prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import copy import numpy as np from lib.skeleton.skeleton import Human36mSkeleton from lib.dataset.mocap_dataset import MocapDataset from lib.camera.camera import CameraInfoPacket mpii_3dhp_cameras_intrinsic_params = [ { 'id': '0', 'center': [1024.704, 1051.394], 'focal_length': [1497.693, 1497.103], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '1', 'center': [1030.519, 1052.626], 'focal_length': [1495.217, 1495.52], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '2', 'center': [983.8873, 987.5902], 'focal_length': [1495.587, 1497.828], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '3', 'center': [1029.06, 1041.409], 'focal_length': [1495.886, 1496.033], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '4', 'center': [987.6075, 1019.069], 'focal_length': [1490.952, 1491.108], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '5', 'center': [1012.331, 998.5009], 'focal_length': [1500.414, 1499.971], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '6', 'center': [999.7319, 1010.251], 'focal_length': [1498.471, 1498.8], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '7', 'center': [987.2716, 976.8773], 'focal_length': [1498.831, 1499.674], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '8', 'center': [1017.387, 1043.032], 'focal_length': [1500.172, 1500.837], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '9', 'center': [1010.423, 1037.096], 'focal_length': [1501.554, 1501.9], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '10', 'center': [1041.614, 997.0433], 'focal_length': [1498.423, 1498.585], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '11', 'center': [1009.802, 999.9984], 'focal_length': [1495.779, 1493.703], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '12', 'center': [1000.56, 1014.975], 'focal_length': [1501.326, 1501.491], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, }, { 'id': '13', 'center': [1005.702, 1004.214], 'focal_length': [1496.961, 1497.378], 'res_w': 2048, 'res_h': 2048, 'azimuth': 70, } ] mpii_3dhp_cameras_extrinsic_params = [ { 'translation': [-0.5628666, 1.3981379999999999, 3.852623], 'R': [ [0.9650164, -0.262144, 0.00488022], [-0.004488356, -0.0351275, -0.9993728], [0.262151, 0.9643893, -0.03507521] ] }, { 'translation': [-1.429856, 0.7381779, 4.897966], 'R': [ [0.6050639, -0.7958773, -0.02184232], [-0.22647, -0.1457429, -0.9630526], [0.7632883, 0.587655, -0.2684261] ] }, { 'translation': [0.05725702, 1.307287, 2.7998220000000003], 'R': [ [-0.3608179, -0.932588, -0.009492658], [-0.0585942, 0.03282591, -0.9977421], [0.9307939, -0.359447, -0.06648842] ] }, { 'translation': [-0.2848168, 0.8079184, 3.1771599999999998], 'R': [ [-0.0721105, -0.9962325, -0.04817664], [-0.4393254, 0.07508985, -0.8951841], [0.895429, -0.04338695, -0.443085] ] }, { 'translation': [-1.563911, 0.8019607999999999, 3.5173159999999997], 'R': [ [0.3737275, -0.9224646, 0.09688602], [-0.009716132, -0.1083427, -0.9940662], [0.9274878, 0.3705685, -0.04945343] ] }, { 'translation': [0.35841340000000005, 0.9945657999999999, 3.439832], 'R': [ [-0.3521056, 0.9358659, 0.01328985], [-0.04961938, -0.004485628, -0.9987582], [-0.9346441, -0.3523278, 0.0480165] ] }, { 'translation': [0.5694388, 0.528871, 3.6873690000000003], 'R': [ [-0.9150326, -0.4004618, -0.04843184], [-0.1804886, 0.5138369, -0.8386868], [0.3607481, -0.7586845, -0.5424563] ] }, { 'translation': [1.378866, 1.270781, 2.631567], 'R': [ [-0.9995936, -0.001368653, 0.02847456], [-0.02843213, -0.0246889, -0.9992908], [0.002070688, -0.9996943, 0.02463995] ] }, { 'translation': [0.2213543, 0.65987, 3.644688], 'R': [ [0.000575281, 0.9981001, 0.06160985], [0.2082146, 0.06013997, -0.9762325], [-0.978083, 0.01338968, -0.2077844] ] }, { 'translation': [0.38862169999999996, 0.1375452, 4.216635], 'R': [ [0.04176839, 0.9990969, 0.00780962], [0.5555364, -0.01672664, -0.831324], [-0.8304425, 0.03906159, -0.5557333] ] }, { 'translation': [1.167962, 0.6176362000000001, 4.472351], 'R': [ [-0.8970265, 0.4204822, 0.1361548], [0.09417118, 0.4828178, -0.8706428], [-0.4318278, -0.7681679, -0.4726976] ] }, { 'translation': [0.1348272, 0.2515094, 4.570244], 'R': [ [0.9170455, 0.3465695, 0.1972746], [0.1720879, -0.7901813, 0.5882171], [0.3597408, -0.5054733, -0.7842726] ] }, { 'translation': [0.4124695, 0.5327588, 4.887095], 'R': [ [-0.7926738, -0.5951031, 0.1323657], [-0.396246, 0.66792, 0.6299778], [-0.4633114, 0.4469175, -0.7652499] ] }, { 'translation': [0.8671278, 0.8274571999999999, 3.985159], 'R': [ [-0.8701088, 0.4835728, -0.09522671], [0.4120245, 0.8197188, 0.3978655], [0.270456, 0.3069505, -0.9124883] ] } ] subjects = [ 'S1_Seq1_0', 'S1_Seq1_1', 'S1_Seq1_2', 'S1_Seq1_3', 'S1_Seq1_4', 'S1_Seq1_5', 'S1_Seq1_6', 'S1_Seq1_7', 'S1_Seq1_8', 'S1_Seq1_9', 'S1_Seq1_10', 'S1_Seq1_11', 'S1_Seq1_12', 'S1_Seq1_13', 'S1_Seq2_0', 'S1_Seq2_1', 'S1_Seq2_2', 'S1_Seq2_3', 'S1_Seq2_4', 'S1_Seq2_5', 'S1_Seq2_6', 'S1_Seq2_7', 'S1_Seq2_8', 'S1_Seq2_9', 'S1_Seq2_10', 'S1_Seq2_11', 'S1_Seq2_12', 'S1_Seq2_13', 'S2_Seq1_0', 'S2_Seq1_1', 'S2_Seq1_2', 'S2_Seq1_3', 'S2_Seq1_4', 'S2_Seq1_5', 'S2_Seq1_6', 'S2_Seq1_7', 'S2_Seq1_8', 'S2_Seq1_9', 'S2_Seq1_10', 'S2_Seq1_11', 'S2_Seq1_12', 'S2_Seq1_13', 'S2_Seq2_0', 'S2_Seq2_1', 'S2_Seq2_2', 'S2_Seq2_3', 'S2_Seq2_4', 'S2_Seq2_5', 'S2_Seq2_6', 'S2_Seq2_7', 'S2_Seq2_8', 'S2_Seq2_9', 'S2_Seq2_10', 'S2_Seq2_11', 'S2_Seq2_12', 'S2_Seq2_13', 'S3_Seq1_0', 'S3_Seq1_1', 'S3_Seq1_2', 'S3_Seq1_3', 'S3_Seq1_4', 'S3_Seq1_5', 'S3_Seq1_6', 'S3_Seq1_7', 'S3_Seq1_8', 'S3_Seq1_9', 'S3_Seq1_10', 'S3_Seq1_11', 'S3_Seq1_12', 'S3_Seq1_13', 'S3_Seq2_0', 'S3_Seq2_1', 'S3_Seq2_2', 'S3_Seq2_3', 'S3_Seq2_4', 'S3_Seq2_5', 'S3_Seq2_6', 'S3_Seq2_7', 'S3_Seq2_8', 'S3_Seq2_9', 'S3_Seq2_10', 'S3_Seq2_11', 'S3_Seq2_12', 'S3_Seq2_13', 'S4_Seq1_0', 'S4_Seq1_1', 'S4_Seq1_2', 'S4_Seq1_3', 'S4_Seq1_4', 'S4_Seq1_5', 'S4_Seq1_6', 'S4_Seq1_7', 'S4_Seq1_8', 'S4_Seq1_9', 'S4_Seq1_10', 'S4_Seq1_11', 'S4_Seq1_12', 'S4_Seq1_13', 'S4_Seq2_0', 'S4_Seq2_1', 'S4_Seq2_2', 'S4_Seq2_3', 'S4_Seq2_4', 'S4_Seq2_5', 'S4_Seq2_6', 'S4_Seq2_7', 'S4_Seq2_8', 'S4_Seq2_9', 'S4_Seq2_10', 'S4_Seq2_11', 'S4_Seq2_12', 'S4_Seq2_13', 'S5_Seq1_0', 'S5_Seq1_1', 'S5_Seq1_2', 'S5_Seq1_3', 'S5_Seq1_4', 'S5_Seq1_5', 'S5_Seq1_6', 'S5_Seq1_7', 'S5_Seq1_8', 'S5_Seq1_9', 'S5_Seq1_10', 'S5_Seq1_11', 'S5_Seq1_12', 'S5_Seq1_13', 'S5_Seq2_0', 'S5_Seq2_1', 'S5_Seq2_2', 'S5_Seq2_3', 'S5_Seq2_4', 'S5_Seq2_5', 'S5_Seq2_6', 'S5_Seq2_7', 'S5_Seq2_8', 'S5_Seq2_9', 'S5_Seq2_10', 'S5_Seq2_11', 'S5_Seq2_12', 'S5_Seq2_13', 'S6_Seq1_0', 'S6_Seq1_1', 'S6_Seq1_2', 'S6_Seq1_3', 'S6_Seq1_4', 'S6_Seq1_5', 'S6_Seq1_6', 'S6_Seq1_7', 'S6_Seq1_8', 'S6_Seq1_9', 'S6_Seq1_10', 'S6_Seq1_11', 'S6_Seq1_12', 'S6_Seq1_13', 'S6_Seq2_0', 'S6_Seq2_1', 'S6_Seq2_2', 'S6_Seq2_3', 'S6_Seq2_4', 'S6_Seq2_5', 'S6_Seq2_6', 'S6_Seq2_7', 'S6_Seq2_8', 'S6_Seq2_9', 'S6_Seq2_10', 'S6_Seq2_11', 'S6_Seq2_12', 'S6_Seq2_13', 'S7_Seq1_0', 'S7_Seq1_1', 'S7_Seq1_2', 'S7_Seq1_3', 'S7_Seq1_4', 'S7_Seq1_5', 'S7_Seq1_6', 'S7_Seq1_7', 'S7_Seq1_8', 'S7_Seq1_9', 'S7_Seq1_10', 'S7_Seq1_11', 'S7_Seq1_12', 'S7_Seq1_13', 'S7_Seq2_0', 'S7_Seq2_1', 'S7_Seq2_2', 'S7_Seq2_3', 'S7_Seq2_4', 'S7_Seq2_5', 'S7_Seq2_6', 'S7_Seq2_7', 'S7_Seq2_8', 'S7_Seq2_9', 'S7_Seq2_10', 'S7_Seq2_11', 'S7_Seq2_12', 'S7_Seq2_13', 'S8_Seq1_0', 'S8_Seq1_1', 'S8_Seq1_2', 'S8_Seq1_3', 'S8_Seq1_4', 'S8_Seq1_5', 'S8_Seq1_6', 'S8_Seq1_7', 'S8_Seq1_8', 'S8_Seq1_9', 'S8_Seq1_10', 'S8_Seq1_11', 'S8_Seq1_12', 'S8_Seq1_13', 'S8_Seq2_0', 'S8_Seq2_1', 'S8_Seq2_2', 'S8_Seq2_3', 'S8_Seq2_4', 'S8_Seq2_5', 'S8_Seq2_6', 'S8_Seq2_7', 'S8_Seq2_8', 'S8_Seq2_9', 'S8_Seq2_10', 'S8_Seq2_11', 'S8_Seq2_12', 'S8_Seq2_13', 'TS1', 'TS3', 'TS4' ] camera_params = dict() for sbj in subjects: if sbj.startswith('S'): subject, seq, cid = sbj.split('_') cid = int(cid) camera_meta = dict() camera_meta.update(mpii_3dhp_cameras_extrinsic_params[cid]) camera_meta.update(mpii_3dhp_cameras_intrinsic_params[cid]) camera_params[sbj] = [camera_meta] if sbj.startswith('T'): camera_meta = dict() camera_meta.update(mpii_3dhp_cameras_extrinsic_params[8]) camera_meta.update(mpii_3dhp_cameras_intrinsic_params[8]) camera_params[sbj] = [camera_meta] h36m_skeleton = Human36mSkeleton( parents=[-1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 12, 16, 17, 18, 19, 20, 19, 22, 12, 24, 25, 26, 27, 28, 27, 30], joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23], joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31] ) class Mpii3dhpDataset(MocapDataset): def __init__(self, path, universal=False): super().__init__(fps=50, skeleton=h36m_skeleton) self.universal = universal self._cameras = copy.deepcopy(camera_params) for cameras in self._cameras.values(): for i, cam in enumerate(cameras): for k, v in cam.items(): if k not in ['id', 'res_w', 'res_h']: cam[k] = np.array(v, dtype='float32') # Normalize camera frame # if 'translation' in cam: # cam['translation'] = cam['translation'] / 1000 # mm to meters # DONE IN PREPARE camera_info = dict() for subject in self._cameras: camera_info.setdefault(subject, list()) for cam in self._cameras[subject]: if 'translation' not in cam: continue K =
np.eye(3, dtype=np.float64)
numpy.eye
''' Analysis utilities for Imfits. ''' import numpy as np import scipy.optimize import matplotlib.pyplot as plt from imfits import Imfits # constant clight = 2.99792458e10 # light speed [cm s^-1] auTOkm = 1.495978707e8 # AU --> km auTOcm = 1.495978707e13 # AU --> cm auTOpc = 4.85e-6 # au --> pc pcTOau = 2.06e5 # pc --> au pcTOcm = 3.09e18 # pc --> cm # Handle images def boxtrim(self, xlim, ylim, coord_center=None): ''' Trim a image with a given box. Parameters ---------- - xlim, ylim: x and y ranges in arcsec. - coord_center: Coordinate of the box center. In the format of '00h00m00.00s 00d00m00.00s' or 'hh:mm:ss.ss dd:mm:ss.ss'. ''' # shift center if coord_center: #print ('Shift the map center.') self.shift_coord_center(coord_center) # get axes xaxis, yaxis, vaxis, saxis = self.axes xaxis *=3600. # deg --> arcsec yaxis *=3600. # deg --> arcsec # get pixel range xpixmin, xpixmax = np.where((xaxis >= xlim[0]) & (xaxis <= xlim[1]) )[0][0], np.where((xaxis >= xlim[0]) & (xaxis <= xlim[1]) )[0][-1] ypixmin, ypixmax = np.where((yaxis >= ylim[0]) & (yaxis <= ylim[1]) )[0][0], np.where((yaxis >= ylim[0]) & (yaxis <= ylim[1]) )[0][-1] rex, rey = xaxis[xpixmin:xpixmax+1]/3600, yaxis[ypixmin:ypixmax+1]/3600 # deg renx = xpixmax - xpixmin + 1 reny = ypixmax - ypixmin + 1 # trimming if self.naxis == 2: self.data = self.data[ypixmin:ypixmax+1,xpixmin:xpixmax+1] self.naxis_i = renx, reny elif self.naxis == 3: self.data = self.data[:,ypixmin:ypixmax+1,xpixmin:xpixmax+1] self.naxis_i = renx, reny, self.naxis_i[2] elif self.naxis == 4: self.data = self.data[:,:,ypixmin:ypixmax+1,xpixmin:xpixmax+1] self.naxis_i = renx, reny, self.naxis_i[2], self.naxis_i[3] else: print ('ERROR\tboxtrim: Input image must have 2--4 axes.') return # update axes self.nx = renx self.ny = reny self.xaxis = rex self.yaxis = rey self.axes = rex, rey, vaxis, saxis self.xx = self.xx[ypixmin:ypixmax+1,xpixmin:xpixmax+1] self.xx_wcs = self.xx_wcs[ypixmin:ypixmax+1,xpixmin:xpixmax+1] self.yy = self.yy[ypixmin:ypixmax+1,xpixmin:xpixmax+1] self.yy_wcs = self.yy_wcs[ypixmin:ypixmax+1,xpixmin:xpixmax+1] # functions # 2D linear function def func_G93(del_ra, del_dec, v0, a, b): # See Goodman et al. (1993) vlsr = v0 + a*del_ra + b*del_dec return vlsr def _func_G93(xdata,*args): del_ra, del_dec = xdata #print (*args) ans = func_G93(del_ra, del_dec, *args) return ans def lnfit2d(cube, p0, rfit=None, dist=140., outname=None, outfig=True, axis=0): ''' Fit a two-dimensional linear function to a map by the least square fitting. Basically, the input map is assumed to be a velocity map and the measurement result will be treated as a velocity gradient. The fitting method is based on the one done by Goodman et al. (1993). cube: fits file ''' # check type if type(cube) == Imfits: pass else: print ('ERROR\tlnfit2d: Object type is not Imfits. Check the input.') return data = cube.data xx = cube.xx yy = cube.yy naxis = cube.naxis xx = xx*3600. # deg --> arcsec yy = yy*3600. # delta dx = np.abs(xx[0,1] - xx[0,0]) dy = np.abs(yy[1,0] - yy[0,0]) #print (xx.shape) # beam bmaj, bmin, bpa = cube.beam # as, as, deg # radius rr = np.sqrt(xx*xx + yy*yy) # check data axes if naxis == 2: pass elif naxis == 3: data = data[axis,:,:] elif naxis == 4: data = data[0,axis,:,:] else: print ('Error\tmeasure_vgrad: Input fits size is not corrected.\ It is allowed only to have 3 or 4 axes. Check the shape of the fits file.') return # Nyquist sampling step = int(bmin/dx*0.5) ny, nx = xx.shape #print (step) xx_fit = xx[0:ny:step, 0:nx:step] yy_fit = yy[0:ny:step, 0:nx:step] data_fit = data[0:ny:step, 0:nx:step] #print (data_fit.shape) if rfit: where_fit = np.where(rr <= rfit) data_fit = data[where_fit] xx_fit = xx[where_fit] yy_fit = yy[where_fit] else: data_fit = data xx_fit = xx yy_fit = yy # exclude nan xx_fit = xx_fit[~np.isnan(data_fit)] yy_fit = yy_fit[~np.isnan(data_fit)] data_fit = data_fit[~np.isnan(data_fit)] #print (xx_fit) # Ravel the meshgrids of X, Y points to a pair of 1-D arrays. xdata = np.vstack((xx_fit, yy_fit)) # or xx.ravel() # fitting popt, pcov = scipy.optimize.curve_fit(_func_G93, xdata, data_fit, p0) perr = np.sqrt(np.diag(pcov)) v0, a, b = popt v0_err, a_err, b_err = perr # velocity gradient vgrad = (a*a + b*b)**0.5/dist/auTOpc # km s^-1 pc^-1 th_vgrad = np.arctan2(a,b) # radians # error of vgrad through the error propagation c01 = (a*a + b*b)**(-0.5)/dist/auTOpc vgrad_err = c01*np.sqrt((a*a_err)*(a*a_err) + (b*b_err)*(b*b_err)) # error of th_vgrad through the error propagation costh2 = np.cos(th_vgrad)*np.cos(th_vgrad) sinth2 =
np.sin(th_vgrad)
numpy.sin
r""" Special Functions ................. This following standard C99 math functions are available: M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ exp, log, pow(x,y), expm1, log1p, sqrt, cbrt: Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$, $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x) are accurate across all $x$, including $x$ very close to zero. sin, cos, tan, asin, acos, atan: Trigonometry functions and inverses, operating on radians. sinh, cosh, tanh, asinh, acosh, atanh: Hyperbolic trigonometry functions. atan2(y,x): Angle from the $x$\ -axis to the point $(x,y)$, which is equal to $\tan^{-1}(y/x)$ corrected for quadrant. That is, if $x$ and $y$ are both negative, then atan2(y,x) returns a value in quadrant III where atan(y/x) would return a value in quadrant I. Similarly for quadrants II and IV when $x$ and $y$ have opposite sign. fabs(x), fmin(x,y), fmax(x,y), trunc, rint: Floating point functions. rint(x) returns the nearest integer. NAN: NaN, Not a Number, $0/0$. Use isnan(x) to test for NaN. Note that you cannot use :code:`x == NAN` to test for NaN values since that will always return false. NAN does not equal NAN! The alternative, :code:`x != x` may fail if the compiler optimizes the test away. INFINITY: $\infty, 1/0$. Use isinf(x) to test for infinity, or isfinite(x) to test for finite and not NaN. erf, erfc, tgamma, lgamma: **do not use** Special functions that should be part of the standard, but are missing or inaccurate on some platforms. Use sas_erf, sas_erfc and sas_gamma instead (see below). Note: lgamma(x) has not yet been tested. Some non-standard constants and functions are also provided: M_PI_180, M_4PI_3: $\frac{\pi}{180}$, $\frac{4\pi}{3}$ SINCOS(x, s, c): Macro which sets s=sin(x) and c=cos(x). The variables *c* and *s* must be declared first. square(x): $x^2$ cube(x): $x^3$ sas_sinx_x(x): $\sin(x)/x$, with limit $\sin(0)/0 = 1$. powr(x, y): $x^y$ for $x \ge 0$; this is faster than general $x^y$ on some GPUs. pown(x, n): $x^n$ for $n$ integer; this is faster than general $x^n$ on some GPUs. FLOAT_SIZE: The number of bytes in a floating point value. Even though all variables are declared double, they may be converted to single precision float before running. If your algorithm depends on precision (which is not uncommon for numerical algorithms), use the following:: #if FLOAT_SIZE>4 ... code for double precision ... #else ... code for single precision ... #endif SAS_DOUBLE: A replacement for :code:`double` so that the declared variable will stay double precision; this should generally not be used since some graphics cards do not support double precision. There is no provision for forcing a constant to stay double precision. The following special functions and scattering calculations are defined. These functions have been tuned to be fast and numerically stable down to $q=0$ even in single precision. In some cases they work around bugs which appear on some platforms but not others, so use them where needed. Add the files listed in :code:`source = ["lib/file.c", ...]` to your *model.py* file in the order given, otherwise these functions will not be available. polevl(x, c, n): Polynomial evaluation $p(x) = \sum_{i=0}^n c_i x^i$ using Horner's method so it is faster and more accurate. $c = \{c_n, c_{n-1}, \ldots, c_0 \}$ is the table of coefficients, sorted from highest to lowest. p1evl(x, c, n): Evaluate normalized polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$ using Horner's method so it is faster and more accurate. $c = \{c_{n-1}, c_{n-2} \ldots, c_0 \}$ is the table of coefficients, sorted from highest to lowest. sas_gamma(x): Gamma function $\text{sas_gamma}(x) = \Gamma(x)$. The standard math function, tgamma(x) is unstable for $x < 1$ on some platforms. sas_gammaln(x): log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$. The standard math function, lgamma(x), is incorrect for single precision on some platforms. sas_gammainc(a, x), sas_gammaincc(a, x): Incomplete gamma function sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$ and complementary incomplete gamma function sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$ sas_erf(x), sas_erfc(x): Error function $\text{sas_erf}(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$ and complementary error function $\text{sas_erfc}(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$. The standard math functions erf(x) and erfc(x) are slower and broken on some platforms. sas_J0(x): Bessel function of the first kind $\text{sas_J0}(x)=J_0(x)$ where $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$. The standard math function j0(x) is not available on all platforms. sas_J1(x): Bessel function of the first kind $\text{sas_J1}(x)=J_1(x)$ where $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$. The standard math function j1(x) is not available on all platforms. sas_JN(n, x): Bessel function of the first kind and integer order $n$: $\text{sas_JN}(n, x)=J_n(x)$ where $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$. If $n$ = 0 or 1, it uses sas_J0(x) or sas_J1(x), respectively. The standard math function jn(n, x) is not available on all platforms. sas_Si(x): Sine integral $\text{Si}(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. This function uses Taylor series for small and large arguments: For large arguments, .. math:: \text{Si}(x) \sim \frac{\pi}{2} - \frac{\cos(x)}{x} \left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \frac{6!}{x^6} \right) - \frac{\sin(x)}{x} \left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) For small arguments, .. math:: \text{Si}(x) \sim x - \frac{x^3}{3\times 3!} + \frac{x^5}{5 \times 5!} - \frac{x^7}{7 \times 7!} + \frac{x^9}{9\times 9!} - \frac{x^{11}}{11\times 11!} sas_3j1x_x(x): Spherical Bessel form $\text{sph_j1c}(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$, with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical Bessel function of the first kind and first order. This function uses a Taylor series for small $x$ for numerical accuracy. sas_2J1x_x(x): Bessel form $\text{sas_J1c}(x) = 2 J_1(x)/x$, with a limiting value of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind and first order. gauss76.n, gauss76.z[i], gauss76.w[i]: Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively, computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$. When translating the model to C, include 'lib/gauss76.c' in the source and use :code:`GAUSS_N`, :code:`GAUSS_Z`, and :code:`GAUSS_W`. Similar arrays are available in :code:`gauss20` for 20-point quadrature and :code:`gauss150.c` for 150-point quadrature. By using :code:`import gauss76 as gauss` it is easy to change the number of points in the integration. """ # pylint: disable=unused-import import numpy as np # Functions to add to our standard set from numpy import degrees, radians # C99 standard math library functions from numpy import exp, log, power as pow, expm1, log1p, sqrt, cbrt from numpy import sin, cos, tan, arcsin as asin, arccos as acos, arctan as atan from numpy import sinh, cosh, tanh, arcsinh as asinh, arccosh as acosh, arctanh as atanh from numpy import arctan2 as atan2 from numpy import fabs, fmin, fmax, trunc, rint from numpy import pi, nan, inf from scipy.special import gamma as sas_gamma from scipy.special import gammaln as sas_gammaln from scipy.special import gammainc as sas_gammainc from scipy.special import gammaincc as sas_gammaincc from scipy.special import erf as sas_erf from scipy.special import erfc as sas_erfc from scipy.special import j0 as sas_J0 from scipy.special import j1 as sas_J1 from scipy.special import jn as sas_JN # erf, erfc, tgamma, lgamma **do not use** # C99 standard math constants M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E = np.pi, np.pi/2, np.pi/4, np.sqrt(0.5), np.e NAN = nan INFINITY = inf # non-standard constants M_PI_180, M_4PI_3 = M_PI/180, 4*M_PI/3 # can't do SINCOS in python; use "s, c = SINCOS(x)" instead def SINCOS(x): """return sin(x), cos(x)""" return sin(x), cos(x) sincos = SINCOS def square(x): """return x^2""" return x*x def cube(x): """return x^3""" return x*x*x def sas_sinx_x(x): """return sin(x)/x""" from numpy import sinc as _sinc return _sinc(x/M_PI) def powr(x, y): """return x^y for x>0""" return x**y def pown(x, n): """return x^n for n integer""" return x**n FLOAT_SIZE = 8 def polevl(x, c, n): """return p(x) for polynomial p of degree n-1 with coefficients c""" return np.polyval(c[:n], x) def p1evl(x, c, n): """return x^n + p(x) for polynomial p of degree n-1 with coefficients c""" return np.polyval(np.hstack(([1.], c))[:n], x) def sas_Si(x): """return Si(x)""" from scipy.special import sici return sici(x)[0] def sas_j1(x): """return j1(x)""" if np.isscalar(x): retvalue = (sin(x) - x*cos(x))/x**2 if x != 0. else 0. else: with np.errstate(all='ignore'): retvalue = (sin(x) - x*cos(x))/x**2 retvalue[x == 0.] = 0. return retvalue def sas_3j1x_x(x): """return 3*j1(x)/x""" if np.isscalar(x): retvalue = 3*(sin(x) - x*cos(x))/x**3 if x != 0. else 1. else: with np.errstate(all='ignore'): retvalue = 3*(sin(x) - x*
cos(x)
numpy.cos
import pytest from pathlib import Path import pickle import numpy as np import pandas as pd from scipy import sparse as sp from scipy.stats import mannwhitneyu from numpy.random import negative_binomial, binomial, seed from anndata import AnnData from scanpy.tools import rank_genes_groups from scanpy.tools._rank_genes_groups import _RankGenes from scanpy.get import rank_genes_groups_df from scanpy.datasets import pbmc68k_reduced from scanpy._utils import select_groups HERE = Path(__file__).parent / Path('_data/') # We test results for a simple generic example # Tests are conducted for sparse and non-sparse AnnData objects. # Due to minor changes in multiplication implementation for sparse and non-sparse objects, # results differ (very) slightly def get_example_data(*, sparse=False): # create test object adata = AnnData(np.multiply(binomial(1, 0.15, (100, 20)), negative_binomial(2, 0.25, (100, 20)))) # adapt marker_genes for cluster (so as to have some form of reasonable input adata.X[0:10, 0:5] = np.multiply(binomial(1, 0.9, (10, 5)), negative_binomial(1, 0.5, (10, 5))) # The following construction is inefficient, but makes sure that the same data is used in the sparse case if sparse: adata.X = sp.csr_matrix(adata.X) # Create cluster according to groups adata.obs['true_groups'] = pd.Categorical(np.concatenate(( np.zeros((10,), dtype=int), np.ones((90,), dtype=int), ))) return adata def get_true_scores(): with Path(HERE, 'objs_t_test.pkl').open('rb') as f: true_scores_t_test, true_names_t_test = pickle.load(f) with Path(HERE, 'objs_wilcoxon.pkl').open('rb') as f: true_scores_wilcoxon, true_names_wilcoxon = pickle.load(f) return true_names_t_test, true_names_wilcoxon,\ true_scores_t_test, true_scores_wilcoxon def test_results_dense(): seed(1234) adata = get_example_data() true_names_t_test, true_names_wilcoxon,\ true_scores_t_test, true_scores_wilcoxon = get_true_scores() rank_genes_groups(adata, 'true_groups', n_genes=20, method='t-test') adata.uns['rank_genes_groups']['names'] = adata.uns['rank_genes_groups']['names'].astype(true_names_t_test.dtype) for name in true_scores_t_test.dtype.names: assert np.allclose(true_scores_t_test[name], adata.uns['rank_genes_groups']['scores'][name]) assert np.array_equal(true_names_t_test, adata.uns['rank_genes_groups']['names']) rank_genes_groups(adata, 'true_groups', n_genes=20, method='wilcoxon') adata.uns['rank_genes_groups']['names'] = adata.uns['rank_genes_groups']['names'].astype(true_names_wilcoxon.dtype) for name in true_scores_t_test.dtype.names: assert np.allclose(true_scores_wilcoxon[name][:7], adata.uns['rank_genes_groups']['scores'][name][:7]) assert np.array_equal(true_names_wilcoxon[:7], adata.uns['rank_genes_groups']['names'][:7]) def test_results_sparse(): seed(1234) adata = get_example_data(sparse=True) true_names_t_test, true_names_wilcoxon,\ true_scores_t_test, true_scores_wilcoxon = get_true_scores() rank_genes_groups(adata, 'true_groups', n_genes=20, method='t-test') adata.uns['rank_genes_groups']['names'] = adata.uns['rank_genes_groups']['names'].astype(true_names_t_test.dtype) for name in true_scores_t_test.dtype.names: assert
np.allclose(true_scores_t_test[name], adata.uns['rank_genes_groups']['scores'][name])
numpy.allclose
name = "attitudes" ''' Attitude Control Module Ok, so the principle behind this module is the base class "att", which represents an attitude description, by default of type "DCM". Can also be created from Euler Angles, PRV, Quaternions, CRPs, and MRPs. Can also be transformed into these others by a method as well. For simplicity's sake, I'm going to treat these classes as kind of a "dual number" where the DCM representation is stored, but for all other types, the representation of that type is also stored. This should allow for direct quaternion addition and so forth. This should also allow me to simplify the addition/subtraction functions into a single function, that read the types of the inputs and acts accordingly. There will probably also be an angular acceleration vector class, but I'll get there when I get there. Author: <NAME> ''' #standard imports import numpy as np from numpy import linalg as LA # ------------------------------------------------------------------------------------------------ # CONSTANTS # ------------------------------------------------------------------------------------------------ # Nothing here yet # ----------------------------------------------------------------------------------------------- # BASE CLASS "ATT" # ----------------------------------------------------------------------------------------------- class att(): ''' Attitude Description Class Defines an attitude, by default from a DCM description. Also contains a whole bunch of class methods for defining by other means (CRP, quaternions, etc). Arguments: DCM: (ndarray [2x2]) General 3x3 DCM of the attitude description ''' def __init__(self, DCM, type='DCM', angle_vec=np.array([]),units='rad', euler_type=None,phi=None,path=None): ''' Standard Definition from a DCM ''' if np.max(np.abs((DCM.T @ DCM) - np.eye(3))) > 1e-3: raise ValueError('DCM doesn\'t appear to be orthonormal') self.DCM = DCM self.type = type self.units = units if euler_type: self.order = euler_type if angle_vec != np.array([]): self.vec = angle_vec if phi: self.phi = phi if path: self.path = path def __repr__(self): if self.type == 'DCM': return 'DCM Attitude description is \n {}'.format(self.DCM) elif self.type == 'PRV': statement = ''' \n {} Attitude description is: \n e = {} \n Phi = {} {} \n \n DCM description is: \n {} \n ''' return statement.format(self.type,list(self.vec),self.phi,self.units,self.DCM) elif self.type == 'Euler Angle': statement = '\n {} {} Attitude description is: \n {} {} \n \n DCM description is: \n {} \n' return statement.format(self.order,self.type,list(self.vec),self.units,self.DCM) else: statement = '\n {} Attitude description is: \n {} \n \n DCM description is: \n {} \n' return statement.format(self.type,np.array(self.vec).flatten(),self.DCM) @classmethod def _from_eul_ang(cls,type,ang1,ang2,ang3,units='deg'): ''' Definition from Euler Angles Takes a type, 3 angles, and units to determine a DCM, then records both sets Arguments: type: (int) int of order of rotation axes ang1: (float) angle of rotation about first axis ang2: (float) angle of rotation about second axis ang3: (float) angle of rotation about third axis units: (string) either 'rad' or 'deg' ''' if units=='deg': ang1, ang2, ang3 = np.radians(ang1),np.radians(ang2),np.radians(ang3) if type not in (123,132,213,231,312,321,131,121,212,232,313,323): raise ValueError('Euler angle type definition is incorrect') angle_vec = np.array([ang1,ang2,ang3]) type = str(type) DCM = eul_to_DCM(int(type[0]),ang1,int(type[1]),ang2,int(type[2]),ang3,'rad') if units=='deg': angle_vec = np.degrees(angle_vec) return cls(DCM,'Euler Angle',angle_vec=angle_vec,units=units,euler_type=type) @classmethod def _from_PRV(cls,vec,phi=None,units='rad'): ''' Definition from Principle Rotation Vector Takes either a vector with norm != 1 or a normalized vector and a phi rotation magnitude Internally, the normalized vector and the phi rotation are used Arguments: vec: (list) principle rotation vector phi: (float) optional, rotation magnitude units: (string) either 'rad' or 'deg' to specify units for phi ''' if not phi: phi = LA.norm(vec) vec = vec/LA.norm(vec) if units=='deg': phi = np.radians(phi) e1,e2,e3 = vec sigma = 1 - np.cos(phi) cphi = np.cos(phi) sphi = np.sin(phi) C = np.array([[e1*e1*sigma+cphi,e1*e2*sigma+e3*sphi,e1*e3*sigma - e2*sphi], [e2*e1*sigma - e3*sphi,e2**2*sigma+cphi,e2*e3*sigma+e1*sphi], [e3*e1*sigma+e2*sphi,e3*e2*sigma-e1*sphi,e3**2*sigma+cphi]]) if units=='deg': phi = np.degrees(phi) return cls(C,'PRV', units=units, angle_vec=np.array(vec), phi=phi) @classmethod def _from_quat(cls,vec): '''Definition from Quaternions Takes in a quaternion and spits out an attitude object (DCM). Checks first for a valid quaternion Arguments: vec: (list) of quaternion values ''' if np.abs(LA.norm(vec)-1) > 1e-13: raise ValueError('Quaternions must have norm of 1') b0,b1,b2,b3 = vec C = np.array([[b0**2+b1**2-b2**2-b3**2, 2*(b1*b2+b0*b3), 2*(b1*b3-b0*b2)], [2*(b1*b2-b0*b3), b0**2-b1**2+b2**2-b3**2, 2*(b2*b3+b0*b1)], [2*(b1*b3+b0*b2), 2*(b2*b3-b0*b1), b0**2-b1**2-b2**2+b3**2]]) return cls(C,'Quaternion', angle_vec=vec) @classmethod def _from_CRP(cls,vec): '''Definition from Classical Rodriguez Parameters Uses the vector definition of the DCM to convert CRPs into a valid attitude object (element option also available in comments) Arguments: vec: (list) of CRP values ''' q = np.atleast_2d(vec).reshape(3,1) C = (1/(1+q.T@q))*((1-q.T@q)*np.eye(3) + 2 * q @ q.T - 2 * tilde(q)) # q1,q2,q3 = q.reshape(np.size(vec)) # C = np.array([[1+q1**2-q2**2-q3**2, 2*(q1*q2+q3), 2*(q1*q3-q2)], # [2*(q1*q2-q3), 1-q1**2+q2**2-q3**2, 2*(q2*q3+q1)], # [2*(q1*q3+q2), 2*(q2*q3-q1), 1-q1**2-q2**2+q3**2]]) # C = (1/(1 + q.T @ q)) * C return cls(C,'CRP',angle_vec=np.array(vec)) @classmethod def _from_MRP(cls,vec): '''Definition from Modified Rodriguez Parameters Uses the vector definition of the DCM to convert MRPs into a valid attitude object. Returns the path whether it's long (norm > 1) or short (norm < 1) with norm==1 taken to be short Arguments: vec: (list) of MRP values ''' s = np.atleast_2d(vec).T C = np.eye(3) + (8*tilde(s)@tilde(s) - 4*(1-s.T@s)*tilde(s))/(1+s.T@s)**2 if LA.norm(vec) > 1: path = 'long' else: path = 'short' return cls(C,'MRP',angle_vec=np.array(vec),path=path) def _to_eul_ang(self,type,units='deg'): '''Conversion to Euler Angles. There's no easy way to do this, so it's always just done from the DCM. Which is fine, it's still quick. Arguments: type: (int) currently must be 321 or 313 since those are common. Will expand units: (str) optional, units to output the angles ''' C = self.DCM if type == 321: ang1 = np.arctan2(C[0,1],C[0,0]) ang2 = -np.arcsin(C[0,2]) ang3 = np.arctan2(C[1,2],C[2,2]) elif type == 313: ang1 = np.arctan2(C[2,0],-C[2,1]) ang2 = np.arccos(C[2,2]) ang3 = np.arctan2(C[0,2],C[1,2]) if units == 'deg': ang1,ang2,ang3 = np.degrees([ang1,ang2,ang3]) return self._from_eul_ang(type,ang1,ang2,ang3,units=units) def _to_PRV(self, units='rad'): '''Conversion to Principle Rotation Vector. Always done from the DCM. Doesn't need to take any arguments Outputs the short version of the PRV (using arccos function) and the positive output for e_hat ''' C = self.DCM phi = np.arccos(0.5*(C[0,0]+C[1,1]+C[2,2]-1)) e = (1/(2*np.sin(phi)))*np.array([C[1,2]-C[2,1],C[2,0]-C[0,2],C[0,1]-C[1,0]]) if units=='deg': phi = np.degrees(phi) return self._from_PRV(e,phi=phi,units=units) def _to_quat(self, path='short'): '''If the object is a classical or modified Rodriguez parameter object, directly converts to quaternions via known relations. Otherwise, uses sheppard's method to determine the quaternions from the DCM. Arguments: path: (str) optional, tells the function whether you'd like the short way or the long way ''' if self.type == 'CRP': q = self.vec b0 = 1/np.sqrt(1+LA.norm(q)**2) b1 = q[0]*b0 b2 = q[1]*b0 b3 = q[2]*b0 elif self.type == 'MRP': s = self.vec b0 = (1-LA.norm(s)**2)/(1+LA.norm(s)**2) b1 = 2*s[0]/(1+LA.norm(s)**2) b2 = 2*s[1]/(1+LA.norm(s)**2) b3 = 2*s[2]/(1+LA.norm(s)**2) else: #the annoying way... C = self.DCM [[C11,C12,C13], [C21,C22,C23], [C31,C32,C33]] = C trC = C[0,0]+C[1,1]+C[2,2] b02 = 0.25*(1+trC) b12 = 0.25*(1+2*C[0,0]-trC) b22 = 0.25*(1+2*C[1,1]-trC) b32 = 0.25*(1+2*C[2,2]-trC) b0b1 = (C23 - C32)/4 b0b2 = (C31 - C13)/4 b0b3 = (C12 - C21)/4 b1b2 = (C12 + C21)/4 b3b1 = (C31 + C13)/4 b2b3 = (C23 + C32)/4 squares = [b02,b12,b22,b32] if b02 == np.max(squares): b0 = np.sqrt(b02) b1 = b0b1/b0 b2 = b0b2/b0 b3 = b0b3/b0 elif b12 == np.max(squares): b1 = np.sqrt(b12) b0 = b0b1/b1 b2 = b1b2/b1 b3 = b3b1/b1 elif b22 ==
np.max(squares)
numpy.max
###################################################################################### # # Authors : <NAME>, <NAME> # KTH # Email : <EMAIL>, <EMAIL> # # computations.py: implements, for the SEM, necessary computational methods ##################################################################################### import numpy as np import networkx as nx # define each letter of alphabet as a vector nuc_vec = {'A': [1., 0., 0., 0.], 'C': [0., 1., 0., 0.], 'G': [0., 0., 1., 0.], 'T': [0., 0., 0., 1.]} alphabet_size = 4 # number of letters in alphabet # compute upward messages def compute_up_messages(data, tree, evo_model): n_leaves, n_sites = data.shape root = len(tree) - 1 # store up message for each node internal+external = 2n-1 up_table = np.ones((len(tree), alphabet_size, n_sites)) for i in range(n_leaves): up_table[i] = np.transpose([nuc_vec[c] for c in data[i]]) for node in nx.dfs_postorder_nodes(tree, root): if not tree.nodes[node]['type'] == 'leaf': for child in tree.nodes[node]['children']: t_child = tree.nodes[child]['t'] trans_matrix = evo_model.trans_matrix(t_child) temp_table = np.dot(trans_matrix, up_table[child]) up_table[node] = np.multiply(up_table[node], temp_table) return up_table # compute down messages def compute_down_messages(data, tree, evo_model, up_table): n_leaves, n_sites = data.shape root = len(tree) - 1 # store down message for each node intrenal+external = 2n-1 down_table = np.ones((2 * n_leaves - 1, alphabet_size, n_sites)) for node in nx.dfs_preorder_nodes(tree, root): if not node == root: parent = tree.nodes[node]['parent'] if parent == root: parent_factor = down_table[root] else: t_parent = tree.nodes[parent]['t'] trans_matrix = evo_model.trans_matrix(t_parent) parent_factor = np.dot(trans_matrix, down_table[parent]) # compute sibling factor (there is only one sibling for a tree) for child in tree.nodes[parent]['children']: if child != node: t_child = tree.nodes[child]['t'] trans_matrix = evo_model.trans_matrix(t_child) sibling_factor = np.dot(trans_matrix, up_table[child]) down_table[node] =
np.multiply(parent_factor, sibling_factor)
numpy.multiply
import numpy as np def i2t(sims, npts=None, return_ranks=False): """ Images->Text (Image Annotation) sims: (N, 5N) matrix of similarity im-cap """ npts = sims.shape[0] ranks = np.zeros(npts) top1 = np.zeros(npts) for index in range(npts): inds = np.argsort(sims[index])[::-1] # Score rank = 1e20 for i in range(5 * index, 5 * index + 5, 1): tmp = np.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank top1[index] = inds[0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) medr = np.floor(np.median(ranks)) + 1 meanr = ranks.mean() + 1 if return_ranks: return (r1, r5, r10, medr, meanr), (ranks, top1) else: return (r1, r5, r10, medr, meanr) def t2i(sims, npts=None, return_ranks=False): """ Text->Images (Image Search) sims: (N, 5N) matrix of similarity im-cap """ npts = sims.shape[0] ranks = np.zeros(5 * npts) top1 = np.zeros(5 * npts) # --> (5N(caption), N(image)) sims = sims.T for index in range(npts): for i in range(5): inds = np.argsort(sims[5 * index + i])[::-1] ranks[5 * index + i] = np.where(inds == index)[0][0] top1[5 * index + i] = inds[0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(
np.where(ranks < 10)
numpy.where
import numpy as np class Sum_Tree(object): def __init__(self, capacity): """ capacity = 5,设置经验池大小 tree = [0,1,2,3,4,5,6,7,8,9,10,11,12] 8-12存放叶子结点p值,1-7存放父节点、根节点p值的和,0存放树节点的数量 data = [0,1,2,3,4,5] 1-5存放数据, 0存放capacity Tree structure and array storage: Tree index: 1 -> storing priority sum / \ 2 3 / \ / \ 4 5 6 7 / \ / \ / \ / \ 8 9 10 11 12 -> storing priority for transitions """ assert capacity > 0, 'capacity must larger than zero' self.now = 0 self.capacity = capacity self.parent_node_count = self.get_parent_node_count(capacity) # print(self.parent_node_count) self.tree = np.zeros(self.parent_node_count + capacity + 1) self.tree[0] = len(self.tree) - 1 self.data = np.zeros(capacity + 1, dtype=object) self.data[0] = capacity def add(self, p, data): """ p : property data : [s, a, r, s_, done] """ idx = self.now + 1 self.data[idx] = data tree_index = idx + self.parent_node_count self._updatetree(tree_index, p) if idx >= self.capacity: self.now = 0 else: self.now = idx def add_batch(self, p, data): """ p : property data : [s, a, r, s_, done] """ num = len(data) idx = (np.arange(num) + self.now) % self.capacity + 1 self.data[idx] = data tree_index = idx + self.parent_node_count self._updatetree_batch(tree_index, p) if idx[-1] >= self.capacity: self.now = 0 else: self.now = idx[-1] def _updatetree(self, tree_index, p): diff = p - self.tree[tree_index] self._propagate(tree_index, diff) self.tree[tree_index] = p def _updatetree_batch(self, tree_index, p): diff = p - self.tree[tree_index] sort_index = np.argsort(tree_index) tree_index = np.sort(tree_index) diff = diff[sort_index] self._propagate_batch(tree_index, diff) self.tree[tree_index] = p def _propagate(self, tree_index, diff): parent = tree_index // 2 self.tree[parent] += diff if parent != 1: self._propagate(parent, diff) def _propagate_batch(self, tree_index, diff): parent = tree_index // 2 _parent, idx1, count = np.unique(parent, return_index=True, return_counts=True) _, idx2 = np.unique(parent[::-1], return_index=True) diff = (diff[len(diff) - 1 - idx2] + diff[idx1]) * count / 2 self.tree[_parent] += diff if (_parent != 1).all(): self._propagate_batch(_parent, diff) def get(self, seg_p_total): """ seg_p_total : The value of priority to sample """ tree_index = self._retrieve(1, seg_p_total) data_index = tree_index - self.parent_node_count return (tree_index, data_index, self.tree[tree_index], self.data[data_index]) def get_batch(self, ps): assert isinstance(ps, (list, np.ndarray)) tidx, didx, p, d = zip(*[self.get(i) for i in ps]) tidx, didx, p, d = map(np.asarray, [tidx, didx, p, d]) d = [np.asarray(e) for e in zip(*d)] # [[s, a], [s, a]] => [[s, s], [a, a]] return (tidx, didx, p, d) def get_batch_parallel(self, ps): assert isinstance(ps, (list, np.ndarray)) init_idx = np.full(len(ps), 1) tidx = self._retrieve_batch(init_idx, ps) didx = tidx - self.parent_node_count p = self.tree[tidx] d = self.data[didx] tidx, didx, p, d = map(np.asarray, [tidx, didx, p, d]) d = [np.asarray(e) for e in zip(*d)] # [[s, a], [s, a]] => [[s, s], [a, a]] return (tidx, didx, p, d) def _retrieve(self, tree_index, seg_p_total): left = 2 * tree_index right = left + 1 # if index 0 is the root node # left = 2 * tree_index + 1 # right = 2 * (tree_index + 1) if left >= self.tree[0]: return tree_index return self._retrieve(left, seg_p_total) if seg_p_total <= self.tree[left] else self._retrieve(right, seg_p_total - self.tree[left]) def _retrieve_batch(self, tree_index, seg_p_total): left = 2 * tree_index right = left + 1 if (left >= self.tree[0]).all(): return tree_index index = np.where(self.tree[left] >= seg_p_total, left, 0) + np.where(self.tree[left] < seg_p_total, right, 0) seg_p_total = np.where(self.tree[left] >= seg_p_total, seg_p_total, 0) + np.where(self.tree[left] < seg_p_total, seg_p_total - self.tree[left], 0) return self._retrieve_batch(index, seg_p_total) def pp(self): print(self.tree, self.data) @property def total(self): return self.tree[1] def get_parent_node_count(self, capacity): i = 0 while True: if pow(2, i) < capacity <= pow(2, i + 1): return pow(2, i + 1) - 1 i += 1 if __name__ == "__main__": from time import time x = 0 t = 1000 for i in range(t): tree = Sum_Tree(524288) a =
np.arange(50000)
numpy.arange
import os import csv import glob import numpy as np import collections import pandas as pd # Hold the prices for the small data frame Prices = collections.namedtuple( "Prices", field_names=["open", "high", "low", "close", "volume"] ) # Hold the prices for the large data frame PricesL = collections.namedtuple( "Prices", field_names=[ "open", "high", "low", "close", "volume", "vwap", "histogram", "macd", "signal", "rsi", "bbands", "ma10", "ma20", "ma50", ], ) # Helper function for creating the Prices-tuple def get_tuple_from_df(df, large=False): if large: for i in range(10, 20, 50): df[f"ma{i}"] = df.rolling(window=i)["close"].mean() df = df.dropna() return PricesL( open=np.array(df["open"]), high=np.array(df["high"]), low=np.array(df["low"]), close=np.array(df["close"]), volume=np.array(df["Volume"]), vwap=np.array(df["VWAP"]), histogram=np.array(df["Histogram"]), macd=np.array(df["MACD"]), signal=np.array(df["Signal"]), rsi=
np.array(df["RSI"])
numpy.array
# ----------------------------------- # # 01_02 线性回归 # # ----------------------------------- import numpy as np import tensorflow as tf tf.enable_eager_execution() # ----------------------------------- # 1. 数据 # ----------------------------------- X_raw =
np.array([2013, 2014, 2015, 2016, 2017], dtype=np.float32)
numpy.array
# Copyright © 2019. <NAME>. All rights reserved. import numpy as np import pandas as pd from collections import OrderedDict import math from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.neighbors import NearestNeighbors from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist from scipy.stats import chi2 from scipy.ndimage.filters import gaussian_filter1d from .utils import Epoch from .utils import printProgressBar, get_spike_depths def calculate_metrics(spike_times, spike_clusters, amplitudes, pc_features, pc_feature_ind, params, \ cluster_ids=None, epochs = None, seed=0): """ Calculate metrics for all units on one probe Inputs: ------ spike_times : numpy.ndarray (num_spikes x 0) Spike times in seconds (same timebase as epochs) spike_clusters : numpy.ndarray (num_spikes x 0) Cluster IDs for each spike time pc_features : numpy.ndarray (num_spikes x num_pcs x num_channels) Pre-computed PCs for blocks of channels around each spike pc_feature_ind : numpy.ndarray (num_units x num_channels) Channel indices of PCs for each unit epochs : list of Epoch objects contains information on Epoch start and stop times params : dict of parameters 'isi_threshold' : minimum time for isi violations 'min_isi' 'num_channels_to_compare' 'max_spikes_for_unit' 'max_spikes_for_nn' 'n_neighbors' 'drift_metrics_interval_s' 'drift_metrics_min_spikes_per_interval' Outputs: -------- metrics : pandas.DataFrame one column for each metric one row per unit per epoch """ metrics = pd.DataFrame() if epochs is None: epochs = [Epoch('complete_session', 0, np.inf)] total_units = np.max(spike_clusters) + 1 total_epochs = len(epochs) for epoch in epochs: in_epoch = np.logical_and(spike_times > epoch.start_time, spike_times < epoch.end_time) spikes_in_epoch = np.sum(in_epoch) spikes_for_nn = min(spikes_in_epoch, params['max_spikes_for_nn']) spikes_for_silhouette = min(spikes_in_epoch, params['n_silhouette']) print("Calculating isi violations") isi_viol = calculate_isi_violations(spike_times[in_epoch], spike_clusters[in_epoch], total_units, params['isi_threshold'], params['min_isi']) print("Calculating presence ratio") presence_ratio = calculate_presence_ratio(spike_times[in_epoch], spike_clusters[in_epoch], total_units) print("Calculating firing rate") firing_rate, num_spikes = calculate_firing_rate_and_spikes(spike_times[in_epoch], spike_clusters[in_epoch], total_units) print("Calculating amplitude cutoff") amplitude_cutoff = calculate_amplitude_cutoff(spike_clusters[in_epoch], amplitudes[in_epoch], total_units) print("Calculating PC-based metrics") isolation_distance, l_ratio, d_prime, nn_hit_rate, nn_miss_rate = calculate_pc_metrics(spike_clusters[in_epoch], total_units, pc_features[in_epoch,:,:], pc_feature_ind, params['num_channels_to_compare'], params['max_spikes_for_unit'], spikes_for_nn, params['n_neighbors'], seed=seed) print("Calculating silhouette score") silhouette_score = calculate_silhouette_score(spike_clusters[in_epoch], total_units, pc_features[in_epoch,:,:], pc_feature_ind, spikes_for_silhouette, seed=seed) print("Calculating drift metrics") max_drift, cumulative_drift = calculate_drift_metrics(spike_times[in_epoch], spike_clusters[in_epoch], total_units, pc_features[in_epoch,:,:], pc_feature_ind, params['drift_metrics_interval_s'], params['drift_metrics_min_spikes_per_interval']) if(cluster_ids is None): cluster_ids_out = np.arange(total_units) else: cluster_ids_out = cluster_ids epoch_name = [epoch.name] * len(cluster_ids) metrics = pd.concat((metrics, pd.DataFrame(data= OrderedDict((('cluster_id', cluster_ids_out), ('num_spikes' , num_spikes), ('firing_rate' , firing_rate), ('presence_ratio' , presence_ratio), ('isi_viol' , isi_viol), ('amplitude_cutoff' , amplitude_cutoff), ('isolation_distance' , isolation_distance), ('l_ratio' , l_ratio), ('d_prime' , d_prime), ('nn_hit_rate' , nn_hit_rate), ('nn_miss_rate' , nn_miss_rate), ('silhouette_score', silhouette_score), ('max_drift', max_drift), ('cumulative_drift', cumulative_drift), ('epoch_name' , epoch_name), ))))) return metrics # =============================================================== # HELPER FUNCTIONS TO LOOP THROUGH CLUSTERS: # =============================================================== def calculate_isi_violations(spike_times, spike_clusters, total_units, isi_threshold, min_isi): cluster_ids = np.unique(spike_clusters) viol_rates = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) viol_rates[cluster_id], num_violations = isi_violations(spike_times[for_this_cluster], min_time = np.min(spike_times), max_time = np.max(spike_times), isi_threshold=isi_threshold, min_isi = min_isi) return viol_rates def calculate_presence_ratio(spike_times, spike_clusters, total_units): cluster_ids = np.unique(spike_clusters) ratios = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) ratios[cluster_id] = presence_ratio(spike_times[for_this_cluster], min_time =
np.min(spike_times)
numpy.min
import numpy as np import util.np import util.rand import util.mod import util.dec @util.dec.print_test def test_flatten(): a = util.rand.rand(3, 5, 2) b = util.np.flatten(a, 2) b = np.reshape(b, a.shape) assert util.np.sum_all(b == a) == np.prod(a.shape) @util.dec.print_test def test_arcsin(): pi = np.pi # max/min, 1st phase, 2nd and 3rd phase, 4th phase sins = [ [1, -1], [1/np.sqrt(2), np.sqrt(3)/2], [0.5, -0.5], [-1/np.sqrt(2), -np.sqrt(3)/2] ] xs = [ [0, 0], [1, 1], [-1, -1], [1, 1] ] arcs = [ [pi / 2, pi * 3 / 2], [pi / 4, pi / 3], [pi* 5 / 6, pi * 7 / 6], [pi * 7 / 4, pi * 5 / 3] ] np.testing.assert_almost_equal(util.np.arcsin(sins = sins, xs = xs), arcs) @util.dec.print_test def test_sin(): # when angles are provided angles = util.rand.rand(3, 5) assert util.np.sum_all(util.np.sin(angles = angles) ==
np.sin(angles)
numpy.sin
import os.path import numpy as np import cv2 import torch import torch.utils.data as data import data.util as util from utils import util as img_util import math class CoFourLevelsDataset(data.Dataset): ''' Supports up to 4 backbones. Generates D1, D2, D3 on-the-fly using PIL. HR_Color are the ground-truth color images in their original resolution; for example, 256 * 256, scale = 16 D1 = color images, 32 * 32 = ((2/scale) * original) D2 = color images, 64 * 64 = ((4/scale) * original) D3 = color images, 128 * 128 = ((8/scale) * original) D4 = color images, 256 * 256 = HR_Color image In the colorization task, the input and output resolutions are equal; therefore, we wouldn't have LR_Color ''' def __init__(self, opt): super(CoFourLevelsDataset, self).__init__() self.opt = opt self.paths_HR_Color = None self.HR_Color_env = None self.paths_D1 = None self.D1_env = None # read image list from subset list txt if opt['subset_file'] is not None and opt['phase'] == 'train': with open(opt['subset_file']) as f: self.paths_HR_Color = sorted([os.path.join(opt['dataroot_HR_Color'], line.rstrip('\n')) for line in f]) if opt['dataroot_LR_Color'] is not None: raise NotImplementedError('Now subset only supports generating LR on-the-fly.') else: # read image list from lmdb or image files self.HR_Color_env, self.paths_HR_Color = util.get_image_paths(opt['data_type'], opt['dataroot_HR_Color']) self.D1_env, self.paths_D1 = util.get_image_paths(opt['data_type'], opt['dataroot_D1']) self.D2_env, self.paths_D2 = util.get_image_paths(opt['data_type'], opt['dataroot_D2']) self.D3_env, self.paths_D3 = util.get_image_paths(opt['data_type'], opt['dataroot_D3']) assert self.paths_HR_Color, 'Error: HR_Color path is empty.' self.random_scale_list = [1] self.rarity_masks = [] if opt['phase'] == 'train': if 'rarity_mask_1' in self.opt: for i in range(0, int(math.log(opt['scale'], 2))): self.rarity_masks.append(np.load(opt['rarity_mask_{}'.format(i + 1)], mmap_mode='r')) def __getitem__(self, index): scale = self.opt['scale'] validity = True # generating outputs for the specified IDs in the test set rather than generating outputs for the whole test set if self.opt['phase'] == 'val': if 'target_images_id' in self.opt: if self.paths_HR_Color[index] not in self.opt['target_images_id']: return {'is_valid': False} # get HR_Color image HR_path = self.paths_HR_Color[index] img_HR_bgr, img_HR_bgr_no_scaled = util.read_img(self.HR_Color_env, HR_path) # HWC, BGR, [0,1], [0, 255] # force to 3 channels if img_HR_bgr.ndim == 2: img_HR_bgr = cv2.cvtColor(img_HR_bgr, cv2.COLOR_GRAY2BGR) img_HR_bgr_no_scaled = cv2.cvtColor(img_HR_bgr_no_scaled, cv2.COLOR_GRAY2BGR) img_HR_rgb = cv2.cvtColor(img_HR_bgr, cv2.COLOR_BGR2RGB) # HWC, RGB, [0, 1], 256 * 256 img_HR_rgb_no_scaled = cv2.cvtColor(img_HR_bgr_no_scaled, cv2.COLOR_BGR2RGB) # HWC, RGB, [0, 255], 256 * 256 # D1, D2, D3, D4 if self.paths_D1: D1_path = self.paths_D1[index] D2_path = self.paths_D2[index] D3_path = self.paths_D3[index] img_D1_bgr, _ = util.read_img(self.D1_env, D1_path) img_D2_bgr, _ = util.read_img(self.D2_env, D2_path) img_D3_bgr, _ = util.read_img(self.D3_env, D3_path) img_D1_rgb = cv2.cvtColor(img_D1_bgr, cv2.COLOR_BGR2RGB) img_D2_rgb = cv2.cvtColor(img_D2_bgr, cv2.COLOR_BGR2RGB) img_D3_rgb = cv2.cvtColor(img_D3_bgr, cv2.COLOR_BGR2RGB) else: # down-sampling on-the-fly # HWC, RGB, [0, 1] img_D1_rgb = img_util.downsample_PIL(rgb_no_scaled=img_HR_rgb_no_scaled, scale=2.0 / scale) # 32 * 32 img_D2_rgb = img_util.downsample_PIL(rgb_no_scaled=img_HR_rgb_no_scaled, scale=4.0 / scale) # 64 * 64 img_D3_rgb = img_util.downsample_PIL(rgb_no_scaled=img_HR_rgb_no_scaled, scale=8.0 / scale) # 128 * 128 D1_path = D2_path = D3_path = HR_path # augmentation - flip, rotate if self.opt['phase'] == 'train': img_HR_rgb, img_D1_rgb, img_D2_rgb, img_D3_rgb = util.augment( [img_HR_rgb, img_D1_rgb, img_D2_rgb, img_D3_rgb], self.opt['use_flip'], self.opt['use_rot']) # L channel img_HR_lab = img_util.rgb2lab(img_HR_rgb) img_D1_lab = img_util.rgb2lab(img_D1_rgb) img_D2_lab = img_util.rgb2lab(img_D2_rgb) img_D3_lab = img_util.rgb2lab(img_D3_rgb) HR_L_channel = img_HR_lab[:, :, 0] / 100.0 D1_L_channel = img_D1_lab[:, :, 0] / 100.0 D2_L_channel = img_D2_lab[:, :, 0] / 100.0 D3_L_channel = img_D3_lab[:, :, 0] / 100.0 HR_L_channel_tensor = torch.Tensor(HR_L_channel)[None, :, :] D1_L_channel_tensor = torch.Tensor(D1_L_channel)[None, :, :] D2_L_channel_tensor = torch.Tensor(D2_L_channel)[None, :, :] D3_L_channel_tensor = torch.Tensor(D3_L_channel)[None, :, :] # HWC to CHW, numpy to tensor img_HR_tensor_rgb = torch.from_numpy(np.ascontiguousarray(np.transpose(img_HR_rgb, (2, 0, 1)))).float() img_D1_tensor_rgb = torch.from_numpy(np.ascontiguousarray(
np.transpose(img_D1_rgb, (2, 0, 1))
numpy.transpose
import numpy as np from scipy import optimize def fit(X, y, population_count=100, elite_count=2, velocity_rate=0.001, epoch_count=25): params_count = 4 lower_limits = np.array([0, 0, -np.pi, -1]) upper_limits = np.array([1, np.pi * 2, np.pi, 1]) bounds = np.array([(l, u) for l, u in zip(lower_limits, upper_limits)]) def function(afsb, t): return afsb[..., 0:1] * np.sin(afsb[..., 1:2] * t - afsb[..., 2:3]) + afsb[..., 3:4] def error(params, X, y): y_ = function(params, X) return np.sqrt(np.sum((y - y_) ** 2, axis=-1) / X.shape[-1]) def extinctions(fitness): return (swarm_fitness + np.min(swarm_fitness) * ( ((params_count - 1.0) / (population_count - 1.0)) - 1.0)) / np.max( swarm_fitness) # initial population swarm_positions = np.random.uniform(lower_limits, upper_limits, (population_count, params_count)) swarm_velocities = np.random.uniform(-0.1, 0.1, population_count * params_count).reshape( (population_count, params_count)) swarm_fitness = error(swarm_positions, X[np.newaxis, :], y) swarm_extinction = extinctions(swarm_fitness) swarm_sorted_args = np.argsort(swarm_fitness, axis=0) # global best solution = swarm_positions[swarm_sorted_args[0], ...] best_fitness = swarm_fitness[swarm_sorted_args[0]] # iterate for epoch in range(epoch_count): # early exit if close enough if best_fitness < 1e-6: break # pick elites and do a gradient descent using l-bfgs-b algorithm for e in range(elite_count): x, _, _ = optimize.fmin_l_bfgs_b( func=error, x0=swarm_positions[swarm_sorted_args[e], ...], args=(X[np.newaxis, :], y), approx_grad=True, bounds=bounds, maxiter=100) swarm_velocities[swarm_sorted_args[e], ...] = np.random.uniform() * \ swarm_velocities[swarm_sorted_args[e], ...] + x - \ swarm_positions[swarm_sorted_args[e], ...] swarm_positions[swarm_sorted_args[e], ...] = x # create the offsprings offspring_positions = np.zeros((population_count, params_count), dtype=np.float32) offspring_velocities = np.zeros((population_count, params_count), dtype=np.float32) offspring_fitness = np.zeros(population_count, dtype=np.float32) # populate offsprings for off in range(population_count): parents_count = len(swarm_sorted_args) # rank based selection probabilities = np.array([parents_count - i for i in range(parents_count)], dtype=np.float32) probabilities /= np.sum(probabilities) a, b, prot = np.random.choice(swarm_sorted_args, 3, p=probabilities, replace=False) # combine parents mix_values = np.random.uniform(size=params_count) offspring_positions[off, :] = swarm_positions[a, :] * mix_values + \ swarm_positions[b, :] * (1.0 - mix_values) # add a bit of the velocity from the parents offspring_positions[off, :] += velocity_rate * (swarm_velocities[a, :] + swarm_velocities[b, :]) # use the velocities from the parents offspring_velocities[off, :] = np.random.uniform(size=params_count) * swarm_velocities[a, :] + \ np.random.uniform(size=params_count) * swarm_velocities[b, :] # mutate p = (np.mean(swarm_extinction[[a, b]]) * (params_count - 1.0) + 1.0) / params_count if p < np.random.uniform(): swarm_min = np.min(swarm_positions, axis=0) swarm_max = np.max(swarm_positions, axis=0) x = np.random.uniform(-1, 1, size=params_count) * np.mean(swarm_extinction[[a, b]]) * ( swarm_max - swarm_min) offspring_velocities[off, :] += x offspring_positions[off, :] += x # adoption mix_values = np.random.uniform(size=params_count) average_parents = np.mean(swarm_positions[[a, b], :], axis=0) x = mix_values * (average_parents - offspring_positions[off, :]) mix_values = np.random.uniform(size=params_count) x += mix_values * (offspring_positions[prot, :] - offspring_positions[off, :]) offspring_velocities[off, :] += x offspring_positions[off, :] += x # clip offspring_positions[off, :] = np.clip(offspring_positions[off, :], a_min=lower_limits, a_max=upper_limits) # compute fitness of this offspring offspring_fitness[off] = error(offspring_positions[off, :], X, y) # assign offsprings to population swarm_positions = offspring_positions swarm_velocities = offspring_velocities swarm_fitness = offspring_fitness # sort everyone swarm_sorted_args = np.argsort(swarm_fitness, axis=0) swarm_extinction = extinctions(swarm_fitness) # try update solution if swarm_fitness[swarm_sorted_args[0]] < best_fitness: best_fitness = swarm_fitness[swarm_sorted_args[0]] solution = swarm_positions[swarm_sorted_args[0], ...] return solution, best_fitness def fast_fit(X, y, population_count=200, epoch_count=400, original_fit=None): weights = np.ones_like(X) #weights[:len(X)-2] = np.linspace(0.2, 1.0, len(X) - 2) #weights[len(X) - 2:] = np.linspace(1.0, 0.2, len(X) - 2) def function(afsb, t): return afsb[..., 0:1] * np.sin(afsb[..., 1:2] * t - afsb[..., 2:3]) + afsb[..., 3:4] def error(params, X, y): y_ = function(params, X) return np.sqrt(np.sum(((y - y_) ** 2) * weights, axis=-1) / X.shape[-1]) params_count = 4 lower_limits = np.array([0, 0, -np.pi, -.5]) upper_limits = np.array([1, np.pi * 2, np.pi, .5]) bounds = np.array([(l, u) for l, u in zip(lower_limits, upper_limits)]) lower_limits = lower_limits[np.newaxis, :] *
np.ones((population_count, 1))
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 8 13:03:52 2020 @author: chonlatid """ from PIL import Image,ImageDraw import numpy as np import cv2 import math class gendata(): def __init__(self): # self.sx = 1.2 # self.sy = 1.2 self.pad_param = 20 self.rotate_degree_param = 5 self.img_rows = 128 self.img_cols = 128 self.channels = 3 self.input_shape = (self.img_rows, self.img_cols, self.channels) def scale_and_rotate_image(self,im, sx, sy, deg_ccw,fill): sx = 1 sy = 1 im_orig = im im = Image.new('RGB', im_orig.size, (0, 0, 0)) im.paste(im_orig) w, h = im.size angle = math.radians(-deg_ccw) cos_theta = math.cos(angle) sin_theta = math.sin(angle) scaled_w, scaled_h = w * sx, h * sy new_w = int(math.ceil(math.fabs(cos_theta * scaled_w) + math.fabs(sin_theta * scaled_h))) new_h = int(math.ceil(math.fabs(sin_theta * scaled_w) + math.fabs(cos_theta * scaled_h))) cx = w / 2. cy = h / 2. tx = new_w / 2. ty = new_h / 2. a = cos_theta / sx b = sin_theta / sx c = cx - tx * a - ty * b d = -sin_theta / sy e = cos_theta / sy f = cy - tx * d - ty * e return im.transform( (new_w, new_h), Image.AFFINE, (a, b, c, d, e, f), resample=Image.BILINEAR, fillcolor = fill ) def gen_data(self,input_path,isPerspective = False): img = Image.open(input_path).convert('RGB') img = np.asarray(img) pad_top = int(abs(np.random.uniform(0,self.pad_param))) pad_bottom = int(abs(np.random.uniform(0,self.pad_param))) pad_left = int(abs(np.random.uniform(0,self.pad_param))) pad_right = int(abs(np.random.uniform(0,self.pad_param))) # sx = int(abs(np.random.uniform(0.8,self.sx))) # sy = int(abs(np.random.uniform(0.8,self.sy))) rotate_param = np.random.uniform(0,self.rotate_degree_param) src_points = np.float32([[0,0], [img.shape[1],0], [0,img.shape[0]], [img.shape[1],img.shape[0]]]) # dx0 = 0 + np.random.uniform(1,0.1*img.shape[1]) # dy0 = 0 + np.random.uniform(1,0.1*img.shape[0]) # dx1 = img.shape[0] - np.random.uniform(100,0.1*img.shape[1]) # dy1 = 0 + np.random.uniform(1,0.1*img.shape[1]) # dx2 = 0 + np.random.uniform(1,0.1*img.shape[0]) # dy2 = img.shape[1] - np.random.uniform(100,0.1*img.shape[1]) # dx3 = img.shape[0] - np.random.uniform(1,0.1*img.shape[0]) # dy3 = img.shape[1] - np.random.uniform(1,0.1*img.shape[1]) dx0 = 0 + np.random.uniform(0,0.2*img.shape[0]) dy0 = 0 +
np.random.uniform(0,0.2*img.shape[1])
numpy.random.uniform
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg #import pickle import glob def abs_sobel_thresh(gray, orient='x', sobel_kernel=3, thresh=(0, 255)): # Calculate directional gradient # Apply threshold # gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Apply x or y gradient with the OpenCV Sobel() function # and take the absolute value if orient == 'x': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0)) if orient == 'y': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1)) scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel)) binary_output = np.zeros_like(scaled_sobel) binary_output[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1 return binary_output def mag_thresh(gray, sobel_kernel=3, mag_thresh=(0, 255)): # Calculate gradient magnitude # Apply threshold # gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) gradmag = np.sqrt(sobelx**2 + sobely**2) scale_factor = np.max(gradmag)/255 gradmag = (gradmag/scale_factor).astype(np.uint8) binary_output = np.zeros_like(gradmag) binary_output[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1 return binary_output def dir_threshold(gray, sobel_kernel=3, thresh=(0, np.pi/2)): # Calculate gradient direction # Apply threshold # gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) gradmag = np.arctan2(np.absolute(sobely),np.absolute(sobelx)) binary_output = np.zeros_like(gradmag) binary_output[(gradmag >= thresh[0]) & (gradmag <= thresh[1])] = 1 return binary_output def convert_binary(image): # image = mpimg.imread('test_images/straight_lines1.jpg') #image = mpimg.imread('test_images/test6.jpg') # Choose a Sobel kernel size ksize = 5 # Choose a larger odd number to smooth gradient measurements # Apply each of the thresholding functions #gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) #gradx = abs_sobel_thresh(gray, orient='x', sobel_kernel=ksize, thresh=(30, 255)) #grady = abs_sobel_thresh(gray, orient='y', sobel_kernel=ksize, thresh=(30, 255)) #mag_binary = mag_thresh(gray, sobel_kernel=ksize, mag_thresh=(50, 255)) #dir_binary = dir_threshold(gray, sobel_kernel=ksize, thresh=(0.95, 1)) hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) # H = hls[:,:,0] # L = hls[:,:,1] S = hls[:,:,2] #plt.figure(2) #plt.imshow(S) gradx1 = abs_sobel_thresh(S, orient='x', sobel_kernel=ksize, thresh=(20, 255)) grady1 = abs_sobel_thresh(S, orient='y', sobel_kernel=ksize, thresh=(20, 255)) mag_binary1 = mag_thresh(S, sobel_kernel=ksize, mag_thresh=(20, 255)) dir_binary1 = dir_threshold(S, sobel_kernel=ksize, thresh=(1.1, 1.3)) combined = np.zeros_like(dir_binary1) combined[((gradx1 == 1) & (grady1 == 1)) | ((mag_binary1 == 1) & (dir_binary1 == 1))] = 1 # plt.figure(2) # plt.imshow(combined) return combined images = glob.glob('test_images/*.jpg') # Step through the list and search for chessboard corners nCount = 0 for idx, fname in enumerate(images): img = mpimg.imread(fname) retImg = convert_binary(img) imgBin = np.zeros_like(img) imgGray =
np.zeros_like(img)
numpy.zeros_like
# -*- coding:Utf-8 -*- #from numpy import * from __future__ import print_function """ .. currentmodule:: pylayers.antprop.loss .. autosummary:: :members: """ import doctest import os import glob import doctest import logging import numpy as np from scipy import io import matplotlib.pylab as plt import pylayers.gis.gisutil as gu import numpy.linalg as la import pdb import time from numba import jit def PL0(fGHz,GtdB=0,GrdB=0,R=1): """ Path Loss at frequency fGHZ @ R Parameters ---------- fGHz: float frequency GHz GtdB: float transmitting antenna gain dB (default 0 dB) GrdB: float receiving antenna gain dB (default 0 dB) R : float distance in m Returns ------- PL0 : float path @ R Notes ----- .. math:: PL_0 = -20 log_{10}(\\frac{\\lambda}{4\\pi}) - GtdB -GrdB Examples -------- >>> fGHz = 2.4 >>> PL = PL0(fGHz) >>> assert (PL<41)&(PL>40),"something wrong" """ if not isinstance(fGHz,np.ndarray): fGHz=np.array([fGHz]) ld = 0.3/fGHz PL0 = -20*np.log10(ld/(4.0*np.pi*R))-GtdB-GrdB return PL0 def Dgrid_points(points,Px): """ distance point to grid Parameters ---------- points : np.array grid Np x 2 array Px : np.array point 2 x 1 array Returns ------- D: Euclidian distance matrix """ Dx = points[:,0] - Px[0] Dy = points[:,1] - Px[1] D = np.sqrt( Dx*Dx + Dy*Dy ) return(D) def FMetisShad2(fGHz,r,D,sign=1): """ F Metis shadowing function Parameters ---------- fGHz : np.array(Nf) frequency GHz r : np.array(Nseg,) distance between Tx and Rx D : np.array(Nseg,Nscreen) indirect distance between Tx and Rx (screen effect) sign : np.array(Nseg,Nscreen) == 1 : Shadowing NLOS situation ==-1 : No shadowing LOS situation Returns ------- F : np.array(Nseg,Nscreen,Nf) Notes ----- Provides an implementation of formula (6.6) in D1.4 of METIS project See Also -------- LossMetisShadowing """ lamda = 0.3/fGHz[None,None,:] F = np.arctan(sign[:,:,None]*np.pi/2.*(np.sqrt((np.pi/lamda)*(D[:,:,None]-r[:,None,None])))) / np.pi return(F) def FMetisShad(fGHz,r,D,sign=1): """ F Metis shadowing function Parameters ---------- fGHz : float frequency GHz r : float distance between Tx and Rx D : float indirect distance between Tx and Rx (screen effect) sign : int == 1 : Shadowing NLOS situation ==-1 : No shadowing LOS situation Notes ----- Provides an implementation of formula (6.6) in D1.4 of METIS project See Also -------- LossMetisShadowing """ lamda = 0.3/fGHz F = np.arctan(sign*np.pi/2.*(np.sqrt((np.pi/lamda)*(D-r)))) / np.pi return(F) def LossMetisShadowing(fGHz,tx,rx,pg,uw,uh,w,h): """ Calculate the Loss from Parameters ---------- fGHz : float tx : np.array (,3) of floats transmiter coordinates rx : np.array (,3) of floats receiver coordinates pg : np.array (,3) of floats center of gravity of the screen uw : np.array (,3) of floats unitary vector along width dimension uh : np.array (,3) of floats unitary vector along height dimension w : float width in meters h : float height in meters Returns ------- Lsh : float Loss in dB to add to the FS path Loss Notes ----- This function provides an implementation of formula 6.5 of D1.4 deliverable of METIS project [Metis D1.4](Ahttps://www.metis2020.com/wp-content/uploads/METIS_D1.4_v3.pdf) # geometry parametric issue : find M in [tx-rx] defined as M = alpha*rx + (1-alpha)tx where alpha in [0-1]. # if alpha = 0 then M = tx ; if alpha = 1 then M = rx. # Besides, M is defined as M = pg + beta*uw + gamma*uh then alpha*rx + (1-alpha)tx = pg + beta*uw + gamma*uh # [rx-tx , -uw, -uh]*[alpha,beta,gamma].T = pg - tx <==> Ax = b solved by la.solve ; x[0]=alpha, x[1]=beta and TODO To be vectorized """ rxtx = rx - tx # LOS distance # x[2]=gamma. A = np.vstack((rxtx,-uw,-uh)).T b = pg - tx x = la.solve(A,b) # condition of shadowing condseg = ((x[0]>1) or (x[0]<0)) condw = ((x[1]>w/2.) or (x[1]<-w/2.)) condh = ((x[2]>h/2.) or (x[2]<-h/2.)) visi = condseg or condw or condh if visi: shad = -1 else: shad = 1 r = np.dot(rxtx,rxtx)**0.5 w1 = pg + uw*w/2. w2 = pg - uw*w/2. h1 = pg + uh*h/2. h2 = pg - uh*h/2. Dtw1 = np.dot(tx-w1,tx-w1)**0.5 Drw1 = np.dot(rx-w1,rx-w1)**0.5 Dtw2 = np.dot(tx-w2,tx-w2)**0.5 Drw2 = np.dot(rx-w2,rx-w2)**0.5 Dth1 = np.dot(tx-h1,tx-h1)**0.5 Drh1 = np.dot(rx-h1,rx-h1)**0.5 Dth2 = np.dot(tx-h2,tx-h2)**0.5 Drh2 = np.dot(rx-h2,rx-h2)**0.5 D1w = Dtw1+Drw1 D1h = Dth1+Drh1 D2w = Dtw2+Drw2 D2h = Dth2+Drh2 if shad == 1: signw1 = 1 signw2 = 1 signh1 = 1 signh2 = 1 else: if condw: if D1w>D2w: signw1=1 signw2=-1 else: signw1=-1 signw2=1 else: signw1 = 1 signw2 = 1 if condh: if D1h>D2h: signh1=1 signh2=-1 else: signh1=-1 signh2=1 else: signh1 = 1 signh2 = 1 Fw1 = FMetisShad(fGHz,r,D1w,sign=signw1) Fh1 = FMetisShad(fGHz,r,D1h,sign=signh1) Fw2 = FMetisShad(fGHz,r,D2w,sign=signw2) Fh2 = FMetisShad(fGHz,r,D2h,sign=signh2) tmp = (Fh1+Fh2)*(Fw1+Fw2) Lsh = -20*np.log10(1-tmp) #return(Lsh,shad,tmp,Fw1,Fh1,Fw2,Fh2,condh,condw) return(Lsh) def LossMetisShadowing2(fGHz,tx,rx,pg,uw,uh,w,h): """ Calculate the Loss from Parameters ---------- fGHz : np.array(,Nf) tx : np.array (3,Nseg) of floats transmiter coordinates rx : np.array (3,Nseg) of floats receiver coordinates pg : np.array (3,Nscreen) of floats center of gravity of the screen uw : np.array (3,Nscreen) of floats unitary vector along width dimension uh : np.array (3,Nscreen) of floats unitary vector along height dimension w : np.array (,Nscreen) width in meters h : np.array (,Nscreen) height in meters Returns ------- Lsh : np.array (Nseg,Nscreen,Nf) Loss in dB to add to the FS path Loss Notes ----- This function provides an implementation of formula 6.5 of D1.4 deliverable of METIS project [Metis D1.4](Ahttps://www.metis2020.com/wp-content/uploads/METIS_D1.4_v3.pdf) # geometry parametric issue : find M in [tx-rx] defined as M = alpha*rx + (1-alpha)tx where alpha in [0-1]. # if alpha = 0 then M = tx ; if alpha = 1 then M = rx. # Besides, M is defined as M = pg + beta*uw + gamma*uh then alpha*rx + (1-alpha)tx = pg + beta*uw + gamma*uh # [rx-tx , -uw, -uh]*[alpha,beta,gamma].T = pg - tx <==> Ax = b solved by la.solve ; x[0]=alpha, x[1]=beta and """ Nseg = tx.shape[1] Nscreen = uw.shape[1] rxtx = rx - tx # (3,Nseg) LOS distance # A : (Nseg,Nscreen,3,3) # b : (Nseg,Nscreen,3) # rxtx.T (Nseg,3) # uw.T (Nscreen, 3) # uh.T (Nscreen, 3) U = rxtx.T[:,None,:,None] W = uw.T[None,:,:,None] H = uh.T[None,:,:,None] We = W + np.zeros(U.shape) He = H + np.zeros(U.shape) Ue = U + np.zeros(He.shape) A = np.concatenate((Ue,-We,-He),axis=3) #A = np.vstack((rxtx,-uw,-uh)).T # pg.T Nscreen, 3 # tx.T Nseg,3 b = pg.T[None,:,:]-tx.T[:,None,:] #b = pg - tx x = la.solve(A,b) # condition of shadowing condseg = ((x[:,:,0]>1) + (x[:,:,0]<0)) condw = ((x[:,:,1]>w[None,:]/2.) + (x[:,:,1]<-w[None,:]/2.)) condh = ((x[:,:,2]>h[None,:]/2.) + (x[:,:,2]<-h[None,:]/2.)) visi = (condseg + condw + condh)%2 # if visi: # shad = -1 # else: # shad = 1 #shad = - visi r = np.sum(rxtx*rxtx,axis=0)**0.5 w1 = pg + uw*w[None,:]/2. w2 = pg - uw*w[None,:]/2. h1 = pg + uh*h[None,:]/2. h2 = pg - uh*h[None,:]/2. Dtw1 = np.sum((tx[...,None]-w1[:,None,:])*(tx[...,None]-w1[:,None,:]),axis=0)**0.5 Drw1 = np.sum((rx[...,None]-w1[:,None,:])*(rx[...,None]-w1[:,None,:]),axis=0)**0.5 Dtw2 = np.sum((tx[...,None]-w2[:,None,:])*(tx[...,None]-w2[:,None,:]),axis=0)**0.5 Drw2 = np.sum((rx[...,None]-w2[:,None,:])*(rx[...,None]-w2[:,None,:]),axis=0)**0.5 Dth1 = np.sum((tx[...,None]-h1[:,None,:])*(tx[...,None]-h1[:,None,:]),axis=0)**0.5 Drh1 = np.sum((rx[...,None]-h1[:,None,:])*(rx[...,None]-h1[:,None,:]),axis=0)**0.5 Dth2 = np.sum((tx[...,None]-h2[:,None,:])*(tx[...,None]-h2[:,None,:]),axis=0)**0.5 Drh2 = np.sum((rx[...,None]-h2[:,None,:])*(rx[...,None]-h2[:,None,:]),axis=0)**0.5 # Drw1 = np.dot(rx-w1,rx-w1)**0.5 # Dtw2 = np.dot(tx-w2,tx-w2)**0.5 # Drw2 = np.dot(rx-w2,rx-w2)**0.5 # Dth1 = np.dot(tx-h1,tx-h1)**0.5 # Drh1 = np.dot(rx-h1,rx-h1)**0.5 # Dth2 = np.dot(tx-h2,tx-h2)**0.5 # Drh2 = np.dot(rx-h2,rx-h2)**0.5 D1w = Dtw1+Drw1 D1h = Dth1+Drh1 D2w = Dtw2+Drw2 D2h = Dth2+Drh2 signw1 = np.ones((Nseg,Nscreen)) signw2 = np.ones((Nseg,Nscreen)) signh1 = np.ones((Nseg,Nscreen)) signh2 = np.ones((Nseg,Nscreen)) condw1 = (visi*condw*(D1w<=D2w)).astype(bool) condw2 = (visi*condw*(D1w>D2w)).astype(bool) signw1[condw1]=-1 signw2[condw2]=-1 condh1 = (visi*condh*(D1h<=D2h)).astype(bool) condh2 = (visi*condh*(D1h>D2h)).astype(bool) signh1[condh1]=-1 signh2[condh2]=-1 Fw1 = FMetisShad2(fGHz,r,D1w,sign=signw1) Fh1 = FMetisShad2(fGHz,r,D1h,sign=signh1) Fw2 = FMetisShad2(fGHz,r,D2w,sign=signw2) Fh2 = FMetisShad2(fGHz,r,D2h,sign=signh2) tmp = (Fh1+Fh2)*(Fw1+Fw2) Lsh = -20*np.log10(1-tmp) #return(Lsh,shad,tmp,Fw1,Fh1,Fw2,Fh2,condh,condw) return(Lsh) def Dgrid_zone(zone,Px): """ Distance point to zone A zone is a quadrilateral zone. Parameters ---------- zone : dictionnary xmin xmax Nx ymin ymax Ny Px : np.array point Returns ------- D : np.array Nx x Ny Euclidian distance matrix Notes ----- Build the distance matrix between Tx and points in the zone use broadcasting instead """ rx = np.linspace(zone['xmin'],zone['xmax'],zone['Nx']) ry = np.linspace(zone['ymin'],zone['ymax'],zone['Ny']) R_x = np.outer(np.ones(len(ry)),rx) R_y = np.outer(ry,np.ones(len(rx))) Dx = R_x - Px[0] Dy = R_y - Px[1] D = np.sqrt(Dx*Dx+Dy*Dy) return (D) def OneSlopeMdl(D,n,fGHz): """ one slope model Parameters ---------- D : np.array distance array n : float path loss exponent fGHz : np.array frequency GHz Returns ------- PL : np.array path loss as a function of distance """ PL = PL0(fGHz) + 10*n*np.log10(D) return(PL) def cost231(pBS,pMS,hroof,phir,wr,fMHz,wb=20,dB=True,city='medium'): """ Walfish Ikegami model (COST 231) Parameters ---------- pBS : np.array (3xNlink) pMS : np.array (3xNlink) hroof : np.array (1xNlink) phir : np.array (1xNlink) degrees wr : np.array (1xNlink) fMHz : np.array (1xNf) wb : float average building separation dB : boolean Returns ------- PathLoss (Nlink,Nf) References ---------- http://morse.colorado.edu/~tlen5510/text/classwebch3.html Examples -------- .. plot:: :include-source: >>> from pylayers.antprop.loss import * >>> import matplotlib.pyplot as plt >>> import numpy as np >>> # Number of links and BS and MS heights >>> Nlink = 100 >>> hBS = 300 >>> hMS = 1.5 >>> # hroof and phir are drawn uniformily at random >>> hroof = 40*np.random.rand(Nlink) >>> wr = 10*np.ones(Nlink) >>> phir = 90*np.random.rand(Nlink) >>> pMS = np.vstack((np.linspace(10,2500,Nlink),np.zeros(Nlink),hMS*np.ones(Nlink))) >>> pBS = np.vstack((np.zeros(Nlink),np.zeros(Nlink),hBS*np.ones(Nlink))) >>> # frequency range >>> fMHz = np.linspace(700,1900,120) >>> pl = cost231(pBS,pMS,hroof,phir,wr,fMHz) >>> im = plt.imshow(pl,extent=(0,100,0.7,1.9)) >>> cb = plt.colorbar() >>> cb.set_label('Loss (dB)') >>> plt.axis('tight') >>> plt.xlabel('Frequency (GHz)') >>> plt.ylabel('Link Number') >>> plt.title('100 WI Path Loss realizations ') >>> plt.show() """ hBS = pBS[2,:][:,np.newaxis] hMS = pMS[2,:][:,np.newaxis] wr = wr[:,np.newaxis] hroof = hroof[:,np.newaxis] phir = phir[:,np.newaxis] fMHz = fMHz[np.newaxis,:] dm = np.sqrt(np.sum((pBS-pMS)*(pBS-pMS),axis=0))[:,np.newaxis] dkm = dm/1000. Nlink = len(dm) pl0 = 32.4 + 20*np.log10(dkm) + 20*np.log10(fMHz) delta_base = hBS-hroof u035 = np.where((phir>=0) & (phir<35)) u3555 = np.where((phir>=35) & (phir<55)) u5590 = np.where((phir>=55) & (phir<90)) plori = np.zeros(Nlink)[:,np.newaxis] # path loss due to orientation w.r.t road plori[u035] = -10+0.354*phir[u035] plori[u3555] = 2.5+0.075*phir[u3555] plori[u5590] = 4.0-0.114*(phir[u5590]-55) # rooftop to street plrts = -16.9-10*np.log10(wr)+10*np.log10(fMHz)+20*np.log10(hroof-hMS)+plori uroofsupBS = np.where(hBS>hroof) uroofinfBS = np.where(hBS<=hroof) udistsup500 = np.where((hBS<=hroof)&(dkm>0.5)) udistinf500 = np.where((hBS<=hroof)&(dkm<0.5)) plbsh = np.zeros((Nlink,1)) plbsh[uroofsupBS] = -18*np.log10(1+delta_base[uroofsupBS]) ka = 54*np.ones((Nlink,1)) ka[udistsup500] = ka[udistsup500]-0.8*delta_base[udistsup500] ka[udistinf500] = ka[udistinf500]-0.8*delta_base[udistinf500]*dkm[udistinf500]/0.5 kd = 18*np.ones((Nlink,1)) kd[uroofinfBS] = kd[uroofinfBS]-15*delta_base[uroofinfBS]/hroof[uroofinfBS] if city=='medium': kf = -4+0.7*(fMHz/925.-1) else: kf = -4+1.5*(fMHz/925.-1) plmsd = plbsh+ka+kd*np.log10(dkm)+kf*np.log10(fMHz)-9*np.log10(wb) pl = pl0 padd = plmsd + plrts ulosspos = np.where(padd>0)[0] pl[ulosspos]=pl[ulosspos]+padd[ulosspos] if not dB: pl = 10**(-pl/20.) return(pl) def cost259(pMS,pBS,fMHz): """ cost259 model Parameters ---------- pMS : np.array (position of Mobile Station) pBS : np.array (position of Base station) fMHz : float """ dm = np.sqrt((pBS-pMS)*(pBS-pMS)) lmbd = 300/fMHz pl = 10*2.6*np.log10(dm)+20*log10(4*np.pi/lmbd) if not dB: pl = 10**(-pl/20.); return(pl) def hata(pMS,pBS,fGHz,hMS,hBS,typ): """ Hata Path loss model Parameters ---------- pMS : np.array Mobile position (meters) pBS : np.array Base station position (meters) fGHz : np.array hMS : height mobile station (m) hBS : height base station (m) typ : 'small' or 'big' Returns ------- L : Attenuation (dB) Examples -------- >>> d = np.linspace(100,5000,120) >>> hBS = 30 >>> hMS = 1.5 >>> fGHz = 0.9 >>> pMS = np.array([d,0,hMS]) >>> pBS = np.array([d,0,hBS]) >>> L = hata(pMS,pBS,fGHz,hMS,hBS,'small') Notes ----- This model is valid until 1.5GHz, for higher frequency see COST231-Hata model References ---------- OKUMURA (Y.), OHMORI (E.), KAWANO (T.) et FUKUA (K.). Field strength and its varia- bility in UHF and VHF land-mobile radio ser- vice. Rev. Elec. Commun. Lab., vol. 16, n o 9, 1968. HATA (M.). Empirical formula for propaga- tion loss in land mobile radio services. IEEE Trans. Veh. Technol., vol. 29, pp. 317-325, Aug. 1980 """ dm = np.sqrt((pBS-pMS)*(pBS-pMS)) if (typ=='small'): CH = (1.1*np.log10(fGHz*1000)-0.7)*hMS-(1.56*np.log10(fGHz*1000)-0.8) if (typ=='big'): if fGHz<0.2: CH = 8.29*(np.log10(1.54*hMS)**2)-1.1 else:# valid until 1.5GHz CH = 3.2*(np.log10(11.75*hMS)**2)-4.97 L = 69.55+26.16*np.log10(fGHz*1000)-13.82*np.log10(hBS)+(44.9-6.55*np.log10(hBS))*np.log10(dm/1000.)-CH return(L) def cost2100(pMS,pBS,fGHz,nfloor=1,dB=True): """ cost 2100 model Parameters ---------- pMS : pBS : fGHz : float nfloor : int dB : boolean """ # distance (meters) dm = np.sqrt((pBS-pMS)*(pBS-pMS)) pl0 = 32.4+20*log10(dm)+20*np.log10(fGHz) pld = nfloor*30 pl = pl0+pld if not dB: pl = 10**(-pl/20.) return(pl) def PL(fGHz,pts,p,n=2.0,dB=True,d0=1): """ calculate Free Space Path Loss Parameters ---------- fGHz : float frequency (GHz) pts : np.array (2xNp) points p : np.array (2x1) or (2xNp) n : float path loss exponent (default = 2) dB : : boolean return result in dB Returns ------- PL : np.array path loss w.r.t distance and frequency """ shp = np.shape(p) # assert(shp[0]==2) D = np.sqrt(np.sum((pts-p)**2,axis=0)) # f x grid x ap #PL = np.array([PL0(fGHz)])[:,np.newaxis] + 10*n*np.log10(D)[np.newaxis,:] PL = PL0(fGHz,d0)[:,np.newaxis] + 10*n*np.log10(D/d0)[np.newaxis,:] if not dB: PL=10**(-PL/10) return(PL) def Losst(L,fGHz,p1,p2,dB=True): """ calculate Losses between links p1 p2 Parameters ---------- L : Layout object fGHz : np.array frequency GHz p1 : source points (2 x Np1) array or (2,) array p2 : observation point (2 x Np2) array or (2,) array dB : boolean Examples -------- .. plot:: :include-source: >>> import matplotlib.pyplot as plt >>> from pylayers.measures.mesuwb import * >>> from pylayers.antprop.loss import * >>> S = Simul() >>> S.layout('WHERE1.lay') >>> fGHz = 4 >>> Tx,Rx = ptw1() >>> Lwo,Lwp,Edo,Edp = Losst(S.L,fGHz,Tx.T,Rx[1,0:2],dB=True) >>> fig=plt.figure(figsize=(20,10)) >>> fig,ax = S.L.showGs(fig=fig) >>> tit = plt.title('test Losst') >>> sc2 = ax.scatter(Rx[1,0],Rx[1,1],s=20,marker='x',c='k') >>> sc1 = ax.scatter(Tx[:,0],Tx[:,1],s=20,c=Lwo,linewidth=0) >>> cb = plt.colorbar(sc1) >>> cb.set_label('dB') >>> plt.show() See Also -------- pylayers.antprop.coverage pylayers.slab.Interface.losst """ if (type(fGHz)==float) | (type(fGHz)==int): fGHz=np.array([fGHz],dtype=float) sh1 = np.shape(p1) sh2 = np.shape(p2) if (len(sh1)>1) & (len(sh2)>1): Nlink = max(sh1[1],sh2[1]) if (len(sh1)>1) & (len(sh2)<2): Nlink = sh1[1] if (len(sh1)<2) & (len(sh2)>1): Nlink = sh2[1] if (len(sh1)<2) & (len(sh2)<2): Nlink = 1 # determine incidence angles on segment crossing p1-p2 segment #data = L.angleonlink(p1,p2) data = L.angleonlink3(p1,p2) # as many slabs as segments and subsegments us = data['s'] slabs = np.array([ L.Gs.node[x]['name'] for x in us ]) #slabs = L.sla[us] check = np.where(slabs=='') # # As segment numbering is not necessarily contiguous # there exist void string '' in slabs cslab = list(np.unique(slabs)) if '' in cslab: cslab.remove('') if 'AIR' in cslab: cslab.remove('AIR') if '_AIR' in cslab: cslab.remove('_AIR') LossWallo = np.zeros((len(fGHz),Nlink)) LossWallp = np.zeros((len(fGHz),Nlink)) EdWallo = np.zeros((len(fGHz),Nlink)) EdWallp = np.zeros((len(fGHz),Nlink)) for slname in cslab: # u index of slabs of name slname # data['a'][u] angle # data['s'][u] segment number including subsegment u = np.nonzero(np.array(slabs)==slname)[0] # # calculate Loss for slab slname # lko,lkp = L.sl[slname].losst(fGHz,data['a'][u]) # # calculate Excess delay for slab slname # do , dp = L.sl[slname].excess_grdelay(theta=data['a'][u]) # data['i'][u] links number indexu = data['i'][u] # reduce to involved links involved_links, indices = np.unique(indexu,return_index=True) indicep = np.hstack((indices[1:],np.array([len(indexu)]))) # range on involved links irange = np.arange(len(involved_links)) # # sum contribution of slab of a same link # Wallo = np.array([ np.sum(lko[:,indices[x]:indicep[x]],axis=1) for x in irange ] ).T Wallp = np.array([ np.sum(lkp[:,indices[x]:indicep[x]],axis=1) for x in irange ] ).T Edo = np.array([np.sum(do[indices[x]:indicep[x]]) for x in irange]).T Edp = np.array([np.sum(dp[indices[x]:indicep[x]]) for x in irange]).T LossWallo[:,involved_links] = LossWallo[:,involved_links] + Wallo LossWallp[:,involved_links] = LossWallp[:,involved_links] + Wallp EdWallo[:,involved_links] = EdWallo[:,involved_links] + Edo EdWallp[:,involved_links] = EdWallp[:,involved_links] + Edp # Managing Ceil / Floor transmission # check crossing ceil if (p1[2,:]> L.zceil).any() or (p2[2,:]> L.zceil).any(): # WARNING : this test sohould be done individually if (p1[2]>p2[2]).all(): v0 = p1 v1 = p2 else: v0 = p2 v1 = p1 uu = v0 - v1 # 1 x N nu = np.sqrt(np.sum(uu * uu, axis=0)) # 3 x N un = uu / nu[np.newaxis, :] dotp = np.einsum('ij,i->j',un,np.array([0,0,1])) alphas = np.arccos(dotp) # # calculate Loss for slab CEIL # lkco,lkcp = L.sl['CEIL'].losst(fGHz,alphas) # # calculate Excess delay for slab CEIL # dco , dcp = L.sl['CEIL'].excess_grdelay(theta=alphas) LossWallo = LossWallo + lkco LossWallp = LossWallp + lkcp EdWallo = EdWallo + dco EdWallp = EdWallp + dcp # check crossing floor if (p1[2,:]< L.zfloor).any() or (p2[2,:]< L.zfloor).any(): # WARNING : this test sohould be done individually if (p1[2]>p2[2]).all(): v0 = p1 v1 = p2 else: v0 = p2 v1 = p1 uu = v0 - v1 # 1 x N nu = np.sqrt(np.sum(uu * uu, axis=0)) # 3 x N un = uu / nu[np.newaxis, :] dotp = np.einsum('ij,i->j',un,np.array([0,0,1])) alphas = np.arccos(dotp) # # calculate Loss for slab CEIL # lkfo,lkfp = L.sl['FLOOR'].losst(fGHz,alphas) # # calculate Excess delay for slab CEIL # dfo , dfp = L.sl['FLOOR'].excess_grdelay(theta=alphas) LossWallo = LossWallo + lkfo LossWallp = LossWallp + lkfp EdWallo = EdWallo + dfo EdWallp = EdWallp + dfp if not dB: LossWallo = 10**(-LossWallo/10) LossWallp = 10**(-LossWallp/10) return(LossWallo,LossWallp,EdWallo,EdWallp) def gaspl(d,fGHz,T,PhPa,wvden): """ attenuation due to atmospheric gases Parameters ---------- d : np.array range (meters) fGHz : np.array frequency (GHz) T : float Temprature in degree Celcius PhPa : float Pressure in hPa wvden : float Water vapor density (g/m**3) Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> T = 15 >>> PhPa = 1013 >>> wvden = 7.5 >>> d = 1000 >>> fGHz = np.linspace(1,1000,100) >>> L = gaspl(d,fGHz,T,PhPa,wvden) >>> plt.plot(fGHz,L) Notes ----- This function implements the recommandation UIT-P676-10 """ affO2=np.array([ [50.474214,0.975,9.651,6.690,0.0,2.566,6.850], [50.987745,2.529,8.653,7.170,0.0,2.246,6.800], [51.503360,6.193,7.709,7.640,0.0,1.947,6.729], [52.021429,14.320,6.819,8.110,0.0,1.667,6.640], [52.542418,31.240,5.983,8.580,0.0,1.388,6.526], [53.066934,64.290,5.201,9.060,0.0,1.349,6.206], [53.595775,124.600,4.474,9.550,0.0,2.227,5.085], [54.130025,227.300,3.800,9.960,0.0,3.170,3.750], [54.671180,389.700,3.182,10.370,0.0,3.558,2.654], [55.221384,627.100,2.618,10.890,0.0,2.560,2.952], [55.783815,945.300,2.109,11.340,0.0,-1.172,6.135], [56.264774,543.400,0.014,17.030,0.0,3.525,-0.978], [56.363399,1331.800,1.654,11.890,0.0,-2.378,6.547], [56.968211,1746.600,1.255,12.230,0.0,-3.545,6.451], [57.612486,2120.100,0.910,12.620,0.0,-5.416,6.056], [58.323877,2363.700,0.621,12.950,0.0,-1.932,0.436], [58.446588,1442.100,0.083,14.910,0.0,6.768,-1.273], [59.164204,2379.900,0.387,13.530,0.0,-6.561,2.309], [59.590983,2090.700,0.207,14.080,0.0,6.957,-0.776], [60.306056,2103.400,0.207,14.150,0.0,-6.395,0.699], [60.434778,2438.000,0.386,13.390,0.0,6.342,-2.825], [61.150562,2479.500,0.621,12.920,0.0,1.014,-0.584], [61.800158,2275.900,0.910,12.630,0.0,5.014,-6.619], [62.411220,1915.400,1.255,12.170,0.0,3.029,-6.759], [62.486253,1503.000,0.083,15.130,0.0,-4.499,0.844], [62.997984,1490.200,1.654,11.740,0.0,1.856,-6.675], [63.568526,1078.000,2.108,11.340,0.0,0.658,-6.139], [64.127775,728.700,2.617,10.880,0.0,-3.036,-2.895], [64.678910,461.300,3.181,10.380,0.0,-3.968,-2.590], [65.224078,274.000,3.800,9.960,0.0,-3.528,-3.680], [65.764779,153.000,4.473,9.550,0.0,-2.548,-5.002], [66.302096,80.400,5.200,9.060,0.0,-1.660,-6.091], [66.836834,39.800,5.982,8.580,0.0,-1.680,-6.393], [67.369601,18.560,6.818,8.110,0.0,-1.956,-6.475], [67.900868,8.172,7.708,7.640,0.0,-2.216,-6.545], [68.431006,3.397,8.652,7.170,0.0,-2.492,-6.600], [68.960312,1.334,9.650,6.690,0.0,-2.773,-6.650], [118.750334,940.300,0.010,16.640,0.0,-0.439,0.079], [368.498246,67.400,0.048,16.400,0.0,0.000,0.000], [424.763020,637.700,0.044,16.400,0.0,0.000,0.000], [487.249273,237.400,0.049,16.000,0.0,0.000,0.000], [715.392902,98.100,0.145,16.000,0.0,0.000,0.000], [773.839490,572.300,0.141,16.200,0.0,0.000,0.000], [834.145546,183.100,0.145,14.700,0.0,0.000,0.000]]) ## spectroscopic data for H20 ## f0 b1 b2 b3 b4 b5 b6 affH2O=np.array([ [22.235080,0.1130,2.143,28.11,0.69,4.800,1.00], [67.803960,0.0012,8.735,28.58,0.69,4.930,0.82], [119.995940,0.0008,8.356,29.48,0.70,4.780,0.79], [183.310091,2.4200,0.668,30.50,0.64,5.300,0.85,], [321.225644,0.0483,6.181,23.03,0.67,4.690,0.54], [325.152919,1.4990,1.540,27.83,0.68,4.850,0.74], [336.222601,0.0011,9.829,26.93,0.69,4.740,0.61], [380.197372,11.5200,1.048,28.73,0.54,5.380,0.89,], [390.134508,0.0046,7.350,21.52,0.63,4.810,0.55], [437.346667,0.0650,5.050,18.45,0.60,4.230,0.48,], [439.150812,0.9218,3.596,21.00,0.63,4.290,0.52,], [443.018295,0.1976,5.050,18.60,0.60,4.230,0.50], [448.001075,10.3200,1.405,26.32,0.66,4.840,0.67], [470.888947,0.3297,3.599,21.52,0.66,4.570,0.65,], [474.689127,1.2620,2.381,23.55,0.65,4.650,0.64], [488.491133,0.2520,2.853,26.02,0.69,5.040,0.72], [503.568532,0.0390,6.733,16.12,0.61,3.980,0.43], [504.482692,0.0130,6.733,16.12,0.61,4.010,0.45], [547.676440,9.7010,0.114,26.00,0.70,4.500,1.00], [552.020960,14.7700,0.114,26.00,0.70,4.500,1.00], [556.936002,487.4000,0.159,32.10,0.69,4.110,1.00], [620.700807,5.0120,2.200,24.38,0.71,4.680,0.68], [645.866155,0.0713,8.580,18.00,0.60,4.000,0.50], [658.005280,0.3022,7.820,32.10,0.69,4.140,1.00], [752.033227,239.6000,0.396,30.60,0.68,4.090,0.84], [841.053973,0.0140,8.180,15.90,0.33,5.760,0.45], [859.962313,0.1472,7.989,30.60,0.68,4.090,0.84], [899.306675,0.0605,7.917,29.85,0.68,4.530,0.90], [902.616173,0.0426,8.432,28.65,0.70,5.100,0.95], [906.207325,0.1876,5.111,24.08,0.70,4.700,0.53], [916.171582,8.3400,1.442,26.70,0.70,4.780,0.78], [923.118427,0.0869,10.220,29.00,0.70,5.000,0.80], [970.315022,8.9720,1.920,25.50,0.64,4.940,0.67], [987.926764,132.1000,0.258,29.85,0.68,4.550,0.90], [1780.000000,22,300.0000,0.952,176.20,0.50,30.500]]) dkm = d/1000. TK = T + 273.15 theta = 300./TK #3 fO2 = affO2[:,0] a1 = affO2[:,1] a2 = affO2[:,2] a3 = affO2[:,3] a4 = affO2[:,4] a5 = affO2[:,5] a6 = affO2[:,6] fH2O = affH2O[:,0] b1 = affH2O[:,1] b2 = affH2O[:,2] b3 = affH2O[:,3] b4 = affH2O[:,4] b5 = affH2O[:,5] b6 = affH2O[:,6] e = wvden*TK/216.7 # 4 SO2 = a1*1e-7*PhPa*(theta**3)*np.exp(a2*(1-theta)) # 3 DO2 = a3*1e-4*(PhPa*(theta**(0.8-a4))+1.1*e*theta) # 6a SH2O = b1*1e-1*e*(theta**(3.5))*np.exp(b2*(1-theta)) # 3 DH2O = b3*1e-4*(PhPa*theta**b4+b5*e*theta**b6) # 6a DO2_m = np.sqrt(DO2**2+2.25e-6) # 6b DH2O_m = 0.535*DH2O+np.sqrt(0.217*DH2O**2+(2.1316*1e-12*fH2O**2)/theta) deltaO2 = (a5+a6*theta)*1e-4*(PhPa+e)*theta**(0.8) # # O2 # uO2 = fO2[:,None]-fGHz[None,:] vO2 = fO2[:,None]+fGHz[None,:] n1O2 = DO2_m[:,None]-deltaO2[:,None]*uO2 n2O2 = DO2_m[:,None]-deltaO2[:,None]*vO2 d1O2 = uO2**2 + DO2_m[:,None]**2 d2O2 = vO2**2 + DO2_m[:,None]**2 FO2 = (fGHz[None,:]/fO2[:,None])*(n1O2/d1O2+n2O2/d2O2) UO2 = SO2[:,None]*FO2 # # H2O # uH2O = fH2O[:,None]-fGHz[None,:] vH2O = fH2O[:,None]+fGHz[None,:] nH2O = DH2O_m[:,None] d1H2O = uH2O**2 + DH2O_m[:,None]**2 d2H2O = vH2O**2 + DH2O_m[:,None]**2 FH2O = (fGHz[None,:]/fH2O[:,None])*(nH2O/d1H2O+nH2O/d2H2O) UH2O = SH2O[:,None]*FH2O # Nsec (8) dD = 5.6e-4*(PhPa+e)*theta**(0.8) t1 = 6.14e-5/(dD*(1.+(fGHz/dD)**2)) t2 = 1.4e-12*PhPa*(theta**(1.5))/(1+1.9e-5*fGHz**(1.5)) Nsec = fGHz*PhPa*(theta**2)*(t1+t2) # 9 ulow = np.where(fGHz<118.750343)[0] uhigh = np.where(fGHz>=118.750343)[0] UO2low = UO2[:,ulow] UO2high = UO2[:,uhigh] SO2low = np.sum(UO2low,axis=0) SO2high = np.sum(UO2high[38:,:],axis=0) sSO2 = np.hstack((SO2low,SO2high)) Npp = sSO2 + np.sum(UH2O,axis=0)+Nsec Npp = np.sum(UO2,axis=0) + np.sum(UH2O,axis=0)+Nsec gamma = 0.1820*fGHz*Npp LgasdB = gamma*dkm return(LgasdB) def Loss0(S,rx,ry,f,p): """ calculate Loss through Layers for theta=0 deg Parameters ---------- S : Simulation object rx : extremity of link ry : extremity of link fGHz : float frequency GHz p : """ Nx = len(rx) Ny = len(ry) Lw = np.zeros((Nx,Ny)) print(shape(Lw)) i = 0 for x in rx: j = 0 for y in ry: Loss = 0 pxy = np.array([x,y]) seglist,theta = L.angleonlinkold(p,pxy) for k in seglist: name = L.name[k] lk = L.sl[name].loss0(f) Loss = Loss + lk[0] Lw[i,j] = Loss j = j+1 i = i+1 return(Lw) def Loss_diff(u): """ calculate Path Loss of the diffraction """ if u < -0.7: Ld = 0 elif u > 1.5: Ld = 13 + 20*np.log10(u) else: Ld = 6.9 + 20*np.log10(np.sqrt((u-0.1)**2+1)+u-0.1) return(Ld) def calnu(h,d1,d2,fGHz): r""" Calculate the diffraction Fresnel parameter Parameters ---------- h : signed height w.r.t LOS (meter) d1 : distance 1 (meter) d2 : distance 2 (meter) fGHz : frequency GHz Notes ----- .. math:: \nu = h \sqrt{\frac{2}{\lambda} \frac{d_1+d_2}{d_1 d_2}} """ ld = 0.3/fGHz nu = h*np.sqrt(2*(d1+d2)/(ld*d1*d2)) return(nu) def route(X, Y, Z, Ha, Hb, fGHz, K, method='deygout'): """ diffraction loss along a route Parameters ---------- X : np.array (Nphi,Nr) cartesian coordinate grid Y : np.array (Nphi,Nr) cartesian coordinate grid Z : np.array (Nphi,Nr) height (meters) Ha : float Hb : float fGHz : np.array (,Nf) frequency in GHz method : 'deygout' | 'bullington' Returns ------- L : Losses (dB) """ Nphi, Nr = Z.shape if (type(fGHz) == float): fGHz = np.array([fGHz]) Nf = len(fGHz) L = np.zeros((Nphi, Nf)) L0 = np.zeros(Nf) # loop over azimut for ip in range(Nphi): x = X[ip, :] y = Y[ip, :] z = Z[ip, :] d = np.sqrt((x-x[0])**2+(y-y[0])**2) # effect of refraction in equivalent earth curvature dh = d*(d[::-1])/(2*K*6375e3) z = z + dh LOS = 32.4 + 20*np.log10(fGHz) + 20*np.log10(d[-1]) z[0] = z[0] + Ha z[-1] = z[-1] + Hb if method == 'deygout': LDiff = deygout(d, z, fGHz, L0, 0) if method == 'bullington': LDiff, deq, heq = bullington(d, z, fGHz) L[ip, :] = LDiff+LOS return(L) def cover(X, Y, Z, Ha, Hb, fGHz, K, method='deygout'): """ outdoor coverage on a region Parameters ---------- X : np.array (Nphi,Nr) cartesian coordinate grid Y : np.array (Nphi,Nr) cartesian coordinate grid Z : np.array (Nphi,Nr) height (meters) Ha : float Hb : float fGHz : np.array (,Nf) frequency in GHz method : 'deygout' | 'bullington' Returns ------- L : Losses (dB) """ Nphi, Nr = Z.shape if (type(fGHz) == float): fGHz = np.array([fGHz]) Nf = len(fGHz) L = np.zeros((Nphi, Nr, Nf)) L0 = np.zeros(Nf) # loop over azimut for ip in range(Nphi): # loop over range # il : 2 ... Nr-2 # uk : 0 ....Nr-1 for il in np.arange(2, Nr-1): uk = np.arange(0, il+1) z = np.empty(len(uk)) x = X[ip, uk] y = Y[ip, uk] z[uk] = Z[ip, uk] d = np.sqrt((x-x[0])**2+(y-y[0])**2) # effect of refraction in equivalent earth curvature dh = d*(d[::-1])/(2*K*6375e3) z = z + dh LOS = 32.4 + 20*np.log10(fGHz) + 20*np.log10(d[-1]) z[0] = z[0] + Ha z[-1] = z[-1] + Hb if method == 'deygout': LDiff = deygout(d, z, fGHz, L0, 0) if method == 'bullington': LDiff, deq, heq = bullington(d, z, fGHz) L[ip, il, :] = LDiff[None, :]+LOS[None,:] return(L) def deygout(d, height, fGHz, L, depth): """ Deygout attenuation Parameters ---------- d : np.array (,N) horizontal distance height : np.array (,N) height profile fGHz : np.array (,Nf) frequency GHz L : np.array (,Nf) Additional Loss depth : recursive depth Notes ----- This function is recursive """ lmbda = 0.3/fGHz L0 = np.zeros(len(fGHz)) depth = depth+1 N = len(height) if depth < 3: if N > 3: u = np.arange(N)/(N-1.0) # float # l : straight line between termination (LOS) l = (height[0])*(1-u)+(height[-1])*u # h excludes termination points h = height[1:-1] - l[1:-1] # Fresnel parameter (engagement) nu = h[:, None] * np.sqrt((2/lmbda[None, :]) * (1/d[1:-1, None]+1/(d[-1]-d[1:-1, None]))) imax = np.unique(np.nanargmax(nu, axis=0))[0] numax = nu[imax, :] else: numax = -10*np.ones(len(fGHz)) if (numax > -0.78).any(): w = numax - 0.1 L = L + np.maximum(6.9 + 20*np.log10(np.sqrt(w**2+1)+w), 0) # left link height1 = height[0:imax+2] d1 = d[0:imax+2] Ll = deygout(d1, height1, fGHz, L0, depth) # right link height2 = height[imax+1:] d2 = d[imax+1:] Lr = deygout(d2, height2, fGHz, L0, depth) # add losses L = L + Lr + Ll return(L) def bullington(d, height, fGHz): """ edges attenuation with Bullington method Parameters ---------- d : np.array height : np.array antenna height is includes in height[0] and height[-1] fGHz : np.array Returns ------- L : np.array total loss """ def recl(d, height): """ determine left interception point Parameters ---------- d : np.array height : np.array """ N = len(height) u = np.arange(N)/(N-1.) # l : straight line between termination (LOS) l = height[0]*(1-u)+(height[-1])*u h = height - l # imax : index of the maximum height offset imax = np.argmax(h) if imax>0: # hmax : maximum height offset hmax = h[imax] # parameterization from 0 to imax ul = np.arange(imax)/(imax-1.) # straight line dhl = h[0]*(1-ul) + hmax*ul # el : offset if <0 split again el = dhl - h[0:imax] if np.min(el) < 0: u, v = recl(d[0:imax+1], height[0:imax+1]) else: u = d[0:imax+1] v = h[0:imax+1] else: u = d[0:1] v = d[0:1] return(u, v) #if min(er)<0: # u,v = rec(d[imax-1:-1],dhl) #else: #er = dhr - h[imax-1:-1] def recr(d, height): """ determine the right interception point """ N = len(height) u = np.arange(N)/(N-1.) l = height[0]*(1-u)+(height[-1])*u h = height - l imax = np.argmax(h) hmax = h[imax] ur = np.arange(N-imax)/(N-imax-1.) dhr = hmax*(1-ur) + h[-1]*ur er = dhr - h[imax:] if np.min(er) < 0: u, v = recr(d[imax:],h[imax:]) else: u = d[imax:] v = h[imax:] return(u,v) #if min(er)<0: # u,v = rec(d[imax-1:-1],dhl) #else: #er = dhr - h[imax-1:-1] lmbda = 0.3/fGHz u = np.arange(len(height))/(len(height)-1.) l = (height[0])*(1-u)+(height[-1])*u h = height - l if (h>0).any(): ul, vl = recl(d, height) ur, vr = recr(d, height) idtx = len(ul) idrx = len(h) - len(ur) dtx = d[idtx] drx = d[-1]-d[idrx] htx = h[idtx-1] hrx = h[idrx] deq = (dtx*hrx)*d[-1]/(drx*htx+dtx*hrx) heq = deq*(htx/dtx) else: heq = -np.min(np.abs(h[1:-1])) ieq = np.where(h==heq)[0][0] deq = d[ieq] nu = heq*np.sqrt((2/lmbda)*(1/deq+1/(d[-1]-deq))) w = nu - 0.1 L = np.maximum(6.9 + 20*np.log10(np.sqrt(w**2+1)+w), 0) return(L, deq, heq) def two_rays_flatearth(fGHz, **kwargs): """ Parameters ---------- p0 : transmitter position (3 x Np1) array or (2,) array p1 : receiver position (3 x Np2) array or (2,) array OR : d : distance between Tx and Rx (Np1,) ht : Tx height hr : Rx height (Np1) GtdB : float (0) Transmitter Antenna Gain (dB) GrdB : float(0) Receiver Antenna Gain (dB) fGHz : float (2.4) frequency (GHz) gamma : complex (-1.+0.j) Reflexion coeff dB : boolean (True) return result in d Returns ------- P : received power Examples -------- .. plot:: :include-source: >>> from pylayers.antprop.loss import * >>> NPT=10000 >>> x=np.array([0,0,8]) >>> x=x.reshape(3,1) >>> y = np.ones((3,NPT)) >>> y[0,:]=0 >>> y[1,:]=np.arange(NPT) >>> y[2,:]=2 >>> g0=1 >>> g1=1 >>> fGHz=2.4 >>> PL2R=two_rays_flatearth(p0=x,p1=y,fGHz=fGHz,GtdB=g0,GrdB=g1) >>> PL1R = PL(fGHz,x,y,2) >>> plt.semilogx(PL2R,label='two-ray model') >>> plt.semilogx(-PL1R[0,:],label='one slope model') >>> plt.axis([10,NPT,-150,-50]) >>> plt.title('Loss 2-rays model vs one slope model') >>> plt.xlabel('distance (m)') >>> plt.ylabel('Loss Pr/Pt (dB)') >>> plt.legend() >>> plt.show() >>> d=np.arange(1,1000) >>> PL2Rd = two_rays_flatearth(d=d,ht=np.array([5]),hr=np.array([10]),fGHz=fGHz,GtdB=g0,GrdB=g1) >>> plt.semilogx(PL2Rd,label='two-ray model') >>> plt.semilogx(-PL1R[0,:],label='one slope model') >>> plt.axis([10,NPT,-150,-50]) >>> plt.title('Loss 2-rays model vs one slope model') >>> plt.xlabel('distance (m)') >>> plt.ylabel('Loss Pr/Pt (dB)') >>> plt.legend() >>> plt.show() References ---------- https://en.wikipedia.org/wiki/Two-ray_ground-reflection_model#As_a_case_of_log_distance_path_loss_model http://morse.colorado.edu/~tlen5510/text/classwebch3.html#x15-590003.3.3 """ defaults = { 'p0':np.array((0,0,10)), 'p1':np.array((0,10,10)), 'd':[], 'ht':10, 'hr':10, 'GtdB':0., 'GrdB':0., 'gamma': -1.+0.j, 'pol':'v', 'eps' :[], 'sig':0., 'dB':True } for k in defaults: if k not in kwargs: kwargs[k]=defaults[k] GtdB=kwargs.pop('GtdB') GrdB=kwargs.pop('GrdB') Gt = 10**((1.*GtdB)/10.) Gr = 10**((1.*GrdB)/10.) gamma=kwargs.pop('gamma') pol=kwargs.pop('pol') eps=kwargs.pop('eps') sig=kwargs.pop('sig') if kwargs['d'] == []: p0=kwargs['p0'] p1=kwargs['p1'] assert p0.shape[0] == 3, 'p0 is not 3D' assert p1.shape[0] == 3, 'p1 is not 3D' if len(p0.shape) == 1: p0=p0.reshape(p0.shape[0],1) if len(p1.shape) == 1: p1=p1.reshape(p1.shape[0],1) p0=1.*p0 p1=1.*p1 ht = p0[2,:] hr = p1[2,:] dloss = np.sqrt(np.sum((p0-p1)**2,axis=0)) #l0 else: dloss=kwargs['d'] ht=kwargs['ht'] hr=kwargs['hr'] Gt = 10**((1.*Gt)/10.) Gr = 10**((1.*Gr)/10.) d0 = np.sqrt( dloss**2 - 1.*(ht-hr)**2 ) # d0 dref = np.sqrt(d0**2+1.*(ht+hr)**2) #l0' if eps != []: psy = np.arcsin((ht+hr)/dref) er = eps - 60.j*sig*0.3/fGHz if pol == 'v': Z = (1./er)* np.sqrt(er-np.cos(psy)**2) elif pol == 'h': Z = np.sqrt(er-np.cos(psy)**2) gamma = (np.sin(psy)-Z)/((np.sin(psy)+Z)) deltad = dref-dloss deltaphi = (2*np.pi*fGHz*deltad)/0.3 E= (0.3/(4*np.pi*fGHz)) * (np.sqrt(Gt*Gr)/dloss + gamma * np.sqrt(Gr*Gr)*(np.exp(-1.j*deltaphi))/dref) P = abs(E)**2 # import ipdb # ipdb.set_trace() if kwargs['dB'] : return 10*np.log10(P) else: return P def lossref_compute(P,h0,h1,k=4/3.) : """ compute loss and reflection rays on curved earth Parameters ---------- P : float |list if len(P) == 1 => P is a distance if len(P) == 4 => P is a list of [lon0,lat0,lon1,lat1] where : lat0 : float |string latitude first point (decimal |deg min sec Direction) lat1 : float |string latitude second point (decimal |deg min sec Direction) lon0 : float |string longitude first point (decimal |deg min sec Direction) lon1 : float |string longitude second point (decimal |deg min sec Direction) h0 : float: height of 1st point h1 : float: height of 2nd point k : electromagnetic earth factor Returns ------- dloss : float length of direct path (meter) dref : float length of reflective path (meter) psy : float Reflection angle References ---------- <NAME>, Radar systems analysis and design using MATLAB, Third edition. Boca Raton; London: CRC/Taylor & Francis, chapter 8, 2013. """ if isinstance(P,float) or isinstance(P,int) : #P is a distance r=P mode = 'dist' elif isinstance(P,np.ndarray) or isinstance(P,list): if len(P) == 1: #P is a distance r=P mode = 'dist' elif len(P) == 4: #P is a lonlat lat0=P[0] lon0=P[1] lat1=P[2] lon1=P[2] mode = 'lonlat' else : raise AttributeError('P must be a list [lat0,lon0,lat1,lon0] or a distance') else : raise AttributeError('Invalid P format ( list |ndarray )') # if h0<h1: # h1,h0 = h0,h1 r0 = 6371.e3 # earth radius re = k*r0 # telecom earth radius if mode == 'lonlat': # r = distance curvilignenp.arcsin((h1/R1)-R1/(2.*re)) entre TXetRX / geodesic r = gu.distance_on_earth(lat0, lon0, lat1, lon1) else : r=P r=1.*r # import ipdb # ipdb.set_trace() p = 2/(np.sqrt(3))*np.sqrt(re*(h0+h1)+(r**2/4.)) #eq 8.45 eps = np.arcsin(2*re*r*(h1-h0)/p**3) # eq 8.46 #distance of reflection on curved earth r1 = r/2 - p*np.sin(eps/3) #eq 8.44 r2 = r -r1 phi1 = r1/re #8.47 phi2 = r2/re # 8.48 R1 = np.sqrt(h0**2+4*re*(re+h0)*(np.sin(phi1/2))**2) # 8.51 R2 = np.sqrt(h1**2+4*re*(re+h1)*(np.sin(phi2/2))**2) #8.52 Rd = np.sqrt((h1-h0)**2+4*(re+h1)*(re+h0)*np.sin((phi1+phi2)/2.)**2) # 8.53 # tangente angle on earth psy = np.arcsin((h1/R1)-R1/(2.*re)) #eq 8.55 deltaR = 4*R1*R2*np.sin(psy)**2/(R1+R2+Rd) dloss = Rd dref = R1+R2 return psy,dloss,dref def two_rays_curvedearthold(P,h0,h1,fGHz=2.4,**kwargs): """ Parameters ---------- P : float |list if len(P) == 1 => P is a distance if len(P) == 4 => P is a list of [lon0,lat0,lon1,lat1] where : lat0 : float |string latitude first point (decimal |deg min sec Direction) lat1 : float |string latitude second point (decimal |deg min sec Direction) lon0 : float |string longitude first point (decimal |deg min sec Direction) lon1 : float |string longitude second point (decimal |deg min sec Direction) h0 : float: height of 1st point h1 : float: height of 2nd point fGHz : float frequency (GHz) k : float electromagnetic earth factor GtdB : float Transmitter Antenna Gain (dB) GrdB : float Receiver Antenna Gain (dB) gamma : complex (-1.+0.j) Reflexion coeff if eps and sig are not precised 'pol': string ('v') polarization ('v'|'h') 'eps' : float ([]) lossless relative permittivity [], 'sig': float (0.) conductivity dB : boolean (True) return result in dB Returns ------- P : received power Examples -------- .. plot:: :include-source: >>> from pylayers.antprop.loss import * >>> import matplotlib.pyplot as plt >>> fGHz=2.4 >>> p0=np.array(([0,0,20])) >>> p1=np.array(([0,1,20])) >>> p0=p0.reshape(3,1) >>> p1=p1.reshape(3,1) >>> TRF = [] #Two Ray model on flat earth >>> TRC = [] #Two Ray model on curved earth >>> PLoss=[] >>> for d in np.arange(1,10000,1): >>> p1[1,:]=d >>> TRF.append(two_rays_flatearth(p0[:,0],p1[:,0],fGHz,GtdB=0.,GrdB=0.,)) >>> TRC.append(two_rays_curvedearth(d,p0[2,:],p1[2,:],fGHz)) >>> PLoss.append(PL(fGHz, p0[:,0],p1[:,0], n=2.0, dB=True, d0=np.array([1]))) >>> PLoss=np.array(PLoss)[:,0,0] >>> plt.semilogx(TRF,label='two-rays model flat earth') >>> plt.semilogx(TRC,label='two-rays model curved earth') >>> plt.semilogx(-PLoss,label='Path Loss') >>> plt.legend() >>> plt.show() """ defaults = { 'GtdB':0., 'GrdB':0., 'k':4/3., 'gamma': -1.+0.j, 'pol':'v', 'eps' :[], 'sig':0., 'mode':'PL', 'dB':True } for k in defaults: if k not in kwargs: kwargs[k]=defaults[k] GtdB=kwargs.pop('GtdB') GrdB=kwargs.pop('GrdB') Gt = 10**((1.*GtdB)/10.) Gr = 10**((1.*GrdB)/10.) k=kwargs.pop('k') gamma=kwargs.pop('gamma') pol=kwargs.pop('pol') eps=kwargs.pop('eps') sig=kwargs.pop('sig') h0=1.*h0 h1=1.*h1 psy,dloss,dref = lossref_compute(P,h0,h1,k) if eps != []: er = eps - 60.j*sig*0.3/fGHz if pol == 'v': Z= (1./er)* np.sqrt(er-
np.cos(psy)
numpy.cos
""" This module consists of some helper functions for creating neuronal networks. """ import numpy as np def poisson_homogenous(lam, timesteps): """ Generate a poisson spike train for a single neuron using a homogenous poisson distribution. .. image:: _images/homogenous_plot.png :alt: Homogenous Poisson spike train :width: 400px :Example: The spike train of the image above was generated by following function: >>> poisson_homogenous(0.4, 200) :param lam: lambda value :type lam: Float :param timesteps: total length of spike train :type timesteps: Int """ size = (1, timesteps) spiketrain = np.random.poisson(lam=lam, size=size) spiketrain = np.array(spiketrain, dtype=bool) return spiketrain def poisson_inhomogenous(lambdas, timesteps): """ Generate a poisson spike train for a single neuron using an inhomogenous poisson distribution. .. image:: _images/inhomogenous_plot.png :alt: Inhomogenous Poisson spike train :width: 400px :Example: The spike train of the image above was generated by following function: >>> poisson_inhomogenous((0.5, 0.25, 0, 0, 1, 0.5, 0, 0, 0.25, 0.5), 200) :param lambdas: Lambda values :type lambdas: List or Tuple :param timesteps: total length of the spike train :type timesteps: Int """ if timesteps % len(lambdas) != 0: raise ValueError("Cannot divide the %d mu's on the %d timesteps equally." % (len(lambdas), timesteps)) spiketrain =
np.zeros((1, timesteps), dtype=bool)
numpy.zeros
import numpy as np from scipy.sparse import csr_matrix import myLOBPCG_new ########################################################################### # # Parameters and file path # ########################################################################### TJfile='../../TJdata/triples_30000.dat' prefix='../../output/' # directory contains rowA.binary, colA.binary, valA.binary; and will save outputs numTJ=30000 # number of triple junctions lamb=1000 # hyperparameter for the strength of the regularization sym='Cubic' # Cubic or Hex, it changes the gbdat file header fn= prefix+'Cub.gbdat' # the name of output gbdat file ########################################################################### # # Define util functions # ########################################################################### def read_dat(datFile, numTJ): """ Input: triples.dat, wrote from the fortran program Torq_gen size=[numTJ*8,] In each group, the data is [TJ directon, EA1, GB1, EA2, GB2, EA3, GB3] Output: TJs, direction of the triple junctions size = [numTJ, 3] EAs, the EA angles of the 3 grains at a TJ size = [numTJ, 3, 3] norms, normal direction of the 3 GB at a TJ size = [numTJ, 3, 3] """ with open(datFile) as f: tmp = [line.split() for line in f if line.strip()] TJs = np.zeros((numTJ, 3)) EAs = np.zeros((numTJ, 3, 3)) norms = np.zeros((numTJ, 3, 3)) for i in range(numTJ): TJs[i,:] = np.array(tmp[i*8 + 1]).astype(float) EAs[i,0, :] = np.array(tmp[i*8 + 2]).astype(float) norms[i,0, :] = np.array(tmp[i*8 + 3]).astype(float) EAs[i, 1, :] = np.array(tmp[i*8 + 4]).astype(float) norms[i, 1, :] = np.array(tmp[i*8 + 5]).astype(float) EAs[i, 2, :] = np.array(tmp[i*8 + 6]).astype(float) norms[i, 2, :] = np.array(tmp[i*8 + 7]).astype(float) return (TJs, EAs, norms) def EulerZXZ2Mat(e): """ Active Euler Angle (radian) in ZXZ convention to active rotation matrix, which means newV=M*oldV """ x=e[0] y=e[1] z=e[2] s1=np.sin(x) s2=np.sin(y) s3=np.sin(z) c1=np.cos(x) c2=np.cos(y) c3=np.cos(z) m=np.array([[c1*c3-c2*s1*s3,-c1*s3-c3*c2*s1,s1*s2], [s1*c3+c2*c1*s3,c1*c2*c3-s1*s3,-c1*s2], [s3*s2,s2*c3,c2]]) return m def EAtoG(EA): """ Input: a set of Euler Angle size=[3,] Output: the corresponding orientation matrix g size = [3, 3] """ g = np.zeros((3,3)) EA = np.radians(EA) g=EulerZXZ2Mat(EA).T return g ########################################################################### # # Construct and solve the minimization problem to get GB energy # ########################################################################### (TJs, EAs, norms) = read_dat(TJfile, numTJ) Norm=np.empty((numTJ*3,3)) for i in range(numTJ): Norm[3*i]=EAtoG(EAs[i,1]).dot(norms[i,0]) Norm[3*i+1]=EAtoG(EAs[i,2]).dot(norms[i,1]) Norm[3*i+2]=EAtoG(EAs[i,0]).dot(norms[i,2]) for j in range(len(Norm)): Norm[j]=Norm[j]/(
np.linalg.norm(Norm[j])
numpy.linalg.norm
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import struct import unittest import os from hypothesis import given, example import hypothesis.strategies as st from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu np.set_printoptions(precision=6) class TestFloatToFusedRandRowwiseQuantized(hu.HypothesisTestCase): @given(X=hu.tensor(min_dim=2, max_dim=2, min_value=1, max_value=17), # only matrix is supported bitwidth_=st.sampled_from([1, 2, 4, 8]), random_=st.booleans(), **hu.gcs) @example(X=np.array([[0., 0., 0., 0.264019]]).astype(np.float32), bitwidth_=2, random_=False, **hu.gcs) @unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/28550") def test_rand_quantization(self, X, bitwidth_, random_, gc, dc): # python reference of encoder def quantization_ref(X): in_shape = X.shape data_per_byte = 8 // bitwidth_ output_cols = 10 + in_shape[1] // data_per_byte tail = 0 if in_shape[1] % data_per_byte: output_cols += 1 tail = data_per_byte - in_shape[1] % data_per_byte segment = output_cols - 10 out =
np.zeros((in_shape[0], output_cols), dtype=np.uint8)
numpy.zeros
""" Functions for fetching USarray waveforms. """ from __future__ import print_function, division, absolute_import import os import sys import datetime import argparse import copy import time # Check version if sys.version_info.major < 3: import urllib as urllibrary else: import urllib.request as urllibrary import urllib import numpy as np import matplotlib.pyplot as plt import scipy.signal import obspy from wmpl.Utils.Earth import greatCircleDistance from wmpl.Utils.OSTools import mkdirP from wmpl.Utils.PlotMap import GroundMap from wmpl.Utils.Math import subsampleAverage import pyximport pyximport.install(setup_args={'include_dirs':[np.get_include()]}) from supra.Fireballs.SeismicTrajectory import timeOfArrival, waveReleasePoint, waveReleasePointWinds, Constants from supra.Utils.Classes import Position from supra.Supracenter.cyscan5 import cyscan from supra.Atmosphere.Parse import parseWeather DATA_FILE = 'data.txt' C = ['r', 'g', 'm', 'k', 'y'] '''Reads input config files''' try: # Python 2 import ConfigParser as configparser except: # Python 3 import configparser import os import sys import datetime def butterworthBandpassFilter(lowcut, highcut, fs, order=5): """ Butterworth bandpass filter. Argument: lowcut: [float] Lower bandpass frequency (Hz). highcut: [float] Upper bandpass frequency (Hz). fs: [float] Sampling rate (Hz). Keyword arguments: order: [int] Butterworth filter order. Return: (b, a): [tuple] Butterworth filter. """ # Calculate the Nyquist frequency nyq = 0.5*fs low = lowcut/nyq high = highcut/nyq # Init the filter b, a = scipy.signal.butter(order, [low, high], btype='bandpass') return b, a def convolutionDifferenceFilter(waveform_data): """ Apply the convolution filter on data as suggested in Kalenda et al. (2014). """ # Apply the filter filtered_data = np.convolve(waveform_data, [-0.5, 1.0, -0.5], mode='same') # Detrend data filtered_data = filtered_data - np.mean(filtered_data) return filtered_data def plotStationMap(dir_path, data_list, lat_centre, lon_centre, setup, sounding, ax=None, isc_data=None): """ Plots the map of siesmic stations from loaded data file. """ fig = plt.figure(figsize=plt.figaspect(0.5)) fig.set_size_inches(20.9, 11.7) if ax is None: ax = plt.gca() # Find unique networks # networks = [entry[0] for entry in data_list] # stat = [entry[1] for entry in data_list] # net_isc = [] # lats=[] # lons=[] # Extra stations if isc_data is not None: all_stns = data_list + isc_data # Remove duplicates # k = sorted(isc_data) # isc_data = [k[i] for i in range(len(k)) if i == 0 or k[i] != k[i-1]] # for line in isc_data: # # Only use stations within 5 degrees of lat and lon # if abs(line[2] - lat_centre) < 5 and abs(line[3] - lon_centre) < 5: # lats.append(np.radians(line[2])) # lons.append(np.radians(line[3])) # net_isc.append(line[5]) # # Extract the list of station locations # lat_list = [np.radians(entry[2]) for entry in data_list] # lon_list = [np.radians(entry[3]) for entry in data_list] if len(all_stns) == 0: print("ERROR: No stations to plot!") exit() lats = [] lons = [] for i in range(len(all_stns)): lats.append(all_stns[i].position.lat_r) lons.append(all_stns[i].position.lon_r) # Plot stations and extra stations m = GroundMap(lats, lons, ax=ax, color_scheme='light') # Plot different networks with different colours for stn in all_stns: # # Extract the list of station locations # lat_net_list = [np.radians(entry[2]) for entry in data_list] # lon_net_list = [np.radians(entry[3]) for entry in data_list] m.scatter(stn.position.lat_r, stn.position.lon_r, s=2, label=stn.network) # for i in range(len(lat_net_list)): x, y = m.m(stn.position.lon, stn.position.lat) plt.text(x, y, stn.network + '-' + stn.code, horizontalalignment='left', verticalalignment='top', color='k', fontsize=8) # if stat[i] in setup.rm_stat: # pass # # print('Excluding station: {:}'.format(networks[i] + '-' + stat[i])) # else: # if stat[i] in setup.high_f: # m.scatter(lat_net_list[i], lon_net_list[i], s=25, c='g') # elif stat[i] in setup.high_b: # m.scatter(lat_net_list[i], lon_net_list[i], s=25, c='b') # # if len(lats) != 0: # for i in range(len(net_isc)): # x, y = m.m(np.degrees(lons[i]), np.degrees(lats[i])) # plt.text(x, y, net_isc[i], horizontalalignment='left', verticalalignment='top', color='k', fontsize=8) lx, ly = m.m(lon_centre, lat_centre) # # All extra stations added # if isc_data is not None: # for i in range(len(net_isc)): # # Convert coordinates to map coordinates # x, y = m.m(np.degrees(lons[i]), np.degrees(lats[i])) # # Plot extra stations # m.scatter(lats[i], lons[i], marker='^', c='k', s=1, ) # # Plot the text # #plt.text(x, y, net_isc[i], horizontalalignment='left', verticalalignment='top', color='k', fontsize=8) # data_list.append(isc_data[i]) # Plot source location m.scatter([np.radians(lat_centre)], [np.radians(lon_centre)], marker='*', c='yellow', edgecolor='k', \ linewidth=0.1, label='Source') # Plot the trajectory or fragmentation point if given if setup.show_fragmentation_waveform or setup.show_ballistic_waveform: if setup.show_fragmentation_waveform: for i, line in enumerate(setup.fragmentation_point): # Fragmentation plot m.scatter([np.radians(float(line[0]))], [np.radians(float(line[1]))], c=C[(i+1)%4], marker='x') # Extract coordinates of the reference station ref_pos = position(lat_centre, lon_centre, 0) # # Calculate the coordinates of the trajectory intersection with the ground # lat_i, lon_i, elev_i = local2LatLon(float(np.radians(lat0)), float(np.radians(lon0)), float(0), \ # np.array([float(setup.lat_f), float(setup.lon_f), 0])) # Calculate the coordinate of the beginning of the trajectory # lat_beg, lon_beg = np.radians(float(np.degrees(setup.lat_i)) - np.cos(np.radians(setup.azim))), \ # np.radians(float(np.degrees(setup.lon_i)) - np.sin(np.radians(setup.azim))) if setup.show_ballistic_waveform: # Plot intersection with the ground m.scatter(setup.traj_f.lat_r, setup.traj_f.lon_r, s=10, marker='x', c='b') # Plot the trajectory m.plot([setup.traj_i.lat_r, setup.traj_f.lat_r], [setup.traj_i.lon_r, setup.traj_f.lon_r], c='b') # Get the limits of the plot # (approximately a box around the deg_radius) x_min = setup.traj_f.lon - 100000*setup.deg_radius x_max = setup.traj_f.lon + 100000*setup.deg_radius y_min = setup.traj_f.lat - 100000*setup.deg_radius y_max = setup.traj_f.lat + 100000*setup.deg_radius # Grid size of the contour plot img_dim = setup.contour_res x_data = np.linspace(x_min, x_max, img_dim) y_data = np.linspace(y_min, y_max, img_dim) xx, yy = np.meshgrid(x_data, y_data) # # Make an array of all plane coordinates plane_coordinates = np.c_[xx.ravel(), yy.ravel(), np.zeros_like(xx.ravel())] times_of_arrival = np.zeros_like(xx.ravel()) # print('Creating contour plot...') # # Calculate times of arrival for each point on the reference plane # Calculate times of arrival for each point on the reference plane az = np.radians(setup.azim) ze = np.radians(setup.zangle) # vector of the fireball trajectory traj_vect = np.array([np.sin(az)*np.sin(ze), np.cos(az)*np.sin(ze), -np.cos(ze)]) #traj_vect = np.array([np.cos(az)*np.cos(ze), np.sin(az)*np.cos(ze), -np.sin(ze)]) for i, plane_coords in enumerate(plane_coordinates): # Print out percent done if (i + 1) % 10 == 0: sys.stdout.write("\rDrawing Contour: {:.2f} %".format(100*(i + 1)/img_dim**2)) sys.stdout.flush() time.sleep(0.001) setup.traj_f.pos_loc(ref_pos) # Point on the trajectory where the plane coordinate arrival came from try: p = waveReleasePointWinds(plane_coords, setup.traj_f.x, setup.traj_f.y, setup.t0, 1000*setup.v, np.radians(setup.azim), \ np.radians(setup.zangle), setup, sounding, [ref_pos.lat_r, ref_pos.lon_r, ref_pos.elev]) except: p = waveReleasePoint(plane_coords, setup.traj_f.x, setup.traj_f.y, setup.t0, 1000*setup.v, np.radians(setup.azim), \ np.radians(setup.zangle), setup.v_sound) # Coordinate transformation (rotate 90 deg CCW) # p[0], p[1] = -p[1], p[0] # # vector between the wave release point and the plane coordinate # d_vect = plane_coords - p # # Since the arrivals are always perpendicular to the fireball trajectory, only take arrivals where the dot product # # of the vectors are small. This may not hold true for weather? # #print(np.dot(d_vect, traj_vect)) # if np.dot(d_vect, traj_vect) < setup.dot_tol: ti = timeOfArrival(plane_coords, setup.traj_f.x, setup.traj_f.y, setup.t0, 1000*setup.v, np.radians(setup.azim), \ np.radians(setup.zangle), setup, sounding=sounding, ref_loc=[ref_pos.lat_r, ref_pos.lon_r, ref_pos.elev], travel=True, fast=True) #escape value for when there is no arrival # else: # ti = np.nan times_of_arrival[i] = ti + setup.t0 # if there is no arrival, set to the maximum value on the contour max_time = np.nanmax(times_of_arrival) for i in range(len(times_of_arrival)): if np.isnan(times_of_arrival[i]): times_of_arrival[i] = max_time times_of_arrival = times_of_arrival.reshape(img_dim, img_dim) # Determine range and number of contour levels, so they are always centred around 0 toa_abs_max = np.max([np.abs(np.min(times_of_arrival)), np.max(times_of_arrival)]) # toa_abs_min = np.min([np.abs(np.min(times_of_arrival)), np.max(times_of_arrival)]) levels = np.linspace(0, toa_abs_max, 25) ### Convert contour local coordinated to geo coordinates lat_cont = [] lon_cont = [] for x_cont, y_cont in zip(xx.ravel(), yy.ravel()): lat_c, lon_c, _ = loc2Geo(ref_pos.lat, ref_pos.lon, ref_pos.elev, np.array([x_cont, y_cont, 0])) lat_cont.append(lat_c) lon_cont.append(lon_c) lat_cont =
np.array(lat_cont)
numpy.array
import numpy as np import cv2 from matplotlib import pyplot as plt from library import * import time from keras import layers from keras.models import Model import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto(allow_soft_placement=True) from models import * from keras.models import load_model #, device_count = {'CPU' : 1, 'GPU' : 1}) config.gpu_options.per_process_gpu_memory_fraction = 0.1 set_session(tf.Session(config=config)) # VGG like network vgg_input_shape = tuple([60,60]) + tuple([1]) MODEL_NAME = 'AID_simCos_BigDesc_dropout' weights2load = 'model-data/model.'+MODEL_NAME+'_75.hdf5' train_model, sim_type = create_model(vgg_input_shape, None, model_name = MODEL_NAME, Norm=None, resume = True, ResumeFile = weights2load) import subprocess def IMAScaller(img1,img2, desc = 11, MatchingThres = 0, knn_num = 2, Rooted = True, GFilter=2, Visual=False): cv2.imwrite("/tmp/img1.png",img1) cv2.imwrite("/tmp/img2.png",img2) _ = subprocess.check_output("cp acc-test/z_main /tmp", shell=True) _ = subprocess.check_output('cd /tmp && ./z_main -im1 "./img1.png" -im2 "./img2.png" -desc %d -applyfilter %d > imas.out'%(desc,GFilter), shell=True) # imasout = subprocess.check_output('cd /tmp && cat imas.out', shell=True).decode('utf-8') # print(imasout) ET_KP = float(subprocess.check_output('cd /tmp && cat imas.out | grep "IMAS-Detector accomplished in" | cut -f 4 -d" " ', shell=True).decode('utf-8')) ET_M = float(subprocess.check_output('cd /tmp && cat imas.out | grep "IMAS-Matcher accomplished in" | cut -f 4 -d" " ', shell=True).decode('utf-8')) KPs1 = int(subprocess.check_output('cd /tmp && cat imas.out | grep "image 1" | cut -f 7 -d" " ', shell=True).decode('utf-8')) KPs2 = int(subprocess.check_output('cd /tmp && cat imas.out | grep "image 2" | cut -f 7 -d" " ', shell=True).decode('utf-8')) simus = int(subprocess.check_output('cd /tmp && cat imas.out | grep "image 1" | cut -f 14 -d" " ', shell=True).decode('utf-8')) Total = int(subprocess.check_output('cd /tmp && cat imas.out | grep "possible matches have been found" | cut -f 4 -d" " ', shell=True).decode('utf-8')) Filtered = int(subprocess.check_output('cd /tmp && cat imas.out | grep "Final number of matches" | cut -f 10 -d" " ', shell=True).decode('utf-8')[:-2]) return Total, Filtered, ET_KP, ET_M, KPs1, KPs2, simus import sklearn.preprocessing def RootSIFT(img1,img2, MatchingThres = 0, knn_num = 2, Rooted = True, GFilter=1, Visual=False): start_time = time.time() KPlist1, sift_des1 = ComputeSIFTKeypoints(img1, Desc = True) KPlist2, sift_des2 = ComputeSIFTKeypoints(img2, Desc = True) Identity = np.float32([[1, 0, 0], [0, 1, 0]]) h, w = img1.shape[:2] KPlist1, sift_des1, temp = Filter_Affine_In_Rect(KPlist1,Identity,[0,0],[w,h], desc_list = sift_des1) h, w = img2.shape[:2] KPlist2, sift_des2, temp = Filter_Affine_In_Rect(KPlist2,Identity,[0,0],[w,h], desc_list = sift_des2) if Rooted: sift_des1 = np.sqrt(sklearn.preprocessing.normalize(sift_des1, norm='l2',axis=1)) sift_des2 = np.sqrt(sklearn.preprocessing.normalize(sift_des2, norm='l2',axis=1)) ET_KP = time.time() - start_time bf = cv2.BFMatcher() start_time = time.time() sift_matches = bf.knnMatch(sift_des1,sift_des2, k=knn_num) ET_M = time.time() - start_time # Apply ratio test lda = CPPbridge('./build/libDA.so') sift_all = [] if knn_num==2: for m,n in sift_matches: if m.distance < MatchingThres*n.distance: sift_all.append(m) elif knn_num==1: for m in sift_matches: if m[0].distance <= MatchingThres: sift_all.append(m[0]) sift_all = OnlyUniqueMatches(sift_all,KPlist1,KPlist2,SpatialThres=5) sift_consensus = [] if GFilter>0 and len(sift_all)>10: sift_src_pts = np.float32([ KPlist1[m.queryIdx].pt for m in sift_all ]).ravel() sift_dst_pts = np.float32([ KPlist2[m.trainIdx].pt for m in sift_all ]).ravel() matchesMask_sift, H_sift = lda.GeometricFilter(sift_src_pts, img1, sift_dst_pts, img2, Filer='ORSA_H') for i in range(0,len(matchesMask_sift)): if matchesMask_sift[i]==True: sift_consensus.append(sift_all[i]) if Visual: img4 = cv2.drawMatches(img1,KPlist1,img2,KPlist2,sift_all, None,flags=2) cv2.imwrite('./temp/SIFTmatches.png',img4) img4 = cv2.drawMatches(img1,KPlist1,img2,KPlist2,sift_consensus, None,flags=2) cv2.imwrite('./temp/SIFT_homography_matches.png',img4) return sift_all, sift_consensus, ET_KP, ET_M def siftAID(img1,img2, MatchingThres = math.inf, Simi='SignProx', knn_num = 1, GFilter=1, Visual=False, safe_sim_thres_pos = 0.8, safe_sim_thres_neg = 0.2, GetAllMatches=False): if Simi=='CosProx': FastCode = 0 elif Simi=='SignProx': FastCode = 1 else: print('Wrong similarity choice for AI-SIFT !!!') exit() # find the keypoints with SIFT start_time = time.time() KPlist1, sift_des1 = ComputeSIFTKeypoints(img1, Desc = True) KPlist2, sift_des2 = ComputeSIFTKeypoints(img2, Desc = True) Identity =
np.float32([[1, 0, 0], [0, 1, 0]])
numpy.float32
"""Implementation of vpype's data model """ import logging import math from typing import Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union, cast import numpy as np from shapely.geometry import LinearRing, LineString, MultiLineString from .geometry import crop, reloop from .line_index import LineIndex # REMINDER: anything added here must be added to docs/api.rst __all__ = [ "LineCollection", "Document", "LineLike", "LineCollectionLike", "as_vector", # deprecated: "VectorData", ] LineLike = Union[LineString, LinearRing, Iterable[complex]] # We accept LineString and LinearRing as line collection because MultiLineString are regularly # converted to LineString/LinearRing when operation reduce them to single-line construct. LineCollectionLike = Union[ Iterable[LineLike], MultiLineString, "LineCollection", LineString, LinearRing ] def as_vector(a: np.ndarray): """Return a view of a complex line array that behaves as an Nx2 real array""" return a.view(dtype=float).reshape(len(a), 2) # noinspection PyShadowingNames class LineCollection: """ :py:class:`LineCollection` encapsulate a list of piecewise linear lines (or paths). Lines are implemented as 1D numpy arrays of complex numbers whose real and imaginary parts represent the X, respectively Y, coordinates of point in the paths. An instance of :py:class:`LineCollection` is used to model a single layer in vpype's :ref:`pipeline <fundamentals_pipeline>`. The complete pipeline is modelled by a :py:class:`Document` instance, which essentially is a mapping of ``int`` (layer ID) to :py:class:`LineCollection`. Although the actual ``list`` is stored as private data member in :py:class:`LineCollection` instances, the class provides a sequence API similar to ``list``:: >>> import vpype, numpy as np >>> lc = vpype.LineCollection() >>> lc.append(np.array([0, 10. + 10.j])) >>> lc.append(np.array([10.j, 5. + 5.j])) >>> len(lc) 2 >>> lc[0] array([ 0. +0.j, 10.+10.j]) >>> for line in lc: ... print(repr(line)) ... array([ 0. +0.j, 10.+10.j]) array([0.+10.j, 5. +5.j]) In addition to Numpy arrays, the class accepts paths expressed in a variety of format including Python ``list`` or Shapely objects:: >>> from shapely.geometry import LineString, LinearRing, MultiLineString >>> lc = vpype.LineCollection() >>> lc.append([5, 5+5j]) >>> lc.append(LineString([(1, 1), (3, 2)])) >>> lc.append(LinearRing([(0, 0), (1, 0), (1, 1), (0, 1)])) >>> lc.extend(MultiLineString([[(0, 0), (10, 0)], [(4, 4), (0, 4)]])) >>> lc LineCollection([array([5.+0.j, 5.+5.j]), array([1.+1.j, 3.+2.j]), array([0.+0.j, 1.+0.j, 1.+1.j, 0.+1.j, 0.+0.j]), array([ 0.+0.j, 10.+0.j]), array([4.+4.j, 0.+4.j])]) Instances can also be converted to Shapely's MultiLineString: >>> mls = lc.as_mls() >>> print(mls) MULTILINESTRING ((5 0, 5 5), (1 1, 3 2), (0 0, 1 0, 1 1, 0 1, 0 0), (0 0, 10 0), (4 4, 0 4)) Finally, :py:class:`LineCollection` implements a number of operations such as geometrical transformation, cropping, merging, etc. (see member function documentation for details). """ def __init__(self, lines: LineCollectionLike = ()): """Create a LineCollection instance from an iterable of lines. Args: lines (LineCollectionLike): iterable of line (accepts the same input as :func:`~LineCollection.append`). """ self._lines: List[np.ndarray] = [] self.extend(lines) @property def lines(self) -> List[np.ndarray]: """Returns the list of line. Returns: list of line """ return self._lines def append(self, line: LineLike) -> None: """Append a single line. This function accepts an iterable of complex or a Shapely geometry (:py:class:`LineString` or :py:class:`LinearRing`). Args: line (LineLike): line to append """ if isinstance(line, LineString) or isinstance(line, LinearRing): # noinspection PyTypeChecker self._lines.append(np.array(line).view(dtype=complex).reshape(-1)) else: line = np.array(line, dtype=complex).reshape(-1) if len(line) > 1: self._lines.append(line) def extend(self, lines: LineCollectionLike) -> None: """Append lines from a collection. This function accepts an iterable of iterable of complex, another :py:class:`LineCollection` instance, or a Shapely geometry (:py:class:`MultiLineString`, :py:class:`LineString` or :py:class:`LinearRing`). Shapely's LineString and LinearRing are occasionally obtained when a MultiLineString is actually expected. As a result, they are accepted as input even though they are not, strictly speaking, a line collection. Args: lines (LineCollectionLike): lines to append """ if hasattr(lines, "geom_type") and lines.is_empty: # type: ignore return # sometimes, mls end up actually being ls if isinstance(lines, LineString) or isinstance(lines, LinearRing): lines = [lines] for line in lines: self.append(line) def is_empty(self) -> bool: """Check for emptiness. Returns: True if the instance does not contain any line, False otherwise. """ return len(self) == 0 def reverse(self) -> None: """Reverse order of the lines.""" self._lines = list(reversed(self._lines)) def __iter__(self): return self._lines.__iter__() def __len__(self) -> int: return len(self._lines) def __getitem__(self, item: Union[int, slice]): return self._lines[item] def __repr__(self): return f"LineCollection({self._lines})" def as_mls(self) -> MultiLineString: """Converts the LineCollection to a :py:class:`MultiLineString`. Returns: a MultiLineString Shapely object """ return MultiLineString([as_vector(line) for line in self.lines]) def translate(self, dx: float, dy: float) -> None: """Translates all line by a given offset. Args: dx: offset along X axis dy: offset along Y axis """ c = complex(dx, dy) for line in self._lines: line += c def scale(self, sx: float, sy: Optional[float] = None) -> None: """Scale the geometry. The scaling is performed about the coordinates origin (0, 0). To scale around a specific location, appropriate translations must be performed before and after the scaling:: >>> import vpype >>> lc = vpype.LineCollection([(-1+1j, 1+1j)]) >>> lc.translate(0, -1) >>> lc.scale(1.2) >>> lc.translate(0, 1) >>> lc LineCollection([array([-1.2+1.j, 1.2+1.j])]) Args: sx: scale factor along x sy: scale factor along y (if None, then sx is used) """ if sy is None: sy = sx for line in self._lines: line.real *= sx line.imag *= sy def rotate(self, angle: float) -> None: """Rotates the geometry by ``angle`` amount. The angle is expressed in radian. Positive value rotate clockwise. The rotation is performed about the coordinates origin (0, 0). To rotate around a specific location, appropriate translations must be performed before and after the scaling:: >>> import vpype >>> lc = vpype.LineCollection([(-1+1j, 1+1j)]) >>> lc.translate(0, -1) >>> lc.rotate(1.2) >>> lc.translate(0, 1) Args: angle: rotation angle in rad """ c = complex(math.cos(angle), math.sin(angle)) for line in self._lines: line *= c def skew(self, ax: float, ay: float) -> None: """Skew the geometry by some angular amounts along X and Y axes. The angle is expressed in radians. The skew is performed about the coordinates origin (0, 0). To rotate around a specific location, appropriate translations must be performed before and after the scaling:: >>> import vpype >>> lc = vpype.LineCollection([(-1+1j, 1+1j)]) >>> lc.translate(0, -1) >>> lc.skew(0., 1.2) >>> lc.translate(0, 1) Args: ax: skew angle in rad along X axis ay: skew angle in rad along Y axis """ tx, ty = math.tan(ax), math.tan(ay) for line in self._lines: line += tx * line.imag + 1j * ty * line.real def reloop(self, tolerance: float) -> None: """Randomizes the seam of closed paths. Paths are considered closed when their first and last point are closer than *tolerance*. :param tolerance: tolerance to determine if a path is closed """ for i, line in enumerate(self._lines): delta = line[-1] - line[0] if
np.hypot(delta.real, delta.imag)
numpy.hypot
import matplotlib.pyplot as plt import numpy as np import pathlib import pandas as pd import random import seaborn as sns import sys import warnings from numba import jit from numpy import linalg as la from scipy.special import loggamma from scipy.stats import chi2 from scipy.linalg import toeplitz, solve from sklearn.preprocessing import scale from timeit import default_timer as dt from .tmath import cov2cor from .utils import pretty_print_time from .distributions import qnorm_approx def _updateProgBarMCMC(curIter, totalIter, t0, ar, barLength=20): """Custom progress bar to output MCMC chain progress. Parameters ---------- curIter : int Current iteration. totalIter : int Total iterations. t0 : float Timestamp of when the process started (timestamp as float). ar : float Acceptance Ratio. barLength : int, optional The character length of the progress bar. The default is 20. Returns ------- None. """ status = "Working..." progress = float(curIter)/float(totalIter) if isinstance(progress, int): progress = float(progress) if progress >= 1: progress = 1 status = "Finished!..." block = int(round(barLength*progress)) text = "\rPercent: [{0}] {1:.2f}% iter: {2}/{3}, {4} Elapsed: {5}, Est: {6}, Accept. Rate: {7}".format( "#"*block + "-"*(barLength - block), round(progress*100.0, 2), curIter, totalIter, status, pretty_print_time(t0, dt()), pretty_print_time((dt()-t0)/curIter * (totalIter - curIter)), np.round(ar, 3)) if progress >= 1: sys.stdout.write(text + "\r\n") sys.stdout.flush() else: sys.stdout.write(text) sys.stdout.flush() def applyMCMC(st, ni, lp, algo, algoOpts=None, postArgs={}, sd=0.02, max_tries=100): """This function iteratively applies the MCMC initialization. Since the MCMC algorithms used here involve a cholesky decomposition, the methods sometimes get stuck with a covaraince matrix that is not positive definite. This will attempt to jitter the covariance matrix until it can initialize properly. Parameters ---------- st : numpy array An array of the parameter starting values. ni : int NUmber of MCMC iterations. lp : function Function for the log posterior. algo : function MCMC algorithm to be performed. algoOpts : dict, optional Specific options for the MCMC algorithm. The default is None. postArgs : dict, optional Specific options for the posterior function. The default is None. sd : float, optional The standard deviation of the normal distribution used to draw the jitter amount from. In other words, the jittered covariance is the covaraince matrix plus a random draw X, where X~N(0, sd). The default is 0.02. max_tries : int, optional The max number of times to try and jitter before admitting defeat. If the jitter fails, the reason or the covaraince matrix not being positive definite may not be due to randomness, and may require a re-evaluation of the problem space. The default is 100. Raises ------ ValueError Raised when cholesky decomposition fails after max_tries. Returns ------- res : tuple Returns tuple containing the MCMC results. """ try_num = 1 not_successful = True res = None lns = st.shape while not_successful: if try_num % 5 == 0: st = st + np.random.normal(size=lns, scale=sd) try: res = algo(start=st, niter=ni, lpost=lp, postArgs=postArgs, options=algoOpts) not_successful = False except np.linalg.LinAlgError: try_num += 1 if try_num >= max_tries: raise ValueError("Cholesky Decomposition was not successful after " + str(max_tries) + " tries. Try new starting values") print("Number of Cholesky tries: " + str(try_num)) return res # For upper triangle rank one update @jit def cholupdate(L, x, update=True): """Upper triangle, rank one update for cholesky decomposed matrix. Parameters ---------- L : numpy array (float) The upper-triangular decomposed matrix, shape=(N, N). x : numpy array (float) The values being added to L, shape=(N, ). update : bool, optional Perform an update (as opposed to a downdate). The default is True. Returns ------- L : numpy array Return updated L matrix. """ p = len(x) for k in range(p): if update: r = np.sqrt((L[k, k]**2) + (x[k]**2)) else: r = np.sqrt((L[k, k]**2) - (x[k]**2)) c = r / L[k, k] s = x[k] / L[k, k] L[k, k] = r if k < (p - 1): if update: L[k, (k + 1):p] = (L[k, (k + 1):p] + s * x[(k + 1):p]) / c else: L[k, (k + 1):p] = (L[k, (k + 1):p] - s * x[(k + 1):p]) / c x[(k + 1):p] = c * x[(k + 1):p] - s * L[k, (k + 1):p] return L def adaptive_mcmc(start, niter, lpost, postArgs=None, options=None): """A random walk metropolis algorithm that adaptively tunes the covariance matrix. Based on methods by Rosenthal (who improved on Haario\'s method). The method by Rosenthal is sometimes referred to as Adaptive Mixture Metropolis, while the algorithm by Haario is called Adaptive Metropolis and is generally considered to be the historically first adaptive Metropolis algorithm. Parameters ---------- start : numpy array Starting values for the MCMC. niter : int Number of iterations. lpost : function Log posterior function. postArgs : dict Extra arguments for the log posterior function. The default is :obj:`None` . Parameter options include - beta \: (:obj:`float`) Between 0 and 1. Decides the proportion to sample for each section of the mixture \ distribution. A mixture distribution is essentially like adding two distributions together. However, to \ avoid some complicated math, one way to sample from a mixture of two distributions is to use a trick, \ namely, to first sample from a uniform distribution between 0, 1, and then evaluate whether that value \ is above some threshold (beta in this case). If it is, sample from the first distribution, otherwise, \ sample from the second. - progress \: (:obj:`bool`) Whether to display progress bar. - prev_vals \: (:obj:`dict`) The previous values of the last run, namely: - chol2 \: (:obj:`numpy array`) The decomposed covariance matrix of the parameters. - sumx \: (:obj:`numpy array`) The current sum of the parameter value (for each parameter) - prev_i \: (:obj:`int` or :obj:`float`) The number of samples represented in sumx. Used in averaging \ sumx options : :obj:`dict`, optional Extra arguments for the MCMC algorithm, such as Returns ------- parm : numpy array MCMC samples. prev_vals : dict The ending values of the MCMC algorithm. Useful when you want to continue where you left off. Notes ----- A random walk metropolis algorithm that adaptively tunes the covariance matrix. Based on methods by Rosenthal (who improved on Haario's method). The method by Rosenthal is sometimes refered to as Adaptive Mixture Metropolis, while the algorithm by Haario is called Adaptive Metropolis and is generally considered to be the historically first adaptive Metropolis algorithm. This method is identical to a Random Walk Metropolis algorithm, except that it adapts the covariance matrix after each iteration based on the sample covariance of the entire chain up to the current iteration. The candidate values in the MCMC chain are then sampled from a mixed density distribution defined as follows: .. math:: Q_{n}(x, \\cdot) = (1 - \\beta)N(x, (2.38)^{2} \\Sigma_{n}/d) + \\beta N(x, (0.1)^{2} I_{d} / d) * :math:`Q_{n}`: The proposal distribution * :math:`N`: Normal Distribution * :math:`\\beta`: some small constant, usually 0.05 * :math:`\\Sigma_{n}`: sample covariance up to the :math:`n^{th}` iteration * :math:`d`: the number of parameters * :math:`I_{d}`: the :math:`d \\times d` identity matrix To sample from any density distribution, you must first calculate the inverse cdf of the function, otherwise known as the quantile function. Assuming that there is a simple method to generate a uniform random number with range :math:`[0, 1]` (most programming languages do), then calculating a random number from any distribution is simple. First, generate the random uniform number, and use it as the input to the quantile function. However, in many practical situations (such as with the normal distribution), calculating the quantile function is non-trivial. The same is true for the above mixed density distribution. Therefore, to simplify sampling from the mixed density distribution, use a uniform random number generator to sample a number :math:`U` between :math:`[0, 1]`. Then, if :math:`U < \\beta`, then sample the candidate value from :math:`N(x, (2.38)^{2} \\Sigma_{n}/d)`. Otherwise, sample from :math:`N(x, (0.1)^{2} I_{d} / d)`. To calculate :math:`\\Sigma_{n}` efficiently, the algorithm uses the :func:`cholupdate` function. Let :math:`X` be an :math:`m \\times n` matrix of MCMC samples. Then, the equation for population covariance can be defined as follows: .. math:: \\Sigma_n = E(XX^T) - E(X)E(X^T) = \\frac{XX^{T}}{n} - \\mu \\mu^{T} The algorithm calculates the cholesky distribution of :math:`XX^{T}` for the first four samples. From that point on, :math:`XX^{T}` is updated using :func:`cholupdate` where `update=True`. If :math:`U < \\beta`, then :math:`\\big( \\frac{XX^{T}}{n} - \\mu \\mu^{T} \\big)` is calculated using :func:`cholupdate(XXT/n, uuT, update=False)<cholupdate>`. This algorithm uses the sample covariance, which can be calculated using the following trick: .. math:: \\Big( \\frac{XX^{T}}{n} - \\mu \\mu^{T} \\Big) \\Big(\\frac{n}{n-1} \\Big) The algorithm multiplies :math:`\\Sigma_{n}` by :math:`\\frac{2.38^2}{d}`, which makes the final covariance used to create the candidate samples: .. math:: \\Sigma_{n} = \\Big( \\frac{2.38^2}{d} \\Big) \\Big( \\frac{XX^{T}}{n} - \\mu \\mu^{T} \\Big) \\Big(\\frac{n}{n-1} \\Big) """ beta = 0.05 progress = True prev_vals = {'chol2': None, 'sumx': 0.0, 'prev_i': 0.0} if postArgs is None: postArgs = {} if options is not None: keys = list(options.keys()) if 'beta' in keys: beta = options['beta'] if 'progress' in keys: progress = options['progress'] if 'prev_vals' in keys: prev_vals.update(options['prev_vals']) numParams = start.size sqrtNumParams = np.sqrt(numParams) parm = np.zeros(shape=(niter, numParams)) parm[0, ] = start sumx = start + prev_vals['sumx'] accept = 0 post_old = lpost(start, **postArgs) prop_dist_var = (0.1**2) * np.diag(np.repeat(1, numParams)) / numParams chol1 = la.cholesky(prop_dist_var) chol2 = prev_vals['chol2'] acceptDraw = False loop = range(1, niter) sumi = 1.0 + prev_vals['prev_i'] t0 = dt() for i in loop: parm[i, ] = parm[i - 1, ] if i <= ((2 * numParams) - 1): tune = chol1 else: if chol2 is None: XXt = parm[0:i, ].T.dot(parm[0:i, ]) chol2 = la.cholesky(XXt).T else: chol2 = cholupdate(chol2, np.array(parm[i - 1, ])) if random.random() < beta: tune = chol1 else: tune = (2.38*cholupdate(chol2 / np.sqrt(sumi), sumx/sumi, update=False) / sqrtNumParams * np.sqrt(sumi / (sumi - 1))) if np.any(np.isnan(tune)): tune = chol1 cand = np.random.normal(size=numParams).dot(tune) + parm[i - 1, ] post_new = lpost(cand, **postArgs) if (post_new - post_old) > np.log(random.random()): acceptDraw = True if acceptDraw: parm[i, ] = cand post_old = post_new accept += 1 sumx = sumx + parm[i, ] sumi += 1.0 acceptDraw = False if progress: _updateProgBarMCMC(i + 1, niter, t0, float(accept) / float(i)) prev_vals = {'chol2': chol2, 'prev_i': sumi - 1, 'sumx': sumx} print("Acceptance Rate: ", float(accept) / float(niter)) return {'parameters': parm, 'prev_vals': prev_vals} def rwm_with_lap(start, niter, lpost, postArgs={}, options=None): """A random walk metropolis algorithm that adaptively tunes the covariance matrix with a log-adaptive posterior. See "Exploring an Adaptive Metropolis Algorithm" by <NAME>, 2010. Parameters ---------- start : numpy array Starting values for the MCMC. niter : int Number of iterations. lpost : function Log posterior function. postArgs : dict Extra arguments for the log posterior function. The default is an empty dictionary. options : dict, optional Extra arguments for the MCMC algorithm, namely: k : int The number of MCMC samples to generate for each evaluation. c0 : float Attenuation parameter. Default is 1. c1 : float Attenuation parameter. Default is 0.8. progress : bool Whether to display progress bar prev_vals : dict The previous values of the last run, namely: E_0 : numpy array the final covariance matrix sigma_2 : float the positive scaling parameter in the algorithm t : int the current iteration number The default is None. Returns ------- parm : numpy array MCMC samples. prev_vals : dict The ending values of the MCMC algorithm. Useful when you want to continue where you left off. """ k = 20 c_0 = 1.0 c_1 = 0.8 progress = True prev_vals = {'E_0': None, 'sigma_2': None, 't': 0.0} if options is not None: keys = list(options.keys()) if 'k' in keys: k = options['k'] if 'c_0' in keys: c_0 = options['c_0'] if 'c_1' in keys: c_1 = options['c_1'] if 'progress' in keys: progress = options['progress'] if 'prev_vals' in keys: prev_vals.update(options['prev_vals']) numParams = start.size optimal = 0.444 if numParams >= 2: optimal = 0.234 T_iter = np.ceil(niter/float(k)) niter = int(T_iter * k) parm = np.zeros(shape=(niter, numParams)) parm[0, ] = start total_accept = k_accept = 0 post_old = lpost(start, **postArgs) sigma_2 = (2.38**2)/numParams if prev_vals['sigma_2'] is not None: sigma_2 = prev_vals["sigma_2"] E_0 = np.diag(np.repeat(1, numParams)) if prev_vals['E_0'] is not None: E_0 = prev_vals["E_0"] chol = la.cholesky(np.sqrt(sigma_2)*E_0) chol_i = np.array(chol) t = 1 + prev_vals['t'] acceptDraw = False loop = range(1, niter) t0 = dt() for i in loop: parm[i, ] = parm[i - 1, ] cand = np.random.normal(size=numParams).dot(chol) + parm[i - 1, ] post_new = lpost(cand, **postArgs) if (post_new - post_old) > np.log(random.random()): acceptDraw = True if acceptDraw: parm[i, ] = cand post_old = post_new k_accept += 1 total_accept += 1 acceptDraw = False if progress: _updateProgBarMCMC(i + 1, niter, t0, float(total_accept) / float(i)) if (i + 1) % k == 0: X = parm[(i + 1 - k):(i + 1), :] mean_X = np.mean(X, axis=0) r_t = k_accept / float(k) Ehat_0 = (1.0 / (k - 1.0)) * ((X - mean_X).T.dot((X - mean_X))) gamma_1 = 1/(t**c_1) gamma_2 = c_0 * gamma_1 sigma_2 = np.exp(np.log(sigma_2) + (gamma_2 * (r_t - optimal))) E_0 = E_0 + gamma_1*(Ehat_0 - E_0) if np.any(np.isnan(E_0)) or not np.all(np.isfinite(E_0)): chol = chol_i else: try: chol = la.cholesky(np.sqrt(sigma_2)*E_0) #except la.LinAlgError: # chol = sla.sqrtm(sigma_2*E_0) except: chol = chol_i t += 1 k_accept = 0 prev_vals = {'E_0': E_0, 'sigma_2': sigma_2, 't': t} print("Acceptance Rate: ", float(total_accept) / float(niter)) return {'parameters': parm, 'prev_vals': prev_vals} def rwm(start, niter, lpost, postArgs={}, options=None): """A random walk metropolis algorithm. Parameters ---------- start : numpy array Starting values for the MCMC. niter : int Number of iterations. lpost : function Log posterior function. postArgs : dict Extra arguments for the log posterior function. The default is an empty dictionary. options : dict, optional Extra arguments for the MCMC algorithm, namely: E : numpy array The covariance matrix progress : bool Whether to display progress bar prev_vals : dict The previous values of the last run, namely: E_0 : numpy array the final covaraince matrix The default is None. Returns ------- parm : numpy array MCMC samples. prev_vals : dict The ending values of the MCMC algorithm. Useful when you want to continue where you left off. """ numParams = start.size prev_vals = {'E_0': ((2.38**2)/numParams)*np.diag(np.repeat(1, numParams))} progress = True if options is not None: keys = list(options.keys()) if 'E' in keys: E = options['E'] if 'progress' in keys: progress = options['progress'] if 'prev_vals' in keys: prev_vals.update(options['prev_vals']) parm = np.zeros(shape=(niter, numParams)) parm[0, ] = start accept = 0 post_old = lpost(start, **postArgs) E = prev_vals['E_0'] chol = la.cholesky(E) acceptDraw = False loop = range(1, niter) t0 = dt() for i in loop: parm[i, ] = parm[i - 1, ] cand = np.random.normal(size=numParams).dot(chol) + parm[i - 1, ] post_new = lpost(cand, **postArgs) if (post_new - post_old) > np.log(random.random()): acceptDraw = True if acceptDraw: parm[i, ] = cand post_old = post_new accept += 1 acceptDraw = False if progress: _updateProgBarMCMC(i + 1, niter, t0, float(accept) / float(i)) prev_vals = {'E_O': E} print("Acceptance Rate: ", float(accept) / float(niter)) return {'parameters': parm, 'prev_vals': prev_vals} def samp_size_calc_raftery(q=0.025, r=0.005, s=0.95): """Calculate needed sample size for Raftery evaluation. Parameters ---------- q : float, optional Quantile of interest (in terms of percentile, i.e. between 0 and 1). The default is 0.025. r : float, optional Accuracy. The default is 0.005. s : float, optional Probability. The default is 0.95. Returns ------- phi : float Phi parameter in Raftery evaluation. nmin : int Minimum number of samples needed. """ phi = qnorm_approx(0.5 * (1.0 + s)) nmin = np.ceil((q * (1.0 - q) * phi**2)/r**2).astype(int) return phi, nmin def lag(s, b, method): """Translated from R's mcmcse package Returns the lag window value for the corresponding window. Parameters ---------- s : int Current block number. b : int Number of blocks. method : str Either `bartlett` or None. Returns ------- int, float Lag window. """ if method == "bartlett": return 1 - (s/b) else: return (1 + np.cos(np.pi * s/b))/2 def adjust_matrix(mat, N, epsilon=None, b=9/10): """Translated from R's mcmcse package. Function adjusts a non-positive definite estimator to be positive definite. Parameters ---------- mat : numpy array A symmetric pxp matrix, usually a covarince matrix. N : int Number of observations in the original atrix. epsilon : float, optional The adjustment size. If None, sqrt(log(N)/p). The default is None. b : float, optional The exponent on N for the adjustment. The default is 9/10. Returns ------- mat_adj : numpy array Adjusted matrix. """ if epsilon is None: epsilon = np.sqrt(np.log(N)/mat.shape[1]) mat_adj = mat adj = epsilon*N**(-b) var = np.diag(mat) corr = cov2cor(mat) eig_val, eig_vec = np.linalg.eig(corr) adj_eigs = np.maximum(eig_val, adj) mat_adj = np.diag(var**0.5).dot(eig_vec).dot(
np.diag(adj_eigs)
numpy.diag
from numpy import zeros, ones, dot, sum, abs, max, argmax, clip, \ random, prod, asarray, set_printoptions, unravel_index # Generate a random uniform number (array) in range [0,1]. def zero(*shape): return zeros(shape) def randnorm(*shape): return random.normal(size=shape) def randuni(*shape): return random.random(size=shape) def randint(*shape, min=-3, max=9): data = asarray(
random.randint(min+1,max+1,size=shape)
numpy.random.randint
import sqlite3 import numpy as np import logging import matplotlib.pyplot as plt from scipy.integrate import simps from scipy.interpolate import griddata from .config import * import os import datetime from .star import Star logger = logging.getLogger(__name__) class SolvePars: def __init__(self, key_parameter_known='plx', db='yy02.sql3', feh_offset = 0, nsigma=5, window_len_age=13): self.key_parameter_known = key_parameter_known self.get_isochrone_points_db = db self.feh_offset = feh_offset self.get_isochrone_points_nsigma = nsigma self.smooth_window_len_age = window_len_age self.smooth_window_len_mass = 0 self.smooth_window_len_logl = 0 self.smooth_window_len_mv = 0 self.smooth_window_len_r = 0 self.smooth_window_len_logg = 0 self.bayesian = False def __init__(self, key_parameter_known='logg&plx', db='yy02.sql3', feh_offset = 0, nsigma=5, window_len_age=13): self.key_parameter_known = key_parameter_known self.get_isochrone_points_db = db self.feh_offset = feh_offset self.get_isochrone_points_nsigma = nsigma self.smooth_window_len_age = window_len_age self.smooth_window_len_mass = 0 self.smooth_window_len_logl = 0 self.smooth_window_len_mv = 0 self.smooth_window_len_r = 0 self.smooth_window_len_logg = 0 self.bayesian = False class PlotPars: def __init__(self, figure_format='png', directory="", make_figures=True): self.age_xlim = [0, 14] self.mass_xlim = None self.logl_xlim = None self.mv_xlim = None self.r_xlim = None self.logg_xlim = None self.directory = directory self.figure_format = figure_format self.title_inside = None self.make_figures = make_figures self.make_age_plot = False self.make_nearest_plot = False def pdf(pdf_x, ips, prob, par, smooth_window_len): '''Calculates a probability distribution function (PDF) for parameter par given the x-values for the PDF, the isochrone points ips, and their probability. Return PDF and smoothed PDF (using smooth_window_len) if possible (otherwise returns two non-smoothed PDFs), as well as a stats dictionary with mean, std, most probable value, etc. ''' dx = 0.5*(pdf_x[1] - pdf_x[0]) pdf_y = [] for x in pdf_x: pdf_y.append(sum(prob[np.logical_and(ips[par] >= x-dx, ips[par] < x+dx)])) pdf_y = np.array(pdf_y) pdf_y = pdf_y/simps(pdf_y, pdf_x) try: pdf_y_smooth = smooth(pdf_y, smooth_window_len) #pdf_y_smooth = savitzky_golay(pdf_y, smooth_window_len, 2) pdf_y_smooth = pdf_y_smooth/simps(pdf_y_smooth, pdf_x) except: pdf_y_smooth = pdf_y logger.warning('Unable to smooth '+par+' PDF.') stats = get_stats(pdf_x, pdf_y_smooth) if stats['most_probable'] is not None: print("{0:10s} {1:6.3f} | {2:6.3f} - {3:6.3f} | "\ "{4:6.3f} - {5:6.3f} | {6:6.3f} +/- {7:6.3f}"\ .format(par, stats['most_probable'], stats['lower_limit_1sigma'], stats['upper_limit_1sigma'], stats['lower_limit_2sigma'], stats['upper_limit_2sigma'], stats['mean'], stats['std'])) else: print("{0:10s} | - | "\ " - | {1:6.3f} +/- {2:6.3f}"\ .format(par, stats['mean'], stats['std'])) logger.warning("--- Unable to calculate PDF stats for "+par) return pdf_y, pdf_y_smooth, stats def get_stats(pdf_x, pdf_y_smooth): stats = {} stats['most_probable'] = \ np.mean(np.array(pdf_x)[pdf_y_smooth == max(pdf_y_smooth)]) stats['mean'] = simps(pdf_y_smooth*pdf_x, pdf_x) stats['std'] = np.sqrt(simps(pdf_y_smooth*(pdf_x-stats['mean'])**2,\ pdf_x)) k = pdf_x <= stats['most_probable'] pdf_y_left = 0.5*pdf_y_smooth[k]/simps(pdf_y_smooth[k], pdf_x[k]) pdf_x_left = pdf_x[k] areas_left = [] for x in pdf_x_left: areas_left.append(simps(pdf_y_left[pdf_x_left <= x], pdf_x_left[pdf_x_left <= x])) areas_left = np.array(areas_left) if np.mean(areas_left) == 0: logger.warning("Left side of distribution is empty") stats['most_probable'] = None stats['lower_limit_1sigma'] = None stats['lower_limit_2sigma'] = None stats['upper_limit_1sigma'] = None stats['upper_limit_2sigma'] = None return stats k = pdf_x >= stats['most_probable'] pdf_y_right = 0.5*pdf_y_smooth[k]/simps(pdf_y_smooth[k], pdf_x[k]) pdf_x_right = pdf_x[k] areas_right = [] for x in pdf_x_right: areas_right.append(simps(pdf_y_right[pdf_x_right <= x], pdf_x_right[pdf_x_right <= x])) areas_right = np.array(areas_right) try: stats['lower_limit_1sigma'] = \ np.mean(griddata(areas_left, pdf_x_left, 0.158)) stats['lower_limit_2sigma'] = \ np.mean(griddata(areas_left, pdf_x_left, 0.022)) stats['upper_limit_1sigma'] = \ np.mean(griddata(areas_right, pdf_x_right, 0.341)) stats['upper_limit_2sigma'] = \ np.mean(griddata(areas_right, pdf_x_right, 0.477)) except: stats['lower_limit_1sigma'] = -9.999 stats['lower_limit_2sigma'] = -9.999 stats['upper_limit_1sigma'] = -9.999 stats['upper_limit_2sigma'] = -9.999 return stats def solve_one(Star, SolvePars, PlotPars=PlotPars(), isochrone_points=None): '''Calculates most likely parameters of Star using isochrone points ''' if hasattr(Star, 'feh_model'): Star.old_feh = Star.feh Star.feh = getattr(Star, 'feh_model') if SolvePars.key_parameter_known == 'plx': Star.get_absolute_magnitude() if SolvePars.key_parameter_known == 'logg&plx': Star.get_absolute_magnitude() if not isochrone_points: ips = get_isochrone_points(Star, SolvePars.feh_offset, SolvePars.get_isochrone_points_db, SolvePars.get_isochrone_points_nsigma, SolvePars.key_parameter_known) else: ips = isochrone_points if ips == None: logger.warning('Could not get any isochrone points.') return None print('Using {0} isochrone points\n'.format(len(ips['age']))) print('Parameter m.p. | 1-sigma range | 2-sigma range | mean +/- stdev') print('---------- ------ | --------------- | --------------- | -----------------') logger.info('Using {0} Y2 isochrone points'.format(len(ips['age']))) Star.isokeyparameterknown = SolvePars.key_parameter_known Star.isonpoints = len(ips['age']) ips['t'] = 10**ips['logt'] ips['r'] = 10**(0.5*(np.log10(ips['mass'])-ips['logg']+4.437)) if SolvePars.key_parameter_known == 'logg': prob = np.exp(-1*((ips['t']-Star.teff)/ \ (1.414214*Star.err_teff))**2)* \ np.exp(-1*((ips['logg']-Star.logg)/ \ (1.414214*Star.err_logg))**2)* \ np.exp(-1*((ips['feh']-Star.feh)/ \ (1.414214*Star.err_feh))**2) if SolvePars.key_parameter_known == 'plx': prob = np.exp(-1*((ips['t']-Star.teff)/ \ (1.414214*Star.err_teff))**2)* \ np.exp(-1*((ips['mv']-Star.M_V)/ \ (1.414214*Star.err_M_V))**2)* \ np.exp(-1*((ips['feh']-Star.feh)/ \ (1.414214*Star.err_feh))**2) if SolvePars.key_parameter_known == 'logg&plx': prob = np.exp(-1*((ips['t']-Star.teff)/ \ (1.414214*Star.err_teff))**2)* \ np.exp(-1*((ips['logg']-Star.logg)/ \ (1.414214*Star.err_logg))**2)* \ np.exp(-1*((ips['mv']-Star.M_V)/ \ (1.414214*Star.err_M_V))**2)* \ np.exp(-1*((ips['feh']-Star.feh)/ \ (1.414214*Star.err_feh))**2) if SolvePars.key_parameter_known == 'rho': ips['rho'] = ips['mass']/(ips['r']**3) prob = np.exp(-1*((ips['t']-Star.teff)/ \ (1.414214*Star.err_teff))**2)* \ np.exp(-1*((ips['rho']-Star.rho)/ \ (1.414214*Star.err_rho))**2)* \ np.exp(-1*((ips['feh']-Star.feh)/ \ (1.414214*Star.err_feh))**2) if SolvePars.bayesian: prob *= ips['mass']**(-2.7) #age ages = 0.1+np.arange(200)*0.1 pdf_age_x = ages[np.logical_and(ages >= min(ips['age'])-0.2, ages <= max(ips['age'])+0.2)] pdf_age_y, pdf_age_y_smooth, Star.isoage = \ pdf(pdf_age_x, ips, prob, 'age', SolvePars.smooth_window_len_age) Star.pdf_age = {'x': pdf_age_x, 'y': pdf_age_y, 'ys': pdf_age_y_smooth} #mass masses = 0.2+
np.arange(311)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from collections import namedtuple import skeleton as skel import skeleton_matching as skm import robust_functions as rf import helperfunctions as hf import visualize as vis Obs = namedtuple('Observation', 'g q') def register_skeleton(S1, S2, corres, params): """ This function computes the (non-rigid) registration params between the two skeletons. This function computes the normal equation, solves the non-linear least squares problem. Parameters ---------- S1, S2 : Skeleton Class Two skeletons for which we compute the non-rigid registration params corres : numpy array (Mx2) correspondence between two skeleton nodes params : Dictionary num_iter : Maximum number of iterations for the optimization routine default: 10 w_rot : Weight for the rotation matrix constraints default: 100, w_reg : Weight for regularization constraints default: 100 w_corresp: Weight for correspondence constraints default: 1 w_fix : Weight for fixed nodes default: 1 fix_idx : list of fixed nodes default : [] R_fix : list of rotation matrices for fixed nodes default : [np.eye(3)] t_fix : list of translation vectors for fixed nodes default: [np.zeros((3,1))] use_robust_kernel : Use robust kernels for optimization (recommended if corres has outliers) default : True robust_kernel_type : Choose a robust kernel type (huber, cauchy, geman-mcclure) default: 'cauchy' robust_kernel_param : scale/outlier parameter for robust kernel default: 2 debug : show debug visualizations + info default: False Returns ------- T12 : list of 4x4 numpy arrays Affine transformation corresponding to each node in S1 """ print('Computing registration params.') # set default params if not provided if 'num_iter' not in params: params['num_iter'] = 10 if 'w_rot' not in params: params['w_rot'] = 100 if 'w_reg' not in params: params['w_reg'] = 100 if 'w_corresp' not in params: params['w_corresp'] = 1 if 'w_fix' not in params: params['w_fix'] = 1 if 'fix)idx' not in params: params['fix_idx'] = [] if 'use_robust_kernel' not in params: params['use_robust_kernel'] = False if 'robust_kernel_type' not in params: params['robust_kernel_type'] = 'cauchy' if 'robust_kernel_param' not in params: params['robust_kernel_param'] = 2 if 'debug' not in params: params['debug'] = False # initialize normal equation J_rot, r_rot, J_reg, r_reg, J_corresp, r_corresp, J_fix, r_fix = \ initialize_normal_equations(S1, corres, params) # initialze solution x = initialize_solution(S1, params) # initialize weights W_rot, W_reg, W_corresp, W_fix = initialize_weight_matrices(\ params['w_rot'], len(r_rot), params['w_reg'], len(r_reg), \ params['w_corresp'], len(r_corresp) , params['w_fix'], len(r_fix)) # # initialize variables in optimization m = S1.XYZ.shape[0] T12 = [None]*m R = [None]*m t = [None]*m for j in range(m): xj = x[12*j:12*(j+1)] R[j] = np.reshape(xj[0:9], (3,3)) t[j] = xj[9:12] # perform optimization if params['debug']: fh_debug = plt.figure() E_prev = np.inf; dx_prev = np.inf; for i in range(params['num_iter']): # counters used for different constraints jk = 0 jc = 0 jf = 0 # compute jacobian and residual for each constraint types for j in range(m): # registration params for jth node Rj = R[j] tj = t[j] # constraints from rotation matrix entries Jj_rot, rj_rot = compute_rotation_matrix_constraints(Rj) J_rot[6*j:6*(j+1), 12*j:12*(j+1)] = Jj_rot r_rot[6*j:6*(j+1)] = rj_rot # constraints from regularization term ind = np.argwhere(S1.A[j,:]==1).flatten() for k in range(np.sum(S1.A[j,:])): # params Rk = R[ind[k]] tk = t[ind[k]] Jj_reg, Jk_reg, r_jk_reg = compute_regularization_constraints(Rj, tj, Rk, tk) # collect all constraints nc = r_jk_reg.shape[0] J_reg[nc*jk : nc*(jk+1), 12*j:12*(j+1)] = Jj_reg J_reg[nc*jk : nc*(jk+1), ind[k]*12:12*(ind[k]+1)] = Jk_reg r_reg[nc*jk : nc*(jk+1)] = r_jk_reg # increment counter for contraints from neighbouring nodes jk = jk+1 # constraints from correspondences if corres.shape[0] > 0: ind_C = np.argwhere(corres[:,0] == j).flatten() if len(ind_C) > 0: # observations Y = Obs(S1.XYZ[j,:].reshape(3,1), S2.XYZ[corres[ind_C,1],:].reshape(3,1)) # compute constraints J_jc_corresp, r_jc_corresp = compute_corresp_constraints(Rj, tj, Y) # collect all constraints nc = r_jc_corresp.shape[0] J_corresp[nc*jc:nc*(jc+1), 12*j:12*(j+1)] = J_jc_corresp r_corresp[nc*jc:nc*(jc+1)] = r_jc_corresp # increment counter for correspondence constraints jc = jc + 1 # constraints from fixed nodes if len(params['fix_idx']) > 0: if j in params['fix_idx']: ind_f = params['fix_idx'].index(j) # observations R_fix = params['R_fix'][ind_f] t_fix = params['t_fix'][ind_f] # compute fix node constraints J_jf_fix, r_jf_fix = compute_fix_node_constraints(Rj, tj, R_fix, t_fix); nc = r_jf_fix.shape[0] J_fix[nc*jf: nc*(jf+1), 12*j:12*(j+1)] = J_jf_fix r_fix[nc*jf:nc*(jf+1)] = r_jf_fix # update counter jf = jf + 1 # compute weights and residual using robust kernel if params['use_robust_kernel']: if params['robust_kernel_type'] == 'huber': _, _, W_corresp = rf.loss_huber(r_corresp, params['robust_kernel_param']) elif params['robust_kernel_type'] == 'cauchy': _, _, W_corresp = rf.loss_cauchy(r_corresp, params['robust_kernel_param']) elif params['robust_kernel_type'] == 'geman_mcclure': _, _, W_corresp = rf.loss_geman_mcclure(r_corresp, params['robust_kernel_param']) else: print('Robust kernel not undefined. \n') W_corresp = params['w_corresp']*np.diag(W_corresp.flatten()) # collect all constraints J = np.vstack((J_rot, J_reg, J_corresp, J_fix)) r = np.vstack((r_rot, r_reg, r_corresp, r_fix)) # construct weight matrix W = combine_weight_matrices(W_rot, W_reg, W_corresp, W_fix) # solve linear system A = J.T @ W @ J b = J.T @ W @ r dx = -np.linalg.solve(A, b) # Errors E_rot = r_rot.T @ W_rot @ r_rot E_reg = r_reg.T @ W_reg @ r_reg E_corresp = r_corresp.T @ W_corresp @ r_corresp E_fix = r_fix.T @ W_fix @ r_fix E_total = E_rot + E_reg + E_corresp + E_fix # print errors if params['debug']: print("Iteration # ", i) print("E_total = ", E_total) print("E_rot = ", E_rot) print("E_reg = ", E_reg) print("E_corresp = ", E_corresp) print("E_fix = ", E_fix) print("Rank(A) = ", np.linalg.matrix_rank(A)) # update current estimate for j in range(m): #params dx_j = dx[12*j:12*(j+1)] R[j] = R[j] + np.reshape(dx_j[0:9], (3, 3), order = 'F') t[j] = t[j] + dx_j[9:12] # collect and return transformation for j in range(m): T12[j] = hf.M(R[j], t[j]) # apply registration to skeleton for visualization if params['debug']: # compute registration error S2_hat = apply_registration_params_to_skeleton(S1, T12) vis.plot_skeleton(fh_debug, S1,'b'); vis.plot_skeleton(fh_debug, S2,'r'); vis.plot_skeleton(fh_debug, S2_hat,'k'); vis.plot_skeleton_correspondences(fh_debug, S2_hat, S2, corres) plt.title("Iteration " + str(i)) # exit criteria if np.abs(E_total - E_prev) < 1e-6 or np.abs(np.linalg.norm(dx) - np.linalg.norm(dx_prev)) < 1e-6: print("Exiting optimization.") print('Total error = ', E_total) break # update last solution E_prev = E_total dx_prev = dx return T12 def initialize_normal_equations(S, corres, params): """ This function initailizes J and r matrices for different types of % constraints. Parameters ---------- S : Skeleton Class Contains points, adjacency matrix etc related to the skeleton graph. corres : numpy array (Mx2) correspondence between two skeleton nodes params : Dictionary see description in register_skeleton function Returns ------- J_rot : numpy array [6mx12m] jacobian for rotation matrix error r_rot : numpy array [6mx1] residual for rotation matrix error J_reg : numpy array [12mx12m] jacobian for regularization error r_reg : numpy array [12mx1] residual for reuglarization error J_corres : numpy array [3nCx12m] jacobian for correspondence error r_corres : numpy array [3nCx1] residual for correspondence error J_fix : numpy array[12nFx12m] jacobian for fix nodes r_fix : numpy array [12mFx1] residual for fix nodes """ # get sizes from input m = S.XYZ.shape[0] nK = 2*S.edge_count nC = corres.shape[0] nF = len(params['fix_idx']) # constraints from individual rotation matrix num_rot_cons = 6*m J_rot = np.zeros((num_rot_cons, 12*m)) r_rot = np.zeros((num_rot_cons,1)) # constraints from regularization num_reg_cons = 12*nK J_reg = np.zeros((num_reg_cons,12*m)) r_reg = np.zeros((num_reg_cons,1)) # constraints from correspondences num_corres_cons = 3*nC; J_corres = np.zeros((num_corres_cons,12*m)) r_corres = np.zeros((num_corres_cons,1)) # constraints from fix nodes num_fix_cons = 12*nF J_fix = np.zeros((num_fix_cons,12*m)) r_fix = np.zeros((num_fix_cons,1)) return J_rot, r_rot, J_reg, r_reg, J_corres, r_corres, J_fix, r_fix def initialize_solution(S, params): """ This function initialzes the soultion either as the zero solution or provided initial transformation. Parameters ---------- S : Skeleton Class Only used for getting number of unknowns. params : Dictionary R_init, params.t_init used for initializing solution if they are provided. If R_init is a list then a separate approximate is assumed for every transformation. Otherwise R_init should be 3x3, t_init 3x1 Returns ------- x : numpy array [12mx1] initial solution vector as expected by the optimization procedure. """ m = S.XYZ.shape[0] x = np.zeros((12*m,1)) R = [None]*m t = [None]*m for j in range(m): if 'R_init' in params and 't_init' in params: if len(params['R_init']) == m: R[j] = params['R_init'][j] t[j] = params['t_init'][j] else: R[j] = params['R_init'] t[j] = params['t_init'] else: # start from zero solution R[j] = np.eye(3); t[j] = np.zeros((3,1)) # rearrange in a column vector x[12*j:12*(j+1)] = np.vstack((np.reshape(R[j], (9, 1),order='F'),t[j])) return x def initialize_weight_matrices(w_rot, n_rot, w_reg, n_reg, w_corresp, n_corresp, w_fix, n_fix): """ This function computes the weight matrices corresponding to each constraint given the weights and number of constraints for each type. """ W_rot = np.diag(w_rot*np.ones(n_rot)) W_reg = np.diag(w_reg*np.ones(n_reg)) W_corresp = np.diag(w_corresp*np.ones(n_corresp)) W_fix = np.diag(w_fix*np.ones(n_fix)) return W_rot, W_reg, W_corresp, W_fix def combine_weight_matrices(W_rot, W_reg, W_corresp, W_fix): """ This function combines the weight matrices of each constraint type into the combined weight matrix used in the optimization step. """ # get number of constraints n_rot = W_rot.shape[0] n_reg = W_reg.shape[0] n_corresp = W_corresp.shape[0] n_fix = W_fix.shape[0] nC = n_rot + n_reg + n_corresp + n_fix # combine them to form the big W matrix W = np.zeros((nC, nC)) W[0:n_rot, 0:n_rot] = W_rot W[n_rot:n_rot+n_reg, n_rot:n_rot+n_reg] = W_reg W[n_rot+n_reg:n_rot+n_reg+n_corresp, n_rot+n_reg:n_rot+n_reg+n_corresp] = W_corresp W[n_rot+n_reg+n_corresp:n_rot+n_reg+n_corresp+n_fix, n_rot+n_reg+n_corresp:n_rot+n_reg+n_corresp+n_fix] = W_fix return W def compute_rotation_matrix_constraints(R): # constraints from rotation matrix entries c1 = R[0:3,0].reshape((3,1)) c2 = R[0:3,1].reshape((3,1)) c3 = R[0:3,2].reshape((3,1)) # # Jacobian wrt R (1x9), wrt t (1x3) r1 = c1.T @ c2 Jc_r1 = np.hstack((c2.T, c1.T, np.zeros((1,3)))) Jt_r1 = np.zeros((1,3)) r2 = c1.T @ c3 Jc_r2 = np.hstack((c3.T, np.zeros((1,3)), c1.T)) Jt_r2 = np.zeros((1,3)) r3 = c2.T @ c3 Jc_r3 = np.hstack((np.zeros((1,3)), c3.T, c2.T)) Jt_r3 = np.zeros((1,3)) r4 = c1.T @ c1 -1 Jc_r4 = np.hstack((2*c1.T, np.zeros((1,3)), np.zeros((1,3)))) Jt_r4 = np.zeros((1,3)) r5 = c2.T @ c2 -1 Jc_r5 = np.hstack((np.zeros((1,3)), 2*c2.T, np.zeros((1,3)))) Jt_r5 = np.zeros((1,3)) r6 = c3.T @ c3 -1 Jc_r6 = np.hstack((np.zeros((1,3)), np.zeros((1,3)), 2*c3.T)) Jt_r6 = np.zeros((1,3)) # J:= 6x12, r:= 6x1 J = np.vstack((np.hstack((Jc_r1, Jt_r1)), np.hstack((Jc_r2, Jt_r2)), np.hstack((Jc_r3, Jt_r3)), np.hstack((Jc_r4, Jt_r4)), np.hstack((Jc_r5, Jt_r5)), np.hstack((Jc_r6, Jt_r6)))) r = np.vstack((r1, r2, r3, r4, r5, r6)) return J, r def compute_regularization_constraints(Rj, tj, Rk, tk): # Transformations Tj = hf.M(Rj, tj) Tk = hf.M(Rk, tk) # residual (12x1) r_eye = Tj @ np.linalg.inv(Tk) r = np.vstack((np.reshape(r_eye[0:3,0:3]- np.eye(3), (9, 1), order='F'), np.reshape(r_eye[0:3,3],(3,1), order='F'))) # jacobian x1 = np.vstack((np.reshape(Rj, (9, 1)), tj)) x2 = np.vstack((np.reshape(Rk, (9, 1)), tk)) Jj = hf.jacobian(residual_reg, 1e-6, [0], x1, x2) Jk = hf.jacobian(residual_reg, 1e-6, [1], x1, x2) return Jj, Jk, r def compute_corresp_constraints(R, t, Y): # residual 3x1 r = R @ Y.g + t - Y.q # JR=(3x9), Jt=(3x3) JR = np.hstack((Y.g[0]*np.eye(3), Y.g[1]*np.eye(3), Y.g[2]*np.eye(3))) Jt = np.eye(3) J = np.hstack((JR, Jt)) return J, r def compute_fix_node_constraints(R, t, R_fix, t_fix): # error (12x1), Jc (12x9), Jt( 12x3) r = np.vstack((np.reshape(R, (9, 1), order='F'), t)) -np.vstack((
np.reshape(R_fix, (9, 1), order='F')
numpy.reshape
""" Training step for the paper: four labels + Ak + C + N """ import numpy as np import glob import matplotlib.pyplot as plt import sys import pyfits #sys.path.insert(0, '/home/annaho/aida41040/annaho/TheCannon/TheCannon') #sys.path.insert(0, '/home/annaho/aida41040/annaho/TheCannon') from TheCannon import dataset from TheCannon import model from TheCannon import lamost from astropy.table import Table from matplotlib.colors import LogNorm from matplotlib import rc rc('font', family='serif') rc('text', usetex=True) import os GIT_DIR = "/Users/annaho/Dropbox/Research/TheCannon/" DATA_DIR = GIT_DIR + "data/" SPEC_DIR = "/Users/annaho/Data/LAMOST/Mass_And_Age/with_col_mask/xval_with_cuts" #SPEC_DIR = "." def load_data(): print("Loading all data") DIR = GIT_DIR + DATA_DIR a = pyfits.open("%s/labels_file_full.fits" %DIR) tbl = a[1].data a.close() # Pull out all APOGEE DR12 values # FPARAM: (teff, logg, rvel, mh, c, n, alpha) teff_all = tbl['FPARAM'][:,0] logg_all = tbl['FPARAM'][:,1] mh_all = tbl['FPARAM'][:,3] cm_all = tbl['FPARAM'][:,4] nm_all = tbl['FPARAM'][:,5] am_all = tbl['FPARAM'][:,6] ak_all = tbl['AK_WISE'] # Discard objects with Teff > 4550 if -1 < [M/H] < -0.5 print("Discarding objects") choose_teff = teff_all > 4550 choose_mh = np.logical_and(-1 < mh_all, mh_all < -0.5) discard_teff = np.logical_and(choose_mh, choose_teff) # 743 objects # Discard objects with [C/M] < -0.4 dex discard_cm = cm_all < -0.4 # 40 objects # metal-poor stars [M/H] < -0.1 have sketchy scaling relations # but this shouldn't affect our spectral C and N # in Marie's paper they don't have any low-metallicity stars, # but it doesn't matter for the training anyway. bad = np.logical_or(discard_teff, discard_cm) choose = ~bad ref_id = tbl['lamost_id'][choose] ref_id = np.array([val.strip() for val in ref_id]).astype(str) ref_label = np.vstack(( teff_all[choose], logg_all[choose], mh_all[choose], cm_all[choose], nm_all[choose], am_all[choose], ak_all[choose])).T np.savez("./ref_id.npz", ref_id) np.savez("./ref_label.npz", ref_label) print("Getting spectra") all_id = np.load("%s/tr_id.npz" %SPEC_DIR)['arr_0'].astype(str) all_flux = np.load("%s/tr_flux.npz" %SPEC_DIR)['arr_0'] all_ivar = np.load("%s/tr_ivar.npz" %SPEC_DIR)['arr_0'] choose = np.array([np.where(all_id==f)[0][0] for f in ref_id]) flux = all_flux[choose,:] ivar = all_ivar[choose,:] np.savez("ref_flux.npz", flux) np.savez("ref_ivar.npz", ivar) def train(): wl = np.load("%s/../wl_cols.npz" %SPEC_DIR)['arr_0'] tr_id = np.load("%s/ref_id.npz" %SPEC_DIR)['arr_0'] tr_label = np.load("%s/ref_label.npz" %SPEC_DIR)['arr_0'] tr_label = tr_label[:,0:3] tr_flux = np.load("%s/ref_flux.npz" %SPEC_DIR)['arr_0'] tr_ivar = np.load("%s/ref_ivar.npz" %SPEC_DIR)['arr_0'] ds = dataset.Dataset( wl, tr_id, tr_flux, tr_ivar, tr_label, tr_id, tr_flux, tr_ivar) # teff, logg, mh, cm, nm, am, ak ds.set_label_names( ['T_{eff}', '\log g', '[Fe/H]']) #, '[C/M]','[N/M]', #'[\\alpha/M]', 'A_k']) #ds.diagnostics_SNR() #ds.diagnostics_ref_labels() #np.savez("ref_snr.npz", ds.tr_SNR) print("Training model") nlab = ds.tr_label.shape[1] print(nlab) npix = len(ds.wl) print(npix) filt = np.ones((nlab, npix), dtype=bool) print(filt) #filt[nlab-1,0:500] = 0 m = model.CannonModel(2, wl_filter = filt) m.fit(ds) np.savez("./coeffs.npz", m.coeffs) np.savez("./scatters.npz", m.scatters) np.savez("./chisqs.npz", m.chisqs) np.savez("./pivots.npz", m.pivots) m.diagnostics_leading_coeffs(ds) #m.diagnostics_leading_coeffs_triangle(ds) #m.diagnostics_plot_chisq(ds) def test_step_iteration(ds, m, starting_guess): errs, chisq = m.infer_labels(ds, starting_guess) return ds.test_label_vals, chisq, errs def test_step(): #wl = np.load("%s/wl.npz" %SPEC_DIR)['arr_0'] wl = np.load("wl_cols.npz")['arr_0'] test_id = np.load("%s/ref_id.npz" %SPEC_DIR)['arr_0'] tr_label = np.load("%s/ref_label.npz" %SPEC_DIR)['arr_0'] test_flux = np.load("%s/ref_flux.npz" %SPEC_DIR)['arr_0'] test_ivar = np.load("%s/ref_ivar.npz" %SPEC_DIR)['arr_0'] #tr_id = np.load("./ref_id.npz")['arr_0'] #tr_flux = np.load("./ref_flux.npz")['arr_0'] #tr_ivar = np.load("./ref_ivar.npz")['arr_0'] #tr_label = np.load("./ref_label.npz")['arr_0'] ds = dataset.Dataset( wl, test_id, test_flux, test_ivar, tr_label, test_id, test_flux, test_ivar) ds.set_label_names( ['T_{eff}', '\log g', '[Fe/H]', '[C/M]','[N/M]', '[\\alpha/M]', 'A_k']) m = model.CannonModel(2) m.coeffs = np.load("./culled_coeffs.npz")['arr_0'] m.scatters = np.load("./culled_scatters.npz")['arr_0'] m.chisqs = np.load("./culled_chisqs.npz")['arr_0'] m.pivots =
np.load("./culled_pivots.npz")
numpy.load
# -*- coding: utf-8 -*- # Metropolis Drift-Diffusion-Model # Copyright 2018 <NAME>, <NAME>, <NAME> # This file is released under the MIT licence that accompanies the code ## This file contains the core computational routines import numpy as np import ddm as dm from numbers import Real, Integral ## Some auxiliary functions def uniform_proposal(n, b): """ choose a proposal uniformly from a set of `n` alternatives, excluding the incumbent `b`. """ i = np.random.randint(n - 1) return i + (i >= b) def nonuniform_proposal(em, b): """ choose a proposal according to a symmetric stochastic matrix (the exploration matrix `em`); the incumbent `b` is passed as a parameter and it is used to select the correct column used for sampling. """ n = em.shape[0] while True: a = np.random.choice(np.arange(n), p = em[:,b]) if a != b: return a def cname(x): "class name, for pretty-printing purposes only" return x.__class__.__name__ ## DDM sampling def ddm_sample(u_a, u_b, lbarrier, ubarrier): """ Sample a response time and a choice outcome in a drift-diffusion-model decision process, given the utilities and the decision thresholds. See also `DDMSampler` for a cached version. Inputs ------ * `u_a`: utility of choice `a` (candidate) * `u_b`: utility of choice `b` (incumbent) * `lbarrier`: threshold for choice `a` * `ubarrier`: threshold for choice `b` Outputs ------- * `RT`: a `float` representing the response time * `CO`: a `bool` representing the choice outcome: `True` if the proposal is accepted (`a` was chosen), `False` otherwise (`b` was chosen) """ mu_ab = np.array([(u_a - u_b) / np.sqrt(2)]) lbound_normarray = np.array([lbarrier / np.sqrt(2)]) ubound_normarray = np.array([ubarrier / np.sqrt(2)]) dt = 0.000000001 # irrelevant RT, CO = dm.rand_asym(mu_ab, -lbound_normarray, ubound_normarray, dt, 1) return RT[0], CO[0] class DDMSampler: """ A class that helps sampling response times and a choice outcomes in a drift-diffusion-model decision process, given a vector of utilities and the decision thresholds. It works essentially like a version of `ddm_sample` that caches the samples to improve speed (at the cost of memory). The constructor takes the following arguments: * `u`: a vector of utilities * `lb`: threshold for the incumbents * `ub`: threshold for the candidated * `cache_size`: the number of samples to cache for each combination of the values in `u` (default is 50) After creation, you can call it like a function with two arguments `a` and `b` (two integers, the candidate and the incumbent), and it will return a response time and a choice outcome (basically the same as `ddm_sample`). """ def __init__(self, u, lb, ub, cache_size = 50): if cache_size <= 0: raise ValueError('invalid `cache_size`, must be positive, given %i' % cache_size) c = np.sqrt(2) n = len(u) self.n = n self.mu = [np.array([(u[a] - u[b]) / c]) for a in range(n) for b in range(n)] self.lb, self.ub = np.array([lb / c]),
np.array([ub / c])
numpy.array
import logging from math import pi import numpy as np log = logging.getLogger(__name__) def linear(N): return (np.linspace(-1, 1, N), np.ones(N)) def trapezoid(N): points = np.linspace(-1.0, 1.0, N) w = 1.0 / float(N) weights = np.ones(N) * 2.0 * w weights[0] = weights[-1] = w return (points, weights) def periodic_trapezoid(N): shift = 1.0 / float(N) points = np.linspace(-1 + shift, 1 - shift, N) weights = np.ones(N) * (2.0 / float(N)) return (points, weights) def legendre_gauss_lobatto(N): # Use the Chebyshev-Gauss-Lobatto nodes as the first guess x = np.cos(
np.linspace(0, pi, N)
numpy.linspace
import logging from pathlib import Path from typing import Union, List import json import matplotlib.pyplot as plt import numpy as np import pandas as pd from collections import defaultdict import scipy.stats as scst from HPOBenchExperimentUtils import _log as _main_log from HPOBenchExperimentUtils.utils.validation_utils import load_json_files, \ load_trajectories_as_df, df_per_optimizer from HPOBenchExperimentUtils.utils.plotting_utils import plot_dc, color_per_opt, marker_per_opt,\ unify_layout from HPOBenchExperimentUtils.utils.runner_utils import get_optimizer_setting, get_benchmark_settings _main_log.setLevel(logging.DEBUG) _log = logging.getLogger(__name__) def plot_fidels(benchmark: str, output_dir: Union[Path, str], input_dir: Union[Path, str], opts: str, opt_list: Union[List[str], None]=None, **kwargs): _log.info(f'Plotting evaluated fidelities of benchmark {benchmark}') input_dir = Path(input_dir) / benchmark assert input_dir.is_dir(), f'Result folder doesn\"t exist: {input_dir}' output_dir = Path(output_dir) output_dir.mkdir(exist_ok=True, parents=True) opt_rh_dc = load_trajectories_as_df(input_dir=input_dir, which="runhistory") if opt_list is None: opt_list = list(opt_rh_dc.keys()) other_stats_dc = dict() best_val = 1000 other_stats_dc["lowest"] = best_val plt.figure(figsize=[5*len(opt_rh_dc), 5]) ax_old = None for i, opt in enumerate(opt_rh_dc): _log.info(f'Handling {opt}') if opt not in opt_list: _log.info(f'Skip {opt}') continue if len(opt_rh_dc) == 0: continue other_stats_dc[opt] = defaultdict(list) rhs = load_json_files(opt_rh_dc[opt]) for rh in rhs: final_time = rh[-1]["finish_time"] - rh[0]["boot_time"] bench_time = rh[-1]["total_time_used"] calls = rh[-1]["function_call"] other_stats_dc[opt]["final_time"].append(final_time) other_stats_dc[opt]["bench_time"].append(bench_time) other_stats_dc[opt]["calls"].append(calls) df = df_per_optimizer(opt, rhs) ax = plt.subplot(1, len(opt_rh_dc), i+1, sharey=ax_old) thresh = 10000 if df.shape[0] > thresh: sub = df[["fidel_values", "total_time_used"]].sample(n=thresh, random_state=1) else: sub = df[["fidel_values", "total_time_used"]] avg = sub.shape[0] / len(df['id'].unique()) max_f =
np.max(sub["fidel_values"])
numpy.max
''' Compute classification metrics for the preference learning models. Plot the predictions. Created on 21 Oct 2016 @author: simpson ''' import logging import numpy as np from matplotlib import pyplot as plt from sklearn.metrics import f1_score, roc_auc_score, log_loss, accuracy_score from scipy.stats import kendalltau def compute_ranking_metrics(nmethods, gold_ranks, predicted_ranks, metrics = {}, nruns=1, r=0): if not len(metrics): metrics['tau'] = np.zeros(nmethods) for i in range(nmethods): metrics['tau'][i, r], _ = kendalltau(gold_ranks, predicted_ranks) return metrics def compute_metrics(nmethods, gold_prefs, predictions, metrics = {}, nruns=1, r=0): # Task C2, C4: Compute accuracy metrics --------------------------------------------------------------------------- logging.info('Task C2/C4, accuracy metrics') if not len(metrics): metrics['acc'] = np.zeros((nmethods, nruns)) metrics['f1'] = np.zeros((nmethods, nruns)) metrics['auc_roc'] = np.zeros((nmethods, nruns)) metrics['log_loss'] = np.zeros((nmethods, nruns)) # Not sure how to deal with preference labels where the true label is 0.5 with f1 score. For ROC curve we can # combine two AUCs for negative class and positive class. for i in range(nmethods): ind_array = np.concatenate( ( predictions[:, i:i+1] < 1.0/3.0, (predictions[:, i:i+1] >= 1.0/3.0) & (predictions[:, i:i+1] < 2.0/3.0), predictions[:, i:i+1] > 2.0/3.0 ), axis=1) ind_array_gold = np.concatenate( ( gold_prefs[:, np.newaxis] == 0, gold_prefs[:, np.newaxis] == 0.5, gold_prefs[:, np.newaxis] == 1 ), axis=1) mistakes = np.round(ind_array) != ind_array_gold print(ind_array[np.sum(mistakes, axis=1), :]) print(ind_array_gold[np.sum(mistakes, axis=1), :]) metrics['acc'][i,r] = accuracy_score(ind_array_gold, ind_array) metrics['f1'][i,r] = f1_score(ind_array_gold, ind_array, average='weighted') auc_a_less_b = roc_auc_score(gold_prefs==0, 1 - predictions[:, i]) frac_a_less_b = np.sum(gold_prefs==0) / float(len(gold_prefs)) auc_a_more_b = roc_auc_score(gold_prefs==1, predictions[:, i]) frac_a_more_b = np.sum(gold_prefs==1) / float(len(gold_prefs)) auc_a_equal_b = roc_auc_score(gold_prefs==0.5, 2 * (1 - np.abs(predictions[:, i] - 0.5))) frac_a_equal_b = np.sum(gold_prefs==0.5) / float(len(gold_prefs)) metrics['auc_roc'][i,r] = auc_a_less_b * frac_a_less_b + auc_a_more_b * frac_a_more_b + auc_a_equal_b * frac_a_equal_b predictions_safe = predictions[:, i].copy() predictions_safe[predictions[:, i]<1e-7] = 1e-7 predictions_safe[predictions[:, i]>(1-1e-7)] = 1 - 1e-7 metrics['log_loss'][i,r] = -np.mean(gold_prefs * np.log(predictions_safe) + (1 - gold_prefs) * np.log(1 - predictions_safe)) return metrics def plot_metrics(plotdir, metrics, nmethods, method_labels, nfolds, nanno, nanno_is_min=False, xlabels=None): # Task C9/C10: Plotting metrics ----------------------------------------------------------------------------------- logging.info('Task C9/10, plotting accuracy metrics') _, ax = plt.subplots() if nanno_is_min: ax.set_title('F1 Scores with %i-fold Cross Validation (data points with at least %i annotators)' % (nfolds, nanno)) else: ax.set_title('F1 Scores with %i-fold Cross Validation (data points with %i annotators)' % (nfolds, nanno)) ind = np.arange(nmethods) width = 0.6 if metrics['f1'].shape[1] == 1: ax.bar(ind, metrics['f1'], width=width) ax.set_xlabel('Method') ax.set_ylabel('F1 Score') ax.set_xticks(ind + (width/2.0)) ax.set_xticklabels(method_labels) else: plt.hold(True) for m in range(nmethods): plt.plot(metrics['f1'][m], label=method_labels[m]) if np.any(xlabels): plt.xlabel(xlabels) plt.legend(loc='best') plt.savefig(plotdir + '/f1scores.eps') _, ax = plt.subplots() ax.set_title('AUC of ROC Curve with %i-fold Cross Validation' % nfolds) if metrics['auc_roc'].shape[1] == 1: ax.bar(ind, metrics['auc_roc'], width=width) ax.set_xlabel('Method') ax.set_ylabel('AUC') ax.set_xticks(ind + (width/2.0)) ax.set_xticklabels(method_labels) else: plt.hold(True) for m in range(nmethods): plt.plot(metrics['auc_roc'][m], label=method_labels[m]) if np.any(xlabels): plt.xlabel(xlabels) plt.legend(loc='best') plt.savefig(plotdir + '/auc_roc.eps') _, ax = plt.subplots() ax.set_title('Cross Entropy Error with %i-fold Cross Validation' % nfolds) if metrics['log_loss'].shape[1] == 1: plt.bar(ind, metrics['log_loss'], width=width) ax.set_xlabel('Method') ax.set_ylabel('Cross Entropy') ax.set_xticks(ind + (width/2.0)) ax.set_xticklabels(method_labels) else: plt.hold(True) for m in range(nmethods): plt.plot(metrics['log_loss'][m], label=method_labels[m]) if
np.any(xlabels)
numpy.any
""" lib/assess/metrics3d.py (Author: <NAME>, 2021) Most commonly used segmentation metrics (or the ones I need for med-im projects. Huge help from MONAI: https://www.github.com/Project-MONAI/MONAI Usage Philosophy: - Can take either detached cpu tensors or numpy arrays - Returns all information (per example & per class results). It is up to functions lower in the stack to aggregate in the form the application requires. e.g. batch_confusion_matrix returns a BxCx4 List of Metrics: - Confusion Matrix (2D & 3D, Classif & Seg) - Dice (2D & 3D, Seg) - Jaccard (2D & 3D, Seg) - Hausdorff (2D & 3D, Seg) """ import warnings from collections import namedtuple import numpy as np import torch from dmt.metrics.medpy_metrics import dc, jc, hd from .unify import (reshape, stack, to_float, to_int, allclose, nan_to_num, any as uni_any, sum as uni_sum) from .seg_utils import get_mask_edges, get_surface_distance # Module scope for multiprocessing compatibility SegCM = namedtuple('SegCM', ('tp', 'fp', 'fn', 'tn')) Mets = namedtuple('Mets', ('confusion', 'dice', 'jaccard', 'exists')) def batch_metrics(preds, targs, ignore_background=False, naive_avg=True): """ Args: preds (tensor or array): BxCxDxHxW (binary one-hot) targs: (tensor or array) BxCxDxHxW (binary one-hot) naive_avg: just set to False for inference. May skew results if a given pred & targ batch doesn't have all classes. """ assert preds.shape == targs.shape assert preds.ndim == 5 assert 'int' in str(preds.dtype) assert 'int' in str(targs.dtype) cdj_tuple = batch_cdj_metrics(preds, targs, ignore_background=ignore_background) nt_conf = cdj_tuple.confusion # named_tuple: tp, fp, tn, fn nt_conf = SegCM(np.array(nt_conf.tp), np.array(nt_conf.fp), np.array(nt_conf.fn), np.array(nt_conf.tn)) ec_dice = np.array(cdj_tuple.dice) # ec = element class ec_jaccard = np.array(cdj_tuple.jaccard) ec_exists = np.array(cdj_tuple.exists) with
np.errstate(divide='ignore', invalid='ignore')
numpy.errstate
#!/usr/bin/env python # -*- coding: utf-8 -*- # ######################################################################### # Copyright (c) 2020, UChicago Argonne, LLC. All rights reserved. # # # # Copyright 2020. UChicago Argonne, LLC. This software was produced # # under U.S. Government contract DE-AC02-06CH11357 for Argonne National # # Laboratory (ANL), which is operated by UChicago Argonne, LLC for the # # U.S. Department of Energy. The U.S. Government has rights to use, # # reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR # # UChicago Argonne, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR # # ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is # # modified to produce derivative works, such modified software should # # be clearly marked, so as not to confuse it with the version available # # from ANL. # # # # Additionally, redistribution and use in source and binary forms, with # # or without modification, are permitted provided that the following # # conditions are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of UChicago Argonne, LLC, Argonne National # # Laboratory, ANL, the U.S. Government, nor the names of its # # contributors may be used to endorse or promote products derived # # from this software without specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY UChicago Argonne, LLC AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UChicago # # Argonne, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # # ######################################################################### import warnings from orangecontrib.wonder.fit.parameters.measured_data.phase import Phase from orangecontrib.wonder.fit.parameters.initialization.fft_parameters import FFTTypes from orangecontrib.wonder.fit.parameters.instrument.zero_error import ZeroError from orangecontrib.wonder.fit.parameters.instrument.lab6_tan_correction import Lab6TanCorrection from orangecontrib.wonder.fit.parameters.instrument.caglioti import Caglioti from orangecontrib.wonder.fit.parameters.instrument.polarization_parameters import Beampath, LorentzFormula, PolarizationParameters from orangecontrib.wonder.fit.parameters.instrument.speciment_displacement import SpecimenDisplacement from orangecontrib.wonder.fit.parameters.thermal.thermal_parameters import ThermalParameters from orangecontrib.wonder.fit.parameters.instrument.background_parameters import ChebyshevBackground, ExpDecayBackground from orangecontrib.wonder.fit.parameters.microstructure.strain import InvariantPAH, WarrenModel, KrivoglazWilkensModel from orangecontrib.wonder.fit.parameters.measured_data.phase_gsasii import GSASIIPhase from orangecontrib.wonder.fit.functions.gsasii_functions import gsasii_intensity_factor from orangecontrib.wonder.fit.parameters.additional.pseudo_voigt_peak import SpuriousPeaks from orangecontrib.wonder.fit.functions.chemical_formula_parser import ChemicalFormulaParser from orangecontrib.wonder.util.fit_utilities import Utilities, Symmetry warnings.filterwarnings("ignore", category=RuntimeWarning) class Distribution: DELTA = "delta" LOGNORMAL = "lognormal" GAMMA = "gamma" YORK = "york" @classmethod def tuple(cls): return [cls.DELTA, cls.LOGNORMAL, cls.GAMMA, cls.YORK] class Shape: NONE = "none" SPHERE = "sphere" CUBE = "cube" TETRAHEDRON = "tetrahedron" OCTAHEDRON = "octahedron" CYLINDER = "cylinder" WULFF = "wulff solid" @classmethod def tuple(cls): return [cls.NONE, cls.SPHERE, cls.CUBE, cls.TETRAHEDRON, cls.OCTAHEDRON, cls.CYLINDER, cls.WULFF] class WulffCubeFace: TRIANGULAR = "triangular" HEXAGONAL = "hexagonal" @classmethod def tuple(cls): return [cls.TRIANGULAR, cls.HEXAGONAL] class Normalization: NORMALIZE_TO_N = 0 NORMALIZE_TO_N2 = 1 @classmethod def tuple(cls): return ["to N", "to N\u00b2"] def __H_invariant_square(h, k, l): numerator = (h * h * k * k + k * k * l * l + l * l * h * h) denominator = (h**2 + k**2 + l**2)**2 return numerator / denominator def __merge_functions(list_of_pairs, s): # x step must be the same for all functions intensity = numpy.zeros(len(s)) for pair_index in range(list_of_pairs.shape[0]): intensity += numpy.interp(s, list_of_pairs[pair_index, 0], list_of_pairs[pair_index, 1]) return intensity ################################################# # # FIT FUNCTION # ################################################# def fit_function_direct(twotheta, fit_global_parameters, diffraction_pattern_index = 0): incident_radiation = fit_global_parameters.measured_dataset.get_incident_radiations_item(diffraction_pattern_index) wavelength = incident_radiation.wavelength.value I = fit_function_reciprocal(Utilities.s(0.5*numpy.radians(twotheta), wavelength), fit_global_parameters, diffraction_pattern_index) # POLARIZATION FACTOR -------------------------------------------------------------------------------------- polarization_parameters = fit_global_parameters.get_instrumental_profile_parameters_item(PolarizationParameters.__name__, diffraction_pattern_index) if not polarization_parameters is None: if polarization_parameters.use_polarization_factor: twotheta_mono = polarization_parameters.twotheta_mono I *= polarization_factor(numpy.radians(twotheta), None if twotheta_mono is None else numpy.radians(twotheta_mono), polarization_parameters.degree_of_polarization, polarization_parameters.beampath) # ADD BACKGROUNDS --------------------------------------------------------------------------------------------- if not fit_global_parameters.background_parameters is None: for key in fit_global_parameters.background_parameters.keys(): background_parameters = fit_global_parameters.get_background_parameters_item(key, diffraction_pattern_index) if not background_parameters is None: if key == ChebyshevBackground.__name__: parameters=[background_parameters.c0.value, background_parameters.c1.value, background_parameters.c2.value, background_parameters.c3.value, background_parameters.c4.value, background_parameters.c5.value, background_parameters.c6.value, background_parameters.c7.value, background_parameters.c8.value, background_parameters.c9.value] add_chebyshev_background(twotheta, I, parameters) elif key == ExpDecayBackground.__name__: add_expdecay_background(twotheta, I, parameters=[background_parameters.a0.value, background_parameters.b0.value, background_parameters.a1.value, background_parameters.b1.value, background_parameters.a2.value, background_parameters.b2.value]) # ADD PSEUDO VOIGTS --------------------------------------------------------------------------------------------- if not fit_global_parameters.additional_parameters is None: for key in fit_global_parameters.additional_parameters.keys(): additional_parameters = fit_global_parameters.get_additional_parameters_item(key, diffraction_pattern_index) if not additional_parameters is None: if key == SpuriousPeaks.__name__: add_pseudo_voigt_peaks(twotheta, I, additional_parameters) return I def fit_function_reciprocal(s, fit_global_parameters, diffraction_pattern_index = 0): line_profile = fit_global_parameters.measured_dataset.get_line_profile(diffraction_pattern_index) incident_radiation = fit_global_parameters.measured_dataset.get_incident_radiations_item(diffraction_pattern_index) # CONSTRUCTION OF EACH SEPARATE PEAK --------------------------------------------------------------------------- phases_number = fit_global_parameters.measured_dataset.get_phases_number() separated_phases_intensities = numpy.full((phases_number, 2), None) for phase_index in range(phases_number): phase = fit_global_parameters.measured_dataset.get_phase(phase_index) if not Phase.is_cube(phase.symmetry): raise ValueError("Only Cubic structures are supported by fit") reflections_number = line_profile.get_reflections_number(phase_index) separated_peaks_functions = numpy.full((reflections_number, 2), None) for reflection_index in range(reflections_number): if isinstance(phase, GSASIIPhase): s_analytical, intensity_analytical = create_one_peak(diffraction_pattern_index, phase_index, reflection_index, incident_radiation, phase, line_profile, fit_global_parameters, gsas_reflections_list=line_profile.get_additional_parameters_of_phase(phase_index)) else: s_analytical, intensity_analytical = create_one_peak(diffraction_pattern_index, phase_index, reflection_index, incident_radiation, phase, line_profile, fit_global_parameters) separated_peaks_functions[reflection_index, 0] = s_analytical separated_peaks_functions[reflection_index, 1] = intensity_analytical # INTERPOLATION ONTO ORIGINAL S VALUES ------------------------------------------------------------------------- intensity_phase = __merge_functions(separated_peaks_functions, s) # ADD SAXS size_parameters = fit_global_parameters.get_size_parameters(phase_index) if not size_parameters is None and size_parameters.active: if size_parameters.distribution == Distribution.DELTA and size_parameters.add_saxs: if not phase.use_structure: NotImplementedError("SAXS is available when the structural model is active") intensity_phase += saxs(s, size_parameters.mu.value, phase.a.value, phase.formula, phase.symmetry, size_parameters.normalize_to) # ADD DEBYE-WALLER FACTOR -------------------------------------------------------------------------------------- thermal_parameters = fit_global_parameters.get_thermal_parameters_item(ThermalParameters.__name__, diffraction_pattern_index) if not thermal_parameters is None: debye_waller_factor = thermal_parameters.get_debye_waller_factor(phase_index) if not debye_waller_factor is None: intensity_phase *= debye_waller(s, debye_waller_factor.value*0.01) # from A-2 to nm-2 separated_phases_intensities[phase_index, 0] = s separated_phases_intensities[phase_index, 1] = intensity_phase intensity = __merge_functions(separated_phases_intensities, s) if not incident_radiation.is_single_wavelength: principal_wavelength = incident_radiation.wavelength intensity_scaled = intensity*incident_radiation.get_principal_wavelenght_weight() separated_secondary_intensities = numpy.full((len(incident_radiation.secondary_wavelengths), 2), None) secondary_index = 0 for secondary_wavelength, secondary_wavelength_weigth in zip(incident_radiation.secondary_wavelengths, incident_radiation.secondary_wavelengths_weights): s_secondary = s * secondary_wavelength.value/principal_wavelength.value separated_secondary_intensities[secondary_index, 0] = s_secondary separated_secondary_intensities[secondary_index, 1] = intensity*secondary_wavelength_weigth.value secondary_index += 1 intensity = intensity_scaled + __merge_functions(separated_secondary_intensities, s) return intensity ################################################# # FOURIER FUNCTIONS ################################################# class FourierTranformFactory: @classmethod def get_fourier_transform(cls, type=FFTTypes.REAL_ONLY): if type == FFTTypes.REAL_ONLY: return FourierTransformRealOnly elif type == FFTTypes.FULL: return FourierTransformFull else: raise ValueError("Type not recognized") class FourierTransform: @classmethod def fft(cls, f, n_steps, dL): raise NotImplementedError() @classmethod def get_empty_fft(cls, n_steps, dL): s = numpy.fft.fftfreq(n_steps, dL) s = numpy.fft.fftshift(s) I = numpy.zeros(len(s)) I[int(len(s)/2)] = 1.0 return s, I class FourierTransformRealOnly(FourierTransform): @classmethod def _real_absolute_fourier(cls, y): return numpy.fft.fftshift(numpy.abs(numpy.real(numpy.fft.fft(y)))) @classmethod def _fft_normalized(cls, y_fft, n_steps, dL): s = numpy.fft.fftfreq(n_steps, dL) s = numpy.fft.fftshift(s) integral = numpy.trapz(y_fft, s) return s, y_fft / integral @classmethod def fft(cls, f, n_steps, dL): return cls._fft_normalized(cls._real_absolute_fourier(f), n_steps, dL) from scipy.integrate import simps class FourierTransformFull(FourierTransform): @classmethod def _full_fourier(cls, y): return numpy.fft.fftshift(numpy.fft.fft(y)) @classmethod def _fft_shifted(cls, y_fft, n_steps, dL): s = numpy.fft.fftfreq(n_steps, dL) s = numpy.fft.fftshift(s) y_fft -= y_fft[0] return s, y_fft @classmethod def _fft_real(cls, f, n_steps, dL): return cls._fft_shifted(numpy.real(cls._full_fourier(f)), n_steps, dL) @classmethod def _fft_imag(cls, f, n_steps, dL): return cls._fft_shifted(numpy.imag(cls._full_fourier(f)), n_steps, dL) @classmethod def _normalize(cls, s, i): return s, i/simps(i, s) @classmethod def fft(cls, f, n_steps, dL): sr, fft_real = cls._fft_real(numpy.real(f), n_steps, dL) si, fft_imag = cls._fft_imag(numpy.imag(f), n_steps, dL) return cls._normalize(sr, fft_real - fft_imag) ################################################# # CALCOLO DI UN SINGOLO PICCO ################################################# def create_one_peak(diffraction_pattern_index, phase_index, reflection_index, incident_radiation, phase, line_profile, fit_global_parameters, gsas_reflections_list=None): fft_type = fit_global_parameters.fit_initialization.fft_parameters.fft_type fit_space_parameters = fit_global_parameters.space_parameters() reflection = line_profile.get_reflection(phase_index, reflection_index) wavelength = incident_radiation.wavelength.value lattice_parameter = phase.a.value fourier_amplitudes = None # INSTRUMENTAL PROFILE --------------------------------------------------------------------------------------------- instrumental_profile_parameters = fit_global_parameters.get_instrumental_profile_parameters_item(Caglioti.__name__, diffraction_pattern_index) if not instrumental_profile_parameters is None: if fourier_amplitudes is None: fourier_amplitudes = instrumental_function(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, wavelength, instrumental_profile_parameters.U.value, instrumental_profile_parameters.V.value, instrumental_profile_parameters.W.value, instrumental_profile_parameters.a.value, instrumental_profile_parameters.b.value, instrumental_profile_parameters.c.value) else: fourier_amplitudes *= instrumental_function(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, wavelength, instrumental_profile_parameters.U.value, instrumental_profile_parameters.V.value, instrumental_profile_parameters.W.value, instrumental_profile_parameters.a.value, instrumental_profile_parameters.b.value, instrumental_profile_parameters.c.value) # SIZE ------------------------------------------------------------------------------------------------------------- size_parameters = fit_global_parameters.get_size_parameters(phase_index) if not size_parameters is None and size_parameters.active: if size_parameters.distribution == Distribution.LOGNORMAL: if size_parameters.shape == Shape.SPHERE: if fourier_amplitudes is None: fourier_amplitudes = size_function_lognormal(fit_space_parameters.L, size_parameters.sigma.value, size_parameters.mu.value) else: fourier_amplitudes *= size_function_lognormal(fit_space_parameters.L, size_parameters.sigma.value, size_parameters.mu.value) elif size_parameters.shape == Shape.WULFF: if fourier_amplitudes is None: fourier_amplitudes = size_function_wulff_solids_lognormal(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, size_parameters.sigma.value, size_parameters.mu.value, size_parameters.truncation.value, size_parameters.cube_face) else: fourier_amplitudes *=size_function_wulff_solids_lognormal(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, size_parameters.sigma.value, size_parameters.mu.value, size_parameters.truncation.value, size_parameters.cube_face) elif size_parameters.distribution == Distribution.GAMMA: if fourier_amplitudes is None: fourier_amplitudes = size_function_gamma(fit_space_parameters.L, size_parameters.sigma.value, size_parameters.mu.value) else: fourier_amplitudes *= size_function_gamma(fit_space_parameters.L, size_parameters.sigma.value, size_parameters.mu.value) elif size_parameters.distribution == Distribution.DELTA: if fourier_amplitudes is None: fourier_amplitudes = size_function_delta(fit_space_parameters.L, size_parameters.mu.value) else: fourier_amplitudes *= size_function_delta(fit_space_parameters.L, size_parameters.mu.value) # STRAIN ----------------------------------------------------------------------------------------------------------- strain_parameters = fit_global_parameters.get_strain_parameters(phase_index) if not strain_parameters is None and strain_parameters.active: if isinstance(strain_parameters, InvariantPAH): # INVARIANT PAH if fourier_amplitudes is None: fourier_amplitudes = strain_invariant_function_pah(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.aa.value, strain_parameters.bb.value, strain_parameters.get_invariant(reflection.h, reflection.k, reflection.l)) else: fourier_amplitudes *= strain_invariant_function_pah(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.aa.value, strain_parameters.bb.value, strain_parameters.get_invariant(reflection.h, reflection.k, reflection.l)) elif isinstance(strain_parameters, KrivoglazWilkensModel): # KRIVOGLAZ-WILKENS if fourier_amplitudes is None: fourier_amplitudes = strain_krivoglaz_wilkens(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.rho.value, strain_parameters.Re.value, strain_parameters.Ae.value, strain_parameters.Be.value, strain_parameters.As.value, strain_parameters.Bs.value, strain_parameters.mix.value, strain_parameters.b.value) else: fourier_amplitudes *= strain_krivoglaz_wilkens(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.rho.value, strain_parameters.Re.value, strain_parameters.Ae.value, strain_parameters.Be.value, strain_parameters.As.value, strain_parameters.Bs.value, strain_parameters.mix.value, strain_parameters.b.value) elif isinstance(strain_parameters, WarrenModel): # WARREN fourier_amplitudes_re, fourier_amplitudes_im = strain_warren_function(fit_space_parameters.L, reflection.h, reflection.k, reflection.l, lattice_parameter, strain_parameters.average_cell_parameter.value) if fft_type == FFTTypes.FULL: if fourier_amplitudes is None: fourier_amplitudes = fourier_amplitudes_re + 1j*fourier_amplitudes_im else: fourier_amplitudes = (fourier_amplitudes*fourier_amplitudes_re) + 1j*(fourier_amplitudes*fourier_amplitudes_im) elif fft_type == FFTTypes.REAL_ONLY: if fourier_amplitudes is None: fourier_amplitudes = fourier_amplitudes_re else: fourier_amplitudes *= fourier_amplitudes_re # FFT ----------------------------------------------------------------------------------------------------------- if not fourier_amplitudes is None: s, I = FourierTranformFactory.get_fourier_transform(fft_type).fft(fourier_amplitudes, n_steps=fit_global_parameters.fit_initialization.fft_parameters.n_step, dL=fit_space_parameters.dL) else: s, I = FourierTransform.get_empty_fft(n_steps=fit_global_parameters.fit_initialization.fft_parameters.n_step, dL=fit_space_parameters.dL) s_hkl = Utilities.s_hkl(lattice_parameter, reflection.h, reflection.k, reflection.l) s += s_hkl # INTENSITY MODULATION: STRUCTURAL MODEL YES/NO -------------------------------------------------------------------- if phase.use_structure: if isinstance(phase, GSASIIPhase): I *= phase.intensity_scale_factor.value * gsasii_intensity_factor(reflection.h, reflection.k, reflection.l, gsas_reflections_list) else: I *= phase.intensity_scale_factor.value * \ multiplicity_cubic(reflection.h, reflection.k, reflection.l) * \ squared_modulus_structure_factor(s_hkl, phase.formula, reflection.h, reflection.k, reflection.l, phase.symmetry) else: I *= reflection.intensity.value #TODO: AGGIUNGERE GESTIONE TDS con strutture dati + widget ad hoc # PEAK SHIFTS ----------------------------------------------------------------------------------------------------- if not fit_global_parameters.shift_parameters is None: theta = Utilities.theta(s, wavelength) for key in fit_global_parameters.shift_parameters.keys(): shift_parameters = fit_global_parameters.get_shift_parameters_item(key, diffraction_pattern_index) if not shift_parameters is None: if key == Lab6TanCorrection.__name__: s += lab6_tan_correction(theta, wavelength, shift_parameters.ax.value, shift_parameters.bx.value, shift_parameters.cx.value, shift_parameters.dx.value, shift_parameters.ex.value) elif key == ZeroError.__name__: s += Utilities.s(shift_parameters.shift.value/2, wavelength) elif key == SpecimenDisplacement.__name__: s += specimen_displacement(theta, wavelength, shift_parameters.goniometer_radius, shift_parameters.displacement.value*1e-6) # to m # LORENTZ FACTOR -------------------------------------------------------------------------------------- if not fit_global_parameters.instrumental_profile_parameters is None: polarization_parameters = fit_global_parameters.get_instrumental_profile_parameters_item(PolarizationParameters.__name__, diffraction_pattern_index) if not polarization_parameters is None: if polarization_parameters.use_lorentz_factor: if polarization_parameters.lorentz_formula == LorentzFormula.Shkl_Shkl: I *= lorentz_factor_simplified_normalized(s_hkl, wavelength) elif polarization_parameters.lorentz_formula == LorentzFormula.S_Shkl: I *= lorentz_factor_normalized(s, s_hkl, wavelength) return s, I ###################################################################### # FUNZIONI WPPM ###################################################################### import numpy from scipy.special import erfc import os # performance improvement ###################################################################### # THERMAL AND POLARIZATION ###################################################################### def debye_waller(s, B): return numpy.exp(-0.5*B*(s**2)) # it's the exp(-2M) = exp(-Bs^2/2) def lorentz_factor(s, s_hkl): return 1/(s*s_hkl) def lorentz_factor_normalized(s, s_hkl, wavelength): return lorentz_factor(s, s_hkl)/numpy.sqrt(1 - (s*wavelength/2)**2) def lorentz_factor_simplified(s_hkl): return 1/(s_hkl**2) def lorentz_factor_simplified_normalized(s_hkl, wavelength): return lorentz_factor_simplified(s_hkl)/numpy.sqrt(1 - (s_hkl*wavelength/2)**2) def polarization_factor(twotheta, twotheta_mono, degree_of_polarization, beampath): Q = degree_of_polarization if twotheta_mono is None or twotheta_mono == 0.0: return ((1+Q) + (1-Q)*(numpy.cos(twotheta)**2))/2 else: if beampath == Beampath.PRIMARY: return ((1+Q) + (1-Q)*(
numpy.cos(twotheta_mono)
numpy.cos
""" Unit tests for the Permutation explainer. """ # pylint: disable=missing-function-docstring import pickle import numpy as np import shap from . import common def test_exact_second_order(): """ This tests that the Perumtation explain gives exact answers for second order functions. """
np.random.seed(0)
numpy.random.seed
import nose import copy import numpy as np from scipy.sparse import csr_matrix import pycuda.autoinit import pycuda.gpuarray as gpu from pycuda.driver import Stream from binet import cusparse from binet.gpucsrarray import * from numpy.testing import assert_allclose, assert_array_equal from nose.tools import nottest init() def test_gpucsrarray(): A =
np.random.laplace(size=(5, 3))
numpy.random.laplace
#!/usr/bin/env python """ wavelength.py =============== :: ARG=6 ipython -i wavelength.py ARG=7 ipython -i wavelength.py ARG=8 ipython -i wavelength.py ARG=11 ipython -i wavelength.py ARG=12 ipython -i wavelength.py ARG=13 ipython -i wavelength.py ARG=15 ipython -i wavelength.py """ import os, numpy as np, logging log = logging.getLogger(__name__) from opticks.ana.key import keydir from opticks.ana.nbase import chi2 class Wavelength(object): """ Comparing wavelength distribs between many different samples """ FOLD = "/tmp/wavelength" def get_key(self, label): key = None for k,v in self.l.items(): if v == label: key = k pass pass return key def get_keys(self, a_label, b_label): a = self.get_key(a_label) b = self.get_key(b_label) return a, b def __call__(self, label): return self.get_key(label) def format(self, i): return " %2d : %d : %50s : %s " % (i, os.path.exists(self.p[i]), self.l[i], self.p[i]) def __init__(self, kd): p = {} l = {} l[0] = "DsG4Scintillator_G4OpticksAnaMgr" ## horses mouth p[0] = "/tmp/G4OpticksAnaMgr/WavelengthSamples.npy" l[1] = "Opticks_QCtxTest_hd20" p[1] = os.path.join("/tmp/QCtxTest", "wavelength_20.npy") l[2] = "Opticks_QCtxTest_hd0" p[2] = os.path.join("/tmp/QCtxTest", "wavelength_0.npy") l[3] = "Opticks_QCtxTest_hd20_cudaFilterModePoint" p[3] = os.path.join("/tmp/QCtxTest", "wavelength_20_cudaFilterModePoint.npy") l[4] = "Opticks_QCtxTest_hd0_cudaFilterModePoint" p[4] = os.path.join("/tmp/QCtxTest", "wavelength_0_cudaFilterModePoint.npy") l[5] = "X4" p[5] = "/tmp/X4ScintillationTest/g4localSamples.npy" l[6] = "GScintillatorLib_np_interp" p[6] = os.path.join(kd,"GScintillatorLib/GScintillatorLib.npy") l[7] = "ck_photon_1M" p[7] = os.path.join("/tmp/QCtxTest", "cerenkov_photon_1000000.npy") l[8] = "G4Cerenkov_modified_SKIP_CONTINUE" p[8] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_step_length_100000.000_SKIP_CONTINUE", "GenWavelength.npy") l[9] = "G4Cerenkov_modified_ASIS" p[9] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_step_length_100000.000_ASIS", "GenWavelength.npy") l[10] = "G4Cerenkov_modified_SKIP_CONTINUE_10k" p[10] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_override_fNumPhotons_10000_SKIP_CONTINUE", "GenWavelength.npy") l[11] = "G4Cerenkov_modified_SKIP_CONTINUE_1M" p[11] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_override_fNumPhotons_1000000_SKIP_CONTINUE", "GenWavelength.npy") l[12] = "G4Cerenkov_modified_SKIP_CONTINUE_1M_seed1" p[12] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_override_fNumPhotons_1000000_SKIP_CONTINUEseed_1_", "GenWavelength.npy") l[13] = "G4Cerenkov_modified_SKIP_CONTINUE_1M_seed2" p[13] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_override_fNumPhotons_1000000_SKIP_CONTINUEseed_2_", "GenWavelength.npy") l[14] = "G4Cerenkov_modified_SKIP_CONTINUE_1M_FLOAT_TEST" p[14] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_override_fNumPhotons_1000000_SKIP_CONTINUE_FLOAT_TEST", "GenWavelength.npy") l[15] = "ck_photon_1M_FLIP_RANDOM" p[15] = os.path.join("/tmp/QCtxTest", "cerenkov_photon_FLIP_RANDOM_1000000.npy") l[16] = "G4Cerenkov_modified_SKIP_CONTINUE_1M_seed1f" p[16] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_override_fNumPhotons_1000000_SKIP_CONTINUE_FLOAT_TEST_seed_1_", "GenWavelength.npy") l[17] = "G4Cerenkov_modified_SKIP_CONTINUE_1M_seed2f" p[17] = os.path.join("/tmp/G4Cerenkov_modifiedTest", "BetaInverse_1.500_override_fNumPhotons_1000000_SKIP_CONTINUE_FLOAT_TEST_seed_2_", "GenWavelength.npy") l[18] = "ana_ck_1M" p[18] = "/tmp/ck/ck_1000000.npy" l[19] = "G4Cerenkov_modified_SKIP_CONTINUE_1M_PRECOOKED" p[19] = "/tmp/G4Cerenkov_modifiedTest/BetaInverse_1.500_override_fNumPhotons_1000000_SKIP_CONTINUE_PRECOOKED/GenWavelength.npy" l[20] = "ck_photon_enprop_1M" p[20] = os.path.join("/tmp/QCtxTest", "cerenkov_photon_enprop_1000000.npy") l[21] = "ck_photon_expt_1M" p[21] = os.path.join("/tmp/QCtxTest", "cerenkov_photon_expt_1000000.npy") l[22] = "rindex_en_integrated_1M" p[22] = "/tmp/rindex/en_integrated_lookup_1M.npy" self.p = p self.l = l dom = np.arange(80, 400, 4) #dom = np.arange(300, 600, 1) #dom = np.arange(385, 475, 1) #dom = np.arange(350, 550, 1) a = {} e = {} w = {} h = {} r = {} for i in range(len(l)): p_exists = os.path.exists(p[i]) print(self.format(i)) if not p_exists: a[i] = None w[i] = None h[i] = None else: a[i] = np.load(p[i]) if l[i].startswith("ck_photon"): e[i] = a[i][:,0,0] w[i] = a[i][:,0,1] r[i] = a[i][:,0,2] elif l[i].startswith("rindex_en_integrated"): e[i] = a[i] w[i] = 1240./e[i] r[i] = np.zeros( len(a[i]) ) elif l[i].startswith("ana_ck"): w[i] = a[i][:,0,1] elif l[i].startswith("G4Cerenkov_modified"): e[i] = a[i][:,0,0] w[i] = a[i][:,0,1] r[i] = a[i][:,0,2] elif l[i] == "GScintillatorLib_np_interp": aa = a[i] self.aa = aa aa0 = aa[0,:,0] bb0 = np.linspace(0,1,len(aa0)) u =
np.random.rand(1000000)
numpy.random.rand
import gc import six import numpy as np from abc import ABCMeta, abstractmethod from .base import BaseEstimator class BaseSVM(six.with_metaclass(ABCMeta, BaseEstimator)): def __init__(self, kernel='linear', degree=3, C=1.0, epsilon=1e-3, max_iter=100): self.max_iter = max_iter self._kernel = kernel self.degree = degree self.C = C self.epsilon = epsilon # 显式的初始化变量 def init(self, X: np.ndarray, y: np.ndarray): self.m, self.n = X.shape self.X = X self.y = y self.b = 0.0 self.K = self.kernel_mat(X, X) # 全部计算好的kernel self.alpha = np.zeros(self.m) self.g_v = self.g_vec() self.E = self.g_v - self.y # 将Ei保存在一个列表里 # g(x),输入xi(X[i]) def g(self, i): in_sigma = self.alpha * self.y * self.K[i] self.g_v[i] = np.sum(in_sigma) + self.b return self.g_v[i] # vec结尾的是函数,v结尾的是缓存向量 def g_vec(self): before_sigma = self.K * self.alpha * self.y return np.sum(before_sigma, axis=-1) + self.b # E(x)为g(x)对输入x的预测值和y的差 def _e(self, i): return self.g(i) - self.y[i] # 核函数 def kernel(self, x1: np.ndarray, x2: np.ndarray): if self._kernel == 'linear': return np.sum(x1 * x2) elif self._kernel == 'poly': return (np.sum(x1 * x2) + 1) ** self.degree return 0 # 向量化kernel,一次获得xi对所有x的 def kernel_vec(self, x: np.ndarray): # todo: 待添加更多kernel if self._kernel == 'linear': return np.sum(self.X * x, axis=-1) elif self._kernel == 'poly': return (np.sum(self.X * x, axis=-1) + 1) ** self.degree return None # 直接计算所有kernel,以后直接调用 def kernel_mat(self, X1: np.ndarray, X2: np.ndarray): x1 = X1[np.newaxis, ...] x2 = X2[:, np.newaxis, :] if self._kernel == 'linear': return np.sum(x1 * x2, axis=-1) # 广播,对最后一个维度求和 elif self._kernel == 'poly': return (np.sum(x1 * x2, axis=-1) + 1) ** self.degree return None # 选择α1 α2,返回index def select_alpha(self): _a = self.alpha # 得到mask con1, con2 = (_a > 0), (_a < self.C) # yi*g(xi) ygx = self.y * self.g_v # αi == 0 and yi*gxi ≥ 1-ε KKT条件 err1 = ygx - 1 + self.epsilon err1[(con1 & (err1 <= 0)) | (~con1 & (err1 > 0))] = 0 # 不在此类或符合置0 # 0 < αi < C and abs(yi*gxi - 1) ≤ ε err2 = np.abs(ygx - 1) - self.epsilon err2[~con1 | ~con2] = 0 # 置 αi ≤ 0 and αi ≥ C 的为0 # αi == C and yi*gxi ≤ 1+ε err3 = ygx - 1 - self.epsilon err3[(con2 & (err3 >= 0)) | (~con2 & (err3 < 0))] = 0 # 计算总error,排序获得index err = err1 ** 2 + err2 ** 2 + err3 ** 2 # α1为违反KKT条件最严重的点 i1 = np.argmax(err) # 如果E1是+,选择最小的;如果E1是负的,选择最大的 i2 = np.argmin(self.E) if self.E[i1] >= 0 else np.argmax(self.E) if i2 == i1: # 如果相等,返回第二大or小的 if self.E[i1] >= 0: i2 = np.argsort(self.E)[1] else: i2 = np.argsort(self.E)[-2] return i1, i2 # 优化α1 α2,更新b def optimize(self, i1, i2): a1_old, a2_old, b_old = self.alpha[i1], self.alpha[i2], self.b _y, _K = self.y, self.K # 边界 if _y[i1] == _y[i2]: L = max(0, a2_old + a1_old - self.C) H = min(self.C, a2_old + a1_old) else: L = max(0, a2_old - a1_old) H = min(self.C, self.C + a2_old - a1_old) E1, E2 = self.E[i1], self.E[i2] eta = _K[i1, i1] + _K[i2, i2] - 2 * _K[i1, i2] # 7.107 η = K11 + K22 - 2K12 if eta <= 0: print('eta <= 0') return a2_new_unc = a2_old + _y[i2] * (E1 - E2) / eta # 7.106 def cut_alpha(a, h, l): # 7.108 if a > h: return h elif a < l: return l else: return a a2_new = cut_alpha(a2_new_unc, H, L) a1_new = a1_old + _y[i1] * _y[i2] * (a2_old - a2_new) # 7.109 b1_new = -E1 - _y[i1] * _K[i1, i1] * (a1_new - a1_old) - \ _y[i2] * _K[i2, i1] * (a2_new - a2_old) + b_old # 7.115 b2_new = -E2 - _y[i1] * _K[i1, i2] * (a1_new - a1_old) - \ _y[i2] * _K[i2, i2] * (a2_new - a2_old) + b_old # 7.116 if 0 < a1_new < self.C: b_new = b1_new elif 0 < a2_new < self.C: b_new = b2_new else: # 选择中点,否则b1=b2的 b_new = (b1_new + b2_new) / 2 def e_new(i): in_sigma = self.alpha * self.y * self.K[i] in_sigma[self.alpha <= 0] = 0 in_sigma[self.alpha > self.C] = 0 return np.sum(in_sigma) + self.b - self.y[i] # 更新参数 self.alpha[i1], self.alpha[i2] = a1_new, a2_new self.b = b_new self.E[i1], self.E[i2] = e_new(i1), e_new(i2) return None # 停机条件 def shutdown(self): c, eps = self.C, self.epsilon _a, _y = self.alpha, self.y if np.any(_a < 0) | np.any(_a > c): return False elif np.abs(np.sum(_a * _y)) > eps: return False else: ygx = _y * self.g_v if np.any(ygx[_a == 0] < 1 - eps): return False elif np.any(np.abs(ygx[(0 < _a) & (_a < c)] - 1) > eps): return False elif np.any(ygx[_a == c] > 1 + eps): return False return True def fit(self, X: np.ndarray, y: np.ndarray): self.init(X, y) for t in range(self.max_iter): i1, i2 = self.select_alpha() # 选择优化变量 self.optimize(i1, i2) # 求解两个变量的最优化问题 if self.shutdown(): # 停机条件 # print('Early stop') break return def predict(self, X): fx = self.f(X) fx[fx >= 0] = 1 fx[fx < 0] = -1 return fx # 决策函数 def f(self, X): k_mat = self.kernel_mat(self.X, X) # shape: n_test, n_train in_sigma = k_mat * self.alpha * self.y # 广播 return np.sum(in_sigma, axis=-1) + self.b class SVC(BaseSVM): def __init__(self, kernel='linear', degree=3, C=1.0, epsilon=1e-3, max_iter=100, decision_function_shape='ovr'): super(SVC, self).__init__(kernel=kernel, degree=degree, C=C, epsilon=epsilon, max_iter=max_iter) self.decision_function_shape = decision_function_shape # 生成二分类的数据 def get_xyi(self, X, y, i, j=0): xi, yi = X.copy(), y.copy() if self.decision_function_shape == 'ovr': yi[yi != i] = -1 yi[yi == i] = 1 elif self.decision_function_shape == 'ovo': pi, pj = yi == i, yi == j xi, yi = xi[pi | pj], yi[pi | pj] yi[yi == j] = -1 yi[yi == i] = 1 return xi, yi def fit(self, X: np.ndarray, y: np.ndarray): self.n_classes = len(set(y.tolist())) if self.decision_function_shape == 'ovr': self.K = self.kernel_mat(X, X) self.svms = list() for i in range(self.n_classes): svm = BaseSVM(self._kernel, self.degree, self.C, self.epsilon, self.max_iter) svm.fit(*self.get_xyi(X, y, i)) del svm.K gc.collect() svm.K = self.K self.svms.append(svm) elif self.decision_function_shape == 'ovo': self.svmd = dict() for i in range(self.n_classes): for j in range(i + 1, self.n_classes): svm = BaseSVM(self._kernel, self.degree, self.C, self.epsilon, self.max_iter) xij, yij = self.get_xyi(X, y, i, j) svm.fit(xij, yij) self.svmd[f"{i}-{j}"] = svm else: raise ValueError("不支持的策略!") # 多分类决策函数 def decision_function(self, predictions: np.ndarray) -> np.ndarray: pred_y = np.zeros(predictions.shape[0]) if self.decision_function_shape == 'ovr': pred_y = predictions.argmax(axis=-1) elif self.decision_function_shape == 'ovo': pred_y = predictions.argmax(axis=-1) return pred_y def predict(self, X): n_samples = X.shape[0] predictions =
np.zeros([n_samples, self.n_classes])
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Tue Oct 8 12:20:41 2019 @author: Mike """ import numpy as np import matplotlib.pyplot as plt from keras.datasets import cifar10 from keras.utils import np_utils from keras import backend as K # In *older* versions of Tensorflow/Keras you may need to adjust the image # dimension ordering. Read about channel ordering here: # https://machinelearningmastery.com/a-gentle-introduction-to-channels-first-and-channels-last-image-formats-for-deep-learning/ # This is the main function. You need to write the getModel and fitModel functions to pass to this. # Call your functions 'myGetModel' and 'myFitModel'. # The getModel function should accept an object of the CIFAR class, and return a compiled Keras CNN model. # In this function you will specify the network structure (including regularization) and the optimizer to # be used (and its parameters like learning rate), and run compile the model (in the Keras sense of running # model.compile). # The fitModel function should accect two arguments. The first is the CNN model you return from your getModel # function, and the second is the CIFAR classed data object. It will return a trained Keras CNN model, which # will then be applied to the test data. In this function you will train the model, using the Keras model.fit # function. You will need to specify all parameters of the training algorithm (batch size, etc), and the # callbacks you will use (EarlyStopping and ModelCheckpoint). You will need to make sure you save and load # into the model the weight values of its best performing epoch. def runImageClassification(getModel=None,fitModel=None,seed=7): # Fetch data. You may need to be connected to the internet the first time this is done. # After the first time, it should be available in your system. On the off chance this # is not the case on your system and you find yourself repeatedly downloading the data, # you should change this code so you can load the data once and pass it to this function. print("Preparing data...") data=CIFAR(seed) # Create model print("Creating model...") model=getModel(data) # Fit model print("Fitting model...") model=fitModel(model,data) # Evaluate on test data print("Evaluating model...") score = model.evaluate(data.x_test, data.y_test, verbose=0) print('Test accuracy:', score[1]) # This is the class that wraps the CIFAR data. You will probably need to be connected to the # internet the first time you create an object of this class, as the data will be downloaded. # After that, the data should be stored by Keras and no downloading will be required. # Important fields that you will need to use are: x_train, y_train, x_valid, y_valid, input_dim and # num_classes. The first four of these are the training and validation data (split into features and # target). Note that these have been made ready for use with a Keras network - check out the code # if you are interested. The last two are the number of input features and the number of target # classes. These will be needed when defining your CNN. # The only public method is the showImages function, which you can use to see some labelled images # from the (validation) data. # Remember that the x_test and y_test fields will be blank when your functions are run in evaluation - # so you cannot peek at these cases! class CIFAR: def __init__(self,seed=0): # Get and split data data = self.__getData(seed) self.x_train_raw=data[0][0] self.y_train_raw=data[0][1] self.x_valid_raw=data[1][0] self.y_valid_raw=data[1][1] self.x_test_raw=data[2][0] self.y_test_raw=data[2][1] # Record input/output dimensions self.num_classes=10 self.input_dim=self.x_train_raw.shape[1:] # Convert data self.y_train = np_utils.to_categorical(self.y_train_raw, self.num_classes) self.y_valid = np_utils.to_categorical(self.y_valid_raw, self.num_classes) self.y_test = np_utils.to_categorical(self.y_test_raw, self.num_classes) self.x_train = self.x_train_raw.astype('float32') self.x_valid = self.x_valid_raw.astype('float32') self.x_test = self.x_test_raw.astype('float32') self.x_train /= 255 self.x_valid /= 255 self.x_test /= 255 # Class names self.class_names=['airplane','automobile','bird','cat','deer', 'dog','frog','horse','ship','truck'] def __getData (self,seed=0): (x_train, y_train), (x_test, y_test) = cifar10.load_data() return self.__shuffleData(x_train,y_train,x_test,y_test,seed) def __shuffleData (self,x_train,y_train,x_test,y_test,seed=0): tr_perc=.75 va_perc=.15 x=np.concatenate((x_train,x_test)) y=np.concatenate((y_train,y_test)) np.random.seed(seed) np.random.shuffle(x)
np.random.seed(seed)
numpy.random.seed
#!/usr/bin/env python import logging import numpy as np from scipy import linalg from timeit import default_timer as timer from os.path import isfile from os import remove from tools import get_input, latex_float from hamiltonian import main as hamiltonian from plots import bar_plot, histogram def readH(format): """Read the Hamiltonian using the given format""" if format == 'npz': if isfile('hamilt.npz'): hamilt = np.load('hamilt.npz') return hamilt['H'] else: # Fallback to Fortran binary format = 'fortran_bin' # print('Hamiltonian file not found. Computing again.') # b, d, n = get_input() # return hamiltonian(1, b, d, n) if format == 'fortran_bin': _, _, n = get_input() nn = int(n * (n + 1) / 2) H = np.empty((nn, nn)) with open('hamilt.bin', 'rb') as h: for i in range(nn): H[i] = np.fromfile(h, dtype='float64', count=nn).reshape(nn) return H if format == 'text': H = np.loadtxt("hamilt.out") return H.T def get(return_eigv=False, return_ket=False, return_index=False, return_cmax=False, return_H=False): """Return the eigenvalues and optionally the eigenvectors, the number operator form of the states(ket), the state index of the states, the max coefficient index and the Hamiltonian""" # Load files H = readH('npz') # read the Hamiltonian # Save to npz to save sapce if not isfile('hamilt.npz'): np.savez_compressed('hamilt.npz', H=H) remove('hamilt.bin') b, d, n = get_input() n = int(n) index = np.array([(n1, n2) for n1 in range(n) for n2 in range(n - n1)]) # Get eigenvalues and eigenvectors if isfile('eigensystem.npz'): print('Used cached result for: B =', b, 'D =', d, 'N =', n) eigensystem = np.load('eigensystem.npz') E = eigensystem['E'] eigenvectors = eigensystem['eigenvectors'] else: start = timer() E, eigenvectors = linalg.eigh(H, turbo=True) end = timer() print('Diagonalisation for N =', n, ':', end - start, 'seconds') # Save the results np.savez_compressed('eigensystem.npz', E=E, eigenvectors=eigenvectors) eigenvectors = np.transpose(eigenvectors) # each eigenvector is on one row # max coefficient in eigenvector c_max = np.empty(eigenvectors.shape[0], dtype=int) # The index of the largest coefficient for i in range(eigenvectors.shape[0]): c_max[i] = np.argmax(np.abs(eigenvectors[i])) results = (E, ) if return_eigv: results += (eigenvectors, ) if return_ket: results += (index[c_max], ) if return_index: results += (index, ) if return_cmax: results += (c_max, ) if return_H: results += (H, ) return results def levels(E, ket, epsilon=1e-8, colors=''): """Return the degenerate subspace index and optionally the colormap""" # irreducible representations # 0 - unidimensional symmetric representation (reuns) # 1 - unidimensional anti-symmetric representation (reuna) # 2 - bidimensional representation (rebde) ir_reps = np.zeros([E.size], dtype=np.uint8) return_colors = len(colors) if return_colors: colormap = [''] * E.size # colors used # Group energy levels such that a level contains all the eigenvalues with # the same value delta = np.diff(E) avgSpacing = (E[-1] - E[0]) / E.size relsp = delta / avgSpacing print('levels epsilon:', epsilon) print('avgSpacing:', avgSpacing) levels = np.split(E, np.where(relsp > epsilon)[0] + 1) states = np.split(ket, np.where(relsp > epsilon)[0] + 1) # Energy difference (between two consecutive levels) histogram histogram(delta, xlabel=r'$\Delta E$', xscale='log', bins=np.pad(np.logspace(-15, 1, 17), (1, 0), mode='constant'), ylabel='No. of levels', fname='hist_delta.pdf', figsize=(5.8, 3)) # Relative spacing histogram histogram(relsp, xscale='log', ylabel='No. of levels', bins=np.pad(np.logspace(-13, 1, 15), (1, 0), mode='constant'), fname='hist_relsp.pdf', xlabel='$s$', figsize=(2.8, 3)) # Energy difference bar plot bar_plot(delta, figsize=(5.8, 3), ylabel=r'$\Delta E$', yscale='log', xlabel='index', fname='bar_delta.pdf', dpi=720) # Relative spacing bar plot bar_plot(relsp, figsize=(5.8, 3), yscale='log', fname='relsp.pdf', dpi=720, label=r'$\varepsilon=' + latex_float(epsilon) + '$', axhline_y=epsilon, ylabel='$s$', xlabel='index') # Check for bidimensional representation selection problems levels_cp = list(levels) states_cp = list(states) log = open('log.txt', 'a') log.write('\n\nlevels epsilon: ' + str(epsilon)) for i in range(len(levels_cp)): if levels_cp[i].size > 2: local_relsp = np.diff(levels_cp[i]) / avgSpacing log.write('\nInfo: Found ' + str(levels_cp[i].size) + ' levels ' + 'in the bidimensional representation with: \nenergy: ' + str(levels_cp[i]) + '\ndelta: ' + str(
np.diff(levels_cp[i])
numpy.diff
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from __future__ import division import unittest import math import numpy as np from singa import singa_wrap as singa_api from singa import tensor from cuda_helper import gpu_dev, cpu_dev def _np_bn_training(x, scale, bias, rm, rv, momentum=0.1, e=1e-5): channel = x.shape[1] np.testing.assert_array_almost_equal(scale.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(bias.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(rm.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(rv.shape, (1, channel, 1, 1)) batch_m = x.mean(axis=(0, 2, 3), keepdims=True) batch_v = x.var(axis=(0, 2, 3), keepdims=True) x_norm = (x - batch_m) / np.sqrt(batch_v + e) y_norm = x_norm * scale + bias # https://arxiv.org/pdf/1502.03167.pdf s = list(x.shape) s[1] = 1 batch_v_unbiased = np.prod(s) * batch_v / (np.prod(s) - 1) rm = momentum * batch_m + (1 - momentum) * rm rv = momentum * batch_v_unbiased + (1 - momentum) * rv # https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnBatchNormalizationForwardTraining resultSaveInvVariance = 1 / np.sqrt(batch_v) return y_norm, rm, rv, batch_m, resultSaveInvVariance def _np_bn_testing(x, scale, bias, rm, rv, momentum=0.1, e=1e-5): channel = x.shape[1] np.testing.assert_array_almost_equal(scale.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(bias.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(rm.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(rv.shape, (1, channel, 1, 1)) return scale * (x - rm) / np.sqrt(rv + e) + bias def _cTensor_to_pyTensor(cTensor): new_t = tensor.Tensor() new_t.data = cTensor new_t.shape = tuple(new_t.data.shape()) new_t.device = new_t.data.device() new_t.dtype = new_t.data.data_type() return new_t def _ctensor_eq_ndarray(t1, np1): d = t1.device() t1.ToHost() if t1.data_type() == singa_api.kInt: np.testing.assert_array_almost_equal(t1.GetIntValue(t1.Size()), np1.flatten()) elif t1.data_type() == singa_api.kFloat32: np.testing.assert_array_almost_equal(t1.GetFloatValue(t1.Size()), np1.flatten()) if np1.dtype == np.float32: np.testing.assert_equal(t1.data_type(), singa_api.kFloat32) elif np1.dtype == np.int32: np.testing.assert_equal(t1.data_type(), singa_api.kInt) np.testing.assert_array_almost_equal(t1.shape(), np1.shape) t1.ToDevice(d) def print_t(t1): d = t1.device() t1.ToHost() if t1.data_type() == singa_api.kInt: print(t1.GetIntValue(t1.Size())) elif t1.data_type() == singa_api.kFloat32: print(t1.GetFloatValue(t1.Size())) t1.ToDevice(d) class TestAPI(unittest.TestCase): @unittest.skipIf(not singa_api.USE_CUDA, 'CUDA is not enabled') def test_batchnorm_training_gpu(self): dev = gpu_dev def _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.1): # np api (y_1, rm_1, rv_1, bm_1, bv_1) = _np_bn_training(x_0, s_0, b_0, rm_0, rv_0, momentum=m_0) # singa api rm_t = tensor.Tensor(device=dev, data=rm_0) rv_t = tensor.Tensor(device=dev, data=rv_0) hndl = singa_api.CudnnBatchNormHandle( m_0, tensor.Tensor(device=dev, data=x_0).data) (y_2_c, bm_2_c, bv_2_c) = singa_api.GpuBatchNormForwardTraining( hndl, tensor.Tensor(device=dev, data=x_0).data, tensor.Tensor(device=dev, data=s_0).data, tensor.Tensor(device=dev, data=b_0).data, rm_t.data, rv_t.data) np.testing.assert_array_almost_equal( y_1, tensor.to_numpy(_cTensor_to_pyTensor(y_2_c)), decimal=4) np.testing.assert_array_almost_equal( bm_1, tensor.to_numpy(_cTensor_to_pyTensor(bm_2_c))) np.testing.assert_array_almost_equal(rm_1, tensor.to_numpy(rm_t)) #print(bv_1) #print(tensor.to_numpy(_cTensor_to_pyTensor(bv_2_c))) np.testing.assert_array_almost_equal( bv_1, tensor.to_numpy(_cTensor_to_pyTensor(bv_2_c)), decimal=3) np.testing.assert_array_almost_equal(rv_1, tensor.to_numpy(rv_t), decimal=4) return x_0 = np.array([1, 1, 1, 1, 2, 2, 2, 2, 10, 10, 10, 10, 20, 20, 20, 20], dtype=np.float32).reshape((2, 2, 2, 2)) s_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) b_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) rm_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) rv_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.0) _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=1.0) _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.2) c = 10 x_0 = np.random.random((10, c, 20, 20)).astype(np.float32) s_0 = np.random.random((1, c, 1, 1)).astype(np.float32) b_0 = np.random.random((1, c, 1, 1)).astype(np.float32) rm_0 = np.random.random((1, c, 1, 1)).astype(np.float32) rv_0 = np.random.random((1, c, 1, 1)).astype(np.float32) _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.2) @unittest.skipIf(not singa_api.USE_CUDA, 'CUDA is not enabled') def test_batchnorm_testing_gpu(self): dev = gpu_dev def _run_testing(x_0, s_0, b_0, rm_0, rv_0, m_0=0.1): # np api y_1 = _np_bn_testing(x_0, s_0, b_0, rm_0, rv_0, momentum=m_0) # singa api hndl = singa_api.CudnnBatchNormHandle( m_0, tensor.Tensor(device=dev, data=x_0).data) y_2_c = singa_api.GpuBatchNormForwardInference( hndl, tensor.Tensor(device=dev, data=x_0).data, tensor.Tensor(device=dev, data=s_0).data, tensor.Tensor(device=dev, data=b_0).data, tensor.Tensor(device=dev, data=rm_0).data, tensor.Tensor(device=dev, data=rv_0).data) #print(y_1) #print(tensor.to_numpy(_cTensor_to_pyTensor(y_2_c))) np.testing.assert_array_almost_equal( y_1, tensor.to_numpy(_cTensor_to_pyTensor(y_2_c)), decimal=3) return x_0 = np.array([1, 1, 1, 1, 2, 2, 2, 2, 10, 10, 10, 10, 20, 20, 20, 20], dtype=np.float32).reshape((2, 2, 2, 2)) s_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) b_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) rm_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) rv_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) _run_testing(x_0, s_0, b_0, rm_0, rv_0, m_0=1.0) c = 10 x_0 = np.random.random((10, c, 20, 20)).astype(np.float32) s_0 = np.random.random((1, c, 1, 1)).astype(np.float32) b_0 = np.random.random((1, c, 1, 1)).astype(np.float32) rm_0 = np.random.random((1, c, 1, 1)).astype(np.float32) rv_0 = np.random.random((1, c, 1, 1)).astype(np.float32) _run_testing(x_0, s_0, b_0, rm_0, rv_0, m_0=1.0) def _softmax_api_helper(self, dev): def _run_test(dev, org_shape, axis, aft_shape): x_0 = np.random.random(org_shape).astype(np.float32) x_0 = x_0 + 1000 x0 = tensor.Tensor(device=dev, data=x_0) # test with axis y0 = tensor._call_singa_func(singa_api.SoftMax, x0.data, axis) # test with numpy x_0 = x_0.reshape(aft_shape) x_0 = x_0 - np.max(x_0) y1 = np.divide(np.exp(x_0), np.sum(np.exp(x_0), axis=1).reshape(x_0.shape[0], 1)) # 2d softmax y1 = y1.reshape(org_shape) np.testing.assert_array_almost_equal(tensor.to_numpy(y0), y1) _run_test(dev, [2, 2], 1, [2, 2]) _run_test(dev, [2, 2], 0, [1, 4]) _run_test(dev, [2, 2], -1, [2, 2]) _run_test(dev, [2, 2], -2, [1, 4]) _run_test(dev, [2, 2, 2], 2, [4, 2]) _run_test(dev, [2, 2, 2], 1, [2, 4]) _run_test(dev, [2, 2, 2], 0, [1, 8]) _run_test(dev, [2, 2, 2], -1, [4, 2]) _run_test(dev, [2, 2, 2], -2, [2, 4]) _run_test(dev, [2, 2, 2], -3, [1, 8]) _run_test(dev, [2, 2, 2, 2], 3, [8, 2]) _run_test(dev, [2, 2, 2, 2], 2, [4, 4]) _run_test(dev, [2, 2, 2, 2], 1, [2, 8]) _run_test(dev, [2, 2, 2, 2], 0, [1, 16]) _run_test(dev, [2, 2, 2, 2], -1, [8, 2]) _run_test(dev, [2, 2, 2, 2], -2, [4, 4]) _run_test(dev, [2, 2, 2, 2], -3, [2, 8]) _run_test(dev, [2, 2, 2, 2], -4, [1, 16]) def test_softmax_api_cpu(self): self._softmax_api_helper(cpu_dev) @unittest.skipIf(not singa_api.USE_CUDA, 'CUDA is not enabled') def test_softmax_api_gpu(self): self._softmax_api_helper(gpu_dev) def _tensor_arithmetic_op_broadcast_helper(self, dev): def _run_test(dev, singa_op, np_op, s1, s2): x_0 = np.random.random(s1).astype(np.float32) y_0 = np.random.random(s2).astype(np.float32) x0 = tensor.Tensor(device=dev, data=x_0) y0 = tensor.Tensor(device=dev, data=y_0) z0 = tensor._call_singa_func(singa_op, x0.data, y0.data) z0.to_host() np.testing.assert_array_almost_equal(tensor.to_numpy(z0), np_op(x_0, y_0)) return for s_op, n_op in zip([ singa_api.Pow, singa_api.__add__, singa_api.__div__, singa_api.__sub__, singa_api.__mul__, ], [np.power, np.add, np.divide, np.subtract, np.multiply]): _run_test(dev, s_op, n_op, [6], [1]) _run_test(dev, s_op, n_op, [2, 3], [2, 3]) _run_test(dev, s_op, n_op, [3, 2], [1]) _run_test(dev, s_op, n_op, [3, 1, 2], [3, 1, 1]) _run_test(dev, s_op, n_op, [2, 3, 4, 5], [5]) _run_test(dev, s_op, n_op, [2, 3, 4, 5], [1, 1, 1]) _run_test(dev, s_op, n_op, [2, 3, 4, 5], [1, 1, 1, 1]) _run_test(dev, s_op, n_op, [2, 3, 4, 5], [4, 5]) # 45+2345=2345 _run_test(dev, s_op, n_op, [3, 1, 2, 1], [3, 1, 2]) _run_test(dev, s_op, n_op, [4, 5], [2, 3, 4, 5]) # 45+2345=2345 _run_test(dev, s_op, n_op, [1, 4, 5], [2, 3, 1, 1]) # 145+2311=2345 _run_test(dev, s_op, n_op, [3, 4, 5], [2, 1, 1, 1]) # 345+2111=2345 def test_tensor_arithmetic_op_broadcast_cpu(self): self._tensor_arithmetic_op_broadcast_helper(cpu_dev) @unittest.skipIf(not singa_api.USE_CUDA, 'CUDA is not enabled') def test_tensor_arithmetic_op_broadcast_gpu(self): self._tensor_arithmetic_op_broadcast_helper(gpu_dev) def _transpose_and_arithmetic_op_broadcast_helper(self, dev): def _test(s1, s2, axis1, axis2, s3, s_op, n_op, dev): x_0 = np.random.random(s1).astype(np.float32) y_0 = np.random.random(s2).astype(np.float32) x0 = tensor.Tensor(device=dev, data=x_0) y0 = tensor.Tensor(device=dev, data=y_0) x1 = x0.transpose(axis1) y1 = y0.transpose(axis2) z0 = tensor._call_singa_func(s_op, x1.data, y1.data) z0.to_host() np.testing.assert_array_almost_equal( tensor.to_numpy(z0), n_op(x_0.transpose(axis1), y_0.transpose(axis2))) np.testing.assert_array_almost_equal(z0.shape, s3) return for s_op, n_op in zip([ singa_api.Pow, singa_api.__add__, singa_api.__div__, singa_api.__sub__, singa_api.__mul__, ], [np.power, np.add, np.divide, np.subtract, np.multiply]): s1 = [1, 5, 1, 3] s2 = [3, 1, 1, 4] axis1 = [3, 2, 1, 0] # 3121 axis2 = [1, 0, 2, 3] # 1314 s3 = [3, 3, 5, 4] _test(s1, s2, axis1, axis2, s3, s_op, n_op, dev) s1 = [1, 5, 1] s2 = [1, 3, 2] axis1 = [2, 1, 0] # 151 axis2 = [1, 0, 2] # 312 s3 = [3, 5, 2] _test(s1, s2, axis1, axis2, s3, s_op, n_op, dev) s1 = [5, 1] s2 = [1, 3] axis1 = [1, 0] # 15 axis2 = [1, 0] # 31 s3 = [3, 5] _test(s1, s2, axis1, axis2, s3, s_op, n_op, dev) def test_transpose_and_arithmetic_op_broadcast_cpu(self): self._transpose_and_arithmetic_op_broadcast_helper(cpu_dev) def _erf(self, dev=cpu_dev): np1 = np.random.random((2, 3)).astype(np.float32) x1 = tensor.from_numpy(np1) x1.to_device(dev) y1 = tensor.from_raw_tensor(singa_api.Erf(x1.data)) # from scipy.special import erf # np.testing.assert_array_almost_equal(erf(np1), tensor.to_numpy(y1)) def test_erf_cpu(self): self._erf(cpu_dev) @unittest.skipIf(not singa_api.USE_CUDA, 'CUDA is not enabled') def test_transpose_and_arithmetic_op_broadcast_gpu(self): self._transpose_and_arithmetic_op_broadcast_helper(gpu_dev) def test_batchnorm_training_dnnl(self): dev = cpu_dev def _np_bn_training(x, scale, bias, rm, rv, momentum=0.1, e=1e-5): channel = x.shape[1] np.testing.assert_array_almost_equal(scale.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(bias.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(rm.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(rv.shape, (1, channel, 1, 1)) batch_m = x.mean(axis=(0, 2, 3), keepdims=True) batch_v = x.var(axis=(0, 2, 3), keepdims=True) x_norm = (x - batch_m) / np.sqrt(batch_v + e) y_norm = x_norm * scale + bias # https://arxiv.org/pdf/1502.03167.pdf s = list(x.shape) s[1] = 1 batch_v_unbiased = np.prod(s) * batch_v / (np.prod(s) - 1) rm = momentum * batch_m + (1 - momentum) * rm rv = momentum * batch_v_unbiased + (1 - momentum) * rv # https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnBatchNormalizationForwardTraining # this value is useful for bwd computation resultSaveInvVariance = 1 / np.sqrt(batch_v) return y_norm, rm, rv, batch_m, resultSaveInvVariance def _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.1): # np api (y_1, rm_1, rv_1, bm_1, bv_1) = _np_bn_training(x_0, s_0, b_0, rm_0, rv_0, momentum=m_0) # singa api hndl = singa_api.BatchNormHandle( m_0, tensor.Tensor(device=dev, data=x_0).data) (y_2_c, bm_2_c, bv_2_c) = singa_api.CpuBatchNormForwardTraining( hndl, tensor.Tensor(device=dev, data=x_0).data, tensor.Tensor(device=dev, data=s_0).data, tensor.Tensor(device=dev, data=b_0).data, tensor.Tensor(device=dev, data=rm_0).data, tensor.Tensor(device=dev, data=rv_0).data) np.testing.assert_array_almost_equal( y_1, tensor.to_numpy(_cTensor_to_pyTensor(y_2_c)), decimal=5) np.testing.assert_array_almost_equal( bm_1, tensor.to_numpy(_cTensor_to_pyTensor(bm_2_c)), decimal=5) #print(bv_1) #print(tensor.to_numpy(_cTensor_to_pyTensor(bv_2_c))) #np.testing.assert_array_almost_equal( # bv_1, tensor.to_numpy(_cTensor_to_pyTensor(bv_2_c)), decimal=3) return x_0 = np.array([1, 1, 1, 1, 2, 2, 2, 2, 10, 10, 10, 10, 20, 20, 20, 20], dtype=np.float32).reshape((2, 2, 2, 2)) s_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) b_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) rm_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) rv_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=1.0) _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.0) _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.2) c = 10 x_0 = np.random.random((10, c, 20, 20)).astype(np.float32) s_0 = np.random.random((1, c, 1, 1)).astype(np.float32) b_0 = np.random.random((1, c, 1, 1)).astype(np.float32) rm_0 = np.random.random((1, c, 1, 1)).astype(np.float32) rv_0 = np.random.random((1, c, 1, 1)).astype(np.float32) _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.2) def test_batchnorm_testing_dnnl(self): dev = cpu_dev def _np_bn_testing(x, scale, bias, rm, rv, momentum=0.1, e=1e-5): channel = x.shape[1] np.testing.assert_array_almost_equal(scale.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(bias.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(rm.shape, (1, channel, 1, 1)) np.testing.assert_array_almost_equal(rv.shape, (1, channel, 1, 1)) return scale * (x - rm) / np.sqrt(rv + e) + bias def _run_testing(x_0, s_0, b_0, rm_0, rv_0, m_0=0.1): # np api y_1 = _np_bn_testing(x_0, s_0, b_0, rm_0, rv_0, momentum=m_0) # singa api hndl = singa_api.BatchNormHandle( m_0, tensor.Tensor(device=dev, data=x_0).data) y_2_c = singa_api.CpuBatchNormForwardInference( hndl, tensor.Tensor(device=dev, data=x_0).data, tensor.Tensor(device=dev, data=s_0).data, tensor.Tensor(device=dev, data=b_0).data, tensor.Tensor(device=dev, data=rm_0).data, tensor.Tensor(device=dev, data=rv_0).data) #print(y_1) #print(tensor.to_numpy(_cTensor_to_pyTensor(y_2_c))) np.testing.assert_array_almost_equal( y_1, tensor.to_numpy(_cTensor_to_pyTensor(y_2_c)), decimal=5) return x_0 = np.array([1, 1, 1, 1, 2, 2, 2, 2, 10, 10, 10, 10, 20, 20, 20, 20], dtype=np.float32).reshape((2, 2, 2, 2)) s_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) b_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) rm_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) rv_0 = np.array([1, 10], dtype=np.float32).reshape((1, 2, 1, 1)) _run_testing(x_0, s_0, b_0, rm_0, rv_0, m_0=1.0) c = 10 x_0 = np.random.random((10, c, 20, 20)).astype(np.float32) s_0 = np.random.random((1, c, 1, 1)).astype(np.float32) b_0 =
np.random.random((1, c, 1, 1))
numpy.random.random
""" It contains the functions to compute the cases that presents an analytical solutions. All functions output the analytical solution in kcal/mol """ import numpy from numpy import pi from scipy import special, linalg from scipy.misc import factorial from math import gamma def an_spherical(q, xq, E_1, E_2, E_0, R, N): """ It computes the analytical solution of the potential of a sphere with Nq charges inside. Took from Kirkwood (1934). Arguments ---------- q : array, charges. xq : array, positions of the charges. E_1: float, dielectric constant inside the sphere. E_2: float, dielectric constant outside the sphere. E_0: float, dielectric constant of vacuum. R : float, radius of the sphere. N : int, number of terms desired in the spherical harmonic expansion. Returns -------- PHI: array, reaction potential. """ PHI = numpy.zeros(len(q)) for K in range(len(q)): rho = numpy.sqrt(numpy.sum(xq[K]**2)) zenit = numpy.arccos(xq[K, 2] / rho) azim = numpy.arctan2(xq[K, 1], xq[K, 0]) phi = 0. + 0. * 1j for n in range(N): for m in range(-n, n + 1): sph1 = special.sph_harm(m, n, zenit, azim) cons1 = rho**n / (E_1 * E_0 * R**(2 * n + 1)) * (E_1 - E_2) * ( n + 1) / (E_1 * n + E_2 * (n + 1)) cons2 = 4 * pi / (2 * n + 1) for k in range(len(q)): rho_k = numpy.sqrt(numpy.sum(xq[k]**2)) zenit_k = numpy.arccos(xq[k, 2] / rho_k) azim_k = numpy.arctan2(xq[k, 1], xq[k, 0]) sph2 = numpy.conj(special.sph_harm(m, n, zenit_k, azim_k)) phi += cons1 * cons2 * q[K] * rho_k**n * sph1 * sph2 PHI[K] = numpy.real(phi) / (4 * pi) return PHI def get_K(x, n): """ It computes the polinomials K needed for Kirkwood-1934 solutions. K_n(x) in Equation 4 in Kirkwood 1934. Arguments ---------- x: float, evaluation point of K. n: int, number of terms desired in the expansion. Returns -------- K: float, polinomials K. """ K = 0. n_fact = factorial(n) n_fact2 = factorial(2 * n) for s in range(n + 1): K += 2**s * n_fact * factorial(2 * n - s) / (factorial(s) * n_fact2 * factorial(n - s)) * x**s return K def an_P(q, xq, E_1, E_2, R, kappa, a, N): """ It computes the solvation energy according to Kirkwood-1934. Arguments ---------- q : array, charges. xq : array, positions of the charges. E_1 : float, dielectric constant inside the sphere. E_2 : float, dielectric constant outside the sphere. R : float, radius of the sphere. kappa: float, reciprocal of Debye length. a : float, radius of the Stern Layer. N : int, number of terms desired in the polinomial expansion. Returns -------- E_P : float, solvation energy. """ qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 PHI = numpy.zeros(len(q)) for K in range(len(q)): rho = numpy.sqrt(numpy.sum(xq[K]**2)) zenit = numpy.arccos(xq[K, 2] / rho) azim = numpy.arctan2(xq[K, 1], xq[K, 0]) phi = 0. + 0. * 1j for n in range(N): for m in range(-n, n + 1): P1 = special.lpmv(numpy.abs(m), n, numpy.cos(zenit)) Enm = 0. for k in range(len(q)): rho_k = numpy.sqrt(numpy.sum(xq[k]**2)) zenit_k = numpy.arccos(xq[k, 2] / rho_k) azim_k = numpy.arctan2(xq[k, 1], xq[k, 0]) P2 = special.lpmv(numpy.abs(m), n, numpy.cos(zenit_k)) Enm += q[k] * rho_k**n * factorial(n - numpy.abs( m)) / factorial(n + numpy.abs(m)) * P2 * numpy.exp( -1j * m * azim_k) C2 = (kappa * a)**2 * get_K(kappa * a, n - 1) / ( get_K(kappa * a, n + 1) + n * (E_2 - E_1) / ( (n + 1) * E_2 + n * E_1) * (R / a)**(2 * n + 1) * (kappa * a)**2 * get_K(kappa * a, n - 1) / ((2 * n - 1) * (2 * n + 1))) C1 = Enm / (E_2 * E_0 * a** (2 * n + 1)) * (2 * n + 1) / (2 * n - 1) * (E_2 / ( (n + 1) * E_2 + n * E_1))**2 if n == 0 and m == 0: Bnm = Enm / (E_0 * R) * ( 1 / E_2 - 1 / E_1) - Enm * kappa * a / ( E_0 * E_2 * a * (1 + kappa * a)) else: Bnm = 1. / (E_1 * E_0 * R**(2 * n + 1)) * (E_1 - E_2) * ( n + 1) / (E_1 * n + E_2 * (n + 1)) * Enm - C1 * C2 phi += Bnm * rho**n * P1 * numpy.exp(1j * m * azim) PHI[K] = numpy.real(phi) / (4 * pi) C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J) E_P = 0.5 * C0 * numpy.sum(q * PHI) return E_P def two_sphere(a, R, kappa, E_1, E_2, q): """ It computes the analytical solution of a spherical surface and a spherical molecule with a center charge, both of radius R. Follows Cooper&Barba 2016 Arguments ---------- a : float, center to center distance. R : float, radius of surface and molecule. kappa: float, reciprocal of Debye length. E_1 : float, dielectric constant inside the sphere. E_2 : float, dielectric constant outside the sphere. q : float, number of qe to be asigned to the charge. Returns -------- Einter : float, interaction energy. E1sphere: float, solvation energy of one sphere. E2sphere: float, solvation energy of two spheres together. Note: Einter should match (E2sphere - 2xE1sphere) """ N = 20 # Number of terms in expansion. qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * a) K1p = index / (kappa * a) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.kv( index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * K1p I1 = special.iv(index2, kappa * a) I1p = index / (kappa * a) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.iv( index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * I1p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M = numpy.zeros((N, N), float) E_hat = E_1 / E_2 for i in range(N): for j in range(N): M[i, j] = (2 * i + 1) * B[i, j] * ( kappa * i1p[i] - E_hat * i * i1[i] / a) if i == j: M[i, j] += kappa * k1p[i] - E_hat * i * k1[i] / a RHS = numpy.zeros(N) RHS[0] = -E_hat * q / (4 * pi * E_1 * a * a) a_coeff = linalg.solve(M, RHS) a0 = a_coeff[0] a0_inf = -E_hat * q / (4 * pi * E_1 * a * a) * 1 / (kappa * k1p[0]) phi_2 = a0 * k1[0] + i1[0] * numpy.sum(a_coeff * B[:, 0]) - q / (4 * pi * E_1 * a) phi_1 = a0_inf * k1[0] - q / (4 * pi * E_1 * a) phi_inter = phi_2 - phi_1 CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) Einter = 0.5 * CC0 * q * phi_inter E1sphere = 0.5 * CC0 * q * phi_1 E2sphere = 0.5 * CC0 * q * phi_2 return Einter, E1sphere, E2sphere def constant_potential_single_point(phi0, a, r, kappa): """ It computes the potential in a point 'r' due to a spherical surface with constant potential phi0, immersed in water. Solution to the Poisson-Boltzmann problem. Arguments ---------- phi0 : float, constant potential on the surface of the sphere. a : float, radius of the sphere. r : float, distance from the center of the sphere to the evaluation point. kappa: float, reciprocal of Debye length. Returns -------- phi : float, potential. """ phi = a / r * phi0 * numpy.exp(kappa * (a - r)) return phi def constant_charge_single_point(sigma0, a, r, kappa, epsilon): """ It computes the potential in a point 'r' due to a spherical surface with constant charge sigma0 immersed in water. Solution to the Poisson-Boltzmann problem. . Arguments ---------- sigma0 : float, constant charge on the surface of the sphere. a : float, radius of the sphere. r : float, distance from the center of the sphere to the evaluation point. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- phi : float, potential. """ dphi0 = -sigma0 / epsilon phi = -dphi0 * a * a / (1 + kappa * a) * numpy.exp(kappa * (a - r)) / r return phi def constant_potential_single_charge(phi0, radius, kappa, epsilon): """ It computes the surface charge of a sphere at constant potential, immersed in water. Arguments ---------- phi0 : float, constant potential on the surface of the sphere. radius : float, radius of the sphere. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant . Returns -------- sigma : float, surface charge. """ dphi = -phi0 * ((1. + kappa * radius) / radius) sigma = -epsilon * dphi # Surface charge return sigma def constant_charge_single_potential(sigma0, radius, kappa, epsilon): """ It computes the surface potential on a sphere at constant charged, immersed in water. Arguments ---------- sigma0 : float, constant charge on the surface of the sphere. radius : float, radius of the sphere. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- phi : float, potential. """ dphi = -sigma0 / epsilon phi = -dphi * radius / (1. + kappa * radius) # Surface potential return phi def constant_potential_twosphere(phi01, phi02, r1, r2, R, kappa, epsilon): """ It computes the solvation energy of two spheres at constant potential, immersed in water. Arguments ---------- phi01 : float, constant potential on the surface of the sphere 1. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_solv : float, solvation energy. """ kT = 4.1419464e-21 # at 300K qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 C0 = kT / qe phi01 /= C0 phi02 /= C0 k1 = special.kv(0.5, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k2 = special.kv(0.5, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) B00 = special.kv(0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) # k1 = special.kv(0.5,kappa*r1)*numpy.sqrt(2/(pi*kappa*r1)) # k2 = special.kv(0.5,kappa*r2)*numpy.sqrt(2/(pi*kappa*r2)) # B00 = special.kv(0.5,kappa*R)*numpy.sqrt(2/(pi*kappa*R)) i1 = special.iv(0.5, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i2 = special.iv(0.5, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) a0 = (phi02 * B00 * i1 - phi01 * k2) / (B00 * B00 * i2 * i1 - k1 * k2) b0 = (phi02 * k1 - phi01 * B00 * i2) / (k2 * k1 - B00 * B00 * i1 * i2) U1 = 2 * pi * phi01 * (phi01 * numpy.exp(kappa * r1) * (kappa * r1) * (kappa * r1) / numpy.sinh(kappa * r1) - pi * a0 / (2 * i1)) U2 = 2 * pi * phi02 * (phi02 * numpy.exp(kappa * r2) * (kappa * r2) * (kappa * r2) / numpy.sinh(kappa * r2) - pi * b0 / (2 * i2)) print('U1: {}'.format(U1)) print('U2: {}'.format(U2)) print('E: {}'.format(U1 + U2)) C1 = C0 * C0 * epsilon / kappa u1 = U1 * C1 u2 = U2 * C1 CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E_solv = CC0 * (u1 + u2) return E_solv def constant_potential_twosphere_2(phi01, phi02, r1, r2, R, kappa, epsilon): """ It computes the solvation energy of two spheres at constant potential, immersed in water. Arguments ---------- phi01 : float, constant potential on the surface of the sphere 1. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_solv : float, solvation energy. """ kT = 4.1419464e-21 # at 300K qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 h = R - r1 - r2 # E_inter = r1*r2*epsilon/(4*R) * ( (phi01+phi02)**2 * log(1+numpy.exp(-kappa*h)) + (phi01-phi02)**2*log(1-numpy.exp(-kappa*h)) ) # E_inter = epsilon*r1*phi01**2/2 * log(1+numpy.exp(-kappa*h)) E_solv = epsilon * r1 * r2 * (phi01**2 + phi02**2) / (4 * (r1 + r2)) * ( (2 * phi01 * phi02) / (phi01**2 + phi02**2) * log( (1 + numpy.exp(-kappa * h)) / (1 - numpy.exp(-kappa * h))) + log(1 - numpy.exp(-2 * kappa * h))) CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E_solv *= CC0 return E_solv def constant_potential_single_energy(phi0, r1, kappa, epsilon): """ It computes the total energy of a single sphere at constant potential, inmmersed in water. Arguments ---------- phi0 : float, constant potential on the surface of the sphere. r1 : float, radius of sphere. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E : float, total energy. """ N = 1 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p a0_inf = phi0 / k1[0] U1_inf = a0_inf * k1p[0] C1 = 2 * pi * kappa * phi0 * r1 * r1 * epsilon C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E = C0 * C1 * U1_inf return E def constant_charge_single_energy(sigma0, r1, kappa, epsilon): """ It computes the total energy of a single sphere at constant charge, inmmersed in water. Arguments ---------- sigma0 : float, constant charge on the surface of the sphere. r1 : float, radius of sphere. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E : float, total energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p a0_inf = -sigma0 / (epsilon * kappa * k1p[0]) U1_inf = a0_inf * k1[0] C1 = 2 * pi * sigma0 * r1 * r1 C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E = C0 * C1 * U1_inf return E def constant_potential_twosphere_dissimilar(phi01, phi02, r1, r2, R, kappa, epsilon): """ It computes the interaction energy for dissimilar spheres at constant potential, immersed in water. Arguments ---------- phi01 : float, constant potential on the surface of the sphere 1. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_inter: float, interaction energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p K2 = special.kv(index2, kappa * r2) K2p = index / (kappa * r2) * K2[0:-1] - K2[1:] k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p I1 = special.iv(index2, kappa * r1) I1p = index / (kappa * r1) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p I2 = special.iv(index2, kappa * r2) I2p = index / (kappa * r2) * I2[0:-1] + I2[1:] i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M = numpy.zeros((2 * N, 2 * N), float) for j in range(N): for n in range(N): M[j, n + N] = (2 * j + 1) * B[j, n] * i1[j] / k2[n] M[j + N, n] = (2 * j + 1) * B[j, n] * i2[j] / k1[n] if n == j: M[j, n] = 1 M[j + N, n + N] = 1 RHS = numpy.zeros(2 * N) RHS[0] = phi01 RHS[N] = phi02 coeff = linalg.solve(M, RHS) a = coeff[0:N] / k1 b = coeff[N:2 * N] / k2 a0 = a[0] a0_inf = phi01 / k1[0] b0 = b[0] b0_inf = phi02 / k2[0] U1_inf = a0_inf * k1p[0] U1_h = a0 * k1p[0] + i1p[0] * numpy.sum(b * B[:, 0]) U2_inf = b0_inf * k2p[0] U2_h = b0 * k2p[0] + i2p[0] * numpy.sum(a * B[:, 0]) C1 = 2 * pi * kappa * phi01 * r1 * r1 * epsilon C2 = 2 * pi * kappa * phi02 * r2 * r2 * epsilon C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E_inter = C0 * (C1 * (U1_h - U1_inf) + C2 * (U2_h - U2_inf)) return E_inter def constant_charge_twosphere_dissimilar(sigma01, sigma02, r1, r2, R, kappa, epsilon): """ It computes the interaction energy between two dissimilar spheres at constant charge, immersed in water. Arguments ---------- sigma01: float, constant charge on the surface of the sphere 1. sigma02: float, constant charge on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_inter: float, interaction energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p K2 = special.kv(index2, kappa * r2) K2p = index / (kappa * r2) * K2[0:-1] - K2[1:] k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p I1 = special.iv(index2, kappa * r1) I1p = index / (kappa * r1) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p I2 = special.iv(index2, kappa * r2) I2p = index / (kappa * r2) * I2[0:-1] + I2[1:] i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M = numpy.zeros((2 * N, 2 * N), float) for j in range(N): for n in range(N): M[j, n + N] = (2 * j + 1) * B[j, n] * r1 * i1p[j] / (r2 * k2p[n]) M[j + N, n] = (2 * j + 1) * B[j, n] * r2 * i2p[j] / (r1 * k1p[n]) if n == j: M[j, n] = 1 M[j + N, n + N] = 1 RHS = numpy.zeros(2 * N) RHS[0] = sigma01 * r1 / epsilon RHS[N] = sigma02 * r2 / epsilon coeff = linalg.solve(M, RHS) a = coeff[0:N] / (-r1 * kappa * k1p) b = coeff[N:2 * N] / (-r2 * kappa * k2p) a0 = a[0] a0_inf = -sigma01 / (epsilon * kappa * k1p[0]) b0 = b[0] b0_inf = -sigma02 / (epsilon * kappa * k2p[0]) U1_inf = a0_inf * k1[0] U1_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0]) U2_inf = b0_inf * k2[0] U2_h = b0 * k2[0] + i2[0] * numpy.sum(a * B[:, 0]) C1 = 2 * pi * sigma01 * r1 * r1 C2 = 2 * pi * sigma02 * r2 * r2 C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E_inter = C0 * (C1 * (U1_h - U1_inf) + C2 * (U2_h - U2_inf)) return E_inter def molecule_constant_potential(q, phi02, r1, r2, R, kappa, E_1, E_2): """ It computes the interaction energy between a molecule (sphere with point-charge in the center) and a sphere at constant potential, immersed in water. Arguments ---------- q : float, number of qe to be asigned to the charge. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1, i.e the molecule. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. E_1 : float, dielectric constant inside the sphere/molecule. E_2 : float, dielectric constant outside the sphere/molecule. Returns -------- E_inter: float, interaction energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p K2 = special.kv(index2, kappa * r2) K2p = index / (kappa * r2) * K2[0:-1] - K2[1:] k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p I1 = special.iv(index2, kappa * r1) I1p = index / (kappa * r1) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p I2 = special.iv(index2, kappa * r2) I2p = index / (kappa * r2) * I2[0:-1] + I2[1:] i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB E_hat = E_1 / E_2 M = numpy.zeros((2 * N, 2 * N), float) for j in range(N): for n in range(N): M[j, n + N] = (2 * j + 1) * B[j, n] * ( kappa * i1p[j] / k2[n] - E_hat * j / r1 * i1[j] / k2[n]) M[j + N, n] = (2 * j + 1) * B[j, n] * i2[j] * 1 / ( kappa * k1p[n] - E_hat * n / r1 * k1[n]) if n == j: M[j, n] = 1 M[j + N, n + N] = 1 RHS = numpy.zeros(2 * N) RHS[0] = -E_hat * q / (4 * pi * E_1 * r1 * r1) RHS[N] = phi02 coeff = linalg.solve(M, RHS) a = coeff[0:N] / (kappa * k1p - E_hat * numpy.arange(N) / r1 * k1) b = coeff[N:2 * N] / k2 a0 = a[0] a0_inf = -E_hat * q / (4 * pi * E_1 * r1 * r1) * 1 / (kappa * k1p[0]) b0 = b[0] b0_inf = phi02 / k2[0] phi_inf = a0_inf * k1[0] - q / (4 * pi * E_1 * r1) phi_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0]) - q / (4 * pi * E_1 * r1) phi_inter = phi_h - phi_inf U_inf = b0_inf * k2p[0] U_h = b0 * k2p[0] + i2p[0] * numpy.sum(a * B[:, 0]) U_inter = U_h - U_inf C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) C1 = q * 0.5 C2 = 2 * pi * kappa * phi02 * r2 * r2 * E_2 E_inter = C0 * (C1 * phi_inter + C2 * U_inter) return E_inter def molecule_constant_charge(q, sigma02, r1, r2, R, kappa, E_1, E_2): """ It computes the interaction energy between a molecule (sphere with point-charge in the center) and a sphere at constant charge, immersed in water. Arguments ---------- q : float, number of qe to be asigned to the charge. sigma02: float, constant charge on the surface of the sphere 2. r1 : float, radius of sphere 1, i.e the molecule. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. E_1 : float, dielectric constant inside the sphere/molecule. E_2 : float, dielectric constant outside the sphere/molecule. Returns -------- E_inter: float, interaction energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p K2 = special.kv(index2, kappa * r2) K2p = index / (kappa * r2) * K2[0:-1] - K2[1:] k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p I1 = special.iv(index2, kappa * r1) I1p = index / (kappa * r1) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p I2 = special.iv(index2, kappa * r2) I2p = index / (kappa * r2) * I2[0:-1] + I2[1:] i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB E_hat = E_1 / E_2 M = numpy.zeros((2 * N, 2 * N), float) for j in range(N): for n in range(N): M[j, n + N] = (2 * j + 1) * B[j, n] * ( i1p[j] / k2p[n] - E_hat * j / r1 * i1[j] / (kappa * k2p[n])) M[j + N, n] = (2 * j + 1) * B[j, n] * i2p[j] * kappa * 1 / ( kappa * k1p[n] - E_hat * n / r1 * k1[n]) if n == j: M[j, n] = 1 M[j + N, n + N] = 1 RHS = numpy.zeros(2 * N) RHS[0] = -E_hat * q / (4 * pi * E_1 * r1 * r1) RHS[N] = -sigma02 / E_2 coeff = linalg.solve(M, RHS) a = coeff[0:N] / (kappa * k1p - E_hat * numpy.arange(N) / r1 * k1) b = coeff[N:2 * N] / (kappa * k2p) a0 = a[0] a0_inf = -E_hat * q / (4 * pi * E_1 * r1 * r1) * 1 / (kappa * k1p[0]) b0 = b[0] b0_inf = -sigma02 / (E_2 * kappa * k2p[0]) phi_inf = a0_inf * k1[0] - q / (4 * pi * E_1 * r1) phi_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0]) - q / (4 * pi * E_1 * r1) phi_inter = phi_h - phi_inf U_inf = b0_inf * k2[0] U_h = b0 * k2[0] + i2[0] * numpy.sum(a * B[:, 0]) U_inter = U_h - U_inf C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) C1 = q * 0.5 C2 = 2 * pi * sigma02 * r2 * r2 E_inter = C0 * (C1 * phi_inter + C2 * U_inter) return E_inter def constant_potential_twosphere_identical(phi01, phi02, r1, r2, R, kappa, epsilon): """ It computes the interaction energy for two spheres at constants surface potential, according to Carnie&Chan-1993. Arguments ---------- phi01 : float, constant potential on the surface of the sphere 1. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Note: Even though it admits phi01 and phi02, they should be identical; and the same is applicable to r1 and r2. Returns -------- E_inter: float, interaction energy. """ # From Carnie+Chan 1993 N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index = numpy.arange(N, dtype=float) + 0.5 k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M = numpy.zeros((N, N), float) for i in range(N): for j in range(N): M[i, j] = (2 * i + 1) * B[i, j] * i1[i] if i == j: M[i, j] += k1[i] RHS = numpy.zeros(N) RHS[0] = phi01 a = linalg.solve(M, RHS) a0 = a[0] U = 4 * pi * (-pi / 2 * a0 / phi01 * 1 / numpy.sinh(kappa * r1) + kappa * r1 + kappa * r1 / numpy.tanh(kappa * r1)) C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) C1 = r1 * epsilon * phi01 * phi01 E_inter = U * C1 * C0 return E_inter def constant_charge_twosphere_identical(sigma, a, R, kappa, epsilon): """ It computes the interaction energy for two spheres at constants surface charge, according to Carnie&Chan-1993. Arguments ---------- sigma : float, constant charge on the surface of the spheres. a : float, radius of spheres. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_inter: float, interaction energy. """ # From Carnie+Chan 1993 N = 10 # Number of terms in expansion E_p = 0 # Permitivitty inside sphere qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * a) K1p = index / (kappa * a) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.kv( index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * K1p I1 = special.iv(index2, kappa * a) I1p = index / (kappa * a) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.iv( index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * I1p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) *
numpy.sqrt(pi / (2 * kappa * R))
numpy.sqrt
"""Tests for processors utilities.""" import numpy as np import rimseval.processor_utils as pu import rimseval.data_io.crd_utils as crdu def test_create_packages(): """Create packages from data.""" ions_per_shot = np.array([0, 0, 1, 0, 2, 0, 3, 2, 1, 4]) all_tofs = np.array([20, 25, 70, 53, 68, 11, 54, 12, 68, 99, 65, 48, 7]) bin_start = all_tofs.min() bin_end = all_tofs.max() len_data = bin_end - bin_start + 1 tofs_mapper = crdu.shot_to_tof_mapper(ions_per_shot) assert ions_per_shot.sum() == len(all_tofs) assert all_tofs.max() < len_data + bin_start # sanity checks for setup # packages expected pkg_length = 4 nof_pkg = len(ions_per_shot) // pkg_length if len(ions_per_shot) % pkg_length > 0: nof_pkg += 1 pkg_nof_shots_exp = np.zeros(nof_pkg) + pkg_length if (tmp := len(ions_per_shot) % pkg_length) > 0: pkg_nof_shots_exp[-1] = tmp pkg_data_exp = np.zeros((nof_pkg, len_data)) for it, shot in enumerate(ions_per_shot): pkg_it = it // pkg_length mapper = tofs_mapper[it] tofs = all_tofs[mapper[0] : mapper[1]] for tof in tofs: pkg_data_exp[pkg_it][int(tof) - bin_start] += 1 pkg_data_rec, pkg_nof_shots_rec = pu.create_packages( pkg_length, tofs_mapper, all_tofs ) np.testing.assert_equal(pkg_nof_shots_rec, pkg_nof_shots_exp) np.testing.assert_equal(pkg_data_rec, pkg_data_exp) def test_integrals_bg_corr(): """Background correction for defined integrals.""" integrals = np.array([[10, np.sqrt(10)], [40, np.sqrt(40)]]) int_names = np.array(["28Si", "29Si"]) int_ch = np.array([30, 40]) bgs = np.array([[1, np.sqrt(1)], [2, np.sqrt(2)], [3, np.sqrt(3)]]) bgs_names = np.array(["28Si", "28Si", "29Si"]) bgs_ch = np.array([20, 10, 50]) # manual calculations for expected values bgs_cnt = bgs[:, 0] bgs_norm = np.array( [(bgs_cnt[0] / bgs_ch[0] + bgs_cnt[1] / bgs_ch[1]) / 2, bgs_cnt[2] / bgs_ch[2]] ) bgs_norm_unc = np.array( [ (np.sqrt(bgs_cnt[0]) / bgs_ch[0] + np.sqrt(bgs_cnt[1]) / bgs_ch[1]) / 2, np.sqrt(bgs_cnt[2]) / bgs_ch[2], ] ) integrals_corr = integrals[:, 0] - int_ch * bgs_norm integrals_corr_unc = np.sqrt(integrals[:, 0] + bgs_norm_unc ** 2) integrals_exp = np.array( [ [integrals_corr[it], integrals_corr_unc[it]] for it in range(len(integrals_corr)) ] ) integrals_rec, integrals_pkg_rec = pu.integrals_bg_corr( integrals, int_names, int_ch, bgs, bgs_names, bgs_ch ) np.testing.assert_equal(integrals_rec, integrals_exp) assert integrals_pkg_rec is None def test_integrals_bg_corr_pkg(): """Background correction for defined integrals with packages.""" integrals = np.array([[10, np.sqrt(10)], [40, np.sqrt(40)]]) integrals_pkg = np.array([integrals]) int_names =
np.array(["28Si", "29Si"])
numpy.array
from unittest import TestCase import numpy as np from sklearn.metrics import precision_score, auc, roc_curve, cohen_kappa_score from source.analysis.performance.performance_builder import PerformanceBuilder from source.analysis.performance.raw_performance import RawPerformance from source.analysis.performance.epoch_performance import SleepWakePerformance from test.test_helper import TestHelper class TestPerformanceBuilder(TestCase): def test_build_from_raw(self): threshold = 0.2 raw_performance = RawPerformance(true_labels=np.array([1, 0]), class_probabilities=np.array([[0.1, 0.9], [0.3, 0.7]])) predicted_labels = np.array([1, 1]) kappa = cohen_kappa_score(raw_performance.true_labels, predicted_labels) sleep_predictive_value = precision_score(raw_performance.true_labels, predicted_labels, pos_label=1) wake_predictive_value = precision_score(raw_performance.true_labels, predicted_labels, pos_label=0) false_positive_rates, true_positive_rates, thresholds = roc_curve(raw_performance.true_labels, raw_performance.class_probabilities[:, 1], pos_label=1, drop_intermediate=False) auc_value = auc(false_positive_rates, true_positive_rates) expected_performance = SleepWakePerformance(accuracy=
np.float64(0.5)
numpy.float64
__author__ = 'stephen' import numpy as np import scipy.io import scipy.sparse import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.mlab as mlab import matplotlib.pylab as pylab from .utils import get_subindices import matplotlib.ticker as mtick from collections import Counter from sklearn.neighbors.kde import KernelDensity from scipy import stats from mpl_toolkits.axes_grid1 import make_axes_locatable def plot_cluster(labels, phi_angles, psi_angles, name, outliers=-1, step=1, potential=False): ''' :param labels: the assignments after clustering or lumping :param phi_angles: the phi angles :param psi_angles: the psi angles :param name: the name of the result pictures :param outliers: outliers default is -1 :return: None ''' clusters = np.unique(labels) plt.rc("font", size=10) if step > 1: clusters = clusters[0:len(clusters):step] colors_jet = plt.cm.jet(np.linspace(0, 1, np.max(clusters)+1)) if potential is False: #plot Alanine Dipeptide for i in clusters: if i != outliers: point = np.where(labels == i) plt.plot(phi_angles[point], psi_angles[point], '.', markersize=1.0, alpha=0.7)#, color=colors_jet[i]) #else: # point = np.where(labels == i) # plt.plot(phi_angles[point], psi_angles[point], '.', markersize=1.0, alpha=0.7, color='black') # , color=colors_jet[i]) plt.title("Alanine Dipeptide " + name + " states", fontsize=10) # plt.xlim([-180, 180]) # plt.ylim([-180, 180]) # plt.xticks([-110, -60, 0, 60, 120]) # plt.yticks([-120, -60, 0, 60, 120]) else: # if plot 2D potential plt.figure(figsize=(10, 10)) for i in clusters: if i != outliers: plt.plot(phi_angles[np.where(labels == i)], psi_angles[np.where(labels == i)], '.', markersize=1.0, alpha=0.7) #markersize=20.0, color=colors_jet[i]) #plt.plot(phi_angles[np.where(labels == i)], # psi_angles[np.where(labels == i)], # '.', color=colors_jet[i], label='State %d' % i) #plt.title("2D potential " + name + " states", fontsize=20) plt.xlim([-75, 75]) plt.ylim([-75, 75]) plt.xticks([-50, 0, 50]) plt.yticks([-50, 0, 50]) plt.xlabel(r"$\phi$", fontsize=25) plt.ylabel(r"$\psi$", fontsize=25) # Save the result figure plt.savefig('./'+name+'.png', dpi=400) plt.close() #plt.show() def plot_each_cluster(labels, phi_angles, psi_angles, name, outliers=-1, step=1): ''' :param labels: the assignments after clustering or lumping :param phi_angles: the phi angles :param psi_angles: the psi angles :param name: the name of the result pictures :param outliers: outliers default is -1 :return: None ''' clusters = np.unique(labels) if step > 1: clusters = clusters[0:len(clusters):step] colors_jet = plt.cm.jet(np.linspace(0, 1, np.max(clusters)+1)) for i in np.unique(clusters): if i != outliers: plt.plot(phi_angles[np.where(labels == i)], psi_angles[np.where(labels == i)], 'x', color=colors_jet[i], label='State %d' % i) #plt.title("Alanine Dipeptide " + name + " state_" + str(i)) plt.xlabel(r"$\phi$") plt.ylabel(r"$\psi$") plt.xlim([-180, 180]) plt.ylim([-180, 180]) plt.xticks([-120, -60, 0, 60, 120]) plt.yticks([-120, -60, 0, 60, 120]) # Save the result figure plt.savefig('./'+ name + " state_" + str(i)+'.png', dpi = 400) plt.close() #plt.show() def contour_cluster(labels, phi_angles, psi_angles, name, outliers=-1): ''' :param labels: the assignments after clustering or lumping :param phi_angles: the phi angles :param psi_angles: the psi angles :param name: the name of the result pictures :param outliers: outliers default is -1 :return: None ''' # lables_array = np.array(labels) # colors_jet = plt.cm.jet(np.linspace(0, 1, np.max(lables_array)+1)) for i in np.unique(labels): #if i != outliers: if i == 1: print("i=", i) x = phi_angles[np.where(labels == i)] y = psi_angles[np.where(labels == i)] indices = get_subindices(assignments=x, state=None, samples=1000) x = x[indices] y = y[indices] X, Y= np.meshgrid(x, y) positions = np.vstack([X.ravel(), Y.ravel()]) values = np.vstack([x, y]) kernel = stats.gaussian_kde(values) Z = np.reshape(kernel(positions).T, X.shape) #kde = KernelDensity(kernel='gaussian', bandwidth=0.2) #kde_results = kde.score_samples([x,y]) #X, Y, Z = np.meshgrid(x, y, kde_results) #Z = np.reshape(kernel([x,y]).T, x.shape) #Z1 = mlab.bivariate_normal(X, Y, 5.0, 5.0, 0.0, 0.0) #Z2 = mlab.bivariate_normal(X, Y, 7.5, 2.5, 5, 5) # difference of Gaussians #Z = 10.0 * (Z2 - Z1) #step = Z.max()-Z.min()/10 #print "Z min:",Z.min(), "Z.max:", Z.max(), "step:", step #levels = np.arange(Z.min(), Z.min(), Z.max()) #print levels plt.contour(X, Y, Z, origin='lower') #, linewidths=Z.min(), levels=levels) plt.title("Alanine Dipeptide " + name + " states") plt.xlabel(r"$\phi$") plt.ylabel(r"$\psi$") plt.xlim([-180, 180]) plt.ylim([-180, 180]) # Save the result figure plt.savefig('./'+name+'.png', dpi=400) plt.close() #plt.show() def plot_matrix(tProb_=None, name=None): ''' if labels is not None: n_states = len(set(labels)) - (1 if -1 in labels else 0) print 'n_states=', n_states #diagC = tProb_.diagonal() length = len(labels) print "length=", length Cmn = scipy.sparse.lil_matrix(n_states, n_states, dtype=np.float32) Cmn = np.zeros((n_states, n_states)) print "size of tProb", tProb_.shape if scipy.sparse.issparse(tProb_): tProb_ = tProb_.todense() for i in xrange(length): for j in xrange(length): Cmn[labels[i], labels[j]] += tProb_[i, j] #for i in xrange(n_states): #Cmn[i,i] += diagC[i] # for j in xrange(n_states): # Cmn[i, j] += Cmn[j, i] # Cmn[j, i] = Cmn[i, j] for j in xrange(n_states): sum_row = np.sum(Cmn[j,:]) if sum_row is not 0: Cmn[j,:] /= sum_row pylab.matshow(Cmn, cmap=plt.cm.OrRd) else: ''' pylab.matshow(tProb_, cmap=plt.cm.OrRd) plt.colorbar() #pylab.show() plt.savefig('./' + name + 'Matrix.png', dpi=400) plt.close() def plot_block_matrix(labels, tProb_, name='BlockMatrix'): print("Plot Block Matrix") indices = np.argsort(labels) #print indices block_matrix = tProb_[:,indices] block_matrix = block_matrix[indices,:] block_matrix = 1 - block_matrix #print block_matrix pylab.matshow(block_matrix, cmap=plt.cm.OrRd) plt.colorbar() plt.savefig('./' + name + '.png', dpi=400) #pylab.show() plt.close() def plot_cluster_size_distribution(populations, name='Populations'): fig = plt.figure(1, (10,6)) distrib = fig.add_subplot(1,1,1) fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' xticks = mtick.FormatStrFormatter(fmt) distrib.yaxis.set_major_formatter(xticks) plt.rc("font", size=30) plt.title('Cluster size distributions', fontsize=20) distrib.grid(True) X = range(len(populations)) X_xtick = [''] for i in xrange(1, len(populations)+1): xx = '$10^' + str(i) + '$' X_xtick.append(xx) print(X_xtick) #plt.xticks(X , ('$10^0$', '$10^1$', '$10^2$', '$10^3$', '$10^4$')) plt.xticks(np.arange(len(populations)+1), X_xtick) plt.ylabel(r"Probability") plt.ylim([0,100]) print("X:", X) distrib.bar(X, populations*100, facecolor='black', edgecolor='white', width=1.0) #facecolor='#f78181', plt.savefig('./' + name + '_Distribution.png', dpi=400) plt.close() #plt.show() def plot_compare_cluster_size_distribution(populations_1, populations_2, name='Populations'): fig = plt.figure(1, (10,8)) distrib = fig.add_subplot(1,1,1) fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' xticks = mtick.FormatStrFormatter(fmt) distrib.yaxis.set_major_formatter(xticks) bar_width = 0.45 plt.rc("font", size=20) #plt.title('Cluster size distributions', fontsize=20) distrib.grid(True) X = np.arange(len(populations_1)) X_xtick = [''] for i in xrange(1, len(populations_1)+1): xx = '$10^' + str(i) + '$' X_xtick.append(xx) print(X_xtick) #plt.xticks(X , ('$10^0$', '$10^1$', '$10^2$', '$10^3$', '$10^4$')) print("X:", X) distrib.bar(X, populations_1*100, facecolor='black', edgecolor='white', width=bar_width,label="kNN Density Peaks 3645 states") #facecolor='#f78181', # populations_2 #X = range(len(populations_2)) X_xtick = [''] for i in xrange(1, len(populations_2)+1): xx = '$10^' + str(i) + '$' X_xtick.append(xx) print(X_xtick) #plt.xticks(X , ('$10^0$', '$10^1$', '$10^2$', '$10^3$', '$10^4$')) print("X:", X) distrib.bar(X+bar_width, populations_2*100, facecolor='gray', edgecolor='white', width=bar_width, label="kNN Density Peaks 117 states") #facecolor='#f78181', plt.xticks(np.arange(len(populations_1)+1+bar_width), X_xtick) #plt.ylabel(r"Fraction number of clusters") plt.ylabel(r"Probability") plt.ylim([0,60]) plt.legend() plt.savefig('./' + name + '_Distribution.png', dpi=400) plt.close() #plt.show() #From Wang Wei's code def plot_landscape(labels=None, phi_angles=None, psi_angles=None, phi_ctr=None, psi_ctr=None, name='Energy_Landscape', bins=80, potential=False): H, xedges, yedges = np.histogram2d(psi_angles, phi_angles, bins=bins) #since we calculate total number in 10 interval, thus bin of every dimension must be 36 #If element in H is zero, set the final energy to be 9 plt.rc("font", size=25) maxH = np.max(H) for i in range(len(H)): for j in range(len(H)): if H[i][j]==0: H[i][j]=9 else: H[i][j] = -np.log(H[i][j]/maxH) #H = -np.log(H/np.max(H)) extent =[np.min(xedges), np.max(xedges), np.min(yedges), np.max(yedges)] plt.figure(figsize=(12, 12)) plt.imshow(H, extent=extent, origin="lower", cmap=plt.cm.gray) #plt.cm.jet #plot cluster centers on landscape if labels is not None: plt.plot(phi_ctr, psi_ctr, '.', markersize=10, color='r') distribution = np.array([0,0,0,0,0,0,0,0,0,0], dtype=np.float64) #print "len phi_ctr", len(phi_ctr) #print "shape of xedges", xedges.shape for i in range(0, len(phi_angles)): if psi_angles[i] > 179.0: index_x = np.where(xedges > 179.0)[0][0] - 1 else: index_x = np.where(xedges > psi_angles[i])[0][0] - 1 if phi_angles[i] > 179.0: index_y = np.where(yedges > 179.0)[0][0] - 1 else: index_y = np.where(yedges > phi_angles[i])[0][0] - 1 index_distrib = int(H[index_x][index_y]) distribution[index_distrib] += 1 distribution /= len(phi_angles) print(distribution) # print "clenter:", i, "[", phi_ctr,",", psi_ctr,"]", "H=", H[index_x][index_y] plt.xlabel('$\phi$', fontsize=20) plt.ylabel('$\Psi$', fontsize=20) cbar = plt.colorbar(shrink=0.77) #plt.title('Free energy landscape', fontsize=20) cbar.set_label("$k_B T$", size=20) cbar.ax.tick_params(labelsize=20) if potential is False: plt.xlim([-180, 180]) plt.ylim([-180, 180]) plt.xticks([-120, -60, 0, 60, 120]) plt.yticks([-120, -60, 0, 60, 120]) else: plt.xlim([-75, 75]) plt.ylim([-75, 75]) plt.xticks([-50, 0, 50]) plt.yticks([-50, 0, 50]) plt.savefig('./' + name + '.png', dpi=400) #plt.show() plt.close() #Cluster Centers on Free energy landscape distribution fig = plt.figure(1, (10,6)) plt.rc("font", size=15) distrib = fig.add_subplot(1,1,1) distrib.grid(True) fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' xticks = mtick.FormatStrFormatter(fmt) distrib.yaxis.set_major_formatter(xticks) plt.title('Cluster Centers on Free energy landscape distribution', fontsize=20) plt.xlabel("$k_B T$") plt.ylabel(r"Probability") plt.ylim([0, 100]) plt.xticks(np.arange(11), ('', '1', '', '3', '', '5', '', '7', '', '9', '')) distrib.bar(np.arange(10), distribution*100, facecolor='black', edgecolor='white', width=1.0) #facecolor='#f78181' plt.savefig('./' + name + '_Distribution.png', dpi=400) #plt.show() plt.close() def plot_compare_distribution(labels_1=None, labels_2=None, phi_angles=None, psi_angles=None, phi_ctr_1=None, psi_ctr_1=None, phi_ctr_2=None, psi_ctr_2=None, name='Energy_Landscape', bins=36, potential=False): H, xedges, yedges = np.histogram2d(psi_angles, phi_angles, bins=bins) #since we calculate total number in 10 interval, thus bin of every dimension must be 36 #If element in H is zero, set the final energy to be 9 plt.rc("font", size=25) maxH = np.max(H) for i in range(len(H)): for j in range(len(H)): if H[i][j]==0: H[i][j]=9 else: H[i][j] = -np.log(H[i][j]/maxH) #H = -np.log(H/np.max(H)) #extent =[np.min(xedges), np.max(xedges), np.min(yedges), np.max(yedges)] #plt.figure(figsize=(10, 10)) #plt.imshow(H, extent=extent, origin="lower", cmap=plt.cm.gray) #plt.cm.jet #plot cluster centers on landscape #if labels_1 is not None: # plt.plot(phi_ctr_1, psi_ctr_1, '*', markersize=8, color='r') distribution_1 = np.array([0,0,0,0,0,0,0,0,0,0], dtype=np.float64) for i in xrange(0, len(phi_ctr_1)): if psi_ctr_1[i] > 179.0: index_x = np.where(xedges > 179.0)[0][0] - 1 else: index_x = np.where(xedges > psi_ctr_1[i])[0][0] - 1 if phi_ctr_1[i] > 179.0: index_y = np.where(yedges > 179.0)[0][0] - 1 else: index_y = np.where(yedges > phi_ctr_1[i])[0][0] - 1 index_distrib = int(H[index_x][index_y]) distribution_1[index_distrib] += 1 distribution_1 /= len(phi_ctr_1) print(distribution_1) distribution_2 = np.array([0,0,0,0,0,0,0,0,0,0], dtype=np.float64) for i in xrange(0, len(phi_ctr_2)): if psi_ctr_2[i] > 179.0: index_x = np.where(xedges > 179.0)[0][0] - 1 else: index_x = np.where(xedges > psi_ctr_2[i])[0][0] - 1 if phi_ctr_2[i] > 179.0: index_y = np.where(yedges > 179.0)[0][0] - 1 else: index_y = np.where(yedges > phi_ctr_2[i])[0][0] - 1 index_distrib = int(H[index_x][index_y]) distribution_2[index_distrib] += 1 distribution_2 /= len(phi_ctr_2) print(distribution_2) # print "clenter:", i, "[", phi_ctr,",", psi_ctr,"]", "H=", H[index_x][index_y] plt.xlabel('$\phi$', fontsize=20) plt.ylabel('$\Psi$', fontsize=20) #cbar = plt.colorbar(shrink=0.77) ##plt.title('Free energy landscape', fontsize=20) #cbar.set_label("$k_B T$", size=20) #cbar.ax.tick_params(labelsize=20) #if potential is False: # plt.xlim([-180, 180]) # plt.ylim([-180, 180]) # plt.xticks([-120, -60, 0, 60, 120]) # plt.yticks([-120, -60, 0, 60, 120]) #else: # plt.xlim([-75, 75]) # plt.ylim([-75, 75]) # plt.xticks([-50, 0, 50]) # plt.yticks([-50, 0, 50]) #plt.savefig('./' + name + '.png', dpi=400) ##plt.show() #plt.close() #Cluster Centers on Free energy landscape distribution fig=plt.figure(1, (10,6)) plt.rc("font", size=15) distrib = fig.add_subplot(1,1,1) distrib.grid(True) fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' xticks = mtick.FormatStrFormatter(fmt) distrib.yaxis.set_major_formatter(xticks) # plt.xticks(np.arange(11), ('', '1', '', '3', '', '5', '', '7', '', '9', '')) n_groups = 10 index = np.arange(n_groups) bar_width = 0.45 distrib.bar(index, distribution_1*100, facecolor='black', edgecolor='white', width=bar_width, label="kNN Density Peaks 3645 states") #facecolor='#f78181' distrib.bar(index+bar_width, distribution_2*100, facecolor='gray', edgecolor='white', width=bar_width, label="kNN Density Peaks 117 states") #plt.title('Cluster Centers on Free energy landscape distribution', fontsize=10) plt.xlabel("$k_B T$") plt.ylabel(r"Fraction number of clusters") plt.ylim([0, 50]) plt.xticks(index+bar_width, ('', '1', '', '3', '', '5', '', '7', '', '9', '')) plt.legend() #plt.tight_layout() plt.savefig('./' + name + '_Distribution.png', dpi=400) #plt.show() plt.close() def plot_landscape_barrier(labels=None, selected=1, phi_angles=None, psi_angles=None, phi_ctr=None, psi_ctr=None, name='Energy_Landscape', bins=36, potential=False, outliers=-1): H, xedges, yedges = np.histogram2d(psi_angles, phi_angles, bins=bins) #since we calculate total number in 10 interval, thus bin of every dimension must be 36 #If element in H is zero, set the final energy to be 9 plt.rc("font", size=25) maxH = np.max(H) for i in range(len(H)): for j in range(len(H)): if H[i][j]==0: H[i][j]=9 else: H[i][j] = -np.log(H[i][j]/maxH) #H = -np.log(H/np.max(H)) extent =[np.min(xedges), np.max(xedges), np.min(yedges), np.max(yedges)] plt.figure(figsize=(12, 12)) plt.imshow(H, extent=extent, origin="lower", cmap=plt.cm.gray) #plt.cm.jet #plot points colors = ['y', 'b', 'tomato', 'm', 'g', 'c', 'yellowgreen'] color_index = 0 clusters = np.unique(labels) for i in clusters: if i != outliers: if i in selected: point = np.where(labels == i) plt.plot(phi_angles[point], psi_angles[point], '2', alpha=0.20, color=colors[color_index])#, color=colors_jet[i]) color_index += 1 #plot cluster centers on landscape if labels is not None: plt.plot(phi_ctr, psi_ctr, '*', markersize=10, color='r') distribution = np.array([0,0,0,0,0,0,0,0,0,0], dtype=np.float64) #print "len phi_ctr", len(phi_ctr) #print "shape of xedges", xedges.shape for i in xrange(0, len(phi_ctr)): if psi_ctr[i] > 179.0: index_x = np.where(xedges > 179.0)[0][0] - 1 else: index_x = np.where(xedges > psi_ctr[i])[0][0] - 1 if phi_ctr[i] > 179.0: index_y = np.where(yedges > 179.0)[0][0] - 1 else: index_y = np.where(yedges > phi_ctr[i])[0][0] - 1 index_distrib = int(H[index_x][index_y]) distribution[index_distrib] += 1 distribution /= len(phi_ctr) print(distribution) # print "clenter:", i, "[", phi_ctr,",", psi_ctr,"]", "H=", H[index_x][index_y] plt.xlabel('$\phi$', fontsize=20) plt.ylabel('$\Psi$', fontsize=20) cbar = plt.colorbar(shrink=0.77) #plt.title('Free energy landscape', fontsize=20) cbar.set_label("$k_B T$", size=20) cbar.ax.tick_params(labelsize=20) plt.xlim([-180, 180]) plt.ylim([-180, 180]) plt.xticks([-120, -60, 0, 60, 120]) plt.yticks([-120, -60, 0, 60, 120]) plt.plot([-103,-103],[30,180],'w') #plot the barrier plt.savefig('./' + name + '.png', dpi=400) #plt.show() plt.close() def calculate_population(labels, name='Populations'): print("Calculating and plotting population...") counts = list(Counter(labels).values()) total_states = np.max(labels) + 1 #states_magnitude = int(np.ceil(np.log10(total_states))) total_frames = len(labels) frames_magnitude = int(np.ceil(np.log10(total_frames))) print("states", total_states, "frames", total_frames) populations = np.zeros(frames_magnitude+1) for i in counts: if i > 0: log_i = np.log10(i) magnitude = np.ceil(log_i) populations[magnitude] += 1 #print magnitude populations print("Populations Probability:") #bins = [0] for i in xrange(len(populations)): populations[i] = populations[i] / total_states print("10 ^", i, "to", "10 ^", i+1,":", populations[i]*100, "%") #bins.append(10**(i+1)) name += '_Populations' print("name:", name) plot_cluster_size_distribution(populations=populations, name=name) print("Done.") def compare_population(labels_1, labels_2, name='Compare_Populations'): print("Calculating and plotting population...") counts = list(Counter(labels_1).values()) total_states = np.max(labels_1) + 1 total_frames = len(labels_1) frames_magnitude = int(np.ceil(np.log10(total_frames))) print("states", total_states, "frames", total_frames) populations_1 = np.zeros(frames_magnitude+1) for i in counts: if i > 0: log_i = np.log10(i) magnitude = np.ceil(log_i) populations_1[magnitude] += 1 print("Populations Probability:") for i in xrange(len(populations_1)): populations_1[i] = populations_1[i] / total_states print("10 ^", i, "to", "10 ^", i+1,":", populations_1[i]*100, "%") counts = list(Counter(labels_2).values()) total_states = np.max(labels_2) + 1 total_frames = len(labels_2) frames_magnitude = int(np.ceil(
np.log10(total_frames)
numpy.log10
# coding: utf-8 # Copyright (c) MoGroup at UMD. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import numpy as np from monty.json import MSONable from scipy import stats from scipy.optimize import curve_fit from pymatgen.io.vasp.outputs import Vasprun from pymatgen.util.coord import pbc_diff from pymatgen.core.structure import Structure from pymatgen.core.periodic_table import Specie import csv __author__ = "<NAME>" __email__ = "<EMAIL>" __version__ = "0.1" __date__ = "6/6/2017" __credit__ = "Pymatgen Development Team" class DiffusivityAnalyzer(MSONable): def __init__(self, structure, displacements, specie, temperature, time_step, step_skip, time_intervals_number=1000, spec_dict=None): """ Calculate MSD from pre-processed data, and implemented linear fitting to obtain diffusivity. :param structure (Structure): initial structure :param displacements (np.array): numpy array, shape is [n_ions, n_steps, axis] :param specie (str): species string, can be Li or Li+, make sure structure has oxidation state accordingly. :param temperature (float): temperature of MD :param time_step (float): time step in MD :param step_skip (int): Sampling frequency of the displacements ( time_step is multiplied by this number to get the real time between measurements) :param time_intervals_number (int): number of time intervals. Default is 1000 means there are ~1000 time intervals. :param spec_dict (dict): spec dict of linear fitting. Default is {'lower_bound': 4.5, 'upper_bound': 0.5, 'minimum_msd_diff': 4.5} lower_bound is in unit of Angstrom square upper_bound is in unit of total time. 0.5 means upper fitting bound is 0.5*t_total minimum_msd_diff is in unit of Angstrom square. msd[upper_bound] - msd[lower_bound] should larger than minimum_msd_diff to do linear fitting. """ spec_dict = spec_dict if spec_dict is not None else {'lower_bound': 4.5, 'upper_bound': 0.5, 'minimum_msd_diff': 4.5} if not {'lower_bound', 'upper_bound', 'minimum_msd_diff'} <= set(spec_dict.keys()): raise Exception("spec_dict does not have enough parameters.") time_step_displacements = time_step * step_skip # prepare indices = [] framework_indices = [] for i, site in enumerate(structure): if site.specie.symbol == specie: indices.append(i) else: framework_indices.append(i) if len(indices) == 0: raise Exception("There is no specie {} in the structure".format(specie)) if len(framework_indices) == 0: dc = displacements else: framework_disp = displacements[framework_indices] drift = np.average(framework_disp, axis=0)[None, :, :] dc = displacements - drift df = structure.lattice.get_fractional_coords(dc) displacements_final_diffusion_ions = dc[indices] displacements_frac_final_diffusion_ions = df[indices] n_ions, n_steps, dim = displacements_final_diffusion_ions.shape # time intervals, dt dt_indices = np.arange(1, n_steps, max(int((n_steps - 1) / time_intervals_number), 1)) dt = dt_indices * time_step_displacements # calculate msd # define functions, algorithm from # http://stackoverflow.com/questions/34222272/computing-mean-square-displacement-using-python-and-fft def autocorrelation_fft(x): N = x.shape[0] F = np.fft.fft(x, n=2 * N) PSD = F * F.conjugate() res = np.fft.ifft(PSD) res = (res[:N]).real n = N * np.ones(N) - np.arange(N) return res / n def one_ion_msd_fft(r, dt_indices): """ r (np.array, shape is typically [n_step,3], n_step is number of steps, 3 is 3 dimentions) """ # ------------ S1 n_step, dim = r.shape r_square = np.square(r) r_square = np.append(r_square, np.zeros((1, dim)), axis=0) # (n_step+1, 3) S1_component = np.zeros((dim, n_step)) # (dim, n_step) r_square_sum = 2 * np.sum(r_square, axis=0) # (3) for i in range(n_step): r_square_sum = r_square_sum - r_square[i - 1, :] - r_square[n_step - i, :] S1_component[:, i] = r_square_sum / (n_step - i) S1 = np.sum(S1_component, axis=0) # ------------ S2 S2_component = np.array([autocorrelation_fft(r[:, i]) for i in range(r.shape[1])]) # (dim, N) S2 = np.sum(S2_component, axis=0) # ------------ return return (S1 - 2 * S2)[dt_indices], (S1_component - 2 * S2_component)[:, dt_indices] n_dt = len(dt_indices) msd_by_ions = np.empty([0, n_dt]) # shape of n_ions * n_dt msd_component_by_ions = np.empty([3, 0, n_dt]) # shape of 3 * n_ions * n_dt for i in range(n_ions): msd_i, msd_component_i = one_ion_msd_fft(displacements_final_diffusion_ions[i, :, :], dt_indices) msd_by_ions = np.append(msd_by_ions, msd_i.reshape(1, n_dt), axis=0) msd_component_by_ions = np.append(msd_component_by_ions, msd_component_i.reshape(3, 1, n_dt), axis=1) msd = np.average(msd_by_ions, axis=0) msd_component = np.average(msd_component_by_ions, axis=1) # further things, 1. determine lower_index, upper_index 2. linear fitting, 3. error bar # one headache, how about error in different axis lower_bound_index = len(msd[msd < spec_dict['lower_bound']]) upper_bound_index = int(len(msd) * spec_dict['upper_bound']) - 1 """ if lower_bound_index >= upper_bound_index - 2: raise Exception("Maximum MSD is {:.2f}. ".format(max(msd)) + \ "MSD array has shape of {}. ".format(msd.shape) + \ "Lower bound index is {}, upper bound index is {}. ".format(lower_bound_index, upper_bound_index) + \ "There is no enough data to fit. " + \ "Please consider extending your MD simulation or increasing the temperature.") if msd[upper_bound_index] - msd[lower_bound_index] < spec_dict['minimum_msd_diff']: raise Exception( "Maximum MSD is {:.2f}. ".format(max(msd)) + \ "MSD at lower bound is {:.2f}, MSD at upper bound is {:.2f}. The MSD fitting range is too small. " \ .format(msd[lower_bound_index], msd[upper_bound_index]) + \ "Please consider extending your MD simulation or increasing the temperature.") """ if lower_bound_index >= upper_bound_index - 2 or \ msd[upper_bound_index] - msd[lower_bound_index] < spec_dict['minimum_msd_diff']: slope = -1 intercept = -1 slope_components = np.zeros(dim) else: slope, intercept, _, _, _ = stats.linregress(dt[lower_bound_index:upper_bound_index + 1], msd[lower_bound_index:upper_bound_index + 1]) slope_components = np.zeros(dim) for i in range(dim): s, _, _, _, _ = stats.linregress(dt[lower_bound_index:upper_bound_index + 1], msd_component[i, :][lower_bound_index:upper_bound_index + 1]) slope_components[i] = s self.structure = structure self.indices = indices self.framework_indices = framework_indices self.drift = drift self.drift_maximum = np.max(np.abs(drift), axis=1)[0] # the maximum drift vector of the framework ions, shape is (3,) self.disp = displacements self.displacements_final_diffusion_ions = displacements_final_diffusion_ions self.specie = specie self.temperature = temperature self.time_step = time_step self.step_skip = step_skip self.time_step_displacements = time_step_displacements self.time_intervals_number = time_intervals_number self.spec_dict = spec_dict if len(framework_indices) == 0: self.max_framework_displacement = 0.0 else: self.max_ion_displacements = np.max(np.sum( dc ** 2, axis=-1) ** 0.5, axis=1) self.max_framework_displacement = \ np.max(self.max_ion_displacements[framework_indices]) self.dt = dt self.lower_bound = spec_dict['lower_bound'] self.upper_bound = spec_dict['upper_bound'] self.lower_bound_index = lower_bound_index self.upper_bound_index = upper_bound_index self.msd = msd self.msd_by_ions = msd_by_ions self.msd_component = msd_component self.diffusivity = slope / (20 * dim) self.diffusivity_components = slope_components / 20 def get_summary_dict(self, oxidized_specie=None): """ A summary of information :param oxidized_specie (str): specie string with oxidation state. If provided or specie in initial function is oxidized, it will calculate conductivity based on nernst-einstein relationship. :return: dict of diffusion information keys: D, D_components, specie, step_skip, temperature, msd, msd_component, dt, time_intervals_number spec_dict """ d = {"diffusivity": self.diffusivity, "diffusivity_components": self.diffusivity_components, "specie": self.specie, "step_skip": self.step_skip, "temperature": self.temperature, "msd": self.msd, "msd_component": self.msd_component, "dt": self.dt, "time_intervals_number": self.time_intervals_number, "spec_dict": self.spec_dict, "drift_maximum": self.drift_maximum } oxi = False if oxidized_specie: df_sp = Specie.from_string(oxidized_specie) oxi = True else: try: df_sp = Specie.from_string(self.specie) oxi = True except: pass if oxi: factor = get_conversion_factor(self.structure, df_sp, self.temperature) d['conductivity'] = factor * self.diffusivity d['conductivity_components'] = factor * self.diffusivity_components d['conversion_factor'] = factor d['oxidation_state'] = df_sp.oxi_state return d @classmethod def from_structures(cls, structures, specie, temperature, time_step, step_skip, time_intervals_number=1000, spec_dict=None): """ Convenient constructor that takes in a list of Structure objects to perform diffusion analysis. :param structures ([Structure]): list of Structure objects: :param specie (str): species string, like Li, Li+ :param temperature (float): temperature of MD :param time_step (float): time step in MD :param step_skip (int): Sampling frequency of the displacements ( time_step is multiplied by this number to get the real time between measurements) :param time_intervals_number (int): number of time intervals. Default is 1000 means there are ~1000 time intervals. :param spec_dict (dict): spec dict of linear fitting. Default is {'lower_bound': 4.5, 'upper_bound': 0.5, 'minimum_msd_diff': 4.5} lower_bound is in unit of Angstrom square upper_bound is in unit of total time. 0.5 means upper fitting bound is 0.5*t_total minimum_msd_diff is in unit of Angstrom square. msd[upper_bound] - msd[lower_bound] should larger than minimum_msd_diff to do linear fitting. """ p = [] for i, s in enumerate(structures): if i == 0: structure = s p.append(np.array(s.frac_coords)[:, None]) p.insert(0, p[0]) p = np.concatenate(p, axis=1) dp = p[:, 1:] - p[:, :-1] dp = dp - np.round(dp) f_disp = np.cumsum(dp, axis=1) disp = structure.lattice.get_cartesian_coords(f_disp) return cls(structure, disp, specie, temperature, time_step, step_skip=step_skip, time_intervals_number=time_intervals_number, spec_dict=spec_dict) @classmethod def from_vaspruns(cls, vaspruns, specie, time_intervals_number=1000, spec_dict=None): """ Convenient constructor that takes in a list of Vasprun objects to perform diffusion analysis. :param vaspruns ([Vasprun]): List of Vaspruns (ordered): :param specie (str): species string, like Li, Li+ :param time_intervals_number (int): number of time intervals. Default is 1000 means there are ~1000 time intervals. :param spec_dict (dict): spec dict of linear fitting. Default is {'lower_bound': 4.5, 'upper_bound': 0.5, 'minimum_msd_diff': 4.5} lower_bound is in unit of Angstrom square upper_bound is in unit of total time. 0.5 means upper fitting bound is 0.5*t_total minimum_msd_diff is in unit of Angstrom square. msd[upper_bound] - msd[lower_bound] should larger than minimum_msd_diff to do linear fitting. """ def get_structures(vaspruns): for i, vr in enumerate(vaspruns): if i == 0: step_skip = vr.ionic_step_skip or 1 final_structure = vr.initial_structure temperature = vr.parameters['TEEND'] time_step = vr.parameters['POTIM'] yield step_skip, temperature, time_step # check that the runs are continuous fdist = pbc_diff(vr.initial_structure.frac_coords, final_structure.frac_coords) if np.any(fdist > 0.001): raise ValueError('initial and final structures do not ' 'match.') final_structure = vr.final_structure assert (vr.ionic_step_skip or 1) == step_skip for s in vr.ionic_steps: yield s['structure'] s = get_structures(vaspruns) step_skip, temperature, time_step = next(s) return cls.from_structures(structures=s, specie=specie, temperature=temperature, time_step=time_step, step_skip=step_skip, time_intervals_number=time_intervals_number, spec_dict=spec_dict) @classmethod def from_files(cls, filepaths, specie, step_skip=10, ncores=None, time_intervals_number=1000, spec_dict=None): """ Convenient constructor that takes in a list of vasprun.xml paths to perform diffusion analysis. :param filepaths ([str]): List of paths to vasprun.xml files of runs, ordered. :param specie (str): species string, like Li, Li+ :param step_skip (int): Sampling frequency of the displacements ( time_step is multiplied by this number to get the real time between measurements) :param ncores (int): Numbers of cores to use for multiprocessing. Can speed up vasprun parsing considerably. Defaults to None, which means serial. It should be noted that if you want to use multiprocessing, the number of ionic steps in all vasprun .xml files should be a multiple of the ionic_step_skip. Otherwise, inconsistent results may arise. Serial mode has no such restrictions. :param time_intervals_number (int): number of time intervals. Default is 1000 means there are ~1000 time intervals. :param spec_dict (dict): spec dict of linear fitting. Default is {'lower_bound': 4.5, 'upper_bound': 0.5, 'minimum_msd_diff': 4.5} lower_bound is in unit of Angstrom square upper_bound is in unit of total time. 0.5 means upper fitting bound is 0.5*t_total minimum_msd_diff is in unit of Angstrom square. msd[upper_bound] - msd[lower_bound] should larger than minimum_msd_diff to do linear fitting. """ if ncores is not None and len(filepaths) > 1: import multiprocessing p = multiprocessing.Pool(ncores) vaspruns = p.imap(_get_vasprun, [(fp, step_skip) for fp in filepaths]) analyzer = cls.from_vaspruns(vaspruns, specie=specie, time_intervals_number=time_intervals_number, spec_dict=spec_dict) p.close() p.join() return analyzer else: def vr(filepaths): offset = 0 for p in filepaths: v = Vasprun(p, ionic_step_offset=offset, ionic_step_skip=step_skip) yield v # Recompute offset. offset = (-(v.nionic_steps - offset)) % step_skip return cls.from_vaspruns(vr(filepaths), specie=specie, time_intervals_number=time_intervals_number, spec_dict=spec_dict) def as_dict(self): return { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "structure": self.structure.as_dict(), "displacements": self.disp.tolist(), "specie": self.specie, "temperature": self.temperature, "time_step": self.time_step, "step_skip": self.step_skip, "time_intervals_number": self.time_intervals_number, "spec_dict": self.spec_dict} @classmethod def from_dict(cls, d): structure = Structure.from_dict(d["structure"]) return cls(structure, np.array(d["displacements"]), specie=d["specie"], temperature=d["temperature"], time_step=d["time_step"], step_skip=d["step_skip"], time_intervals_number=d["time_intervals_number"], spec_dict=d['spec_dict']) class ErrorAnalysisFromDiffusivityAnalyzer(object): def __init__(self, diffusivity_analyzer, site_distance=3.0): """ Estimate the relative standard deviation (RSD) of D from the equation: RSD = 3.43/sqrt(N_jump) + 0.04 :param diffusivity_analyzer (DiffusivityAnalyzer object): :param site_distance (float): the site distance between diffusion ions (averagely) """ n_jump = len(diffusivity_analyzer.indices) * \ np.max(diffusivity_analyzer.msd) / (site_distance * site_distance) n_jump_component = len(diffusivity_analyzer.indices) * \ np.max(diffusivity_analyzer.msd_component, axis=1) / (site_distance * site_distance) RSD_D = 3.43 / np.sqrt(n_jump) + 0.04 RSD_D_component = [None, None, None] for i in range(3): RSD_D_component[i] = 3.43 / np.sqrt(n_jump_component[i]) + 0.04 self.diffusivity_analyzer = diffusivity_analyzer self.n_jump = n_jump self.n_jump_component = n_jump_component self.RSD_D = RSD_D self.RSD_D_component = np.array(RSD_D_component) def get_summary_dict(self, oxidized_specie=None): """ A summary of information :param oxidized_specie (str): specie string with oxidation state. If provided or specie in initial function is oxidized, it will calculate conductivity based on nernst-einstein relationship. :return: dict of diffusion information """ d = self.diffusivity_analyzer.get_summary_dict(oxidized_specie=oxidized_specie) d['n_jump'] = self.n_jump d['n_jump_component'] = self.n_jump_component d['diffusivity_relative_standard_deviation'] = self.RSD_D d['diffusivity_standard_deviation'] = self.RSD_D * d['diffusivity'] d['diffusivity_component_relative_standard_deviation'] = self.RSD_D_component d['diffusivity_component_relative_standard_deviation'] = self.RSD_D_component * d['diffusivity_components'] return d def _get_vasprun(args): """ Internal method to support multiprocessing. """ return Vasprun(args[0], ionic_step_skip=args[1], parse_dos=False, parse_eigen=False) class ArreheniusAnalyzer(object): def __init__(self, temperatures, diffusivities, diffusivity_errors=None): """ Fitting arrehenius relationship from temperatures, diffusivities and diffusivity_error :param temperatures (List): list of temperatures :param diffusivities (List): list of diffusivities at different temperatures :param diffusivity_errors (List): optional, list of diffusivity error at different temperatures """ slope_to_eV = -8.617e-5 * 1000 * np.log(10) def linear(x, k, b): return k * x + b x = np.array([1000.0 / i for i in temperatures]) y = np.array([
np.log10(i)
numpy.log10
import sys sys.path.insert(1, '/home/ximo/Documents/GitHub/skforecast') import pytest from pytest import approx import numpy as np import pandas as pd from skforecast import __version__ from skforecast.ForecasterAutoreg import ForecasterAutoreg from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor # Test initializations #------------------------------------------------------------------------------- def test_init_lags_attribute_when_integer_is_passed(): forecaster = ForecasterAutoreg(LinearRegression(), lags=10) assert (forecaster.lags == np.arange(10) + 1).all() def test_init_lags_attribute_when_list_is_passed(): forecaster = ForecasterAutoreg(LinearRegression(), lags=[1, 2, 3]) assert (forecaster.lags == np.array([1, 2, 3])).all() def test_init_lags_attribute_when_range_is_passed(): forecaster = ForecasterAutoreg(LinearRegression(), lags=range(1, 4)) assert (forecaster.lags == np.array(range(1, 4))).all() def test_init_lags_attribute_when_numpy_arange_is_passed(): forecaster = ForecasterAutoreg(LinearRegression(), lags=np.arange(1, 10)) assert (forecaster.lags == np.arange(1, 10)).all() def test_init_exception_when_lags_argument_is_int_less_than_1(): with pytest.raises(Exception): ForecasterAutoreg(LinearRegression(), lags=-10) def test_init_exception_when_lags_argument_is_range_starting_at_zero(): with pytest.raises(Exception): ForecasterAutoreg(LinearRegression(), lags=range(0, 4)) def test_init_exception_when_lags_argument_is_numpy_arange_starting_at_zero(): with pytest.raises(Exception): ForecasterAutoreg(LinearRegression(), lags=np.arange(0, 4)) def test_init_exception_when_lags_argument_is_list_starting_at_zero(): with pytest.raises(Exception): ForecasterAutoreg(LinearRegression(), lags=[0, 1, 2]) # Test method create_lags() #------------------------------------------------------------------------------- def test_create_lags_when_lags_is_3_and_y_is_numpy_arange_10(): ''' Check matrix of lags is created properly ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) results = forecaster.create_lags(y=np.arange(10)) expected = (np.array([[2., 1., 0.], [3., 2., 1.], [4., 3., 2.], [5., 4., 3.], [6., 5., 4.], [7., 6., 5.], [8., 7., 6.]]), np.array([3., 4., 5., 6., 7., 8., 9.])) assert (results[0] == expected[0]).all() assert (results[1] == expected[1]).all() def test_create_lags_exception_when_len_of_y_is_less_than_maximum_lag(): forecaster = ForecasterAutoreg(LinearRegression(), lags=10) with pytest.raises(Exception): forecaster.create_lags(y=np.arange(5)) # Test method create_train_X_y() #------------------------------------------------------------------------------- def test_create_train_X_y_output_when_y_is_range_10_and_exog_is_None(): forecaster = ForecasterAutoreg(LinearRegression(), lags=5) results = forecaster.create_train_X_y(y=np.arange(10)) expected = (np.array([[4., 3., 2., 1., 0.], [5., 4., 3., 2., 1.], [6., 5., 4., 3., 2.], [7., 6., 5., 4., 3.], [8., 7., 6., 5., 4.]]), np.array([5, 6, 7, 8, 9])) assert (results[0] == expected[0]).all() assert (results[1] == expected[1]).all() def test_create_train_X_y_output_when_y_is_range_10_and_exog_is_1d_array(): forecaster = ForecasterAutoreg(LinearRegression(), lags=5) results = forecaster.create_train_X_y(y=np.arange(10), exog=np.arange(100, 110)) expected = (np.array([[4., 3., 2., 1., 0., 105.], [5., 4., 3., 2., 1., 106.], [6., 5., 4., 3., 2., 107.], [7., 6., 5., 4., 3., 108.], [8., 7., 6., 5., 4., 109.]]), np.array([5, 6, 7, 8, 9])) assert (results[0] == expected[0]).all() assert (results[1] == expected[1]).all() def test_create_train_X_y_output_when_y_is_range_10_and_exog_is_2d_array(): forecaster = ForecasterAutoreg(LinearRegression(), lags=5) results = forecaster.create_train_X_y( y=np.arange(10), exog=np.column_stack([np.arange(100, 110), np.arange(1000, 1010)]) ) expected = (np.array([[4, 3, 2, 1, 0, 105, 1005], [5, 4, 3, 2, 1, 106, 1006], [6, 5, 4, 3, 2, 107, 1007], [7, 6, 5, 4, 3, 108, 1008], [8, 7, 6, 5, 4, 109, 1009]]), np.array([5, 6, 7, 8, 9])) assert (results[0] == expected[0]).all() assert (results[1] == expected[1]).all() # Test method fit() #------------------------------------------------------------------------------- def test_fit_exception_when_y_and_exog_have_different_lenght(): forecaster = ForecasterAutoreg(LinearRegression(), lags=5) with pytest.raises(Exception): forecaster.fit(y=np.arange(50), exog=np.arange(10)) with pytest.raises(Exception): forecaster.fit(y=np.arange(50), exog=pd.Series(np.arange(10))) def test_last_window_stored_when_fit_forecaster(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(50)) assert (forecaster.last_window == np.array([47, 48, 49])).all() def test_in_sample_residuals_stored_when_fit_forecaster(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(5)) expected = np.array([0, 0]) results = forecaster.in_sample_residuals assert results == approx(expected) # Test method predict() #------------------------------------------------------------------------------- def test_predict_exception_when_steps_lower_than_1(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(50)) with pytest.raises(Exception): forecaster.predict(steps=0) def test_predict_exception_when_forecaster_fited_without_exog_and_exog_passed_when_predict(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(50)) with pytest.raises(Exception): forecaster.predict(steps=10, exog=np.arange(10)) def test_predict_exception_when_forecaster_fited_with_exog_but_not_exog_passed_when_predict(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(50), exog=np.arange(50)) with pytest.raises(Exception): forecaster.predict(steps=10) def test_predict_exception_when_exog_passed_in_predict_has_different_columns_than_exog_used_to_fit_nparray(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(10), exog=np.arange(30).reshape(-1, 3)) with pytest.raises(Exception): forecaster.predict(steps=10, exog=np.arange(30).reshape(-1, 2)) def test_predict_exception_when_exog_passed_in_predict_has_different_columns_than_exog_used_to_fit_pdDataDrame(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(10), exog=pd.DataFrame(np.arange(30).reshape(-1, 3))) with pytest.raises(Exception): forecaster.predict(steps=10, exog=pd.DataFrame(np.arange(30).reshape(-1, 2))) def test_predict_exception_when_exog_lenght_is_less_than_steps(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(50), exog=np.arange(50)) with pytest.raises(Exception): forecaster.predict(steps=10, exog=np.arange(5)) def test_predict_exception_when_last_window_argument_is_not_numpy_array_or_pandas_series(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(50)) with pytest.raises(Exception): forecaster.predict(steps=10, last_window=[1,2,3]) def test_predict_exception_when_last_window_lenght_is_less_than_maximum_lag(): forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=
np.arange(50)
numpy.arange
import os import sys import pickle import copy import numpy as np import json from skimage import io from pathlib import Path import torch import spconv from pcdet.utils import box_utils, common_utils from pcdet.ops.roiaware_pool3d import roiaware_pool3d_utils from pcdet.config import cfg from pcdet.datasets.data_augmentation.dbsampler import DataBaseSampler from pcdet.datasets import DatasetTemplate from pcdet.datasets.cadc import cadc_calibration class BaseCadcDataset(DatasetTemplate): def __init__(self, root_path, split='train'): super().__init__() self.root_path = root_path self.split = split if split in ['train', 'val', 'test']: split_dir = os.path.join(self.root_path, 'ImageSets', split + '.txt') self.sample_id_list = [x.strip().split() for x in open(split_dir).readlines()] if os.path.exists(split_dir) else None def set_split(self, split): self.__init__(self.root_path, split) def get_lidar(self, sample_idx): date, set_num, idx = sample_idx lidar_file = os.path.join(self.root_path, date, set_num, 'labeled', 'lidar_points', 'data', '%s.bin' % idx) assert os.path.exists(lidar_file) points = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4) points[:, 3] /= 255 return points def get_image_shape(self, sample_idx): date, set_num, idx = sample_idx img_file = os.path.join(self.root_path, date, set_num, 'labeled', 'image_00', 'data', '%s.png' % idx) assert os.path.exists(img_file) return np.array(io.imread(img_file).shape[:2], dtype=np.int32) def get_label(self, sample_idx): date, set_num, idx = sample_idx label_file = os.path.join(self.root_path, date, set_num, '3d_ann.json') assert os.path.exists(label_file) return json.load(open(label_file, 'r')) def get_calib(self, sample_idx): date, set_num, idx = sample_idx calib_path = os.path.join(self.root_path, date, 'calib') assert os.path.exists(calib_path) return cadc_calibration.Calibration(calib_path) def get_road_plane(self, idx): """ plane_file = os.path.join(self.root_path, 'planes', '%s.txt' % idx) with open(plane_file, 'r') as f: lines = f.readlines() lines = [float(i) for i in lines[3].split()] plane = np.asarray(lines) # Ensure normal is always facing up, this is in the rectified camera coordinate if plane[1] > 0: plane = -plane norm = np.linalg.norm(plane[0:3]) plane = plane / norm return plane """ # Currently unsupported in CADC raise NotImplementedError def get_annotation_from_label(self, calib, sample_idx): date, set_num, idx = sample_idx obj_list = self.get_label(sample_idx)[int(idx)]['cuboids'] annotations = {} annotations['name'] = np.array([obj['label'] for obj in obj_list]) annotations['num_points_in_gt'] = [[obj['points_count'] for obj in obj_list]] loc_lidar = np.array([[obj['position']['x'],obj['position']['y'],obj['position']['z']] for obj in obj_list]) dims = np.array([[obj['dimensions']['x'],obj['dimensions']['y'],obj['dimensions']['z']] for obj in obj_list]) rots = np.array([obj['yaw'] for obj in obj_list]) gt_boxes_lidar = np.concatenate([loc_lidar, dims, rots[..., np.newaxis]], axis=1) annotations['gt_boxes_lidar'] = gt_boxes_lidar # in camera 0 frame. Probably meaningless as most objects aren't in frame. annotations['location'] = calib.lidar_to_rect(loc_lidar) annotations['rotation_y'] = rots annotations['dimensions'] = np.array([[obj['dimensions']['y'], obj['dimensions']['z'], obj['dimensions']['x']] for obj in obj_list]) # lhw format gt_boxes_camera = box_utils.boxes3d_lidar_to_camera(gt_boxes_lidar, calib) # Currently unused for CADC, and don't make too much since as we primarily use 360 degree 3d LIDAR boxes. annotations['score'] = np.array([1 for _ in obj_list]) annotations['difficulty'] = np.array([0 for obj in obj_list], np.int32) annotations['truncated'] = np.array([0 for _ in obj_list]) annotations['occluded'] = np.array([0 for _ in obj_list]) annotations['alpha'] = np.array([-np.arctan2(-gt_boxes_lidar[i][1], gt_boxes_lidar[i][0]) + gt_boxes_camera[i][6] for i in range(len(obj_list))]) annotations['bbox'] = gt_boxes_camera return annotations @staticmethod def get_fov_flag(pts_rect, img_shape, calib): ''' Valid point should be in the image (and in the PC_AREA_SCOPE) :param pts_rect: :param img_shape: :return: ''' pts_img, pts_rect_depth = calib.rect_to_img(pts_rect) val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1]) val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0]) val_flag_merge = np.logical_and(val_flag_1, val_flag_2) pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0) return pts_valid_flag def get_infos(self, num_workers=4, has_label=True, count_inside_pts=True, sample_id_list=None): import concurrent.futures as futures def process_single_scene(sample_idx): print('%s sample_idx: %s ' % (self.split, sample_idx)) info = {} pc_info = {'num_features': 4, 'lidar_idx': sample_idx} info['point_cloud'] = pc_info image_info = {'image_idx': sample_idx, 'image_shape': self.get_image_shape(sample_idx)} info['image'] = image_info calib = self.get_calib(sample_idx) calib_info = {'T_IMG_CAM0': calib.t_img_cam[0], 'T_CAM_LIDAR': calib.t_cam_lidar[0]} info['calib'] = calib_info if has_label: annotations = self.get_annotation_from_label(calib, sample_idx) info['annos'] = annotations return info # temp = process_single_scene(self.sample_id_list[0]) sample_id_list = sample_id_list if sample_id_list is not None else self.sample_id_list with futures.ThreadPoolExecutor(num_workers) as executor: infos = executor.map(process_single_scene, sample_id_list) return list(infos) def create_groundtruth_database(self, info_path=None, used_classes=None, split='train'): database_save_path = Path(self.root_path) / ('gt_database' if split == 'train' else ('gt_database_%s' % split)) db_info_save_path = Path(self.root_path) / ('cadc_dbinfos_%s.pkl' % split) database_save_path.mkdir(parents=True, exist_ok=True) all_db_infos = {} with open(info_path, 'rb') as f: infos = pickle.load(f) for k in range(len(infos)): print('gt_database sample: %d/%d' % (k + 1, len(infos))) info = infos[k] sample_idx = info['point_cloud']['lidar_idx'] points = self.get_lidar(sample_idx) annos = info['annos'] names = annos['name'] difficulty = annos['difficulty'] bbox = annos['bbox'] gt_boxes = annos['gt_boxes_lidar'] num_obj = gt_boxes.shape[0] point_indices = roiaware_pool3d_utils.points_in_boxes_cpu( torch.from_numpy(points[:, 0:3]), torch.from_numpy(gt_boxes[:,:7]) ).numpy() # (nboxes, npoints) for i in range(num_obj): filename = '%s_%s_%s_%s_%d.bin' % (sample_idx[0], sample_idx[1], sample_idx[2], names[i], i) filepath = database_save_path / filename gt_points = points[point_indices[i] > 0] gt_points[:, :3] -= gt_boxes[i, :3] with open(filepath, 'w') as f: gt_points.tofile(f) if (used_classes is None) or names[i] in used_classes: db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin db_info = {'name': names[i], 'path': db_path, 'image_idx': sample_idx, 'gt_idx': i, 'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0], 'difficulty': difficulty[i], 'bbox': bbox[i], 'score': annos['score'][i]} if names[i] in all_db_infos: all_db_infos[names[i]].append(db_info) else: all_db_infos[names[i]] = [db_info] for k, v in all_db_infos.items(): print('Database %s: %d' % (k, len(v))) with open(db_info_save_path, 'wb') as f: pickle.dump(all_db_infos, f) @staticmethod def generate_prediction_dict(input_dict, index, record_dict): # finally generate predictions. sample_idx = input_dict['sample_idx'][index] if 'sample_idx' in input_dict else -1 boxes3d_lidar_preds = record_dict['boxes'].cpu().numpy() if boxes3d_lidar_preds.shape[0] == 0: return {'sample_idx': sample_idx} calib = input_dict['calib'][index] image_shape = input_dict['image_shape'][index] boxes3d_camera_preds = box_utils.boxes3d_lidar_to_camera(boxes3d_lidar_preds, calib) boxes2d_image_preds = box_utils.boxes3d_camera_to_imageboxes(boxes3d_camera_preds, calib, image_shape=image_shape) # predictions predictions_dict = { 'bbox': boxes2d_image_preds, 'box3d_camera': boxes3d_camera_preds, 'box3d_lidar': boxes3d_lidar_preds, 'scores': record_dict['scores'].cpu().numpy(), 'label_preds': record_dict['labels'].cpu().numpy(), 'sample_idx': sample_idx, } return predictions_dict @staticmethod def generate_annotations(input_dict, pred_dicts, class_names, save_to_file=False, output_dir=None): def get_empty_prediction(): ret_dict = { 'name':
np.array([])
numpy.array
import pandas as pd import numpy as np import glob from neuropixels import generalephys_mua as ephys_mua from neuropixels.generalephys import get_waveform_duration,get_waveform_PTratio,get_waveform_repolarizationslope,option234_positions from scipy.cluster.vq import kmeans2 import seaborn as sns;sns.set_style("ticks") import matplotlib.pyplot as plt import h5py import matplotlib.path as mpath import matplotlib.lines as mlines import matplotlib.patches as mpatches from matplotlib.collections import PatchCollection import os def get_peak_waveform_from_template(template): max = 0 ind=0 peak = np.zeros(np.shape(template.T)[0]) for i,wv in enumerate(template.T): if np.max(np.abs(wv)) > max: max = np.max(np.abs(wv)) ind = i peak = wv return peak def df_from_phy_multimouse(folder,expnum='1',recnum='1',site_positions = option234_positions,**kwargs): if 'est' not in folder: base_folder = os.path.basename(folder) cohort_ = os.path.basename(base_folder).split('_')[-2] mouse_ = os.path.basename(base_folder).split('_')[-1] #traverse down tree to data if 'open-ephys-neuropix' in base_folder: try: rec_folder = glob.glob(folder+'/*')[0] print(rec_folder, 'hey') except: print(base_folder) return None else: rec_folder = folder print(rec_folder) raw_path = os.path.join(rec_folder,'recording'+str(recnum),'continuous') if len(glob.glob(raw_path+'/*100.0*'))>0: raw_path = glob.glob(raw_path+'/*100.0*')[0] print('loading from '+raw_path) else: print('could not find data folder for '+raw_path) if os.path.isfile(os.path.join(raw_path,'spike_clusters.npy')) : # df = df_from_phy(raw_path,site_positions = ephys.option234_positions,cluster_file='KS2',cohort=cohort,mouse=mouse) path = raw_path units = ephys.load_phy_template(path,cluster_file='cluster_group',site_positions=site_positions) #structures is a dictionary that defines the bounds of the structure e.g.:{'v1':(0,850), 'hpc':(850,2000)} mouse = [];experiment=[];cell = [];ypos = [];xpos = [];waveform=[];template=[];structure=[];times=[] index = []; count = 1; cohort = [] probe_id=[] depth=[];#print(list(nwb_data.keys()));print(list(nwb_data['processing'].keys())); for unit in list(units.keys()): if 'probe' in kwargs.keys(): probe_id.extend([kwargs['probe']]) else: probe_id.extend(['A']) if 'mouse' in kwargs.keys(): mouse.extend([kwargs['mouse']]) else: mouse.extend([mouse_]) if 'experiment' in kwargs.keys(): experiment.extend([kwargs['experiment']]) else: experiment.extend(['placeholder']) if 'cohort' in kwargs.keys(): cohort.extend([kwargs['cohort']]) else: cohort.extend([cohort_]) xpos.extend([units[unit]['xpos']]) ypos.extend([units[unit]['ypos']]) template.extend([units[unit]['template']]) times.append(units[unit]['times']) waveform.append(units[unit]['waveform_weights']) df = pd.DataFrame(index=index) df = df.fillna(np.nan) # df['nwb_id'] = nwb_id df['mouse'] = mouse df['experiment'] = experiment df['probe'] = probe_id # df['structure'] = structure df['cell'] = units.keys() df['cohort'] = cohort df['times'] = times df['ypos'] = ypos df['xpos'] = xpos # df['depth'] = depth df['waveform'] = waveform df['template'] = template return df def df_from_phy(folder,expnum='1',recnum='1',site_positions = option234_positions,**kwargs): # if 'est' not in folder: # base_folder = os.path.basename(folder) # cohort_ = os.path.basename(base_folder).split('_')[-2] # mouse_ = os.path.basename(base_folder).split('_')[-1] #traverse down tree to data # if 'open-ephys-neuropix' in base_folder: # try: # rec_folder = glob.glob(folder+'/*')[0] # except: # print(base_folder) # return None # else: # rec_folder = folder # raw_path = os.path.join(rec_folder,'experiment'+str(expnum),'recording'+str(recnum),'continuous') # if len(glob.glob(raw_path+'/*100.0*'))>0: # raw_path = glob.glob(raw_path+'/*100.0*')[0] # print('loading from '+raw_path) # else: # print('could not find data folder for '+raw_path) raw_path=folder if 'cohort' in kwargs.keys(): cohort = kwargs['cohort'] else: cohort = None if 'mouse' in kwargs.keys(): mouse = kwargs['mouse'] else: mouse = None # df = df_from_phy(raw_path,site_positions = ephys.option234_positions,cluster_file='KS2',cohort=cohort,mouse=mouse) path = raw_path #units = ephys.load_phy_template(path,cluster_file='KS2',site_positions=site_positions) units = ephys_mua.load_phy_template_mua(path,site_positions=site_positions) #structures is a dictionary that defines the bounds of the structure e.g.:{'v1':(0,850), 'hpc':(850,2000)} mouse = [];experiment=[];cell = [];ypos = [];xpos = [];waveform=[];template=[];structure=[];times=[] index = []; count = 1; cohort = [] probe_id=[] depth=[];#print(list(nwb_data.keys()));print(list(nwb_data['processing'].keys())); for unit in list(units.index): if 'probe' in kwargs.keys(): probe_id.extend([kwargs['probe']]) else: probe_id.extend(['A']) if 'mouse' in kwargs.keys(): mouse.extend([kwargs['mouse']]) else: mouse.extend([mouse_]) if 'experiment' in kwargs.keys(): experiment.extend([kwargs['experiment']]) else: experiment.extend(['placeholder']) if 'cohort' in kwargs.keys(): cohort.extend([kwargs['cohort']]) else: cohort.extend([cohort_]) df = units df['mouse'] = mouse df['experiment'] = experiment df['probe'] = probe_id # df['structure'] = structure df['cell'] = units.index df['cohort'] = cohort df['times'] = units['times'] df['ypos'] = units['ypos'] df['xpos'] = units['xpos'] # df['depth'] = xpos df['waveform'] = units['waveform_weights'] df['template'] = units['template'] return df def df_from_nwb(nwb_data,structures=None,insertion_angle=55,nwbid=0): if type(nwb_data)==str: #print(nwb_data) nwbid = nwb_data nwb_data = h5py.File(nwb_data) else: nwb_data = nwb_data #structures is a dictionary that defines the bounds of the structure e.g.:{'v1':(0,850), 'hpc':(850,2000)} mouse = [];experiment=[];cell = [];ypos = [];xpos = [];waveform=[];template=[];structure=[];times=[] index = []; count = 1 nwb_id = [];probe_id=[] depth=[];#print(list(nwb_data.keys()));print(list(nwb_data['processing'].keys())); if 'processing' in nwb_data.keys(): for probe in list(nwb_data['processing'].keys()): if 'UnitTimes' in list(nwb_data['processing'][probe].keys()): for i,u in enumerate(list(nwb_data['processing'][probe]['UnitTimes'].keys())): if u != 'unit_list': nwb_id.append(nwbid) probe_id.append(probe) index.append(count);count+=1 mouse.append(str(np.array(nwb_data.get('identifier')))) experiment.append(1) cell.append(u) times.append(np.array(nwb_data['processing'][probe]['UnitTimes'][u]['times']));# print(list(nwb_data['processing'][probe]['UnitTimes'][u].keys())) if 'ypos' in list(nwb_data['processing'][probe]['UnitTimes'][u].keys()): ypos.append(
np.array(nwb_data['processing'][probe]['UnitTimes'][u]['ypos'])
numpy.array
import numpy as np from scipy.optimize import least_squares from scipy.integrate import odeint def sol_u(t, u0, alpha, beta): return u0 * np.exp(-beta * t) + alpha / beta * (1 - np.exp(-beta * t)) def sol_s(t, s0, u0, alpha, beta, gamma): exp_gt = np.exp(-gamma * t) if beta == gamma: s = s0 * exp_gt + (beta * u0 - alpha) * t * exp_gt + alpha / gamma * (1 - exp_gt) else: s = ( s0 * exp_gt + alpha / gamma * (1 - exp_gt) + (alpha - u0 * beta) / (gamma - beta) * (exp_gt - np.exp(-beta * t)) ) return s def sol_p(t, p0, s0, u0, alpha, beta, gamma, eta, gamma_p): u = sol_u(t, u0, alpha, beta) s = sol_s(t, s0, u0, alpha, beta, gamma) exp_gt = np.exp(-gamma_p * t) p = p0 * exp_gt + eta / (gamma_p - gamma) * ( s - s0 * exp_gt - beta / (gamma_p - beta) * (u - u0 * exp_gt - alpha / gamma_p * (1 - exp_gt)) ) return p, s, u def sol_ode(x, t, alpha, beta, gamma, eta, gamma_p): dx = np.zeros(x.shape) dx[0] = alpha - beta * x[0] dx[1] = beta * x[0] - gamma * x[1] dx[2] = eta * x[1] - gamma_p * x[2] return dx def sol_num(t, p0, s0, u0, alpha, beta, gamma, eta, gamma_p): sol = odeint( lambda x, t: sol_ode(x, t, alpha, beta, gamma, eta, gamma_p), np.array([u0, s0, p0]), t, ) return sol def fit_gamma_labelling(t, l, mode=None, lbound=None): t = np.array(t, dtype=float) l = np.array(l, dtype=float) if l.ndim == 1: # l is a vector n_rep = 1 else: n_rep = l.shape[0] t = np.tile(t, n_rep) l = l.flatten() # remove low counts based on lbound if lbound is not None: t[l < lbound] = np.nan l[l < lbound] = np.nan n = np.sum(~np.isnan(t)) tau = t - np.nanmin(t) tm = np.nanmean(tau) # prepare y y = np.log(l) ym = np.nanmean(y) # calculate slope var_t = np.nanmean(tau ** 2) - tm ** 2 cov = np.nansum(y * tau) / n - ym * tm k = cov / var_t # calculate intercept b = np.exp(ym - k * tm) if mode != "fast" else None gamma = -k u0 = b return gamma, u0 def fit_beta_lsq(t, l, bounds=(0, np.inf), fix_l0=False, beta_0=None): tau = t - np.min(t) l0 = np.mean(l[:, tau == 0]) if beta_0 is None: beta_0 = 1 if fix_l0: f_lsq = lambda b: (sol_u(tau, l0, 0, b) - l).flatten() ret = least_squares(f_lsq, beta_0, bounds=bounds) beta = ret.x else: f_lsq = lambda p: (sol_u(tau, p[1], 0, p[0]) - l).flatten() ret = least_squares(f_lsq, np.array([beta_0, l0]), bounds=bounds) beta = ret.x[0] l0 = ret.x[1] return beta, l0 def fit_alpha_labelling(t, u, gamma, mode=None): n = u.size tau = t - np.min(t) expt =
np.exp(gamma * tau)
numpy.exp
# This is python script for Metashape Pro. Scripts repository: https://github.com/agisoft-llc/metashape-scripts # # See https://agisoft.freshdesk.com/support/solutions/articles/31000162552-automatic-detection-of-objects-on-orthomosaic # Based on https://github.com/weecology/DeepForest (tested on deepforest==1.0.8) # # This is a neural network assistant for objects (trees/cars/sea lions/etc.) detection on orthomosaic. # This script can help you to detect trees or other objects (like cars or sea lions) # using partial manual annotations to guide the neural network what to seek for. # The pre-trained network was pre-trained for tree detection task, but the results are much better # if you will annotate small region to guide the neural network (it will be trained additionally). # Note that you need NVIDIA GPU for fast processing (i.e. CUDA-compatible GPU required, CPU is supported too but it is very slow) # # How to install (Linux): # # 1. cd .../metashape-pro # LD_LIBRARY_PATH=`pwd`/python/lib/ python/bin/python3.8 -m pip install albumentations==1.0.3 deepforest pytorch-lightning==1.5.10 torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html # 2. Add this script to auto-launch - https://agisoft.freshdesk.com/support/solutions/articles/31000133123-how-to-run-python-script-automatically-on-metashape-professional-start # copy detect_objects.py script to /home/<username>/.local/share/Agisoft/Metashape Pro/scripts/ # # How to install (Windows): # # 1. Download latest gdal, rasterio and fiona packages (for Python 3.8 amd64, i.e. download files ending with ...cp38‑cp38‑win_amd64.whl) # gdal - https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal # rasterio - https://www.lfd.uci.edu/~gohlke/pythonlibs/#rasterio # fiona - https://www.lfd.uci.edu/~gohlke/pythonlibs/#fiona # 2. Now you need to install these downloaded python packages wheel: # 3. Launch cmd.exe with the administrator privileges # 4. Change directory to Downloads directory (where three downloaded files are located): # cd %USERPROFILE%/Downloads # 5. Install them one by one: # "%programfiles%\Agisoft\Metashape Pro\python\python.exe" -m pip install GDAL‑3.4.2‑cp38‑cp38‑win_amd64.whl # "%programfiles%\Agisoft\Metashape Pro\python\python.exe" -m pip install rasterio‑1.2.10‑cp38‑cp38‑win_amd64.whl # "%programfiles%\Agisoft\Metashape Pro\python\python.exe" -m pip install Fiona‑1.8.21‑cp38‑cp38‑win_amd64.whl # 6. Install pytorch with CUDA support and deepforest: # "%programfiles%\Agisoft\Metashape Pro\python\python.exe" -m pip install albumentations==1.0.3 deepforest pytorch-lightning==1.5.10 torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html # 7. Add this script to auto-launch - https://agisoft.freshdesk.com/support/solutions/articles/31000133123-how-to-run-python-script-automatically-on-metashape-professional-start # copy detect_objects.py script to C:/Users/<username>/AppData/Local/Agisoft/Metashape Pro/scripts/ # # How to use: # # 1. Open a dataset with an orthomosaic with at least 10 cm/pix resolution (i.e. GSD should be <= 10 cm/pix), 10 cm/pix or 5 cm/pix are recommended # 2. Create a shape layer 'Train zones' with at least one axis aligned bounding box (using 'Draw Rectangle') specifing the training zone # (each of its sides should be around 50-60 meters), it is recommended to specify color for shapes of this layer - red for example # 3. Create a shape layer 'Train data' with all trees (or all cars) in train zones specified as axis aligned bounding box (using 'Draw Rectangle'), # it is recommended to specify different color for shapes of this layer - blue for example # 4. Ensure that you didn't miss any objects (trees if you want to detect trees, or cars if you want to detect cars) in train zones # 5. Press 'Custom menu/Detect objects' # 6. Ensure that proper shape layers are selected as Train zones and Train data # 7. Press Run # # To process detection only on some part of the orthomosaic please specify Outer Boundary # (ensure that Train zones are inside the Outer Boundary): # https://www.agisoft.com/forum/index.php?topic=4910.msg24580#msg24580 # # How to use a pre-trained neural network model for tree detection: # (not recommended because results are much better after training on annotated 50x50 meters zone) # # 1. Open a dataset with a orthomosaic with at least 10 cm/pix resolution (i.e. GSD should be <= 10 cm/pix) # 2. Press 'Custom menu/Detect objects' # 3. Press Run # # If you will encounter error like this: # Downloading: "https://download.pytorch.org/models/retinanet_resnet50_fpn_coco-eeacb38b.pth" to C:\Users\<username>/.cache\torch\hub\checkpoints\retinanet_resnet50_fpn_coco-eeacb38b.pth # Traceback (most recent call last): # File "C:\Program Files\Agisoft\Metashape Pro\python\lib\urllib\request.py", line 1354, in do_open # h.request(req.get_method(), req.selector, req.data, headers, # ... # File "C:\Program Files\Agisoft\Metashape Pro\python\lib\socket.py", line 918, in getaddrinfo # for res in _socket.getaddrinfo(host, port, family, type, proto, flags): # socket.gaierror: [Errno 11002] getaddrinfo failed # During handling of the above exception, another exception occurred: # ... # Then you need to manually download file at URL from the begining of the error message (similar to https://download.pytorch.org/models/retinanet_resnet50_fpn_coco-eeacb38b.pth) # to the specified in the same line directory (C:\Users\<username>\.cache\torch\hub\checkpoints\) import Metashape import pathlib, shutil, os, time from PySide2 import QtGui, QtCore, QtWidgets # Checking compatibility compatible_major_version = "1.8" found_major_version = ".".join(Metashape.app.version.split('.')[:2]) if found_major_version != compatible_major_version: raise Exception("Incompatible Metashape version: {} != {}".format(found_major_version, compatible_major_version)) def pandas_append(df, row, ignore_index=False): import pandas as pd if isinstance(row, pd.DataFrame): result = pd.concat([df, row], ignore_index=ignore_index) elif isinstance(row, pd.core.series.Series): result = pd.concat([df, row.to_frame().T], ignore_index=ignore_index) elif isinstance(row, dict): result = pd.concat([df, pd.DataFrame(row, index=[0], columns=df.columns)]) else: raise RuntimeError("pandas_append: unsupported row type - {}".format(type(row))) return result class DetectObjectsDlg(QtWidgets.QDialog): def __init__(self, parent): self.force_small_patch_size = False # Set force_small_patch_size to True if you want to train on small zones with a lot of small objects (train zone still should be at least 400*orthomosaic_resolution) # For example, with force_small_patch_size=True and orthomosaic resolution=5cm - train zone should be >= 20x20 m. If orthomosaic=2.5cm - train zone should be >= 10x10 m. # Note that this can work only if: # 1) You have very small objects # 2) Train zone contains a lot of objects self.augment_colors = True # Set augment_colors to False if you have bad results and you want to force neural network to take into account color of objects self.expected_layer_name_train_zones = "Train zone" self.expected_layer_name_train_data = "Train data" self.layer_name_detection_data = "Detected data" if len(Metashape.app.document.path) > 0: self.working_dir = str(pathlib.Path(Metashape.app.document.path).parent / "objects_detection") else: self.working_dir = "" self.save_model_path = "" self.load_model_path = self.readModelLoadPathFromSettings() self.cleanup_working_dir = False self.debug_tiles = False self.train_on_user_data_enabled = False self.max_epochs = 20 # bigger number of epochs leads to better neural network training (but slower) self.data_augmentation_multiplier = 8 # from 1 to 8, bigger multiplier leads to better neural network training (but slower) self.preferred_patch_size = 400 # 400 pixels self.preferred_resolution = 0.10 # 10 cm/pix self.prefer_original_resolution = True self.use_neural_network_pretrained_on_birds = False self.tiles_without_annotations_supported = False # See https://github.com/weecology/DeepForest/issues/216 QtWidgets.QDialog.__init__(self, parent) self.setWindowTitle("Objects detection on orthomosaic") self.chunk = Metashape.app.document.chunk self.create_gui() self.exec() def stop(self): self.stopped = True def check_stopped(self): if self.stopped: raise InterruptedError("Stop was pressed") def process(self): try: self.stopped = False self.btnRun.setEnabled(False) self.btnStop.setEnabled(True) time_start = time.time() self.load_params() self.prepair() print("Script started...") self.create_neural_network() self.export_orthomosaic() if self.chunk.shapes is None: self.chunk.shapes = Metashape.Shapes() if self.train_on_user_data_enabled: self.train_on_user_data() if len(self.save_model_path) > 0: self.saveToSettingsModelLoadPath(self.save_model_path) else: self.saveToSettingsModelLoadPath(self.load_model_path) self.detect() self.results_time_total = time.time() - time_start self.show_results_dialog() except: if self.stopped: Metashape.app.messageBox("Processing was stopped.") else: Metashape.app.messageBox("Something gone wrong.\n" "Please check the console.") raise finally: if self.cleanup_working_dir: shutil.rmtree(self.working_dir, ignore_errors=True) self.reject() print("Script finished.") return True def prepair(self): import os, sys, multiprocessing import random, string if self.working_dir == "": raise Exception("You should specify working directory (or save .psx project)") print("Working dir: {}".format(self.working_dir)) try: os.mkdir(self.working_dir) except FileExistsError: already_existing_working_dir = self.working_dir random_suffix = ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)) self.working_dir = self.working_dir + "/tmp_" + random_suffix print("Working dir: {} already exists, trying instead: {}".format(already_existing_working_dir, self.working_dir)) try: os.mkdir(self.working_dir) except FileExistsError: raise Exception("Working directory {} already exists! Please specify another working dir.".format(self.working_dir)) self.cleanup_working_dir = True self.dir_tiles = self.working_dir + "/tiles/" self.dir_train_data = self.working_dir + "/train/" self.dir_train_subtiles = self.dir_train_data + "inner/" self.dir_train_subtiles_debug = self.dir_train_subtiles + "debug/" self.dir_detection_results = self.working_dir + "/detection/" self.dir_subtiles_results = self.dir_detection_results + "inner/" for subdir in [self.dir_tiles, self.dir_train_data, self.dir_train_subtiles, self.dir_train_subtiles_debug, self.dir_detection_results, self.dir_subtiles_results]: shutil.rmtree(subdir, ignore_errors=True) os.mkdir(subdir) import torch torch_hub_dir = torch.hub.get_dir() from deepforest import utilities if not hasattr(utilities, '__models_dir_path_already_patched__'): original_use_release = utilities.use_release original_use_bird_release = utilities.use_bird_release # This is a workaround for Windows permission issues (we can't easily download files into .../site-packages/deepforest/...) def patched_use_release(**kwargs): kwargs["save_dir"] = torch_hub_dir return original_use_release(**kwargs) def patched_use_bird_release(**kwargs): kwargs["save_dir"] = torch_hub_dir return original_use_bird_release(**kwargs) utilities.use_release = patched_use_release utilities.use_bird_release = patched_use_bird_release utilities.__models_dir_path_already_patched__ = True if os.name == 'nt': # if Windows multiprocessing.set_executable(os.path.join(sys.exec_prefix, 'python.exe')) def create_neural_network(self): print("Neural network loading...") import torch import deepforest import deepforest.main self.m = deepforest.main.deepforest() if len(self.load_model_path) > 0: self.m.use_release() print("Using the neural network loaded from '{}'...".format(self.load_model_path)) self.m.model = torch.load(self.load_model_path) else: if self.use_neural_network_pretrained_on_birds: # use neural network pre-trained on birds print("Using the neural network pre-trained on birds...") self.m.use_bird_release() else: # use neural network pre-trained on trees print("Using the neural network pre-trained on trees...") self.m.use_release() def export_orthomosaic(self): import numpy as np print("Prepairing orthomosaic...") kwargs = {} if not self.prefer_original_resolution and (self.chunk.orthomosaic.resolution < self.preferred_resolution*0.90): kwargs["resolution"] = self.preferred_resolution else: print("no resolution downscaling required") self.chunk.exportRaster(path=self.dir_tiles + "tile.jpg", source_data=Metashape.OrthomosaicData, image_format=Metashape.ImageFormat.ImageFormatJPEG, save_alpha=False, white_background=True, save_world=True, split_in_blocks=True, block_width=self.patch_size, block_height=self.patch_size, **kwargs) tiles = os.listdir(self.dir_tiles) self.tiles_paths = {} self.tiles_to_world = {} for tile in sorted(tiles): assert tile.startswith("tile-") _, tile_x, tile_y = tile.split(".")[0].split("-") tile_x, tile_y = map(int, [tile_x, tile_y]) if tile.endswith(".jgw") or tile.endswith(".pgw"): # https://en.wikipedia.org/wiki/World_file with open(self.dir_tiles + tile, "r") as file: matrix2x3 = list(map(float, file.readlines())) matrix2x3 = np.array(matrix2x3).reshape(3, 2).T self.tiles_to_world[tile_x, tile_y] = matrix2x3 else: self.tiles_paths[tile_x, tile_y] = self.dir_tiles + tile assert(len(self.tiles_paths) == len(self.tiles_to_world)) assert(self.tiles_paths.keys() == self.tiles_to_world.keys()) self.tile_min_x = min([key[0] for key in self.tiles_paths.keys()]) self.tile_max_x = max([key[0] for key in self.tiles_paths.keys()]) self.tile_min_y = min([key[1] for key in self.tiles_paths.keys()]) self.tile_max_y = max([key[1] for key in self.tiles_paths.keys()]) print("{} tiles, tile_x in [{}; {}], tile_y in [{}; {}]".format(len(self.tiles_paths), self.tile_min_x, self.tile_max_x, self.tile_min_y, self.tile_max_y)) def train_on_user_data(self): import sys import cv2 import random import numpy as np import pandas as pd import multiprocessing import torch from pytorch_lightning import Trainer from pytorch_lightning.callbacks import Callback random.seed(2391231231324531) app = QtWidgets.QApplication.instance() training_start = time.time() print("Neural network additional training on user data...") self.train_zones_on_ortho = [] n_train_zone_shapes_out_of_orthomosaic = 0 for zone_i, shape in enumerate(self.train_zones): assert(len(shape.geometry.coordinates) == 1) shape_vertices = shape.geometry.coordinates[0] zone_from_world = None zone_from_world_best = None for tile_x in range(self.tile_min_x, self.tile_max_x): for tile_y in range(self.tile_min_y, self.tile_max_y): if (tile_x, tile_y) not in self.tiles_paths: continue to_world = self.tiles_to_world[tile_x, tile_y] from_world = self.invert_matrix_2x3(to_world) for p in shape_vertices: p = Metashape.CoordinateSystem.transform(p, self.chunk.shapes.crs, self.chunk.orthomosaic.crs) p_in_tile = from_world @ [p.x, p.y, 1] distance2_to_tile_center = np.linalg.norm(p_in_tile - [self.patch_size/2, self.patch_size/2]) if zone_from_world_best is None or distance2_to_tile_center < zone_from_world_best: zone_from_world_best = distance2_to_tile_center zone_from_world = self.invert_matrix_2x3(self.add_pixel_shift(to_world, -tile_x * self.patch_size, -tile_y * self.patch_size)) if zone_from_world_best > 1.1 * (self.patch_size / 2)**2: n_train_zone_shapes_out_of_orthomosaic += 1 zone_from = None zone_to = None for p in shape_vertices: p = Metashape.CoordinateSystem.transform(p, self.chunk.shapes.crs, self.chunk.orthomosaic.crs) p_in_ortho = np.int32(np.round(zone_from_world @ [p.x, p.y, 1])) if zone_from is None: zone_from = p_in_ortho if zone_to is None: zone_to = p_in_ortho zone_from = np.minimum(zone_from, p_in_ortho) zone_to = np.maximum(zone_to, p_in_ortho) train_size = zone_to - zone_from train_size_m = np.int32(np.round(train_size * self.orthomosaic_resolution)) if np.any(train_size < self.patch_size): print("Train zone #{} {}x{} pixels ({}x{} meters) is too small - each side should be at least {} meters" .format(zone_i + 1, train_size[0], train_size[1], train_size_m[0], train_size_m[1], self.patch_size * self.orthomosaic_resolution), file=sys.stderr) self.train_zones_on_ortho.append(None) else: print("Train zone #{}: {}x{} orthomosaic pixels, {}x{} meters".format(zone_i + 1, train_size[0], train_size[1], train_size_m[0], train_size_m[1])) self.train_zones_on_ortho.append((zone_from, zone_to, zone_from_world)) assert len(self.train_zones_on_ortho) == len(self.train_zones) if n_train_zone_shapes_out_of_orthomosaic > 0: print("Warning, {} train zones shapes are out of orthomosaic".format(n_train_zone_shapes_out_of_orthomosaic)) area_threshold = 0.3 all_annotations = pd.DataFrame(columns=['image_path', 'xmin', 'ymin', 'xmax', 'ymax', 'label']) nannotated_tiles = 0 if self.tiles_without_annotations_supported: empty_tile_name = "empty_tile.jpg" empty_tile = self.create_empty_tile() cv2.imwrite(self.dir_train_subtiles + empty_tile_name, empty_tile) # See https://github.com/weecology/DeepForest/issues/216 all_annotations = pandas_append(all_annotations, {'image_path': empty_tile_name, 'xmin': '0', 'ymin': '0', 'xmax': '0', 'ymax': '0', 'label': 'Tree'}, ignore_index=True) nempty_tiles = 0 self.train_nannotations_in_zones = 0 for zone_i, shape in enumerate(self.train_zones): if self.train_zones_on_ortho[zone_i] is None: continue zone_from, zone_to, zone_from_world = self.train_zones_on_ortho[zone_i] annotations = [] for annotation in self.train_data: assert(len(annotation.geometry.coordinates) == 1) annotation_vertices = annotation.geometry.coordinates[0] annotation_from = None annotation_to = None for p in annotation_vertices: p = Metashape.CoordinateSystem.transform(p, self.chunk.shapes.crs, self.chunk.orthomosaic.crs) p_in_ortho = np.int32(np.round(zone_from_world @ [p.x, p.y, 1])) if annotation_from is None: annotation_from = p_in_ortho if annotation_to is None: annotation_to = p_in_ortho annotation_from = np.minimum(annotation_from, p_in_ortho) annotation_to = np.maximum(annotation_to, p_in_ortho) bbox_from, bbox_to = self.intersect(zone_from, zone_to, annotation_from, annotation_to) if self.area(bbox_from, bbox_to) > self.area(annotation_from, annotation_to) * area_threshold: annotations.append((annotation_from, annotation_to)) self.train_nannotations_in_zones += len(annotations) print("Train zone #{}: {} annotations inside".format(zone_i + 1, len(annotations))) border = self.patch_inner_border inner_path_size = self.patch_size - 2 * border zone_size = zone_to - zone_from assert np.all(zone_size >= self.patch_size) nx_tiles, ny_tiles = np.int32((zone_size - 2 * border + inner_path_size - 1) // inner_path_size) assert nx_tiles >= 1 and ny_tiles >= 1 xy_step = np.int32(np.round((zone_size + [nx_tiles, ny_tiles] - 1) // [nx_tiles, ny_tiles])) out_of_orthomosaic_train_tile = 0 for x_tile in range(0, nx_tiles): for y_tile in range(0, ny_tiles): tile_to = zone_from + self.patch_size + xy_step * [x_tile, y_tile] if x_tile == nx_tiles - 1 and y_tile == ny_tiles - 1: assert np.all(tile_to >= zone_to) tile_to = np.minimum(tile_to, zone_to) tile_from = tile_to - self.patch_size if x_tile == 0 and y_tile == 0: assert np.all(tile_from == zone_from) assert np.all(tile_from >= zone_from) tile = self.read_part(tile_from, tile_to) assert tile.shape == (self.patch_size, self.patch_size, 3) if np.all(tile == 255): out_of_orthomosaic_train_tile += 1 continue tile_annotations = [] for annotation_from, annotation_to in annotations: bbox_from, bbox_to = self.intersect(tile_from, tile_to, annotation_from, annotation_to) if self.area(bbox_from, bbox_to) > self.area(annotation_from, annotation_to) * area_threshold: tile_annotations.append((bbox_from - tile_from, bbox_to - tile_from)) max_augmented_versions = 8 all_augmented_versions = list(range(max_augmented_versions)) augmented_versions = [] augmented_versions_to_add = max(1, self.data_augmentation_multiplier) while augmented_versions_to_add > 0: if augmented_versions_to_add < max_augmented_versions: shuffled_augmented_versions = all_augmented_versions random.shuffle(shuffled_augmented_versions) augmented_versions.extend(shuffled_augmented_versions[:augmented_versions_to_add]) augmented_versions_to_add = 0 else: augmented_versions.extend(all_augmented_versions) augmented_versions_to_add -= max_augmented_versions for version_i in augmented_versions: tile_version = tile tile_annotations_version = tile_annotations is_mirrored = ((version_i % 4) == 1) n90rotation = (version_i % 4) if is_mirrored: tile_annotations_version = self.flip_annotations(tile_annotations_version, tile_version) tile_version = cv2.flip(tile_version, 0) for rotation_i in range(n90rotation): tile_annotations_version = self.rotate90clockwise_annotations(tile_annotations_version, tile_version) tile_version = cv2.rotate(tile_version, cv2.ROTATE_90_CLOCKWISE) tile_version = self.random_augmentation(tile_version) tile_name = "{}-{}-{}-{}.jpg".format((zone_i + 1), x_tile, y_tile, version_i) nannotated_tiles += 1 for (xmin, ymin), (xmax, ymax) in tile_annotations_version: all_annotations = pandas_append(all_annotations, {'image_path': tile_name, 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, 'label': 'Tree'}, ignore_index=True) if len(tile_annotations_version) == 0: if self.tiles_without_annotations_supported: all_annotations = pandas_append(all_annotations, {'image_path': tile_name, 'xmin': '0', 'ymin': '0', 'xmax': '0', 'ymax': '0', 'label': 'Tree'}, ignore_index=True) nempty_tiles += 1 cv2.imwrite(self.dir_train_subtiles + tile_name, tile_version) if self.debug_tiles: tile_with_trees = self.debug_draw_trees(tile_version, tile_annotations_version) cv2.imwrite(self.dir_train_subtiles_debug + tile_name, tile_with_trees) if out_of_orthomosaic_train_tile == nx_tiles * ny_tiles: raise RuntimeError("It seems that zone #{} has no orthomosaic data, please check zones, orthomosaic and its Outer Boundary.".format(zone_i + 1)) else: if out_of_orthomosaic_train_tile > 0: print("{}/{} of tiles in zone #{} has no orthomosaic data".format(out_of_orthomosaic_train_tile, nx_tiles * ny_tiles, zone_i + 1)) print("{} tiles ({} empty{}) for training prepared with {} annotations" .format(nannotated_tiles, nempty_tiles, " - they are not supported" if (nempty_tiles > 0 and not self.tiles_without_annotations_supported) else "", len(all_annotations))) print("Training with {} epochs and x{} augmentations (augment colors: {})...".format(self.max_epochs, self.data_augmentation_multiplier, self.augment_colors)) self.freeze_layers() annotations_file = self.dir_train_subtiles + "annotations.csv" all_annotations.to_csv(annotations_file, header=True, index=False) class MyCallback(Callback): def __init__(self, thiz_dlg): self.nepochs_done = 0 self.nepochs = thiz_dlg.max_epochs self.pbar = thiz_dlg.trainPBar self.thiz_dlg = thiz_dlg def on_epoch_end(self, trainer, pl_module): self.nepochs_done += 1 self.pbar.setValue(self.nepochs_done * 100 / self.nepochs) Metashape.app.update() app.processEvents() self.thiz_dlg.check_stopped() if torch.cuda.device_count() > 0: print("Using GPU...") trainer_gpus = 1 trainer_auto_select_gpus = True else: print("Using CPU (will be very slow)...") trainer_gpus = 0 trainer_auto_select_gpus = False torch.set_num_threads(multiprocessing.cpu_count()) trainer = Trainer(max_epochs=self.max_epochs, gpus=trainer_gpus, auto_select_gpus=trainer_auto_select_gpus, callbacks=[MyCallback(self)], checkpoint_callback=False, logger=False) train_ds = self.m.load_dataset(annotations_file, root_dir=os.path.dirname(annotations_file)) trainer.fit(self.m, train_ds) self.results_time_training = time.time() - training_start if len(self.save_model_path) > 0: torch.save(self.m.model, self.save_model_path) print("Model trained on {} annotations with {} m/pix resolution saved to '{}'".format(self.train_nannotations_in_zones, self.orthomosaic_resolution, self.save_model_path)) def create_empty_tile(self): import numpy as np empty_tile = np.zeros((self.patch_size, self.patch_size, 3), np.uint8) empty_tile[:, :, :] = 255 return empty_tile def freeze_all_layers(self): for p in self.m.model.backbone.parameters(): p.requires_grad = False def freeze_low_layers(self, freezeConv1=False, freezeUpToLevel=2): body = self.m.model.backbone.body layers = [body.layer1, body.layer2, body.layer3, body.layer4] assert (0 <= freezeUpToLevel <= len(layers)) if freezeConv1: for p in self.m.model.backbone.body.conv1.parameters(): p.requires_grad = False for layer in layers[:freezeUpToLevel]: for p in layer.parameters(): p.requires_grad = False def freeze_layers(self): self.freeze_low_layers(freezeConv1=False, freezeUpToLevel=2) def flip_annotations(self, trees, img): # x, y -> x, h-y import numpy as np h, w, cn = img.shape flipped_trees = [] for bbox_from, bbox_to in trees: assert np.all(bbox_from >=
np.int32([0, 0])
numpy.int32
# -*- coding: utf-8 -*- """ Class to generate signals with continous-time Markov chains @author: <EMAIL> """ # %% import numpy as np import random import scipy.linalg import itertools def _solve_least_squares(a, b): rcond = None solution = np.linalg.lstsq(a, b, rcond=rcond)[0] return solution class ChoiceGenerator: """ Class to generate random elements with weighted selection """ def __init__(self, number_of_states, cum_weights, block_size=5000): """ Class to generate random elements with weighted selection This is a replacement for random.choices that is efficient when a large number of choices has to be generated. Args: number_of_states (int): number of choices that has to be generated cum_weights (array[float]): cummulative probabilities of the choices block_size (int): size of blocks of choices to generate """ if not number_of_states == len(cum_weights): raise Exception('specification of cummulative weights does not match number of states') self.number_of_states = number_of_states self._idx = 0 self._block_size = block_size self.cum_weights = cum_weights self._generate_block() def _generate_block(self): values = np.random.rand(self._block_size, ) counts, _ = np.histogram(values, [0] + list(self.cum_weights)) self._block = np.hstack(tuple([choice_idx * np.ones(c, dtype=int) for choice_idx, c in enumerate(counts)])) np.random.shuffle(self._block) def generate_choice(self): """ Generate a choice Returns: int: integer in the range 0 to the number of states """ self._idx = self._idx + 1 if self._idx == self._block_size: self._idx = 0 self._generate_block() return self._block[self._idx] class ContinuousTimeMarkovModel: def __init__(self, states, holding_parameters, jump_chain): """ Class that represents a continous-time Markov chain Args: states (str[]): list with names for the states holding_parameters(float[]): List with the holding parameters. The holding parameters determine the average time before the system will make a jump to a new state jump_chain (array): The jump chain or transition matrix. This matrix gives the probability for the system to jump from a state to one of the other states. The sum of the probabilities in each column must equal one. For an introduction to Markov chains see https://www.probabilitycourse.com/chapter11/11_3_1_introduction.php Also see: https://vknight.org/unpeudemath/code/2015/08/01/simulating_continuous_markov_chains.html """ self.states = states self.update_model(holding_parameters, jump_chain) def update_model(self, holding_parameters, jump_chain): """ Update the model of the markov chain Args: holding_parameters: List with the holding parameters jump_chain: The jump chain or transition matrix For a detailed description of the parameters see the class documentation. """ self.holding_parameters = np.array(holding_parameters).flatten().reshape((-1, 1)) self.jump_chain = jump_chain self.generator_matrix = self._create_generator_matrix(self.holding_parameters, self.jump_chain) self._validity_check() def _validity_check(self): if len(self.states) != len(self.jump_chain): raise AssertionError('States do not equal jump chain!') if not np.allclose(np.sum(self.jump_chain, axis=0), 1): raise AssertionError('Jump chain matrix should represent probabilities!') if np.all(self.holding_parameters <= 0): raise AssertionError('Not all holding parameter are bigger than zero!') @staticmethod def _create_generator_matrix(holding_parameters, jump_chain): generator_matrix = np.array(jump_chain, copy=True) for ii in range(generator_matrix.shape[0]): generator_matrix[:, ii] = holding_parameters[ii] * jump_chain[:, ii] for ii in range(generator_matrix.shape[0]): generator_matrix[ii, ii] = -holding_parameters[ii] return generator_matrix def number_of_states(self): """ Return the number of states in the model """ return len(self.states) def transition_matrix(self, delta_time): """ Return the transition matrix for a specified amount of time """ transition_matrix = scipy.linalg.expm(delta_time * self.generator_matrix) return transition_matrix def __repr__(self): return "%s(id=0x%x, states=%s, generator=%s)" % (self.__class__.__name__, id(self), self.states, self.generator_matrix) def stationary_distribution_direct(self): """ Return the stationary distribution of the model The calculation method is taken from: https://www.probabilitycourse.com/chapter11/11_3_2_stationary_and_limiting_distributions.php, Theorem 11.3 """ pi_tilde = self.stationary_distribution_discrete(self.jump_chain) norm = np.sum((pi_tilde / self.holding_parameters)) stationary_distribution = (pi_tilde / self.holding_parameters) / norm return stationary_distribution def stationary_distribution(self): """ Return the stationary distribution of the model The calculation method is taken from: https://vknight.org/unpeudemath/code/2015/08/01/simulating_continuous_markov_chains.html """ Q = self.generator_matrix n = Q.shape[0] A = np.vstack((Q, np.ones((1, n)))) B = np.zeros((n + 1, 1)) B[-1] = 1 stationary_distribution = _solve_least_squares(A, B) return stationary_distribution @staticmethod def stationary_distribution_discrete(jump_chain): """ Return the stationary distrubution for a Markov chain """ n = jump_chain.shape[0] A = np.vstack((jump_chain - np.eye(n),
np.ones((1, n))
numpy.ones
import argparse import sys import numpy as np def get_args(): """Define the task arguments with the default values. Returns: experiment parameters """ args_parser = argparse.ArgumentParser() # Data files arguments args_parser.add_argument( '--files', help='Filenames.', nargs='+', type=str, default=['expval.data1','expval.data2'] ) return args_parser.parse_args() def sort_expval_files(l): d=[] for f in l: ind=f.find('expval.data') if(ind==-1): sys.exit("Filenames are not including the string 'expval.data'.") d.append(int(f[ind+11:])) d=np.array(d) perm=np.argsort(d) newl=[] for i in range(d.shape[0]): newl.append(l[perm[i]]) return newl def main(): def _read_expval(filename): gvec=[] pmd=[] pmd_sqr=[] with open(filename) as f: read_pmd2=False lines=f.readlines() for i in range(len(lines)): if lines[i][:39]=='START POSITRON MOMENTUM DENSITY SQUARED': read_pmd2=True if lines[i][:19]=='Number of G-vectors': Ng=int(lines[i+1]) if lines[i][:19] == 'G-vector components': for j in range(1,Ng+1): components=lines[i+j].split() vec=[] vec.append(float(components[0])) vec.append(float(components[1])) vec.append(float(components[2])) gvec.append(
np.array(vec)
numpy.array
#################################################################################################### ### ### ### Functions for probabilistic assignment ### ### Author: <NAME> (EPFL) ### ### Last modified: 03.09.2021 ### ### ### #################################################################################################### # Import libraries import numpy as np import time import re def increase_threshold(thresh, thresh_inc): """ Increase the threshold based on a string Inputs: - thresh Initial threshold - thresh_inc How the threshold should be increased. "xN": multiply by N "+N": increase by N Output: - thresh Increased threshold """ if thresh_inc.startswith("x"): return thresh * float(thresh_inc.split("x")[1]) elif thresh_inc.startswith("+"): return thresh + float(thresh_inc.split("+")[1]) raise ValueError("Unkown threshold update: {}".format(thresh_inc)) def get_possible_assignments(scores, labels, exp, thresh=100., thresh_increase="x2"): """ Get all possible assignments for each probability distribution, given that if an individual probability of assigning the distribution to a shift is more than "thresh" times higher than the probability of assigning it to another shift, the latter possibility is discarded. Inputs: - scores Array of individual scores - labels List of labels of the distributions - exp List of experimental shifts - thresh Relative probability threshold to discard a score - thresh_increase How the threshold should be increased. "xN": multiply by N "+N": increase by N Output: - possible_assignments Lists of possible assignments for each distribution - thresh Updated relative probability threshold to discard a score """ # If we do not set a threshold, consider all assignments as possible # NOT RECOMMENDED, scaling is factorial! if thresh < 0.: print("WARNING: Not setting a threshold for considering plausible assignments is not recommended, scaling is factorial!") possible_assignments = [list(range(len(exp))) for _ in scores] return possible_assignments, thresh consistent = False while not consistent: cleaned_scores = np.copy(scores) for i in range(len(cleaned_scores)): m = np.max(cleaned_scores[i]) # Discard assignments that have an individual score lower than 1/thresh times the maximum score cleaned_scores[i, cleaned_scores[i] < m / thresh] = 0. # Get the possible assignments possible_assignments = [] for i, s in enumerate(cleaned_scores): possible_assignments.append(list(np.where(s > 0.)[0])) # Clean up assignments, i.e. if only one distribution can be assigned to a given shift, then it must be assigned to that shift change = True while change: change = False # Loop over all distributions with only one equivalent for i, a in enumerate(possible_assignments): if len(a) > 1 and "/" not in labels[i]: # Loop over all possible assignments for ai in a: found = False for j, a2 in enumerate(possible_assignments): if i != j and ai in a2: found = True break # If the specific assignment is not found anywhere else, the shift can only be assigned to distribution i if not found: cleaned_scores[i,[aj for aj in a if aj != ai]] = 0. possible_assignments[i] = [ai] change = True break if change: break consistent = True # Check that each distribution can be assigned to at least one experimental shift for s in cleaned_scores: if np.sum(s) == 0.: consistent = False thresh = increase_threshold(thresh, thresh_increase) break # Check that each experimental shift can be assigned to at least one distribution for s in cleaned_scores.T: if np.sum(s) == 0.: consistent = False thresh = increase_threshold(thresh, thresh_increase) break print(" Scores cleaned up, threshold set to {}\n".format(thresh)) # When assigning 2D distributions, if two central or neighbouring atoms in different graphs are the same, # then we merge all possible assignments if "-" in labels[0]: complete_asns = [] for i, (l, a) in enumerate(zip(labels, possible_assignments)): complete_asns.append(a) if "/" in l: ls = [tmp.split("-") for tmp in l.split("/")] for i1, l1 in enumerate(ls): for i2, l2 in enumerate(ls): if i2 > i1: for k, (l1k, l2k) in enumerate(zip(l1, l2)): if l1k == l2k: for ai in complete_asns[i]: match = exp[ai].split("\\")[k] for j, e in enumerate(exp): if match == e.split("\\")[k] and e not in [exp[aj] for aj in complete_asns[i]]: complete_asns[i].append(j) possible_assignments = [] for a in complete_asns: possible_assignments.append(list(np.sort(a))) return possible_assignments, thresh def get_assignment_pool(possible_asn, assigned): """ Get an assignment pool, i.e. a set of distributions and shifts to assign independently from the rest Inputs: - possible_asn List of possible assignments for each distribution - assigned List of already assigned distributions Outputs: - dist_pool Pool of distributions - shift_pool Shifts in the pool of distributions """ # Initialize arrays of possible shifts and distributions dist_pool = [] shift_pool = [] # Loop over all distribution for i, a in enumerate(possible_asn): if i not in assigned: # Get the possible shifts for the first not already assigned distribution shift_pool.extend(a) dist_pool.append(i) break change = True while change: change = False # Loop over all distributions for i, a in enumerate(possible_asn): if i not in dist_pool and i not in assigned: for ai in a: # If any of the possible shifts for this distribution is within the pool, add this distribution # to the possible assignment pool if ai in shift_pool: dist_pool.append(i) shift_pool.extend([aj for aj in a if aj not in shift_pool]) change = True break return dist_pool, shift_pool def generate_global_asns(possible_asns, scores, n_dist, n_exp, ls, es, equiv, global_asns=[], already_linked=[], rank=0, max_asn=None, r_max_asn=0, max_excess=None, disp_rank=-1, t_start=None): """ Recursively generate global assignments given possible individual assignments. Inputs: - possible_asns Possible assignments for each nucleus/distribution - scores Matrix of scores for individual assignments - n_dist Number of distributions - n_exp Number of experiments - ls Labels of the nuclei/distributions - es Experimental shifts - equiv Equivalent nuclei/distributions - global_asns Already found global assignments - already_linked Already assigned nuclei/distributions - rank Assignment rank - max_asn Maximum number of assignments to consider - r_max_asn Rank from which to start reducing the number of assignments - max_excess Maximum excess for assignment (defined as the maximum number of nuclei/distributions assigned to a single experimental shift minus one) - disp_rank Rank up to which progress should be displayed - t_start Starting time Output: - global_asns List of global assignments generated """ # If all distributions are already assigned, append the assignment found if rank == n_dist: # Sort the equivalent parts sorted_asn = already_linked.copy() already_eq = [] for eq in equiv: if len(eq) > 1 and eq[0] not in already_eq: tmp = sorted([already_linked[i] for i in eq]) for i, e in enumerate(eq): sorted_asn[e] = tmp[i] already_eq.extend(eq) # Return the list of already generated global assignments global_asns.append(sorted_asn) return global_asns # Get the number of assignments to consider for this distribution rank_len = len(possible_asns[rank]) if max_asn is not None and rank >= r_max_asn: rank_len = min(max_asn, rank_len) # Get the intermediate scores these_scores = [] for a in possible_asns[rank]: # Generate the assignment this_asn = already_linked.copy() this_asn.append(a) # Check if the assignment is valid so far (get the excess and maximum individual excess) excess = 0 ind_excess = 0 for j in np.unique(this_asn): excess += max(this_asn.count(j) - 1, 0) ind_excess = max(ind_excess, this_asn.count(j) - 1) # Check that same nuclei are assigned to the same shift (important for 2D simulated experiments) for i, a1 in enumerate(this_asn): for j, a2 in enumerate(this_asn): if i < j: for k in range(len(ls[i])): # If the same nucleus is assigned to two different shifts, discard the assignment if ls[i,k] == ls[j,k] and es[a1,k] != es[a2,k]: excess = n_dist - n_exp + 1 break if excess > n_dist - n_exp: break if excess > n_dist - n_exp: break # If the assignment is valid so far, try to assign the next distribution if excess > n_dist - n_exp or (max_excess is not None and ind_excess > max_excess): score = 0. else: # Get the corresponding score score = 1. for i, a in enumerate(this_asn): score *= scores[i, a] these_scores.append(score) # Sort the intermediate scores by decreasing value score_inds = np.argsort(these_scores)[::-1] # Remove instances where the score is zero score_inds = score_inds[:
np.count_nonzero(these_scores)
numpy.count_nonzero
#! /usr/bin/python3 import numpy as np import random as rnd import functions import pandas as pd class NAgent: nnetfileName = "./data/garry_007.nn" user_id = None case_id = None url = None nnet = None rmsprop_cache = None grad_buffer = None prev_act = None prev_score = None prev_hash = None prev_weights_dict = None decay_rate = 0.95 # decay factor for RMSProp leaky sum of grad^2 alpha = 0.01 # learning rate gamma = 0.51 # discount coef delta = 0.0001 # LR descent coef batch_size = 10 help_degree = 0.2 # part of help of correct weights dropout = 0.5 # part of neurons in hidden layers to dropout xs, hs, h2s, errs, zs, rs = [], [], [], [], [], [] a_xs, a_hs, a_h2s, a_zerrs = None, None, None, None episode = pd.DataFrame(columns= ['hash_s', 'act', 'reward', 'hash_news']) gamesQ = 0 # счетчик игр - нужен для реализации батча при обучении all_acts_dict = { "none": ["noAct", "noAct"], "take": ["noAct", "Take"], "go_forward": ["noAct", "Go"], "go_right": ["onRight", "Go"], "go_back": ["upSideDn", "Go"], "go_left": ["onLeft", "Go"], "shoot_forward": ["noAct", "Shoot"], "shoot_right": ["onRight", "Shoot"], "shoot_back": ["upSideDn", "Shoot"], "shoot_left": ["onLeft", "Shoot"] } all_acts_nums_dict = { "none": 0, "take": 1, "go_forward": 2, "go_right": 3, "go_back": 4, "go_left": 5, "shoot_forward": 6, "shoot_right": 7, "shoot_back": 8, "shoot_left": 9 } all_acts_list = [ "none", "take", "go_forward", "go_right", "go_back", "go_left", "shoot_forward", "shoot_right", "shoot_back", "shoot_left" ] colnames = ["hash", "take", "go_forward", "go_right", "go_back", "go_left", "shoot_forward", "shoot_right", "shoot_back", "shoot_left"] fin_codes = ['--- agent is dead ---', '---- time is over ---', '!!! agent is WINNER !!!'] # PUBLIC METHODS ============================================================== def playGame(self, map_num, alpha, gamma, batch_size=10, tid=0, hashid=0): self.alpha = alpha self.gamma = gamma self.batch_size = batch_size self.help_degree = 0.5 self.dropout = 0.5 request_code = None # код завершения хода curr_score = None # набранные очки # запрашиваем состояние начальной пещеры, выполняя пустой ход acts = self.all_acts_dict["none"] request = functions.connectToServer(self.user_id, self.case_id, map_num, acts, tid, hashid) if request != None: # связь с сервером установлена, можно играть # распарсиваем ответ сервера request_error = request["error"] percept = request["text"] curr_score = percept['iagent']["score"] # инициализация переменных, фиксирующих предыдущее состояние и ход curr_hash = self.__getHash__(percept) self.prev_act = "none" self.prev_score = curr_score self.prev_hash = curr_hash # создание таблицы ходов для запоминания игры (эпизода) rec = {'hash_s': [curr_hash], 'act': ["none"], 'reward': [0], 'hash_news': [curr_hash]} self.episode = pd.DataFrame(columns= rec.keys()) # начинаем игру while request_error == None: # пока никакой ошибки нет (нет завершения игры) if request != None: ''' # выбираем для текущего состояния ход, если состояние новое, то добавляем его в базу политики (полезностей) +4 записи; корректируем кол-во новых полей в базе данных ''' curr_act = self.__chooseAct__(curr_hash) acts = self.all_acts_dict[curr_act] # запоминаем набранное до выбранного хода кол-во очков и хэш текущего состояния s, выбранное действие self.prev_score = curr_score self.prev_hash = curr_hash self.prev_act = curr_act # запрашиваем ответ от сервера: сообщаем серверу выбранный ход и получаем новое состояние s' request = functions.connectToServer(self.user_id, self.case_id, map_num, acts, tid, hashid) if request != None: # распарсиваем ответ сервера request_error = request["error"] percept = request["text"] curr_score = percept["iagent"]["score"] request_code = int(percept["code"]) curr_hash = self.__getHash__(percept) # ----- дополнение таблицы ходов и списка бонусов информацией о новом ходе ----- reward = curr_score - self.prev_score self.rs.append(reward) # ---------- эта таблица нужна только для контроля ---------------- rec = {'hash_s': [self.prev_hash], 'act': [curr_act], 'reward': [reward], 'hash_news': [curr_hash]} step1 = pd.DataFrame(data= rec) self.episode = pd.concat([self.episode, step1]) # обновление полезности последнего хода и обучение нейросети if request_code in [0, 1, 2]: # игра завершилась, обучение агента self.gamesQ += 1 # счетчик игр self.episode.index = list(range(self.episode.shape[0])) self.__update_nnet__() print('------ Код завершения = ', self.fin_codes[request_code], ' --------') else: print("WARNING! Server was not responded.") return request_code, curr_score, self.gamesQ # PRIVATE METHODS ============================================================= def __init__(self, sess_parms, nnet_parms): self.user_id = sess_parms[0] self.case_id = sess_parms[1] self.tid = sess_parms[2] self.hashid = sess_parms[3] self.__createNnet__(nnet_parms) # создать или загрузить нейросеть def __createNnet__(self, nnet_parms): self.nnet = functions.openNnet(nnet_parms) # сохранить нейросеть def __saveNnet__(self): functions.saveNnet(self.nnet, self.nnetfileName) def __getHash__(self, percept): """ :param percept: полученное текущее восприятие ситуации :return: хэш, символьная строка, кодирующая ситуацию """ is_monster_alive = str(int(percept["worldinfo"]["ismonsteralive"])) newcaveopenedQ = len(percept["iagent"]["knowCaves"]) # !!!!!!!!!!! ----- ONLY FOR 4x4 ------- !!!!!!!!!!!! unknowncavesQ = 16 - newcaveopenedQ if unknowncavesQ > 2: unknowncave_count = '3' else: unknowncave_count = str(unknowncavesQ) arrow_count = str(int(percept["iagent"]["arrowcount"])) legs_count = str(int(percept["iagent"]["legscount"])) curr_cave = percept["currentcave"] curr_cave_state = str(int(curr_cave["isGold"])) + str(int(curr_cave["isWind"])) \ + str(int(curr_cave["isBones"])) + str(int(curr_cave["isHole"])) front_cave_state = self.__getNearCaveState__(percept["perception"]["front_cave"]) back_cave_state = self.__getNearCaveState__(percept["perception"]["behind_cave"]) left_cave_state = self.__getNearCaveState__(percept["perception"]["left_cave"]) right_cave_state = self.__getNearCaveState__(percept["perception"]["right_cave"]) front_left_cave_state = self.__getNearCaveState__(percept["perception"]["front_left_cave"]) front_right_cave_state = self.__getNearCaveState__(percept["perception"]["front_right_cave"]) behind_left_cave_state = self.__getNearCaveState__(percept["perception"]["behind_left_cave"]) behind_right_cave_state = self.__getNearCaveState__(percept["perception"]["behind_right_cave"]) res = is_monster_alive + arrow_count + legs_count + unknowncave_count + curr_cave_state res = res + front_left_cave_state + front_cave_state + front_right_cave_state + right_cave_state res = res + behind_right_cave_state + back_cave_state + behind_left_cave_state + left_cave_state return res # подправить искусственно веса, используя состояние пещеры # weights - np.array весов: weights = np.array(curr_weights_row[1:]) # hash - строка хеш-кода def __correctWeights__(self, weights, hash, min_w=0, max_w=1): actshift = {"go":1, "shoot":5} #dirshift = {"forward":0, "back":1, "left":2, "right":3} dirshift = {"forward":0, "right":1, "back":2, "left":3} #caveshifts = {"forward":7, "back":11, "left":15, "right":19} caveshifts = {"forward":12, "right":20, "back":28, "left":36} if hash[4] == '1': # надо брать клад weights = np.ones(len(weights)) * min_w weights[0] = max_w else: weights[0] = min_w # клада нет - брать не надо if (hash[6] == '0'): # лучше не стрелять - если рядом нет монстра for ii in range(4): weights[actshift["shoot"] + ii] = min_w+0.01 if (hash[0] == '0') or (hash[1] == '0'): # не надо пытаться стрелять - монстр мертв или стрел нет for ii in range(4): weights[actshift["shoot"] + ii] = min_w for cavedir in ["forward", "right", "back", "left"]: if hash[caveshifts[cavedir]] == '2': # wall weights[actshift["go"]+dirshift[cavedir]] = min_w weights[actshift["shoot"] + dirshift[cavedir]] = min_w if ((hash[caveshifts[cavedir] + 3] == '1') and (hash[2] == '1')): # не надо ходить в яму, если одна нога!!! weights[actshift["go"] + dirshift[cavedir]] = min_w return weights # получить состояние пещеры def __getNearCaveState__(self, cave): cave_state = "2222" if cave["isWall"] == 0: cave_state = "0222" if cave["isVisiable"] == 1: # Обновлено!!! - считается, что пещера ВИДИМА!! cave_state = "1" + str(int(cave["isWind"])) + str(int(cave["isBones"])) + str(int(cave["isHole"])) return cave_state # получить случайное действие с вероятностью, зависящей от его веса def __getActionByWeight__(self, curr_weights_dict): acts = np.array(list(curr_weights_dict.keys())) weights = np.array(list(curr_weights_dict.values()), dtype=float) # исключаем из лотереи заведомо проигрышные ходы и снижаем вероятность выбора просто плохих ходов limit_weight = 0 # устанавливаем порог заведомо проигрышных ходов max_weight = np.max(weights) #if (max_weight <= limit_weight): limit_weight = max_weight - 10 # страхуем себя на случай безвыходной ситуации if (max_weight <= limit_weight): limit_weight = weights[weights.argsort()[-2]] # страхуем себя на случай безвыходной ситуации acts = acts[weights >= limit_weight] weights = weights[weights >= limit_weight] min_weight = np.min(weights) weights = weights - min_weight + 0.001 weights_array = weights / np.sum(weights) curr_act = rnd.choices(population=list(acts), weights=weights_array)[0] acts = self.all_acts_dict[curr_act] return curr_act, acts # преобразуем символьный хэш в числовой входной вектор для нейросети def __hash2vec__(self, curr_hash): vec = np.zeros(len(curr_hash)) split_str = list(curr_hash) split_str = (' '.join(list(split_str))) vec = [int(x) for x in split_str.split()] return vec # строит вектор one-hot в зависимости от выбранного действия (100000000 - для 'take') def __act_to_yvec__(self, curr_act): act_yvec = np.zeros(9) if curr_act == "take": act_yvec[0] = 1 if curr_act == "go_forward": act_yvec[1] = 1 if curr_act == "go_right": act_yvec[2] = 1 if curr_act == "go_back": act_yvec[3] = 1 if curr_act == "go_left": act_yvec[4] = 1 if curr_act == "shoot_forward": act_yvec[5] = 1 if curr_act == "shoot_right": act_yvec[6] = 1 if curr_act == "shoot_back": act_yvec[7] = 1 if curr_act == "shoot_left": act_yvec[8] = 1 return act_yvec def __discount_rewards__(self, r, gamma): """ take 1D float array of rewards and compute discounted reward """ discounted_r = np.zeros_like(r) * 1.0 running_add = 0.0 for t in reversed(range(0, r.size)): running_add = running_add * gamma + r[t] discounted_r[t] = running_add return discounted_r # выбираем для текущего состояния c curr_hash ход, # если состояние новое, то добавляем его в базу политики (полезностей) +4 def __chooseAct__(self, curr_hash): #colnames = ["hash", "take", "go_forward", "go_right", "go_back", "go_left", "shoot_forward", "shoot_right", "shoot_back", "shoot_left"] x = self.__hash2vec__(curr_hash) # расчет выхода нейросети ynet, h = functions.policy_forward(model= self.nnet, x=x) if rnd.random() < self.help_degree: # корректируем веса для очевидных случаев weights = list(self.__correctWeights__(np.array(ynet).copy(), curr_hash)) else: weights = list(ynet) weights.insert(0, curr_hash) curr_weights_row = tuple(weights) curr_weights_dict = dict(zip(self.colnames, curr_weights_row)) del curr_weights_dict["hash"] self.prev_weights_dict = curr_weights_dict curr_act, acts = self.__getActionByWeight__(curr_weights_dict) # ------------------ запоминаем состояние нейросети для будущего обучения ------------ # record various intermediates (needed later for backprop) self.xs.append(x) # gane state - input for nnet self.hs.append(h) # hidden state #self.zs.append(z) # observation yvec = self.__act_to_yvec__(curr_act) self.errs.append(yvec - ynet) # error of the action that was taken to be take return curr_act # ----------------------------------------------------------------------------------------- # -------------- обучение нейросети на результатах завершившейся игры --------------------- def __update_nnet__(self): """ обновление полезности всех сделанных ходов после завершения одной игры :param self.episode: содержит результаты всех ходов в иде кортежа (hash_s, act, reward, hash_news) :param alpha: с параметром обучения :param gamma: и с параметром дисконта :return: обновление базы данных или Q-таблицы """ model = self.nnet self.rmsprop_cache = { k : np.zeros_like(v) for k,v in model.items() } self.grad_buffer = { k : np.zeros_like(v) for k,v in model.items() } # stack together all inputs, hidden states, action errors, and rewards for this episode a_xs = np.vstack(self.xs) a_hs = np.vstack(self.hs) #a_zs = np.vstack(self.zs) a_errs = np.vstack(self.errs) a_rs =
np.vstack(self.rs)
numpy.vstack
""" Mesh module. """ from __future__ import absolute_import from __future__ import print_function import numpy as np import array from itertools import islice import mimpy.mesh.mesh_cython as mesh_cython import mimpy as mimpy from six.moves import map from six.moves import range from six.moves import zip def tb(s): """ Encodes strings for compatibility with Python 3. """ return s.encode() class variable_array(): """ The class is an efficient reprenstation of variable lenght two dimensional arrays. It can represent basic data types such as ints and floats and allows variable lengths on entries. That is: a[0] = [1, 2, 3, 4,] a[1] = [1, 2, 3, 4, 5, 6, 7] Internally, the data is stored is a 1-d array, with a separate array indicating the offset and data lenth: data = [1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7] offset = [[0, 4], [5, 7]] The structure allows the user to modify the entries as well as extend the data as needed. """ def __init__(self, dtype=np.dtype('d'), size=(2, 2), dim = 1): self.pointer_capacity = size[0] self.data_capacity = size[1] self.dim = dim self.dtype = dtype self.pointers = np.empty(shape=(self.pointer_capacity, 2), dtype=np.dtype("i")) if self.dim == 1: self.data = np.empty(shape = (self.data_capacity), dtype=self.dtype) else: self.data = np.empty(shape = (self.data_capacity, self.dim), dtype=self.dtype) self.number_of_entries = 0 self.next_data_pos = 0 def __del__(self): del self.pointers del self.data def set_pointer_capacity(self, capacity): """ Sets the maximum number of entries in the data structure. :param int capacity: Number of expected entries. :return: None """ self.pointer_capacity = capacity self.pointers.resize((self.pointer_capacity, 2), refcheck = False) def set_data_capacity(self, capacity): """ Sets the maximum number of entries in the data structure. :param int capacity: Total data entries. :return: None """ self.data_capacity = capacity if self.dim == 1: self.data.resize((self.data_capacity), refcheck=False) else: self.data.resize((self.data_capacity, self.dim), refcheck=False) def new_size(self, size, minimum = 1000): """ Calculates the new size of the array given the old in case there is a need for extending the array. :param int size: Old data size. :param int minimum: Sets minimum new data size. :return: New data structure size. :rtype: int """ return max(size+size/2+2, minimum) def add_entry(self, data): """ Adds new data to end of the list. :param dtype data: Generic data to be added. Usually\ either scalar type (float, int ...) or ndarray type. :return: Index of the new entry. :rtype: int """ if self.number_of_entries < len(self.pointers): self.pointers[self.number_of_entries, 0] = self.next_data_pos self.pointers[self.number_of_entries, 1] = len(data) else: new_array_size = self.new_size(len(self.pointers), len(data)) self.pointers.resize((new_array_size, 2), refcheck=False) self.pointers[self.number_of_entries, 0] = self.next_data_pos self.pointers[self.number_of_entries, 1] = len(data) if len(self.data) > self.next_data_pos+len(data): self.data[self.next_data_pos:self.next_data_pos+len(data)] = data else: if self.dim == 1: self.data.resize(self.new_size(len(self.data)), refcheck=False) else: self.data.resize((self.new_size(len(self.data)), self.dim), refcheck=False) self.data[self.next_data_pos:self.next_data_pos+len(data)] = data self.next_data_pos = len(data)+self.next_data_pos self.number_of_entries += 1 return self.number_of_entries-1 def get_entry(self, index): """ Return entry. """ if index > self.number_of_entries: raise IndexError("No entry with index " +str(index)) (pos, length) = self.pointers[index] return self.data[pos:pos+length] def __getitem__(self, index): """Overloaded get index function. """ return self.get_entry(index) def __setitem__(self, index, value): """ Overloaded setting function. """ self.set_entry(index, value) def __len__(self): """ Returns number of entries. """ return self.number_of_entries def set_entry(self, index, data): """ Changes existing entry to new data. The new entry can be larger than old, but might cause wasted memory. """ (pos, length) = self.pointers[index] if length >= len(data): self.data[pos:pos+len(data)] = data self.pointers[index, 1] = len(data) else: if len(self.data) > self.next_data_pos+len(data): self.data[self.next_data_pos: self.next_data_pos+len(data)] = data else: if self.dim == 1: self.data.resize(self.new_size(len(self.data)), refcheck=False) self.data[self.next_data_pos: self.next_data_pos+len(data)] = data else: self.data.resize(self.new_size((len(self.data)), self.dim), refcheck=False) self.data[self.next_data_pos: self.next_data_pos+len(data)] = data self.pointers[index, 0] = self.next_data_pos self.pointers[index, 1] = len(data) self.next_data_pos += len(data) class Mesh: """ The **Mesh** class is a common representation of polygonal meshes in Mimpy. In addition to the mesh data structure, it provides commonly used mesh functions as such calculating volumes and centroids as well as basic visualization. The **Mesh** class serves as base implementation, with the specific mesh types (such as hexahedra, tetrahedra and Voronoi) inherting from it. """ def __init__(self): # List of points used to construct mesh faces. # Each point coordinate is prepresented by # a Numpy array. self.points = np.empty(shape=(0, 3), dtype=np.dtype('d')) self.number_of_points = 0 # List of mesh faces, each face is represented by the # a list of points. In 2D, it's a list of pairs of poitns. # In 3D, it's an ordered list of points that make up the # polygon. self.faces = variable_array(dtype=np.dtype('i')) # Face normals. self.face_normals = np.empty(shape=(0, 3), dtype=np.dtype('d')) # Area of mesh face. self.face_areas = np.empty(shape=(0), dtype=np.dtype('d')) # The centroid of face. self.face_real_centroids = np.empty(shape=(0, 3)) # Dict that maps faces to the cells # they are in. self.face_to_cell = np.empty(shape=(0, 2), dtype=np.dtype('i')) # A point on the plane of the face that is used # to build the MFD matrix R. This point does # not have to be on the face itself. self.face_shifted_centroids = np.empty(shape=(0, 3)) self.has_face_shifted_centroid = False self.has_cell_shifted_centroid = False self.has_alpha = False self.boundary_markers = [] self.boundary_descriptions = [] # Hash from face marker => [[face index, face normal orientation]] self.boundary_faces = {} # List of cells. Each cell is made up of a list # of faces. self.cells = variable_array(dtype=np.dtype('i')) # For each cell, a list of bools indicating # whether the normal in self.face_normals # is in or out of the cell. self.cell_normal_orientation = variable_array(dtype=np.dtype('i')) # Cell Volumes. self.cell_volume = np.empty(shape=(0), dtype=np.dtype('d')) # List of cell centroids. self.cell_real_centroid = np.empty(shape=(0, 3), dtype=np.dtype('d')) # Points used inside the cell used # to build the MFD matrix R. self.cell_shifted_centroid = np.empty(shape=(0, 3), dtype=np.dtype('d')) self.cell_k = np.empty(shape=(0, 9)) # Tags cells depending on which domain # they belong to (for fractures and # multi-domain problems) self.cell_domain = np.empty(shape=(0), dtype=int) self.cell_domain_tags = set([0]) self.dim = 3 # dict: {face_index: (cell_index, face_orientation), ...} # Allows Dirichlet boundaries to be set implicitly # based on pressure of cells. self.dirichlet_boundary_pointers = {} self.periodic_boundaries = [] # Faces designated as no flow, meant for # interior boundary conditions not to be # set by user. self.internal_no_flow = [] # dict: {face_index: (lagrange_index, orientation)} # Allows dirichlet boundaries to point to # lagrange multipliers for domain decomposition. # A lagrange multiplier is a face identicial # to the one pointing to it, but not associated # with any cells. self.face_to_lagrange_pointers = {} # dict: lagrange_index: [(face_index_1, orientation), ...], ...} # Points a lagrange multiplier to faces associated # with it. Is treated like a forcing function. self.lagrange_to_face_pointers = {} # dict: {cell_index: [(face_index_1, orientation), ...], ...} # Allows source terms to be set implicitly # based on fluxes at other faces. self.forcing_function_pointers = {} # Lowest order term coef # List: [alpha1, alpha2, ...] self.cell_alpha = [] self.is_using_alpha_list = False self.gravity_vector = None self.gravity_acceleration = 9.8 def add_point(self, new_point): """ Takes a Numpy array representing the cartesian point coodrinates, and appends the point to the end of the point list. Returns the index of the new point. :param ndarray new_point: New point to be added to mesh. :return: Index of new point. :rtype: int """ if self.number_of_points < len(self.points): self.points[self.number_of_points] = new_point self.number_of_points += 1 else: new_array_size = (len(self.points)+len(self.points)/2+1, 3) self.points.resize(new_array_size, refcheck=False) self.points[self.number_of_points] = new_point self.number_of_points += 1 return self.number_of_points-1 def get_point(self, point_index): """ Takes a point index and returns a Numpy array of point coodrinates. :param int point_index: :return: The the point coordinates. :rtype: ndarray """ return self.points[point_index] def get_number_of_points(self): """ Returns the total number of points. :return: Total number of points in mesh. :rtype: int """ return self.number_of_points def _memory_extension(self, size): """ Function for finding size of memory extension jumps. """ return size+size/2+1 def add_face(self, list_of_points): """ Takes a list of point indices, and appends them to the list of faces in the mesh. The point indices must be oriented in a clockwise direction relative to the face normal. In 2D, a face is represnted by two points. Returns the index of the new face. :param list list_of_points: List of point indices\ making up the new face. :return: Index of new face. :rtype: int """ new_face_index = self.faces.add_entry(list_of_points) if len(self.face_normals)-1 < new_face_index: new_size = self._memory_extension(len(self.face_normals)) self.face_normals.resize((new_size, 3), refcheck=False) if len(self.face_areas)-1 < new_face_index: new_size = self._memory_extension(len(self.face_areas)) self.face_areas.resize(new_size, refcheck=False) if len(self.face_real_centroids)-1 < new_face_index: new_size = self._memory_extension(len(self.face_real_centroids)) self.face_real_centroids.resize((new_size, 3), refcheck=False) if len(self.face_to_cell)-1 < new_face_index: new_size = self._memory_extension(len(self.face_to_cell)) self.face_to_cell.resize((new_size, 2)) self.face_to_cell[new_face_index:, :] = -1 if self.has_face_shifted_centroid: if len(self.face_shifted_centroids)-1 < new_face_index: new_size = self._memory_extension( len(self.face_shifted_centroids)) self.face_shifted_centroids.resize((new_size, 3), refcheck=False) return new_face_index def set_face(self, face_index, points): """ Sets a new set of points for a given face_index. :param int face_index: Face index of face to be set. :param list points: New list of points making up face. :return: None """ self.faces[face_index] = points def remove_from_face_to_cell(self, face_index, cell_index): """ Removes the cell_index from face_to_cell map at for face_index. :param int face_index: Face index. :param int cell_index: Cell index. :return: None """ if self.face_to_cell[face_index, 0] == cell_index: self.face_to_cell[face_index, 0] = -1 elif self.face_to_cell[face_index, 1] == cell_index: self.face_to_cell[face_index, 1] = -1 else: raise Exception("cell_index " + str(cell_index)+ " not found in face_to_cell for "+ str(face_index)) def add_to_face_to_cell(self, face_index, cell_index): """ Adds cell_index to face_to_cell map at face_index. :param int face_index: The face index. :param int cell_index: The cell index that will be associated\ with the face. """ if self.face_to_cell[face_index, 0] == -1: self.face_to_cell[face_index, 0] = cell_index elif self.face_to_cell[face_index, 1] == -1: self.face_to_cell[face_index, 1] = cell_index else: raise Exception("cell_index " + str(cell_index)+ " could not be added to "+ str(face_index)) def duplicate_face(self, face_index): """ Creates new face with all the properties of the face_index, and adds the face to the bottom of the face list. The function returns the new face index. :param int face_index: Face index to be duplicated. :return: Face index of new duplicated face. :rtype: int """ # Proper duplication requires duplicating # all the properties fo the face. new_index = self.add_face(self.get_face(face_index)) self.set_face_area(new_index, self.get_face_area(face_index)) return new_index def get_face(self, face_index): """ Given a face index, returns the list of point indices that make up the face. :param int face_index: Face index. :return: List of points making up face. :rtype: ndarray('i') """ return self.faces[face_index] def get_number_of_face_points(self, face_index): """ Returns the number of points that make up a given face. :param int face_index: Face index. :return: Number of point making up the face. :rtype: int """ return len(self.faces[face_index]) def get_number_of_faces(self): """ Returns the total number of faces in the mesh. This corresponds to the number of velocity degrees of freedom. :return: Total number of faces in the mesh. :rtype: int """ return self.faces.number_of_entries def get_number_of_cell_faces(self, cell_index): """ Returns the number of faces for cell_index :param int cell_index: Cell index. :return: Number of faces in cell. :rtype: int. """ return len(self.cells[cell_index]) def get_face_to_cell(self, face_index): """ Get list of cells connected with face_index. :param int face_index: Face index. :return: List of cell indices connected to the face. :rtype: list """ f_to_c = list(self.face_to_cell[face_index]) f_to_c = [x for x in f_to_c if x >= 0] return f_to_c # Sets the face shifted centroid to the intersection # of the line joining the two face centroids and the # face between them. Used for forcing a TPFA type # method to the matrix. def set_face_shifted_to_tpfa_all(self): for face_index in range(len(self.faces)): cells = self.get_face_to_cell(face_index) if (len(cells)==2): cent1 = self.get_cell_real_centroid(cells[0]) cent2 = self.get_cell_real_centroid(cells[1]) vector = cent2 - cent1 vector /= np.linalg.norm(vector) d = np.dot((self.get_face_real_centroid(face_index) - cent1), self.get_face_normal(face_index)) denom = np.dot(vector, self.get_face_normal(face_index)) d /= denom intersection_point = d*vector+cent1 self.set_face_shifted_centroid(face_index, intersection_point) else: self.set_face_shifted_centroid(face_index, self.get_face_real_centroid(face_index)) def is_line_seg_intersect_face(self, face_index, p1, p2): """ Returns True if the line segment intersects with a face. :param int face_index: Face index. :param ndarray p1: Coorindates of first point. :param ndarray p2: Coorindates of second point. :return: True if line segments intersects face. :rtype: bool """ vector = p2 - p1 vector /= np.linalg.norm(vector) d = np.dot((self.get_face_real_centroid(face_index) - p1), self.get_face_normal(face_index)) denom = np.dot(vector, self.get_face_normal(face_index)) if abs(denom) < 1e-10: pass else: d /= denom length = np.linalg.norm(p1-p2) if d <= length+1.e-8 and d > 0.+1.e-8: intersection_point = d*vector+p1 direction = np.zeros(len(self.get_face(face_index))) normal = self.get_face_normal(face_index) current_point = self.get_point(self.get_face(face_index)[-1]) for (local_index, next_point_index) in \ enumerate(self.get_face(face_index)): next_point = self.get_point(next_point_index) face_vec = next_point - current_point check_vec = current_point - intersection_point direction[local_index] = np.dot(np.cross(face_vec, check_vec), normal) current_point = next_point if (direction>0.).all(): return True elif (direction<0.).all(): return True else: return False def initialize_cells(self, number_of_cells): """ Initialize cell data structure for known number of cells. """ raise NotImplementedError def load_mesh(self, input_file): """ Loads mesh from mms file. :param file intput_file: Mesh file (mms). :return: None """ version = next(input_file) date = next(input_file) name = next(input_file) comments = next(input_file) next(input_file) next(input_file) for line in input_file: line_split = line.split() if line_split[0] == "POINTS": number_of_points = int(line_split[1]) self.number_of_points = number_of_points self.points = np.loadtxt(islice(input_file, number_of_points)) elif line_split[0] == "FACES": number_of_faces = int(line_split[1]) self.faces.number_of_entries = number_of_faces current_line = next(input_file) n_data_entries = int(current_line) self.faces.data = np.loadtxt(islice(input_file, n_data_entries), dtype=np.dtype('i')) current_line = next(input_file) n_pointers = int(current_line) self.faces.pointers = np.loadtxt(islice(input_file, n_pointers), dtype=np.dtype('i')) elif line_split[0] == "FACE_NORMALS": number_of_faces = int(line_split[1]) self.face_normals = np.loadtxt(islice(input_file, number_of_faces)) elif line_split[0] == "FACE_AREAS": number_of_faces = int(line_split[1]) self.face_areas = np.loadtxt(islice(input_file, number_of_faces)) elif line_split[0] == "FACE_REAL_CENTROIDS": number_of_faces = int(line_split[1]) self.face_real_centroids = np.loadtxt(islice(input_file, number_of_faces)) elif line_split[0] == "FACE_SHIFTED_CENTROIDS": self.has_face_shifted_centroid = True number_of_faces = int(line_split[1]) self.face_shifted_centroids = np.loadtxt( islice(input_file, number_of_faces)) elif line_split[0] == "FACE_TO_CELL": number_of_faces = int(line_split[1]) self.face_to_cell = np.loadtxt( islice(input_file, number_of_faces)) elif line_split[0] == "CELLS": number_of_cells = int(line_split[1]) self.cells.number_of_entries = number_of_cells current_line = next(input_file) n_data_entries = int(current_line) self.cells.data = np.loadtxt(islice(input_file, n_data_entries), dtype=np.dtype('i')) current_line = next(input_file) n_pointers = int(current_line) self.cells.pointers = np.loadtxt(islice(input_file, n_pointers), dtype=np.dtype('i')) elif line_split[0] == "CELL_NORMAL_ORIENTATION": number_of_cells = int(line_split[1]) self.cell_normal_orientation.number_of_entries = \ number_of_cells current_line = next(input_file) n_data_entries = int(current_line) self.cell_normal_orientation.data = \ np.loadtxt(islice(input_file, n_data_entries), dtype=np.dtype('i')) current_line = next(input_file) n_pointers = int(current_line) self.cell_normal_orientation.pointers = \ np.loadtxt(islice(input_file, n_pointers), dtype=np.dtype('i')) elif line_split[0] == "CELL_VOLUMES": number_of_entries = int(line_split[1]) self.cell_volume = np.loadtxt(islice(input_file, number_of_entries)) elif line_split[0] == "CELL_REAL_CENTROIDS": number_of_entries = int(line_split[1]) self.cell_real_centroid = np.loadtxt(islice(input_file, number_of_entries)) elif line_split[0] == "CELL_SHIFTED_CENTROIDS": number_of_entries = int(line_split[1]) self.cell_shifted_centroid = np.loadtxt( islice(input_file, number_of_entries)) elif line_split[0] == "CELL_K": number_of_cells = int(line_split[1]) self.cell_k = np.loadtxt(islice(input_file, number_of_cells)) elif line_split[0] == "BOUNDARY_MARKERS": number_of_boundary_markers = int(line_split[1]) for line_index in range(number_of_boundary_markers): current_line = next(input_file) line_split = current_line.split() entries = [int(x) for x in line_split] boundary_marker = entries.pop(0) self.add_boundary_marker(boundary_marker, "FROMFILE") while entries: self.add_boundary_face(boundary_marker, entries.pop(0), entries.pop(0)) elif line_split[0] == "DIRICHLET_BOUNDARY_POINTERS": number_of_pointers = int(line_split[1]) for line_index in range(number_of_pointers): current_line = next(input_file) line_split = current_line.split() key = int(line_split[0]) cell_index = int(line_split[1]) orientation = int(line_split[2]) self.set_dirichlet_face_pointer(key, orientation, cell_index) elif line_split[0] == "INTERNAL_NO_FLOW": number_of_faces = int(line_split[1]) for line_index in range(number_of_faces): current_line = next(input_file) line_split = current_line.split() face_index = int(line_split[0]) orientation = int(line_split[1]) self.internal_no_flow.append([face_index, orientation]) elif line_split[0] == "FORCING_FUNCTION_POINTERS": number_of_cells = int(line_split[1]) for line_index in range(number_of_cells): current_line = next(input_file) line_split = current_line.split() cell_index = int(line_split[0]) entries = list(map(int, line_split[1:])) face_list = [] orientation_list = [] while entries: face_list.append(entries.pop(0)) orientation_list.append(entries.pop(0)) self.set_forcing_pointer(cell_index, face_list, orientation_list) elif line_split[0] == "FACE_TO_LAGRANGE_POINTERS": number_of_pointers = int(line_split[1]) for line_index in range(number_of_pointers): current_line = next(input_file) line_split = current_line.split() face_index = int(line_split[0]) lagrange_index = int(line_split[1]) orientation = int(line_split[2]) self.set_face_to_lagrange_pointer(face_index, orientation, lagrange_index) elif line_split[0] == "LAGRANGE_TO_FACE_POINTERS": number_of_pointers = int(line_split[1]) for line_index in range(number_of_pointers): current_line = next(input_file) line_split = current_line.split() lagrange_index = int(line_split[0]) face_index = int(line_split[1]) orientation = int(line_split[2]) self.set_lagrange_to_face_pointers(lagrange_index, face_index, orientation) def save_cell(self, cell_index, output_file): """ Saves individual cell in mms format. :param int cell_index: Cell index. :param file output_file: File to output cell to. :return: None """ glob_to_loc_points = {} temp_mesh = self.__class__() current_cell = [] current_cell_orientations = [] for (face_index, orientation) in zip(self.get_cell(cell_index), self.get_cell_normal_orientation(cell_index)): current_face = [] for point_index in self.get_face(face_index): if point_index in glob_to_loc_points: current_face.append(glob_to_loc_points[point_index]) else: current_point = self.get_point(point_index) local_index = temp_mesh.add_point(current_point) glob_to_loc_points[point_index] = local_index current_face.append(local_index) new_face_index = temp_mesh.add_face(current_face) temp_mesh.set_face_area(new_face_index, self.get_face_area(face_index)) temp_mesh.set_face_normal(new_face_index, self.get_face_normal(face_index)) current_centroid = self.get_face_real_centroid(face_index) temp_mesh.set_face_real_centroid(new_face_index, current_centroid) current_cell.append(new_face_index) current_cell_orientations.append(orientation) temp_mesh.add_cell(current_cell, current_cell_orientations) temp_mesh.set_cell_k(0, self.get_cell_k(cell_index)) temp_mesh.set_cell_volume(0, self.get_cell_volume(cell_index)) current_centroid = self.get_cell_real_centroid(cell_index) temp_mesh.set_cell_real_centroid(0, current_centroid) temp_mesh.save_mesh(output_file) def save_mesh(self, output_file): """ Saves mesh file in mms format. :param file output_file: File to save mesh to. """ output_file.write(b"this is just a test\n") output_file.write(tb(str(mimpy.__version__)+"\n")) output_file.write(b"date\n") output_file.write(b"name\n") output_file.write(b"comments\n") output_file.write(b"#\n") output_file.write(b"#\n") ## Points output_file.write(b"POINTS ") output_file.write(tb(str(len(self.points))+"\n")) np.savetxt(output_file, self.points) ## Faces output_file.write(b"FACES ") output_file.write(tb(str(self.get_number_of_faces())+"\n")) output_file.write(tb(str(len(self.faces.data))+"\n")) np.savetxt(output_file, self.faces.data, fmt='%i') output_file.write(tb(str(len(self.faces.pointers))+"\n")) np.savetxt(output_file, self.faces.pointers, fmt="%i %i") output_file.write(b"FACE_NORMALS ") output_file.write(tb(str(len(self.face_normals))+"\n")) np.savetxt(output_file, self.face_normals) output_file.write(b"FACE_AREAS ") output_file.write(tb(str(self.get_number_of_faces())+"\n")) for face_index in range(self.get_number_of_faces()): output_file.write(tb(str((self.get_face_area(face_index)))+"\n")) output_file.write(b"FACE_REAL_CENTROIDS ") output_file.write(tb(str(self.get_number_of_faces())+"\n")) for face_index in range(self.get_number_of_faces()): current_centroid = self.get_face_real_centroid(face_index) output_file.write(tb(str(current_centroid[0])+" ")) output_file.write(tb(str(current_centroid[1])+" ")) output_file.write(tb(str(current_centroid[2])+"\n")) if self.has_face_shifted_centroid: output_file.write(b"FACE_SHIFTED_CENTROIDS ") output_file(tb(str(self.get_number_of_faces())+"\n")) for face_index in range(self.get_number_of_faces()): output_file.write( tb(str(self.get_face_real_centroid(face_index)+"\n"))) output_file.write(b"FACE_TO_CELL ") output_file.write(tb(str(len(self.face_to_cell))+"\n")) np.savetxt(output_file, self.face_to_cell, fmt="%i %i") output_file.write(b"CELLS ") output_file.write(tb(str(self.get_number_of_cells())+"\n")) output_file.write(tb(str(len(self.cells.data))+"\n")) np.savetxt(output_file, self.cells.data, fmt='%i') output_file.write(tb(str(len(self.cells.pointers))+"\n")) np.savetxt(output_file, self.cells.pointers, fmt="%i %i") output_file.write(b"CELL_NORMAL_ORIENTATION ") output_file.write(tb(str(self.get_number_of_cells())+"\n")) output_file.write(tb(str(len(self.cell_normal_orientation.data))+"\n")) np.savetxt(output_file, self.cell_normal_orientation.data, fmt='%i') output_file.write( tb(str((len(self.cell_normal_orientation.pointers)))+"\n")) np.savetxt(output_file, self.cell_normal_orientation.pointers, fmt="%i %i") output_file.write(b"CELL_VOLUMES ") output_file.write(tb(str(len(self.cell_volume))+"\n")) np.savetxt(output_file, self.cell_volume) output_file.write(b"CELL_REAL_CENTROIDS ") output_file.write(tb(str(len(self.cell_real_centroid))+"\n")) np.savetxt(output_file, self.cell_real_centroid) if self.has_cell_shifted_centroid: output_file.write(b"CELL_SHIFTED_CENTROIDS ") output_file.write(tb(str(len(self.cell_shifted_centroid))+"\n")) np.savetxt(ouptut_file, self.cell_shifted_centroid) output_file.write(b"CELL_K ") output_file.write(tb(str(len(self.cell_k))+"\n")) np.savetxt(output_file, self.cell_k) output_file.write(b"BOUNDARY_MARKERS ") output_file.write(tb(str(len(self.boundary_markers))+"\n")) for marker_index in self.boundary_markers: output_file.write(tb(str(marker_index)+" ")) for (face_index, face_orientation) in\ self.get_boundary_faces_by_marker(marker_index): output_file.write( tb(str(face_index)+" "+str(face_orientation)+" ")) output_file.write(b"\n") output_file.write(b"DIRICHLET_BOUNDARY_POINTERS ") output_file.write(tb(str(len(list( self.dirichlet_boundary_pointers.keys())))+"\n")) for key in self.dirichlet_boundary_pointers: cell_index, orientation = self.dirichlet_boundary_pointers[key] output_file.write( tb(str(key)+" "+str(cell_index)+" "+str(orientation)+"\n")) output_file.write(b"INTERNAL_NO_FLOW ") output_file.write(tb(str(len(self.internal_no_flow))+"\n")) for [face_index, orientation] in self.internal_no_flow: output_file.write(tb(str(face_index)+" "+str(orientation)+"\n")) output_file.write(b"FORCING_FUNCTION_POINTERS ") output_file.write( tb(str(len(list(self.forcing_function_pointers.keys())))+"\n")) for cell_index in self.forcing_function_pointers: output_file.write(tb(str(cell_index)+" ")) for face_index, orientation in \ self.forcing_function_pointers[cell_index]: output_file.write(tb(str(face_index)+" "+str(orientation)+" ")) output_file.write(b"\n") output_file.write(b"FACE_TO_LAGRANGE_POINTERS ") output_file.write( tb(str(len(list(self.face_to_lagrange_pointers.keys())))+"\n")) for key in self.face_to_lagrange_pointers: lagrange_index, orientation = self.face_to_lagrange_pointers[key] output_file.write( tb(str(key)+" "+str(lagrange_index)+" "+str(orientation)+"\n")) output_file.write(b"LAGRANGE_TO_FACE_POINTERS ") output_file.write( tb(str(len(list(self.lagrange_to_face_pointers.keys())))+"\n")) for key in self.lagrange_to_face_pointers: face_index, orientation = self.lagrange_to_face_pointers[key] output_file.write( tb(str(key)+" "+str(face_index)+" "+str(orientation)+"\n")) output_file.close() def set_cell_faces(self, cell_index, faces): """ Sets the cell faces. :param int cell_index: Cell index. :param list faces: Faces making up cell. :return: None """ self.cells[cell_index] = faces for face_index in faces: if cell_index not in self.face_to_cell[face_index]: self.add_to_face_to_cell(face_index, cell_index) def set_cell_orientation(self, cell_index, orientation): """ Sets the cell orientation of faces. :param int cell_index: Cell index. :paramt list orientation: List of new cell face orientations. :return: None """ self.cell_normal_orientation[cell_index] = orientation def add_cell(self, list_of_faces, list_of_orientations): """ Adds a new cell to the mesh. A cell is represented by a list of face indices. The function also takes in a list of orientations of the same length as the list_of_faces. These represent the direction of the face normals relative to the cell: (1) points in, (-1) points out. Returns the index of the new cell. :param list list_of_faces: List of face indices making up new cell. :param list list_of_orientations: List consisting of 1s and -1s\ indicating whether normals are pointing out (1) or in (-1) of cell. :return: New cell index. :rtype: int """ new_cell_index = self.cells.add_entry(list_of_faces) self.cell_normal_orientation.add_entry(list_of_orientations) if len(self.cell_volume)-1<new_cell_index: new_size = self._memory_extension(len(self.cell_volume)) self.cell_volume.resize(new_size, refcheck=False) if len(self.cell_k)-1<new_cell_index: new_size = self._memory_extension(len(self.cell_k)) self.cell_k.resize((new_size, 9), refcheck=False) for face_index in list_of_faces: if self.face_to_cell[face_index][0] == -1: self.face_to_cell[face_index][0] = new_cell_index elif self.face_to_cell[face_index][1] == -1: self.face_to_cell[face_index][1] = new_cell_index else: raise Exception("setting face "+str(face_index)+" to cell "+ str(new_cell_index)+" already set"+ " to two cells "+ str(self.face_to_cell[face_index])) if len(self.cell_domain)-1<new_cell_index: new_size = self._memory_extension(len(self.cell_domain)) self.cell_domain.resize(new_size, refcheck=False) if len(self.cell_real_centroid)-1<new_cell_index: new_size = self._memory_extension(len(self.cell_real_centroid)) self.cell_real_centroid.resize((new_size, 3)) if self.has_alpha: self.cell_alpha.append(None) len(self.cell_shifted_centroid) if self.has_cell_shifted_centroid: if len(self.cell_shifted_centroid)-1<new_cell_index: new_size = self._memory_extension( len(self.cell_shifted_centroid)) self.cell_shifted_centroid.resize((new_size, 3)) return new_cell_index def get_cell(self, cell_index): """ Given a cell_index, it returns the list of faces that make up that cell. :param int cell_index: Cell index of interest. :return: List of faces making up cell. :rtype: list """ return self.cells[cell_index] def get_cell_normal_orientation(self, cell_index): """ Given a cell index, returns a list of face orientations for that cell. :param int cell_index: Index of cell. :return: List of faces orientations in cell. The\ list is made up of 1s and -1s, 1 if the corresponding\ face normal is pointing out of the cell, and -1 if the\ corresponding face normal is pointing into the cell. :rtype: list """ return self.cell_normal_orientation[cell_index] def get_number_of_cells(self): """ Returns total number of cells in mesh. :return: Number of cells in mesh. :rtype: int """ return len(self.cells) def set_cell_real_centroid(self, cell_index, centroid): """ Sets the array of the cell centroid. :param int cell_index: Index of cell. :param ndarray centroid: New cell centroid. :return: None """ self.cell_real_centroid[cell_index] = centroid def get_cell_real_centroid(self, cell_index): """ Returns array of the cell centroid """ return self.cell_real_centroid[cell_index] def get_all_cell_real_centroids(self): """ Returns list of all cell centroids. :return: List of all the cell centroids. :rtype: ndarray """ return self.cell_real_centroid[:self.get_number_of_cells()] def get_all_cell_shifted_centroids(self): """ Returns list of all cell centroids. :return: List of all shifted cell centroid. :rtype: ndarray """ return self.cell_shifted_centroid[:self.get_number_of_cells()] def set_cell_shifted_centroid(self, cell_index, centroid): """ Sets the shifted centroid for cell_index. :param int cell_index: Index of cell. :param ndarray centroid: Shifted centroid point. :return: None """ self.cell_shifted_centroid[cell_index] = centroid def use_face_shifted_centroid(self): """ Sets whether a shifted face centroid will be used for mesh. """ self.has_face_shifted_centroid = True def is_using_face_shifted_centroid(self): """ Returns if shifted face centroids are used and set in mesh. :return: Whether face shifted centroids are set and used. :rtype: bool """ return self.has_face_shifted_centroid def use_cell_shifted_centroid(self): """ Sets whether a shifted cell centroid will be used for mesh. """ self.has_cell_shifted_centroid = True def is_using_cell_shifted_centroid(self): """ Returns if shifted face centroids are used and set in mesh. :return: Whether cell shifted centroids are set and used. :rtype: bool """ return self.has_cell_shifted_centroid def get_cell_shifted_centroid(self, cell_index): """ Returns the shifted cell centroid for cell_index. :param int cell_index: Index of cell. :return: Cell shifted point. :rtype: ndarray """ return self.cell_shifted_centroid[cell_index] def set_cell_volume(self, cell_index, volume): """ Sets cell volume for cell_index. :param int cell_index: Index of cell. :param float volume: New volume to be set for cell. :return: None """ self.cell_volume[cell_index] = volume def get_cell_volume(self, cell_index): """ Returns cell volume for cell_index. """ return self.cell_volume[cell_index] def set_cell_k(self, cell_index, k): """ Set cell permeability tensor K (Numpy matrix) for cell_index. """ self.cell_k[cell_index] = k.reshape((1, 9)) def get_cell_k(self, cell_index): """ Return permeability tensor k (Numpy matrix) for cell_index. """ return self.cell_k[cell_index].reshape((3, 3)) def get_all_k_entry(self, i, j): """ Returns a list of all K[i, j]. """ return self.cell_k[:self.get_number_of_cells(), i*3+j] def get_all_k(self): """ Returns a list of all cell permeability tensors. """ return self.cell_k def use_alpha(self): """ Activates the ability to set the alpha parameter for each cell. """ self.has_alpha = True def set_alpha_by_cell(self, alpha, cell_index): """ Set alpha (float) for cell_index. """ self.cell_alpha[cell_index] = alpha def get_alpha_by_cell(self, cell_index): """ Returns alpha (float) for cell_index. """ return self.cell_alpha[cell_index] def set_face_real_centroid(self, face_index, centroid): """ Sets face centroid for face_index. """ self.face_real_centroids[face_index] = centroid def get_face_real_centroid(self, face_index): """ Returns face centroid. """ return self.face_real_centroids[face_index] def set_face_shifted_centroid(self, face_index, centroid): """ Sets face shifted centroid. """ self.face_shifted_centroids[face_index] = centroid def get_face_shifted_centroid(self, face_index): """ Return face shifted centroid coordinates. """ return self.face_shifted_centroids[face_index] def set_face_area(self, face_index, area): """ Sets face area (float) for face_index. """ self.face_areas[face_index] = area def get_face_area(self, face_index): """ Return area of face. """ return self.face_areas[face_index] def set_face_normal(self, face_index, normal): """ Set face normal (array) to face_index. """ self.face_normals[face_index] = normal def get_face_normal(self, face_index): """ Return face normal for face_index. """ return self.face_normals[face_index] def set_boundary_markers(self, boundary_markers, boundary_descriptions): """ Initialize the mesh boundary labeling. Each marker can represent a single boundary face or a group of faces. boundary_markers: List of integers. boundary_descriptions: List of strings describing the face groups. """ self.boundary_markers = boundary_markers self.boundary_descriptions = boundary_descriptions for marker in boundary_markers: self.boundary_faces[marker] = [] def add_boundary_marker(self, boundary_marker, boundary_description): """ Add a new boundary marker. :param int boundary_marker: New boundary marker index. :param str boundary_description: Text describing the boundary marker. """ self.boundary_markers.append(boundary_marker) self.boundary_descriptions.append(boundary_description) self.boundary_faces[boundary_marker] = [] def create_new_boundary_marker(self, boundary_description): """ Creates new boundary marker and assures that the index is unique. Returns the index of the new boundary marker. """ new_index = len(self.boundary_markers) self.boundary_markers.append(new_index) self.boundary_descriptions.append(boundary_description) self.boundary_faces[new_index] = [] return new_index def has_boundary_marker(self, boundary_marker): """ Returns true if boundary_marker exists. """ return boundary_marker in self.boundary_markers def get_boundary_markers(self): """ Returns a list of all boundary markers. """ return self.boundary_markers def get_boundary_description(self, boundary_marker): """ Returns the boundary description for boundary_marker. """ return self.boundary_descriptions[boundary_marker] def add_boundary_face(self, boundary_marker, face_index, face_orientation): """ Assign face_index to a certain boundary_marker grouping. the face_orientation indicates whether the normal of that face points in (-1) or out (1) of the cell the face belongs to. A face should never be associated with more than one marker. :param int boundary_marker: Boundary marker index. :param int face_index: Index of face. :param int face_orientation: Orientation of face normal\ relative to the domain. (1) if pointing out, (-1) if\ if pointing in. :return: None """ self.boundary_faces[boundary_marker].append([face_index, face_orientation]) def set_boundary_faces(self, boundary_marker, face_orientation_list): """ Takes a boundary_marker index, and sets the entire list of tuples for that boundary marker. :param int boundary_marker: Boundary marker to be set. :param list face_orienation_list: A list of tuples of the form\ [face_index, orientation] to be associated with the\ indicated boundary marker. :return: None """ self.boundary_faces[boundary_marker] = face_orientation_list def get_boundary_faces_by_marker(self, boundary_marker): """ Returns a list of all the faces associated with a boundary_marker. :param int boundary_marker: Boundary marker index. :return: List of tupes [face_index, orientation] associated with\ boundary_marker. :rtype: list """ return self.boundary_faces[boundary_marker] def is_boundary_face(self, face_index, markers): """ Returns True if face_index belongs to any of the markers. """ for boundary_marker in markers: for face in self.boundary_faces[boundary_marker]: if face_index == face[0]: return True return False def find_boundary_marker(self, face_index, markers): """ Returns the boundary marker containing face_index. """ for boundary_marker in markers: for face in self.boundary_faces[boundary_marker]: if face_index == face[0]: return boundary_marker def set_boundary_face_orientation(self, face_index, new_orientation): """ Set orientation for face_index. """ for bm in self.boundary_markers: for face in self.boundary_faces[bm]: if face_index == face[0]: face[1] = new_orientation def get_number_of_boundary_faces(self): """ Returns number of faces on the boundary of the domain. """ number_of_boundary_faces = 0 for boundary_marker in self.boundary_markers: number_of_boundary_faces += \ len(self.boundary_faces[boundary_marker]) return number_of_boundary_faces def add_internal_no_flow(self, face_index, face_orientation): """ Sets face as interior no flow boundary condition. :param int face_index: Face index to be set as internal no-flow. :param int face_orientation: Orientation of face relative to the\ domain, (1) for pointing out, (-1) for pointing in. """ self.internal_no_flow.append([face_index, face_orientation]) def get_internal_no_flow(self): """ Returns list of faces set as internal no flow condition. """ return self.internal_no_flow def set_dirichlet_face_pointer(self, face_index, face_orientation, cell_index): """ Sets the value of a Dirichlet boundary to value of cell pressure for cell_index. This approach is used for coupling fractures with a reservoir. """ # The function adds a zero entry to the # dirichlet_boundary_values dict. This # allows the MFD code to build the matrix # correctly, and doesn't effect the right-hand # side of the problem. self.dirichlet_boundary_pointers[face_index] = \ (cell_index, face_orientation) def get_dirichlet_pointer_faces(self): """ Returns all the faces with Dirichlet values set by pointing to a cell. """ return list(self.dirichlet_boundary_pointers.keys()) def set_face_to_lagrange_pointer(self, face_index, face_orientation, lagrange_index): """ Sets face to dirichlet type boundary pointing to lagrange multiplier. """ # The function adds a zero entry to the # dirichlet_boundary_values dict. This # allows the MFD code to build the matrix # correctly, and doesn't effect the right-hand # side of the problem. self.face_to_lagrange_pointers[face_index] = \ (lagrange_index, face_orientation) def get_all_face_to_lagrange_pointers(self): """ Returns all face indices that are pointing to a lagrange multiplier. """ return list(self.face_to_lagrange_pointers.keys()) def get_face_to_lagrange_pointer(self, face_index): """ Returns the lagrange multiplier index and the face normal orientation. """ return self.face_to_lagrange_pointers[face_index] def set_lagrange_to_face_pointers(self, lagrange_index, face_index, orientation): """ Sets the lagrange multiplier to the source faces in order to impose zero flux across the boundary. """ self.lagrange_to_face_pointers[lagrange_index] = \ zip(face_index, orientation) def get_all_lagrange_to_face_pointers(self): """ Returns all lagrange face indices that point to fluxes. """ return list(self.lagrange_to_face_pointers.keys()) def get_lagrange_to_face_pointers(self, lagrange_index): """ Returns the faces the lagrange_index face points too. """ return self.lagrange_to_face_pointers[lagrange_index] def get_dirichlet_pointer(self, face_index): """ Returns the cell_index for which the Dirichlet boundary will be set implicitly. """ return self.dirichlet_boundary_pointers[face_index] def set_periodic_boundary(self, face_index_1, face_orientation_1, face_index_2, face_orientation_2): """ Sets a periodic boundary condition, connecting face 1 with face 2. This ammounts to creating a single lagrange multiplier shared by the faces. The MFD class would impose continuity of both the pressure and the flux for the periodic conditions. """ lagrange_index_1 = self.duplicate_face(face_index_1) self.periodic_boundaries.append((face_index_1, face_orientation_1, face_index_2, face_orientation_2, lagrange_index_1,)) def set_forcing_pointer(self, cell_index, face_indices, face_orientations): """ Sets the value of the forcing function implicity as the sum of the fluxes from list of faces. This approach is used for coupling fractures with a reservoir. """ # The function adds a zero entry to the # cell_forcing_function dict. This # allows the MFD code to build the matrix # correctly, and doesn't effect the right-hand # side of the problem. # If the forcing function is set later on # (in case of well for example), it # becomes additive to the source term # for that cell. self.forcing_function_pointers[cell_index] = \ list(zip(face_indices, face_orientations)) def get_forcing_pointer_cells(self): """ Returns cell indices with forcing function pointers. """ return list(self.forcing_function_pointers.keys()) def get_forcing_pointers_for_cell(self, cell_index): """ Returns list of pointers (face_indices) for cell_index. """ return self.forcing_function_pointers[cell_index] def set_cell_domain(self, cell_index, domain): """ Sets cell domain identifier for cell_index. """ self.cell_domain[cell_index] = domain self.cell_domain_tags.add(domain) def get_domain_tags(self): """ Returns list of all domain tags. """ return list(self.cell_domain_tags) def get_cell_domain(self, cell_index): """ Returns cell domain identifier for cell_index. """ return self.cell_domain[cell_index] def get_cell_domain_all(self): """ Returns list containing all cell_domain tags. """ return self.cell_domain[:self.get_number_of_cells()] def get_cells_in_domain(self, domain): """ Returns all cells with domain tag. """ cells_in_domain = [] for cell_index in range(self.get_number_of_cells()): if self.cell_domain[cell_index] == domain: cells_in_domain.append(cell_index) return cells_in_domain def set_gravity_vector(self, gravity_vector): """ Set vector indicating gravity acceleration direction. """ self.gravity_vector = gravity_vector def get_gravity_vector(self): """ Returns gravity vector (down direction) """ return self.gravity_vector def get_gravity_acceleration(self): """ Returns the gravity acceleration constant. """ return self.gravity_acceleration def find_basis_for_face(self, face_index): """ Finds two non collinear vectors in face to serve as basis for plane. """ face = self.get_face(face_index) for i in range(len(face)): v1 = self.get_point(face[i+1]) - self.get_point(face[i]) v2 = self.get_point(face[i]) - self.get_point(face[i-1]) v2 /= np.linalg.norm(v2) v1 /= np.linalg.norm(v1) if 1.-abs(v1.dot(v2)) > 1.e-6: return (v1, v2, face[i]) raise Exception("Couldn't compute basis for face " + str(face_index)) def find_face_normal(self, face_index): """ Finds the face normal based on rotation around the face boundary. Assumes the face is planar. """ face = self.get_face(face_index) for i in range(len(face)): v1 = self.get_point(face[i+1]) - self.get_point(face[i]) v2 = self.get_point(face[i]) - self.get_point(face[i-1]) new_face_normal = np.cross(v2, v1) if np.linalg.norm(new_face_normal) >1.e-10: new_face_normal /= np.linalg.norm(new_face_normal) return new_face_normal raise Exception("Couldn't compute normal for face " + str(face_index)) def find_centroid_for_coordinates(self, face_index, coordinates): """ Computes centroid calculation for a 3D polygon based on two coordinates of the polygon. """ C_1 = 0. C_2 = 0. area = 0. index_1 = coordinates[0] index_2 = coordinates[1] current_face = self.get_face(face_index) for index in range(len(current_face)): current_point = self.get_point(current_face[index]) if index == len(current_face)-1: next_point = self.get_point(current_face[0]) else: next_point = self.get_point(current_face[index+1]) C_1 += ((current_point[index_1]+next_point[index_1])* (current_point[index_1]*next_point[index_2]- next_point[index_1]*current_point[index_2])) C_2 += ((current_point[index_2]+next_point[index_2])* (current_point[index_1]*next_point[index_2]- next_point[index_1]*current_point[index_2])) area += current_point[index_1]*next_point[index_2] area -= next_point[index_1]*current_point[index_2] area /= 2. C_1 /= 6.*area C_2 /= 6.*area return (area, C_1, C_2) def find_face_centroid(self, face_index): """ Returns centroid coordinates for face_index. This function assumes planarity of the face. and is currently intended for use with three dimensional meshes. The function returns the area of the face, as well as the x, y, z coordinates of its center. """ (v1, v2, origin_index) = self.find_basis_for_face(face_index) polygon = [np.array(self.get_point(x)) for x in self.get_face(face_index)] assert(np.linalg.norm(v2) >1.e-12) assert(np.linalg.norm(v1) >1.e-12) v1 = v1/np.linalg.norm(v1) v_temp = np.cross(v1, v2) v2 = np.cross(v_temp, v1) if
np.linalg.norm(v2)
numpy.linalg.norm
import os import h5py import pandas as pd import numpy as np import matplotlib.pyplot as plt def countUniqueVal(dataframe, column): """ Print unique values for each columns """ for count, name in enumerate(column): print("#{} - {}".format(count, name)) print(dataframe[name].value_counts()) print("\n") return def dataloader(filename, save_description=False, print_description=False): dirname = "Dataset" filepath = os.path.normpath(os.path.join(os.path.join(os.getcwd(), dirname), filename)) with h5py.File(filepath, "r") as hdf: print("Keys: {}".format(hdf.keys())) # Development set W_dev = np.array(hdf.get('W_dev')) # W - operative condition X_s_dev = np.array(hdf.get('X_s_dev')) # X_s - measured signal X_v_dev = np.array(hdf.get('X_v_dev')) # X_v - virtual sensors T_dev = np.array(hdf.get('T_dev')) # T - engine health parameters Y_dev = np.array(hdf.get('Y_dev')) # RUL - RUL label A_dev = np.array(hdf.get('A_dev')) # Auxiliary - unit number u and the flight cycle number c, the flight class Fc and the health state h s # Test set W_test = np.array(hdf.get('W_test')) # W X_s_test = np.array(hdf.get('X_s_test')) # X_s X_v_test = np.array(hdf.get('X_v_test')) # X_v T_test = np.array(hdf.get('T_test')) # T Y_test = np.array(hdf.get('Y_test')) # RUL A_test = np.array(hdf.get('A_test')) # Auxiliary # Varnams W_var = np.array(hdf.get('W_var')) X_s_var = np.array(hdf.get('X_s_var')) X_v_var = np.array(hdf.get('X_v_var')) T_var = np.array(hdf.get('T_var')) A_var = np.array(hdf.get('A_var')) # from np.array to list dtype U4/U5 W_var = list(np.array(W_var, dtype='U20')) X_s_var = list(
np.array(X_s_var, dtype='U20')
numpy.array
""" Utilities about Boolean networks. """ import numpy as np from ortools.graph import pywrapgraph class BooleanNetwork: """ A Boolean network model for target_gene regulatory networks. """ def __init__(self, update_functions): """ Initialize a Boolean network with the given Boolean update functions for each gene. :param update_functions: iterable, each item is a Boolean update function. Requirements: (1) accept a single 1d binary array input representing a state vector; (2) return a binary value denoting the new state of a target_gene. """ self._n_genes = len(update_functions) self._fs = list(update_functions) def async_simulate(self, initial_states): """ Simulate the Boolean network model asynchronously starting from the given initial state. :param initial_states: array-like, which contains 0 or 1 for each target_gene We may provide one initial state in a 1d array / list, or multiple initial states in a 2d array, where each row denotes an initial state. :return: set, representing the model state space reachable from the initial state with the asynchronous update strategy, where each item is a binary state. In an asynchronous update scheme, at most one gene is updated between two consecutive states. """ # use depth-first search-here initial_states = np.array(initial_states) if initial_states.ndim == 1: # only one initial state assert len(initial_states) == self.n_genes initial_states = np.reshape(initial_states, (-1, len(initial_states))) else: assert initial_states.shape[1] == self.n_genes q = list(initial_states) model_space = set(tuple(s) for s in initial_states) while q: old_state = q.pop() for i in range(self._n_genes): # if the ith target_gene is to be updated new_state =
np.copy(old_state)
numpy.copy
from timeit import default_timer as timer import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.model_selection import StratifiedKFold import scipy.optimize from scipy.special import expit, xlog1py from experiments import experimental_design from performance_metrics import performance_metrics class CSLogit: def __init__(self, initial_theta, lambda1=0, lambda2=0, theta_opt=None, obj='aec'): self.initial_theta = initial_theta self.lambda1 = lambda1 self.lambda2 = lambda2 self.theta_opt = theta_opt self.obj = obj def fitting(self, x, y, cost_matrix): if self.obj == 'weightedce': misclass_cost = np.zeros(len(y)) misclass_cost[y == 0] = cost_matrix[:, 1, 0][y == 0] misclass_cost[y == 1] = cost_matrix[:, 0, 1][y == 1] def get_obj_func(theta): if self.obj == 'ce': return self.ce(theta, x, y) if self.obj == 'ce10': return self.ce10(theta, x, y) elif self.obj == 'weightedce': return self.weighted_ce(theta, x, y, misclass_cost) elif self.obj == 'aec': return self.aec(theta, x, y, cost_matrix) elif self.obj == 'logaec': return self.logaec(theta, x, y, cost_matrix) else: raise Exception('No correct loss specified') self.theta, func_min, _ = self.optimization(get_obj_func, self.initial_theta) return func_min def optimization(self, obj_func, initial_theta): opt_res = scipy.optimize.minimize(obj_func, initial_theta, method='L-BFGS-B', options={'ftol': 1e-6, 'disp': False}) theta_opt, func_min, n_iter = opt_res.x, opt_res.fun, opt_res.nfev self.theta_opt = theta_opt return theta_opt, func_min, n_iter def ce(self, theta, x, y_true): scores = expit(theta[0] + x.dot(theta[1:])) eps = 1e-9 # small value to avoid log(0) ce = - (y_true * np.log(scores + eps) + (1 - y_true) * np.log(1 - scores + eps)) # Add regularization ce += self.lambda1 * np.sum(abs(theta[1:])) + self.lambda2 *
np.sum(theta[1:] ** 2)
numpy.sum
import cv2 import foolbox import foolbox.attacks as fa import matplotlib.pyplot as plt import numpy as np import torch import torchvision import torchvision.transforms as transforms from foolbox.distances import Linf from matplotlib import rcParams from utils import utils CLASS_NAMES = [ "tench", "English springer", "cassette player", "chain saw", "church", "French horn", "garbage truck", "gas pump", "golf ball", "parachute", ] model = utils.load_trained_model( model_name="resnet", model_path="../models/200224_0901_resnet_imagenette.pth", class_num=len(CLASS_NAMES), ) preprocessing = dict( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], axis=-3 ) # resize image to size 213 * 213 transform = transforms.Compose( [transforms.Resize((213, 213)), transforms.ToTensor()] ) # load dataset with validation images dataset = torchvision.datasets.ImageFolder( root="../data/imagenette2-160/val", transform=transform ) # 2. get first 100 images (all tenches) dataset = torch.utils.data.Subset(dataset, [431]) # compose dataset into dataloader # (don't shuffle, no need to shuffle, we're not training.) dataset_loader = torch.utils.data.DataLoader(dataset, batch_size=1) # get dataset size (length) dataset_size = len(dataset) # Use GPU if available if torch.cuda.is_available(): model = model.cuda() fmodel = foolbox.models.PyTorchModel( model, bounds=(0, 1), num_classes=len(CLASS_NAMES), preprocessing=preprocessing, ) rcParams["font.family"] = "monospace" def img_to_np(img): """ Transpose image to viewable format to plot/visualize. """ return np.transpose(img, (1, 2, 0)) attack = fa.GradientSignAttack(fmodel, distance=Linf) for image, label in dataset_loader: plt.figure(figsize=(12, 5.4)) plt.subplot(1, 3, 1) plt.imshow(img_to_np(image.squeeze())) prob = fmodel.forward(image.numpy()) pred = np.argmax(prob, axis=-1) plt.title( "Original prediction:\n{}".format(CLASS_NAMES[pred[0]]), color="b", ) adv = attack(image.numpy(), label.numpy(), epsilons=[4 / 255]) prob = fmodel.forward(adv) pred = np.argmax(prob, axis=-1) plt.subplot(1, 3, 2) plt.imshow(img_to_np(adv.squeeze())) plt.title( "Adversary prediction:\n{}".format(CLASS_NAMES[pred[0]]), color="r", ) # plt.subplot(1, 3, 3) # plt.imshow(img_to_np((adv - image.numpy()).squeeze())) # plt.title("Perturbation: $\\epsilon=4/255$") resized_adv = cv2.resize( np.moveaxis(adv.squeeze(), 0, 2), (0, 0), fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR, ) resized_adv = np.moveaxis(resized_adv, 2, 0) resized_adv =
np.expand_dims(resized_adv, axis=1)
numpy.expand_dims
import warnings from functools import lru_cache from typing import Optional import numpy as np import scipy.sparse as sp from numba import njit from tqdm import tqdm from torch_geometric.data import Data from graphwar import Surrogate from graphwar.attack.targeted.targeted_attacker import TargetedAttacker from graphwar.utils import singleton_filter, scipy_normalize, LikelihoodFilter class Nettack(TargetedAttacker, Surrogate): r"""Implementation of `Nettack` attack from the: `"Adversarial Attacks on Neural Networks for Graph Data" <https://arxiv.org/abs/1805.07984>`_ paper (KDD'18) Parameters ---------- data : Data PyG-like data denoting the input graph device : str, optional the device of the attack running on, by default "cpu" seed : Optional[int], optional the random seed for reproducing the attack, by default None name : Optional[str], optional name of the attacker, if None, it would be :obj:`__class__.__name__`, by default None kwargs : additional arguments of :class:`graphwar.attack.Attacker`, Raises ------ TypeError unexpected keyword argument in :obj:`kwargs` Example ------- >>> from graphwar.dataset import GraphWarDataset >>> import torch_geometric.transforms as T >>> dataset = GraphWarDataset(root='~/data/pygdata', name='cora', transform=T.LargestConnectedComponents()) >>> data = dataset[0] >>> surrogate_model = ... # train your surrogate model >>> from graphwar.attack.targeted import Nettack >>> attacker = Nettack(data) >>> attacker.setup_surrogate(surrogate_model) >>> attacker.reset() >>> attacker.attack(target=1) # attacking target node `1` with default budget set as node degree >>> attacker.reset() >>> attacker.attack(target=1, num_budgets=1) # attacking target node `1` with budget set as 1 >>> attacker.data() # get attacked graph >>> attacker.edge_flips() # get edge flips after attack >>> attacker.added_edges() # get added edges after attack >>> attacker.removed_edges() # get removed edges after attack Note ---- * Please remember to call :meth:`reset` before each attack. """ # Nettack can conduct feature attack _allow_feature_attack = True _allow_singleton: bool = False def __init__(self, data: Data, device: str = "cpu", seed: Optional[int] = None, name: Optional[str] = None, **kwargs): super().__init__(data=data, device=device, seed=seed, name=name, **kwargs) feat = self.feat self.scipy_feat = sp.csr_matrix(feat.cpu().numpy()) self.cooc_matrix = sp.csr_matrix((feat.t() @ feat).cpu().numpy()) def setup_surrogate(self, surrogate): Surrogate.setup_surrogate(self, surrogate=surrogate, freeze=True) W = None for para in self.surrogate.parameters(): if para.ndim == 1: warnings.warn(f"The surrogate model has `bias` term, which is ignored and the " f"model itself may not be a perfect choice for {self.name}.") continue if W is None: W = para else: W = para @ W assert W is not None self.W = W.t().cpu().numpy() self.num_classes = self.W.shape[-1] return self def reset(self): super().reset() self.modified_adj = self.adjacency_matrix.copy() self.modified_feat = self.scipy_feat.copy() self.adj_norm = scipy_normalize(self.modified_adj) self.cooc_constraint = None return self def compute_cooccurrence_constraint(self, nodes): num_nodes = self.num_nodes num_feats = self.num_feats words_graph = self.cooc_matrix - \ sp.diags(self.cooc_matrix.diagonal(), format='csr') words_graph.eliminate_zeros() words_graph.data = words_graph.data > 0 word_degrees = words_graph.sum(0).A1 inv_word_degrees = np.reciprocal(word_degrees.astype(float) + 1e-8) sd = np.zeros(num_nodes) for n in range(num_nodes): n_idx = self.modified_feat[n].nonzero()[1] sd[n] = np.sum(inv_word_degrees[n_idx.tolist()]) scores_matrix = sp.lil_matrix((num_nodes, num_feats)) for n in nodes: common_words = words_graph.multiply(self.modified_feat[n]) idegs = inv_word_degrees[common_words.nonzero()[1]] nnz = common_words.nonzero()[0] scores = np.array([idegs[nnz == ix].sum() for ix in range(num_feats)]) scores_matrix[n] = scores self.cooc_constraint = sp.csr_matrix( scores_matrix - 0.5 * sd[:, None] > 0) def gradient_wrt_x(self, label): return (self.adj_norm @ self.adj_norm)[self.target].T @ sp.coo_matrix(self.W[:, label].reshape(1, -1)) def compute_logits(self): return (self.adj_norm @ self.adj_norm @ self.modified_feat @ self.W)[self.target].ravel() def strongest_wrong_class(self, logits): target_label_onehot = np.eye(self.num_classes)[self.target_label] return (logits - 1000 * target_label_onehot).argmax() def feature_scores(self): if self.cooc_constraint is None: self.compute_cooccurrence_constraint(self.influence_nodes) logits = self.compute_logits() best_wrong_class = self.strongest_wrong_class(logits) gradient = self.gradient_wrt_x( self.target_label) - self.gradient_wrt_x(best_wrong_class) surrogate_loss = logits[self.target_label] - logits[best_wrong_class] gradients_flipped = (gradient * -1).tolil() gradients_flipped[self.modified_feat.nonzero()] *= -1 X_influencers = sp.lil_matrix(self.modified_feat.shape) X_influencers[self.influence_nodes] = self.modified_feat[self.influence_nodes] gradients_flipped = gradients_flipped.multiply( (self.cooc_constraint + X_influencers) > 0) nnz_ixs = np.array(gradients_flipped.nonzero()).T sorting = np.argsort(gradients_flipped[tuple(nnz_ixs.T)]).A1 sorted_ixs = nnz_ixs[sorting] grads = gradients_flipped[tuple(nnz_ixs[sorting].T)] scores = surrogate_loss - grads return sorted_ixs[::-1], scores.A1[::-1] def structure_score(self, a_hat_uv, XW): logits = a_hat_uv @ XW label_onehot = np.eye(self.num_classes)[self.target_label] best_wrong_class_logits = (logits - 1000 * label_onehot).max(1) logits_for_correct_class = logits[:, self.target_label] struct_scores = logits_for_correct_class - best_wrong_class_logits return struct_scores @lru_cache(maxsize=1) def compute_XW(self): return self.modified_feat @ self.W def get_attacker_nodes(self, n=5, add_additional_nodes=False): assert n < self.modified_adj.shape[0] - \ 1, "number of influencers cannot be >= number of nodes in the graph!" neighbors = self.modified_adj[self.target].indices candidate_edges = np.column_stack( (np.tile(self.target, len(neighbors)), neighbors)).astype("int32") # The new A_hat_square_uv values that we would get if we removed the edge from u to each of the neighbors, respectively a_hat_uv = self.compute_new_a_hat_uv(candidate_edges) XW = self.compute_XW() # compute the struct scores for all neighbors struct_scores = self.structure_score(a_hat_uv, XW) if len(neighbors) >= n: # do we have enough neighbors for the number of desired influencers? influence_nodes = neighbors[np.argsort(struct_scores)[:n]] if add_additional_nodes: return influence_nodes, np.array([]) return influence_nodes else: influence_nodes = neighbors if add_additional_nodes: # Add additional influencers by connecting them to u first. # Compute the set of possible additional influencers, i.e. all nodes except the ones # that are already connected to u. poss_add_infl = np.setdiff1d(np.setdiff1d( np.arange(self.modified_adj.shape[0]), neighbors), self.target) n_possible_additional = len(poss_add_infl) n_additional_attackers = n - len(neighbors) possible_edges = np.column_stack( (
np.tile(self.target, n_possible_additional)
numpy.tile
# %% """ Tests for the DDPG module """ import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import ddpg def run_ddpg_gridworld(n_iters=1002, show=False): """ run an experiment of the DDPG agent in a grid world env """ # define critic and actor networks # example critic state_in = keras.Input(shape=2) action_in = keras.Input(shape=2) goal_in = keras.Input(shape=2) f_x = keras.layers.Concatenate(axis=-1)([ state_in, action_in, goal_in ]) f_x = keras.layers.Dense(50, activation='relu')(f_x) f_x = keras.layers.Dense(50, activation='relu')(f_x) f_x = keras.layers.Dense(50, activation='relu')(f_x) f_x = keras.layers.Dense(50, activation='relu')(f_x) f_x = keras.layers.Dense(50, activation='relu')(f_x) f_x = keras.layers.Dense(50, activation='relu')(f_x) f_x = keras.layers.Dense(30, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(10, activation='relu')(f_x) f_x = keras.layers.Dense(1, activation='linear')(f_x) critic = keras.Model( inputs=[state_in, action_in, goal_in], outputs=f_x ) critic.compile( optimizer=tf.keras.optimizers.Adam(lr=0.01), loss='mse' ) # example actor state_in = keras.Input(shape=2) goal_in = keras.Input(shape=2) f_x = keras.layers.Concatenate(axis=-1)([ state_in, goal_in ]) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(20, activation='relu')(f_x) f_x = keras.layers.Dense(10, activation='relu')(f_x) f_x = keras.layers.Dense(2, activation='linear')(f_x) f_x = tf.keras.backend.l2_normalize( f_x, axis=-1 ) actor = keras.Model( inputs=[state_in, goal_in], outputs=f_x ) actor.compile( tf.keras.optimizers.Adam(lr=0.002), loss='mse' ) agent = ddpg.ddpg.DDPGBase( actor, critic, critic_epochs=1, actor_epochs=1, gamma=0.9, tau=0.4 ) # define gridworld env goal = np.array([0.5, 0.5]) def calculate_reward(next_states, goal): next_states = next_states.reshape(-1, 2) return (np.linalg.norm( goal[None, :] - next_states, axis=-1 ).reshape(-1) < 0.2).astype(np.float) def calculate_next_state(state, action): return np.clip( state + action/40, 0, 1 ).reshape(-1) # training loop states = [] actions = [] goals = [] rewards = [] next_states = [] performance_trajectory = [] n_state_grid = 50 state_grid = np.stack(np.meshgrid( np.linspace(0, 1, n_state_grid), np.linspace(0, 1, n_state_grid) ))[[1, 0]].reshape(2, n_state_grid*n_state_grid).T for iteration in range(n_iters): if len(states) > 1000: states = states[-1000:] actions = actions[-1000:] goals = goals[-1000:] rewards = rewards[-1000:] next_states = next_states[-1000:] if iteration % 50 == 1: print('Iteration {}/{}'.format(iteration, n_iters)) state = np.random.rand(2) action = 2*np.random.rand(2)-1 action = action / np.linalg.norm(action) next_state = calculate_next_state( state, action ) reward = calculate_reward( next_state, goal )[0] states.append(state) actions.append(action) goals.append(goal) rewards.append(reward) next_states.append(next_state) if iteration % 100 == 1: for _ in range(50): agent.train( np.array(states), np.array(actions), np.array(goals), np.array(rewards), np.array(next_states) ) if iteration % 200 == 1: returns = [] if show: plt.figure(figsize=(7, 7)) for _ in range(20): test_state = np.random.rand(2) test_rewards = [] traj = [] for __ in range(50): traj.append(test_state.copy()) action = np.array(agent.actor([ test_state.reshape((1, 2)), goal.reshape((1, 2)) ])) test_state = calculate_next_state( test_state, action.reshape(-1) ) test_rewards.append( calculate_reward( test_state, goal )[0] ) returns.append( np.sum(
np.array(test_rewards)
numpy.array
# -*- coding: utf-8 -*- import numpy as np import smuthi.coordinates as coord import smuthi.field_expansion as fldex import smuthi.vector_wave_functions as vwf import smuthi.particles as part import smuthi.particle_coupling as pc import smuthi.scattered_field as sf import smuthi.memoizing as memo import warnings import sys from tqdm import tqdm class InitialField: """Base class for initial field classes""" def __init__(self, vacuum_wavelength): self.vacuum_wavelength = vacuum_wavelength def spherical_wave_expansion(self, particle, layer_system): """Virtual method to be overwritten.""" pass def plane_wave_expansion(self, layer_system, i): """Virtual method to be overwritten.""" pass def piecewise_field_expansion(self, layer_system): """Virtual method to be overwritten.""" pass def angular_frequency(self): """Angular frequency. Returns: Angular frequency (float) according to the vacuum wavelength in units of c=1. """ return coord.angular_frequency(self.vacuum_wavelength) class InitialPropagatingWave(InitialField): """Base class for plane waves and Gaussian beams Args: vacuum_wavelength (float): polar_angle (float): polar propagation angle (0 means, parallel to z-axis) azimuthal_angle (float): azimuthal propagation angle (0 means, in x-z plane) polarization (int): 0 for TE/s, 1 for TM/p amplitude (float or complex): Electric field amplitude reference_point (list): Location where electric field of incoming wave equals amplitude """ def __init__(self, vacuum_wavelength, polar_angle, azimuthal_angle, polarization, amplitude=1, reference_point=None): assert (polarization == 0 or polarization == 1) InitialField.__init__(self, vacuum_wavelength) if np.isclose(np.cos(polar_angle), 0): raise ValueError('propagating waves not defined in the xy-plane') self.polar_angle = polar_angle self.azimuthal_angle = azimuthal_angle self.polarization = polarization self.amplitude = amplitude if reference_point: self.reference_point = reference_point else: self.reference_point = [0, 0, 0] def spherical_wave_expansion(self, particle, layer_system): """Regular spherical wave expansion of the wave including layer system response, at the locations of the particles. Args: particle (smuthi.particles.Particle): particle relative to which the swe is computed layer_system (smuthi.layer.LayerSystem): stratified medium Returns: regular smuthi.field_expansion.SphericalWaveExpansion object """ i = layer_system.layer_number(particle.position[2]) pwe_up, pwe_down = self.plane_wave_expansion(layer_system, i) return (fldex.pwe_to_swe_conversion(pwe_up, particle.l_max, particle.m_max, particle.position) + fldex.pwe_to_swe_conversion(pwe_down, particle.l_max, particle.m_max, particle.position)) def piecewise_field_expansion(self, layer_system): """Compute a piecewise field expansion of the initial field. Args: layer_system (smuthi.layer.LayerSystem): stratified medium Returns: smuthi.field_expansion.PiecewiseWaveExpansion object """ pfe = fldex.PiecewiseFieldExpansion() for i in range(layer_system.number_of_layers()): pwe_up, pwe_down = self.plane_wave_expansion(layer_system, i) pfe.expansion_list.append(pwe_up) pfe.expansion_list.append(pwe_down) return pfe def electric_field(self, x, y, z, layer_system): """Evaluate the complex electric field corresponding to the wave. Args: x (array like): Array of x-values where to evaluate the field (length unit) y (array like): Array of y-values where to evaluate the field (length unit) z (array like): Array of z-values where to evaluate the field (length unit) layer_system (smuthi.layer.LayerSystem): Stratified medium Returns Tuple (E_x, E_y, E_z) of electric field values """ pfe = self.piecewise_field_expansion(layer_system=layer_system) return pfe.electric_field(x, y, z) class GaussianBeam(InitialPropagatingWave): """Class for the representation of a Gaussian beam as initial field.""" def __init__(self, vacuum_wavelength, polar_angle, azimuthal_angle, polarization, beam_waist, k_parallel_array='default', azimuthal_angles_array='default', amplitude=1, reference_point=None): InitialPropagatingWave.__init__(self, vacuum_wavelength, polar_angle, azimuthal_angle, polarization, amplitude, reference_point) self.beam_waist = beam_waist if type(k_parallel_array) == str and k_parallel_array == 'default': k_parallel_array = coord.default_k_parallel if type(azimuthal_angles_array) == str and azimuthal_angles_array == 'default': azimuthal_angles_array = coord.default_azimuthal_angles self.k_parallel_array = k_parallel_array self.azimuthal_angles_array = azimuthal_angles_array def plane_wave_expansion(self, layer_system, i, k_parallel_array=None, azimuthal_angles_array=None): """Plane wave expansion of the Gaussian beam. Args: layer_system (smuthi.layer.LayerSystem): stratified medium i (int): layer number in which to evaluate the expansion k_parallel_array (numpy.ndarray): in-plane wavenumber array for the expansion. if none specified, self.k_parallel_array is used azimuthal_angles_array (numpy.ndarray): azimuthal angles for the expansion. if none specified, self.azimuthal_angles_array is used Returns: tuple of to smuthi.field_expansion.PlaneWaveExpansion objects, one for upgoing and one for downgoing component """ if k_parallel_array is None: k_parallel_array = self.k_parallel_array if azimuthal_angles_array is None: azimuthal_angles_array = self.azimuthal_angles_array if np.cos(self.polar_angle) > 0: iG = 0 # excitation layer number kind = 'upgoing' else: iG = layer_system.number_of_layers() - 1 kind = 'downgoing' niG = layer_system.refractive_indices[iG] # refractive index in excitation layer if niG.imag: warnings.warn('beam coming from absorbing medium') k_iG = niG * self.angular_frequency() z_iG = layer_system.reference_z(iG) loz = layer_system.lower_zlimit(iG) upz = layer_system.upper_zlimit(iG) pwe_exc = fldex.PlaneWaveExpansion(k=k_iG, k_parallel=k_parallel_array, azimuthal_angles=azimuthal_angles_array, kind=kind, reference_point=[0, 0, z_iG], lower_z=loz, upper_z=upz) k_Gx = k_iG * np.sin(self.polar_angle) * np.cos(self.azimuthal_angle) k_Gy = k_iG * np.sin(self.polar_angle) * np.sin(self.azimuthal_angle) kp = pwe_exc.k_parallel_grid() al = pwe_exc.azimuthal_angle_grid() kx = kp * np.cos(al) ky = kp * np.sin(al) kz = pwe_exc.k_z_grid() w = self.beam_waist r_G = self.reference_point g = (self.amplitude * w**2 / (4 * np.pi) * np.exp(-w**2 / 4 * ((kx - k_Gx)**2 + (ky - k_Gy)**2)) * np.exp(-1j * (kx * r_G[0] + ky * r_G[1] + kz * (r_G[2] - z_iG))) ) pwe_exc.coefficients[0, :, :] = g * np.cos(al - self.azimuthal_angle + self.polarization * np.pi/2) if np.cos(self.polar_angle) > 0: pwe_exc.coefficients[1, :, :] = g * np.sin(al - self.azimuthal_angle + self.polarization * np.pi/2) else: pwe_exc.coefficients[1, :, :] = - g * np.sin(al - self.azimuthal_angle + self.polarization * np.pi/2) pwe_up, pwe_down = layer_system.response(pwe_exc, from_layer=iG, to_layer=i) if iG == i: if kind == 'upgoing': pwe_up = pwe_up + pwe_exc elif kind == 'downgoing': pwe_down = pwe_down + pwe_exc return pwe_up, pwe_down def propagated_far_field(self, layer_system): """Evaluate the far field intensity of the reflected / transmitted initial field. Args: layer_system (smuthi.layers.LayerSystem): Stratified medium Returns: A tuple of smuthi.field_expansion.FarField objects, one for forward (i.e., into the top hemisphere) and one for backward propagation (bottom hemisphere). """ i_top = layer_system.number_of_layers() - 1 top_ff = fldex.pwe_to_ff_conversion(vacuum_wavelength=self.vacuum_wavelength, plane_wave_expansion=self.plane_wave_expansion(layer_system, i_top)[0]) bottom_ff = fldex.pwe_to_ff_conversion(vacuum_wavelength=self.vacuum_wavelength, plane_wave_expansion=self.plane_wave_expansion(layer_system, 0)[1]) return top_ff, bottom_ff def initial_intensity(self, layer_system): """Evaluate the incoming intensity of the initial field. Args: layer_system (smuthi.layers.LayerSystem): Stratified medium Returns: A smuthi.field_expansion.FarField object holding the initial intensity information. """ if np.cos(self.polar_angle) > 0: # bottom illumination ff = fldex.pwe_to_ff_conversion(vacuum_wavelength=self.vacuum_wavelength, plane_wave_expansion=self.plane_wave_expansion(layer_system, 0)[0]) else: # top illumination i_top = layer_system.number_of_layers() - 1 ff = fldex.pwe_to_ff_conversion(vacuum_wavelength=self.vacuum_wavelength, plane_wave_expansion=self.plane_wave_expansion(layer_system, i_top)[1]) return ff class PlaneWave(InitialPropagatingWave): """Class for the representation of a plane wave as initial field. Args: vacuum_wavelength (float): polar_angle (float): polar angle of k-vector (0 means, k is parallel to z-axis) azimuthal_angle (float): azimuthal angle of k-vector (0 means, k is in x-z plane) polarization (int): 0 for TE/s, 1 for TM/p amplitude (float or complex): Plane wave amplitude at reference point reference_point (list): Location where electric field of incoming wave equals amplitude """ def plane_wave_expansion(self, layer_system, i): """Plane wave expansion for the plane wave including its layer system response. As it already is a plane wave, the plane wave expansion is somehow trivial (containing only one partial wave, i.e., a discrete plane wave expansion). Args: layer_system (smuthi.layers.LayerSystem): Layer system object i (int): layer number in which the plane wave expansion is valid Returns: Tuple of smuthi.field_expansion.PlaneWaveExpansion objects. The first element is an upgoing PWE, whereas the second element is a downgoing PWE. """ if np.cos(self.polar_angle) > 0: iP = 0 kind = 'upgoing' else: iP = layer_system.number_of_layers() - 1 kind = 'downgoing' niP = layer_system.refractive_indices[iP] neff = np.sin([self.polar_angle]) * niP alpha = np.array([self.azimuthal_angle]) angular_frequency = coord.angular_frequency(self.vacuum_wavelength) k_iP = niP * angular_frequency k_Px = k_iP * np.sin(self.polar_angle) * np.cos(self.azimuthal_angle) k_Py = k_iP * np.sin(self.polar_angle) * np.sin(self.azimuthal_angle) k_Pz = k_iP * np.cos(self.polar_angle) z_iP = layer_system.reference_z(iP) amplitude_iP = self.amplitude * np.exp(-1j * (k_Px * self.reference_point[0] + k_Py * self.reference_point[1] + k_Pz * (self.reference_point[2] - z_iP))) loz = layer_system.lower_zlimit(iP) upz = layer_system.upper_zlimit(iP) pwe_exc = fldex.PlaneWaveExpansion(k=k_iP, k_parallel=neff*angular_frequency, azimuthal_angles=alpha, kind=kind, reference_point=[0, 0, z_iP], lower_z=loz, upper_z=upz) pwe_exc.coefficients[self.polarization, 0, 0] = amplitude_iP pwe_up, pwe_down = layer_system.response(pwe_exc, from_layer=iP, to_layer=i) if iP == i: if kind == 'upgoing': pwe_up = pwe_up + pwe_exc elif kind == 'downgoing': pwe_down = pwe_down + pwe_exc return pwe_up, pwe_down class DipoleSource(InitialField): """Class for the representation of a single point dipole source. Args: vacuum_wavelength (float): vacuum wavelength (length units) dipole_moment (list or tuple): (x, y, z)-coordinates of dipole moment vector position (list or tuple): (x, y, z)-coordinates of dipole position k_parallel (numpy.ndarray or str): In-plane wavenumber. If 'default', use smuthi.coordinates.default_k_parallel azimuthal_angles (numpy.ndarray or str): Azimuthal angles for plane wave expansions If 'default', use smuthi.coordinates.default_azimuthal_angles """ def __init__(self, vacuum_wavelength, dipole_moment, position, k_parallel='default', azimuthal_angles='default'): InitialField.__init__(self, vacuum_wavelength) self.dipole_moment = dipole_moment self.position = position self.k_parallel = k_parallel self.azimuthal_angles = azimuthal_angles def current(self): r"""The current density takes the form .. math:: \mathbf{j}(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}_D) \mathbf{j}_D, where :math:`\mathbf{j}_D = -j \omega \mathbf{\mu}`, :math:`\mathbf{r}_D` is the location of the dipole, :math:`\omega` is the angular frequency and :math:`\mathbf{\mu}` is the dipole moment. For further details, see 'Principles of nano optics' by Novotny and Hecht. Returns: List of [x, y, z]-components of current density vector :math:`\mathbf{j}_D` """ return [- 1j * self.angular_frequency() * self.dipole_moment[i] for i in range(3)] def outgoing_spherical_wave_expansion(self, layer_system): """The dipole field as an expansion in spherical vector wave functions. Args: layer_system (smuthi.layers.LayerSystem): stratified medium Returns: outgoing smuthi.field_expansion.SphericalWaveExpansion object """ laynum = layer_system.layer_number(self.position[2]) k = layer_system.refractive_indices[laynum] * self.angular_frequency() swe_out = fldex.SphericalWaveExpansion(k=k, l_max=1, m_max=1, kind='outgoing', reference_point=self.position, lower_z=layer_system.lower_zlimit(laynum), upper_z=layer_system.upper_zlimit(laynum)) l = 1 for tau in range(2): for m in range(-1, 2): ex, ey, ez = vwf.spherical_vector_wave_function(0, 0, 0, k, 1, tau, l, -m) b = 1j * k / np.pi * 1j * self.angular_frequency() * (ex * self.current()[0] + ey * self.current()[1] + ez * self.current()[2]) swe_out.coefficients[fldex.multi_to_single_index(tau, l, m, 1, 1)] = b return swe_out def spherical_wave_expansion(self, particle, layer_system): """Regular spherical wave expansion of the wave including layer system response, at the locations of the particles. Args: particle (smuthi.particles.Particle): particle relative to which the swe is computed layer_system (smuthi.layer.LayerSystem): stratified medium Returns: regular smuthi.field_expansion.SphericalWaveExpansion object """ virtual_particle = part.Particle(position=self.position, l_max=1, m_max=1) wd = pc.direct_coupling_block(vacuum_wavelength=self.vacuum_wavelength, receiving_particle=particle, emitting_particle=virtual_particle, layer_system=layer_system) wr = pc.layer_mediated_coupling_block(vacuum_wavelength=self.vacuum_wavelength, receiving_particle=particle, emitting_particle=virtual_particle, layer_system=layer_system, k_parallel=self.k_parallel) k = self.angular_frequency() * layer_system.refractive_indices[layer_system.layer_number(particle.position[2])] swe = fldex.SphericalWaveExpansion(k=k, l_max=particle.l_max, m_max=particle.m_max, kind='regular', reference_point=particle.position) swe.coefficients = np.dot(wd + wr, self.outgoing_spherical_wave_expansion(layer_system).coefficients) return swe def piecewise_field_expansion(self, layer_system, include_direct_field=True, include_layer_response=True): """Compute a piecewise field expansion of the dipole field. Args: layer_system (smuthi.layer.LayerSystem): stratified medium include_direct_field (bool): if True (default), the direct dipole field is included. otherwise, only the layer response of the dipole field is returned. include_layer_response (bool): if True (default), the layer response of the dipole field is included. otherwise, only the direct dipole field is returned. Returns: smuthi.field_expansion.PiecewiseWaveExpansion object """ pfe = fldex.PiecewiseFieldExpansion() if include_direct_field: pfe.expansion_list.append(self.outgoing_spherical_wave_expansion(layer_system)) if include_layer_response: for i in range(layer_system.number_of_layers()): # layer response as plane wave expansions pwe_up, pwe_down = fldex.swe_to_pwe_conversion(swe=self.outgoing_spherical_wave_expansion(layer_system), k_parallel=self.k_parallel, azimuthal_angles=self.azimuthal_angles, layer_system=layer_system, layer_number=i, layer_system_mediated=True) if i > 0: pfe.expansion_list.append(pwe_up) if i < layer_system.number_of_layers() - 1: pfe.expansion_list.append(pwe_down) return pfe def electric_field(self, x, y, z, layer_system, include_direct_field=True, include_layer_response=True): """Evaluate the complex electric field of the dipole source. Args: x (array like): Array of x-values where to evaluate the field (length unit) y (array like): Array of y-values where to evaluate the field (length unit) z (array like): Array of z-values where to evaluate the field (length unit) layer_system (smuthi.layer.LayerSystem): Stratified medium include_direct_field (bool): if True (default), the direct dipole field is included. otherwise, only the layer response of the dipole field is returned. include_layer_response (bool): if True (default), the layer response of the dipole field is included. otherwise, only the direct dipole field is returned. Returns Tuple (E_x, E_y, E_z) of electric field values """ pfe = self.piecewise_field_expansion(layer_system=layer_system, include_direct_field=include_direct_field, include_layer_response=include_layer_response) return pfe.electric_field(x, y, z) def dissipated_power_homogeneous_background(self, layer_system): r"""Compute the power that the dipole would radiate in an infinite homogeneous medium of the same refractive index as the layer that contains the dipole. .. math:: P_0 = \frac{|\mathbf{\mu}| k \omega^3}{12 \pi} Args: layer_system (smuthi.layers.LayerSystem): stratified medium Returns: power (float) """ laynum = layer_system.layer_number(self.position[2]) k = layer_system.refractive_indices[laynum] * self.angular_frequency() mu2 = abs(self.dipole_moment[0])**2 + abs(self.dipole_moment[1])**2 + abs(self.dipole_moment[2])**2 p = mu2 * k * self.angular_frequency()**3 / (12 * np.pi) return p def check_dissipated_power_homogeneous_background(self, layer_system): laynum = layer_system.layer_number(self.position[2]) e_x_in, e_y_in, e_z_in = self.electric_field(x=self.position[0]+10, y=self.position[1]+10, z=self.position[2]+10, layer_system=layer_system, include_direct_field=True) k = layer_system.refractive_indices[laynum] * self.angular_frequency() p = self.angular_frequency() / 2 * (np.conjugate(self.dipole_moment[0]) * (e_x_in) +
np.conjugate(self.dipole_moment[1])
numpy.conjugate
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data =
np.array([])
numpy.array
""" With the **track** module, you can create, import, edit, save, and export tracks. """ from pathlib import Path import numpy as np from PIL import Image import logging from line_track_designer.printer import Printer from line_track_designer.tile import Tile, Tiles from line_track_designer.error import LineTrackDesignerError from line_track_designer.markdown import Markdown class Track: """ Representation of a track. An instance of the **Track** class is composed of three fields: * **tiles**: array which contains the number of each tile of the track * **orient**: array which indicates the orientation of each tile * **name**: name of the track """ @staticmethod def read(file, name='track'): """ Read a text file representing a track and return the track associated. Args: file (str): filename name (str): name of the track Returns: Track: the track associated to the file Raises: LineTrackDesignerError: file not found LineTrackDesignerError: bad filename extension: requires .txt """ try: f = open(file, 'r') except IOError: raise LineTrackDesignerError('file {} not found'.format(file)) p = Path(file) if p.suffix != '.txt': raise LineTrackDesignerError( 'bad filename extension: requires .txt') lines = f.readlines() f.close() tiles, orient = [], [] for line in lines: line = line.strip('\n').split(' ') lt, lo = [], [] for i in line: t, o = i.split(';') lt.append(int(t)) lo.append(int(o)) tiles.append(lt) orient.append(lo) logging.info('Reading track: {}'.format(file)) return Track( np.array(tiles, dtype=int), np.array(orient, dtype=int), name) @staticmethod def zeros(nrow, ncol, name='track'): """ Create an empty track. Args: nrow (int): number of rows ncol (int): number of columns name (str): name of the track Returns: Track: empty track (only zeros) """ tiles = np.zeros((nrow, ncol), dtype=int) orient = np.zeros((nrow, ncol), dtype=int) return Track(tiles, orient, name) @staticmethod def max_shape(width, height): """ Return the maximum number of rows and columns of a track limited by a width and a height in mm. Args: width (int): width in mm height (int): height in mm Returns: tuple of int: number of rows and columns """ return width // Tile.SIDE, height // Tile.SIDE def __init__(self, tiles, orient, name='track'): """ Init a track. The arguments tiles and orient must be numpy arrays. For example: .. code-block:: python import numpy as np from line_track_designer.track import Track tiles = np.array([ [3, 2, 3], [2, 11, 2], [3, 2, 3] ]) orient = np.array([ [1, 1, 0], [0, 0, 0], [2, 1, 3] ]) track = Track(tiles, orient, 'my track') Args: tiles (numpy.array): array of tiles orient (numpy.array): array of orientations name (str): name of the track Raises: LineTrackDesignerError: tiles and orient must have the same shape LineTrackDesignerError: invalid values """ if (tiles.shape != orient.shape): raise LineTrackDesignerError( 'tiles and orient must have the same shape') nrow, ncol = tiles.shape for i in range(nrow): for j in range(ncol): t, o = tiles[i][j], orient[i][j] if t != 0 and not Tile.is_valid(t): raise LineTrackDesignerError( '{} is not a valid tile value'.format(t)) if not 0 <= o <= 3: raise LineTrackDesignerError( '{} is not a valid orient value'.format(o)) self._name = name self._tiles = tiles.copy() self._orient = orient.copy() logging.info('Track created') @property def tiles(self): """Get the array of tiles.""" return self._tiles @property def orient(self): """Get the array of orientations.""" return self._orient @property def name(self): """Get the name of the track.""" return self._name def __str__(self): """ Make the string format of the track. The tiles and orient matrix are superposed in one matrix. Each couple of values is separated by a semicolon. With the last example, we obtain: .. code-block:: text 3;1 2;1 3;0 2;0 11;0 2;0 3;2 2;1 3;3 """ lines = [] for line_t, line_o in zip(self.tiles, self.orient): line = ' '.join( ['{};{}'.format(t, o) for t, o in zip(line_t, line_o)]) lines.append(line) return '\n'.join(lines) def __repr__(self): """ Make the repr format of the track. It's the same than the string format. """ return str(self) def add_col(self): """ Add a column to the track. This column is filled with 0. """ new_col = np.zeros(self.tiles.shape[0], dtype=int) new_col = np.atleast_2d(new_col).T self._tiles =
np.hstack([self.tiles, new_col])
numpy.hstack
import numpy as np from sysopt import Signature, Block from sysopt.blocks import InputOutput # Variable # - name # - bounds[optional] # SIVariable(Variable) # - units # Signature # - states # - constraints # - inputs # - outputs # - parameters # Metadata # - states: List[Union[str, Variable]] # - constraints # - inputs # ----------------Test Fixtures--------------------- class BlockMock(Block): def __init__(self): super().__init__( Signature(inputs=2, outputs=2) ) def compute_outputs(self, t, x, z, inputs, parameters): return t * inputs def mock_block_factory(): sig = Signature(inputs=2, outputs=2) def g(t, u, _): return t * u return InputOutput(sig, g) def test_block_oop_api(): block = BlockMock() assert block.signature == Signature( inputs=2, outputs=2, parameters=0, states=0, constraints=0 ) assert len(block.inputs) == 2 assert len(block.outputs) == 2 def test_block_factory(): block = mock_block_factory() arg = np.array([1, 3], dtype=float) T = 2 truth =
np.array([2, 6], dtype=float)
numpy.array
import numpy as np import cv2 img = cv2.imread(r'C:\Users\Saptarshi\Pictures\cont1.jpg',1) #resize image img = cv2.resize(img,(300,400)) #convert image to grayscale grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #blurr image to smooth blurr = cv2.GaussianBlur(grey, (5,5),0) #finding edges edge = cv2.Canny(blurr, 0, 50) #apadtive threshold and canny gave similar final output #threshold = cv2.adaptiveThreshold(blurr ,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2) #find contours in thresholded image and sort them according to decreasing area _, contours, hierarchy = cv2.findContours(edge.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) contours = sorted(contours, key=cv2.contourArea, reverse= True) #contour approximation for i in contours: elip = cv2.arcLength(i, True) approx = cv2.approxPolyDP(i,0.08*elip, True) if len(approx) == 4 : doc = approx break #draw contours cv2.drawContours(img, [doc], -1, (0, 255, 0), 2) #reshape to avoid errors ahead doc=doc.reshape((4,2)) #create a new array and initialize new_doc = np.zeros((4,2), dtype="float32") Sum = doc.sum(axis = 1) new_doc[0] = doc[np.argmin(Sum)] new_doc[2] = doc[np.argmax(Sum)] Diff = np.diff(doc, axis=1) new_doc[1] = doc[np.argmin(Diff)] new_doc[3] = doc[np.argmax(Diff)] (tl,tr,br,bl) = new_doc #find distance between points and get max dist1 = np.linalg.norm(br-bl) dist2 =
np.linalg.norm(tr-tl)
numpy.linalg.norm
import numpy as np from numpy.random import rand import matplotlib.pyplot as plt from scipy.interpolate import griddata import glob as glob import pandas as pd import json from scipy.interpolate import interp1d from scipy import interp from PIL import Image from PIL import ImageFont from PIL import ImageDraw from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from skimage import exposure,img_as_ubyte from moviepy.editor import VideoClip from moviepy.editor import ImageSequenceClip from skimage import color import datetime import time import argparse import os import h5py def read_files(args): '''read in, sort by time and output numpy arrays containing each image frame in the simulation''' #check if hdf5 file exists for fname in os.listdir(args.fName): if fname.endswith('h5'): if fname == 'dsetf.h5': print('h5 file found') hf = h5py.File(args.fName+'/'+fname) fN = pd.DataFrame(list(hf.keys())) print(len(list(hf.keys()))) # dfN = pd.DataFrame(glob.glob(args.fName+'/defect*.dat')) params = np.loadtxt('params.txt') # print(fN) fN['time'] = fN[0].str.extract(r'(\d*\.?\d*)\.dat').astype('float') fN.sort_values(by=['time'],inplace=True) # dfN['time'] = dfN[0].str.extract(r'(\d*\.?\d*)\.dat').astype('float') # dfN.sort_values(by=['time'],inplace=True) #Sort fileNames by number imSeq = [np.array(hf.get(f)) for f in fN[0]] break # dimSeq = [np.loadtxt(f) for f in dfN[0]] else: fileNames = glob.glob(args.fName+'/out*.dat') # dfileNames = glob.glob(args.fName+'/defect*.dat') fN = pd.DataFrame(fileNames) fN['time'] = fN[0].str.extract(r'(\d*\.?\d*)\.dat').astype('float') fN.sort_values(by=['time'],inplace=True) # dfN = pd.DataFrame(dfileNames) # dfN['time'] = dfN[0].str.extract(r'(\d*\.?\d*)\.dat').astype('float') # dfN.sort_values(by=['time'],inplace=True) #Sort fileNames by number imSeq = [np.loadtxt(f) for f in fN[0]] # dimSeq = [np.loadtxt(f) for f in dfN[0]] # return [imSeq,dimSeq] return [imSeq, fN] parser = argparse.ArgumentParser(description='Make some movies') parser.add_argument('fName',type=str,help='directory name for data') args = parser.parse_args() imSeq, fN = read_files(args) fps=24 secondsPframe_in = fN['time'].diff().mean() fps_in = secondsPframe_in**-1 params =
np.loadtxt('param.txt')
numpy.loadtxt
import pandas as pd class DataSet(): ''' Maintains a data set given simple arrays or lists of values, and provides basic statistics, including covariance and correlation matrices. ''' def __init__(self, data, labels=None): ''' Class constructor Args: data - 2 dimensional Python array (list). List of lists of values. labels - list of column headings. Optional. Returns: dictionary of the data set in the form of {column-name: [values]} Exceptions: ValueError if input is invalid ''' # Validate user input. Should be list of at least 2 lists. try: if len(data) == 1: raise ValueError('Input should be two dimensional list') except TypeError: raise ValueError('Input should be two dimensional list') first_length = len(data[0]) for array in data[1:]: if len(array) != first_length: raise ValueError('Input arrays should be of same length') # If labels None, create labels of list form Columni if labels == None: labels = ['Column' + str(n) for n in range(len(data))] # Populate dictionary of data lists by column name self.data_set = {} for i in range(len(data)): self.data_set[labels[i]] = data[i] ####### Private helper functions def __mvs(self, data): ''' Calculate mean, variance, and standard deviation for an array. Args: data - an 'array' (list) of values Returns: dictionary with mean, variation, and standard deviation ''' # size of array and mean n = len(data) mean = sum(data) / n # variance and standard deviation sq_differences = [(value - mean)**2 for value in data] variance = sum(sq_differences) / (n - 1) std = variance ** 0.5 # package up the results statistics = {'mean': mean, 'variance': variance, 'standard_deviation': std} return statistics def __covar(self, colA, colB): ''' Calculate covariance for two arrays. Args: ColA - an 'array' (list) of values ColB - an 'array' (list) of values Returns: Covariance ''' assert len(colA) == len(colB), \ f'Arrays are of unequal length ({len(colA), len(colB)}' meanA = self.__mvs(colA)['mean'] meanB = self.__mvs(colB)['mean'] prod = [(colA[x] - meanA) * (colB[x] - meanB) for x in range(len(colA))] return sum(prod) / (len(colA) - 1) def __r(self, colA, colB): ''' Calculate correlation coefficient for two arrays. Args: ColA - an 'array' (list) of values ColB - an 'array' (list) of values Returns: Correlation coefficient ''' assert len(colA) == len(colB), \ f'Arrays are of unequal length ({len(colA), len(colB)}' covar = self.__covar(colA, colB) stdA = self.__mvs(colA)['standard_deviation'] stdB = self.__mvs(colB)['standard_deviation'] return covar / (stdA * stdB) ####### Public functions def get_dataframe(self): ''' Returns the data set as a Pandas DataFrame ''' return pd.DataFrame(self.data_set) def statistics(self): ''' Gets basic staistics for the data set. Returns as a Pandas DataFrame ''' self.stats = {} for column in self.data_set.keys(): self.stats[column] = self.__mvs(self.data_set[column]) return pd.DataFrame(self.stats).T def covariance(self): ''' Calculates variances/covariances between arrays. Returns variance/covariance matrix as Pandas Dataframe ''' # calculate covariance/variation of each permutation of the two arrays # building the matrix self.cov_matrix = [] for i in self.data_set.values(): row = [] for j in self.data_set.values(): # Find covariance row.append(self.__covar(i, j)) self.cov_matrix.append(row) labels = self.data_set.keys() return pd.DataFrame(self.cov_matrix, columns=labels, index=labels) def correlation(self): ''' Calculates correlation between arrays. Returns correlation matrix as Pandas Dataframe ''' # calculate correlations of each permutation of the two arrays, building # the matrix self.cor_matrix = [] for i in self.data_set.values(): row = [] for j in self.data_set.values(): # Find r (pearson's correlation) row.append(self.__r(i, j)) self.cor_matrix.append(row) labels = self.data_set.keys() return pd.DataFrame(self.cor_matrix, columns=labels, index=labels) if __name__ == '__main__': # Very quick unit tests to see if all the functions run and compare # outputs with the equivalent numpy functions from IPython.display import display import numpy as np # Some toy data sales = [3505, 2400, 3027, 2798, 3700, 3250, 2689] customers = [127, 80, 105, 92, 120, 115, 93] # Instantiate data = DataSet([sales, customers], ['sales', 'customers']) #data = DataSet([sales, customers]) # Test case 1 -- Try getting dataframe print('Get dataframe') display(data.get_dataframe()) # Test case 2 -- And basic statistics print('\nGet descriptive statistics') display(data.statistics()) # Test results against numpy equivalents. Print any discrepancies. passes = True for col in data.stats.keys(): if data.stats[col]['mean'] != np.mean(data.data_set[col]): passes = False print(f'\'{col}\': means different\n') print(f'Output: {data.stats[col]["mean"]}') print(f'Actual: {
np.mean(data.data_set[col])
numpy.mean
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from perlin import generate_perlin def gaussian_2d_fast(size, amp, mu_x, mu_y, sigma): x = np.arange(0, 1, 1/size[0]) y = np.arange(0, 1, 1/size[1]) xs, ys = np.meshgrid(x,y) dxs = np.minimum(np.abs(xs-mu_x), 1-np.abs(xs-mu_x)) dys = np.minimum(np.abs(ys-mu_y), 1-np.abs(ys-mu_y)) heat_map = amp*np.exp(-(dxs**2+dys**2)/(2*sigma**2)) return heat_map def excitability_matrix(sigma_e, sigma_i, perlin_scale, grid_offset, p_e=0.05, p_i=0.05, we=0.22, g=4, n_row_e=120, n_row_i=60, mu_gwn=0, multiple_connections=True, expected_connectivity=True, is_plot=True): n_pop_e = n_row_e**2 n_pop_i = n_row_i**2 gL = 25 * 1e-9 # Siemens p_max_e = p_e / (2 * np.pi * sigma_e**2) p_max_i = p_i / (2 * np.pi * sigma_i**2) # Two landscapes: e and i. The contribution of each neuron is stored separately in the n_row_e**2 matrices e_landscape = np.zeros((n_row_e**2, n_row_e, n_row_e)) i_landscape = np.zeros((n_row_i**2, n_row_e, n_row_e)) perlin = generate_perlin(n_row_e, perlin_scale, seed_value=0) x = np.arange(0,1,1/n_row_e) y = np.arange(0,1,1/n_row_e) X, Y = np.meshgrid(x,y) U = np.cos(perlin) V = np.sin(perlin) # Excitatory mu_xs = np.arange(0,1,1/n_row_e) mu_ys = np.arange(0,1,1/n_row_e) counter = 0 for i, mu_x in enumerate(mu_xs): for j, mu_y in enumerate(mu_ys): x_offset = grid_offset / n_row_e * np.cos(perlin[i,j]) y_offset = grid_offset / n_row_e * np.sin(perlin[i,j]) mh = gaussian_2d_fast((n_row_e, n_row_e), p_max_e, mu_x+x_offset, mu_y+y_offset, sigma_e) if not multiple_connections: #clip probabilities at 1 e_landscape[counter] = np.minimum(mh, np.ones(mh.shape)) else: e_landscape[counter] = mh counter += 1 # Inhibitory mu_xs = np.arange(1/n_row_e,1+1/n_row_e,1/n_row_i) mu_ys = np.arange(1/n_row_e,1+1/n_row_e,1/n_row_i) counter = 0 for mu_x in mu_xs: for mu_y in mu_ys: mh = gaussian_2d_fast((n_row_e, n_row_e), p_max_i, mu_x, mu_y, sigma_i) if not multiple_connections: #clip probabilities at 1 i_landscape[counter] = np.minimum(mh, np.ones(mh.shape)) else: i_landscape[counter] = mh counter += 1 # in total there should be n_pop_e * (n_pop_e * p_max_e) = 10 368 000 e-connections # and n_pop_i * (n_pop_e * 0.05) = 2 592 000 i-connections num_e_connections = np.sum(e_landscape) num_i_connections = np.sum(i_landscape) if multiple_connections: e_calibration = 1 i_calibration = 1 else: e_calibration = n_pop_e * n_pop_e * p_e / num_e_connections i_calibration = n_pop_i * n_pop_e * p_i / num_i_connections print('e_calibration is ', e_calibration) print('i_calibration is ', i_calibration) if expected_connectivity: # calculate expected number of connections e_landscape = n_row_e**2*np.mean(e_landscape, axis=0) i_landscape = n_row_i**2*np.mean(i_landscape, axis=0) else: # we sample sample_e_landscape = np.zeros((n_row_e, n_row_e)) for i in range(n_row_e): for j in range(n_row_e): neuron = e_landscape[:, i, j] random_numbers = np.random.random(n_row_e**2) num_connected = len(np.where(random_numbers<neuron)[0]) sample_e_landscape[i, j] = num_connected sample_i_landscape = np.zeros((n_row_e, n_row_e)) for i in range(n_row_e): for j in range(n_row_e): neuron = i_landscape[:, i, j] random_numbers = np.random.random(n_row_i**2) num_connected = len(np.where(random_numbers<neuron)[0]) sample_i_landscape[i, j] = num_connected e_landscape = sample_e_landscape i_landscape = sample_i_landscape # Now we fill a landscape with physical units (mV) rest_pot = -70 # mV thres_pot = -55 # mV ext_pot = mu_gwn / gL * 1e3 #mV no_activity_pot = rest_pot + ext_pot # -56 mV when mu_gwn = 350 pA landscape = no_activity_pot * np.ones((n_row_e, n_row_e)) # Synapse strengths we = we * e_calibration #mV wi = -g * we * i_calibration / e_calibration #mV landscape += we * e_landscape landscape += wi * i_landscape # scale X and Y quiver according to values in ei_landscape. first normalize landscape norm_landscape = np.copy(landscape) norm_landscape -= np.amin(norm_landscape) norm_landscape /= np.amax(norm_landscape) U = 0.5*np.multiply(U, norm_landscape) V = 0.5*
np.multiply(V, norm_landscape)
numpy.multiply
import os import copy import numpy as np from itertools import groupby from .utils_def import totim_to_datetime from . import import_optional_dependency class ZoneBudget: """ ZoneBudget class Parameters ---------- cbc_file : str or CellBudgetFile object The file name or CellBudgetFile object for which budgets will be computed. z : ndarray The array containing to zones to be used. kstpkper : tuple of ints A tuple containing the time step and stress period (kstp, kper). The kstp and kper values are zero based. totim : float The simulation time. aliases : dict A dictionary with key, value pairs of zones and aliases. Replaces the corresponding record and field names with the aliases provided. When using this option in conjunction with a list of zones, the zone(s) passed may either be all strings (aliases), all integers, or mixed. Returns ------- None Examples -------- >>> from flopy.utils.zonbud import ZoneBudget >>> zon = ZoneBudget.read_zone_file('zone_input_file') >>> zb = ZoneBudget('zonebudtest.cbc', zon, kstpkper=(0, 0)) >>> zb.to_csv('zonebudtest.csv') >>> zb_mgd = zb * 7.48052 / 1000000 """ def __init__( self, cbc_file, z, kstpkper=None, totim=None, aliases=None, verbose=False, **kwargs, ): from .binaryfile import CellBudgetFile if isinstance(cbc_file, CellBudgetFile): self.cbc = cbc_file elif isinstance(cbc_file, str) and os.path.isfile(cbc_file): self.cbc = CellBudgetFile(cbc_file) else: raise Exception(f"Cannot load cell budget file: {cbc_file}.") if isinstance(z, np.ndarray): assert np.issubdtype( z.dtype, np.integer ), "Zones dtype must be integer" else: e = ( "Please pass zones as a numpy ndarray of (positive)" " integers. {}".format(z.dtype) ) raise Exception(e) # Check for negative zone values if np.any(z < 0): raise Exception( "Negative zone value(s) found:", np.unique(z[z < 0]) ) self.dis = None if "model" in kwargs.keys(): self.model = kwargs.pop("model") self.dis = self.model.dis if "dis" in kwargs.keys(): self.dis = kwargs.pop("dis") if len(kwargs.keys()) > 0: args = ",".join(kwargs.keys()) raise Exception(f"LayerFile error: unrecognized kwargs: {args}") # Check the shape of the cbc budget file arrays self.cbc_shape = self.cbc.get_data(idx=0, full3D=True)[0].shape self.nlay, self.nrow, self.ncol = self.cbc_shape self.cbc_times = self.cbc.get_times() self.cbc_kstpkper = self.cbc.get_kstpkper() self.kstpkper = None self.totim = None if kstpkper is not None: if isinstance(kstpkper, tuple): kstpkper = [kstpkper] for kk in kstpkper: s = f"The specified time step/stress period does not exist {kk}" assert kk in self.cbc.get_kstpkper(), s self.kstpkper = kstpkper elif totim is not None: if isinstance(totim, float): totim = [totim] elif isinstance(totim, int): totim = [float(totim)] for t in totim: s = f"The specified simulation time does not exist {t}" assert t in self.cbc.get_times(), s self.totim = totim else: # No time step/stress period or simulation time pass self.kstpkper = self.cbc.get_kstpkper() # Set float and integer types self.float_type = np.float32 self.int_type = np.int32 # Check dimensions of input zone array s = ( "Row/col dimensions of zone array {}" " do not match model row/col dimensions {}".format( z.shape, self.cbc_shape ) ) assert z.shape[-2] == self.nrow and z.shape[-1] == self.ncol, s if z.shape == self.cbc_shape: izone = z.copy() elif len(z.shape) == 2: izone = np.zeros(self.cbc_shape, self.int_type) izone[:] = z[:, :] elif len(z.shape) == 3 and z.shape[0] == 1: izone = np.zeros(self.cbc_shape, self.int_type) izone[:] = z[0, :, :] else: e = f"Shape of the zone array is not recognized: {z.shape}" raise Exception(e) self.izone = izone self.allzones = np.unique(izone) self._zonenamedict = {z: f"ZONE_{z}" for z in self.allzones} if aliases is not None: s = ( "Input aliases not recognized. Please pass a dictionary " "with key,value pairs of zone/alias." ) assert isinstance(aliases, dict), s # Replace the relevant field names (ignore zone 0) seen = [] for z, a in iter(aliases.items()): if z != 0 and z in self._zonenamedict.keys(): if z in seen: raise Exception( "Zones may not have more than 1 alias." ) self._zonenamedict[z] = "_".join(a.split()) seen.append(z) # self._iflow_recnames = self._get_internal_flow_record_names() # All record names in the cell-by-cell budget binary file self.record_names = [ n.strip() for n in self.cbc.get_unique_record_names(decode=True) ] # Get imeth for each record in the CellBudgetFile record list self.imeth = {} for record in self.cbc.recordarray: self.imeth[record["text"].strip().decode("utf-8")] = record[ "imeth" ] # INTERNAL FLOW TERMS ARE USED TO CALCULATE FLOW BETWEEN ZONES. # CONSTANT-HEAD TERMS ARE USED TO IDENTIFY WHERE CONSTANT-HEAD CELLS # ARE AND THEN USE FACE FLOWS TO DETERMINE THE AMOUNT OF FLOW. # SWIADDTO--- terms are used by the SWI2 groundwater flow process. internal_flow_terms = [ "CONSTANT HEAD", "FLOW RIGHT FACE", "FLOW FRONT FACE", "FLOW LOWER FACE", "SWIADDTOCH", "SWIADDTOFRF", "SWIADDTOFFF", "SWIADDTOFLF", ] # Source/sink/storage term record names # These are all of the terms that are not related to constant # head cells or face flow terms self.ssst_record_names = [ n for n in self.record_names if n not in internal_flow_terms ] # Initialize budget recordarray array_list = [] if self.kstpkper is not None: for kk in self.kstpkper: recordarray = self._initialize_budget_recordarray( kstpkper=kk, totim=None ) array_list.append(recordarray) elif self.totim is not None: for t in self.totim: recordarray = self._initialize_budget_recordarray( kstpkper=None, totim=t ) array_list.append(recordarray) self._budget = np.concatenate(array_list, axis=0) # Update budget record array if self.kstpkper is not None: for kk in self.kstpkper: if verbose: s = ( "Computing the budget for" " time step {} in stress period {}".format( kk[0] + 1, kk[1] + 1 ) ) print(s) self._compute_budget(kstpkper=kk) elif self.totim is not None: for t in self.totim: if verbose: s = f"Computing the budget for time {t}" print(s) self._compute_budget(totim=t) def _compute_budget(self, kstpkper=None, totim=None): """ Creates a budget for the specified zone array. This function only supports the use of a single time step/stress period or time. Parameters ---------- kstpkper : tuple Tuple of kstp and kper to compute budget for (default is None). totim : float Totim to compute budget for (default is None). Returns ------- None """ # Initialize an array to track where the constant head cells # are located. ich = np.zeros(self.cbc_shape, self.int_type) swiich = np.zeros(self.cbc_shape, self.int_type) if "CONSTANT HEAD" in self.record_names: """ C-----CONSTANT-HEAD FLOW -- DON'T ACCUMULATE THE CELL-BY-CELL VALUES FOR C-----CONSTANT-HEAD FLOW BECAUSE THEY MAY INCLUDE PARTIALLY CANCELING C-----INS AND OUTS. USE CONSTANT-HEAD TERM TO IDENTIFY WHERE CONSTANT- C-----HEAD CELLS ARE AND THEN USE FACE FLOWS TO DETERMINE THE AMOUNT OF C-----FLOW. STORE CONSTANT-HEAD LOCATIONS IN ICH ARRAY. """ chd = self.cbc.get_data( text="CONSTANT HEAD", full3D=True, kstpkper=kstpkper, totim=totim, )[0] ich[np.ma.where(chd != 0.0)] = 1 if "FLOW RIGHT FACE" in self.record_names: self._accumulate_flow_frf("FLOW RIGHT FACE", ich, kstpkper, totim) if "FLOW FRONT FACE" in self.record_names: self._accumulate_flow_fff("FLOW FRONT FACE", ich, kstpkper, totim) if "FLOW LOWER FACE" in self.record_names: self._accumulate_flow_flf("FLOW LOWER FACE", ich, kstpkper, totim) if "SWIADDTOCH" in self.record_names: swichd = self.cbc.get_data( text="SWIADDTOCH", full3D=True, kstpkper=kstpkper, totim=totim )[0] swiich[swichd != 0] = 1 if "SWIADDTOFRF" in self.record_names: self._accumulate_flow_frf("SWIADDTOFRF", swiich, kstpkper, totim) if "SWIADDTOFFF" in self.record_names: self._accumulate_flow_fff("SWIADDTOFFF", swiich, kstpkper, totim) if "SWIADDTOFLF" in self.record_names: self._accumulate_flow_flf("SWIADDTOFLF", swiich, kstpkper, totim) # NOT AN INTERNAL FLOW TERM, SO MUST BE A SOURCE TERM OR STORAGE # ACCUMULATE THE FLOW BY ZONE # iterate over remaining items in the list for recname in self.ssst_record_names: self._accumulate_flow_ssst(recname, kstpkper, totim) # Compute mass balance terms self._compute_mass_balance(kstpkper, totim) return def _add_empty_record( self, recordarray, recname, kstpkper=None, totim=None ): """ Build an empty records based on the specified flow direction and record name for the given list of zones. Parameters ---------- recordarray : recname : kstpkper : tuple Tuple of kstp and kper to compute budget for (default is None). totim : float Totim to compute budget for (default is None). Returns ------- recordarray : np.recarray """ if kstpkper is not None: if len(self.cbc_times) > 0: totim = self.cbc_times[self.cbc_kstpkper.index(kstpkper)] else: totim = 0.0 elif totim is not None: if len(self.cbc_times) > 0: kstpkper = self.cbc_kstpkper[self.cbc_times.index(totim)] else: kstpkper = (0, 0) row = [totim, kstpkper[0], kstpkper[1], recname] row += [0.0 for _ in self._zonenamedict.values()] recs = np.array(tuple(row), dtype=recordarray.dtype) recordarray = np.append(recordarray, recs) return recordarray def _initialize_budget_recordarray(self, kstpkper=None, totim=None): """ Initialize the budget record array which will store all of the fluxes in the cell-budget file. Parameters ---------- kstpkper : tuple Tuple of kstp and kper to compute budget for (default is None). totim : float Totim to compute budget for (default is None). Returns ------- """ # Create empty array for the budget terms. dtype_list = [ ("totim", "<f4"), ("time_step", "<i4"), ("stress_period", "<i4"), ("name", (str, 50)), ] dtype_list += [ (n, self.float_type) for n in self._zonenamedict.values() ] dtype = np.dtype(dtype_list) recordarray = np.array([], dtype=dtype) # Add "from" records if "STORAGE" in self.record_names: recordarray = self._add_empty_record( recordarray, "FROM_STORAGE", kstpkper, totim ) if "CONSTANT HEAD" in self.record_names: recordarray = self._add_empty_record( recordarray, "FROM_CONSTANT_HEAD", kstpkper, totim ) for recname in self.ssst_record_names: if recname != "STORAGE": recordarray = self._add_empty_record( recordarray, "FROM_" + "_".join(recname.split()), kstpkper, totim, ) for z, n in self._zonenamedict.items(): if z == 0 and 0 not in self.allzones: continue else: recordarray = self._add_empty_record( recordarray, "FROM_" + "_".join(n.split()), kstpkper, totim ) recordarray = self._add_empty_record( recordarray, "TOTAL_IN", kstpkper, totim ) # Add "out" records if "STORAGE" in self.record_names: recordarray = self._add_empty_record( recordarray, "TO_STORAGE", kstpkper, totim ) if "CONSTANT HEAD" in self.record_names: recordarray = self._add_empty_record( recordarray, "TO_CONSTANT_HEAD", kstpkper, totim ) for recname in self.ssst_record_names: if recname != "STORAGE": recordarray = self._add_empty_record( recordarray, "TO_" + "_".join(recname.split()), kstpkper, totim, ) for z, n in self._zonenamedict.items(): if z == 0 and 0 not in self.allzones: continue else: recordarray = self._add_empty_record( recordarray, "TO_" + "_".join(n.split()), kstpkper, totim ) recordarray = self._add_empty_record( recordarray, "TOTAL_OUT", kstpkper, totim ) recordarray = self._add_empty_record( recordarray, "IN-OUT", kstpkper, totim ) recordarray = self._add_empty_record( recordarray, "PERCENT_DISCREPANCY", kstpkper, totim ) return recordarray @staticmethod def _filter_circular_flow(fz, tz, f): """ Parameters ---------- fz tz f Returns ------- """ e = np.equal(fz, tz) fz = fz[np.logical_not(e)] tz = tz[np.logical_not(e)] f = f[np.logical_not(e)] return fz, tz, f def _update_budget_fromfaceflow( self, fz, tz, f, kstpkper=None, totim=None ): """ Parameters ---------- fz tz f kstpkper totim Returns ------- """ # No circular flow within zones fz, tz, f = self._filter_circular_flow(fz, tz, f) if len(f) == 0: return # Inflows idx = tz != 0 fzi = fz[idx] tzi = tz[idx] rownames = ["FROM_" + self._zonenamedict[z] for z in fzi] colnames = [self._zonenamedict[z] for z in tzi] fluxes = f[idx] self._update_budget_recordarray( rownames, colnames, fluxes, kstpkper, totim ) # Outflows idx = fz != 0 fzi = fz[idx] tzi = tz[idx] rownames = ["TO_" + self._zonenamedict[z] for z in tzi] colnames = [self._zonenamedict[z] for z in fzi] fluxes = f[idx] self._update_budget_recordarray( rownames, colnames, fluxes, kstpkper, totim ) return def _update_budget_fromssst(self, fz, tz, f, kstpkper=None, totim=None): """ Parameters ---------- fz tz f kstpkper totim Returns ------- """ if len(f) == 0: return self._update_budget_recordarray(fz, tz, f, kstpkper, totim) return def _update_budget_recordarray( self, rownames, colnames, fluxes, kstpkper=None, totim=None ): """ Update the budget record array with the flux for the specified flow direction (in/out), record name, and column. Parameters ---------- rownames colnames fluxes kstpkper totim Returns ------- None """ try: if kstpkper is not None: for rn, cn, flux in zip(rownames, colnames, fluxes): rowidx = np.where( (self._budget["time_step"] == kstpkper[0]) & (self._budget["stress_period"] == kstpkper[1]) & (self._budget["name"] == rn) ) self._budget[cn][rowidx] += flux elif totim is not None: for rn, cn, flux in zip(rownames, colnames, fluxes): rowidx = np.where( (self._budget["totim"] == totim) & (self._budget["name"] == rn) ) self._budget[cn][rowidx] += flux except Exception as e: print(e) raise return def _accumulate_flow_frf(self, recname, ich, kstpkper, totim): """ Parameters ---------- recname ich kstpkper totim Returns ------- """ try: if self.ncol >= 2: data = self.cbc.get_data( text=recname, kstpkper=kstpkper, totim=totim )[0] # "FLOW RIGHT FACE" COMPUTE FLOW BETWEEN ZONES ACROSS COLUMNS. # COMPUTE FLOW ONLY BETWEEN A ZONE AND A HIGHER ZONE -- FLOW FROM # ZONE 4 TO 3 IS THE NEGATIVE OF FLOW FROM 3 TO 4. # 1ST, CALCULATE FLOW BETWEEN NODE J,I,K AND J-1,I,K k, i, j = np.where( self.izone[:, :, 1:] > self.izone[:, :, :-1] ) # Adjust column values to account for the starting position of "nz" j += 1 # Define the zone to which flow is going nz = self.izone[k, i, j] # Define the zone from which flow is coming jl = j - 1 nzl = self.izone[k, i, jl] # Get the face flow q = data[k, i, jl] # Get indices where flow face values are positive (flow out of higher zone) # Don't include CH to CH flow (can occur if CHTOCH option is used) # Create an iterable tuple of (from zone, to zone, flux) # Then group tuple by (from_zone, to_zone) and sum the flux values idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, i, jl] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nzl[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # Get indices where flow face values are negative (flow into higher zone) # Don't include CH to CH flow (can occur if CHTOCH option is used) # Create an iterable tuple of (from zone, to zone, flux) # Then group tuple by (from_zone, to_zone) and sum the flux values idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, i, jl] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nzl[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # FLOW BETWEEN NODE J,I,K AND J+1,I,K k, i, j = np.where( self.izone[:, :, :-1] > self.izone[:, :, 1:] ) # Define the zone from which flow is coming nz = self.izone[k, i, j] # Define the zone to which flow is going jr = j + 1 nzr = self.izone[k, i, jr] # Get the face flow q = data[k, i, j] # Get indices where flow face values are positive (flow out of higher zone) # Don't include CH to CH flow (can occur if CHTOCH option is used) # Create an iterable tuple of (from zone, to zone, flux) # Then group tuple by (from_zone, to_zone) and sum the flux values idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, i, jr] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nzr[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # Get indices where flow face values are negative (flow into higher zone) # Don't include CH to CH flow (can occur if CHTOCH option is used) # Create an iterable tuple of (from zone, to zone, flux) # Then group tuple by (from_zone, to_zone) and sum the flux values idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, i, jr] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nzr[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW TO CONSTANT-HEAD CELLS IN THIS DIRECTION k, i, j = np.where(ich == 1) k, i, j = k[j > 0], i[j > 0], j[j > 0] jl = j - 1 nzl = self.izone[k, i, jl] nz = self.izone[k, i, j] q = data[k, i, jl] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, i, jl] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzl[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, i, jl] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzl[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi[tzi != 0]] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) k, i, j = np.where(ich == 1) k, i, j = ( k[j < self.ncol - 1], i[j < self.ncol - 1], j[j < self.ncol - 1], ) nz = self.izone[k, i, j] jr = j + 1 nzr = self.izone[k, i, jr] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, i, jr] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzr[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, i, jr] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzr[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) except Exception as e: print(e) raise return def _accumulate_flow_fff(self, recname, ich, kstpkper, totim): """ Parameters ---------- recname ich kstpkper totim Returns ------- """ try: if self.nrow >= 2: data = self.cbc.get_data( text=recname, kstpkper=kstpkper, totim=totim )[0] # "FLOW FRONT FACE" # CALCULATE FLOW BETWEEN NODE J,I,K AND J,I-1,K k, i, j = np.where( self.izone[:, 1:, :] < self.izone[:, :-1, :] ) i += 1 ia = i - 1 nza = self.izone[k, ia, j] nz = self.izone[k, i, j] q = data[k, ia, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, ia, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nza[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, ia, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nza[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW BETWEEN NODE J,I,K AND J,I+1,K. k, i, j = np.where( self.izone[:, :-1, :] < self.izone[:, 1:, :] ) nz = self.izone[k, i, j] ib = i + 1 nzb = self.izone[k, ib, j] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, ib, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nzb[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, ib, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW TO CONSTANT-HEAD CELLS IN THIS DIRECTION k, i, j = np.where(ich == 1) k, i, j = k[i > 0], i[i > 0], j[i > 0] ia = i - 1 nza = self.izone[k, ia, j] nz = self.izone[k, i, j] q = data[k, ia, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, ia, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nza[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, ia, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nza[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) k, i, j = np.where(ich == 1) k, i, j = ( k[i < self.nrow - 1], i[i < self.nrow - 1], j[i < self.nrow - 1], ) nz = self.izone[k, i, j] ib = i + 1 nzb = self.izone[k, ib, j] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[k, ib, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[k, ib, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) except Exception as e: print(e) raise return def _accumulate_flow_flf(self, recname, ich, kstpkper, totim): """ Parameters ---------- recname ich kstpkper totim Returns ------- """ try: if self.nlay >= 2: data = self.cbc.get_data( text=recname, kstpkper=kstpkper, totim=totim )[0] # "FLOW LOWER FACE" # CALCULATE FLOW BETWEEN NODE J,I,K AND J,I,K-1 k, i, j = np.where( self.izone[1:, :, :] < self.izone[:-1, :, :] ) k += 1 ka = k - 1 nza = self.izone[ka, i, j] nz = self.izone[k, i, j] q = data[ka, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[ka, i, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nza[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[ka, i, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nza[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW BETWEEN NODE J,I,K AND J,I,K+1 k, i, j = np.where( self.izone[:-1, :, :] < self.izone[1:, :, :] ) nz = self.izone[k, i, j] kb = k + 1 nzb = self.izone[kb, i, j] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[kb, i, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nz[idx], nzb[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[kb, i, j] != 1)) ) fzi, tzi, fi = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) self._update_budget_fromfaceflow( fzi, tzi, np.abs(fi), kstpkper, totim ) # CALCULATE FLOW TO CONSTANT-HEAD CELLS IN THIS DIRECTION k, i, j = np.where(ich == 1) k, i, j = k[k > 0], i[k > 0], j[k > 0] ka = k - 1 nza = self.izone[ka, i, j] nz = self.izone[k, i, j] q = data[ka, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[ka, i, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nza[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[ka, i, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nza[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) k, i, j = np.where(ich == 1) k, i, j = ( k[k < self.nlay - 1], i[k < self.nlay - 1], j[k < self.nlay - 1], ) nz = self.izone[k, i, j] kb = k + 1 nzb = self.izone[kb, i, j] q = data[k, i, j] idx = np.where( (q > 0) & ((ich[k, i, j] != 1) | (ich[kb, i, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) fz = ["FROM_CONSTANT_HEAD"] * len(tzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) idx = np.where( (q < 0) & ((ich[k, i, j] != 1) | (ich[kb, i, j] != 1)) ) fzi, tzi, f = sum_flux_tuples(nzb[idx], nz[idx], q[idx]) fz = ["TO_CONSTANT_HEAD"] * len(fzi) tz = [self._zonenamedict[z] for z in tzi] self._update_budget_fromssst( fz, tz, np.abs(f), kstpkper, totim ) except Exception as e: print(e) raise return def _accumulate_flow_ssst(self, recname, kstpkper, totim): # NOT AN INTERNAL FLOW TERM, SO MUST BE A SOURCE TERM OR STORAGE # ACCUMULATE THE FLOW BY ZONE imeth = self.imeth[recname] data = self.cbc.get_data(text=recname, kstpkper=kstpkper, totim=totim) if len(data) == 0: # Empty data, can occur during the first time step of a transient # model when storage terms are zero and not in the cell-budget # file. return else: data = data[0] if imeth == 2 or imeth == 5: # LIST qin = np.ma.zeros( (self.nlay * self.nrow * self.ncol), self.float_type ) qout = np.ma.zeros( (self.nlay * self.nrow * self.ncol), self.float_type ) for [node, q] in zip(data["node"], data["q"]): idx = node - 1 if q > 0: qin.data[idx] += q elif q < 0: qout.data[idx] += q qin = np.ma.reshape(qin, (self.nlay, self.nrow, self.ncol)) qout = np.ma.reshape(qout, (self.nlay, self.nrow, self.ncol)) elif imeth == 0 or imeth == 1: # FULL 3-D ARRAY qin =
np.ma.zeros(self.cbc_shape, self.float_type)
numpy.ma.zeros
import pickle import numpy as np def fetch_file(path): with open(path, 'rb') as fp: return pickle.load(fp) def fetch_adj_mat(column): if column == 0: return A1 elif column == 1: return A2 elif column == 2: return A3 # elif column == 3: # return A4 print("Fetching files...") A1 = np.array( fetch_file( "/home/imlegend19/PycharmProjects/Research - Data Mining/gnome/adjacency_matrix_normal/definition_2/A1_fc.txt")) A2 = np.array( fetch_file( "/home/imlegend19/PycharmProjects/Research - Data Mining/gnome/adjacency_matrix_normal/definition_2/A1_fc.txt")) A3 = np.array( fetch_file( "/home/imlegend19/PycharmProjects/Research - Data Mining/gnome/adjacency_matrix_normal/definition_2/A1_fc.txt")) # A4 = np.array(fetch_file(RELATIVE_PATH + ADJACENCY_MATRIX + "A4_fc.txt")) influence_matrix = np.array(fetch_file( "/home/imlegend19/PycharmProjects/Research - Data Mining/gnome/influence_matrix_normal/definition_2/" "influence_matrix_fc.txt")) print(influence_matrix.shape) krp = [] for i in range(3): wa1 = A1 * influence_matrix[i][0] wa2 = A2 * influence_matrix[i][1] wa3 = A3 * influence_matrix[i][2] # wa4 = A4 * influence_matrix_normal[i][3] print(influence_matrix[i][0]) print(influence_matrix[i][1]) print(influence_matrix[i][2]) # print(influence_matrix_normal[i][3]) for j in range(1134): row = [] row.extend(wa1[j]) row.extend(wa2[j]) row.extend(wa3[j]) # row.extend(wa4[j]) krp.append(row) print("Clearing variables...") A1 = None A2 = None A3 = None # A4 = None influence_matrix = None print("Setting up kr_product...") kr_product =
np.array(krp, dtype=np.float)
numpy.array
""" Experimental-SOM like but completely pixel-to-gene clustering """ import random, math import operator import numpy import matplotlib.pyplot as plot from . import config valid_init_methods = set(["random", ]) valid_metrics = set(["sum_of_deltas", ]) # class rigidgrid: def __init__(self, numpy_data): """ **Purpose** Setup the rigid grid **Arguments** numpy_data Table of expression data, rows are genes (pixels), columns are samples """ self.data = numpy_data def init(self, method="random", iterations=10, metric='sum_of_deltas', seed=1234): """ **Purpose** Initialise the starting setting for the RG. **Arguments** method (Optional, default=random) Specify the method to determine the initial starting conditions Valid methods: random - randomly arrange the points in the grid. seed (Optional, default=1234) seed for the random number generator (if required) iterations (Optional, default=1000) number of iterations to plow through metric (Optional, default='quantization_error') metric to use to compare between two pixels for similarity. Valid metrics: stdev - Sum of the differences. """ assert method in valid_init_methods, "'%s' method not found" % method assert metric in valid_metrics, "'%s' metric not found" % metric random.seed(seed) self.method = method self.iterations = iterations self.metric = metric self.sq = int(math.ceil(math.sqrt(self.data.shape[0]))) # The size of the square grid required self.samples_required = self.sq * self.sq config.log.info("rigidgrid(): grid set to %s*%s" % (self.sq, self.sq)) self.grid = numpy.zeros([self.sq, self.sq], dtype=int) # idxs of current genes if len(self.data) < self.samples_required: to_add = self.samples_required - len(self.data) config.log.info("rigidgrid(): I need to add %s pseudo samples to form a perfect square" % to_add) self.data = numpy.vstack((self.data,
numpy.zeros([to_add, self.data.shape[1]])
numpy.zeros
""" Finds faces of 3d form, given the perimeter and foldlines """ #From http://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python import math import numpy def dotproduct(v1, v2): return sum((a*b) for a, b in zip(v1, v2)) def length(v): return math.sqrt(dotproduct(v, v)) def calc_angle(v1, v2): return math.acos(dotproduct(v1, v2) / (length(v1) * length(v2))) #From http://stackoverflow.com/questions/20023209/python-function-for-rotating-2d-objects def rotatePolygon(polygon,theta): """Rotates the given polygon which consists of corners represented as (x,y), around the ORIGIN, clock-wise, theta degrees""" theta = math.radians(theta) if polygon[polygon.index([0,0])+1][1]>0: theta=-theta rotatedPolygon = [] for corner in polygon : rotatedPolygon.append(( corner[0]*math.cos(theta)-corner[1]*math.sin(theta) , corner[0]*math.sin(theta)+corner[1]*math.cos(theta)) ) return rotatedPolygon def face_finder(maincontour, foldlines): #takes in a list of points of the main contour, and a list of point pairs giving fold lines #Flip fold lines, work out why for line in enumerate(foldlines): index=line[0] foldline=line[1] foldlines[index]=[foldline[1],foldline[0]] #dictionary of links, both contour and folded connectionDict={} for point in enumerate(maincontour): index=point[0] connections=[tuple(maincontour[index-1]),tuple(maincontour[(index+1)%(len(maincontour))])] for line in foldlines: if point[1] in line: connections.insert(0,tuple(line[line.index(point[1])-1])) connectionDict[point[1]]=connections #collect a list of all faces (with duplicates) faceLists=[] for point in maincontour: face=(breadth_first(point, connectionDict)[:-1]) #for some reason breadth first seach includes the startpoint twice. Easiest fix! faceLists.append(face) #uses set notation to drop extras culledFaceLists=[] faceSets=[] for face in faceLists: if set(face) not in faceSets: faceSets.append(set(face)) culledFaceLists.append(face) rotatedFaceLists=[] #the normalized and translated faces regularFaceLists=[] #the original lists, but flipped if needed2 #count fold lines to see if it's a base or not thingsToRemove=[] for face in culledFaceLists: faceindex=culledFaceLists.index(face) totalfoldlines=0 for point in enumerate(face): point2=point[1] index=point[0] point1=face[index-1] if [point1,point2] in foldlines or [point2,point1] in foldlines: totalfoldlines+=1 #If it's a base, FOR NOW just remove it if totalfoldlines>=2: thingsToRemove.append(faceindex) rotatedFace=[(14.129948664096155, 174.25654808571758), (-0.0, 0.0), (182.02472359545007, -8.43769498715119e-15), (191.0729449989362, 179.1734625703078)] #If it's a regular side if totalfoldlines == 1: alreadyRotated=False for point in enumerate(face): if alreadyRotated: break point2=point[1] index=point[0] point1=face[index-1] if [point1,point2] in foldlines: xfactor=point1[0] yfactor=point1[1] newpoint2=[point2[0]-xfactor,point2[1]-yfactor] angle=math.degrees(calc_angle(newpoint2,[1,0])) newface=[] for point in face: newpoint=[point[0]-xfactor,point[1]-yfactor] newface.append(newpoint) rotatedFace=rotatePolygon(newface,angle) alreadyRotated=True elif [point2,point1] in foldlines: xfactor=point2[0] yfactor=point2[1] newpoint1=[point1[0]-xfactor,point1[1]-yfactor] angle=math.degrees(calc_angle(newpoint1,[1,0])) newface=[] for point in face: newpoint=[point[0]-xfactor,point[1]-yfactor] newface.append(newpoint) rotatedFace=rotatePolygon(newface,angle) alreadyRotated=True uprightFace=[] upsideDown=False backwards=False for point in rotatedFace: newpoint=list(point) for coord in enumerate(newpoint): if (coord[1] < 1e-5 and coord[1] > -1e-5): newpoint[coord[0]]=0 if newpoint[1]<0: upsideDown=True if rotatedFace[rotatedFace.index((0.0,0.0))+1][0] < 0: backwards=True for point in rotatedFace: newpoint=list(point) for coord in enumerate(newpoint): if (coord[1] < 1e-5 and coord[1] > -1e-5): newpoint[coord[0]]=0 if backwards: newx=newpoint[0]*-1 else: newx = newpoint[0] if upsideDown: newy=newpoint[1]*-1 else: newy=newpoint[1] newpoint=[newx,newy] uprightFace.append(newpoint) rotatedFaceLists.append(uprightFace) #Set 0,0 and the corresponding point at the correct spot zeroindex=uprightFace.index([0,0]) shifter=(-zeroindex) originalShifter=shifter-1 # rotatedFaceLists[faceindex]=numpy.array(numpy.roll(rotatedFaceLists[faceindex],shifter,axis=0)).tolist() culledFaceLists[faceindex]=numpy.array(numpy.roll(culledFaceLists[faceindex],originalShifter,axis=0)).tolist() rotatedFaceLists[faceindex]=[rotatedFaceLists[faceindex][0]]+rotatedFaceLists[faceindex][1:][::-1] if (upsideDown and backwards) or (not upsideDown and not backwards): #Two opposite direction flips or none culledFaceLists[faceindex]=
numpy.array(culledFaceLists[faceindex][::-1])
numpy.array
from bw2calc.errors import ( OutsideTechnosphere, NonsquareTechnosphere, EmptyBiosphere, InconsistentGlobalIndex, ) from bw2calc.lca import LCA from pathlib import Path import bw_processing as bwp import json import numpy as np import pytest from collections.abc import Mapping fixture_dir = Path(__file__).resolve().parent / "fixtures" ###### ### Basic functionality ###### def test_example_db_basic(): mapping = dict(json.load(open(fixture_dir / "bw2io_example_db_mapping.json"))) print(mapping) packages = [ fixture_dir / "bw2io_example_db.zip", fixture_dir / "ipcc_simple.zip", ] lca = LCA( {mapping["Driving an electric car"]: 1}, data_objs=packages, ) lca.lci() lca.lcia() assert lca.supply_array.sum() assert lca.technosphere_matrix.sum() assert lca.score def test_basic(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() answer = np.zeros((2,)) answer[lca.dicts.activity[101]] = 1 answer[lca.dicts.activity[102]] = 0.5 assert np.allclose(answer, lca.supply_array) def test_basic_negative_production(): pass def test_basic_substitution(): pass def test_basic_nonunitary_production(): pass def test_circular_inputs(): pass ###### ### __init__ ###### def test_invalid_datapackage(): packages = ["basic_fixture.zip"] with pytest.raises(TypeError): LCA({1: 1}, data_objs=packages) def test_demand_not_mapping(): packages = [fixture_dir / "basic_fixture.zip"] with pytest.raises(ValueError): LCA((1, 1), data_objs=packages) def test_demand_mapping_but_not_dict(): class M(Mapping): def __getitem__(self, key): return 1 def __iter__(self): return iter((1,)) def __len__(self): return 1 packages = [fixture_dir / "basic_fixture.zip"] lca = LCA(M(), data_objs=packages) lca.lci() answer = np.zeros((2,)) answer[lca.dicts.activity[101]] = 1 answer[lca.dicts.activity[102]] = 0.5 assert np.allclose(answer, lca.supply_array) ###### ### __next__ ###### def test_next_data_array(): packages = [fixture_dir / "array_sequential.zip"] lca = LCA({1: 1}, data_objs=packages, use_arrays=True) lca.lci() lca.lcia() for x in range(1, 5): assert lca.biosphere_matrix.sum() == x next(lca) def test_next_only_vectors(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() lca.lcia() current = lca.characterized_inventory.sum() next(lca) assert lca.characterized_inventory.sum() == current def test_next_plain_monte_carlo(): packages = [ fixture_dir / "mc_basic.zip", ] mc = LCA({3: 1}, data_objs=packages, use_distributions=True) mc.lci() mc.lcia() first = mc.score next(mc) assert first != mc.score def test_next_monte_carlo_as_iterator(): packages = [ fixture_dir / "mc_basic.zip", ] mc = LCA({3: 1}, data_objs=packages, use_distributions=True) mc.lci() mc.lcia() for _, _ in zip(mc, range(10)): assert mc.score > 0 def test_next_monte_carlo_all_matrices_change(): packages = [ fixture_dir / "mc_basic.zip", ] mc = LCA({3: 1}, data_objs=packages, use_distributions=True) mc.lci() mc.lcia() a = [ mc.technosphere_matrix.sum(), mc.biosphere_matrix.sum(), mc.characterization_matrix.sum(), ] next(mc) b = [ mc.technosphere_matrix.sum(), mc.biosphere_matrix.sum(), mc.characterization_matrix.sum(), ] print(a, b) for x, y in zip(a, b): assert x != y ###### ### build_demand_array ###### def test_build_demand_array(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() assert lca.demand_array.shape == (2,) assert lca.demand_array.sum() == 1 assert lca.demand_array[lca.dicts.product[1]] == 1 def test_build_demand_array_pass_dict(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() lca.build_demand_array({2: 5}) assert lca.demand_array.shape == (2,) assert lca.demand_array.sum() == 5 assert lca.demand_array[lca.dicts.product[2]] == 5 def test_build_demand_array_outside_technosphere(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({100: 1}, data_objs=packages) with pytest.raises(OutsideTechnosphere): lca.lci() def test_build_demand_array_activity_not_product(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({101: 1}, data_objs=packages) with pytest.raises(ValueError): lca.lci() def test_build_demand_array_pass_object(): packages = [fixture_dir / "basic_fixture.zip"] class Foo: pass obj = Foo() with pytest.raises(ValueError): LCA(obj, data_objs=packages) ###### ### load_lci_data ###### def test_load_lci_data(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() tm = np.array([[1, 0], [-0.5, 1]]) assert np.allclose(lca.technosphere_matrix.toarray(), tm) assert lca.dicts.product[1] == 0 assert lca.dicts.product[2] == 1 assert lca.dicts.activity[101] == 0 assert lca.dicts.activity[102] == 1 assert lca.dicts.biosphere[1] == 0 def test_load_lci_data_nonsquare_technosphere(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5, 2, 3]) indices_array = np.array( [(1, 101), (2, 102), (2, 101), (3, 101), (3, 102)], dtype=bwp.INDICES_DTYPE ) flip_array = np.array([0, 0, 1, 1, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) lca = LCA({1: 1}, data_objs=[dp]) with pytest.raises(NonsquareTechnosphere): lca.lci() # lca.lci() # tm = np.array([ # [1, 0], # [-0.5, 1], # [-2, -3] # ]) # assert np.allclose(lca.technosphere_matrix.toarray(), tm) # assert lca.dicts.product[1] == 0 # assert lca.dicts.product[2] == 1 # assert lca.dicts.product[3] == 2 # assert lca.dicts.activity[101] == 0 # assert lca.dicts.activity[102] == 1 def test_load_lci_data_empty_biosphere_warning(): lca = LCA({1: 1}, data_objs=[fixture_dir / "empty_biosphere.zip"]) with pytest.warns(UserWarning): lca.lci() ###### ### remap_inventory_dicts ###### def test_remap_inventory_dicts(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA( {1: 1}, data_objs=packages, remapping_dicts={"product": {1: ("foo", "bar")}, "biosphere": {1: "z"}}, ) lca.lci() lca.remap_inventory_dicts() tm = np.array([[1, 0], [-0.5, 1]]) assert np.allclose(lca.technosphere_matrix.toarray(), tm) assert lca.dicts.product[("foo", "bar")] == 0 assert lca.dicts.product[2] == 1 assert lca.dicts.activity[101] == 0 assert lca.dicts.activity[102] == 1 assert lca.dicts.biosphere["z"] == 0 ###### ### load_lcia_data ###### def test_load_lcia_data(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() lca.lcia() cm = np.array([[1]]) assert np.allclose(lca.characterization_matrix.toarray(), cm) def test_load_lcia_data_multiple_characterization_packages(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2, 3]) indices_array = np.array([(1, 101), (2, 102), (3, 101)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1]) indices_array = np.array([(1, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, nrows=1, ) data_array = np.array([2]) indices_array = np.array([(3, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="second-characterization", indices_array=indices_array, global_index=0, nrows=1, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() cm = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 2]]) assert np.allclose(lca.characterization_matrix.toarray(), cm) assert lca.dicts.biosphere[1] == 0 assert lca.dicts.biosphere[2] == 1 assert lca.dicts.biosphere[3] == 2 def test_load_lcia_data_inconsistent_globals(): # Activities: 101, 102 # Products: 1, 2 # Biosphere flows: 201, 202 dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1]) indices_array = np.array([(201, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, nrows=1, ) data_array = np.array([10]) indices_array = np.array([(202, 1)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="second-characterization", indices_array=indices_array, global_index=1, nrows=1, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() with pytest.raises(InconsistentGlobalIndex): lca.lcia() def test_load_lcia_data_none_global_value(): # Should include all because no filter dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1]) indices_array = np.array([(201, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=None, nrows=1, ) data_array = np.array([10]) indices_array = np.array([(202, 1)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="second-characterization", indices_array=indices_array, global_index=None, nrows=1, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() assert lca.characterization_matrix.sum() == 11 def test_load_lcia_data_nonglobal_filtered(): # Activities: 101, 102 # Products: 1, 2 # Biosphere flows: 201, 202 dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array =
np.array([1])
numpy.array
import os.path import time import numpy as np import pickle import PC2ImageConverter import matplotlib.pyplot as plt from visualizer import Vis def decomposeCloud(rawCloud, verbose=False): # decompose cloud backgrdPoints = [] roadPoints = [] vehPoints = [] pedPoints = [] cycPoints = [] for i in range(0, len(rawCloud)): objClass = rawCloud[i, 4] if objClass == "road": roadPoints.append(rawCloud[i,:]) elif objClass == "car": vehPoints.append(rawCloud[i,:]) elif objClass == "person": pedPoints.append(rawCloud[i,:]) elif objClass == "cyclist": cycPoints.append(rawCloud[i,:]) elif objClass == "None": backgrdPoints.append(rawCloud[i,:]) backgrdCloud = np.asarray(backgrdPoints) roadCloud = np.asarray(roadPoints) vehCloud = np.asarray(vehPoints) pedCloud = np.asarray(pedPoints) cycCloud = np.asarray(cycPoints) if verbose: print ("background cloud: " + str(backgrdCloud.shape)) print ("roadCloud cloud: " + str(roadCloud.shape)) print ("vehCloud cloud: " + str(vehCloud.shape)) print ("pedCloud cloud: " + str(pedCloud.shape)) print ("cycCloud cloud: " + str(cycCloud.shape)) return backgrdCloud, roadCloud, vehCloud, pedCloud, cycCloud def loadBoundingBox(boundingBox): with open(boundingBox,'rb') as f: return pickle.load(f,encoding='bytes') def parseBB3D(curr_path, bb3D_path): ''' _BOundingbox : n* [ label_type, [ [x1,x2,x3,x4,x5,x6,x7,x8], [y1, ,,, ,,, ,,, ,,, ,y8], [z1, ... ... ... ... ,z8] ] ] for BoundingBox, x,y,z are in image coordinate ''' pathName, tempName = os.path.split(curr_path) currFileName, _ = tempName.split(".") bbFileName = bb3D_path + currFileName.replace('full_label', 'bb3d') + ".bin" print(bbFileName) boundingbox_3d = [] if os.path.exists(bbFileName): boundingbox_3d = loadBoundingBox(bbFileName) else: print ("ERROR: BB_3D file does not exist " + str(bbFileName)) return None return boundingbox_3d def insertLabelColumn(inputCloud): """ we insert an additional column representing the label id as int""" columnList = [] for p in range(0, len(inputCloud)): label = inputCloud[p, 4] if label == 'None': columnList.append(0) elif label == 'road': columnList.append(1) elif label == 'car': columnList.append(2) elif label == 'person': columnList.append(3) elif label == 'cyclist': columnList.append(4) newColumn = np.asarray(columnList) inputCloud =
np.insert(inputCloud, 5, newColumn, axis=1)
numpy.insert
import numpy as np from .multichannel_iterator import MultiChannelIterator from scipy.ndimage import gaussian_filter def open_channel(dataset, channel_keyword, group_keyword=None, size=None): iterator = MultiChannelIterator(dataset = dataset, channel_keywords=[channel_keyword], group_keyword=group_keyword, input_channels=list(np.arange(len(channel_keyword))) if isinstance(channel_keyword, (list, tuple)) else [0], output_channels=[], batch_size=1 if size is None else size, shuffle=False) if size is None: iterator.batch_size=len(iterator) data = iterator[0] iterator._close_datasetIO() return data def get_min_and_max(dataset, channel_keyword, group_keyword=None, batch_size=1): iterator = MultiChannelIterator(dataset = dataset, channel_keywords=[channel_keyword], group_keyword=group_keyword, output_channels=[], batch_size=batch_size) vmin = float('inf') vmax = float('-inf') for i in range(len(iterator)): batch = iterator[i] vmin = min(batch.min(), vmin) vmax = max(batch.max(), vmax) iterator._close_datasetIO() return vmin, vmax def get_histogram(dataset, channel_keyword, bins, bin_size=None, sum_to_one=False, group_keyword=None, batch_size=1, return_min_and_bin_size=False, smooth_scale = 0, smooth_scale_in_bin_unit=True): iterator = MultiChannelIterator(dataset = dataset, channel_keywords=[channel_keyword], group_keyword=group_keyword, output_channels=[], batch_size=batch_size) if bins is None: assert bin_size is not None vmin, vmax = get_min_and_max(dataset, channel_keyword, batch_size=batch_size) n_bins = round( (vmax - vmin) / bin_size ) bin_size = (vmax - vmin) / n_bins bins = np.linspace(vmin, vmax, num=n_bins+1) if isinstance(bins, int): vmin, vmax = get_min_and_max(dataset, channel_keyword, batch_size=batch_size) bin_size = (vmax - vmin)/bins bins = np.linspace(vmin, vmax, num=bins+1) histogram = None for i in range(len(iterator)): batch = iterator[i] histo, _ =
np.histogram(batch, bins)
numpy.histogram
#!/usr/bin/env python # <NAME> # Dec 2017 # A set of functions for plotting dvmdostem ouputs. import os import glob import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import netCDF4 as nc import collections def get_last_n_eq(var, timeres='yearly', fileprefix='', n=10): ''' Work in progress for getting the last few year of equlibrium stage for calibration. ''' fname = os.path.join(fileprefix, '{}_{}_eq.nc'.format(var.upper(), timeres.lower())) if not os.path.exists(fname): raise RuntimeError("Can't find file: {}".format(fname)) with nc.Dataset(fname) as ds: data = ds.variables[var.upper()][-n:] info = list(zip(data.shape, list(ds.dimensions.keys()))) #info = [(name, dim.size) for name, dim in ds.dimensions.iteritems()] return data, info def sum_monthly_flux_to_yearly(data): ''' Expects `data` to be at least a 1D array, with the first axis being time. Also assumes that the time axis starts and stops on Jan 1 and Dec 31. In otherwords, if you had a 2 years of monthly data that ran from Aug 1 thru July 31, this function would NOT work! ''' if (data.shape[0] % 12) != 0: raise RuntimeError('data size for dimension 0 (time) must be an even multiple of 12') newshape = [data.shape[0] // 12] for i in data.shape[1:]: newshape.append(i) yearly_data = np.zeros((newshape)) * np.nan for i in range(0, newshape[0]): yr_start = (i * 12) yr_end = (i * 12) + 12 yearly_data[i] = np.sum(data[yr_start:yr_end], axis=0) return yearly_data def sum_across_compartments(data): ''' Expects `data` to be a 5D numpy array with dimensions `(time, pftpart, pft, y, x)`. Returns a 4D array that has been summed over the `pftpart` dimension, effectively creating a new array with totals for a PFT instead of having values split by compartment. ''' if len(data.shape) != 5: raise RuntimeError('data input parameter must have 5 dimensions') return np.sum(data, axis=1) def sum_across_pfts(data): ''' Expects `data` to be a 4D numpy array with dimensions `(time, pft, y, x)`. Returns a 3D array that has been summed over the `pft` dimension, effectively creating a new array with totals for an entire gridcell/pixel instead of having the totals broken out by PFT. ''' if len(data.shape) != 4: raise RuntimeError('data input parameter must have 4 dimensions') return np.sum(data, axis=1) def sum_across_layers(data): ''' Expects `data` to be a 4D numpy array with dimensions `(time, layers, y, x)`. Returns a 3D array that has been summed over the `layer` dimension, effectively creating a new array with totals for an entire gridcell/pixel instead of having the totals broken out by layer. ''' if len(data.shape) != 4: raise RuntimeError('data input parameter must have 4 dimensions') return np.sum(data, axis=1) def average_monthly_pool_to_yearly(data): ''' Expects `data` to be a 3D, 4D, or 5D numpy MASKED array with dimensions `(time, layers, y, x)`, `(time, pft, y, x)` or `(time, pftpart, pft, y, x)` and the size of the time dimension to be an even multiple of 12. The calling client is expected to set up the mask correctly, i.e. if data is read from a netcdf file, then using the _FillValue for the mask. The function will compute the average of the input array along the time dimension in strides of 12. Returns a 3D, 4D, or 5D numpy array with dimensions e.g. `(time, layers, y, x)`, (same as input), but the length of the returned time dimension will be 1/12th of the length of the input array. Note: this function contains a loop and could probably be vectorized somehow with some fancy numpy indexing. Examples: Load a monthly file with soil layer data and convert it to yearly. >>> import numpy as np >>> import netCDF4 as nc >>> import scripts.output_utils as ou >>> >>> soc = nc.Dataset('all-merged/SOC_monthly_tr.nc') >>> a = np.ma.masked_values(soc.variables['SOC'][:], soc.variables['SOC']._FillValue) >>> a = np.ma.masked_values(a, -99999) >>> >>> b = average_monthly_pool_to_yearly(a) >>> print a.shape, b.shape (1308, 22, 10, 10) (109, 22, 10, 10) ''' if len(data.shape) != 4: raise RuntimeError('data input parameter must have 4 dimensions.') if data.shape[0] % 12 > 0: raise RuntimeError('data input parameter first dimension (time) must be evenly divisible by 12') if not isinstance(data, np.ma.core.MaskedArray): raise RuntimeError('data input parameter must be a numpy masked array!') original_dims = list(data.shape) new_time = original_dims[0] // 12 new_dims = original_dims new_dims[0] = new_time new_dims = [round(x) for x in new_dims] output = np.ones(new_dims) * np.nan for i in range(0, new_time): yr_start = i * 12 yr_end = i*12 + 12 output[i] = data[yr_start:yr_end].mean(axis=0) return output def stitch_stages(var, timestep, stages, fileprefix=''): ''' Expects `var` to be one the dvmdostem output variable names. `timestep` must be one of "yearly" or "monthly", and stages is a (ordered) list containing one or more of "pr","eq","sp","tr","sc". `fileprefix` is an optional path that will be pre-pended to the filenames for opening files in a different directory. Outputs from dvmdostem assume one variable per file and the following file-naming pattern: `var`_`timestep`_`stage`.nc This function makes the following additional assumptions about the files: - All files for different timesteps have the same dimensions - The file's variable name is the same as the variable name in the filename. - There is a units attribute? Returns a tuple (`data`, `units`), where `data` is a multi-dimensional numpy array that is the concatenation of the input arrays along the time axis and `units` is the unit string that is found in the input netcdf files. ''' expected_file_names = ["{}_{}_{}.nc".format(var, timestep, stg) for stg in stages] expected_file_names = [os.path.join(fileprefix, i) for i in expected_file_names] full_ds = np.array([]) units_str = '' for i, exp_file in enumerate(expected_file_names): print("Trying to open: ", exp_file) with nc.Dataset(exp_file, 'r') as f: #print f.variables[var].units if i == 0: full_ds = f.variables[var][:] units_str = f.variables[var].units else: full_ds = np.concatenate( (full_ds, f.variables[var][:]), axis=0 ) if f.variables[var].units != units_str: raise RuntimeError("Something is wrong with your input files! Units don't match!") return (full_ds, units_str) def check_files(fnames): ''' A work in progress for verifying assumptions about input files, `fnames`. Prints messages to stdout. Returns `None`. ''' def get_dims(afile): ''' Attempts to open `afile` as a netCDF file and read dimensions. Prints message for RuntimeErrors resulting from opening and reading file. Returns a list of dimensions in the file. ''' try: with nc.Dataset(afile, 'r') as f: dims = f.variables[var].dimensions except RuntimeError as e: print("RuntimeError! Problem opening/reading: {} message: {}".format(afile, e.message)) dims = None return dims dims_for_each_file = [get_dims(f) for f in fnames] if len(set(dims_for_each_file)) > 1: print("Warning! Not all files have the same dims!") if set(dims_for_each_file).pop() is None: print("Warning! At least one file doesn't even have dimensions!") if len(set(dims_for_each_file).pop()) > 0: first_item = set(dims_for_each_file).pop() if first_item[0].lower() != 'time': print("Warning! It appears that the first dimension is not time!") else: print("Warning! No dimensions, can't check for time as first dimension!") def mask_by_cmt(data, cmtnum, vegmap_filepath): ''' Expects `data` to be at least a 2D array with the last two dimensions being (y, x). `cmtnum` is the community type number that will remain unmasked in the final data. `vegmap_filepath` should be the path to dvmdostem input vegetation map file, which has dimensions (y,x) and an integer specifying the CMT number for each pixel, under the variable 'veg_class'. Returns a numpy masked array with the same dimensions as `data`. In the returned array, data for pixels in `vegmap_filepath` equal to `cmtnum` will unmasked. Example: # An nd veg mask # Assumed that the shape of data is either # 3D (time, y, x), # 4D (time, pft, y, x) or (time, layer, y, x) or # 5D (time, pftpart, pft, y, x), # and that in any case, the last two dimensions are y and x # For example: In [142]: ba = np.random.randint(0,100,(2,3,4,5,5)) In [143]: np.broadcast_to(np.random.randint(0,2,(5,5)), ba.shape).shape Out[143]: (2, 3, 4, 5, 5) ''' vegmap = nc.Dataset(vegmap_filepath, 'r') vegmask = np.ma.masked_not_equal(vegmap.variables['veg_class'][:], cmtnum) vmnd_mask = np.broadcast_to(vegmask.mask, data.shape) # Full data, masked by veg type vmnd_all = np.ma.masked_array(data, vmnd_mask) return vmnd_all def mask_by_failed_run_status(data, run_status_filepath="run_status.nc"): ''' Masks out any data for which the run status is < 0 in the `run_status_filepath`. `data`: (numpy.ndarray) must have at least 2 dimensions (y, x) and they must be the last dimensions. `run_status_file`: (str) path to a dvmdostem run_status.nc file that has dimensions (y,x) and single variable run_status(y,x) that has positive values for successfully run pixels and negative values for failed pixels. Returns a numpy masked array the same shape as `data` with all the data for failed pixels masked out. Example: see mask_by_cmt(...) ''' runstat = nc.Dataset(run_status_filepath) runstatmask = np.ma.masked_less(runstat.variables['run_status'][:], 0) rsnd_mask = np.broadcast_to(runstatmask.mask, data.shape) rsnd_all = np.ma.masked_array(data, rsnd_mask) return rsnd_all def plot_comp_sst(): ROWS=4; COLS=4 gs = gridspec.GridSpec(ROWS, COLS) for i, cmt in enumerate([4,5,6,7]): ax = plt.subplot(gs[i,:]) plot_spatial_summary_timeseries('VEGC', 'yearly', cmt, 'tr sc'.split(' '), "vegetation.nc", "run_status.nc", ax=ax) plt.tight_layout() plt.show(block=True) def plot_basic_timeseries(vars2plot, spatial_y, spatial_x, time_resolution, stages, folder): ''' Make a basic timeseries plot, one subplot per variable. Not sure yet how should handle summarizing over layers, pfts, etc. Assembles expected file name for data based on args. i.e. GPP_monthly_eq.nc Raises FileNotFoundError if files does not exist. Parameters ---------- vars2plot : list of variable names spatial_y : pixel coordinates to plot i.e. 0 spatial_x : pixel coordinates to plot i.e. 0 time_resolution : str, 'yearly', 'monthly', or 'daily' stages: list of stages to plot e.g. ['eq', 'sp', 'tr', 'sc'] folder: str, path to directory with output data files ''' ROWS = len(vars2plot) COLS = 1 gs = gridspec.GridSpec(ROWS, COLS) for i, var in enumerate(vars2plot): ax = plt.subplot(gs[i,:]) data, units = stitch_stages(var, time_resolution, stages, folder) print(data.shape) ax.plot(data[:,spatial_y, spatial_x], label=var) ax.set_ylabel = units plt.savefig("plot_basic_timeseries.png") plt.show() def plot_spatial_summary_timeseries(var, timestep, cmtnum, stages, ref_veg_map, ref_run_status, ax=None): ''' Plots a single line with min/max shading representing the `var` averaged over the spatial dimension, considering only pixels for `cmtnum`. Stitches together data for the specified `stages`. `var`: (string) must be one of the dvmdostem output variables (upper case). `timesteps`: (string) must be one of "monthly" or "yearly". `cmtnum`: (int) must be a number found in the veg map, see `mask_by_cmt(..)`. `stages`: (list) must contain one or more of "pr","eq","sp","tr","sc". `ref_veg_map`: (str) must be a file path to a dvmdostem vegetation input map with dimensions (y, x) and a single variable veg_class(y,x) with a number for representing the community type for that pixel. `ref_run_status`: (str) must be a file path to a dvmdostem run_status.nc map with dimensions (y,x) and a single variable run_status(y, with a number for how the pixel completed its run. `ax`: (matplotlib.axes._subplots.AxesSubplot instance) will plot line(s) on this axes instance. If ax in None, then will create (and show) a new figure and plot. Attempts to find the requsite files for `var`, `timestep` and `stages`. Plots a timeseries of variable `var` after averaging over the spatial dimensions. If the data found in the input files is higher dimensionality than (time, y, x), for example (time, pft, y, x), then the data is summed across PFTs before plotting. Returns `None` ''' data, units = stitch_stages(var, timestep, stages) print("data size:", data.size) data = mask_by_cmt(data, cmtnum, ref_veg_map) print("data count after masking cmt:", data.count()) data = mask_by_failed_run_status(data, ref_run_status) print("data count after masking run status:", data.count()) if len(data.shape) == 5: # assume (time, pftpart, pft, y, x) data = sum_across_compartments(data) if len(data.shape) == 4: # assume (time, pft, y, x) or (time, layer, y, x) data = sum_across_pfts(data) # alternatively, use sum_across_layers(..) if len(data.shape) == 3: # assume (time, y, x) pass # all set... workhorse_spatial_summary_plot(data, cmtnum, units, var, stages, ax=ax) def workhorse_spatial_summary_plot(data, cmtnum, yunits, varname, stages, ax=None): ''' Worker function, plots a line for average along time axis (axis 0), with shading for min and max. `data`: (numpy.ndarray) must have dimensions (time, y, x). `cmtnum`: (int) used for the plot title. `varname`: (str) used for the plot title `stages`: (list) used for the plot title, must contain one or more of "pr","eq","sp","tr","sc". `ax`: (matplotlib.axes._subplots.AxesSubplot instance) will plot line(s) on this axes instance. If ax in None, then will create (and show) a new figure and plot. Returns `None` ''' if ax is not None: print("Plotting on existing ax instance...") ax.plot(np.ma.average(data, axis=(1,2)), linewidth=0.5, label="CMT {}".format(cmtnum)) ax.fill_between( np.arange(0, len(data)), np.ma.min(data, axis=(1,2)), np.ma.max(data, axis=(1,2)), color='gray', alpha=0.25 ) ax.set_ylabel(yunits) ax.set_title("{} for CMT {} averaged spatially for stages {}".format(varname, cmtnum, stages)) #plt.show(block=True) else: print("Plotting on new ax, figure...") plt.plot(np.ma.average(data, axis=(1,2)), linewidth=0.5, label="CMT {}".format(cmtnum)) plt.fill_between( np.arange(0, len(data)), np.ma.min(data, axis=(1,2)), np.ma.max(data, axis=(1,2)), color='gray', alpha=0.25 ) plt.ylabel(yunits) plt.title("{} for CMT {} averaged spatially for stages {}".format(varname, cmtnum, stages)) plt.show(block=True) def plot_inputs(cmtnum, hist_fname, proj_fname, ref_veg_map): ''' Plots the historic and projected climate inputs, averaging over the spatial dimensions and with shading for min/max. `cmtnum`: (int) CMT to work with, must be in the veg map, see mask_by_cmt(..). `hist_fname`: (str) path to a dvmdostem historic input file. `proj_fname`: (str) path to a dvmdostem projected input file. The historic and projected input files are assumed to be have the variables tair, precip, vapor_press, and nirr all with the dimensions (time, y, x). The files are assumed to be monthly resolution. Returns `None`. ''' with nc.Dataset(hist_fname) as f: htair = f.variables['tair'][:] hprecip = f.variables['precip'][:] hvp = f.variables['vapor_press'][:] hnirr = f.variables['nirr'][:] with nc.Dataset(proj_fname) as f: ptair = f.variables['tair'][:] pprecip = f.variables['precip'][:] pvp = f.variables['vapor_press'][:] pnirr = f.variables['nirr'][:] tair = np.concatenate((htair, ptair), axis=0) precip = np.concatenate((hprecip, pprecip), axis=0) vp = np.concatenate((hvp, pvp), axis=0) nirr = np.concatenate((hnirr, pnirr), axis=0) tair = mask_by_cmt(tair, cmtnum, ref_veg_map) precip = mask_by_cmt(precip, cmtnum, ref_veg_map) vp = mask_by_cmt(vp, cmtnum, ref_veg_map) nirr = mask_by_cmt(nirr, cmtnum, ref_veg_map) #fig, (tair_ax, precip_ax, vp_ax, nirr_ax) = plt.subplots() tair_ax = plt.subplot(411) precip_ax = plt.subplot(412, sharex=tair_ax) vp_ax = plt.subplot(413, sharex=tair_ax) nirr_ax = plt.subplot(414, sharex=tair_ax) for pax, data, vname in zip([tair_ax, precip_ax, vp_ax, nirr_ax], [tair, precip, vp, nirr], ['tair','precip','vapor_press','nirr']): pax.plot(np.ma.average(data, axis=(1,2)), linewidth=0.5, label="{}".format(vname)) pax.fill_between( np.arange(0, len(data)), np.ma.min(data, axis=(1,2)), np.ma.max(data, axis=(1,2)), color='gray', alpha=0.25 ) # add a line marking the transition from historic to projected pax.vlines(htair.shape[0], *pax.yaxis.get_view_interval(), color='red') pax.set_title("{} averaged spatially for historic and projected masked to cmt{}".format(vname, cmtnum)) plt.tight_layout() plt.show(block=True) def boxplot_monthlies(var, stages, cmtnum, ref_veg_map, ref_run_status, facecolor='blue'): ''' Makes a boxplot showing distribution of values for `var` for each month, averaged over spatial dimensions, and only considering `cmtnum`. If multiple stages are specified, the stages will be stitched together along the time dimension before the distributions are calculated. `var`: (str) one of the dvmdostem output variables. `stages`: (list) must contain one or more of "pr","eq","sp","tr","sc". `cmtnum`: (int) which CMT to work with. `ref_veg_map`: (str) path to a vegetation map to use for masking cmts `ref_run_status`: (str) path to run status map to use for masking failed cells `facecolor`: (str) color to use for the box. Returns `None` ''' data, units = stitch_stages(var, 'monthly', stages) print("data size:", data.size) data = mask_by_cmt(data, cmtnum, ref_veg_map) print("data count after masking cmt:", data.count()) data = mask_by_failed_run_status(data, ref_run_status) print("data count after masking run status:", data.count()) # list of months months = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec".split(' ') # empty dictionary monthstr2data = collections.OrderedDict() # fill dict with data for each month for i, m in enumerate(months): b0 = data[i::12,:,:] monthstr2data[m] = data[i::12,:,:] data2 = [np.ma.average(i, axis=(1,2)) for i in list(monthstr2data.values())] bp = plt.boxplot( data2, labels=list(monthstr2data.keys()), #notch=True, whis='range', # force whiskers to min/max range instead of quartiles showfliers=False, patch_artist=True, boxprops=dict(facecolor=facecolor, alpha=.25), whiskerprops=dict(color=facecolor), capprops=dict(color=facecolor) ) plt.ylabel(units) plt.title("{} for CMT {}, averaged spatially ".format(var, cmtnum)) plt.show(block=True) def boxplot_by_pft(var, timestep, cmtnum, stages, ref_veg_map, ref_run_status): ''' Work in progress... ''' data, units = stitch_stages(var, timestep, stages) print("data size:", data.size) print(data.shape) d2 = data # d2 = sum_across_compartments(data) # print "data size after summing compartments:", d2.size d3 = mask_by_cmt(d2, cmtnum, ref_veg_map) print("data size after masking cmt:", d3.count()) d3 = mask_by_failed_run_status(d3, ref_run_status) print("data count after masking run status:", d3.count()) pft0avg = np.ma.average(d3, axis=(2,3)) #plt.plot(pft0avg) # Line plot plt.boxplot( pft0avg, labels = ["PFT {}".format(i) for i in range(0, 10)], whis='range', showfliers=False, patch_artist=True, boxprops=dict(color='blue', alpha=0.25), whiskerprops=dict(color='red'), capprops=dict(color='blue'), ) plt.ylabel(units) plt.show(block=True) def plot_soil_layers(): ''' WORK IN PROGRESS! Attempts to display an intuitive representation of the soil column using a horizontal bar chart. - bar width is set by the value of the variable under investigation - bar color is set by the LAYERTYPE - bar height (thickness?) is controlled by the LAYERDZ The y axis is depth (cumulative sum of LAYERDZ) ''' with nc.Dataset("all-merged/SOC_monthly_tr.nc") as f: soc = np.ma.masked_values(f.variables['SOC'][:], f.variables['SOC']._FillValue) soc = np.ma.masked_values(soc, -99999) soc = average_monthly_pool_to_yearly(soc) with nc.Dataset("all-merged/LAYERDZ_yearly_tr.nc") as dzf: dz = dzf.variables['LAYERDZ'][:] with nc.Dataset("all-merged/LAYERTYPE_yearly_tr.nc") as ltf: lt = ltf.variables['LAYERTYPE'][:] Y = 0 X = 0 time = 78 def cmapper(x): # moss shallow deep mineral undefined c = ['green', 'red', 'black', 'gray', 'y'] if isinstance(x, np.ma.core.MaskedConstant): return c[-1] else: return c[int(x)] colors = list(map(cmapper, lt[time,:,Y,X])) bottoms = np.cumsum(dz[time,:,Y,X]) * -1 # <-- reverses y axis! widths = soc[time,:,Y,X] heights = dz[time,:,Y,X] plt.barh(bottoms, widths, heights, color=colors) def plot_fronts(args): ''' Makes a timeseries plot of all the fronts that are output. The X axis is time, the Y axis is depth from surface (0 at the top of the plot). Each front will have a line on the plot. Blue dots are used for FREEZING fronts (frozen above, warm below, values > 0) Red is used for THAWING fronts (warm above, frozen below, value < 0) # NOTE: # In the model, there are two places that fronts info is stored: # a pair of deques and a pair of arrays. The arrays are set to have a max # size of 10 (MAX_FRONTS or something like that) As the model runs, the # values are written periodically from the dequees into the arrays. The # arrays are the structures that are output to the netcdf files. Our output # netcdf files and output_spec files are not setup to deal with a "fronts" # dimension. So for now, since we know there will only be # 10 fronts, we'll store the stuff in files with a layer dimension, using the # first 10 slots. After a little testing it looks like there are rarely more # than 2 fronts, so this setup is not space efficient. ''' time = args.timestep Y, X = args.yx od = args.outfolder timeres = (args.timeres).lower() stage = (args.stage).lower() ftype, ftype_units = pull_data_wrapper(args, variable='FRONTSTYPE', required_dims=['time','layer','y','x']) fdepth, fdepth_units = pull_data_wrapper(args, variable='FRONTSDEPTH', required_dims=['time','layer','y','x']) if fdepth_units == '': print("WARNING! Missing depth units! Assumed to be meters.") depthunits = 'm' if ftype_units == '': print("WARNING! Missing front type units! Assumed to be categorical.") dzunits = 'categorical' # Setup the plotting ROWS=1; COLS=1 gs = gridspec.GridSpec(ROWS, COLS) fig = plt.figure() ax0 = plt.subplot(gs[:]) ax0.set_ylabel("Depth ({})".format(fdepth_units)) ax0.set_xlabel("Time") ax0.set_title("{}".format(od)) x = np.arange(0, fdepth.shape[0]) for fnt_idx in range(0,10): front_thaw = ax0.scatter(x, np.ma.masked_where(ftype[:,fnt_idx,Y,X] > 0, fdepth[:,fnt_idx,Y,X]), color='orange', marker='o') front_thaw_line = ax0.plot(np.ma.masked_where(ftype[:,fnt_idx,Y,X] > 0, fdepth[:,fnt_idx,Y,X]), label='thaw front {}'.format(fnt_idx), color='orange', alpha=0.5) front_freeze = ax0.scatter(x ,np.ma.masked_where(ftype[:,fnt_idx,Y,X] < 0, fdepth[:,fnt_idx,Y,X]), color='blue', marker='o') front_freeze_line = ax0.plot(np.ma.masked_where(ftype[:,fnt_idx,Y,X] < 0, fdepth[:,fnt_idx,Y,X]), label='freeze front {}'.format(fnt_idx), color='blue', alpha=0.5) if args.show_layers: layerdepth, layerdepth_units = pull_data_wrapper(args, variable="LAYERDEPTH", required_dims=['time','layer','y','x']) layer_lines = [] for lidx in range(0,layerdepth.shape[1]): layerline = ax0.plot(layerdepth[:,lidx,Y,X], color='gray', alpha=0.5, linewidth=0.5, marker='o', markersize=.75) layer_lines.append(layerline) if args.layer_colors: ltype, ltype_units = pull_data_wrapper(args, "LAYERTYPE") for il, l in enumerate(layer_lines): if il == 0: pass else: currl = l[0] prevl = layer_lines[il-1][0] # Make sure to grab the previous layer (il-1) for the layer type condition! ax0.fill_between(x, currl.get_ydata(), prevl.get_ydata(), ltype[:,il-1,Y,X] == 0, color='xkcd:green', alpha=.5) ax0.fill_between(x, currl.get_ydata(), prevl.get_ydata(), ltype[:,il-1,Y,X] == 1, color='xkcd:sand', alpha=.5) ax0.fill_between(x, currl.get_ydata(), prevl.get_ydata(), ltype[:,il-1,Y,X] == 2, color='xkcd:coffee', alpha=.5) ax0.fill_between(x, currl.get_ydata(), prevl.get_ydata(), ltype[:,il-1,Y,X] == 3, color='xkcd:silver', alpha=.5) # This is super cluttered in the default view if there are many layers or if # the time axis is long, but looks good when you zoom in. ax0.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(12)) ax0.xaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(6)) ax0.invert_yaxis() plt.show(block=True) def pull_data_wrapper(args, variable=None, required_dims=None): ''' Extracts data from an netcdf file. `args` must be a dict with settings for outfolder, timeres, and stage. `variable` must be a string with the variable name that is expected to be in the netcdf file. The file is expected to be names like this: "VARIABLE_TIMERES_STAGE.nc" and is expected to be present in the args.outfolder. If required_dims is passed, then the dimensions of the variable to extract are checked against the list and a RuntimeError is thrown if there is a a problem. Returns a tuple (data, units), where data is a numpy array or masked array and units is a string that is extracted from the attributs of the netcdf file. ''' od = args.outfolder timeres = (args.timeres).lower() stage = (args.stage).lower() def pull_data(the_var, required_dims): '''Pulls data out of an nc file''' fglob = os.path.join(od, "{}_{}_{}.nc".format(the_var, timeres, stage)) the_file = glob.glob(fglob) if len(the_file) < 1: raise RuntimeError("Can't find file for variable '{}' here: {}".format(the_var, fglob)) if len(the_file) > 1: raise RuntimeError("Appears to be more than one file matching glob?: {}".format(fglob)) the_file = the_file[0] print("Pulling data from ", the_file) with nc.Dataset(the_file, 'r') as ds: if required_dims != None: for rd in required_dims: if rd not in list(ds.dimensions.keys()): raise RuntimeError("'{}' is a required dimension for this operation. File: {}".format(rd, the_file)) data = ds.variables[the_var][:] units = ds.variables[the_var].units return data, units data, units = pull_data(variable, required_dims) return data, units def plot_soil_layers2(args): ''' Makes plots of soil profile variables. Generates one plot/axis for each variable specified. Y axis is the depth, X axis is the value of the variable. Plots include horizontal lines marking layer boundaries. Calling code must supply`args` which must be a dictionary with the following keys set: `outfolder`: (string) a path to a folder containing dvmdostem output files. `time`: (int) index along time axis to plot `yx`: (tuple) the pixel coordinates to source for the plot(s) `timeres`: (string) either 'monthly', 'yearly', or 'daily' (daily is untested) `stage`: (string) the run stage to plot from `vars`: a list of variables names to plot, e.g. ['TLAYER', 'SOC', 'ORGN'] The function will look in `outfolder` for the appropriate dvmdostem output files basedon variable name, stage, and time resolution. NOTE: The LAYERDZ and LAYERDEPTH files must be present in `outfolder` for the speficied `stage` and `timeres`! ''' od = args.outfolder time = args.timestep Y, X = args.yx timeres = (args.timeres).lower() stage = (args.stage).lower() # Need to specify units in output_spec files!! depth, depthunits = pull_data_wrapper(args, 'LAYERDEPTH', required_dims=['time','layer','y','x']) dz, dzunits = pull_data_wrapper(args, 'LAYERDZ', required_dims=['time','layer','y','x',]) if depthunits == '': print("WARNING! Missing depth units! Assumed to be meters.") depthunits = 'm' if dzunits == '': print("WARNING! Missing dz units! Assumed to be meters.") dzunits = 'm' if dzunits != depthunits: print("WARNING! depthunits ({}) and dzunits ({}) are not the same!".format(depthunits, dzunits)) # Setup the plotting ROWS=1; COLS=len([v.upper() for v in args.vars]) gs = gridspec.GridSpec(ROWS, COLS) fig = plt.figure() ax0 = plt.subplot(gs[:,0]) ax0.set_ylabel("Depth ({})".format(depthunits)) for i, v in enumerate([v.upper() for v in args.vars]): if i == 0: ax0.set_title(v) ax0.invert_yaxis() else: ax = plt.subplot(gs[:,i], sharey=ax0) ax.set_title(v) for ax in fig.axes: vardata, units = pull_data_wrapper(args, ax.get_title()) # Line plot, offset so markers are at the midpoint of layer.''' ax.plot( vardata[time,:,Y,X], depth[time,:,Y,X] + (0.5 * dz[time,:,Y,X]), #color='red', marker='o', markeredgecolor='gray', #markerfacecolor='red', alpha=0.85, ) if ax.get_title() == 'TLAYER': ymin, ymax = ax.yaxis.get_view_interval() ax.vlines(0, ymin, ymax, linestyles='solid', color='red') # First attempt was to use horizontal bars to display variables that # represent mass or volume (e.g. SOC). This worked for versions of # matplotlib < 2.x, but in the more recent versions there is some # issue and the y scale gets really messed up when plotting bars. # # if ax.get_title().upper() in ['SOC','VWC']: # ''' For volume/mass stuff, use bars''' # ax.barh( # depth[time,:,Y,X], # bottom # vardata[time,:,Y,X], # width # dz[time,:,Y,X], # height # ) # else: # '''Line plot, offset so markers are at the midpoint of layer.''' # ax.plot( # vardata[time,:,Y,X], # depth[time,:,Y,X] + (0.5 * dz[time,:,Y,X]), # marker='o', # ) # Label the X axis ax.set_xlabel(units) # Put in the layer markers. xmin, xmax = ax.xaxis.get_view_interval() ax.hlines( depth[time,:,Y,X], # y positions xmin, xmax, # x min and max linestyles='dashed', color='orange' ) ax.grid(False, which='both', axis='both') # Turn off y axis labels for all but the left one (first axes instance) for ax in fig.axes[1:]: ax.yaxis.set_visible(False) fig.suptitle("Soil Profile stage: {} {}, timestep: {}".format(stage, timeres, time)) plt.show(block=True) def print_soil_table(outdir, stage, timeres, Y, X, timestep): ''' Prints a table to stdout with all the soil info. Looks in the `outdir` for any .nc file with 'layer' in the dimension list, and `stage` and `timeres` in the name, e.g. "SOC_monthly_tr.nc". Each appropriate file found will get a column in the printed table. The printed table will be for the pixel specified by `Y` and `X` and for the specified `timestep` Prints a very wide table if there are many by-layer outputs available. A neat addition to this function would be a better way to control the width. ''' def get_var_name(fpath): '''Extract variable name from full path''' return os.path.basename(fpath).split("_")[0] allncfiles = glob.glob(os.path.join(outdir, "*_{}_{}.nc".format(timeres, stage))) soilfiles = [] soillayerdimlengths = [] for f in allncfiles: with nc.Dataset(f) as ds: if 'layer' in ds.dimensions: try: numlayers = ds.dimensions['layer'].size # attribute only available in netCDF4 > 1.2.2 except AttributeError as e: numlayers = len(ds.dimensions['layer']) soilfiles.append(f) soillayerdimlengths.append(numlayers) soillayerdimlengths = set(soillayerdimlengths) if len(soillayerdimlengths) > 1: raise RuntimeError("Not all files/variables have the same lenght of layer dimensions") header_fmt = "{:>15s} " * len(soilfiles) row_fmt = "{:>15.3f} " * len(soilfiles) varlist = [get_var_name(f) for f in soilfiles] print("---- Soil Profile ----") print(" output directory: {}".format(outdir)) print(" {} files stage: {} pixel(y,x): ({},{}) timestep: {}".format(timeres.upper(), stage.upper(), Y, X, timestep)) print(header_fmt.format(*varlist)) # This is probably not very effecient. for il in range(0, soillayerdimlengths.pop()): data = [] for v, f in zip(varlist, soilfiles): with nc.Dataset(f) as ds: if type(ds.variables[v][timestep,il,Y,X]) == 'str': data.append(np.nan) if ds.variables[v][timestep,il,Y,X] is np.ma.masked: # works in recent numpy versions data.append(np.nan) if
np.ma.is_masked(ds.variables[v][timestep, il, Y,X])
numpy.ma.is_masked
# https://github.com/pytorch/ignite/blob/master/examples/notebooks/FashionMNIST.ipynb # https://www.kaggle.com/stuarthallows/using-xgboost-with-scikit-learn import time import sys, os from sklearn.metrics import f1_score idx = os.getcwd().index("trade") PROJECT_HOME = os.getcwd()[:idx] + "trade" sys.path.append(PROJECT_HOME) import xgboost as xgb from pytz import timezone from sklearn.model_selection import StratifiedKFold, GridSearchCV, train_test_split from sklearn.ensemble import GradientBoostingClassifier from common.global_variables import * import matplotlib.pyplot as plt from common.utils import * from web.db.database import Model, trade_db_session import numpy as np import os from common.logger import get_logger from codes.upbit.upbit_api import Upbit from codes.upbit.upbit_order_book_based_data import UpbitOrderBookBasedData from common.utils import save_model import torch.nn.modules.loss import warnings import gc warnings.filterwarnings("ignore") logger = get_logger("make_models") def mkdir_models(): if not os.path.exists(os.path.join(PROJECT_HOME, LOCAL_MODEL_SOURCE)): os.makedirs(os.path.join(PROJECT_HOME, LOCAL_MODEL_SOURCE)) if not os.path.exists(os.path.join(PROJECT_HOME, LOCAL_MODEL_SOURCE, 'graphs')): os.makedirs(os.path.join(PROJECT_HOME, LOCAL_MODEL_SOURCE, 'graphs')) if not os.path.exists(os.path.join(PROJECT_HOME, LOCAL_MODEL_SOURCE, 'SCALERS')): os.makedirs(os.path.join(PROJECT_HOME, LOCAL_MODEL_SOURCE, 'SCALERS')) def save_graph(coin_name, model_type, valid_loss_min, last_valid_accuracy, last_save_epoch, valid_size, one_count_rate, avg_train_losses, train_accuracy_list, avg_valid_losses, valid_accuracy_list): files = glob.glob(os.path.join(PROJECT_HOME, LOCAL_MODEL_SOURCE, model_type, coin_name + '*')) for f in files: os.remove(f) plt.clf() fig, ax_lst = plt.subplots(2, 2, figsize=(30, 10), gridspec_kw={'hspace': 0.35}) ax_lst[0][0].plot(range(len(avg_train_losses)), avg_train_losses) ax_lst[0][0].set_title('AVG. TRAIN LOSSES', fontweight="bold", size=10) ax_lst[0][1].plot(range(len(train_accuracy_list)), train_accuracy_list) ax_lst[0][1].set_title('TRAIN ACCURACY CHANGE', fontweight="bold", size=10) ax_lst[0][1].set_xlabel('EPISODES', size=10) ax_lst[1][0].plot(range(len(avg_valid_losses)), avg_valid_losses) ax_lst[1][0].set_title('AVG. VALIDATION LOSSES', fontweight="bold", size=10) ax_lst[1][1].plot(range(len(valid_accuracy_list)), valid_accuracy_list) ax_lst[1][1].set_title('VALIDATION ACCURACY CHANGE', fontweight="bold", size=10) ax_lst[1][1].set_xlabel('EPISODES', size=10) filename = os.path.join(PROJECT_HOME, LOCAL_MODEL_SOURCE, model_type, 'graphs', "{0}_{1}_{2:.2f}_{3:.2f}_{4}_{5:.2f}.png".format( coin_name, last_save_epoch, valid_loss_min, last_valid_accuracy, valid_size, one_count_rate )) plt.savefig(filename) plt.close('all') def train(optimizer, model, criterion, train_losses, x_train_normalized, y_up_train): model.train() optimizer.zero_grad() out = model.forward(x_train_normalized) loss = criterion(out, y_up_train) loss.backward() optimizer.step() train_losses.append(loss.item()) out = torch.sigmoid(out) t = torch.tensor(0.5).to(DEVICE) output_index = (out > t).float() * 1 return y_up_train.size(0), (output_index == y_up_train).sum().float() def post_train_processing(train_losses, avg_train_losses, train_accuracy_list, correct, total_size): train_loss = np.average(train_losses) avg_train_losses.append(train_loss) train_accuracy = 100 * correct / total_size train_accuracy_list.append(train_accuracy) return train_loss, train_accuracy def validate(epoch, model, criterion, valid_losses, x_valid_normalized, y_up_valid): model.eval() out = model.forward(x_valid_normalized) loss = criterion(out, y_up_valid) valid_losses.append(loss.item()) out = torch.sigmoid(out) t = torch.tensor(0.5).to(DEVICE) output_index = (out > t).float() * 1 if VERBOSE: logger.info("Epoch {0} - Y_pred: {1}, Y_true: {2}".format(epoch, output_index, y_up_valid)) return y_up_valid.size(0), (output_index == y_up_valid).sum().float() def post_validation_processing(valid_losses, avg_valid_losses, valid_accuracy_list, correct, total_size): valid_loss = np.average(valid_losses) avg_valid_losses.append(valid_loss) valid_accuracy = 100 * correct / total_size valid_accuracy_list.append(valid_accuracy) return valid_loss, valid_accuracy def make_model(model_type, x_normalized, y_up, global_total_size, X_train, y_train, X_test, y_test, one_rate): if VERBOSE: logger.info("[[[{0}]]]".format(model_type)) model = load_model(model_type=model_type) if model: model.fit(X_train, y_train) y_pred = model.predict(X_test) best_model = model best_f1_score = f1_score(y_test, y_pred) else: gc.collect() coin_model_start_time = time.time() X = x_normalized.reshape(global_total_size, -1) y = y_up if model_type == "GB": param_grid = { 'learning_rate': [0.01, 0.05, 0.1], 'max_depth':
np.linspace(1, 8, 4, endpoint=True)
numpy.linspace
import scipy.optimize as sco from sklearn.decomposition import PCA import pandas as pd import numpy as np from keras.layers import Input, Dense from keras.models import Model from keras import regularizers from keras.models import load_model from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt from utils import portfolio from hrp_routines import * class HRPAgent: def __init__( self, portfolio_size, allow_short = True, ): self.portfolio_size = portfolio_size self.allow_short = allow_short self.input_shape = (portfolio_size, portfolio_size, ) def act(self, returns): corr = returns.corr() cov = returns.cov() optimal_weights = getHRP(cov, corr) if self.allow_short: optimal_weights /= sum(np.abs(optimal_weights)) else: optimal_weights += np.abs(np.min(optimal_weights)) optimal_weights /= sum(optimal_weights) return optimal_weights class AutoencoderAgent: def __init__( self, portfolio_size, allow_short = True, encoding_dim = 25 ): self.portfolio_size = portfolio_size self.allow_short = allow_short self.encoding_dim = encoding_dim def model(self): input_img = Input(shape=(self.portfolio_size, )) encoded = Dense(self.encoding_dim, activation='relu', kernel_regularizer=regularizers.l2(1e-6))(input_img) decoded = Dense(self.portfolio_size, activation= 'linear', kernel_regularizer=regularizers.l2(1e-6))(encoded) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='mse') return autoencoder def act(self, returns): data = returns autoencoder = self.model() autoencoder.fit(data, data, shuffle=False, epochs=25, batch_size=32, verbose=False) reconstruct = autoencoder.predict(data) communal_information = [] for i in range(0, len(returns.columns)): diff = np.linalg.norm((returns.iloc[:,i] - reconstruct[:,i])) # 2 norm difference communal_information.append(float(diff)) optimal_weights = np.array(communal_information) / sum(communal_information) if self.allow_short: optimal_weights /= sum(np.abs(optimal_weights)) else: optimal_weights += np.abs(np.min(optimal_weights)) optimal_weights /= sum(optimal_weights) return optimal_weights class SmoothingAgent: def __init__( self, portfolio_size, allow_short = True, forecast_horizon = 252, ): self.portfolio_size = portfolio_size self.allow_short = allow_short self.forecast_horizon = forecast_horizon def act(self, timeseries): optimal_weights = [] for asset in timeseries.columns: ts = timeseries[asset] fit1 = Holt(ts).fit() forecast = fit1.forecast(self.forecast_horizon) prediction = forecast.values[-1] - forecast.values[0] optimal_weights.append(prediction) if self.allow_short: optimal_weights /= sum(np.abs(optimal_weights)) else: optimal_weights += np.abs(np.min(optimal_weights)) optimal_weights /= sum(optimal_weights) return optimal_weights class PCAAgent: def __init__( self, portfolio_size, pc_id = 0, pca_max = 10, allow_short = False, ): self.portfolio_size = portfolio_size self.allow_short = allow_short self.input_shape = (portfolio_size, portfolio_size, ) self.pc_id = pc_id self.pc_max = pca_max def act(self, returns): C = self.pc_max pca = PCA(C) returns_pca = pca.fit_transform(returns) pcs = pca.components_ pc1 = pcs[self.pc_id, :] if self.allow_short: optimal_weights = pc1 / sum(np.abs(pc1)) else: optimal_weights += np.abs(np.min(optimal_weights)) optimal_weights /= sum(optimal_weights) return optimal_weights class MaxReturnsAgent: def __init__( self, portfolio_size, allow_short = False, ): self.portfolio_size = portfolio_size self.allow_short = allow_short self.input_shape = (portfolio_size, portfolio_size, ) def act(self, returns): def loss(weights): return -portfolio(returns, weights)[0] n_assets = len(returns.columns) if self.allow_short: bnds = tuple((-1.0, 1.0) for x in range(n_assets)) cons =({'type': 'eq', 'fun': lambda x : 1.0 - np.sum(np.abs(x))}) else: bnds = tuple((0.0, 1.0) for x in range(n_assets)) cons =({'type': 'eq', 'fun': lambda x : 1.0 - np.sum(x)}) opt_S = sco.minimize( loss, n_assets * [1.0 / n_assets], method = 'SLSQP', bounds = bnds, constraints = cons) optimal_weights = opt_S['x'] # sometimes optimization fails with constraints, need to be fixed by hands if self.allow_short: optimal_weights /= sum(np.abs(optimal_weights)) else: optimal_weights += np.abs(np.min(optimal_weights)) optimal_weights /= sum(optimal_weights) return optimal_weights class MinVarianceAgent: def __init__( self, portfolio_size, allow_short = False, ): self.portfolio_size = portfolio_size self.allow_short = allow_short self.input_shape = (portfolio_size, portfolio_size, ) def act(self, returns): def loss(weights): return portfolio(returns, weights)[1]**2 n_assets = len(returns.columns) if self.allow_short: bnds = tuple((-1.0, 1.0) for x in range(n_assets)) cons =({'type': 'eq', 'fun': lambda x : 1.0 - np.sum(np.abs(x))}) else: bnds = tuple((0.0, 1.0) for x in range(n_assets)) cons =({'type': 'eq', 'fun': lambda x : 1.0 - np.sum(x)}) opt_S = sco.minimize( loss, n_assets * [1.0 / n_assets], method = 'SLSQP', bounds = bnds, constraints = cons) optimal_weights = opt_S['x'] # sometimes optimization fails with constraints, need to be fixed by hands if self.allow_short: optimal_weights /= sum(np.abs(optimal_weights)) else: optimal_weights += np.abs(np.min(optimal_weights)) optimal_weights /= sum(optimal_weights) return optimal_weights class MaxSharpeAgent: def __init__( self, portfolio_size, allow_short = False, ): self.portfolio_size = portfolio_size self.allow_short = allow_short self.input_shape = (portfolio_size, portfolio_size, ) def act(self, returns): def loss(weights): return -portfolio(returns, weights)[2] n_assets = len(returns.columns) if self.allow_short: bnds = tuple((-1.0, 1.0) for x in range(n_assets)) cons =({'type': 'eq', 'fun': lambda x : 1.0 - np.sum(np.abs(x))}) else: bnds = tuple((0.0, 1.0) for x in range(n_assets)) cons =({'type': 'eq', 'fun': lambda x : 1.0 -
np.sum(x)
numpy.sum
from enum import Enum from typing import Any, Dict, List, Optional import attr import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from einops import rearrange from hydra.utils import instantiate from IPython.display import clear_output from tqdm import tqdm # internal from artefact_nca.base.base_torch_trainer import BaseTorchTrainer from artefact_nca.dataset.voxel_dataset import VoxelDataset from artefact_nca.model.voxel_ca_model import VoxelCAModel from artefact_nca.utils.minecraft import * # noqa from artefact_nca.utils.minecraft.voxel_utils import replace_colors # zero out a cube def damage_cube(state, x, y, z, half_width): damaged = state.clone() x_dim = state.shape[1] y_dim = state.shape[2] z_dim = state.shape[3] from_x = np.clip(x - half_width, a_min=0, a_max=x_dim) from_y = np.clip(y - half_width, a_min=0, a_max=y_dim) from_z =
np.clip(z - half_width, a_min=0, a_max=z_dim)
numpy.clip
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.characterisation.correction` module. """ from __future__ import division, unicode_literals import numpy as np import unittest from itertools import permutations from numpy.linalg import LinAlgError from colour.characterisation.correction import ( augmented_matrix_Cheung2004, polynomial_expansion_Finlayson2015, polynomial_expansion_Vandermonde, colour_correction_matrix_Cheung2004, colour_correction_matrix_Finlayson2015, colour_correction_matrix_Vandermonde, colour_correction_Cheung2004, colour_correction_Finlayson2015, colour_correction_Vandermonde) from colour.utilities import ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2020 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'MATRIX_TEST', 'MATRIX_REFERENCE', 'TestAugmentedMatrixCheung2004', 'TestPolynomialExpansionFinlayson2015', 'TestPolynomialExpansionVandermonde', 'TestColourCorrectionMatrixCheung2004', 'TestColourCorrectionMatrixFinlayson2015', 'TestColourCorrectionMatrixVandermonde', 'TestColourCorrectionCheung2004', 'TestColourCorrectionFinlayson2015', 'TestColourCorrectionVandermonde' ] MATRIX_TEST = np.array([ [0.17224810, 0.09170660, 0.06416938], [0.49189645, 0.27802050, 0.21923399], [0.10999751, 0.18658946, 0.29938611], [0.11666120, 0.14327905, 0.05713804], [0.18988879, 0.18227649, 0.36056247], [0.12501329, 0.42223442, 0.37027445], [0.64785606, 0.22396782, 0.03365194], [0.06761093, 0.11076896, 0.39779139], [0.49101797, 0.09448929, 0.11623839], [0.11622386, 0.04425753, 0.14469986], [0.36867946, 0.44545230, 0.06028681], [0.61632937, 0.32323906, 0.02437089], [0.03016472, 0.06153243, 0.29014596], [0.11103655, 0.30553067, 0.08149137], [0.41162190, 0.05816656, 0.04845934], [0.73339206, 0.53075188, 0.02475212], [0.47347718, 0.08834792, 0.30310315], [0.00000000, 0.25187016, 0.35062450], [0.76809639, 0.78486240, 0.77808297], [0.53822392, 0.54307997, 0.54710883], [0.35458526, 0.35318419, 0.35524431], [0.17976704, 0.18000531, 0.17991488], [0.09351417, 0.09510603, 0.09675027], [0.03405071, 0.03295077, 0.03702047], ]) MATRIX_REFERENCE = np.array([ [0.15579559, 0.09715755, 0.07514556], [0.39113140, 0.25943419, 0.21266708], [0.12824821, 0.18463570, 0.31508023], [0.12028974, 0.13455659, 0.07408400], [0.19368988, 0.21158946, 0.37955964], [0.19957424, 0.36085439, 0.40678123], [0.48896605, 0.20691688, 0.05816533], [0.09775522, 0.16710693, 0.47147724], [0.39358649, 0.12233400, 0.10526425], [0.10780332, 0.07258529, 0.16151473], [0.27502671, 0.34705454, 0.09728099], [0.43980441, 0.26880559, 0.05430533], [0.05887212, 0.11126272, 0.38552469], [0.12705825, 0.25787860, 0.13566464], [0.35612929, 0.07933258, 0.05118732], [0.48131976, 0.42082843, 0.07120612], [0.34665585, 0.15170714, 0.24969804], [0.08261116, 0.24588716, 0.48707733], [0.66054904, 0.65941137, 0.66376412], [0.48051509, 0.47870296, 0.48230082], [0.33045354, 0.32904184, 0.33228886], [0.18001305, 0.17978567, 0.18004416], [0.10283975, 0.10424680, 0.10384975], [0.04742204, 0.04772203, 0.04914226], ]) class TestAugmentedMatrixCheung2004(unittest.TestCase): """ Defines :func:`colour.characterisation.correction.\ augmented_matrix_Cheung2004` definition unit tests methods. """ def test_augmented_matrix_Cheung2004(self): """ Tests :func:`colour.characterisation.correction.\ augmented_matrix_Cheung2004` definition. """ RGB = np.array([0.17224810, 0.09170660, 0.06416938]) polynomials = [ np.array([0.17224810, 0.09170660, 0.06416938]), np.array( [0.17224810, 0.09170660, 0.06416938, 0.00101364, 1.00000000]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 1.00000000 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.00101364, 1.00000000 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.02966941, 0.00841010, 0.00411771, 1.00000000 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.02966941, 0.00841010, 0.00411771, 0.00101364, 1.00000000 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.02966941, 0.00841010, 0.00411771, 0.00101364, 0.00511050, 0.00077126, 0.00026423, 1.00000000 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.02966941, 0.00841010, 0.00411771, 0.00101364, 0.00272088, 0.00053967, 0.00070927, 0.00511050, 0.00077126, 0.00026423 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.02966941, 0.00841010, 0.00411771, 0.00101364, 0.00272088, 0.00053967, 0.00070927, 0.00511050, 0.00077126, 0.00026423, 1.00000000 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.02966941, 0.00841010, 0.00411771, 0.00101364, 0.00272088, 0.00053967, 0.00070927, 0.00190387, 0.00144862, 0.00037762, 0.00511050, 0.00077126, 0.00026423 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.02966941, 0.00841010, 0.00411771, 0.00101364, 0.00272088, 0.00053967, 0.00070927, 0.00190387, 0.00144862, 0.00037762, 0.00511050, 0.00077126, 0.00026423, 1.00000000 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.01579629, 0.01105305, 0.00588476, 0.02966941, 0.00841010, 0.00411771, 0.00101364, 0.00272088, 0.00053967, 0.00070927, 0.00190387, 0.00144862, 0.00037762, 0.00511050, 0.00077126, 0.00026423, 0.00017460, 0.00009296, 0.00006504 ]), ] for i, terms in enumerate([3, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22]): np.testing.assert_almost_equal( augmented_matrix_Cheung2004(RGB, terms), polynomials[i], decimal=7) def test_raise_exception_augmented_matrix_Cheung2004(self): """ Tests :func:`colour.characterisation.correction.\ augmented_matrix_Cheung2004` definition raised exception. """ self.assertRaises(ValueError, augmented_matrix_Cheung2004, np.array([0.17224810, 0.09170660, 0.06416938]), 4) @ignore_numpy_errors def test_nan_augmented_matrix_Cheung2004(self): """ Tests :func:`colour.characterisation.correction.\ augmented_matrix_Cheung2004` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: augmented_matrix_Cheung2004(case) class TestPolynomialExpansionFinlayson2015(unittest.TestCase): """ Defines :func:`colour.characterisation.correction.\ polynomial_expansion_Finlayson2015` definition unit tests methods. """ def test_polynomial_expansion_Finlayson2015(self): """ Tests :func:`colour.characterisation.correction.\ polynomial_expansion_Finlayson2015` definition. """ RGB = np.array([0.17224810, 0.09170660, 0.06416938]) polynomials = [ [ np.array([0.17224810, 0.09170660, 0.06416938]), np.array([0.17224810, 0.09170660, 0.06416938]) ], [ np.array([ 0.17224810, 0.09170660, 0.06416938, 0.02966941, 0.00841010, 0.00411771, 0.01579629, 0.00588476, 0.01105305 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.12568328, 0.07671216, 0.10513350 ]) ], [ np.array([ 0.17224810, 0.09170660, 0.06416938, 0.02966941, 0.00841010, 0.00411771, 0.01579629, 0.00588476, 0.01105305, 0.00511050, 0.00077126, 0.00026423, 0.00144862, 0.00037762, 0.00070927, 0.00272088, 0.00053967, 0.00190387, 0.00101364 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.12568328, 0.07671216, 0.10513350, 0.11314930, 0.07228010, 0.08918053, 0.13960570, 0.08141598, 0.12394021, 0.10045255 ]) ], [ np.array([ 0.17224810, 0.09170660, 0.06416938, 0.02966941, 0.00841010, 0.00411771, 0.01579629, 0.00588476, 0.01105305, 0.00511050, 0.00077126, 0.00026423, 0.00144862, 0.00037762, 0.00070927, 0.00272088, 0.00053967, 0.00190387, 0.00101364, 0.00088027, 0.00007073, 0.00001696, 0.00046867, 0.00032794, 0.00013285, 0.00004949, 0.00004551, 0.00002423, 0.00024952, 0.00003463, 0.00012217, 0.00017460, 0.00009296, 0.00006504 ]), np.array([ 0.17224810, 0.09170660, 0.06416938, 0.12568328, 0.07671216, 0.10513350, 0.11314930, 0.07228010, 0.08918053, 0.13960570, 0.08141598, 0.12394021, 0.10045255, 0.14713499, 0.13456986, 0.10735915, 0.08387498, 0.08213618, 0.07016104, 0.11495009, 0.09819082, 0.08980545 ]) ], ] for i in range(4): np.testing.assert_almost_equal( polynomial_expansion_Finlayson2015(RGB, i + 1, False), polynomials[i][0], decimal=7) np.testing.assert_almost_equal( polynomial_expansion_Finlayson2015(RGB, i + 1, True), polynomials[i][1], decimal=7) def test_raise_exception_polynomial_expansion_Finlayson2015(self): """ Tests :func:`colour.characterisation.correction.\ polynomial_expansion_Finlayson2015` definition raised exception. """ self.assertRaises(ValueError, polynomial_expansion_Finlayson2015, np.array([0.17224810, 0.09170660, 0.06416938]), 5) @ignore_numpy_errors def test_nan_polynomial_expansion_Finlayson2015(self): """ Tests :func:`colour.characterisation.correction.\ polynomial_expansion_Finlayson2015` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: polynomial_expansion_Finlayson2015(case) class TestPolynomialExpansionVandermonde(unittest.TestCase): """ Defines :func:`colour.characterisation.correction.\ polynomial_expansion_Vandermonde` definition unit tests methods. """ def test_polynomial_expansion_Vandermonde(self): """ Tests :func:`colour.characterisation.correction.\ polynomial_expansion_Vandermonde` definition. """ RGB = np.array([0.17224810, 0.09170660, 0.06416938]) polynomials = [ np.array([0.17224810, 0.09170660, 0.06416938, 1.00000000]), np.array([ 0.02966941, 0.00841010, 0.00411771, 0.17224810, 0.09170660, 0.06416938, 1.00000000 ]), np.array([ 0.00511050, 0.00077126, 0.00026423, 0.02966941, 0.00841010, 0.00411771, 0.17224810, 0.09170660, 0.06416938, 1.00000000 ]), np.array([ 0.00088027, 0.00007073, 0.00001696, 0.00511050, 0.00077126, 0.00026423, 0.02966941, 0.00841010, 0.00411771, 0.17224810, 0.09170660, 0.06416938, 1.00000000 ]), ] for i in range(4): np.testing.assert_almost_equal( polynomial_expansion_Vandermonde(RGB, i + 1), polynomials[i], decimal=7) @ignore_numpy_errors def test_nan_polynomial_expansion_Vandermonde(self): """ Tests :func:`colour.characterisation.correction.\ polynomial_expansion_Vandermonde` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: polynomial_expansion_Vandermonde(case) class TestColourCorrectionMatrixCheung2004(unittest.TestCase): """ Defines :func:`colour.characterisation.correction.\ colour_correction_matrix_Cheung2004` definition unit tests methods. """ def test_colour_correction_matrix_Cheung2004(self): """ Tests :func:`colour.characterisation.correction.\ colour_correction_matrix_Cheung2004` definition. """ np.testing.assert_almost_equal( colour_correction_matrix_Cheung2004(MATRIX_TEST, MATRIX_REFERENCE), np.array([ [0.69822661, 0.03071629, 0.16210422], [0.06893498, 0.67579611, 0.16430385], [-0.06314956, 0.09212471, 0.97134152], ]), decimal=7) np.testing.assert_almost_equal( colour_correction_matrix_Cheung2004( MATRIX_TEST, MATRIX_REFERENCE, terms=7), np.array([ [ 0.80512769, 0.04001012, -0.01255261, -0.41056170, -0.28052094, 0.68417697, 0.02251728 ], [ 0.03270288, 0.71452384, 0.17581905, -0.00897913, 0.04900199, -0.17162742, 0.01688472 ], [ -0.03973098, -0.07164767, 1.16401636, 0.29017859, -0.88909018, 0.26675507, 0.02345109 ], ]), decimal=7) @ignore_numpy_errors def test_nan_colour_correction_matrix_Cheung2004(self): """ Tests :func:`colour.characterisation.correction. colour_correction_matrix_Cheung2004` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = list(set(permutations(cases * 3, r=3)))[0:4] for case in cases: try: colour_correction_matrix_Cheung2004(
np.vstack([case, case, case])
numpy.vstack
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal( uniques, Index(orig).sort_values(), check_names=False ) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep="last") tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep="last") tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=( r"drop_duplicates\(\) got an " r"unexpected keyword argument" ), ): idx.drop_duplicates(inplace=True) else: expected = Series( [False] * len(original), index=original.index, name="a" ) tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name="a") expected = Series( [False] * len(original) + [True, True], index=idx, name="a" ) tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep="last"), expected) tm.assert_series_equal( s.drop_duplicates(keep="last"), s[~np.array(base)] ) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal( s.drop_duplicates(keep=False), s[~np.array(base)] ) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT, ], } ) for column in df.columns: for keep in ["first", "last", False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected, dtype=orig.dtype) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if is_object_dtype(o) or ( isinstance(o, Series) and is_object_dtype(o.index) ): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ( o.memory_usage(index=False) + o.index.memory_usage() ) == o.memory_usage(index=True) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) def test_getitem(self): for i in self.indexes: s = pd.Series(i) assert i[0] == s.iloc[0] assert i[5] == s.iloc[5] assert i[-1] == s.iloc[-1] assert i[-1] == i[9] with pytest.raises(IndexError): i[20] with pytest.raises(IndexError): s.iloc[20] @pytest.mark.parametrize("indexer_klass", [list, pd.Index]) @pytest.mark.parametrize( "indexer", [ [True] * 10, [False] * 10, [True, False, True, True, False, False, True, True, False, True], ], ) def test_bool_indexing(self, indexer_klass, indexer): # GH 22533 for idx in self.indexes: exp_idx = [i for i in range(len(indexer)) if indexer[i]] tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx]) s = pd.Series(idx) tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx]) def test_get_indexer_non_unique_dtype_mismatch(self): # GH 25459 indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0])) tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: tm.assert_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: with pytest.raises(ValueError, match=self.errmsg): obj.transpose(1) with pytest.raises(ValueError, match=self.errmsg): obj.transpose(axes=1) def test_numpy_transpose(self): for obj in self.objs: tm.assert_equal(
np.transpose(obj)
numpy.transpose
from math import ceil, floor import numpy as np from BoundingBox import BoundingBox def fibonacci_sphere_section(num_points_whole_sphere: int, bbox: BoundingBox): lat_min, lat_max, lon_min, lon_max = bbox.lat_min, bbox.lat_max, bbox.lon_min, bbox.lon_max #print("lat_min: {}, lat_max: {}, lon_min: {}, lon_max: {}".format(lat_min, lat_max, lon_min, lon_max)) ga = (3 -
np.sqrt(5)
numpy.sqrt
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num =
N.array([1,3,1])
numpy.array
import numpy as np import matplotlib.pyplot as plt import pathlib def counter(counts, car, chosen): return counts[-1] + 1 if car == chosen else counts[-1] def main(): transition = {'not_switched':[],'switched':[]} n_doors = 100 n_trials = 1000 for door in range(3, n_doors): not_switched = {'count':[0], 'rate':[.0]} switched = {'count':[0], 'rate':[.0]} for i in range(0, n_trials): doors = np.array([j for j in range(door)]) car =
np.random.randint(0, door)
numpy.random.randint
#!/usr/bin/env python # -*- coding: utf-8 -*- # test_utils.py """ Test utils. Copyright (c) 2021, <NAME> """ import pytest import numpy as np from numpy.testing import assert_allclose import unittest from pydecon.utils import _ensure_positive, radialavg, expand_radialavg def make_random_blob(ndims, size): """Make a random sized and placed blob.""" # make coordinates x = np.linspace(-1, 1, size) mesh = np.meshgrid(*((x,) * ndims), indexing="ij") # randomly generate radii and center radii = (np.random.rand(ndims) - 0.5) * 0.2 center =
np.random.rand(ndims)
numpy.random.rand
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_structure_output """ import numpy as np import mindspore.ops.operations as P from mindspore import Tensor, context from mindspore.nn import Cell from mindspore.ops.functional import depend context.set_context(mode=context.GRAPH_MODE) def test_output_const_tuple_0(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.x = (1, 2, 3) def construct(self): return self.x x = (1, 2, 3) net = Net() assert net() == x def test_output_const_tuple_1(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.tuple_1 = (1, 2, 3) self.tuple_2 = (4, 5, 6) def construct(self): ret = self.tuple_1 + self.tuple_2 return ret net = Net() assert net() == (1, 2, 3, 4, 5, 6) def test_output_const_list(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.tuple_1 = [1, 2, 3] def construct(self): ret = self.tuple_1 return ret net = Net() assert net() == (1, 2, 3) def test_output_const_int(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.number_1 = 2 self.number_2 = 3 def construct(self): ret = self.number_1 + self.number_2 return ret net = Net() assert net() == 5 def test_output_const_str(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.str = "hello world" def construct(self): ret = self.str return ret net = Net() assert net() == "hello world" def test_output_parameter_int(): class Net(Cell): def __init__(self): super(Net, self).__init__() def construct(self, x): return x x = Tensor(np.array(88).astype(np.int32)) net = Net() assert net(x) == x def test_output_parameter_str(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.x = "hello world" def construct(self): return self.x x = "hello world" net = Net() assert net() == x def test_tuple_tuple_0(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.add = P.TensorAdd() self.sub = P.Sub() def construct(self, x, y): xx = self.add(x, x) yy = self.add(y, y) xxx = self.sub(x, x) yyy = self.sub(y, y) ret = ((xx, yy), (xxx, yyy)) ret = (ret, ret) return ret net = Net() x = Tensor(np.ones([2], np.int32)) y = Tensor(np.zeros([3], np.int32)) net(x, y) def test_tuple_tuple_1(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.add = P.TensorAdd() self.sub = P.Sub() def construct(self, x, y): xx = self.add(x, x) yy = self.add(y, y) ret = ((xx, yy), x) ret = (ret, ret) return ret net = Net() x = Tensor(np.ones([2], np.int32)) y = Tensor(np.zeros([3], np.int32)) net(x, y) def test_tuple_tuple_2(): class Net(Cell): def __init__(self): super(Net, self).__init__() self.add = P.TensorAdd() self.sub = P.Sub() self.relu = P.ReLU() self.depend = depend def construct(self, x, y): xx = self.add(x, x) yy = self.add(y, y) xxx = self.sub(x, x) yyy = self.sub(y, y) z = self.relu(x) ret = ((xx, yy), (xxx, yyy)) ret = (ret, ret) ret = self.depend(ret, z) return ret net = Net() x = Tensor(
np.ones([2], np.int32)
numpy.ones
import sys import matplotlib.pyplot import pandas import numpy import struct import os data = None with open(sys.argv[1], "rb") as f: data = f.read() data = struct.unpack("{}Q".format(len(data) // 8), data) data = numpy.array(data, dtype=numpy.uint64)[1:] data = numpy.array([x for x in data if x < 100000]) rt = numpy.cumsum(data) / 1000000 lTime = rt[-1] lTime += 5 lScalar = ((lTime // 60) + 1) lTime = lScalar * 60 data = 1000000 / data highest =
numpy.max(data)
numpy.max
import numpy as np import matplotlib.pyplot as plt Ts = 2. Ns = 100 tr = np.linspace(0, Ts, Ns) Di = 1.3 tri = tr / Di x =
np.sin(2 * np.pi * 10 * tr)
numpy.sin
from numpy.lib.polynomial import poly from numpy.lib.twodim_base import tri from plateaupy.plobj import plmesh, plobj from plateaupy.plutils import * from plateaupy.ploptions import ploptions from plateaupy.thirdparty.earcutpython.earcut.earcut import earcut import numpy as np import copy import pickle import sys import os import cv2 from lxml import etree import lxml _floorheight = 2 # fixed value, the height of 1 floor in meter. class Building: def __init__(self): self.id = None # gml:id self.attr = dict() self.usage = None self.measuredHeight = None self.storeysAboveGround = None self.storeysBelowGround = None self.address = None self.buildingDetails = dict() self.extendedAttribute = dict() self.lod0RoofEdge = [] self.lod1Solid = [] #self.lod2Solid = [] # lod2MultiSurface self.lod2ground = dict() self.lod2roof = dict() self.lod2wall = dict() self.partex = appParameterizedTexture() def __str__(self): return 'Building id={}\n\ usage={}, measuredHeight={}, storeysAboveGround={}, storeysBelowGround={}\n\ address={}\n\ buildingDetails={}\n\ extendedAttribute={}\n\ attr={}'\ .format(self.id, self.usage, self.measuredHeight, self.storeysAboveGround, self.storeysBelowGround, \ self.address, self.buildingDetails, self.extendedAttribute, self.attr) # get vertices, triangles from lod0RoofEdge def getLOD0polygons(self, height=None): vertices = None triangles = None if len(self.lod0RoofEdge) > 0: vertices = [] for x in self.lod0RoofEdge[0]: xx = copy.deepcopy(x) if height is not None: xx[2] = height vertices.append( convertPolarToCartsian( *xx ) ) vertices = np.array(vertices) res = earcut(np.array(vertices,dtype=np.int).flatten(), dim=3) if len(res) > 0: triangles = np.array(res).reshape((-1,3)) return vertices, triangles class appParameterizedTexture: def __init__(self): self.imageURI = None self.targets = dict() @classmethod def search_list(cls, applist, polyid): for app in applist: if polyid in app.targets.keys(): return app return None class plbldg(plobj): def __init__(self,filename=None, options=ploptions()): super().__init__() self.kindstr = 'bldg' self.buildings = [] # list of Building if filename is not None: self.loadFile(filename, options=options) def loadFile(self,filename, options=ploptions()): tree, root = super().loadFile(filename) nsmap = self.removeNoneKeyFromDic(root.nsmap) # scan appearanceMember partex = [] for app in tree.xpath('/core:CityModel/app:appearanceMember/app:Appearance/app:surfaceDataMember/app:ParameterizedTexture', namespaces=nsmap): par = appParameterizedTexture() for at in app.xpath('app:imageURI', namespaces=nsmap): par.imageURI = at.text for at in app.xpath('app:target', namespaces=nsmap): uri = at.attrib['uri'] colist = [str2floats(v).reshape((-1,2)) for v in at.xpath('app:TexCoordList/app:textureCoordinates', namespaces=nsmap)] maxnum = max(map(lambda x:x.shape[0],colist)) for cidx,co in enumerate(colist): last = co[-1].reshape(-1,2) num = maxnum - co.shape[0] if num > 0: colist[cidx] = np.append(co,np.tile(co[-1].reshape(-1,2),(num,1)),axis=0) par.targets[uri] = np.array(colist) partex.append(par) # scan cityObjectMember blds = tree.xpath('/core:CityModel/core:cityObjectMember/bldg:Building', namespaces=nsmap) for bld in blds: b = Building() # gml:id b.id = bld.attrib['{'+nsmap['gml']+'}id'] # stringAttribute stringAttributes = bld.xpath('gen:stringAttribute', namespaces=nsmap) for at in stringAttributes: b.attr[at.attrib['name']] = at.getchildren()[0].text # genericAttributeSet genericAttributeSets = bld.xpath('gen:genericAttributeSet', namespaces=nsmap) for at in genericAttributeSets: vals = dict() for ch in at.getchildren(): vals[ ch.attrib['name'] ] = ch.getchildren()[0].text b.attr[at.attrib['name']] = vals # usage for at in bld.xpath('bldg:usage', namespaces=nsmap): b.usage = at.text # measuredHeight for at in bld.xpath('bldg:measuredHeight', namespaces=nsmap): b.measuredHeight = at.text # storeysAboveGround for at in bld.xpath('bldg:storeysAboveGround', namespaces=nsmap): b.storeysAboveGround = at.text # storeysBelowGround for at in bld.xpath('bldg:storeysBelowGround', namespaces=nsmap): b.storeysBelowGround = at.text # address try: # there are 2 names: 'xAL' and 'xal'.. for at in bld.xpath('bldg:address/core:Address/core:xalAddress/xAL:AddressDetails/xAL:Address', namespaces=nsmap): b.address = at.text except lxml.etree.XPathEvalError as e: for at in bld.xpath('bldg:address/core:Address/core:xalAddress/xal:AddressDetails/xal:Address', namespaces=nsmap): b.address = at.text # buildingDetails for at in bld.xpath('uro:buildingDetails/uro:BuildingDetails', namespaces=nsmap): for ch in at.getchildren(): tag = ch.tag tag = tag[ tag.rfind('}')+1: ] b.buildingDetails[tag] = ch.text # extendedAttribute for at in bld.xpath('uro:extendedAttribute/uro:KeyValuePair', namespaces=nsmap): ch = at.getchildren() b.extendedAttribute[ch[0].text] = ch[1].text # lod0RoofEdge vals = bld.xpath('bldg:lod0RoofEdge/gml:MultiSurface/gml:surfaceMember/gml:Polygon/gml:exterior/gml:LinearRing/gml:posList', namespaces=nsmap) b.lod0RoofEdge = [str2floats(v).reshape((-1,3)) for v in vals] # lod1Solid vals = bld.xpath('bldg:lod1Solid/gml:Solid/gml:exterior/gml:CompositeSurface/gml:surfaceMember/gml:Polygon/gml:exterior/gml:LinearRing/gml:posList', namespaces=nsmap) b.lod1Solid = [str2floats(v).reshape((-1,3)) for v in vals] minheight = 0 if options.bHeightZero: # calc min height minheight = 10000 for x in b.lod1Solid: if minheight > np.min(x[:,2]): minheight = np.min(x[:,2]) if b.storeysBelowGround is not None: minheight = minheight + (int(b.storeysBelowGround) * _floorheight) if minheight == 10000: minheight = 0 for x in b.lod1Solid: x[:,2] -= minheight # lod2Solid # nothing to do for parsing <bldg:lod2Solid> # lod2MultiSurface : Ground, Roof, Wall for bb in bld.xpath('bldg:boundedBy/bldg:GroundSurface/bldg:lod2MultiSurface/gml:MultiSurface/gml:surfaceMember/gml:Polygon', namespaces=nsmap): polyid = '#' + bb.attrib['{'+nsmap['gml']+'}id'] vals = bb.xpath('gml:exterior/gml:LinearRing/gml:posList', namespaces=nsmap) surf = [str2floats(v).reshape((-1,3)) for v in vals] if options.bHeightZero: if minheight == 0: # calc min height minheight = 10000 for x in surf: if minheight > np.min(x[:,2]): minheight = np.min(x[:,2]) if b.storeysBelowGround is not None: minheight = minheight + (int(b.storeysBelowGround) * _floorheight) if minheight == 10000: minheight = 0 for x in surf: x[:,2] -= minheight b.lod2ground[polyid] = surf app = appParameterizedTexture.search_list( partex, polyid ) if app is not None: if b.partex.imageURI is None: b.partex = app #elif b.partex.imageURI != app.imageURI: # print('error') for bb in bld.xpath('bldg:boundedBy/bldg:RoofSurface/bldg:lod2MultiSurface/gml:MultiSurface/gml:surfaceMember/gml:Polygon', namespaces=nsmap): polyid = '#' + bb.attrib['{'+nsmap['gml']+'}id'] vals = bb.xpath('gml:exterior/gml:LinearRing/gml:posList', namespaces=nsmap) surf = [str2floats(v).reshape((-1,3)) for v in vals] if options.bHeightZero: for x in surf: x[:,2] -= minheight b.lod2roof[polyid] = surf app = appParameterizedTexture.search_list( partex, polyid ) if app is not None: if b.partex.imageURI is None: b.partex = app #elif b.partex.imageURI != app.imageURI: # print('error') for bb in bld.xpath('bldg:boundedBy/bldg:WallSurface/bldg:lod2MultiSurface/gml:MultiSurface/gml:surfaceMember/gml:Polygon', namespaces=nsmap): polyid = '#' + bb.attrib['{'+nsmap['gml']+'}id'] vals = bb.xpath('gml:exterior/gml:LinearRing/gml:posList', namespaces=nsmap) surf = [str2floats(v).reshape((-1,3)) for v in vals] if options.bHeightZero: for x in surf: x[:,2] -= minheight b.lod2wall[polyid] = surf app = appParameterizedTexture.search_list( partex, polyid ) if app is not None: if b.partex.imageURI is None: b.partex = app #elif b.partex.imageURI != app.imageURI: # print('error') self.buildings.append(b) # vertices, triangles if (not options.bUseLOD2texture) or options.bUseLOD0: mesh = plmesh() for b in self.buildings: if options.bUseLOD2texture and (not options.bUseLOD0): mesh = plmesh() if options.bUseLOD0: # LOD0 vertices, triangles = b.getLOD0polygons() if vertices is not None and triangles is not None: vstart = len(mesh.vertices) mesh.vertices.extend( vertices ) mesh.triangles.extend( triangles + vstart ) elif b.lod2ground or b.lod2roof or b.lod2wall: # LOD2 if options.bUseLOD2texture: if b.partex.imageURI is not None: # convert .tif into .png, because o3d.io.read_image() fails. mesh.texture_filename = os.path.dirname( self.filename ) + '/' + b.partex.imageURI img = cv2.imread(mesh.texture_filename) mesh.texture_filename = options.texturedir + '/' + os.path.basename( mesh.texture_filename ) + '.png' cv2.imwrite(mesh.texture_filename,img) # ground for key, value in b.lod2ground.items(): vertices = [ convertPolarToCartsian( *x ) for x in value[0] ] res = earcut(np.array(vertices,dtype=np.int).flatten(), dim=3) if len(res) > 0: vstart = len(mesh.vertices) mesh.vertices.extend( vertices ) triangles = np.array(res).reshape((-1,3)) mesh.triangles.extend( triangles + vstart ) # texture if options.bUseLOD2texture: if key in b.partex.targets.keys(): mesh.triangle_uvs.extend( [ b.partex.targets[key][0,x] for x in triangles.reshape((-1)) ] ) mesh.triangle_material_ids.extend( [0]*len(triangles) ) else: # add dummy uvs, material_ids (The texture can not appear if the numbers of triangles are different between triangles and them.) mesh.triangle_uvs.extend( [ np.zeros((2)) for x in range(len(triangles)*3) ] ) mesh.triangle_material_ids.extend( [0]*len(triangles) ) # roof for key, value in b.lod2roof.items(): vertices = [ convertPolarToCartsian( *x ) for x in value[0] ] res = earcut(np.array(vertices,dtype=np.int).flatten(), dim=3) if len(res) > 0: vstart = len(mesh.vertices) mesh.vertices.extend( vertices ) triangles = np.array(res).reshape((-1,3)) mesh.triangles.extend( triangles + vstart ) # texture if options.bUseLOD2texture: if key in b.partex.targets.keys(): mesh.triangle_uvs.extend( [ b.partex.targets[key][0,x] for x in triangles.reshape((-1)) ] ) mesh.triangle_material_ids.extend( [0]*len(triangles) ) # wall for key, value in b.lod2wall.items(): vertices = [ convertPolarToCartsian( *x ) for x in value[0] ] res = earcut(
np.array(vertices,dtype=np.int)
numpy.array
# -*- coding: utf-8 -*- import random as rn rn.seed(2) from numpy.random import seed seed(2) from tensorflow import set_random_seed set_random_seed(2) import tensorflow as tf session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) from keras import backend as K sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) import os import numpy as np def load_data(name='freq', get_all_special_data=True): if name == 'freq': path = 'D:/Python/TAR/dataset/metadata/bags of words' elif name == 'chi2': path = 'D:/Python/TAR/chi2_scores/metadata/bags_of_words' elif name == 'tfidf': path = 'D:/Python/TAR/tf-idf_scores/metadata/bags_of_words' else: raise ValueError train_negative = path + '/negative' train_positive = path + '/positive' test_negative = path + '/negative_test' test_positive = path + '/positive_test' special_path = 'D:/Python/TAR/special-data/bags of words' special_train_negative = special_path + '/negative/' special_train_positive = special_path + '/positive/' special_test_negative = special_path + '/negative_test/' special_test_positive = special_path + '/positive_test/' # # load train data # train = [] train_X = [] train_S = [] train_y = [] os.chdir(train_negative) negative_files = os.listdir() #print('negative train files:', len(negative_files)) for txtfile in negative_files: with open(txtfile, 'r', encoding='utf8') as file: vector = file.readlines() vector = [int(token[:-1]) for token in vector] # remove '\n', convert values to int special_vector = [] with open(special_train_negative + txtfile, 'r', encoding='utf-8') as sf: special_vector = sf.readlines() special_vector = [float(token[:-1]) for token in special_vector] if get_all_special_data == False: special_vector = [special_vector[1], special_vector[4], special_vector[5], special_vector[8]] train.append([np.array(vector), np.array(special_vector), np.array([1, 0])]) os.chdir(train_positive) positive_files = os.listdir() #print('positive train files:', len(positive_files)) for txtfile in positive_files: with open(txtfile, 'r', encoding='utf8') as file: vector = file.readlines() vector = [int(token[:-1]) for token in vector] # remove '\n', convert values to int special_vector = [] with open(special_train_positive + txtfile, 'r', encoding='utf-8') as sf: special_vector = sf.readlines() special_vector = [float(token[:-1]) for token in special_vector] if get_all_special_data == False: special_vector = [special_vector[1], special_vector[4], special_vector[5], special_vector[8]] train.append([np.array(vector), np.array(special_vector), np.array([0, 1])]) train.append([np.array(vector), np.array(special_vector), np.array([0, 1])]) train.append([np.array(vector), np.array(special_vector), np.array([0, 1])]) train.append([np.array(vector), np.array(special_vector), np.array([0, 1])]) train.append([np.array(vector), np.array(special_vector), np.array([0, 1])]) train = np.array(train) #np.random.shuffle(train) # don't shuffle here, shuffle data controlably when necessary for sample in train: train_X.append(sample[0]) train_S.append(sample[1]) train_y.append(sample[2]) # # load test data # test = [] test_X = [] test_S = [] test_y = [] os.chdir(test_negative) negative_files = os.listdir() #print('negative test files:', len(negative_files)) for txtfile in negative_files: with open(txtfile, 'r', encoding='utf8') as file: vector = file.readlines() vector = [int(token[:-1]) for token in vector] # remove '\n', convert values to int special_vector = [] with open(special_test_negative + txtfile, 'r', encoding='utf-8') as sf: special_vector = sf.readlines() special_vector = [float(token[:-1]) for token in special_vector] if get_all_special_data == False: special_vector = [special_vector[1], special_vector[4], special_vector[5], special_vector[8]] test.append([np.array(vector), np.array(special_vector), np.array([1, 0])]) os.chdir(test_positive) positive_files = os.listdir() #print('positive test files:', len(positive_files)) for txtfile in positive_files: with open(txtfile, 'r', encoding='utf8') as file: vector = file.readlines() vector = [int(token[:-1]) for token in vector] # remove '\n', convert values to int special_vector = [] with open(special_test_positive + txtfile, 'r', encoding='utf-8') as sf: special_vector = sf.readlines() special_vector = [float(token[:-1]) for token in special_vector] if get_all_special_data == False: special_vector = [special_vector[1], special_vector[4], special_vector[5], special_vector[8]] test.append([np.array(vector), np.array(special_vector), np.array([0, 1])]) test = np.array(test) #np.random.shuffle(test) for sample in test: test_X.append(sample[0]) test_S.append(sample[1]) test_y.append(sample[2]) #print('len(test_y) =', len(test_y)) return np.array(train_X), np.array(train_S), np.array(train_y), np.array(test_X),
np.array(test_S)
numpy.array
from __future__ import annotations import math import warnings from functools import partial from itertools import count from typing import Callable, Sequence, Union import numpy as np import pandas as pd from scipy.optimize import minimize from scipy.stats import chi2 from pykelihood.cached_property import cached_property from pykelihood.distributions import GPD, Distribution, Exponential from pykelihood.metrics import ( AIC, BIC, Brier_score, bootstrap, crps, opposite_log_likelihood, qq_l1_distance, quantile_score, ) from pykelihood.parameters import ParametrizedFunction warnings.filterwarnings("ignore") class Profiler(object): def __init__( self, distribution: Distribution, data: pd.Series, score_function: Callable = opposite_log_likelihood, name: str = "Standard", inference_confidence: float = 0.99, single_profiling_param=None, ): """ :param distribution: distribution on which the inference is based :param data: variable of interest :param score_function: function used for optimisation :param name: name (optional) of the likelihood if it needs to be compared to other likelihood functions :param inference_confidence: wanted confidence for intervals :param fit_chi2: whether the results from the likelihood ratio method must be fitted to a chi2 or a generic chi2 with degree of freedom 1 is used :param single_profiling_param: parameter that we want to fix to create the profiles based on likelihood """ self.name = name self.distribution = distribution self.data = data self.score_function = score_function self.inference_confidence = inference_confidence self.single_profiling_param = single_profiling_param @cached_property def standard_mle(self): estimate = self.distribution.fit(self.data) ll = -opposite_log_likelihood(estimate, self.data) ll = ll if isinstance(ll, float) else ll[0] return (estimate, ll) @cached_property def optimum(self): x0 = self.distribution.optimisation_params estimate = self.distribution.fit_instance( self.data, score=self.score_function, x0=x0 ) func = -self.score_function(estimate, self.data) func = func if isinstance(func, float) else func[0] return (estimate, func) @cached_property def profiles(self): profiles = {} opt, func = self.optimum if self.single_profiling_param is not None: params = [self.single_profiling_param] else: params = opt.optimisation_param_dict.keys() for name, k in opt.optimisation_param_dict.items(): if name in params: r = float(k) lb = r - 5 * (10 ** math.floor(math.log10(np.abs(r)))) ub = r + 5 * (10 ** math.floor(math.log10(np.abs(r)))) range = list(np.linspace(lb, ub, 50)) profiles[name] = self.test_profile_likelihood(range, name) return profiles def test_profile_likelihood(self, range_for_param, param): opt, func = self.optimum profile_ll = [] params = [] for x in range_for_param: try: pl = opt.fit_instance( self.data, score=self.score_function, **{param: x}, ) pl_value = -self.score_function(pl, self.data) pl_value = pl_value if isinstance(pl_value, float) else pl_value[0] if np.isfinite(pl_value): profile_ll.append(pl_value) params.append([p.value for p in pl.flattened_params]) except: pass chi2_par = {"df": 1} lower_bound = func - chi2.ppf(self.inference_confidence, **chi2_par) / 2 filtered_params = pd.DataFrame( [x + [eval] for x, eval in zip(params, profile_ll) if eval >= lower_bound] ) cols = list(opt.flattened_param_dict.keys()) + ["score"] filtered_params = filtered_params.rename(columns=dict(zip(count(), cols))) return filtered_params def confidence_interval(self, metric: Callable[[Distribution], float]): """ :param metric: function depending on the distribution: it can be one of the parameter (ex: lambda x: x.shape() for a parameter called "shape"), or a metric relevant to the field of study (ex: the 100-years return level for extreme value analysis by setting lambda x: x.isf(1/100))... :return: bounds based on parameter profiles for this metric """ estimates = [] profiles = self.profiles if self.single_profiling_param is not None: params = [self.single_profiling_param] else: params = profiles.keys() for param in params: columns = list(self.optimum[0].optimisation_param_dict.keys()) result = profiles[param].apply( lambda row: metric( self.distribution.with_params({k: row[k] for k in columns}.values()) ), axis=1, ) estimates.extend(list(result.values)) if len(estimates): return [np.min(estimates), np.max(estimates)] else: return [-np.inf, np.inf] class DetrendedFluctuationAnalysis(object): def __init__( self, data: pd.DataFrame, scale_lim: Sequence[int] = None, scale_step: float = None, ): """ :param data: pandas Dataframe, if it contains a column for the day and month, the profiles are normalized according to the mean for each calendar day averaged over years. :param scale_lim: limits for window sizes :param scale_step: steps for window sizes """ if not ("month" in data.columns and "day" in data.columns): print("Will use the total average to normalize the data...") mean = data["data"].mean() std = data["data"].std() data = data.assign(mean=mean).assign(std=std) else: mean = ( data.groupby(["month", "day"]) .agg({"data": "mean"})["data"] .rename("mean") .reset_index() ) std = ( data.groupby(["month", "day"]) .agg({"data": "std"})["data"] .rename("std") .reset_index() ) data = data.merge(mean, on=["month", "day"], how="left").merge( std, on=["month", "day"], how="left" ) phi = (data["data"] - data["mean"]) / data["std"] phi = ( phi.dropna() ) # cases where there is only one value for a given day / irrelevant for DFA self.y = np.cumsum(np.array(phi)) if scale_lim is None: lim_inf = 10 ** (math.floor(np.log10(len(data))) - 1) lim_sup = min( 10 ** (math.ceil(np.log10(len(data)))), len(phi) ) # assuming all observations are equally splitted scale_lim = [lim_inf, lim_sup] if scale_step is None: scale_step = 10 ** (math.floor(np.log10(len(data)))) / 2 self.scale_lim = scale_lim self.scale_step = scale_step @staticmethod def calc_rms(x: np.array, scale: int, polynomial_order: int): """ windowed Root Mean Square (RMS) with polynomial detrending. Args: ----- *x* : numpy.array one dimensional data vector *scale* : int length of the window in which RMS will be calculaed Returns: -------- *rms* : numpy.array RMS data in each window with length len(x)//scale """ # making an array with data divided in windows shape = (x.shape[0] // scale, scale) X = np.lib.stride_tricks.as_strided(x, shape=shape) # vector of x-axis points to regression scale_ax = np.arange(scale) rms = np.zeros(X.shape[0]) for e, xcut in enumerate(X): coeff = np.polyfit(scale_ax, xcut, deg=polynomial_order) xfit = np.polyval(coeff, scale_ax) # detrending and computing RMS of each window rms[e] = np.mean((xcut - xfit) ** 2) return rms @staticmethod def trend_type(alpha: float): if round(alpha, 1) < 1: if round(alpha, 1) < 0.5: return "Anti-correlated" elif round(alpha, 1) == 0.5: return "Uncorrelated, white noise" elif round(alpha, 1) > 0.5: return "Correlated" elif round(alpha, 1) == 1: return "Noise, pink noise" elif round(alpha, 1) > 1: if round(alpha, 1) < 1.5: return "Non-stationary, unbounded" else: return "Brownian Noise" def __call__( self, polynomial_order: int, show=False, ax=None, supplement_title="", color="r" ): """ Detrended Fluctuation Analysis - measures power law scaling coefficient of the given signal *x*. More details about the algorithm you can find e.g. here: Kropp, Jürgen, & <NAME>. 2010. Case Studies. Chap. 8-11, pages 167–244 of : In extremis : disruptive events and trends in climate and hydrology. Springer Science & Business Media. """ y = self.y scales = ( np.arange(self.scale_lim[0], self.scale_lim[1], self.scale_step) ).astype(np.int) fluct = np.zeros(len(scales)) # computing RMS for each window for e, sc in enumerate(scales): fluct[e] = np.sqrt( np.mean(self.calc_rms(y, sc, polynomial_order=polynomial_order)) ) # as this stage, F^2(s) should be something of the form s^h(2); taking the log should give a linear form of coefficient h(2) coeff = np.polyfit(np.log(scales), np.log(fluct), 1) # numpy polyfit returns the highest power first if show: import matplotlib matplotlib.rcParams["text.usetex"] = True ax = ax or matplotlib.pyplot.gca() default_title = "Detrended Fluctuation Analysis" title = ( default_title if supplement_title == "" else f"{default_title} {supplement_title}" ) fluctfit = np.exp(np.polyval(coeff, np.log(scales))) ax.loglog(scales, fluct, "o", color=color, alpha=0.6) ax.loglog( scales, fluctfit, color=color, alpha=0.6, label=r"DFA-{}, {}: $\alpha$={}".format( polynomial_order, self.trend_type(coeff[0]), round(coeff[0], 2) ), ) ax.set_title(title) ax.set_xlabel(r"$\log_{10}$(time window)") ax.set_ylabel(r"$\log_{10}$F(t)") ax.legend(loc="lower right", fontsize="small") return scales, fluct, coeff[0] def pettitt_test(data: Union[np.array, pd.DataFrame, pd.Series]): """ Pettitt's non-parametric test for change-point detection. Given an input signal, it reports the likely position of a single switch point along with the significance probability for location K, approximated for p <= 0.05. """ T = len(data) if isinstance(data, pd.DataFrame) or isinstance(data, pd.Series): X = np.array(data).reshape((len(data), 1)) else: X = data.reshape((len(data), 1)) vector_of_ones = np.ones([1, len(X)]) matrix_col_X = np.matmul(X, vector_of_ones) matrix_lines_X = matrix_col_X.T diff = matrix_lines_X - matrix_col_X diff_sign = np.sign(diff) U_initial = diff_sign[0, 1:].sum() sum_of_each_line = diff_sign[1:].sum(axis=1) cs = sum_of_each_line.cumsum() U = U_initial + cs U = list(U) U.insert(0, U_initial) loc = np.argmax(np.abs(U)) K = np.max(
np.abs(U)
numpy.abs
import cv2, os, sys import numpy as np import imutils as iu import sudoku_solver as solver class ocrClass: def __init__(self): samples = np.loadtxt('ml/generalsamples.data',np.float32) responses = np.loadtxt('ml/generalresponses.data',np.float32) responses = responses.reshape((responses.size,1)) #.model uses kNearest to perform OCR self.model = cv2.ml.KNearest_create() self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) def getNumber(self, img): roi = cv2.resize(img, (25,35)) roismall = roi.reshape((1,875)) roismall = np.float32(roismall) retval, results, neigh_resp, dists = self.model.findNearest(roismall, 1) predictedNum = int(results[0][0]) return predictedNum class imageClass: def __init__(self): self.captured = [] #.gray is the grayscale captured image self.gray = [] #.thres is after adaptive thresholding is applied self.thresh = [] #.contours contains information about the contours found in the image self.contours = [] self.cuttedThresh = [] self.cuttedOrig = [] self.corners = np.array([]) def captureAndCrop(self, img): height, width = img.shape[:2] if height > 800 or width > 800: if height > width: self.captured = iu.resize(img, height=800) else: self.captured = iu.resize(img, width=800) else: self.captured = img self.gray = cv2.cvtColor(self.captured, cv2.COLOR_BGR2GRAY) #noise removal with gaussian blur self.gray = cv2.GaussianBlur(self.gray,(5,5),0) #then do adaptive thresholding self.thresh = cv2.adaptiveThreshold(self.gray,255,1,1,11,5) #cv2.imwrite('out/threshSudoku.png', self.thresh) #find countours in threshold image _, contours, _ = cv2.findContours(self.thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) maxArea = 0 biggest = None for i in contours: area = cv2.contourArea(i) if area > 40000: epsilon = 0.1*cv2.arcLength(i,True) approx = cv2.approxPolyDP(i,epsilon,True) #cv2.drawContours(self.captured, [i], 0, (0,0,255), 1) if area > maxArea and len(approx)==4: maxArea = area biggest = i self.corners = approx # print( area ) if biggest is not None: pts1 = np.float32(self.rotateCorners(self.corners)) pts2 = np.float32([[0,0],[0,450],[450,0],[450,450]]) M = cv2.getPerspectiveTransform(pts1,pts2) self.cuttedThresh = cv2.warpPerspective(self.thresh,M,(450,450)) self.cuttedOrig = cv2.warpPerspective(self.captured,M,(450,450)) #cv2.drawContours(self.captured, [biggest], 0, (0,255,0), 3) #cv2.imwrite('out/contour.png', self.captured) cv2.imwrite('out/cuttedThresh.png', self.cuttedThresh) return self.captured return None def readSudoku(self): img = np.zeros([450,450,3],dtype=np.uint8) sudoku = np.zeros([9,9],dtype=np.uint32) #thresh = cv2.adaptiveThreshold(self.cutted,255,1,1,3,1) #morph = cv2.morphologyEx(thresh,cv2.MORPH_ERODE,None,iterations = 0) _, contours,_ = cv2.findContours(self.cuttedThresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) ocr = ocrClass() fieldCount = 0 for i in contours: area = cv2.contourArea(i) if area > 50: [x,y,w,h] = cv2.boundingRect(i) if h > 15 and h < 45 and w > 8 and w < 45: fieldCount += 1 roi = self.cuttedThresh[y:y+h,x:x+w] num = ocr.getNumber(roi) sudox = int((x+(w/2))//50) sudoy = int((y+(h/2))//50) sudoku[sudoy][sudox] = num #cv2.imwrite('out/fields/' + str(num) + '/' + str(fieldCount) +'.png', roi) #cv2.drawContours(img, [i], 0, (255,255,255), 1) #cv2.imwrite('out/contours.png', img) #cv2.imwrite('out/thresh.png', thresh) #print ("%i numbers recognized"%fieldCount) #print ("sudoku:\n", sudoku) return sudoku def writeSudoku(self, sudoku): #solutionImg = np.zeros((450, 450, 4), dtype=np.uint8) solutionImg = cv2.cvtColor(self.cuttedOrig, cv2.COLOR_RGB2RGBA) #solutionImg = self.cuttedOrig for y in range(9): for x in range(9): num = sudoku[y][x] if num != 0: sx = x * 50 + 15 sy = y * 50 + 38 cv2.putText(solutionImg,str(num),(sx,sy), 0 , 1, (0,0,0, 255), 2, 2) cv2.imwrite("out/onlySolution.png", solutionImg) pts1 = np.float32(self.rotateCorners(self.corners)) pts2 = np.float32([[0,0],[0,450],[450,0],[450,450]]) M = cv2.getPerspectiveTransform(pts2,pts1) width, height = self.captured.shape[:2] solutionImg = cv2.warpPerspective(solutionImg,M,(height,width)) solution = self.captured y1, y2 = 0,0 +solutionImg.shape[0] x1, x2 = 0,0 +solutionImg.shape[1] alpha_s = solutionImg[:, :, 3] / 255.0 alpha_l = 1.0 - alpha_s for c in range(0, 3): solution[y1:y2, x1:x2, c] = (alpha_s * solutionImg[:, :, c] + alpha_l * solution[y1:y2, x1:x2, c]) return solution def invertSudoku(self, sudoku, solution): # set all values in the solution which were given in the start sudoku to 0 for row in range(9): for val in range(9): if sudoku[row][val] != 0: solution[row][val] = 0 return solution def rotateCorners(self, corners): # rotates the values of corners always in the same order # top-left, bottom-left, top-right, bottom-right tl = None # top left bl = None # bottom left tr = None # top right br = None # bottom right # getting the tl and br by getting the smallest # and biggest sum of the corner tupel biggest = 0 smallest = 1000000 rest = [] for corner in corners: added = corner[0][0] + corner[0][1] if added > biggest: biggest = added br = corner[0] if added < smallest: smallest = added tl = corner[0] # getting the bl and tr corners for corner in corners: if not np.array_equal(corner[0], br) and not
np.array_equal(corner[0], tl)
numpy.array_equal
# Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) 2021 <NAME> and authors of arboEL. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import json import math import time import torch from torch.utils.data import (DataLoader, SequentialSampler) import numpy as np from tqdm import tqdm import pickle from scipy.sparse import coo_matrix from scipy.sparse.csgraph import connected_components from special_partition.special_partition import cluster_linking_partition from collections import defaultdict import blink.biencoder.data_process_mult as data_process import blink.candidate_ranking.utils as utils from blink.common.params import BlinkParser from blink.biencoder.biencoder import BiEncoderRanker from IPython import embed def get_query_nn(knn, embeds, index, q_embed, searchK=None, gold_idxs=None, type_idx_mapping=None): """ Parameters ---------- knn : int the number of nearest-neighbours to return embeds : ndarray matrix of embeddings index : faiss faiss index of the embeddings q_embed : ndarray 2-D array containing the query embedding searchK: int optional parameter, the exact number of nearest-neighbours to retrieve and score gold_idxs : array optional parameter, list of golden cui indexes type_idx_mapping : array optional parameter, list mapping type-specific indexes to the indexes of the full dictionary Returns ------- nn_idxs : array nearest neighbour indices for the query, sorted in descending order of scores scores : array similarity scores for each nearest neighbour, sorted in descending order """ # To accomodate the approximate-nature of the knn procedure, retrieve more samples and then filter down k = searchK if searchK is not None else max(16, 2*knn) # Find k nearest neighbours _, nn_idxs = index.search(q_embed, k) nn_idxs = nn_idxs.astype(np.int64).flatten() if type_idx_mapping is not None: nn_idxs = type_idx_mapping[nn_idxs] nn_embeds = torch.tensor(embeds[nn_idxs]).cuda() # Compute query-candidate similarity scores scores = torch.flatten( torch.mm(torch.tensor(q_embed).cuda(), nn_embeds.T)).cpu() # Sort the candidates by descending order of scores nn_idxs, scores = zip( *sorted(zip(nn_idxs, scores), key=lambda x: -x[1])) if gold_idxs is not None: # Calculate the knn index at which the gold cui is found (-1 if not found) for topk,i in enumerate(nn_idxs): if i in gold_idxs: break topk = -1 # Return only the top k neighbours, and the recall index return np.array(nn_idxs[:knn], dtype=np.int64), np.array(scores[:knn]), topk # Return only the top k neighbours return np.array(nn_idxs[:knn], dtype=np.int64), np.array(scores[:knn]) def partition_graph(graph, n_entities, directed, return_clusters=False): """ Parameters ---------- graph : dict object containing rows, cols, data, and shape of the entity-mention joint graph n_entities : int number of entities in the dictionary directed : bool whether the graph construction should be directed or undirected return_clusters : bool flag to indicate if clusters need to be returned from the partition Returns ------- partitioned_graph : coo_matrix partitioned graph with each mention connected to only one entity clusters : dict (optional) contains arrays of connected component indices of the graph """ rows, cols, data, shape = graph['rows'], graph['cols'], graph['data'], graph['shape'] rows, cols, data = cluster_linking_partition( rows, cols, data, n_entities, directed ) # Construct the partitioned graph partitioned_graph = coo_matrix( (data, (rows, cols)), shape=shape) if return_clusters: # Get an array of the graph with each index marked with the component label that it is connected to _, cc_labels = connected_components( csgraph=partitioned_graph, directed=directed, return_labels=True) # Store clusters of indices marked with labels with at least 2 connected components unique_cc_labels, cc_sizes = np.unique(cc_labels, return_counts=True) filtered_labels = unique_cc_labels[cc_sizes >= 2] clusters = defaultdict(list) for i, cc_label in enumerate(cc_labels): if cc_label in filtered_labels: clusters[cc_label].append(i) return partitioned_graph, clusters return partitioned_graph def analyzeClusters(clusters, dictionary, queries, knn): """ Parameters ---------- clusters : dict contains arrays of connected component indices of a graph dictionary : ndarray entity dictionary to evaluate queries : ndarray mention queries to evaluate knn : int the number of nearest-neighbour mention candidates considered Returns ------- results : dict Contains n_entities, n_mentions, knn_mentions, accuracy, failure[], success[] """ n_entities = len(dictionary) n_mentions = len(queries) results = { 'n_entities': n_entities, 'n_mentions': n_mentions, 'knn_mentions': knn, 'accuracy': 0, 'failure': [], 'success': [] } _debug_n_mens_evaluated, _debug_clusters_wo_entities, _debug_clusters_w_mult_entities = 0, 0, 0 print("Analyzing clusters...") for cluster in clusters.values(): # The lowest value in the cluster should always be the entity pred_entity_idx = cluster[0] # Track the graph index of the entity in the cluster pred_entity_idxs = [pred_entity_idx] if pred_entity_idx >= n_entities: # If the first element is a mention, then the cluster does not have an entity _debug_clusters_wo_entities += 1 continue pred_entity = dictionary[pred_entity_idx] pred_entity_cuis = [str(pred_entity['cui'])] _debug_tracked_mult_entities = False for i in range(1, len(cluster)): men_idx = cluster[i] - n_entities if men_idx < 0: # If elements after the first are entities, then the cluster has multiple entities if not _debug_tracked_mult_entities: _debug_clusters_w_mult_entities += 1 _debug_tracked_mult_entities = True # Track the graph indices of each entity in the cluster pred_entity_idxs.append(cluster[i]) # Predict based on all entities in the cluster pred_entity_cuis += list(set([dictionary[cluster[i]]['cui']]) - set(pred_entity_cuis)) continue _debug_n_mens_evaluated += 1 men_query = queries[men_idx] men_golden_cuis = list(map(str, men_query['label_cuis'])) report_obj = { 'mention_id': men_query['mention_id'], 'mention_name': men_query['mention_name'], 'mention_gold_cui': '|'.join(men_golden_cuis), 'mention_gold_cui_name': '|'.join([dictionary[i]['title'] for i in men_query['label_idxs'][:men_query['n_labels']]]), 'predicted_name': '|'.join([d['title'] for d in [dictionary[i] for i in pred_entity_idxs]]), 'predicted_cui': '|'.join(pred_entity_cuis), } # Correct prediction if not set(pred_entity_cuis).isdisjoint(men_golden_cuis): results['accuracy'] += 1 results['success'].append(report_obj) # Incorrect prediction else: results['failure'].append(report_obj) results['accuracy'] = f"{results['accuracy'] / float(_debug_n_mens_evaluated) * 100} %" print(f"Accuracy = {results['accuracy']}") # Run sanity checks assert n_mentions == _debug_n_mens_evaluated assert _debug_clusters_wo_entities == 0 assert _debug_clusters_w_mult_entities == 0 return results def main(params): output_path = params["output_path"] if not os.path.exists(output_path): os.makedirs(output_path) logger = utils.get_logger(params["output_path"], 'log-eval') pickle_src_path = params["pickle_src_path"] if pickle_src_path is None or not os.path.exists(pickle_src_path): pickle_src_path = output_path embed_data_path = params["embed_data_path"] if embed_data_path is None or not os.path.exists(embed_data_path): embed_data_path = output_path # Init model reranker = BiEncoderRanker(params) reranker.model.eval() tokenizer = reranker.tokenizer model = reranker.model device = reranker.device n_gpu = reranker.n_gpu knn = params["knn"] use_types = params["use_types"] data_split = params["data_split"] # Default = "test" # Load test data entity_dictionary_loaded = False test_dictionary_pkl_path = os.path.join(pickle_src_path, 'test_dictionary.pickle') test_tensor_data_pkl_path = os.path.join(pickle_src_path, 'test_tensor_data.pickle') test_mention_data_pkl_path = os.path.join(pickle_src_path, 'test_mention_data.pickle') if os.path.isfile(test_dictionary_pkl_path): print("Loading stored processed entity dictionary...") with open(test_dictionary_pkl_path, 'rb') as read_handle: test_dictionary = pickle.load(read_handle) entity_dictionary_loaded = True if os.path.isfile(test_tensor_data_pkl_path) and os.path.isfile(test_mention_data_pkl_path): print("Loading stored processed test data...") with open(test_tensor_data_pkl_path, 'rb') as read_handle: test_tensor_data = pickle.load(read_handle) with open(test_mention_data_pkl_path, 'rb') as read_handle: mention_data = pickle.load(read_handle) else: test_samples = utils.read_dataset(data_split, params["data_path"]) if not entity_dictionary_loaded: with open(os.path.join(params["data_path"], 'dictionary.pickle'), 'rb') as read_handle: test_dictionary = pickle.load(read_handle) # Check if dataset has multiple ground-truth labels mult_labels = "labels" in test_samples[0].keys() if params["filter_unlabeled"]: # Filter samples without gold entities test_samples = list(filter(lambda sample: (len(sample["labels"]) > 0) if mult_labels else (sample["label"] is not None), test_samples)) logger.info("Read %d test samples." % len(test_samples)) mention_data, test_dictionary, test_tensor_data = data_process.process_mention_data( test_samples, test_dictionary, tokenizer, params["max_context_length"], params["max_cand_length"], multi_label_key="labels" if mult_labels else None, context_key=params["context_key"], silent=params["silent"], logger=logger, debug=params["debug"], knn=knn, dictionary_processed=entity_dictionary_loaded ) print("Saving processed test data...") if not entity_dictionary_loaded: with open(test_dictionary_pkl_path, 'wb') as write_handle: pickle.dump(test_dictionary, write_handle, protocol=pickle.HIGHEST_PROTOCOL) with open(test_tensor_data_pkl_path, 'wb') as write_handle: pickle.dump(test_tensor_data, write_handle, protocol=pickle.HIGHEST_PROTOCOL) with open(test_mention_data_pkl_path, 'wb') as write_handle: pickle.dump(mention_data, write_handle, protocol=pickle.HIGHEST_PROTOCOL) # Store test dictionary token ids test_dict_vecs = torch.tensor( list(map(lambda x: x['ids'], test_dictionary)), dtype=torch.long) # Store test mention token ids test_men_vecs = test_tensor_data[:][0] n_entities = len(test_dict_vecs) n_mentions = len(test_tensor_data) # Values of k to run the evaluation against knn_vals = [0] + [2**i for i in range(int(math.log(knn, 2)) + 1)] # Store the maximum evaluation k max_knn = knn_vals[-1] time_start = time.time() # Check if graphs are already built graph_path = os.path.join(output_path, 'graphs.pickle') if not params['only_recall'] and os.path.isfile(graph_path): print("Loading stored joint graphs...") with open(graph_path, 'rb') as read_handle: joint_graphs = pickle.load(read_handle) else: # Initialize graphs to store mention-mention and mention-entity similarity score edges; # Keyed on k, the number of nearest mentions retrieved joint_graphs = {} for k in knn_vals: joint_graphs[k] = { 'rows':
np.array([])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 13 16:00:10 2019 @author: nico """ import os import numpy as np from scipy import signal as sig import matplotlib.pyplot as plt import control os.system ("clear") # limpia la terminal de python plt.close("all") #cierra todos los graficos num = np.array([1,0, 0, 0, -1]) #numerador de H[b2, b1, b0] den = np.array([1, 0, 0, 0, 0]) z, p, k = sig.tf2zpk(num,den) ww, hh = sig.freqz(num, den) print("Z =", z, "\n", "P =", p, "\n", "K =", k, "\n") ww, hh = sig.freqz(num, den) ww = ww / np.pi eps =
np.finfo(float)
numpy.finfo
import numpy as np import cv2 import glob import os import random from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.filters import gaussian_filter from multiprocessing import Pool def elastic_transform(image, alpha, sigma, alpha_affine, random_state=None): """Elastic deformation of images as described in [Simard2003]_ (with modifications). .. [Simard2003] <NAME>, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5 """ if random_state is None: random_state = np.random.RandomState(None) shape = image.shape shape_size = shape[:2] # Random affine center_square = np.float32(shape_size) // 2 square_size = min(shape_size) // 3 pts1 = np.float32([center_square + square_size, [center_square[0] + square_size, center_square[1] - square_size], center_square - square_size]) pts2 = pts1 + random_state.uniform(-alpha_affine, alpha_affine, size=pts1.shape).astype(np.float32) M = cv2.getAffineTransform(pts1, pts2) image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101) dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma) * alpha dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma) * alpha dz = np.zeros_like(dx) x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2])) indices = np.reshape(y + dy, (-1, 1)),
np.reshape(x + dx, (-1, 1))
numpy.reshape
""" Determination of the echo top height from radar PPI data using the Lakshmanan et al. (2013). method @title: echotop @author: <NAME> <<EMAIL>> @date: 26/08/2021 @institution: Monash University @reference: Lakshmanan et al. (2013), "An Improved Method for Estimating Radar Echo-Top Height". Weather Forecast. 28, 481–488, doi:10.1175/WAF-D-12-00084.1. .. autosummary:: :toctree: generated/ cloud_top_height grid_cloud_top """ import numpy as np from numba import jit from scipy.spatial import cKDTree @jit def cloud_top_height( r, azimuth, elevation, st_sweep, ed_sweep, refl, eth_thld=0, noise_thld=-2, min_range=15e3, verbose=False, ): """ Estimating Radar Echo-Top Height using the improved method from Lakshmanan et al. (2013). Parameters: =========== r: <nr> Radar range. azimuth: <time> Radar azimuth. elevation: <time> Radar elevation. st_sweep: <nsweep> Radar sweep start ray index. ed_sweep: <nsweep> Radar sweep end ray index. refl: <time, nr> Radar reflectivity. eth_thld: float Threshold value (e.g., 0 dBZ, 18 dBZ, ...) used to compute the echo top noise_thld: float Signal to noise cutoff threshold value. min_range: float Minimum range in meter at which the echo top height are computed to avoid the cone of silence, generally 15 km. verbose: bool Print debug messages Returns: ======== cloudtop: <na, nr> Cloud top height in meters, dimensions are na: length of the azimuth array of the first sweep, and nr: length of the input 'r' array. """ earth_radius = 6371000 na0 = st_sweep[1] nsweep = len(st_sweep) cloudtop = np.zeros((na0, len(r))) + np.NaN ground_range = np.zeros((nsweep, len(r))) elev_ref = elevation[0] for i, st in enumerate(st_sweep): ground_range[i, :] = r * np.cos(np.pi * elevation[st + 1] / 180) for i in range(1, len(st_sweep)): st = st_sweep[i] ed = ed_sweep[i] elev_ref = elevation[st_sweep[i - 1]] elev_iter = elevation[st] st_ref = st_sweep[i - 1] ed_ref = ed_sweep[i - 1] if verbose: print(i, st, ed, elev_iter, elev_ref) for j in range(na0): nbeam_ref = np.argmin(np.abs(azimuth[st_ref:ed_ref] - azimuth[j])) + st_ref nbeam_iter = np.argmin(np.abs(azimuth[st:ed] - azimuth[j])) + st if np.abs(azimuth[nbeam_ref] - azimuth[nbeam_iter]) > 5: continue for k in range(len(r)): if r[k] < min_range: continue gr_ref = ground_range[i - 1, k] npos = np.argmin(
np.abs(ground_range[i, :] - gr_ref)
numpy.abs
""" Authors: <NAME> | @scottgallacher-3 <NAME> | @SimonMolinsky Contributors: <NAME> | https://github.com/ethmtrgt """ import csv from operator import itemgetter import warnings import numpy as np import pandas as pd from scipy.optimize import curve_fit import matplotlib.pyplot as plt class TheoreticalSemivariogram: """ Class calculates theoretical semivariogram. Class takes two parameters during initialization: points_array - (numpy array) analysed points where the last column represents values, typically x, y, value, empirical_semivariance - (numpy array) semivariance where first row of array represents lags and the second row represents semivariance's values for a given lag. Available methods: - predict() - method predicts value of the unknown point based on the chosen model, - fit_semivariance() - Method fits experimental points into chosen semivariance model type, - find_optimal_model() - Method fits experimental points into all available models and choose one with the lowest error. Available theoretical models: - spherical_model(distance, nugget, sill, semivar_range) - gaussian_model(distance, nugget, sill, semivar_range) - exponential_model(distance, nugget, sill, semivar_range) - linear_model(distance, nugget, sill, semivar_range) Additional methods: - calculate_base_error(), - show_experimental_semivariogram() - shows semivariogram which is a part of the class object's instance, - show_semivariogram() - shows experimental semivariogram with theoretical model (if it was calculated). """ def __init__(self, points_array=None, empirical_semivariance=None, verbose=False): """ INPUT: :param points_array: (numpy array) [point x, point y, value] (optional if model parameters are imported) :param empirical_semivariance: (numpy array) array of pair of lag and semivariance values where semivariance[:, 0] = array of lags semivariance[:, 1] = array of lag's values semivariance[:, 2] = array of number of points in each lag. (optional if model parameters are imported) :param verbose: (bool) if True then all messages are printed, otherwise nothing. """ self.points_array = points_array self.empirical_semivariance = empirical_semivariance self.verbose = verbose self.theoretical_model = None self.chosen_model_name = None self.nugget = None self.range = None self.sill = None self.model_error = None self.is_weighted = False # MODELS @staticmethod def spherical_model(lags, nugget, sill, semivar_range): """ gamma = nugget + sill*[(3/2)*a - (1/2)*(a**3)], 0 <= lag <= range gamma = nugget + sill, lag > range gamma = 0, lag == 0 where: a = lag / range INPUT: :param lags: array of lags from empirical semivariance, :param nugget: scalar, :param sill: scalar, :param semivar_range: optimal range calculated by fit_semivariance method. OUTPUT: :return: an array of modeled values for given range. Values are calculated based on the spherical model. """ a = lags / semivar_range a1 = 3 / 2 * a a2 = 1 / 2 * a ** 3 gamma = np.where((lags <= semivar_range), (nugget + sill * (a1 - a2)), (nugget + sill)) return gamma @staticmethod def exponential_model(lags, nugget, sill, semivar_range): """ gamma = nugget + sill*[1 - exp(-lag/range)], distance > 0 gamma = 0, lag == 0 INPUT: :param lags: array of lags from empirical semivariance, :param nugget: scalar, :param sill: scalar, :param semivar_range: optimal range calculated by fit_semivariance method. OUTPUT: :return: an array of modeled values for given range. Values are calculated based on the exponential model. """ try: gamma = nugget + sill * (1 - np.exp(-lags / semivar_range)) except TypeError: lags = lags.astype(float) semivar_range = float(semivar_range) gamma = nugget + sill * (1 - np.exp(-lags / semivar_range)) return gamma @staticmethod def linear_model(lags, nugget, sill, semivar_range): """ gamma = nugget + sill*(lag/range), 0 <= lag <= range gamma = nugget + sill, lag > range gamma = 0, lag == 0 INPUT: :param lags: array of lags from empirical semivariance, :param nugget: scalar, :param sill: scalar, :param semivar_range: optimal range calculated by fit_semivariance method. OUTPUT: :return: an array of modeled values for given range. Values are calculated based on the linear model. """ gamma = np.where((lags <= semivar_range), (nugget + sill * (lags / semivar_range)), (nugget + sill)) return gamma @staticmethod def gaussian_model(lags, nugget, sill, semivar_range): """ gamma = nugget + sill*[1 - exp(-1*(lag**2 / range**2))], lag > 0 gamma = 0, lag == 0 INPUT: :param lags: array of ranges from empirical semivariance, :param nugget: scalar, :param sill: scalar, :param semivar_range: optimal range calculated by fit_semivariance method. OUTPUT: :return: an array of modeled values for given range. Values are calculated based on the gaussian model. """ gamma = nugget + sill * (1 - np.exp(-1*(lags ** 2 / semivar_range ** 2))) if lags[0] == 0: gamma[0] = 0 return gamma @staticmethod def power_model(lags, nugget, sill, semivar_range): """ gamma = nugget + sill*[1 - exp(lag**2 / range**2)], lag > 0 gamma = 0, lag == 0 INPUT: :param lags: array of ranges from empirical semivariance, :param nugget: scalar, :param sill: scalar, :param semivar_range: optimal range calculated by fit_semivariance method. OUTPUT: :return: an array of modeled values for given range. Values are calculated based on the power model. """ gamma = nugget + sill * (1 - np.exp((lags ** 2 / semivar_range ** 2))) if lags[0] == 0: gamma[0] = 0 return gamma @staticmethod def cubic_model(lags, nugget, sill, semivar_range): """ gamma = nugget + sill*[7*(a**2) - 8.75*(a**3) + 3.5*(a**5) - 0.75*(a**7)], lag < range gamma = nugget + sill, lag > range gamma = 0, lag == 0 where: a = lag / range INPUT: :param lags: array of lags from empirical semivariance, :param nugget: scalar, :param sill: scalar, :param semivar_range: optimal range calculated by fit_semivariance method. OUTPUT: :return: an array of modeled values for given range. Values are calculated based on the cubic model. """ a = lags / semivar_range a1 = 7 * a ** 2 a2 = -8.75 * a ** 3 a3 = 3.5 * a ** 5 a4 = -0.75 * a ** 7 gamma = np.where((lags < semivar_range), nugget + sill * (a1 + a2 + a3 + a4), nugget + sill) if lags[0] == 0: gamma[0] = 0 return gamma @staticmethod def circular_model(lags, nugget, sill, semivar_range): ##### NOTE: found two competing model formulae for the circular model ##### 1st one doesn't seem to work with the test data; but 2nd one does ##### Sources added in docstring, further comparison may be needed ##### (DELETE AFTER REVIEW) """ gamma = nugget + sill*[1 - (2/np.pi * np.arccos(a)) + np.sqrt(1 - (lag ** 2)/ (range ** 2) )], 0 < lag <= range OR gamma = nugget + (2/np.pi)*sill*[a * np.sqrt(1 - a ** 2) + np.arcsin(a)], 0 < lag <= range gamma = 0, lag == 0 where: a = lag / range (Model 1 Source: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-kriging-works.htm#GUID-94A34A70-DBCF-4B23-A198-BB50FB955DC0) (Model 2 Source: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-kriging-works.htm#GUID-94A34A70-DBCF-4B23-A198-BB50FB955DC0) INPUT: :param lags: array of ranges from empirical semivariance, :param nugget: scalar, :param sill: scalar, :param semivar_range: optimal range calculated by fit_semivariance method. OUTPUT: :return: an array of modeled values for given range. Values are calculated based on the circular model. """ # TODO: check conditions: # apparently, even using np.where uncovers invalid values in the arccos and square root # but as long as lag <= range this shouldn't happen # use np.clip on the arrays to be passed a = lags / semivar_range # use np.clip to limit range of values passed into np.arccos and np.sqrt # gamma = np.where((lags <= semivar_range), # (nugget + sill*(1 - 2/np.pi * np.arccos(np.clip(a, -1, 1)) * # np.sqrt(1 - np.clip(a**2, -1, 1))) ), # (nugget + sill)) # second formula found which seems to fit better, and looks as expected gamma = nugget + (2/np.pi) * sill*(a * np.sqrt(1 - np.clip(a**2, -1, 1)) + np.arcsin(np.clip(a, -1, 1))) if lags[0] == 0: gamma[0] = 0 return gamma def fit_semivariance(self, model_type, number_of_ranges=16, number_of_sill_ranges=16): """ Method fits experimental points into chosen semivariance model type. INPUT: :param model_type: (str) 'exponential', 'gaussian', 'linear', 'spherical', :param number_of_ranges: (int) deafult = 16. Used to create an array of equidistant ranges between minimal range of empirical semivariance and maximum range of empirical semivariance, :param number_of_sill_ranges: (int) default=16, number of sill ranges to find the optimal one in a grid search. OUTPUT: :return: (model_type, model parameters) """ # model models = { 'spherical': self.spherical_model, 'exponential': self.exponential_model, 'linear': self.linear_model, 'gaussian': self.gaussian_model } model = models[model_type] self.chosen_model_name = model_type self.theoretical_model = model # sill variance = np.var(self.points_array[:, -1]) minsill = 0.3 * variance maxsill = 2 * variance sills = np.linspace(minsill, maxsill, number_of_sill_ranges) # nugget if self.empirical_semivariance[0][0] != 0: nugget = 0 else: nugget = self.empirical_semivariance[0][1] # range minrange = self.empirical_semivariance[:, 0][1] maxrange = self.empirical_semivariance[:, 0][-1] ranges = np.linspace(minrange, maxrange, number_of_ranges) optimal_range, optimal_sill = self.calculate_range_and_sill(model, ranges, sills, nugget) # output model self.nugget = nugget self.sill = optimal_sill self.range = optimal_range # model error self.model_error = self.calculate_model_error(model, self.nugget, self.sill, self.range) return model_type def find_optimal_model(self, weighted=False, number_of_ranges=16, number_of_sill_ranges=16): """ Method fits experimental points into all available models and choose one with the lowest error. INPUT: :param weighted: (bool) default=False. If True then each lag is weighted by: sqrt(N(h))/gamma_{exp}(h) where: - N(h) - number of point pairs in a given range, gamma_{exp}(h) - value of experimental semivariogram for h. :param number_of_ranges: (int) default=16. Used to create an array of equidistant ranges between minimal range of empirical semivariance and maximum range of empirical semivariance, :param number_of_sill_ranges: (int) default=16, number of sill ranges to find the optimal one in a grid search. """ if weighted: self.is_weighted = True # models models = { 'spherical': self.spherical_model, 'exponential': self.exponential_model, 'linear': self.linear_model, } # calculate base error for a flat line base_error = self.calculate_base_error() # sill variance = np.var(self.points_array[:, -1]) minsill = 0.3 * variance maxsill = 2 * variance sills = np.linspace(minsill, maxsill, number_of_sill_ranges) # nugget if self.empirical_semivariance[0][0] != 0: nugget = 0 else: nugget = self.empirical_semivariance[0][1] # range minrange = self.empirical_semivariance[:, 0][1] maxrange = self.empirical_semivariance[:, 0][-1] ranges = np.linspace(minrange, maxrange, number_of_ranges) # Calculate model errors model_errors = [('Linear (LS) reference model', base_error, None)] for model in models: optimal_range, optimal_sill = self.calculate_range_and_sill(models[model], ranges, sills, nugget) # output model model_error = self.calculate_model_error(models[model], nugget, optimal_sill, optimal_range) model_errors.append((model, model_error, [nugget, optimal_sill, optimal_range])) if self.verbose: print('Model: {}, error value: {}'.format(model, model_error)) # Select the best model sorted_errors = sorted(model_errors, key=itemgetter(1)) if sorted_errors[0][0] == 'Linear (LS) reference model': # This is unlikely case when error estimated as the squared distance between extrapolated values and # x axis is smaller than models' errors model_name = sorted_errors[1][0] model_error = sorted_errors[1][1] model_params = sorted_errors[1][2] warning_msg = 'WARNING: linear model fitted to the experimental variogram is better than the core models!' warnings.warn(warning_msg) if self.verbose: print('Chosen model: {}, with value of: {}.'.format( model_name, model_error )) else: model_name = sorted_errors[0][0] model_error = sorted_errors[0][1] model_params = sorted_errors[0][2] if self.verbose: print('Chosen model: {}, with value: {}.'.format( model_name, model_error )) self.theoretical_model = models[model_name] self.nugget = model_params[0] self.sill = model_params[1] self.range = model_params[2] self.chosen_model_name = model_name self.model_error = model_error return model_name def calculate_range_and_sill(self, model, possible_ranges, possible_sills, nugget): errors = [] ranges_and_sills = [] for r in possible_ranges: for s in possible_sills: x = (self.empirical_semivariance[:, 1] - model(self.empirical_semivariance[:, 0], nugget, s, r)) x = x * x errors.append(np.mean(x)) ranges_and_sills.append((r, s)) best_pos = np.argmin(errors) opt_range, opt_sill = ranges_and_sills[best_pos] return opt_range, opt_sill def calculate_range(self, model, ranges, nugget, sill): # TODO: deprecated method errors = [] for r in ranges: x = (self.empirical_semivariance[:, 1] - model(self.empirical_semivariance[:, 0], nugget, sill, r)) x = x ** 2 errors.append(np.mean(x)) range_pos = np.argmin(errors) optimal_rg = ranges[range_pos] return optimal_rg def calculate_values(self): output_model = self.theoretical_model(self.empirical_semivariance[:, 0], self.nugget, self.sill, self.range) return output_model @staticmethod def _curve_fit_function(x, a, b): """ Method fits data into a 1st order polynomial curve where: y = a * x + b INPUT: :param a: number or numpy array, :param b: number or numpy array, :param x: number or numpy array. OUTPUT: :return: y -> a * x + b | number or numpy array. """ y = a * x + b return y def _get_weights(self): """ Method creates weights based on the lags for each semivariogram point OUTPUT: :returns: (numpy array) """ nh = np.sqrt(self.empirical_semivariance[:, 2]) vals = self.empirical_semivariance[:, 1] nh_divided_by_vals = np.divide(nh, vals, out=np.zeros_like(nh), where=vals != 0) return nh_divided_by_vals def calculate_base_error(self): """ Method calculates base error as the difference between the least squared model of experimental semivariance and the experimental semivariance points. OUTPUT: :returns: (float) mean squared difference error """ popt, _pcov = curve_fit(self._curve_fit_function, self.empirical_semivariance[:, 0], self.empirical_semivariance[:, 1]) a, b = popt y = self._curve_fit_function(self.empirical_semivariance[:, 0], a, b) error = np.sqrt((self.empirical_semivariance[:, 1] - y) ** 2) if not self.is_weighted: mean_error = np.mean(error) return mean_error else: weights = self._get_weights() mean_error = np.mean(weights * error) return mean_error def calculate_model_error(self, model, nugget, sill, semivar_range): """ Function calculates error between specific models and experimental curve. OUTPUT: :returns: (float) mean squared difference between model and experimental variogram. """ error = np.sqrt((self.empirical_semivariance[:, 1] - model(self.empirical_semivariance[:, 0], nugget, sill, semivar_range)) ** 2) if not self.is_weighted: return np.mean(error) else: weights = self._get_weights() return
np.mean(weights * error)
numpy.mean
import numpy as np from mountain_scooter import MountainScooter from Particle import Particle
np.random.seed(71)
numpy.random.seed