdpsimax=False): """ Optimization of FoMD over initial wave function MPS and also check of convergence in bond dimension. Function for finite size systems. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC c2d: MPO for square of dual of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC cpd: MPO for dual of generalized derivative of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0ini: initial MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdpsimax: maximal value of bd for initial wave function MPS, default value is 100 alwaysbdpsimax: boolean value, True if maximal value of bd for initial wave function MPS have to be reached, otherwise False (default value) Returns: result: optimal value of FoMD resultv: vector describing FoMD in function of bd of initial wave function MPS a0: optimal MPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine if bc == 'O': a0 = a0[np.newaxis,np.newaxis,:] a0 = [a0]*n elif bc == 'P': a0 = a0[np.newaxis,np.newaxis,:,np.newaxis] a0 = np.tile(a0,(1,1,1,n)) else: a0 = a0ini if bc == 'O': bdpsi = max([np.shape(a0[i])[0] for i in range(n)]) a0 = [a0[i].astype(complex) for i in range(n)] elif bc == 'P': bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) resultv = np.zeros(bdpsimax,dtype=float) if bc == 'O': resultv[bdpsi-1],a0 = fin_FoMD_OBC_optm(c2d,cpd,a0,imprecision) if n == 1: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] return result,resultv,a0 elif bc == 'P': resultv[bdpsi-1],a0 = fin_FoMD_PBC_optm(c2d,cpd,a0,imprecision) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: if bdpsi == bdpsimax: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] break else: bdpsi += 1 i = 0 while True: a0 = fin_enlarge_bdpsi(a0,factorv[i]) if bc == 'O': resultv[bdpsi-1],a0new = fin_FoMD_OBC_optm(c2d,cpd,a0,imprecision) elif bc == 'P': resultv[bdpsi-1],a0new = fin_FoMD_PBC_optm(c2d,cpd,a0,imprecision) if resultv[bdpsi-1] >= resultv[bdpsi-2]: a0 = a0new break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdpsimax) and resultv[bdpsi-1] < (1+imprecision)*resultv[bdpsi-2]: resultv = resultv[0:bdpsi] result = resultv[bdpsi-1] break if not(problem): break return result,resultv,a0 def fin_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,imprecision=10**-2,lherm=True): """ Iterative optimization of FoM/FoMD over SLD MPO and initial wave function MPS. Function for finite size systems. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC c: MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0: MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC ch: MPO for quantum channel, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC chp: MPO for generalized derivative of quantum channel, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fval: optimal value of FoM/FoMD c: optimal MPO for SLD a0: optimal MPS for initial wave function """ relunc_f = 0.1*imprecision if bc == 'O': chd = [0]*n chpd = [0]*n for x in range(n): chd[x] = np.conj(np.moveaxis(ch[x],2,3)) chpd[x] = np.conj(np.moveaxis(chp[x],2,3)) elif bc == 'P': chd = np.conj(np.moveaxis(ch,2,3)) chpd = np.conj(np.moveaxis(chp,2,3)) f = np.array([]) iter_f = 0 while True: a0_dm = wave_function_to_density_matrix(a0) a = channel_acting_on_operator(ch,a0_dm) b = channel_acting_on_operator(chp,a0_dm) if bc == 'O': fom,c = fin_FoM_OBC_optm(a,b,c,imprecision,lherm) elif bc == 'P': fom,c = fin_FoM_PBC_optm(a,b,c,imprecision,lherm) f = np.append(f,fom) if iter_f >= 2 and np.std(f[-4:])/np.mean(f[-4:]) <= relunc_f: break if bc == 'O': c2 = [0]*n for x in range(n): bdl1 = np.shape(c[x])[0] bdl2 = np.shape(c[x])[1] c2[x] = np.zeros((bdl1**2,bdl2**2,d,d),dtype=complex) for nx in range(d): for nxp in range(d): for nxpp in range(d): c2[x][:,:,nx,nxp] = c2[x][:,:,nx,nxp]+np.kron(c[x][:,:,nx,nxpp],c[x][:,:,nxpp,nxp]) elif bc == 'P': bdl = np.shape(c)[0] c2 = np.zeros((bdl**2,bdl**2,d,d,n),dtype=complex) for nx in range(d): for nxp in range(d): for nxpp in range(d): for x in range(n): c2[:,:,nx,nxp,x] = c2[:,:,nx,nxp,x]+np.kron(c[:,:,nx,nxpp,x],c[:,:,nxpp,nxp,x]) c2d = channel_acting_on_operator(chd,c2) cpd = channel_acting_on_operator(chpd,c) if bc == 'O': fomd,a0 = fin_FoMD_OBC_optm(c2d,cpd,a0,imprecision) elif bc == 'P': fomd,a0 = fin_FoMD_PBC_optm(c2d,cpd,a0,imprecision) f = np.append(f,fomd) iter_f += 1 fval = f[-1] return fval,c,a0 def fin_FoM_OBC_optm(a,b,c,imprecision=10**-2,lherm=True): """ Optimization of FoM over MPO for SLD. Function for finite size systems with OBC. Parameters: a: MPO for density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) b: MPO for generalized derivative of density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) c: MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fomval: optimal value of FoM c: optimal MPO for SLD """ n = len(c) tol_fom = 0.1*imprecision/n**2 if n == 1: if np.shape(a[0])[0] == 1 and np.shape(b[0])[0] == 1 and np.shape(c[0])[0] == 1: d = np.shape(c[0])[2] tensors = [b[0][0,0,:,:]] legs = [[-2,-1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[0][0,0,:,:],np.eye(d)] legs = [[-2,-3],[-4,-1]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(d*d,d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[0][0,0,:,:] = np.reshape(cv,(d,d),order='F') if lherm: c[0] = (c[0]+np.conj(np.moveaxis(c[0],2,3)))/2 cv = np.reshape(c[0],-1,order='F') fomval = np.real(2*cv @ l1 - cv @ l2 @ cv) else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: relunc_fom = 0.1*imprecision l1f = [0]*n l2f = [0]*n fom = np.array([]) iter_fom = 0 while True: tensors = [c[n-1],b[n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1f[n-2] = ncon(tensors,legs) l1f[n-2] = l1f[n-2][:,:,0,0] tensors = [c[n-1],a[n-1],c[n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2f[n-2] = ncon(tensors,legs) l2f[n-2] = l2f[n-2][:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [c[x],b[x],l1f[x]] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1f[x-1] = ncon(tensors,legs) tensors = [c[x],a[x],c[x],l2f[x]] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2f[x-1] = ncon(tensors,legs) bdl1,bdl2,d,d = np.shape(c[0]) tensors = [b[0],l1f[0]] legs = [[-5,1,-4,-3],[-2,1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[0],np.eye(d),l2f[0]] legs = [[-9,1,-4,-7],[-8,-3],[-2,1,-6]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[0] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[0] = (c[0]+np.conj(np.moveaxis(c[0],2,3)))/2 cv = np.reshape(c[0],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) tensors = [c[0],b[0]] legs = [[-3,-1,1,2],[-4,-2,2,1]] l1c = ncon(tensors,legs) l1c = l1c[:,:,0,0] tensors = [c[0],a[0],c[0]] legs = [[-4,-1,1,2],[-5,-2,2,3],[-6,-3,3,1]] l2c = ncon(tensors,legs) l2c = l2c[:,:,:,0,0,0] for x in range(1,n-1): bdl1,bdl2,d,d = np.shape(c[x]) tensors = [l1c,b[x],l1f[x]] legs = [[-1,1],[1,2,-4,-3],[-2,2]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l2c,a[x],np.eye(d),l2f[x]] legs = [[-1,1,-5],[1,2,-4,-7],[-8,-3],[-2,2,-6]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[x] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[x] = (c[x]+np.conj(np.moveaxis(c[x],2,3)))/2 cv = np.reshape(c[x],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) tensors = [l1c,c[x],b[x]] legs = [[3,4],[3,-1,1,2],[4,-2,2,1]] l1c = ncon(tensors,legs) tensors = [l2c,c[x],a[x],c[x]] legs = [[4,5,6],[4,-1,1,2],[5,-2,2,3],[6,-3,3,1]] l2c = ncon(tensors,legs) bdl1,bdl2,d,d = np.shape(c[n-1]) tensors = [l1c,b[n-1]] legs = [[-1,1],[1,-5,-4,-3]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l2c,a[n-1],np.eye(d)] legs = [[-1,1,-5],[1,-9,-4,-7],[-8,-3]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl1*bdl2*d*d,bdl1*bdl2*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[n-1] = np.reshape(cv,(bdl1,bdl2,d,d),order='F') if lherm: c[n-1] = (c[n-1]+np.conj(np.moveaxis(c[n-1],2,3)))/2 cv = np.reshape(c[n-1],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) iter_fom += 1 if iter_fom >= 2 and all(fom[-2*n:] > 0) and np.std(fom[-2*n:])/np.mean(fom[-2*n:]) <= relunc_fom: break fomval = fom[-1] return fomval,c def fin_FoM_PBC_optm(a,b,c,imprecision=10**-2,lherm=True): """ Optimization of FoM over MPO for SLD. Function for finite size systems with PBC. Parameters: a: MPO for density matrix, expected ndarray of a shape (bd,bd,d,d,n) b: MPO for generalized derivative of density matrix, expected ndarray of a shape (bd,bd,d,d,n) c: MPO for SLD, expected ndarray of a shape (bd,bd,d,d,n) imprecision: expected imprecision of the end results, default value is 10**-2 lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: fomval: optimal value of FoM c: optimal MPO for SLD """ n = np.shape(a)[4] d = np.shape(a)[2] bdr = np.shape(a)[0] bdrp = np.shape(b)[0] bdl = np.shape(c)[0] tol_fom = 0.1*imprecision/n**2 if n == 1: tensors = [b[:,:,:,:,0],np.eye(bdl)] legs = [[1,1,-4,-3],[-2,-1]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[:,:,:,:,0],np.eye(d),np.eye(bdl),np.eye(bdl)] legs = [[1,1,-4,-7],[-8,-3],[-2,-1],[-6,-5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,0] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,0] = (c[:,:,:,:,0]+np.conj(np.moveaxis(c[:,:,:,:,0],2,3)))/2 cv = np.reshape(c[:,:,:,:,0],-1,order='F') fomval = np.real(2*cv @ l1 - cv @ l2 @ cv) else: relunc_fom = 0.1*imprecision l1f = np.zeros((bdl,bdrp,bdl,bdrp,n-1),dtype=complex) l2f = np.zeros((bdl,bdr,bdl,bdl,bdr,bdl,n-1),dtype=complex) fom = np.array([]) iter_fom = 0 while True: tensors = [c[:,:,:,:,n-1],b[:,:,:,:,n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1f[:,:,:,:,n-2] = ncon(tensors,legs) tensors = [c[:,:,:,:,n-1],a[:,:,:,:,n-1],c[:,:,:,:,n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2f[:,:,:,:,:,:,n-2] = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [c[:,:,:,:,x],b[:,:,:,:,x],l1f[:,:,:,:,x]] legs = [[-1,3,1,2],[-2,4,2,1],[3,4,-3,-4]] l1f[:,:,:,:,x-1] = ncon(tensors,legs) tensors = [c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x],l2f[:,:,:,:,:,:,x]] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6,-4,-5,-6]] l2f[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [b[:,:,:,:,0],l1f[:,:,:,:,0]] legs = [[2,1,-4,-3],[-2,1,-1,2]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [a[:,:,:,:,0],np.eye(d),l2f[:,:,:,:,:,:,0]] legs = [[2,1,-4,-7],[-8,-3],[-2,1,-6,-1,2,-5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,0] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,0] = (c[:,:,:,:,0]+np.conj(np.moveaxis(c[:,:,:,:,0],2,3)))/2 cv = np.reshape(c[:,:,:,:,0],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) tensors = [c[:,:,:,:,0],b[:,:,:,:,0]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1c = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2c = ncon(tensors,legs) for x in range(1,n-1): tensors = [l1c,b[:,:,:,:,x],l1f[:,:,:,:,x]] legs = [[3,4,-1,1],[1,2,-4,-3],[-2,2,3,4]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l2c,a[:,:,:,:,x],np.eye(d),l2f[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-5],[1,2,-4,-7],[-8,-3],[-2,2,-6,3,4,5]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,x] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,x] = (c[:,:,:,:,x]+np.conj(np.moveaxis(c[:,:,:,:,x],2,3)))/2 cv = np.reshape(c[:,:,:,:,x],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) tensors = [l1c,c[:,:,:,:,x],b[:,:,:,:,x]] legs = [[-1,-2,3,4],[3,-3,1,2],[4,-4,2,1]] l1c = ncon(tensors,legs) tensors = [l2c,c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x]] legs = [[-1,-2,-3,4,5,6],[4,-4,1,2],[5,-5,2,3],[6,-6,3,1]] l2c = ncon(tensors,legs) tensors = [l1c,b[:,:,:,:,n-1]] legs = [[-2,2,-1,1],[1,2,-4,-3]] l1 = ncon(tensors,legs) l1 = np.reshape(l1,-1,order='F') tensors = [l2c,a[:,:,:,:,n-1],np.eye(d)] legs = [[-2,2,-6,-1,1,-5],[1,2,-4,-7],[-8,-3]] l2 = ncon(tensors,legs) l2 = np.reshape(l2,(bdl*bdl*d*d,bdl*bdl*d*d),order='F') dl2 = l2+l2.T dl1 = 2*l1 dl2pinv = np.linalg.pinv(dl2,tol_fom) dl2pinv = (dl2pinv+dl2pinv.T)/2 cv = dl2pinv @ dl1 c[:,:,:,:,n-1] = np.reshape(cv,(bdl,bdl,d,d),order='F') if lherm: c[:,:,:,:,n-1] = (c[:,:,:,:,n-1]+np.conj(np.moveaxis(c[:,:,:,:,n-1],2,3)))/2 cv = np.reshape(c[:,:,:,:,n-1],-1,order='F') fom = np.append(fom,np.real(2*cv @ l1 - cv @ l2 @ cv)) iter_fom += 1 if iter_fom >= 2 and all(fom[-2*n:] > 0) and np.std(fom[-2*n:])/np.mean(fom[-2*n:]) <= relunc_fom: break fomval = fom[-1] return fomval,c def fin_FoMD_OBC_optm(c2d,cpd,a0,imprecision=10**-2): """ Optimization of FoMD over MPS for initial wave function. Function for finite size systems with OBC. Parameters: c2d: MPO for square of dual of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) cpd: MPO for dual of generalized derivative of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) a0: MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) imprecision: expected imprecision of the end results, default value is 10**-2 Returns: fomdval: optimal value of FoMD a0: optimal MPS for initial wave function """ n = len(a0) if n == 1: if np.shape(c2d[0])[0] == 1 and np.shape(cpd[0])[0] == 1 and np.shape(a0[0])[0] == 1: d = np.shape(a0[0])[2] tensors = [c2d[0][0,0,:,:]] legs = [[-1,-2]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(d,d),order='F') tensors = [cpd[0][0,0,:,:]] legs = [[-1,-2]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(d,d),order='F') eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[0][0,0,:] = np.reshape(a0v,(d),order='F') fomdval = np.real(fomdval[position]) else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: relunc_fomd = 0.1*imprecision l2df = [0]*n lpdf = [0]*n fomd = np.array([]) iter_fomd = 0 while True: tensors = [np.conj(a0[n-1]),c2d[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2df[n-2] = ncon(tensors,legs) l2df[n-2] = l2df[n-2][:,:,:,0,0,0] tensors = [np.conj(a0[n-1]),cpd[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdf[n-2] = ncon(tensors,legs) lpdf[n-2] = lpdf[n-2][:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [np.conj(a0[x]),c2d[x],a0[x],l2df[x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2df[x-1] = ncon(tensors,legs) tensors = [np.conj(a0[x]),cpd[x],a0[x],lpdf[x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpdf[x-1] = ncon(tensors,legs) bdpsi1,bdpsi2,d = np.shape(a0[0]) tensors = [c2d[0],l2df[0]] legs = [[-7,1,-3,-6],[-2,1,-5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [cpd[0],lpdf[0]] legs = [[-7,1,-3,-6],[-2,1,-5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[0] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) a0[0] = np.moveaxis(a0[0],2,0) a0[0] = np.reshape(a0[0],(d*bdpsi1,bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[0],full_matrices=False) a0[0] = np.reshape(u,(d,bdpsi1,np.shape(s)[0]),order='F') a0[0] = np.moveaxis(a0[0],0,2) tensors = [np.diag(s) @ vh,a0[1]] legs = [[-1,1],[1,-2,-3]] a0[1] = ncon(tensors,legs) tensors = [np.conj(a0[0]),c2d[0],a0[0]] legs = [[-4,-1,1],[-5,-2,1,2],[-6,-3,2]] l2dc = ncon(tensors,legs) l2dc = l2dc[:,:,:,0,0,0] tensors = [np.conj(a0[0]),cpd[0],a0[0]] legs = [[-4,-1,1],[-5,-2,1,2],[-6,-3,2]] lpdc = ncon(tensors,legs) lpdc = lpdc[:,:,:,0,0,0] for x in range(1,n-1): bdpsi1,bdpsi2,d = np.shape(a0[x]) tensors = [l2dc,c2d[x],l2df[x]] legs = [[-1,1,-4],[1,2,-3,-6],[-2,2,-5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [lpdc,cpd[x],lpdf[x]] legs = [[-1,1,-4],[1,2,-3,-6],[-2,2,-5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[x] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) a0[x] = np.moveaxis(a0[x],2,0) a0[x] = np.reshape(a0[x],(d*bdpsi1,bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[x],full_matrices=False) a0[x] = np.reshape(u,(d,bdpsi1,np.shape(s)[0]),order='F') a0[x] = np.moveaxis(a0[x],0,2) tensors = [np.diag(s) @ vh,a0[x+1]] legs = [[-1,1],[1,-2,-3]] a0[x+1] = ncon(tensors,legs) tensors = [l2dc,np.conj(a0[x]),c2d[x],a0[x]] legs = [[3,4,5],[3,-1,1],[4,-2,1,2],[5,-3,2]] l2dc = ncon(tensors,legs) tensors = [lpdc,np.conj(a0[x]),cpd[x],a0[x]] legs = [[3,4,5],[3,-1,1],[4,-2,1,2],[5,-3,2]] lpdc = ncon(tensors,legs) bdpsi1,bdpsi2,d = np.shape(a0[n-1]) tensors = [l2dc,c2d[n-1]] legs = [[-1,1,-4],[1,-7,-3,-6]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') tensors = [lpdc,cpd[n-1]] legs = [[-1,1,-4],[1,-7,-3,-6]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi1*bdpsi2*d,bdpsi1*bdpsi2*d),order='F') eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ a0v)) a0[n-1] = np.reshape(a0v,(bdpsi1,bdpsi2,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) iter_fomd += 1 for x in range(n-1,0,-1): bdpsi1,bdpsi2,d = np.shape(a0[x]) a0[x] = np.moveaxis(a0[x],2,1) a0[x] = np.reshape(a0[x],(bdpsi1,d*bdpsi2),order='F') u,s,vh = np.linalg.svd(a0[x],full_matrices=False) a0[x] = np.reshape(vh,(np.shape(s)[0],d,bdpsi2),order='F') a0[x] = np.moveaxis(a0[x],1,2) tensors = [a0[x-1],u @ np.diag(s)] legs = [[-1,1,-3],[1,-2]] a0[x-1] = ncon(tensors,legs) if iter_fomd >= 2 and all(fomd[-2*n:] > 0) and np.std(fomd[-2*n:])/np.mean(fomd[-2*n:]) <= relunc_fomd: break fomdval = fomd[-1] return fomdval,a0 def fin_FoMD_PBC_optm(c2d,cpd,a0,imprecision=10**-2): """ Optimization of FoMD over MPS for initial wave function. Function for finite size systems with PBC. Parameters: c2d: MPO for square of dual of SLD, expected ndarray of a shape (bd,bd,d,d,n) cpd: MPO for dual of generalized derivative of SLD, expected ndarray of a shape (bd,bd,d,d,n) a0: MPS for initial wave function, expected ndarray of a shape (bd,bd,d,n) imprecision: expected imprecision of the end results, default value is 10**-2 Returns: fomdval: optimal value of FoMD a0: optimal MPS for initial wave function """ n = np.shape(c2d)[4] d = np.shape(c2d)[2] bdl2d = np.shape(c2d)[0] bdlpd = np.shape(cpd)[0] bdpsi = np.shape(a0)[0] tol_fomd = 0.1*imprecision/n**2 if n == 1: tensors = [c2d[:,:,:,:,0],np.eye(bdpsi),np.eye(bdpsi)] legs = [[1,1,-3,-6],[-2,-1],[-5,-4]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [cpd[:,:,:,:,0],np.eye(bdpsi),np.eye(bdpsi)] legs = [[1,1,-3,-6],[-2,-1],[-5,-4]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [np.eye(bdpsi),np.eye(bdpsi)] legs = [[-2,-1],[-4,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,0] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomdval = np.real(fomdval[position]) else: relunc_fomd = 0.1*imprecision l2df = np.zeros((bdpsi,bdl2d,bdpsi,bdpsi,bdl2d,bdpsi,n-1),dtype=complex) lpdf = np.zeros((bdpsi,bdlpd,bdpsi,bdpsi,bdlpd,bdpsi,n-1),dtype=complex) psinormf = np.zeros((bdpsi,bdpsi,bdpsi,bdpsi,n-1),dtype=complex) fomd = np.array([]) iter_fomd = 0 while True: tensors = [np.conj(a0[:,:,:,n-1]),c2d[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2df[:,:,:,:,:,:,n-2] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),cpd[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdf[:,:,:,:,:,:,n-2] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),a0[:,:,:,n-1]] legs = [[-1,-3,1],[-2,-4,1]] psinormf[:,:,:,:,n-2] = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x],l2df[:,:,:,:,:,:,x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] l2df[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x],lpdf[:,:,:,:,:,:,x]] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] lpdf[:,:,:,:,:,:,x-1] = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),a0[:,:,:,x],psinormf[:,:,:,:,x]] legs = [[-1,2,1],[-2,3,1],[2,3,-3,-4]] psinormf[:,:,:,:,x-1] = ncon(tensors,legs) tensors = [c2d[:,:,:,:,0],l2df[:,:,:,:,:,:,0]] legs = [[2,1,-3,-6],[-2,1,-5,-1,2,-4]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [cpd[:,:,:,:,0],lpdf[:,:,:,:,:,:,0]] legs = [[2,1,-3,-6],[-2,1,-5,-1,2,-4]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormf[:,:,:,:,0]] legs = [[-2,-4,-1,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,0] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2dc = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpdc = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),a0[:,:,:,0]] legs = [[-1,-3,1],[-2,-4,1]] psinormc = ncon(tensors,legs) for x in range(1,n-1): tensors = [l2dc,c2d[:,:,:,:,x],l2df[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-4],[1,2,-3,-6],[-2,2,-5,3,4,5]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [lpdc,cpd[:,:,:,:,x],lpdf[:,:,:,:,:,:,x]] legs = [[3,4,5,-1,1,-4],[1,2,-3,-6],[-2,2,-5,3,4,5]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormc,psinormf[:,:,:,:,x]] legs = [[1,2,-1,-3],[-2,-4,1,2]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,x] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) tensors = [l2dc,np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x]] legs = [[-1,-2,-3,3,4,5],[3,-4,1],[4,-5,1,2],[5,-6,2]] l2dc = ncon(tensors,legs) tensors = [lpdc,np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x]] legs = [[-1,-2,-3,3,4,5],[3,-4,1],[4,-5,1,2],[5,-6,2]] lpdc = ncon(tensors,legs) tensors = [psinormc,np.conj(a0[:,:,:,x]),a0[:,:,:,x]] legs = [[-1,-2,2,3],[2,-3,1],[3,-4,1]] psinormc = ncon(tensors,legs) tensors = [l2dc,c2d[:,:,:,:,n-1]] legs = [[-2,2,-5,-1,1,-4],[1,2,-3,-6]] l2d = ncon(tensors,legs) l2d = np.reshape(l2d,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [lpdc,cpd[:,:,:,:,n-1]] legs = [[-2,2,-5,-1,1,-4],[1,2,-3,-6]] lpd = ncon(tensors,legs) lpd = np.reshape(lpd,(bdpsi*bdpsi*d,bdpsi*bdpsi*d),order='F') tensors = [psinormc] legs = [[-2,-4,-1,-3]] psinorm = ncon(tensors,legs) psinorm = np.reshape(psinorm,(bdpsi*bdpsi,bdpsi*bdpsi),order='F') psinorm = (psinorm+np.conj(psinorm).T)/2 psinormpinv = np.linalg.pinv(psinorm,tol_fomd,hermitian=True) psinormpinv = (psinormpinv+np.conj(psinormpinv).T)/2 psinormpinv = np.kron(np.eye(d),psinormpinv) eiginput = 2*lpd-l2d eiginput = (eiginput+np.conj(eiginput).T)/2 eiginput = psinormpinv @ eiginput fomdval,a0v = np.linalg.eig(eiginput) position = np.argmax(np.real(fomdval)) a0v = np.reshape(a0v[:,position],-1,order='F') a0v = a0v/np.sqrt(np.abs(np.conj(a0v) @ np.kron(np.eye(d),psinorm) @ a0v)) a0[:,:,:,n-1] = np.reshape(a0v,(bdpsi,bdpsi,d),order='F') fomd = np.append(fomd,np.real(fomdval[position])) iter_fomd += 1 if iter_fomd >= 2 and all(fomd[-2*n:] > 0) and np.std(fomd[-2*n:])/np.mean(fomd[-2*n:]) <= relunc_fomd: break fomdval = fomd[-1] return fomdval,a0 def fin_FoM_OBC_val(a,b,c): """ Calculate the value of FoM. Function for finite size systems with OBC. Parameters: a: MPO for density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) b: MPO for generalized derivative of density matrix, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) c: MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) Returns: fomval: value of FoM """ n = len(c) if n == 1: if np.shape(a[0])[0] == 1 and np.shape(b[0])[0] == 1 and np.shape(c[0])[0] == 1: tensors = [c[0][0,0,:,:],b[0][0:,0,:,:]] legs = [[1,2],[2,1]] l1 = ncon(tensors,legs) tensors = [c[0][0,0,:,:],[0][0,0,:,:],[0][0,0,:,:]] legs = [[1,2],[2,3],[3,1]] l2 = ncon(tensors,legs) fomval = 2*l1-l2 else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: tensors = [c[n-1],b[n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1 = ncon(tensors,legs) l1 = l1[:,:,0,0] tensors = [c[n-1],a[n-1],c[n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2 = ncon(tensors,legs) l2 = l2[:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [c[x],b[x],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1 = ncon(tensors,legs) tensors = [c[x],a[x],c[x],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2 = ncon(tensors,legs) tensors = [c[0],b[0],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4]] l1 = ncon(tensors,legs) l1 = float(l1) tensors = [c[0],a[0],c[0],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6]] l2 = ncon(tensors,legs) l2 = float(l2) fomval = 2*l1-l2 return fomval def fin_FoM_PBC_val(a,b,c): """ Calculate the value of FoM. Function for finite size systems with PBC. Parameters: a: MPO for a density matrix, expected ndarray of a shape (bd,bd,d,d,n) b: MPO for generalized derivative of a density matrix, expected ndarray of a shape (bd,bd,d,d,n) c: MPO for the SLD, expected ndarray of a shape (bd,bd,d,d,n) Returns: fomval: value of FoM """ n = np.shape(a)[4] if n == 1: tensors = [c[:,:,:,:,0],b[:,:,:,:,0]] legs = [[3,3,1,2],[4,4,2,1]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0]] legs = [[4,4,1,2],[5,5,2,3],[6,6,3,1]] l2 = ncon(tensors,legs) fomval = 2*l1-l2 else: tensors = [c[:,:,:,:,n-1],b[:,:,:,:,n-1]] legs = [[-1,-3,1,2],[-2,-4,2,1]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,n-1],a[:,:,:,:,n-1],c[:,:,:,:,n-1]] legs = [[-1,-4,1,2],[-2,-5,2,3],[-3,-6,3,1]] l2 = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [c[:,:,:,:,x],b[:,:,:,:,x],l1] legs = [[-1,3,1,2],[-2,4,2,1],[3,4,-3,-4]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,x],a[:,:,:,:,x],c[:,:,:,:,x],l2] legs = [[-1,4,1,2],[-2,5,2,3],[-3,6,3,1],[4,5,6,-4,-5,-6]] l2 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],b[:,:,:,:,0],l1] legs = [[5,3,1,2],[6,4,2,1],[3,4,5,6]] l1 = ncon(tensors,legs) tensors = [c[:,:,:,:,0],a[:,:,:,:,0],c[:,:,:,:,0],l2] legs = [[7,4,1,2],[8,5,2,3],[9,6,3,1],[4,5,6,7,8,9]] l2 = ncon(tensors,legs) fomval = 2*l1-l2 return fomval def fin_FoMD_OBC_val(c2d,cpd,a0): """ Calculate value of FoMD. Function for finite size systems with OBC. Parameters: c2d: MPO for square of dual of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) cpd: MPO for dual of generalized derivative of SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) a0: MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d,d) (bd can vary between sites) Returns: fomdval: value of FoMD """ n = len(a0) if n == 1: if np.shape(c2d[0])[0] == 1 and np.shape(cpd[0])[0] == 1 and np.shape(a0[0])[0] == 1: tensors = [np.conj(a0[0][0,0,:]),c2d[0][0,0,:,:],a0[0][0,0,:]] legs = [[1],[1,2],[2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[0][0,0,:]),cpd[0][0,0,:,:],a0[0][0,0,:]] legs = [[1],[1,2],[2]] lpd = ncon(tensors,legs) fomdval = 2*lpd-l2d else: warnings.warn('Tensor networks with OBC and length one have to have bond dimension equal to one.') else: tensors = [np.conj(a0[n-1]),c2d[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2d = ncon(tensors,legs) l2d = l2d[:,:,:,0,0,0] tensors = [np.conj(a0[n-1]),cpd[n-1],a0[n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpd = ncon(tensors,legs) lpd = lpd[:,:,:,0,0,0] for x in range(n-2,0,-1): tensors = [np.conj(a0[x]),c2d[x],a0[x],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[x]),cpd[x],a0[x],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[0]),c2d[0],a0[0],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] l2d = ncon(tensors,legs) l2d = float(l2d) tensors = [np.conj(a0[0]),cpd[0],a0[0],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5]] lpd = ncon(tensors,legs) lpd = float(lpd) fomdval = 2*lpd-l2d return fomdval def fin_FoMD_PBC_val(c2d,cpd,a0): """ Calculate the value of FoMD. Function for finite size systems with PBC. Parameters: c2d: MPO for square of dual of the SLD, expected ndarray of a shape (bd,bd,d,d,n) cpd: MPO for dual of generalized derivative of the SLD, expected ndarray of a shape (bd,bd,d,d,n) a0: MPS for the initial wave function, expected ndarray of a shape (bd,bd,d,n) Returns: fomdval: value of FoMD """ n = np.shape(c2d)[4] if n == 1: tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0]] legs = [[3,3,1],[4,4,1,2],[5,5,2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0]] legs = [[3,3,1],[4,4,1,2],[5,5,2]] lpd = ncon(tensors,legs) fomdval = 2*lpd-l2d else: tensors = [np.conj(a0[:,:,:,n-1]),c2d[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,n-1]),cpd[:,:,:,:,n-1],a0[:,:,:,n-1]] legs = [[-1,-4,1],[-2,-5,1,2],[-3,-6,2]] lpd = ncon(tensors,legs) for x in range(n-2,0,-1): tensors = [np.conj(a0[:,:,:,x]),c2d[:,:,:,:,x],a0[:,:,:,x],l2d] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,x]),cpd[:,:,:,:,x],a0[:,:,:,x],lpd] legs = [[-1,3,1],[-2,4,1,2],[-3,5,2],[3,4,5,-4,-5,-6]] lpd = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),c2d[:,:,:,:,0],a0[:,:,:,0],l2d] legs = [[6,3,1],[7,4,1,2],[8,5,2],[3,4,5,6,7,8]] l2d = ncon(tensors,legs) tensors = [np.conj(a0[:,:,:,0]),cpd[:,:,:,:,0],a0[:,:,:,0],lpd] legs = [[6,3,1],[7,4,1,2],[8,5,2],[3,4,5,6,7,8]] lpd = ncon(tensors,legs) fomdval = 2*lpd-l2d return fomdval ################################################################# # 1.2.2 Problems with discrete approximation of the derivative. # ################################################################# def fin2_FoM_FoMD_optbd(n,d,bc,ch,chp,epsilon,cini=None,a0ini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True,bdpsimax=100,alwaysbdpsimax=False): """ Iterative optimization of FoM/FoMD over SLD MPO and initial wave function MPS and also a check of convergence with increasing bond dimensions. Function for finite size systems. Version with two channels separated by epsilon. Parameters: n: number of sites in TN d: dimension of the local Hilbert space (dimension of the physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC ch: MPO for a quantum channel at the value of estimated parameter phi=phi_0, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC chp: MPO for a quantum channel at the value of estimated parameter phi=phi_0+epsilon, expected list of length n of ndarrays of a shape (bd,bd,d**2,d**2) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d**2,d**2,n) for PBC epsilon: value of a separation between estimated parameters encoded in ch and chp, float cini: initial MPO for the SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC a0ini: initial MPS for the initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for SLD MPO, default value is 100 alwaysbdlmax: boolean value, True if the maximal value of bd for SLD MPO has to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False bdpsimax: maximal value of bd for the initial wave function MPS, default value is 100 alwaysbdpsimax: boolean value, True if the maximal value of bd for initial wave function MPS has to be reached, otherwise False (default value) Returns: result: optimal value of FoM/FoMD resultm: matrix describing FoM/FoMD as a function of bd of respectively SLD MPO [rows] and the initial wave function MPS [columns] c: optimal MPO for SLD a0: optimal MPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 = np.zeros(d,dtype=complex) for i in range(d): a0[i] = np.sqrt(math.comb(d-1,i))*2**(-(d-1)/2) # prod # a0[i] = np.sqrt(2/(d+1))*np.sin((1+i)*np.pi/(d+1)) # sine if bc == 'O': a0 = a0[np.newaxis,np.newaxis,:] a0 = [a0]*n elif bc == 'P': a0 = a0[np.newaxis,np.newaxis,:,np.newaxis] a0 = np.tile(a0,(1,1,1,n)) else: a0 = a0ini if bc == 'O': bdpsi = max([np.shape(a0[i])[0] for i in range(n)]) a0 = [a0[i].astype(complex) for i in range(n)] elif bc == 'P': bdpsi = np.shape(a0)[0] a0 = a0.astype(complex) if cini is None: bdl = 1 rng = np.random.default_rng() if bc == 'O': c = [0]*n c[0] = (rng.random((1,bdl,d,d)) + 1j*rng.random((1,bdl,d,d)))/bdl c[0] = (c[0] + np.conj(np.moveaxis(c[0],2,3)))/2 for x in range(1,n-1): c[x] = (rng.random((bdl,bdl,d,d)) + 1j*rng.random((bdl,bdl,d,d)))/bdl c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[n-1] = (rng.random((bdl,1,d,d)) + 1j*rng.random((bdl,1,d,d)))/bdl c[n-1] = (c[n-1] + np.conj(np.moveaxis(c[n-1],2,3)))/2 elif bc == 'P': c = (rng.random((bdl,bdl,d,d,n)) + 1j*rng.random((bdl,bdl,d,d,n)))/bdl c = (c + np.conj(np.moveaxis(c,2,3)))/2 else: c = cini if bc == 'O': bdl = max([np.shape(c[i])[0] for i in range(n)]) c = [c[i].astype(complex) for i in range(n)] elif bc == 'P': bdl = np.shape(c)[0] c = c.astype(complex) resultm = np.zeros((bdlmax,bdpsimax),dtype=float) resultm[bdl-1,bdpsi-1],c,a0 = fin2_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,epsilon,imprecision,lherm) if bc == 'O' and n == 1: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] return result,resultm,c,a0 factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: while True: if bdpsi == bdpsimax: break else: a0old = a0 bdpsi += 1 i = 0 while True: a0 = fin_enlarge_bdpsi(a0,factorv[i]) resultm[bdl-1,bdpsi-1],cnew,a0new = fin2_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,epsilon,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-1,bdpsi-2]: break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdpsimax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-1,bdpsi-2]: bdpsi += -1 a0 = a0old a0copy = a0new ccopy = cnew break else: a0 = a0new c = cnew if problem: break if bdl == bdlmax: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi] break else: bdl += 1 i = 0 while True: c = fin_enlarge_bdl(c,factorv[i]) resultm[bdl-1,bdpsi-1],cnew,a0new = fin2_FoM_FoMD_optm(n,d,bc,c,a0,ch,chp,epsilon,imprecision,lherm) if resultm[bdl-1,bdpsi-1] >= resultm[bdl-2,bdpsi-1]: a0 = a0new c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultm[bdl-1,bdpsi-1] < (1+imprecision)*resultm[bdl-2,bdpsi-1]: if bdpsi == bdpsimax: resultm = resultm[0:bdl,0:bdpsi] result = resultm[bdl-1,bdpsi-1] else: if resultm[bdl-1,bdpsi-1] < resultm[bdl-2,bdpsi]: a0 = a0copy c = ccopy resultm = resultm[0:bdl,0:bdpsi+1] bdl += -1 bdpsi += 1 result = resultm[bdl-1,bdpsi-1] else: resultm = resultm[0:bdl,0:bdpsi+1] result = resultm[bdl-1,bdpsi-1] break if not(problem): break return result,resultm,c,a0 def fin2_FoM_optbd(n,d,bc,a,b,epsilon,cini=None,imprecision=10**-2,bdlmax=100,alwaysbdlmax=False,lherm=True): """ Optimization of FoM over SLD MPO and also check of convergence in bond dimension. Function for finite size systems. Version with two states separated by epsilon. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC a: MPO for the density matrix at the value of estimated parameter phi=phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC b: MPO for the density matrix at the value of estimated parameter phi=phi_0+epsilon, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC epsilon: value of a separation between estimated parameters encoded in a and b, float cini: initial MPO for SLD, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdlmax: maximal value of bd for SLD MPO, default value is 100 alwaysbdlmax: boolean value, True if maximal value of bd for SLD MPO have to be reached, otherwise False (default value) lherm: boolean value, True (default value) when Hermitian gauge is imposed on SLD MPO, otherwise False Returns: result: optimal value of FoM resultv: vector describing FoM as a function of bd of the SLD MPO c: optimal MPO for SLD """ while True: if cini is None: bdl = 1 rng = np.random.default_rng() if bc == 'O': c = [0]*n c[0] = (rng.random((1,bdl,d,d)) + 1j*rng.random((1,bdl,d,d)))/bdl c[0] = (c[0] + np.conj(np.moveaxis(c[0],2,3)))/2 for x in range(1,n-1): c[x] = (rng.random((bdl,bdl,d,d)) + 1j*rng.random((bdl,bdl,d,d)))/bdl c[x] = (c[x] + np.conj(np.moveaxis(c[x],2,3)))/2 c[n-1] = (rng.random((bdl,1,d,d)) + 1j*rng.random((bdl,1,d,d)))/bdl c[n-1] = (c[n-1] + np.conj(np.moveaxis(c[n-1],2,3)))/2 elif bc == 'P': c = (rng.random((bdl,bdl,d,d,n)) + 1j*rng.random((bdl,bdl,d,d,n)))/bdl c = (c + np.conj(np.moveaxis(c,2,3)))/2 else: c = cini if bc == 'O': bdl = max([np.shape(c[i])[0] for i in range(n)]) c = [c[i].astype(complex) for i in range(n)] elif bc == 'P': bdl = np.shape(c)[0] c = c.astype(complex) resultv = np.zeros(bdlmax,dtype=float) if bc == 'O': resultv[bdl-1],c = fin2_FoM_OBC_optm(a,b,epsilon,c,imprecision,lherm) if n == 1: resultv = resultv[0:bdl] result = resultv[bdl-1] return result,resultv,c elif bc == 'P': resultv[bdl-1],c = fin2_FoM_PBC_optm(a,b,epsilon,c,imprecision,lherm) factorv = np.array([0.5,0.25,0.1,1,0.01]) problem = False while True: if bdl == bdlmax: resultv = resultv[0:bdl] result = resultv[bdl-1] break else: bdl += 1 i = 0 while True: c = fin_enlarge_bdl(c,factorv[i]) if bc == 'O': resultv[bdl-1],cnew = fin2_FoM_OBC_optm(a,b,epsilon,c,imprecision,lherm) elif bc == 'P': resultv[bdl-1],cnew = fin2_FoM_PBC_optm(a,b,epsilon,c,imprecision,lherm) if resultv[bdl-1] >= resultv[bdl-2]: c = cnew break i += 1 if i == np.size(factorv): problem = True break if problem: break if not(alwaysbdlmax) and resultv[bdl-1] < (1+imprecision)*resultv[bdl-2]: resultv = resultv[0:bdl] result = resultv[bdl-1] break if not(problem): break return result,resultv,c def fin2_FoMD_optbd(n,d,bc,c2d,cd,cpd,epsilon,a0ini=None,imprecision=10**-2,bdpsimax=100,alwaysbdpsimax=False): """ Optimization of FoMD over initial wave function MPS and also check of convergence when increasing the bond dimension. Function for finite size systems. Version with two dual SLDs separated by epsilon. Parameters: n: number of sites in TN d: dimension of local Hilbert space (dimension of physical index) bc: boundary conditions, 'O' for OBC, 'P' for PBC c2d: MPO for square of dual of SLD at the value of estimated parameter phi=-phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC cd: MPO for dual of SLD at the value of estimated parameter phi=-phi_0, expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC cpd: MPO for dual of SLD at the value of estimated parameter phi=-(phi_0+epsilon), expected list of length n of ndarrays of a shape (bd,bd,d,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,d,n) for PBC epsilon: value of a separation between estimated parameters encoded in cd and cpd, float a0ini: initial MPS for initial wave function, expected list of length n of ndarrays of a shape (bd,bd,d) for OBC (bd can vary between sites), or ndarray of a shape (bd,bd,d,n) for PBC imprecision: expected imprecision of the end results, default value is 10**-2 bdpsimax: maximal value of bd for initial wave function MPS, default value is 100 alwaysbdpsimax: boolean value, True if maximal value of bd for initial wave function MPS have to be reached, otherwise False (default value) Returns: result: optimal value of FoMD resultv: vector describing FoMD in function of bd of initial wave function MPS a0: optimal MPS for initial wave function """ while True: if a0ini is None: bdpsi = 1 a0 =
np.zeros(d,dtype=complex)
numpy.zeros
"""The local histogram is computed using a sliding window similar to the method described in [1]_. Input image can be 8-bit or 16-bit with a value < 4096 (i.e. 12 bit), for 16-bit input images, the number of histogram bins is determined from the maximum value present in the image. Result image is 8 or 16-bit with respect to the input image. References ---------- .. [1] <NAME>. ,<NAME>. ; <NAME>.. "A fast two-dimensional median filtering algorithm", IEEE Transactions on Acoustics, Speech and Signal Processing, Feb 1979. Volume: 27 , Issue: 1, Page(s): 13 - 18. """ import numpy as np from skimage import img_as_ubyte, img_as_uint from skimage.filter.rank import _crank8, _crank16 from skimage.filter.rank.generic import find_bitdepth __all__ = ['autolevel', 'bottomhat', 'equalize', 'gradient', 'maximum', 'mean', 'meansubtraction', 'median', 'minimum', 'modal', 'morph_contr_enh', 'pop', 'threshold', 'tophat', 'noise_filter', 'entropy', 'otsu'] def _apply(func8, func16, image, selem, out, mask, shift_x, shift_y): selem = img_as_ubyte(selem > 0) image = np.ascontiguousarray(image) if mask is None: mask = np.ones(image.shape, dtype=np.uint8) else: mask = np.ascontiguousarray(mask) mask = img_as_ubyte(mask) if image is out: raise NotImplementedError("Cannot perform rank operation in place.") is_8bit = image.dtype in (np.uint8, np.int8) if func8 is not None and (is_8bit or func16 is None): out = _apply8(func8, image, selem, out, mask, shift_x, shift_y) else: image = img_as_uint(image) if out is None: out = np.zeros(image.shape, dtype=np.uint16) bitdepth = find_bitdepth(image) if bitdepth > 11: image = image >> 4 bitdepth = find_bitdepth(image) func16(image, selem, shift_x=shift_x, shift_y=shift_y, mask=mask, bitdepth=bitdepth + 1, out=out) return out def _apply8(func8, image, selem, out, mask, shift_x, shift_y): if out is None: out =
np.zeros(image.shape, dtype=np.uint8)
numpy.zeros
import warnings import numpy as np import quaternionic import pytest algebra_pyufuncs = type('AlgebraPyufuncs', (object,), dict())() quaternionic.utilities.pyguvectorize_module_functions(quaternionic.algebra, algebra_pyufuncs) def test_basis_multiplication(): # Basis components one, i, j, k = tuple(quaternionic.array(np.eye(4))) # Full multiplication table assert one * one == one assert one * i == i assert one * j == j assert one * k == k assert i * one == i assert i * i == np.negative(one) assert i * j == k assert i * k == -j assert j * one == j assert j * i == -k assert j * j == -one assert j * k == i assert k * one == k assert k * i == j assert k * j == -i assert k * k == -one # Standard expressions assert one*one == one assert i*i == -one assert j*j == -one assert k*k == -one assert i*j*k == -one def test_array_ufunc(array): np.random.seed(1234) q = array(np.random.normal(size=(1, 3, 4))) with pytest.raises(NotImplementedError): np.exp(q, extra_arg=True) with pytest.raises(NotImplementedError): np.negative.at(q, [0, 1]) # Addition p = array(np.random.normal(size=(17, 3, 4))) q = array(np.random.normal(size=(1, 3, 4))) pq1 = np.add(p, q) assert isinstance(pq1, array) assert pq1.shape == (17, 3, 4) assert np.array_equal(np.add(p.ndarray, q.ndarray), pq1.ndarray) pq2 = array(np.empty((17, 3, 4))) np.add(p, q, out=pq2) assert np.array_equal(pq1, pq2) assert isinstance(pq2, array) # Quaternion-scalar multiplication p = array(np.random.normal(size=(17, 3, 4))) q = np.random.rand(1, 3) pq1 = np.multiply(p, q) assert isinstance(pq1, array) assert pq1.shape == (17, 3, 4) pq2 = array(np.empty((17, 3, 4))) np.multiply(p, q, out=pq2) assert np.array_equal(pq1, pq2) assert isinstance(pq2, array) pq3 = p * q assert np.array_equal(pq1, pq3) assert isinstance(pq3, array) pq4 = p.copy() pq4 *= q assert np.array_equal(pq1, pq4) assert isinstance(pq4, array) pq5 = p.copy() np.multiply(pq5, q, out=pq5) assert np.array_equal(pq1, pq5) assert isinstance(pq5, array) # Scalar-quaternion multiplication p = np.random.rand(1, 3) q = array(np.random.normal(size=(17, 3, 4))) pq1 = np.multiply(p, q) assert isinstance(pq1, array) assert pq1.shape == (17, 3, 4) pq2 = array(np.empty((17, 3, 4))) np.multiply(p, q, out=pq2) assert np.array_equal(pq1, pq2) assert isinstance(pq2, array) pq3 = p * q assert np.array_equal(pq1, pq3) assert isinstance(pq3, array) pq4 = q.copy() pq4 *= p assert np.array_equal(pq1, pq4) assert isinstance(pq4, array) pq5 = q.copy() np.multiply(p, pq5, out=pq5) assert np.array_equal(pq1, pq5) assert isinstance(pq5, array) # Quaternion-quaternion multiplication p = array(np.random.normal(size=(17, 3, 4))) q = array(np.random.normal(size=(17, 3, 4))) pq1 = np.multiply(p, q) assert isinstance(pq1, array) assert pq1.shape == (17, 3, 4) pq2 = array(np.empty((17, 3, 4))) np.multiply(p, q, out=pq2) assert np.array_equal(pq1, pq2) assert isinstance(pq2, array) pq3 = p * q assert np.array_equal(pq1, pq3) assert isinstance(pq3, array) pq4 = p.copy() pq4 *= q assert np.array_equal(pq1, pq4) assert isinstance(pq4, array) pq5 = p.copy() np.multiply(pq5, q, out=pq5) assert np.array_equal(pq1, pq5) assert isinstance(pq5, array) p = np.random.rand(1, 3) q = np.random.normal(size=(17, 3, 4)) s = np.random.rand(17, 3) pq1 = array(q).__array_ufunc__(np.multiply, "__call__", p, q) assert pq1 == NotImplemented qneg = array(q).__array_ufunc__(np.negative, "__call__", q) assert qneg == NotImplemented qabs = array(q).__array_ufunc__(np.absolute, "__call__", q) assert qabs == NotImplemented qs = array(q).__array_ufunc__(np.float_power, "__call__", q, s) assert qs == NotImplemented pq1 = array(q).__array_ufunc__(np.equal, "__call__", p, q) assert pq1 == NotImplemented qfin = array(q).__array_ufunc__(np.isfinite, "__call__", q) assert qfin == NotImplemented q = array(np.random.normal(size=(17, 3, 4))) qneg = np.negative(q) assert isinstance(qneg, array) assert qneg.shape == q.shape assert np.array_equal(np.negative(q.ndarray), qneg.ndarray) qneg2 = np.empty(q.shape) np.negative(q, out=qneg2) assert np.array_equal(qneg, qneg2) assert isinstance(qneg2, np.ndarray) qneg2 = array(np.empty(q.shape)) np.negative(q, out=qneg2.ndarray) assert np.array_equal(qneg, qneg2) assert isinstance(qneg2, array) qneg2 = array(np.empty(q.shape)) np.negative(q, out=qneg2) assert np.array_equal(qneg, qneg2) assert isinstance(qneg2, array) p = np.random.rand(1, 3) q = array(np.random.normal(size=(17, 3, 4))) qp1 = np.float_power(q, p) assert isinstance(qp1, array) assert qp1.shape == (17, 3, 4) qp2 = array(np.empty((17, 3, 4))) np.float_power(q, p, out=qp2) assert np.array_equal(qp1, qp2) assert isinstance(qp2, array) q = array(np.random.normal(size=(17, 3, 4))) qabs = np.absolute(q) assert isinstance(qabs, np.ndarray) and not isinstance(qabs, array) assert qabs.shape == (17, 3) qabs2 = np.empty((17, 3)) np.absolute(q, out=qabs2) assert np.array_equal(qabs, qabs2) assert isinstance(qabs2, np.ndarray) and not isinstance(qabs, array) q = array(np.random.normal(size=(17, 3, 4, 4))) qabs = array(np.empty((17, 3, 4))) np.absolute(q, out=qabs) assert np.array_equal(qabs, np.absolute(q)) assert isinstance(qabs2, np.ndarray) and isinstance(qabs, array) p = array(
np.random.normal(size=(17, 3, 4))
numpy.random.normal
import numpy as np import matplotlib.pyplot as pyplot import scipy.spatial.distance as sd import sys import os import copy sys.path.append(os.path.dirname(os.getcwd())+"/code_material_python") from helper import * from graph_construction.generate_data import * def build_similarity_graph(X, var=1, eps=0, k=0): """ Computes the similarity matrix for a given dataset of samples. Input X: (n x m) matrix of m-dimensional samples k and eps: controls the main parameter of the graph, the number of neighbours k for k-nn, and the threshold eps for epsilon graphs var: the sigma value for the exponential function, already squared Output W: (n x n) dimensional matrix representing the adjacency matrix of the graph similarities: (n x n) dimensional matrix containing all the similarities between all points (optional output) """ assert eps + k != 0, "Choose either epsilon graph or k-nn graph" if eps: print("Constructing eps-Graph ...") else: print("Constructing k-NN Graph ...") # euclidean distance squared between points dists = sd.squareform(sd.pdist(X))**2 similarities =
np.exp(-dists/(2*var))
numpy.exp
import astropy.units as u import numpy as np from astropy.nddata import StdDevUncertainty from ..spectra.spectrum1d import Spectrum1D from ..spectra.spectrum_collection import SpectrumCollection from ..analysis import template_comparison from astropy.tests.helper import quantity_allclose def test_template_match_no_overlap(): """ Test template_match when both observed and template spectra have no overlap on the wavelength axis. """ # Seed np.random so that results are consistent np.random.seed(42) # Create test spectra spec_axis = np.linspace(0, 50, 50) * u.AA spec_axis_no_overlap = np.linspace(51, 102, 50) * u.AA spec = Spectrum1D(spectral_axis=spec_axis, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) spec1 = Spectrum1D(spectral_axis=spec_axis_no_overlap, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) # Get result from template_match tm_result = template_comparison.template_match(spec, spec1) # Create new spectrum for comparison spec_result = Spectrum1D(spectral_axis=spec_axis, flux=spec1.flux * template_comparison._normalize_for_template_matching(spec, spec1)) # assert quantity_allclose(tm_result[0].flux, spec_result.flux, atol=0.01*u.Jy) assert np.isnan(tm_result[3]) def test_template_match_minimal_overlap(): """ Test template_match when both observed and template spectra have minimal overlap on the wavelength axis. """ # Seed np.random so that results are consistent np.random.seed(42) # Create test spectra spec_axis = np.linspace(0, 50, 50) * u.AA spec_axis_min_overlap = np.linspace(50, 100, 50) * u.AA spec_axis[49] = 51.0 * u.AA spec_axis_min_overlap[0] = 51.0 * u.AA spec = Spectrum1D(spectral_axis=spec_axis, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) spec1 = Spectrum1D(spectral_axis=spec_axis_min_overlap, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) # Get result from template_match tm_result = template_comparison.template_match(spec, spec1) # Create new spectrum for comparison spec_result = Spectrum1D(spectral_axis=spec_axis, flux=spec1.flux * template_comparison._normalize_for_template_matching(spec, spec1)) # assert quantity_allclose(tm_result[0].flux, spec_result.flux, atol=0.01*u.Jy) # TODO: investigate why the all elements in tm_result[1] are NaN even with overlap assert np.isnan(tm_result[3]) def test_template_match_spectrum(): """ Test template_match when both observed and template spectra have the same wavelength axis. """ # Seed np.random so that results are consistent np.random.seed(42) # Create test spectra spec_axis = np.linspace(0, 50, 50) * u.AA spec = Spectrum1D(spectral_axis=spec_axis, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) spec1 = Spectrum1D(spectral_axis=spec_axis, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy')) # Get result from template_match tm_result = template_comparison.template_match(spec, spec1) # Create new spectrum for comparison spec_result = Spectrum1D(spectral_axis=spec_axis, flux=spec1.flux * template_comparison._normalize_for_template_matching(spec, spec1)) assert quantity_allclose(tm_result[0].flux, spec_result.flux, atol=0.01*u.Jy) np.testing.assert_almost_equal(tm_result[3], 40093.28353756253) def test_template_match_with_resample(): """ Test template_match when both observed and template spectra have different wavelength axis using resampling. """ np.random.seed(42) # Create test spectra spec_axis1 = np.linspace(0, 50, 50) * u.AA spec_axis2 =
np.linspace(0, 50, 50)
numpy.linspace
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.tf.scatter_nd.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test GRADIENT_TESTS_DTYPES = (dtypes.float16, dtypes.float32, dtypes.float64) def _AsType(v, vtype): return v.astype(vtype) if isinstance(v, np.ndarray) else vtype(v) def _FlatInnerDims(tensor, ndims=2): shape = list(tensor.shape) return tensor.reshape([ functools.reduce(lambda x, y: x * y, shape[:-ndims + 1], 1) ] + shape[-ndims + 1:]) def _FlatOuterDims(tensor, ndims=2): shape = list(tensor.shape) return tensor.reshape(shape[:ndims - 1] + [ functools.reduce(lambda x, y: x * y, shape[ndims - 1:], 1) ]) def _NumpyScatterNd(ref, indices, updates, op): ixdim = indices.shape[-1] num_updates = indices.size // ixdim total_nd = len(ref.shape) slice_size = 1 for i in range(ixdim, total_nd): slice_size *= ref.shape[i] flat_indices = _FlatInnerDims(indices) flat_updates = updates.reshape((num_updates, slice_size)) output_flat = _FlatOuterDims(ref, ixdim + 1) for ix_updates, ix_output in enumerate(flat_indices): ix_output = tuple(ix_output) output_flat[ix_output] = op(output_flat[ix_output], flat_updates[ix_updates]) return output_flat.reshape(ref.shape) def _NumpyUpdate(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: u) def _NumpyAdd(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: p + u) def _NumpySub(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: p - u) def _NumpyMul(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: p * u) def _NumpyDiv(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: p / u) class StatefulScatterNdTest(test.TestCase): def _VariableRankTest(self, np_scatter, tf_scatter, vtype, itype, repeat_indices=False): np.random.seed(8) ref_shapes = [(3, 6), (3, 6), (3, 6, 9), (3, 6, 9), (3, 6, 9), (3, 6, 9)] indices_shapes = [(2,), (2, 2), (2,), (2, 2), (2, 3), (2, 3, 3)] with self.cached_session(use_gpu=True): for ref_shape, indices_shape in zip(ref_shapes, indices_shapes): num_updates = indices_shape[0] ixdim = indices_shape[-1] indexable_area_shape = () for i in range(ixdim): indexable_area_shape += (ref_shape[i],) all_indices = [ list(coord) for coord, _ in np.ndenumerate( np.empty(indexable_area_shape, vtype)) ] np.random.shuffle(all_indices) indices = np.array(all_indices[:num_updates]) if num_updates > 1 and repeat_indices: indices = indices[:num_updates // 2] for _ in range(num_updates - num_updates // 2): indices = np.append( indices, [indices[np.random.randint(num_updates // 2)]], axis=0) np.random.shuffle(indices) indices = _AsType(indices[:num_updates], itype) updates_shape = (num_updates,) for i in range(ixdim, len(ref_shape)): updates_shape += (ref_shape[i],) updates = _AsType(np.random.randn(*(updates_shape)), vtype) ref = _AsType(np.random.randn(*(ref_shape)), vtype) # Scatter via numpy new = ref.copy() np_scatter(new, indices, updates) # Scatter via tensorflow ref_var = variables.VariableV1(ref) ref_var.initializer.run() tf_scatter(ref_var, indices, updates).eval() tol = 1e-03 if repeat_indices and vtype == np.float16 else 1e-06 # Compare self.assertAllClose(new, self.evaluate(ref_var), atol=tol, rtol=tol) def _VariableRankTests(self, np_scatter, tf_scatter): for vtype in (np.int32, np.float16, np.float32, np.float64, np.complex64, np.complex128): for itype in (np.int32, np.int64): self._VariableRankTest(np_scatter, tf_scatter, vtype, itype) def testSimple(self): indices = constant_op.constant([[4], [3], [1], [7]], dtype=dtypes.int32) updates = constant_op.constant([9, 10, 11, 12], dtype=dtypes.float32) ref = variables.Variable([0, 0, 0, 0, 0, 0, 0, 0], dtype=dtypes.float32) expected = np.array([0, 11, 0, 10, 9, 0, 0, 12]) scatter = state_ops.scatter_nd_update(ref, indices, updates) init = variables.global_variables_initializer() with self.session(use_gpu=True) as sess: self.evaluate(init) result = self.evaluate(scatter) self.assertAllClose(result, expected) @test_util.run_deprecated_v1 def testSimpleResource(self): indices = constant_op.constant([[4], [3], [1], [7]], dtype=dtypes.int32) updates = constant_op.constant([9, 10, 11, 12], dtype=dtypes.float32) ref = resource_variable_ops.ResourceVariable( [0, 0, 0, 0, 0, 0, 0, 0], dtype=dtypes.float32) expected = np.array([0, 11, 0, 10, 9, 0, 0, 12]) scatter = state_ops.scatter_nd_update(ref, indices, updates) init = variables.global_variables_initializer() with self.session(use_gpu=True) as sess: self.evaluate(init) self.evaluate(scatter) self.assertAllClose(ref.eval(), expected) def testSimple2(self): indices = constant_op.constant([[1, 0], [1, 1]], dtype=dtypes.int32) updates = constant_op.constant([11., 12.], dtype=dtypes.float32) ref = variables.Variable( [[0., 0.], [0., 0.], [0., 0.]], dtype=dtypes.float32) expected = np.array([[0., 0.], [11., 12.], [0., 0.]]) scatter = state_ops.scatter_nd_update(ref, indices, updates) init = variables.global_variables_initializer() with self.session(use_gpu=True) as sess: self.evaluate(init) result = self.evaluate(scatter) self.assertAllClose(result, expected) def testSimple3(self): indices = constant_op.constant([[1]], dtype=dtypes.int32) updates = constant_op.constant([[11., 12.]], dtype=dtypes.float32) ref = variables.Variable( [[0., 0.], [0., 0.], [0., 0.]], dtype=dtypes.float32) expected = np.array([[0., 0.], [11., 12.], [0., 0.]]) scatter = state_ops.scatter_nd_update(ref, indices, updates) init = variables.global_variables_initializer() with self.session(use_gpu=True) as sess: self.evaluate(init) result = self.evaluate(scatter) self.assertAllClose(result, expected) @test_util.run_deprecated_v1 def testVariableRankUpdate(self): self._VariableRankTests(_NumpyUpdate, state_ops.scatter_nd_update) @test_util.run_deprecated_v1 def testVariableRankAdd(self): self._VariableRankTests(_NumpyAdd, state_ops.scatter_nd_add) @test_util.run_deprecated_v1 def testVariableRankSub(self): self._VariableRankTests(_NumpySub, state_ops.scatter_nd_sub) # TODO(ebrevdo): Re-enable when we need ScatterNdMul. # def testVariableRankMul(self): # self._VariableRankTests(_NumpyMul, state_ops.scatter_nd_mul) # TODO(ebrevdo): Re-enable when we need ScatterNdDiv. # def testVariableRankDiv(self): # self._VariableRankTests(_NumpyDiv, state_ops.scatter_nd_div) def _ScatterRepeatIndicesTest(self, np_scatter, tf_scatter): for vtype in (np.int32, np.float16, np.float32, np.float64): for itype in (np.int32, np.int64): self._VariableRankTest( np_scatter, tf_scatter, vtype, itype, repeat_indices=True) @test_util.run_v1_only("b/120545219") def testScatterRepeatIndices(self): """This tests scatter_add using indices that repeat.""" self._ScatterRepeatIndicesTest(_NumpyAdd, state_ops.scatter_nd_add) self._ScatterRepeatIndicesTest(_NumpySub, state_ops.scatter_nd_sub) # TODO(ebrevdo): Re-enable when we need ScatterNdMul and ScatterNdDiv. # self._ScatterRepeatIndicesTest(_NumpyMul, state_ops.scatter_nd_mul) # self._ScatterRepeatIndicesTest(_NumpyDiv, state_ops.scatter_nd_div) # TODO(simister): Re-enable once binary size increase due to # extra templating is back under control and this op is re-enabled # def testBooleanScatterUpdate(self): # with self.session(use_gpu=False) as session: # var = tf.Variable([True, False]) # update0 = tf.compat.v1.scatter_nd_update(var, [[1]], [True]) # update1 = tf.compat.v1.scatter_nd_update( # var, tf.constant( # [[0]], dtype=tf.int64), [False]) # var.initializer.run() # session.run([update0, update1]) # self.assertAllEqual([False, True], self.evaluate(var)) @test_util.run_v1_only("b/120545219") def testScatterOutOfRangeCpu(self): # TODO(simister): Re-enable once binary size increase due to # scatter_nd ops is under control. # tf.scatter_nd_mul, tf.scatter_nd_div, for op in (state_ops.scatter_nd_add, state_ops.scatter_nd_sub, state_ops.scatter_nd_update): params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32) updates = np.array([-3, -4, -5]).astype(np.float32) with self.cached_session(use_gpu=False): ref = variables.VariableV1(params) ref.initializer.run() # Indices all in range, no problem. indices = np.array([[2], [0], [5]]) op(ref, indices, updates).eval() # Test some out of range errors. indices = np.array([[-1], [0], [5]]) with self.assertRaisesOpError( r"indices\[0\] = \[-1\] does not index into shape \[6\]"): op(ref, indices, updates).eval() indices = np.array([[2], [0], [6]]) with self.assertRaisesOpError( r"indices\[2\] = \[6\] does not index into shape \[6\]"): op(ref, indices, updates).eval() def testRank3ValidShape(self): indices = array_ops.zeros([2, 2, 2], dtypes.int32) updates = array_ops.zeros([2, 2, 2], dtypes.int32) shape = np.array([2, 2, 2]) ref = variables.Variable(array_ops.zeros(shape, dtypes.int32)) self.assertAllEqual( state_ops.scatter_nd_update(ref, indices, updates).get_shape().as_list(), shape) @test_util.run_v1_only("b/120545219") @test_util.disable_xla("b/123337890") # Error messages differ def testResVarInvalidOutputShape(self): res = variables.Variable( initial_value=lambda: array_ops.zeros(shape=[], dtype=dtypes.float32), dtype=dtypes.float32) with self.cached_session(): res.initializer.run() with self.assertRaisesOpError("Output must be at least 1-D"): state_ops.scatter_nd_update(res, [[0]], [0.22]).eval() @test_util.run_deprecated_v1 def testExtraIndicesDimensions(self): indices = array_ops.zeros([1, 1, 2], dtypes.int32) updates = array_ops.zeros([1, 1], dtypes.int32) shape = np.array([2, 2]) ref = variables.Variable(array_ops.zeros(shape, dtypes.int32)) scatter_update = state_ops.scatter_nd_update(ref, indices, updates) self.assertAllEqual(scatter_update.get_shape().as_list(), shape) expected_result = np.zeros([2, 2], dtype=np.int32) with self.cached_session(): ref.initializer.run() self.assertAllEqual(expected_result, self.evaluate(scatter_update)) @test_util.run_deprecated_v1 def testRank3InvalidShape1(self): indices = array_ops.zeros([3, 2, 2], dtypes.int32) updates = array_ops.zeros([2, 2, 2], dtypes.int32) shape = np.array([2, 2, 2]) ref = variables.Variable(array_ops.zeros(shape, dtypes.int32)) with self.assertRaisesWithPredicateMatch( ValueError, r"The outer \d+ dimensions of indices\.shape="): state_ops.scatter_nd_update(ref, indices, updates) @test_util.run_deprecated_v1 def testRank3InvalidShape2(self): indices = array_ops.zeros([2, 2, 1], dtypes.int32) updates = array_ops.zeros([2, 2], dtypes.int32) shape = np.array([2, 2, 2]) ref = variables.Variable(array_ops.zeros(shape, dtypes.int32)) with self.assertRaisesWithPredicateMatch( ValueError, r"The inner \d+ dimensions of input\.shape="): state_ops.scatter_nd_update(ref, indices, updates) @test_util.run_deprecated_v1 def testConcurrentUpdates(self): num_updates = 10000 update_values = np.random.rand(num_updates) ref = variables.Variable(np.zeros([2, 2]), dtype=dtypes.float64) indices = constant_op.constant([[0, 1]] * num_updates, dtype=dtypes.int32) updates = constant_op.constant(update_values, dtype=dtypes.float64) expected_result = np.zeros([2, 2], dtype=np.float64) expected_result[0, 1] = np.sum(update_values) scatter = state_ops.scatter_nd_add(ref, indices, updates) init = variables.global_variables_initializer() with session.Session() as sess: self.evaluate(init) result = self.evaluate(scatter) assert np.allclose(result, expected_result) # TODO(fpmc): Re-enable this test when gpu_pip test actually runs on a GPU. def _disabledTestScatterOutOfRangeGpu(self): if not test.IsBuiltWithCuda(): return # TODO(simister): Re-enable once binary size increase due to # scatter_nd ops is under control. # tf.scatter_nd_mul, tf.scatter_nd_div, for op in (state_ops.scatter_nd_add, state_ops.scatter_nd_sub, state_ops.scatter_nd_update): params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32) updates = np.array([-3, -4, -5]).astype(np.float32) # With GPU, the code ignores indices that are out of range. # We don't test the implementation; just test there's no failures. with self.cached_session(force_gpu=True): ref = variables.Variable(params) ref.initializer.run() # Indices all in range, no problem. indices = np.array([2, 0, 5]) op(ref, indices, updates).eval() # Indices out of range should not fail. indices = np.array([-1, 0, 5]) op(ref, indices, updates).eval() indices =
np.array([2, 0, 6])
numpy.array
import numpy as np smooth = 0.01 from medpy.metric import hd95,assd ''' 0/1的二值化mask可以用这个求解 ''' def calculate_binary_dice(y_true, y_pred,thres=0.5): y_true=np.squeeze(y_true) y_pred=np.squeeze(y_pred) y_true=np.where(y_true>thres,1,0) y_pred=np.where(y_pred>thres,1,0) return dc(y_pred,y_true) def calculate_binary_hd(y_true, y_pred,thres=0.5,spacing=[1,1,1]): y_true=np.squeeze(y_true) y_pred=np.squeeze(y_pred) y_true=
np.where(y_true>thres,1,0)
numpy.where
"""This Module contains basic Contextual Multi-Armed Bandit Algorithms.""" import copy import math import random from abc import ABC, abstractmethod import numpy as np from pandas import DataFrame, Series from scipy.stats import norm def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) class MABInterface(ABC): """Abstract base class for various Multi-Armed Bandit Algorithms.""" @abstractmethod def select_arm(self) -> None: """Decide which arm should be selected.""" pass @abstractmethod def update(self) -> None: """Update the information about the arms.""" pass @abstractmethod def batch_update(self) -> None: """Update the information about the arms.""" pass class LinUCB(MABInterface): """Linear Upper Confidence Bound Algorithm for Contextual Multi-Armed Bandit Problem. References ------- [1] <NAME>, <NAME>, John, and <NAME>.: A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM, 2010. """ def __init__(self, n_arms: int, feature_dim: int, alpha: float =1.0, warmup: int =15, batch_size: int=0) -> None: """Initialize class. :param n_arms: the number of given arms. :param feature_dim: dimentions of context matrix. :param alpha: the hyper-parameter which represents how often the algorithm explore. :param warmup: how many times the algorithms randomly explore arms at first. :param batch_size: the size of information about rewards given in a update. """ self.n_arms = n_arms self.feature_dim = feature_dim self.warmup = warmup self.alpha = alpha self.theta = [copy.deepcopy(np.zeros(self.feature_dim)) for i in np.arange(n_arms)] # d * 1 self.A_inv = [copy.deepcopy(np.matrix(np.identity(self.feature_dim))) for i in np.arange(self.n_arms)] # d * d self.b = [copy.deepcopy(np.matrix(np.zeros(self.feature_dim)).T) for i in np.arange(self.n_arms)] # d * 1 self.data_size = 0 self.batch_size = batch_size self._A_inv = [copy.deepcopy(np.matrix(np.identity(self.feature_dim))) for i in np.arange(self.n_arms)] # d * d self._b = [copy.deepcopy(np.matrix(np.zeros(self.feature_dim)).T) for i in np.arange(self.n_arms)] # d * 1 self.counts = np.zeros(self.n_arms, dtype=int) self.rewards = 0 def select_arm(self, x: np.matrix) -> int: """Decide which arm should be selected. :param x: observed context matrix. :return: index of the selected arm. """ if True in (self.counts < self.warmup): result = np.where(self.counts < self.warmup)[0][0] else: ucb_values = np.zeros(self.n_arms) self.theta = np.concatenate([self.A_inv[i].dot(self.b[i]) for i in np.arange(self.n_arms)], axis=1) # user_dim * n_arms mu_hat = self.theta.T.dot(x) # n_arms * 1 sigma_hat = self.alpha * np.concatenate([np.sqrt(x.T.dot(self.A_inv[i].dot(x))) for i in np.arange(self.n_arms)], axis=0) # n_arms * 1 result = np.argmax(mu_hat + sigma_hat) return result def update(self, x: np.matrix, chosen_arm: int, reward: float) -> None: """Update the information about the arms. :param x: observed context matrix. :param chosen_arm: index of the chosen arm. :param reward: reward from the chosen arm. """ self.counts[chosen_arm] += 1 self.rewards += reward self.A_inv[chosen_arm] -= self.A_inv[chosen_arm].dot(x.dot(x.T.dot(self.A_inv[chosen_arm]))) / (1 + x.T.dot(self.A_inv[chosen_arm].dot(x))) self.b[chosen_arm] += x * reward # d * 1 def batch_update(self, x: np.matrix, chosen_arm: int, reward: float) -> None: """Update the information about the arms with a new batch of data. :param x: observed context matrix. :param chosen_arm: index of the chosen arm. :param reward: reward from the chosen arm. """ self.data_size += 1 self.counts[chosen_arm] += 1 self.rewards += reward self._A_inv[chosen_arm] -= self._A_inv[chosen_arm].dot(x.dot(x.T.dot(self._A_inv[chosen_arm]))) / (1 + x.T.dot(self._A_inv[chosen_arm].dot(x))) # d * d self._b[chosen_arm] += x * reward # d * 1 if self.data_size % self.batch_size == 0: self.A_inv = copy.deepcopy(self._A_inv) # d * d self.b = copy.deepcopy(self._b) # d * 1 class HybridLinUCB(MABInterface): """Hybrid Linear Upper Confidence Bound Algorithm for Contextual Multi-Armed Bandit Problem. References ------- [1] <NAME>, <NAME>, Langford, John, and Schapire, <NAME>.: A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM, 2010. """ def __init__(self, n_arms: int, z_dim: int, x_dim: int, alpha: float =1.0, warmup: int =15, batch_size: int=0) -> None: """Initialize class. :param n_arms: the number of given arms. :param z_dim: dimensions of context matrix which is common to all arms. :param x_dim: dimentions of context matrix which is unique to earch arm. :param alpha: the hyper-parameter which represents how often the algorithm explore. :param warmup: how many times the algorithms randomly explore arms at first. :param batch_size: the size of information about rewards given in a update. """ self.n_arms = n_arms self.z_dim = z_dim # k self.x_dim = x_dim # d self.warmup = warmup self.alpha = alpha self.beta = np.zeros(self.z_dim) self.theta = None # d * 1 # matrices which are common to all context self.A_zero = np.matrix(np.identity(self.z_dim)) # k * k self.b_zero = np.matrix(np.zeros(self.z_dim)).T # k * 1 # matrices which are different for each context self.A_inv = [copy.deepcopy(np.matrix(np.identity(self.x_dim))) for i in np.arange(self.n_arms)] self.B = [copy.deepcopy(np.matrix(np.zeros((self.x_dim, self.z_dim)))) for i in range(self.n_arms)] # d * k self.b = [copy.deepcopy(np.matrix(np.zeros(self.x_dim)).T) for i in range(self.n_arms)] # d * 1 self.data_size = 0 self.batch_size = batch_size self._A_zero = np.matrix(np.identity(self.z_dim)) # k * k self._b_zero = np.matrix(np.zeros(self.z_dim)).T # k * 1 self._A_inv = [copy.deepcopy(np.matrix(np.identity(self.x_dim))) for i in range(self.n_arms)] # d * d self._B = [copy.deepcopy(np.matrix(np.zeros((self.x_dim, self.z_dim)))) for i in range(self.n_arms)] # d * k self._b = [copy.deepcopy(np.matrix(np.zeros(self.x_dim)).T) for i in range(self.n_arms)] # d * 1 self.counts = np.zeros(self.n_arms, dtype=int) self.rewards = 0 def select_arm(self, x: np.matrix) -> int: """Decide which arm should be selected. :param x: observed context matrix. :return: index of the selected arm. """ z = x[:][:self.z_dim] x = x[:][self.z_dim:] if True in (self.counts < self.warmup): result = np.where(self.counts < self.warmup)[0][0] else: ucb_values = np.zeros(self.n_arms) self.beta = np.linalg.inv(self.A_zero).dot(self.b_zero) # k * 1 self.theta = [self.A_inv[i].dot(self.b[i] - self.B[i].dot(self.beta)).A.reshape(self.x_dim) for i in np.arange(self.n_arms)] # d * 1 mu_hat = [z.T.dot(self.beta) + x.T.dot(self.theta[i]) for i in np.arange(self.n_arms)] s1 = z.T.dot(np.linalg.inv(self.A_zero)).dot(z).A[0] s2 = - 2 * np.array([z.T.dot(np.linalg.inv(self.A_zero)).dot(self.B[i].T).dot(self.A_inv[i]).dot(x) for i in np.arange(self.n_arms)]) s3 = np.array([x.T.dot(self.A_inv[i]).dot(x) for i in np.arange(self.n_arms)]) s4 = np.array([x.T.dot(self.A_inv[i]).dot(self.B[i]).dot(np.linalg.inv(self.A_zero)).dot( self.B[i].T).dot(self.A_inv[i]).dot(x) for i in np.arange(self.n_arms)]) sigma_hat = s1 + s2 + s3 + s4 ucb_values = mu_hat + self.alpha * sigma_hat result =
np.argmax(ucb_values)
numpy.argmax