prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter, FormatStrFormatter from matplotlib.path import Path import matplotlib.patches as patches ############################################## # PLOTTING FUNCTIONS FOR WIDGETS ############################################## def fcn_FDEM_InductionSpherePlaneWidget(xtx,ytx,ztx,m,orient,x0,y0,z0,a,sig,mur,xrx,yrx,zrx,logf,Comp,Phase): sig = 10**sig f = 10**logf fvec = np.logspace(0,8,41) xmin, xmax, dx, ymin, ymax, dy = -30., 30., 0.3, -30., 30., 0.4 X,Y = np.mgrid[xmin:xmax+dx:dx, ymin:ymax+dy:dy] X = np.transpose(X) Y = np.transpose(Y) Obj = SphereFEM(m,orient,xtx,ytx,ztx) Hx,Hy,Hz,Habs = Obj.fcn_ComputeFrequencyResponse(f,sig,mur,a,x0,y0,z0,X,Y,zrx) Hxi,Hyi,Hzi,Habsi = Obj.fcn_ComputeFrequencyResponse(fvec,sig,mur,a,x0,y0,z0,xrx,yrx,zrx) fig1 = plt.figure(figsize=(17,6)) Ax1 = fig1.add_axes([0.04,0,0.43,1]) Ax2 = fig1.add_axes([0.6,0,0.4,1]) if Comp == 'x': Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hx,Comp,Phase) Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a) Ax2 = plotResponseFEM(Ax2,f,fvec,Hxi,Comp) elif Comp == 'y': Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hy,Comp,Phase) Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a) Ax2 = plotResponseFEM(Ax2,f,fvec,Hyi,Comp) elif Comp == 'z': Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Hz,Comp,Phase) Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a) Ax2 = plotResponseFEM(Ax2,f,fvec,Hzi,Comp) elif Comp == 'abs': Ax1 = plotAnomalyXYplane(Ax1,f,X,Y,ztx,Habs,Comp,Phase) Ax1 = plotPlaceTxRxSphereXY(Ax1,xtx,ytx,xrx,yrx,x0,y0,a) Ax2 = plotResponseFEM(Ax2,f,fvec,Habsi,Comp) plt.show(fig1) def fcn_FDEM_InductionSphereProfileWidget(xtx,ztx,m,orient,x0,z0,a,sig,mur,xrx,zrx,logf,Flag): sig = 10**sig f = 10**logf if orient == "Vert. Coaxial": orient = 'x' elif orient == "Horiz. Coplanar": orient = 'z' # Same global functions can be used but with ytx, y0, yrx, Y = 0. fvec = np.logspace(0,8,41) xmin, xmax, dx, zmin, zmax, dz = -30., 30., 0.3, -40., 20., 0.4 X,Z = np.mgrid[xmin:xmax+dx:dx, zmin:zmax+dz:dz] X = np.transpose(X) Z = np.transpose(Z) Obj = SphereFEM(m,orient,xtx,0.,ztx) Hxi,Hyi,Hzi,Habsi = Obj.fcn_ComputeFrequencyResponse(fvec,sig,mur,a,x0,0.,z0,xrx,0.,zrx) Hxf,Hyf,Hzf = fcn_ComputePrimary(m,orient,xtx,0.,ztx,x0,0.,z0) fig1 = plt.figure(figsize=(17,6)) Ax1 = fig1.add_axes([0.04,0,0.38,1]) Ax2 = fig1.add_axes([0.6,0,0.4,1]) Ax1 = plotProfileTxRxSphere(Ax1,xtx,ztx,x0,z0,a,xrx,zrx,X,Z,orient) if Flag == 'Hp': Hpx,Hpy,Hpz = fcn_ComputePrimary(m,orient,xtx,0.,ztx,X,0.,Z) Ax1 = plotProfileTxRxArrow(Ax1,x0,z0,Hxf,Hzf,Flag) Ax1 = plotProfileXZplane(Ax1,X,Z,Hpx,Hpz,Flag) elif Flag == 'Hs_real': Hx,Hy,Hz,Habs = Obj.fcn_ComputeFrequencyResponse(f,sig,mur,a,x0,0.,z0,X,0.,Z) Chi = fcn_ComputeExcitation_FEM(f,sig,mur,a) Ax1 = plotProfileTxRxArrow(Ax1,x0,z0,np.real(Chi)*Hxf,np.real(Chi)*Hzf,Flag) Ax1 = plotProfileXZplane(Ax1,X,Z,np.real(Hx),np.real(Hz),Flag) elif Flag == 'Hs_imag': Hx,Hy,Hz,Habs = Obj.fcn_ComputeFrequencyResponse(f,sig,mur,a,x0,0.,z0,X,0.,Z) Chi = fcn_ComputeExcitation_FEM(f,sig,mur,a) Ax1 = plotProfileTxRxArrow(Ax1,x0,z0,np.imag(Chi)*Hxf,np.imag(Chi)*Hzf,Flag) Ax1 = plotProfileXZplane(Ax1,X,Z,np.imag(Hx),np.imag(Hz),Flag) if orient == 'x': Ax2 = plotResponseFEM(Ax2,f,fvec,Hxi,orient) elif orient == 'z': Ax2 = plotResponseFEM(Ax2,f,fvec,Hzi,orient) plt.show(fig1) def fcn_FDEM_InductionSphereProfileEM31Widget(xtx,ztx,L,m,orient,x0,z0,a,sig,mur,logf,Flag): xtx = xtx - L/2 xrx = xtx + L zrx = ztx sig = 10**sig f = 10**logf if orient == "Vert. Coaxial": orient = 'x' elif orient == "Horiz. Coplanar": orient = 'z' # Same global functions can be used but with ytx, y0, yrx, Y = 0. fvec = np.logspace(0,8,41) xmin, xmax, dx, zmin, zmax, dz = -30., 30., 0.3, -40., 20., 0.4 X,Z = np.mgrid[xmin:xmax+dx:dx, zmin:zmax+dz:dz] X = np.transpose(X) Z = np.transpose(Z) Obj = SphereFEM(m,orient,xtx,0.,ztx) Hxi,Hyi,Hzi,Habsi = Obj.fcn_ComputeFrequencyResponse(fvec,sig,mur,a,x0,0.,z0,xrx,0.,zrx) Hxf,Hyf,Hzf = fcn_ComputePrimary(m,orient,xtx,0.,ztx,x0,0.,z0) fig1 = plt.figure(figsize=(17,6)) Ax1 = fig1.add_axes([0.04,0,0.38,1]) Ax2 = fig1.add_axes([0.6,0,0.4,1]) Ax1 = plotProfileTxRxSphere(Ax1,xtx,ztx,x0,z0,a,xrx,zrx,X,Z,orient) if Flag == 'Hp': Hpx,Hpy,Hpz = fcn_ComputePrimary(m,orient,xtx,0.,ztx,X,0.,Z) Ax1 = plotProfileTxRxArrow(Ax1,x0,z0,Hxf,Hzf,Flag) Ax1 = plotProfileXZplane(Ax1,X,Z,Hpx,Hpz,Flag) elif Flag == 'Hs_real': Hx,Hy,Hz,Habs = Obj.fcn_ComputeFrequencyResponse(f,sig,mur,a,x0,0.,z0,X,0.,Z) Chi = fcn_ComputeExcitation_FEM(f,sig,mur,a) Ax1 = plotProfileTxRxArrow(Ax1,x0,z0,np.real(Chi)*Hxf,np.real(Chi)*Hzf,Flag) Ax1 = plotProfileXZplane(Ax1,X,Z,np.real(Hx),np.real(Hz),Flag) elif Flag == 'Hs_imag': Hx,Hy,Hz,Habs = Obj.fcn_ComputeFrequencyResponse(f,sig,mur,a,x0,0.,z0,X,0.,Z) Chi = fcn_ComputeExcitation_FEM(f,sig,mur,a) Ax1 = plotProfileTxRxArrow(Ax1,x0,z0,np.imag(Chi)*Hxf,np.imag(Chi)*Hzf,Flag) Ax1 = plotProfileXZplane(Ax1,X,Z,np.imag(Hx),np.imag(Hz),Flag) if orient == 'x': Ax2 = plotResponseFEM(Ax2,f,fvec,Hxi,orient) elif orient == 'z': Ax2 = plotResponseFEM(Ax2,f,fvec,Hzi,orient) plt.show(fig1) ############################################## # GLOBAL FUNTIONS ############################################## def fcn_ComputeExcitation_FEM(f,sig,mur,a): """Compute Excitation Factor (FEM)""" w = 2*np.pi*f mu = 4*np.pi*1e-7*mur alpha = a*np.sqrt(1j*w*mu*sig) chi = 1.5*(2*mur*(np.tanh(alpha) - alpha) + (alpha**2*np.tanh(alpha) - alpha + np.tanh(alpha)))/(mur*(np.tanh(alpha) - alpha) - (alpha**2*np.tanh(alpha) - alpha + np.tanh(alpha))) return chi def fcn_ComputePrimary(m,orient,xtx,ytx,ztx,X,Y,Z): """Computes Inducing Field at Sphere""" R = np.sqrt((X-xtx)**2 + (Y-ytx)**2 + (Z-ztx)**2) if orient == "x": Hpx = (1/(4*np.pi))*(3*m*(X-xtx)*(X-xtx)/R**5 - m/R**3) Hpy = (1/(4*np.pi))*(3*m*(Y-ytx)*(X-xtx)/R**5) Hpz = (1/(4*np.pi))*(3*m*(Z-ztx)*(X-xtx)/R**5) elif orient == "y": Hpx = (1/(4*np.pi))*(3*m*(X-xtx)*(Y-ytx)/R**5) Hpy = (1/(4*np.pi))*(3*m*(Y-ytx)*(Y-ytx)/R**5 - m/R**3) Hpz = (1/(4*np.pi))*(3*m*(Z-ztx)*(Y-ytx)/R**5) elif orient == "z": Hpx = (1/(4*np.pi))*(3*m*(X-xtx)*(Z-ztx)/R**5) Hpy = (1/(4*np.pi))*(3*m*(Y-ytx)*(Z-ztx)/R**5) Hpz = (1/(4*np.pi))*(3*m*(Z-ztx)*(Z-ztx)/R**5 - m/R**3) return Hpx, Hpy, Hpz ############################################## # GLOBAL PLOTTING FUNTIONS ############################################## def plotAnomalyXYplane(Ax,f,X,Y,Z,H,Comp,Phase): FS = 20 if Phase == 'Real': H = np.real(H) Str = "Re(" Str_title = "Real Component of " elif Phase == 'Imag': H = np.imag(H) Str = "Im(" Str_title = "Imaginary Component of " tol = 1e5 Sign = np.sign(H) H = np.abs(H) MAX = np.max(H) H = np.log10(tol*H/MAX) Sign[H<0] = 0. H[H<0] = 0. Cmap = 'viridis' #Cmap = 'seismic_r' if Comp == 'abs': TickLabels = MAX*np.array([1.,1e-1,1e-2,1e-3,1e-4,0.,-1e-4,-1e-3,-1e-2,-1e-1,-1]) TickLabels = ["%.1e" % x for x in TickLabels] Cplot = Ax.contourf(X,Y,Sign*H,50,cmap=Cmap, vmin=-5, vmax=5) cbar = plt.colorbar(Cplot, ax=Ax, pad=0.02, ticks=-np.linspace(-5,5,11)) else: TickLabels = MAX*np.array([-1.,-1e-1,-1e-2,-1e-3,-1e-4,0.,1e-4,1e-3,1e-2,1e-1,1]) TickLabels = ["%.1e" % x for x in TickLabels] Cplot = Ax.contourf(X,Y,Sign*H,50,cmap=Cmap, vmin=-5, vmax=5) cbar = plt.colorbar(Cplot, ax=Ax, pad=0.02, ticks=np.linspace(-5,5,11)) if Comp == 'x': cbar.set_label(Str+'$\mathbf{Hx}$) [A/m]', rotation=270, labelpad = 25, size=FS+4) Ax.set_title(Str_title + "$\mathbf{Hx}$",fontsize=FS+6) elif Comp == 'y': cbar.set_label(Str+'$\mathbf{Hy}$) [A/m]', rotation=270, labelpad = 25, size=FS+4) Ax.set_title(Str_title + "$\mathbf{Hy}$",fontsize=FS+6) elif Comp == 'z': cbar.set_label(Str+'$\mathbf{Hz}$) [A/m]', rotation=270, labelpad = 25, size=FS+4) Ax.set_title(Str_title + "$\mathbf{Hz}$",fontsize=FS+6) elif Comp == 'abs': cbar.set_label(Str+'$\mathbf{|H|}$) [A/m]', rotation=270, labelpad = 25, size=FS+4) Ax.set_title(Str_title + "$\mathbf{|H|}$",fontsize=FS+6) cbar.set_ticklabels(TickLabels) cbar.ax.tick_params(labelsize=FS-2) Ax.set_xbound(np.min(X),np.max(X)) Ax.set_ybound(np.min(Y),np.max(Y)) Ax.set_xlabel('X [m]',fontsize=FS+2) Ax.set_ylabel('Y [m]',fontsize=FS+2,labelpad=-10) Ax.tick_params(labelsize=FS-2) return Ax def plotPlaceTxRxSphereXY(Ax,xtx,ytx,xrx,yrx,x0,y0,a): Xlim = Ax.get_xlim() Ylim = Ax.get_ylim() FS = 20 Ax.scatter(xtx,ytx,s=100,color='k') Ax.text(xtx-0.75,ytx+1.5,'$\mathbf{Tx}$',fontsize=FS+6) Ax.scatter(xrx,yrx,s=100,color='k') Ax.text(xrx-0.75,yrx-4,'$\mathbf{Rx}$',fontsize=FS+6) xs = x0 + a*np.cos(np.linspace(0,2*np.pi,41)) ys = y0 + a*np.sin(np.linspace(0,2*np.pi,41)) Ax.plot(xs,ys,ls=':',color='k',linewidth=3) Ax.set_xbound(Xlim) Ax.set_ybound(Ylim) return Ax def plotResponseFEM(Ax,fi,f,H,Comp): FS = 20 xTicks = (np.logspace(np.log(np.min(f)),np.log(np.max(f)),9)) Ylim = np.array([np.min(np.real(H)),np.max(np.real(H))]) Ax.grid('both', linestyle='-', linewidth=0.8, color=[0.8, 0.8, 0.8]) Ax.semilogx(f,0*f,color='k',linewidth=2) Ax.semilogx(f,np.real(H),color='k',linewidth=4,label="Real") Ax.semilogx(f,np.imag(H),color='k',linewidth=4,ls='--',label="Imaginary") Ax.semilogx(np.array([fi,fi]),1.1*Ylim,linewidth=3,color='r') Ax.set_xbound(np.min(f),np.max(f)) Ax.set_ybound(1.1*Ylim) Ax.set_xlabel('Frequency [Hz]',fontsize=FS+2) Ax.tick_params(labelsize=FS-2) Ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e')) if Comp == 'x': Ax.set_ylabel('$\mathbf{Hx}$ [A/m]',fontsize=FS+4,labelpad=-5) Ax.set_title('$\mathbf{Hx}$ Response at $\mathbf{Rx}$',fontsize=FS+6) elif Comp == 'y': Ax.set_ylabel('$\mathbf{Hy}$ [A/m]',fontsize=FS+4,labelpad=-5) Ax.set_title('$\mathbf{Hy}$ Response at $\mathbf{Rx}$',fontsize=FS+6) elif Comp == 'z': Ax.set_ylabel('$\mathbf{Hz}$ [A/m]',fontsize=FS+4,labelpad=-5) Ax.set_title('$\mathbf{Hz}$ Response at $\mathbf{Rx}$',fontsize=FS+6) elif Comp == 'abs': Ax.set_ylabel('$\mathbf{|H|}$ [A/m]',fontsize=FS+4,labelpad=-5) Ax.set_title('$\mathbf{|H|}$ Response at $\mathbf{Rx}$',fontsize=FS+6) if np.max(np.real(H[-1])) > 0.: handles, labels = Ax.get_legend_handles_labels() Ax.legend(handles, labels, loc='upper left', fontsize=FS) elif np.max(np.real(H[-1])) < 0.: handles, labels = Ax.get_legend_handles_labels() Ax.legend(handles, labels, loc='lower left', fontsize=FS) return Ax def plotProfileTxRxSphere(Ax,xtx,ztx,x0,z0,a,xrx,zrx,X,Z,orient): FS = 22 phi =
np.linspace(0,2*np.pi,41)
numpy.linspace
import pytest import awesomediff as ad import numpy as np ### Test uni_Newton def test_uni_Newton_func(): def root_finding(a): return a**2 + 2*a + 1 root = ad.uni_Newton(root_finding, 100, max_iter=100, epsilon=1e-06) y_val = root_finding(root) assert (np.isclose(y_val, 0, atol=1e-06)) def root_finding(a): #function with no root return a**2 + 2*a + 2 root = ad.uni_Newton(root_finding, 100) #reach max iteration, and return none assert root is None def root_finding(a): #bad starting point: derivative = 0 return -a**2 + 1 root = ad.uni_Newton(root_finding, 0) #return None assert root is None def root_finding(a): return ad.sin(a) root = ad.uni_Newton(root_finding, 3, max_iter=100, epsilon=1e-08) y_val = root_finding(root) assert (np.isclose(y_val.val, 0, atol=1e-07)) #check input format with pytest.raises(ValueError): ad.uni_Newton(root_finding, 's') def root_finding(a,b): #function with two inputs return a**2 + 2*a + 2 with pytest.raises(ValueError): ad.uni_Newton(root_finding, 3) def test_helpers(): # Check inputs: X = [[1,2],[3,4]] y1 = [[1,2]] y2 = [1,2,3] with pytest.raises(AssertionError): X,y = ad.solvers._check_inputs(X,y2) # Transpose: M = [[1,2,3],[4,5,6]] Mt = ad.transpose(M,check=True) assert Mt == [[1,4],[2,5],[3,6]] # Mean and variance: assert ad.mean([1,2,3,4,5])==
np.mean([1,2,3,4,5])
numpy.mean
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2018 <NAME> <<EMAIL>> # # Distributed under terms of the MIT license. """ trajOptMultiPhaseCollocationProblem.py This class implements methods for solving problem with multiple phases. I will also change code style to suppress those warnings. """ from __future__ import division import numpy as np from .trajOptBase import LinearPointObj as linearPointObj from .trajOptBase import LinearPointConstr as linearPointConstr from .trajOptBase import NonLinearPointObj as nonLinearPointObj, NonLinearObj as nonLinearObj from .trajOptBase import NonLinearPointConstr as nonLinearPointConstr, NonLinearConstr as nonLinearConstr from .trajOptBase import AddX as addX from pyoptsolver import OptProblem, OptResult as result from .utility import random_gen_in_bound as randomGenInBound from scipy.sparse import coo_matrix, csr_matrix from .trajOptCollocationProblem import TrajOptCollocProblem class NonLinearConnectConstr(object): """Class for defining point constraint function. :currentmodule: .. automethod:: __callg__ .. exclude-members:: find_time_gradient """ def __init__(self, phase1, phase2, nc, lb=None, ub=None, nG=None, index1=-1, index2=0, addx_index=None): """Constructor for nonlinear point constraint. Also serve as path constraint. :param phase1/phase2: int, phase number that constraint is imposed. We read data from them :param nc: int, dimension of constraint function :param lb, ub: lower and upper bound of the constraint function. None means equal to 0 :param nG: int, number of nnz of Jacobian :param index1/index2: int, by default we connect last point of phase 1 with first point of phase 2. However, we allow manual assignment of them. :param addx_index: int, which additional x we use to connect those two phases """ self.phases = (phase1, phase2) self.indexes = (index1, index2) self.nf = nc self.nG = nG self.human = False # if we call __callhumang__ instead of __callg__ self.autonomous = (False, False) self.timeindex = (None, None) self.addx_index = addx_index if lb is None: self.lb = np.zeros(self.nf) else: self.lb = lb if ub is None: self.ub = np.zeros(self.nf) else: self.ub = ub def __callg__(self, x1, x2, F, G, row, col, rec, needg, addx=None): """Call and evaluate the constraint function. x1 and x2 are points in phase 1 and phase 2. I return them together in G, row, col since it might be derived from sympy so thay are together. But, human derived formulas love the previous one better """ raise NotImplementedError def __callhumang__(self, x1, x2, needg, addx=None): """Call and evaluate the constraint function. x1 and x2 are points in phase 1 and phase 2. I return them together in G, row, col since it might be derived from sympy so thay are together. But, human derived formulas love the previous one better :param x1: ndarray, a (t, x, u, p) tuple from phase 1 :param x2: ndarray, a (t, x, u, p) tuple from phase 2 :param needg: if we return those G, too :param addx: additional parameters passed in :return F: where constraint functions are evaluated and stored :return G1, G2, G3: Jacobian of F w.r.t x1, x2, and optionally addx (G3 empty if addx is None) """ raise NotImplementedError def find_time_gradient(self, x1, x2, addx=None): """Find where the gradients are w.r.t time.""" if self.human: rvalue = self.__callhumang__(x1, x2, True, addx) if self.addxindex is None: F, G1, G2, = rvalue if self.nG is None: self.nG = G1.nnz + G2.nnz else: F, G1, G2, Ga = rvalue if self.nG is None: self.nG = G1.nnz + G2.nnz + Ga.nnz tindex1 = np.where(G1.col == 0)[0] tindex2 = np.where(G2.col == 0)[0] else: tmpy = np.zeros(self.nf) tmpG = np.zeros(self.nG) tmprow = np.zeros(self.nG, dtype=int) tmpcol = np.zeros(self.nG, dtype=int) self.__callg__(x1, x2, tmpy, tmpG, tmprow, tmpcol, True, True, addx) len1 = len(x1) tindex1 = np.where(tmpcol == 0)[0] tindex2 = np.where(tmpcol == len1)[0] auto1 = len(tindex1) == 0 auto2 = len(tindex2) == 0 self.timeindex = (tindex1, tindex2) self.autonomous = (auto1, auto2) if self.lb is None: self.lb = np.zeros(self.nf) if self.ub is None: self.ub = np.zeros(self.nf) class LinearConnectConstr(object): """Class for defining linear constraint functions. :currentmodule: .. exclude-members:: find_time_gradient """ def __init__(self, phase1, phase2, a1, a2, lb=None, ub=None, index1=-1, index2=0, adda=None, addx_index=None): """Constructor for linear point constraint. Also serve as path constraint. :param phase1/phase2: int, phase number that constraint is imposed. We read data from them :param a1/a2: ndarray, the constraint, :math: `l \le A_1 x_1 + A_2 x_2 \le u` :param lb/ub: lower and upper bound of the constraint function. None means equal to 0 :param index1/index2: int, by default we connect last point of phase 1 with first point of phase 2. However, we allow manual assignment of them. :param adda: ndarray, if additional parameter comes into play, we use this :param addx_index: int, index of the additional parameters """ self.phases = (phase1, phase2) self.indexes = (index1, index2) assert a1.shape[0] == a2.shape[0] self.a = (coo_matrix(a1), coo_matrix(a2)) # since everything is in pair self.nf = a1.shape[0] self.adda = coo_matrix(adda) self.addx_index = addx_index self.find_time_gradient() if lb is None: self.lb =
np.zeros(self.nf)
numpy.zeros
import os import numpy as np import pyro import pyro.distributions as dist import torch import torch.nn as nn from anndata import AnnData from pyro import clear_param_store from pyro.infer.autoguide import AutoNormal, init_to_mean from pyro.nn import PyroModule, PyroSample from scvi import _CONSTANTS from scvi.data import register_tensor_from_anndata, synthetic_iid from scvi.dataloaders import AnnDataLoader from scvi.model.base import ( BaseModelClass, PyroJitGuideWarmup, PyroSampleMixin, PyroSviTrainMixin, ) from scvi.module.base import PyroBaseModuleClass from scvi.train import PyroTrainingPlan, Trainer class BayesianRegressionPyroModel(PyroModule): def __init__(self, in_features, out_features, per_cell_weight=False): super().__init__() self.in_features = in_features self.out_features = out_features self.n_obs = None self.per_cell_weight = per_cell_weight self.register_buffer("zero", torch.tensor(0.0)) self.register_buffer("one", torch.tensor(1.0)) self.register_buffer("ten", torch.tensor(10.0)) self.linear = PyroModule[nn.Linear](in_features, out_features) self.linear.weight = PyroSample( lambda prior: dist.Normal(self.zero, self.one) .expand([self.out_features, self.in_features]) .to_event(2) ) self.linear.bias = PyroSample( lambda prior: dist.Normal(self.zero, self.ten) .expand([self.out_features]) .to_event(1) ) def create_plates(self, x, y, ind_x): """ Function for creating plates is needed when using AutoGuides. Should have the same call signature as model. """ return pyro.plate("obs_plate", size=self.n_obs, dim=-2, subsample=ind_x) def list_obs_plate_vars(self): """ Model annotation for minibatch training with pyro plate. A dictionary with: 1. "name" - the name of observation/minibatch plate; 2. "in" - indexes of model args to provide to encoder network when using amortised inference; 3. "sites" - dictionary with keys - names of variables that belong to the observation plate (used to recognise and merge posterior samples for minibatch variables) values - the dimensions in non-plate axis of each variable (used to construct output layer of encoder network when using amortised inference) """ return { "name": "obs_plate", "in": [0], # model args index for expression data "sites": {"per_cell_weights": 1}, } @staticmethod def _get_fn_args_from_batch(tensor_dict): x = tensor_dict[_CONSTANTS.X_KEY] y = tensor_dict[_CONSTANTS.LABELS_KEY] ind_x = tensor_dict["ind_x"].long().squeeze() return (x, y, ind_x), {} def forward(self, x, y, ind_x): obs_plate = self.create_plates(x, y, ind_x) sigma = pyro.sample("sigma", dist.Exponential(self.one)) mean = self.linear(x).squeeze(-1) if self.per_cell_weight: with obs_plate: per_cell_weights = pyro.sample( "per_cell_weights", dist.Normal(self.zero, self.one) ) mean = mean + per_cell_weights.squeeze(-1) with obs_plate: pyro.sample("obs", dist.Normal(mean, sigma), obs=y) return mean class BayesianRegressionModule(PyroBaseModuleClass): def __init__(self, **kwargs): super().__init__() self._model = BayesianRegressionPyroModel(**kwargs) self._guide = AutoNormal( self.model, init_loc_fn=init_to_mean, create_plates=self.model.create_plates ) self._get_fn_args_from_batch = self._model._get_fn_args_from_batch @property def model(self): return self._model @property def guide(self): return self._guide @property def list_obs_plate_vars(self): return self.model.list_obs_plate_vars() class BayesianRegressionModel(PyroSviTrainMixin, PyroSampleMixin, BaseModelClass): def __init__( self, adata: AnnData, per_cell_weight=False, ): # in case any other model was created before that shares the same parameter names. clear_param_store() # add index for each cell (provided to pyro plate for correct minibatching) adata.obs["_indices"] = np.arange(adata.n_obs).astype("int64") register_tensor_from_anndata( adata, registry_key="ind_x", adata_attr_name="obs", adata_key_name="_indices", ) super().__init__(adata) self.module = BayesianRegressionModule( in_features=adata.shape[1], out_features=1, per_cell_weight=per_cell_weight, ) self._model_summary_string = "BayesianRegressionModel" self.init_params_ = self._get_init_params(locals()) def test_pyro_bayesian_regression(save_path): use_gpu = int(torch.cuda.is_available()) adata = synthetic_iid() # add index for each cell (provided to pyro plate for correct minibatching) adata.obs["_indices"] = np.arange(adata.n_obs).astype("int64") register_tensor_from_anndata( adata, registry_key="ind_x", adata_attr_name="obs", adata_key_name="_indices", ) train_dl = AnnDataLoader(adata, shuffle=True, batch_size=128) pyro.clear_param_store() model = BayesianRegressionModule(in_features=adata.shape[1], out_features=1) plan = PyroTrainingPlan(model) plan.n_obs_training = len(train_dl.indices) trainer = Trainer( gpus=use_gpu, max_epochs=2, ) trainer.fit(plan, train_dl) if use_gpu == 1: model.cuda() # test Predictive num_samples = 5 predictive = model.create_predictive(num_samples=num_samples) for tensor_dict in train_dl: args, kwargs = model._get_fn_args_from_batch(tensor_dict) _ = { k: v.detach().cpu().numpy() for k, v in predictive(*args, **kwargs).items() if k != "obs" } # test save and load # cpu/gpu has minor difference model.cpu() quants = model.guide.quantiles([0.5]) sigma_median = quants["sigma"][0].detach().cpu().numpy() linear_median = quants["linear.weight"][0].detach().cpu().numpy() model_save_path = os.path.join(save_path, "model_params.pt") torch.save(model.state_dict(), model_save_path) pyro.clear_param_store() new_model = BayesianRegressionModule(in_features=adata.shape[1], out_features=1) # run model one step to get autoguide params try: new_model.load_state_dict(torch.load(model_save_path)) except RuntimeError as err: if isinstance(new_model, PyroBaseModuleClass): plan = PyroTrainingPlan(new_model) plan.n_obs_training = len(train_dl.indices) trainer = Trainer( gpus=use_gpu, max_steps=1, ) trainer.fit(plan, train_dl) new_model.load_state_dict(torch.load(model_save_path)) else: raise err quants = new_model.guide.quantiles([0.5]) sigma_median_new = quants["sigma"][0].detach().cpu().numpy() linear_median_new = quants["linear.weight"][0].detach().cpu().numpy()
np.testing.assert_array_equal(sigma_median_new, sigma_median)
numpy.testing.assert_array_equal
import os import torch from skimage import io, transform import numpy as np import h5py from torch.utils.data import Dataset, DataLoader import imgaug as ia from sklearn.model_selection import StratifiedKFold from torchvision import transforms import cv2 root_dir = '/data1/trinh/data/patches_data/SBP/Colon_Dataset/COLON_PATCHES_1000_V2' train_root1 = root_dir + '/train_data/v1' train_root2 = root_dir + '/train_data/wsi' valid_root1 = root_dir + '/valid_data/v1' valid_root2 = root_dir + '/valid_data/wsi' train_root = root_dir + '/train_data' valid_root = root_dir + '/valid_data' class ToTensor(object): """ This is a transform(augmentation)class convert ndarrays in sample to Tensors """ # swap color axis because # input : numpy image: H x W x C # output: torch image: C X H X W def __call__(self, image): image = image.transpose((2, 0, 1)) return torch.from_numpy(image) def read_colon_dataset(): # make whole dataset list # input : root that path # output : x_whole, y_whole that contains all file paths and classes each train_x, train_y = [], [] valid_x, valid_y = [], [] for(path, dir, filenames) in os.walk(train_root): for filename in filenames: file_path = os.path.join(path, filename) # if path[-3:] == 'wsi': # y_class = 0 # else: # y_class = int(file_path[-5]) y_class = int(file_path[-5]) train_x.append(file_path) train_y.append(y_class) for(path, dir, filenames) in os.walk(valid_root): for filename in filenames: file_path = os.path.join(path, filename) y_class = int(file_path[-5]) valid_x.append(file_path) valid_y.append(y_class) print('LOADED DATA') print('---------# train_data : {}\n' 'benign class : {}\n' 'cancer1 : {}\n' 'cancer2 : {}\n' 'cancer3 : {}\n' '---------# valid_data : {}\n' 'benign class : {}\n' 'cancer1 : {}\n' 'cancer2 : {}\n' 'cancer3 : {}\n'.format( len(train_x), np.sum(np.asarray(train_y)==0), np.sum(np.asarray(train_y) == 1), np.sum(np.asarray(train_y) == 2) ,np.sum(np.asarray(train_y)==3), len(valid_x), np.sum(np.asarray(valid_y) == 0), np.sum(np.asarray(valid_y) == 1), np.sum(np.asarray(valid_y) == 2) , np.sum(np.asarray(valid_y) == 3), ) ) train_x = np.array(train_x) train_y = np.array(train_y) valid_x = np.array(valid_x) valid_y = np.array(valid_y) for i in range(0,4): if i == 2: pass else: num_dup = int(round(np.sum(train_y == 2) / np.sum(train_y == i))) idx = np.where(train_y == i) data = train_x[idx] labels = train_y[idx] for num in range(num_dup-1): train_x =
np.concatenate([train_x, data])
numpy.concatenate
# -*- coding: utf-8 -*- """ This module provides many types of image augmentation. One can choose appropriate augmentation for detection, segmentation and classification. """ import cv2 import numpy import random class Augmentor(object): """ All augmentation operations are static methods of this class. """ def __init__(self): pass @staticmethod def histogram_equalisation(image): """ do histogram equlisation for grayscale image :param image: input image with single channel 8bits :return: processed image """ if image.ndim != 2: print('Input image is not grayscale!') return None if image.dtype != numpy.uint8: print('Input image is not uint8!') return None result = cv2.equalizeHist(image) return result @staticmethod def grayscale(image): """ convert BGR image to grayscale image :param image: input image with BGR channels :return: """ if image.ndim != 3: return None if image.dtype != numpy.uint8: print('Input image is not uint8!') return None result = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return result @staticmethod def inversion(image): """ invert the image (255-) :param image: input image with BGR or grayscale :return: """ if image.dtype != numpy.uint8: print('Input image is not uint8!') return None result = 255 - image return result @staticmethod def binarization(image, block_size=5, C=10): """ convert input image to binary image cv2.adaptiveThreshold is used, for detailed information, refer to opencv docs :param image: :return: """ if image.ndim == 3: image_grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: image_grayscale = image binary_image = cv2.adaptiveThreshold(image_grayscale, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, block_size, C) return binary_image @staticmethod def brightness(image, min_factor=0.5, max_factor=1.5): ''' adjust the image brightness :param image: :param min_factor: :param max_factor: :return: ''' if image.dtype != numpy.uint8: print('Input image is not uint8!') return None factor = numpy.random.uniform(min_factor, max_factor) result = image * factor if factor > 1: result[result > 255] = 255 result = result.astype(numpy.uint8) return result @staticmethod def saturation(image, min_factor=0.5, max_factor=1.5): ''' adjust the image saturation :param image: :param min_factor: :param max_factor: :return: ''' if image.dtype != numpy.uint8: print('Input image is not uint8!') return None image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) factor =
numpy.random.uniform(min_factor, max_factor)
numpy.random.uniform
""" runs using 1) python/3.3.2 2) numpy/1.11.1/python/3.3 3) scipy/0.17.1/python/3.3 module load python3/3.3.2 /scratch/mhess/py3p3/3.3 Aim: do MOR steady state solver with efficient matrices """ import numpy as np import time from ITHACA_SEM_code import ROM_Oseen_Iteration_step from ITHACA_SEM_code import Generate_Advection_Terms from ITHACA_SEM_code import ROM_Oseen_Iteration_step def remove_from_matrix(matrix, columns, rows): return [ [float(matrix[row_num][col_num]) for col_num in range(len(matrix[row_num])) if not col_num in columns] for row_num in range(len(matrix)) if not row_num in rows] #(Dbnd, Dint, sing_A, sing_B, sing_Btilde, sing_C, M_trafo_no_pp_incl_dbc) = gen_Mats_cav.gen() def Oseen_Iteration(mu_vec, Dbnd, Dint, sing_A, sing_B, sing_Btilde, sing_C, M_trafo_no_pp_incl_dbc, glodofphys, LocGloMapMatA, LocGloSign, LocGloMap, snap, ngc, nlc, bmap, imap, num_elem, nsize_bndry, nsize_int, nsize_p, nvel, c_f_bnd, c_f_p, c_f_int, NumDirBCs, nGlobHomBndDofs, no_loc_dbc, elem_loc_dbc, no_not_loc_dbc, elem_not_loc_dbc, IP, IPp, bwdtrans, cartmap0, cartmap1, LocGloBndSign, LocGloBndMap, BndCondCoeffsToGlobalCoeffsMap , init_bnd, forcing): print("snap.shape ", snap.shape) snap_x = snap[:, 0:ngc] snap_y = snap[:, ngc:2*ngc] print("snap_x.shape ", snap_x.shape) print("snap_y.shape ", snap_y.shape) snap_x_mean = np.mean(snap_x, axis=0) snap_y_mean = np.mean(snap_y, axis=0) nbmap = bmap.shape[0] nimap = imap.shape[0] nbnd = nbmap nint = nimap nsize_bndry_p1 = nsize_bndry + 1 nsize_p_m1 = nsize_p - 1 u_x = snap_x_mean u_y = snap_y_mean supr_f_bnd = np.dot( np.transpose(Dbnd) , c_f_p ) supr_f_int = np.dot( np.transpose(Dint) , c_f_p ) c_f_all = np.r_[c_f_bnd, c_f_p, c_f_int] (c_f_all, R1, R2) = np.linalg.svd(c_f_all, full_matrices=False) c_f_all = c_f_all[:, 0:np.max(np.where(np.cumsum(R1)/np.sum(R1) < .99))+1] c_f_bnd = c_f_all[0:c_f_bnd.shape[0],:] c_f_p = c_f_all[c_f_bnd.shape[0]:c_f_bnd.shape[0]+c_f_p.shape[0],:] c_f_int = c_f_all[c_f_bnd.shape[0]+c_f_p.shape[0]:c_f_bnd.shape[0]+c_f_p.shape[0]+c_f_int.shape[0],:] print("c_f_bnd.shape ", c_f_bnd.shape) print("c_f_p.shape ", c_f_p.shape) print("c_f_int.shape ", c_f_int.shape) nBndDofs = nGlobHomBndDofs + NumDirBCs nGlobBndDofs = nBndDofs no_of_dbc_in_loc = no_loc_dbc loc_dbc_set = elem_loc_dbc RBsize = c_f_bnd.shape[1] V_f_bnd = np.zeros([num_elem*nsize_bndry - no_of_dbc_in_loc, c_f_bnd.shape[1]]) cropped_counter = 0 for i in range(0, num_elem*nsize_bndry): if i not in loc_dbc_set: V_f_bnd[cropped_counter,:] = c_f_bnd[i,:] cropped_counter = cropped_counter + 1 V_f_p = c_f_p V_f_int = c_f_int f_bnd_dbc = 0*np.arange((num_elem*nsize_bndry - no_not_loc_dbc)*1.0) non_cropped_counter = 0 for i in range(0,num_elem*nsize_bndry): if i in loc_dbc_set: f_bnd_dbc[non_cropped_counter] = c_f_bnd[i,0] non_cropped_counter += 1 t = time.time() sing_A_M = np.dot(np.transpose(M_trafo_no_pp_incl_dbc),sing_A) sing_A_MM = np.dot(M_trafo_no_pp_incl_dbc,sing_A_M) Dbnd_M = np.dot(Dbnd, M_trafo_no_pp_incl_dbc) Dbnd_MM = np.dot(Dbnd_M, np.transpose(M_trafo_no_pp_incl_dbc)) sing_B_M = np.dot(np.transpose(M_trafo_no_pp_incl_dbc),sing_B) sing_B_MM = np.dot(M_trafo_no_pp_incl_dbc,sing_B_M) sing_A_MM_cropped = np.array(remove_from_matrix(sing_A_MM, loc_dbc_set, loc_dbc_set)) sing_A_MM_Aud = np.array(remove_from_matrix(sing_A_MM, elem_not_loc_dbc, loc_dbc_set)) Dbnd_crop = np.array(remove_from_matrix(Dbnd, loc_dbc_set, set())) sing_Dbnd_Aud = np.array(remove_from_matrix(Dbnd, elem_not_loc_dbc, set())) sing_B_MM_cropped = np.array(remove_from_matrix(sing_B_MM, set(), loc_dbc_set)) Dbnd_MM_crop = np.array(remove_from_matrix(Dbnd_MM, loc_dbc_set, set())) sing_Btilde_cropped = np.array(remove_from_matrix(sing_Btilde, set(), loc_dbc_set)) sing_Btilde_Aud = np.array(remove_from_matrix(sing_Btilde, set(), elem_not_loc_dbc)) A_11_1 = np.dot(np.dot(np.transpose(V_f_bnd), sing_A_MM_cropped), V_f_bnd) A_21_alt = -np.dot(np.dot(np.transpose(V_f_p), Dbnd_crop), V_f_bnd) A_31_1 = np.dot(np.dot(np.transpose(V_f_int), np.transpose(sing_Btilde_cropped)), V_f_bnd) A_12_alt = -np.dot(np.dot(np.transpose(V_f_bnd), np.transpose(Dbnd_MM_crop)), V_f_p) A_32_alt = -np.dot(np.dot(np.transpose(V_f_int), np.transpose(Dint)), V_f_p) A_13_1 = np.dot(np.dot(np.transpose(V_f_bnd), sing_B_MM_cropped), V_f_int) A_23_alt = np.transpose(A_32_alt) A_33_1 = np.dot(np.dot(np.transpose(V_f_int), sing_C), V_f_int) r1_1 = np.dot(np.dot(np.transpose(V_f_bnd), sing_A_MM_Aud), f_bnd_dbc) r2_1 = -np.dot(np.dot(np.transpose(V_f_p), sing_Dbnd_Aud), f_bnd_dbc) r3_1 = np.dot(np.dot(np.transpose(V_f_int), np.transpose(sing_Btilde_Aud)), f_bnd_dbc) Dbnd_M = np.dot(Dbnd, M_trafo_no_pp_incl_dbc) Dbnd_MM = np.dot(Dbnd_M,
np.transpose(M_trafo_no_pp_incl_dbc)
numpy.transpose
'''Module to plot ''' import networkx as nx import numpy as np import matplotlib.pyplot as plt import scipy.sparse as scp from mpl_toolkits.mplot3d import Axes3D import matplotlib as mpl import numpy as np import os, sqlite3, pickle, sys, gzip, shutil, time import os.path as osp from pandas import read_sql, concat from sklearn.preprocessing import normalize, RobustScaler from sklearn.neighbors import kneighbors_graph as knn os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from spektral.data import Dataset, Graph import tensorflow as tf features = ["dom_x", "dom_y", "dom_z", "time", "charge_log10"] # features = ["dom_x", "dom_y", "dom_z", "dom_time", "charge_log10"] targets = ["energy_log10", "zenith","azimuth"] import warnings warnings.filterwarnings("ignore") # %matplotlib inline def inspect(event=0, muon=True, event_no=None, n_neighbors=20, angle=45, save=False, degree=False, hist=False, transform_path='../db_files/MuonGun/transformers.pkl', db_path='../db_files/MuonGun/rasmus_classification_muon_3neutrino_3mio.db'): '''Plot a graph in 3d, where the colour is determined by time and the size of the point is determined by charge. Generally, the only thing you need to do is modify the file path to the db_file in load_event. Inspect takes an integer (as just event number x in the database), if not given a specific event_no, which is then loaded in. angle specifies the initial angle (azimuthal) to see the plot from. If you plot with matplotlib notebook you can control the angle. degree: if True we colour based on node degree and not ti,e hist: if true distributions of node features are shown. save should be self-explanatory.''' dt=load_event(event, event_no, db_path=db_path, n_neighbors=n_neighbors, transform_path=transform_path, muon=muon)[0] X, A, Y=dt.x, dt.a, dt.y if hist: fig1, ax1=plt.subplots(nrows=1, ncols=5, figsize=(10,4)) for i in range(len(X[0])): ax1[i].hist(X[:,i], histtype='step') ax1[i].set(xlabel=features[i], yscale='log') fig1.tight_layout() ix, iy,_=scp.find(A) adj=list(zip(ix,iy)) G=nx.Graph() for i in np.arange(len(X[:,0])): G.add_node(i, x=X[i,0], y=X[i,1], z=X[i,2], t=X[i,3], q=X[i,4], pos2d=[X[i,0], X[i,1]] ,pos3d=[X[i,0], X[i,1],X[i,2]]) G.add_edges_from(adj) plot_3d(G, Y, angle=angle, save=save, degree=degree) def plot_3d(G,Y, angle=45, save=False, degree=False): # Get node positions pos = nx.get_node_attributes(G, 'pos3d') ts = nx.get_node_attributes(G, 't') qs = nx.get_node_attributes(G, 'q') # Get number of nodes n = G.number_of_nodes() # Get the maximum number of edges adjacent to a single node edge_max = max([G.degree(i) for i in range(n)]) # Define color range proportional to number of edges adjacent to a single node mint=min(ts.items(), key=lambda x: x[1])[1] maxt=max(ts.items(), key=lambda x: x[1])[1] # print(mint, ts.items()) tlist=[np.log(t)-np.log(mint) for key, t in ts.items()] tlist=[(t-mint)/(maxt-mint) for key, t in ts.items()] # tlist=[np.log(t-mint)-np.log(maxt-mint) for key, t in ts.items()] colors=plt.cm.plasma(tlist) if degree: colors = [plt.cm.plasma(G.degree(i)/edge_max) for i in range(n)] #if centrality # 3D network plot central=np.array(list(nx.degree_centrality(G).values())) connect=nx.is_connected(G) # print(colors) with plt.style.context(('ggplot')): fig = plt.figure(figsize=(10,7)) ax = Axes3D(fig) # Loop on the pos dictionary to extract the x,y,z coordinates of each node for key, value in pos.items(): xi = value[0] yi = value[1] zi = value[2] # Scatter plot mapa=ax.scatter(xi, yi, zi, c=[colors[key]], s=50+10**(4*qs[key]), edgecolors='k', alpha=0.7) # print(50+10*10**(2*qs[key])) # Loop on the list of edges to get the x,y,z, coordinates of the connected nodes # Those two points are the extrema of the line to be plotted for i,j in enumerate(G.edges()): x =
np.array((pos[j[0]][0], pos[j[1]][0]))
numpy.array
"""Tests for the :class:`AssertionManager<assertionlib.manager.AssertionManager>` class.""" from typing import Optional import pytest from assertionlib import assertion try: import numpy as np NUMPY_EX: Optional[Exception] = None except Exception as ex: NUMPY_EX = ex def test_abs() -> None: """Test :meth:`AssertionManager.abs`.""" assertion.abs(5) assertion.abs(5) assertion.abs(0, invert=True) assertion.abs(5, 6, 7, 8, exception=TypeError) assertion.abs([], exception=TypeError) def test_add() -> None: """Test :meth:`AssertionManager.add`.""" assertion.add(5, 5) assertion.add(0, 0, invert=True) assertion.add(5, 6, 7, 8, exception=TypeError) assertion.add([], 5, exception=TypeError) def test_and() -> None: """Test :meth:`AssertionManager.and_`.""" assertion.and_(5, 5) assertion.and_(0, 5, invert=True) assertion.and_(0, 0, invert=True) assertion.and_(5, 6, 7, 8, exception=TypeError) def test_concat() -> None: """Test :meth:`AssertionManager.concat`.""" assertion.concat([1], [2]) assertion.concat([], [], invert=True) assertion.concat([], {}, exception=TypeError) assertion.concat(5, 6, exception=TypeError) assertion.concat([], [], [], exception=TypeError) def test_contains() -> None: """Test :meth:`AssertionManager.contains`.""" assertion.contains([1], 1) assertion.contains({1}, 1) assertion.contains({1: None}, 1) assertion.contains([1], 2, invert=True) assertion.contains([1], 5, 6, 7, exception=TypeError) assertion.contains(5, 5, exception=TypeError) def test_countof() -> None: """Test :meth:`AssertionManager.countOf`.""" assertion.countOf([1, 1, 1], 1) assertion.countOf([1, 1, 1], 2, invert=True) assertion.countOf([1], 5, 6, 7, exception=TypeError) assertion.countOf(5, 5, exception=TypeError) def test_eq() -> None: """Test :meth:`AssertionManager.eq`.""" assertion.eq(5, 5) assertion.eq(5, 6, invert=True) assertion.eq(5, 6, 7, 8, exception=TypeError) def test_floordiv() -> None: """Test :meth:`AssertionManager.floordiv`.""" assertion.floordiv(5, 1) assertion.floordiv(5, 5) assertion.floordiv(0.5, 5, invert=True) assertion.floordiv(0, 5, invert=True) assertion.floordiv(5, 0, exception=ZeroDivisionError) assertion.floordiv(5, 6, 7, 8, exception=TypeError) assertion.floordiv([1], 5, exception=TypeError) def test_ge() -> None: """Test :meth:`AssertionManager.ge`.""" assertion.ge(6, 5) assertion.ge(5, 5) assertion.ge(5, 6, invert=True) assertion.ge(5, 6, 7, 8, exception=TypeError) assertion.ge([], 6, exception=TypeError) def test_getitem() -> None: """Test :meth:`AssertionManager.getitem`.""" assertion.getitem([1], 0) assertion.getitem([0], 0, invert=True) assertion.getitem(5, 6, 7, 8, exception=TypeError) assertion.getitem(5, 6, exception=TypeError) assertion.getitem([1], 5, exception=IndexError) assertion.getitem({1: None}, 5, exception=KeyError) def test_gt() -> None: """Test :meth:`AssertionManager.gt`.""" assertion.gt(6, 5) assertion.gt(5, 6, invert=True) assertion.gt(6, 6, invert=True) assertion.gt(5, 6, 7, 8, exception=TypeError) assertion.gt([], 6, exception=TypeError) def test_index() -> None: """Test :meth:`AssertionManager.index`.""" assertion.index(6) assertion.index(0, invert=True) assertion.index(5, 6, 7, 8, exception=TypeError) assertion.index(5.0, exception=TypeError) def test_inv() -> None: """Test :meth:`AssertionManager.inv`.""" assertion.inv(6) assertion.inv(-1, invert=True) assertion.inv(5, 6, 7, 8, exception=TypeError) assertion.inv(5.0, exception=TypeError) def test_invert() -> None: """Test :meth:`AssertionManager.invert`.""" assertion.invert(6) assertion.invert(-1, invert=True) assertion.invert(5, 6, 7, 8, exception=TypeError) assertion.invert(5.0, exception=TypeError) def test_is() -> None: """Test :meth:`AssertionManager.is_`.""" a = 5 b = 6 assertion.is_(a, a) assertion.is_(a, b, invert=True) assertion.is_(a, a, a, a, a, exception=TypeError) def test_is_not() -> None: """Test :meth:`AssertionManager.is_not`.""" a = 5 b = 6 assertion.is_not(a, b) assertion.is_not(a, a, invert=True) assertion.is_not(a, a, a, a, a, exception=TypeError) def test_le() -> None: """Test :meth:`AssertionManager.le`.""" assertion.le(5, 6) assertion.le(5, 5) assertion.le(6, 5, invert=True) assertion.le(5, 6, 7, 8, exception=TypeError) assertion.le([], 6, exception=TypeError) def test_lshift() -> None: """Test :meth:`AssertionManager.lshift`.""" assertion.lshift(5, 6) assertion.lshift(0, 5, invert=True) assertion.lshift(0, 0, invert=True) assertion.lshift(-5, 6) assertion.lshift(-5, -6, exception=ValueError) assertion.lshift(5, -6, exception=ValueError) assertion.lshift(5, 6, 7, 8, exception=TypeError) assertion.lshift([], 6, exception=TypeError) def test_lt() -> None: """Test :meth:`AssertionManager.lt`.""" assertion.lt(5, 6) assertion.lt(6, 5, invert=True) assertion.lt(6, 6, invert=True) assertion.lt(5, 6, 7, 8, exception=TypeError) assertion.lt([], 6, exception=TypeError) @pytest.mark.skipif(bool(NUMPY_EX), reason=str(NUMPY_EX)) def test_matmul() -> None: """Test :meth:`AssertionManager.matmul`.""" assertion.matmul(
np.ones(2)
numpy.ones
import os import gym import tensorflow as tf import numpy as np import argparse from tqdm import tqdm from common.atari_env_wrapper import Atari from common.exploration_scheduler import ExplorationExploitationScheduler from common.frame_processor import FrameProcessor from common.utils import clip_reward, update_min_max_frame from DQN.replay import ReplayMemory from DQN.network import DQN PARSER = argparse.ArgumentParser(description=None) PARSER.add_argument('-t', '--train', default=False, type=bool, help='Train : True, Evaluate : False') PARSER.add_argument('-env', '--environment', default='EnduroDeterministic-v4', type=str, help='Atari Environment to run') PARSER.add_argument('-max_ep_len', '--MAX_EPISODE_LENGTH', default=100000, type=int, help='Maximum episode length') PARSER.add_argument('-save_freq', '--SAVE_FREQUENCY', default=1000000, type=int, help='Number of frames the agent sees between evaluations') PARSER.add_argument('-netw_freq', '--NETW_UPDATE_FREQ', default=10000, type=int, help='Number of chosen actions between updating the target network.') PARSER.add_argument('-g', '--DISCOUNT_FACTOR', default=0.99, type=float, help='gamma in the Bellman equation') PARSER.add_argument('-start_learn', '--REPLAY_MEMORY_START_SIZE', default=50000, type=int, help='Number of completely random actions before agent starts learning') PARSER.add_argument('-max_step', '--MAX_FRAMES', default=25000000, type=int, help='Total number of frames the agent sees') PARSER.add_argument('-mem_size', '--MEMORY_SIZE', default=1000000, type=int, help='Number of transitions stored in the replay memory') PARSER.add_argument('-num_noop', '--NO_OP_STEPS', default=30, type=int, help='Number of NOOP or FIRE actions at the beginning of an episode') PARSER.add_argument('-upd_freq', '--UPDATE_FREQ', default=4, type=int, help='Number of actions a gradient descent step is performed') PARSER.add_argument('-hidden', '--HIDDEN', default=512, type=int, help='Number of neurons in the final layer') PARSER.add_argument('-lr', '--LEARNING_RATE', default=0.0000625, type=float, help='Learning rate') PARSER.add_argument('-bs', '--BS', default=32, type=int, help='Batch size') PARSER.add_argument('-path', '--PATH', default="output/", type=str, help='Gifs and checkpoints will be saved here') PARSER.add_argument('-sum', '--SUMMARIES', default="summaries", type=str, help='logdir for tensorboard') PARSER.add_argument('-id', '--RUNID', default='run_1', type=str, help='run id inside logdir') PARSER.add_argument('-n', '--NOISY', default=False, type=bool, help='If Parameter noise included') PARSER.add_argument('-state_dependent', '--STATE_DEPENDENT', default=False, type=bool, help='If variance is state dependent : Default all parameters independent variance') PARSER.add_argument('-single', '--SINGLE', default=False, type=bool, help='Change to single variance for all noises: Works only with state dependent noise') PARSER.add_argument('-layer', '--LAYERWISE', default=False, type=bool, help='Change to layer wise common variance: Works only with state dependent noise') PARSER.add_argument('-nls', '--NOISY_LATENT_SIZE', default=16, type=int, help='Latent size for noise') PARSER.add_argument('-no_eps', '--NO_EPSILON_GREEDY', default=False, type=bool, help='Disable epsilon greedy') PARSER.add_argument('-eps_sched', '--EPS_SCHED', default=False, type=bool, help='Greedier epsilon schedule') PARSER.add_argument('-switch_noise_init', '--SWITCH_NOISY_LAYER_INIT', default=1, type=int, help='Switch Noisy layer init to variance scaling initializer') PARSER.add_argument('-d', '--DEVICE', default='gpu', type=str, help='GPU/CPU') PARSER.add_argument('-d_id', '--DEVICE_ID', default=-1, type=int, help='GPU id to use') PARSER.add_argument('-lm', '--LOAD_MODEL', default=False, type=bool, help='Enable to load existing model') PARSER.add_argument('-lbs', '--LOAD_BUFFER_SIZE', default=50000, type=int, help='Enable to load existing model') PARSER.add_argument('-exp_stop', '--EXP_STOP', default=np.inf, type=int, help='Stop parameter noise') PARSER.add_argument('-greedy', '--GREEDY', default=False, type=bool, help='Greedy Agent') PARSER.add_argument('-save_buffer', '--SAVE_BUFFER', default=False, type=bool, help='Set flag to True to enable saving replay_buffer') PARSER.add_argument('-load_buffer', '--LOAD_BUFFER', default=False, type=bool, help='Set flag to True to enable loading replay_buffer') PARSER.add_argument('-add_q_values_to_perturb', '--ADD_Q_VALUES_TO_PERTURB', default=False, type=bool, help='Set flag to True to add Q values as input to perturbation module') PARSER.add_argument('-use_defaults', '--USE_DEFAULTS', default=False, type=bool, help='Set flag to True run with default settings (Do not add other flags except for train/evaluate and the environment to be trained') PARSER.add_argument('-eps_greedy', '--EPS_GREEDY_AGENT', default=False, type=bool, help='Set flag to True to train/evaluate an epsilon greedy agent') PARSER.add_argument('-noisy_net', '--NOISY_NET_AGENT', default=False, type=bool, help='Set flag to True to train/evaluate a NoisyNet agent') PARSER.add_argument('-sane', '--SANE_AGENT', default=False, type=bool, help='Set flag to True to train/evaluate a SANE agent') PARSER.add_argument('-q_sane', '--Q_SANE_AGENT', default=False, type=bool, help='Set flag to True to train/evaluate a Q-SANE agent') PARSER.add_argument('-eval_steps', '--EVAL_STEPS', default=500000, type=int, help='Number of interactions to evaluate an agent') PARSER.add_argument('-lambda1', '--LAMBDA1', default=0.0001, type=float, help='Number of interactions to evaluate an agent') PARSER.add_argument('-lambda2', '--LAMBDA2', default=0.01, type=float, help='Number of interactions to evaluate an agent') PARSER.add_argument('-add_var_loss', '--ADD_VAR_LOSS', default=False, type=bool, help='Number of interactions to evaluate an agent') ARGS = PARSER.parse_args() EPS_G_SCHEDULE = ARGS.EPS_SCHED TRAIN = ARGS.train ENV_NAME = ARGS.environment MAX_EPISODE_LENGTH = ARGS.MAX_EPISODE_LENGTH SAVE_FREQUENCY = ARGS.SAVE_FREQUENCY NETW_UPDATE_FREQ = ARGS.NETW_UPDATE_FREQ DISCOUNT_FACTOR =ARGS.DISCOUNT_FACTOR REPLAY_MEMORY_START_SIZE = ARGS.REPLAY_MEMORY_START_SIZE MAX_FRAMES = ARGS.MAX_FRAMES MEMORY_SIZE = ARGS.MEMORY_SIZE NO_OP_STEPS = ARGS.NO_OP_STEPS UPDATE_FREQ = ARGS.UPDATE_FREQ HIDDEN = ARGS.HIDDEN LEARNING_RATE = ARGS.LEARNING_RATE BS = ARGS.BS PATH = ARGS.RUNID + "_" + ARGS.PATH SUMMARIES = ARGS.SUMMARIES RUNID = ARGS.RUNID NOISY=ARGS.NOISY STATE_DEPENDENT=ARGS.STATE_DEPENDENT SINGLE_VARIANCE=ARGS.SINGLE LAYERWISE_VARIANCE = ARGS.LAYERWISE NOISY_LATENT_SIZE = ARGS.NOISY_LATENT_SIZE NO_EPS = ARGS.NO_EPSILON_GREEDY SWITCH_NOISY_LAYER_INIT = ARGS.SWITCH_NOISY_LAYER_INIT DEVICE = ARGS.DEVICE LAMBDA1 = ARGS.LAMBDA1 LAMBDA2 = ARGS.LAMBDA2 ADD_VAR_LOSS = ARGS.ADD_VAR_LOSS if ARGS.DEVICE_ID == -1 : DEVICE_ID =0 else : os.environ["CUDA_VISIBLE_DEVICES"] = str(ARGS.DEVICE_ID) DEVICE_ID =0 os.makedirs(PATH, exist_ok=True) os.makedirs(os.path.join(SUMMARIES, RUNID), exist_ok=True) SUMM_WRITER = tf.summary.FileWriter(os.path.join(SUMMARIES, RUNID)) LOAD_MODEL = ARGS.LOAD_MODEL LOAD_BUFFER_SIZE = ARGS.LOAD_BUFFER_SIZE EXP_STOP = ARGS.EXP_STOP GREEDY = ARGS.GREEDY SAVE_BUFFER = ARGS.SAVE_BUFFER LOAD_BUFFER = ARGS.LOAD_BUFFER ADD_Q_VALUES_TO_PERTURB = ARGS.ADD_Q_VALUES_TO_PERTURB if ARGS.USE_DEFAULTS : if ARGS.EPS_GREEDY_AGENT : SWITCH_NOISY_LAYER_INIT = 2 elif ARGS.NOISY_NET_AGENT : SWITCH_NOISY_LAYER_INIT = 3 NOISY = True NO_EPS = True elif ARGS.SANE_AGENT or ARGS.Q_SANE_AGENT : SWITCH_NOISY_LAYER_INIT = 2 NOISY = True STATE_DEPENDENT = True SINGLE_VARIANCE = True NO_EPS = True NOISY_LATENT_SIZE = 256 if ARGS.Q_SANE_AGENT : ADD_Q_VALUES_TO_PERTURB = True def learn(session, replay_memory, main_dqn, target_dqn, batch_size, gamma, frame_number, is_double_q = False): """ Args: session: A tensorflow sesson object replay_memory: A ReplayMemory object main_dqn: A DQN object target_dqn: A DQN object batch_size: Integer, Batch size gamma: Float, discount factor for the Bellman equation frame_number: Frame Number to check whether to stop parameter space noise Returns: loss: The loss of the minibatch """ states, actions, rewards, new_states, terminal_flags = replay_memory.get_minibatch() if frame_number - NETW_UPDATE_FREQ > EXP_STOP : target_cond_variable = False else : target_cond_variable = True if frame_number > EXP_STOP : main_cond_variable = False else : main_cond_variable = True if ADD_Q_VALUES_TO_PERTURB : dict_inp = { target_dqn.q_val_input : np.zeros([batch_size,target_dqn.n_actions]), main_dqn.q_val_input : np.zeros([batch_size,main_dqn.n_actions]), target_dqn.input : new_states, main_dqn.input : states, target_dqn.cond_variable:[target_cond_variable], main_dqn.cond_variable:[main_cond_variable]} main_q_for_perturb, target_q_for_perturb = session.run([main_dqn.q_values, target_dqn.q_values], feed_dict=dict_inp) inp_pert_dict = {main_dqn.q_val_input : main_q_for_perturb, target_dqn.q_val_input: target_q_for_perturb} else : inp_pert_dict = {} q_vals, arg_q_max = session.run([target_dqn.q_values, target_dqn.best_action], feed_dict={**{target_dqn.input:new_states, target_dqn.cond_variable:[target_cond_variable]}, **inp_pert_dict}) double_q = q_vals[range(batch_size), arg_q_max] target_q = rewards + (gamma*double_q * (1-terminal_flags)) loss_grad_list = session.run([main_dqn.loss_q_act, main_dqn.update], feed_dict={**{main_dqn.input:states, main_dqn.target_q:target_q, main_dqn.cond_variable:[main_cond_variable], main_dqn.action:actions}, **inp_pert_dict}) return loss_grad_list[0] class TargetNetworkUpdater(object): def __init__(self, main_dqn_vars, target_dqn_vars): self.main_dqn_vars = main_dqn_vars self.target_dqn_vars = target_dqn_vars def _update_target_vars(self): update_ops = [] for i, var in enumerate(self.main_dqn_vars): copy_op = self.target_dqn_vars[i].assign(var.value()) update_ops.append(copy_op) return update_ops def __call__(self, sess): """ Args: sess: A Tensorflow session object Assigns the values of the parameters of the main network to the parameters of the target network """ update_ops = self._update_target_vars() for copy_op in update_ops: sess.run(copy_op) tf.reset_default_graph() atari = Atari(ENV_NAME, NO_OP_STEPS) print("The environment has the following {} actions: {}".format(atari.env.action_space.n, atari.env.unwrapped.get_action_meanings())) # main DQN and target DQN networks: with tf.device("/{}:{}".format(DEVICE,DEVICE_ID)) : with tf.variable_scope('mainDQN'): MAIN_DQN = DQN(scope='mainDQN', n_actions=atari.env.action_space.n, hidden=HIDDEN, learning_rate=LEARNING_RATE, switch_init=SWITCH_NOISY_LAYER_INIT, noisy = NOISY, layer_wise_variance=LAYERWISE_VARIANCE, single_param=SINGLE_VARIANCE, state_dependent=STATE_DEPENDENT, noise_latent_size=NOISY_LATENT_SIZE, add_q_values_perturb_module = ADD_Q_VALUES_TO_PERTURB, lambda1=LAMBDA1, lambda2=LAMBDA2, add_var_loss=ADD_VAR_LOSS) with tf.variable_scope('targetDQN'): TARGET_DQN = DQN(scope='targetDQN', n_actions=atari.env.action_space.n, hidden=HIDDEN, switch_init=SWITCH_NOISY_LAYER_INIT, noisy = NOISY, layer_wise_variance=LAYERWISE_VARIANCE, single_param=SINGLE_VARIANCE, state_dependent=STATE_DEPENDENT, noise_latent_size=NOISY_LATENT_SIZE, add_q_values_perturb_module = ADD_Q_VALUES_TO_PERTURB) init = tf.global_variables_initializer() saver = tf.train.Saver(max_to_keep=50) best_model_saver = tf.train.Saver(max_to_keep=50) MAIN_DQN_VARS = tf.trainable_variables(scope='mainDQN') TARGET_DQN_VARS = tf.trainable_variables(scope='targetDQN') # Scalar summaries for tensorboard: loss, average reward and evaluation score with tf.name_scope('Performance'): LOSS_PH = tf.placeholder(tf.float32, shape=None, name='loss_summary') LOSS_SUMMARY = tf.summary.scalar('loss', LOSS_PH) REWARD_PH = tf.placeholder(tf.float32, shape=None, name='reward_summary') REWARD_SUMMARY = tf.summary.scalar('reward', REWARD_PH) AVG_SIGMA_PH = tf.placeholder(tf.float32, shape=None, name='avg_sigma_summary') AVG_SIGMA_SUMMARY = tf.summary.scalar('avg_sigma', AVG_SIGMA_PH) MIN_SIGMA_PH = tf.placeholder(tf.float32, shape=None, name='min_sigma_summary') MIN_SIGMA_SUMMARY = tf.summary.scalar('min_sigma', MIN_SIGMA_PH) MAX_SIGMA_PH = tf.placeholder(tf.float32, shape=None, name='max_sigma_summary') MAX_SIGMA_SUMMARY = tf.summary.scalar('max_sigma', MAX_SIGMA_PH) ACTION_DIFF_PH = tf.placeholder(tf.float32, shape=None, name='diff_action_summary') ACTION_DIFF_SUMMARY = tf.summary.scalar('diff_action', ACTION_DIFF_PH) PERFORMANCE_SUMMARIES = tf.summary.merge([LOSS_SUMMARY, REWARD_SUMMARY, AVG_SIGMA_SUMMARY, MIN_SIGMA_SUMMARY, MAX_SIGMA_SUMMARY, ACTION_DIFF_SUMMARY]) # Histogramm summaries for tensorboard: parameters with tf.name_scope('Parameters'): ALL_PARAM_SUMMARIES = [] for var in MAIN_DQN_VARS: with tf.name_scope('mainDQN/'): MAIN_DQN_KERNEL = tf.summary.histogram(str(var.name).replace("/", "_"), tf.reshape(var, shape=[-1])) ALL_PARAM_SUMMARIES.extend([MAIN_DQN_KERNEL]) PARAM_SUMMARIES = tf.summary.merge(ALL_PARAM_SUMMARIES) def train(session, my_replay_memory, explore_exploit_sched, update_networks, episode_start, frame_number_start): """ Trains a DQN agent Args: session: A tensorflow sesson object replay_memory: A ReplayMemory object explore_exploit_sched: An ExplorationExploitationScheduler object, Determines an action according to an epsilon greedy/noisy strategy update_networks: A TargetNetworkUpdater object, updates the target network periodically episode_start: Integer, episodes elapsed before this function is called frame_number_start: Integer, frames elapsed before this function is called """ with session as sess: frame_number = frame_number_start rewards = [] diff_action_list = [] loss_list = [] episodes = episode_start max_sigmas_to_keep = 10 while frame_number < MAX_FRAMES: epoch_frame = 0 while epoch_frame < SAVE_FREQUENCY: terminal_life_lost = atari.reset(sess) episode_reward_sum = 0 diff_action = 0.0 episode_step = 0 small_sigmas = [] large_sigmas = [] min_sigma_frames = [] min_sigma_states = [] max_sigma_frames = [] max_sigma_states = [] all_sigmas = [] for _ in range(MAX_EPISODE_LENGTH): curr_frame = atari.curr_frame currr_state = atari.state if NOISY : feed_dict = {} if ADD_Q_VALUES_TO_PERTURB : feed_dict[explore_exploit_sched.DQN.q_val_input] = np.zeros([1, explore_exploit_sched.DQN.n_actions]) action_no_noise, _, q_values = explore_exploit_sched.get_action(sess, frame_number, atari.state, no_noise=True, other_args=feed_dict) if ADD_Q_VALUES_TO_PERTURB and NOISY : feed_dict = {explore_exploit_sched.DQN.q_val_input : q_values} else : feed_dict = {} action, sigma, _ = explore_exploit_sched.get_action(sess, frame_number, atari.state, other_args=feed_dict) episode_step +=1 min_sigma_frames, max_sigma_frames, small_sigmas, large_sigmas, max_sigma_states, min_sigma_states = update_min_max_frame(all_sigmas, sigma, small_sigmas, max_sigmas_to_keep, min_sigma_frames, curr_frame, min_sigma_states, currr_state, large_sigmas, max_sigma_frames, max_sigma_states) if NOISY and action != action_no_noise: diff_action +=1 processed_new_frame, reward, terminal, terminal_life_lost, new_frame = atari.step(sess, action) frame_number += 1 epoch_frame += 1 episode_reward_sum += reward clipped_reward = clip_reward(reward) my_replay_memory.add_experience(action=action, frame=processed_new_frame[:, :, 0], reward=clipped_reward, terminal=terminal_life_lost) if terminal and (episodes+1) %10 == 0: small_sigmas = [] large_sigmas = [] min_sigma_frames = [] max_sigma_frames = [] max_sigma_states = [] min_sigma_states = [] if frame_number % UPDATE_FREQ == 0 and frame_number > REPLAY_MEMORY_START_SIZE: loss_q = learn(sess, my_replay_memory, MAIN_DQN, TARGET_DQN, BS, DISCOUNT_FACTOR,frame_number) loss_list.append(loss_q) if frame_number % NETW_UPDATE_FREQ == 0 and frame_number > REPLAY_MEMORY_START_SIZE: update_networks(sess) if terminal: terminal = False small_sigmas = [] large_sigmas = [] min_sigma_frames = [] max_sigma_frames = [] min_sigma_states = [] break rewards.append(episode_reward_sum) diff_action_list.append(float(diff_action)/episode_step) episodes +=1 if len(rewards) > 100 : rewards.pop(0) if episodes % 10 == 0: print("LOSS : {} ".format(np.mean(loss_list))) if frame_number > REPLAY_MEMORY_START_SIZE: summ = sess.run(PERFORMANCE_SUMMARIES, feed_dict={LOSS_PH:np.mean(loss_list), REWARD_PH:np.mean(rewards[-100:]), ACTION_DIFF_PH : np.mean(diff_action_list), AVG_SIGMA_PH: np.mean(all_sigmas), MIN_SIGMA_PH: np.min(all_sigmas), MAX_SIGMA_PH:np.max(all_sigmas)}) if NOISY : print("Effective exploration : {} ".format(np.mean(diff_action_list))) diff_action_list = [] SUMM_WRITER.add_summary(summ, frame_number) loss_list = [] # Histogramm summaries for tensorboard summ_param = sess.run(PARAM_SUMMARIES) SUMM_WRITER.add_summary(summ_param, frame_number) print("Episodes {}, Frames {}, Mean Reward {} Sigma : Average {} , MIN {} , MAX {}, Exploration {} ".format(episodes, frame_number, np.mean(rewards[-100:]), np.mean(np.abs(all_sigmas)), np.min(all_sigmas), np.max(all_sigmas), explore_exploit_sched.eps)) with open(PATH + 'rewards_'+ RUNID+ '.dat', 'a') as reward_file: print(episodes, frame_number, np.mean(rewards[-100:]),np.mean(np.abs(all_sigmas)), np.min(all_sigmas), np.max(all_sigmas), explore_exploit_sched.eps, file=reward_file) terminal = True #Save the network parameters and buffer saver.save(sess, PATH+'/my_model', global_step=frame_number) print("Saved model at frame {}".format(frame_number) ) if SAVE_BUFFER : my_replay_memory.save_buffer_to_disk(PATH+'/buffer_item_') ''' Helper functions get_info_from_log() : Gets information about the episodes elapsed, frames elapsed and score from the log file load_model() : Loads a model from the mentioned checkpoint populateExperienceReplayBuffer() : Loads the replay buffer with transitions from the loaded model ''' def get_info_from_log() : log_file = open(PATH + 'rewards_'+ RUNID+ '.dat', 'r') lineList = log_file.readlines() log_file.close() last_log = lineList[len(lineList)-1] last_episode, last_frame, last_score, _, _, _, _ = last_log.split(' ') return int(last_episode) + 10, int(last_frame) + 1, float(last_score) def load_model(sess, name): imported_graph = tf.train.import_meta_graph(tf.train.latest_checkpoint(PATH)+'.meta') imported_graph.restore(sess,name) episode_start, frame_number_start, score = get_info_from_log() print('Loaded model successfully : ' ,name) print('Episode_start {} frame_start {} score {}'.format(episode_start, frame_number_start, score)) return episode_start, frame_number_start def populateExperienceReplayBuffer(session, my_replay_memory, explore_exploit_sched, buffer_size): buffer_frame_number = 0 pbar = tqdm(total=buffer_size) while buffer_frame_number < buffer_size : terminal_life_lost = atari.reset(session) for _ in range(MAX_EPISODE_LENGTH): if NOISY : feed_dict = {} if ADD_Q_VALUES_TO_PERTURB : feed_dict[explore_exploit_sched.DQN.q_val_input] =
np.zeros([1, explore_exploit_sched.DQN.n_actions])
numpy.zeros
""" Class definition for the Branch_and_Bound subdriver. This pseudo-driver can only be run when plugged into the AMIEGO driver's minlp slot. This is the branch and bound algorithm that maximizes the constrained expected improvement function and returns an integer infill point. The algorithm uses the relaxation techniques proposed by Jones et.al. on their paper on EGO,1998. This enables the algorithm to use any gradient-based approach to obtain a global solution. Also, to satisfy the integer constraints, a new branching scheme has been implemented. Developed by <NAME> School of Aeronautics & Astronautics Purdue University, West Lafayette, IN 47906 July, 2016 Implemented in OpenMDAO, Aug 2016, <NAME> """ from collections import OrderedDict import os from time import time import numpy as np from scipy.special import erf from pyDOE2 import lhs from openmdao.core.driver import Driver from openmdao.drivers.genetic_algorithm_driver import GeneticAlgorithm from openmdao.utils.concurrent import concurrent_eval, concurrent_eval_lb from openmdao.utils.general_utils import set_pyoptsparse_opt from amiego.optimize_function import snopt_opt # check that pyoptsparse is installed # if it is, try to use SNOPT but fall back to SLSQP _, OPTIMIZER = set_pyoptsparse_opt('SNOPT') class Branch_and_Bound(Driver): """ Class definition for the Branch_and_Bound driver. This pseudo-driver can only be run when plugged into the AMIEGO driver's minlp slot. This is the branch and bound algorithm that maximizes the constrained expected improvement function and returns an integer infill point. The algorithm uses the relaxation techniques proposed by Jones et.al. on their paper on EGO,1998. This enables the algorithm to use any gradient-based approach to obtain a global solution. Also, to satisfy the integer constraints, a new branching scheme has been implemented. Attributes ---------- dvs : list Cache of integer design variable names. eflag_MINLPBB : bool This is set to True when we find a local minimum. fopt : ndarray Objective value at optimal design. obj_surrogate : <AMIEGOKrigingSurrogate> Surrogate model of the objective as a function of the integer design vars. xI_lb : ndarray Lower bound of the integer design variables. xI_ub : ndarray Upper bound of the integer design variables. xopt : ndarray Optimal design. _randomstate : np.random.RandomState, int Random state (or seed-number) which controls the seed and random draws. """ def __init__(self): """ Initialize the Branch_and_Bound driver. """ super(Branch_and_Bound, self).__init__() # What we support self.supports['inequality_constraints'] = True self.supports['equality_constraints'] = False self.supports['multiple_objectives'] = False self.supports['two_sided_constraints'] = False self.supports['active_set'] = False self.supports['linear_constraints'] = False self.supports['gradients'] = False self.supports['integer_design_vars'] = True self.dvs = [] self.i_idx_cache = {} self.obj_surrogate = None # We will set this to True if we have found a minimum. self.eflag_MINLPBB = False # Amiego retrieves optimal design and optimum upon completion. self.xopt = None self.fopt = None # Experimental Options. TODO: could go into Options self.load_balance = True self.aggressive_splitting = False # Random state can be set for predictability during testing if 'SimpleGADriver_seed' in os.environ: self._randomstate = int(os.environ['SimpleGADriver_seed']) else: self._randomstate = None def _declare_options(self): """ Declare options before kwargs are processed in the init method. """ opt = self.options opt.declare('active_tol', 1.0e-6, lower=0.0, desc='Tolerance (2-norm) for triggering active set ' 'reduction.') opt.declare('atol', 0.1, lower=0.0, desc='Absolute tolerance (inf-norm) of upper minus ' 'lower bound for termination.') opt.declare('con_tol', 1.0e-6, lower=0.0, desc='Constraint thickness.') opt.declare('disp', True, desc='Set to False to prevent printing of iteration ' 'messages.') opt.declare('ftol', 1.0e-4, lower=0.0, desc='Absolute tolerance for sub-optimizations.') opt.declare('maxiter', 100000, lower=0.0, desc='Maximum number of iterations.') opt.declare('trace_iter', 5, desc='Number of generations to trace back for ubd.') opt.declare('trace_iter_max', 10, desc='Maximum number of generations to trace back for ubd.') opt.declare('maxiter_ubd', 10000, desc='Number of generations ubd stays the same') opt.declare('local_search', 0, values=[0, 1, 2], desc='Local search type. Set to 0 for GA, 1 for LHS, 2 for LHS + SQP ' '(Default = 0)') def run(self): """ Execute the Branch_and_Bound method. Returns ------- boolean Failure flag; True if failed to converge, False if successful. """ problem = self._problem() obj_surrogate = self.obj_surrogate atol = self.options['atol'] disp = self.options['disp'] maxiter = self.options['maxiter'] maxiter_ubd = self.options['maxiter_ubd'] self.iter_count = 1 self.eflag_MINLPBB = False obj_surrogate.p = 2 obj_surrogate.y_best = np.min(obj_surrogate.Y) # ---------------------------------------------------------------------- # Step 1: Initialize # ---------------------------------------------------------------------- num_des = len(self.xI_lb) node_num = 0 itercount = 0 ubd_count = 0 # Initial B&B bounds are infinite. UBD = np.inf LBD = -np.inf LBD_prev = -np.inf # Copy our desvars' user specified upper and lower bounds xL_iter = self.xI_lb.copy() xU_iter = self.xI_ub.copy() num_init_sam = num_des init_sam = lhs(num_des, samples=num_init_sam, criterion='center', random_state=self._randomstate) for ii in range(num_init_sam): xopt_ii = np.round(xL_iter + init_sam[ii] * (xU_iter - xL_iter)).reshape(num_des) fopt_ii = self.objective_callback(xopt_ii) if fopt_ii < UBD: self.eflag_MINLPBB = True UBD = fopt_ii fopt = fopt_ii xopt = xopt_ii # This stuff is just for printing. par_node = 0 # Active set fields: (Updated!) # Aset = [[NodeNumber, lb, ub, LBD, UBD, nodeHist], [], ..] active_set = [] nodeHist = NodeHist() UBD_term = UBD comm = problem.model.comm if self.load_balance: # Master/Worker config n_proc = comm.size - 1 if n_proc < 2: comm = None n_proc = 1 else: # Each proc has its own jobs n_proc = comm.size if n_proc < 2: comm = None # Initial node. This is the data structure we pass into the concurrent evaluator. if self.aggressive_splitting: # Initial number of nodes based on number of available procs args = init_nodes(n_proc, xL_iter, xU_iter, par_node, LBD_prev, LBD, UBD, fopt, xopt, nodeHist, ubd_count) else: # Start with 1 node. args = [(xL_iter, xU_iter, par_node, LBD_prev, LBD, UBD, fopt, xopt, node_num, nodeHist, ubd_count)] # Main Loop terminate = False while not terminate: # Branch and Bound evaluation of a set of nodes, starting with the initial one. # When executed in serial, only a single node is evaluted. cases = [(arg, None) for arg in args] if self.load_balance: results = concurrent_eval_lb(self.evaluate_node, cases, comm, broadcast=True) else: results = concurrent_eval(self.evaluate_node, cases, comm, allgather=True) itercount += len(args) if UBD < -1.0e-3: ubd_count += len(args) # Put all the new nodes into active set. for result in results: # Print the traceback if it fails if not result[0]: print(result[1]) new_UBD, new_fopt, new_xopt, new_nodes = result[0] # Save stats for the best case. if new_UBD < UBD: UBD = new_UBD fopt = new_fopt xopt = new_xopt # Look for substantial change in UBD to reset the counter if abs(new_UBD - UBD_term) > 0.001: ubd_count = 1 UBD_term = new_UBD # TODO: Should we extend the active set with all the cases we # ran, or just the best one. All for now. active_set.extend(new_nodes) node_num += len(new_nodes) # Update active set: Removes all nodes worse than the best new node. if len(active_set) >= 1: active_set = update_active_set(active_set, UBD) # Termination if len(active_set) >= 1: # Update LBD and select the current rectangle args = [] # Grab the best nodes, as many as we have processors. n_nodes = np.min((n_proc, len(active_set))) for j in range(n_nodes): # a. Set LBD as lowest in the active set all_LBD = [item[3] for item in active_set] LBD = min(all_LBD) ind_LBD = all_LBD.index(LBD) LBD_prev = LBD # b. Select the lowest LBD node as the current node par_node, xL_iter, xU_iter, _, _, nodeHist = active_set[ind_LBD] self.iter_count += 1 args.append((xL_iter, xU_iter, par_node, LBD_prev, LBD, UBD, fopt, xopt, node_num, nodeHist, ubd_count)) # c. Delete the selected node from the Active set of nodes del active_set[ind_LBD] # -------------------------------------------------------------- # Step 7: Check for convergence # -------------------------------------------------------------- diff = np.abs(UBD - LBD) if diff < atol: terminate = True if disp: print("=" * 85) print("Terminating! Absolute difference between the upper " + "and lower bound is below the tolerence limit.") else: terminate = True if disp: print("=" * 85) print("Terminating! No new node to explore.") print("Max Node", node_num) if itercount > maxiter or ubd_count > maxiter_ubd: terminate = True # Finalize by putting optimal value back into openMDAO self.xopt = xopt self.fopt = fopt return False def evaluate_node(self, xL_iter, xU_iter, par_node, LBD_prev, LBD, UBD, fopt, xopt, node_num, nodeHist, ubd_count): """ Perform Branch and Bound step on a single node. This function encapsulates the portion of the code that runs in parallel. Parameters ---------- xL_iter : ndarray Lower bound of design variables. xU_iter : ndarray Upper bound of design variables. par_node : int Index of parent node for this child node. LBD_prev : float Previous iteration value of LBD. LBD : float Current value of lower bound estimate. UBD : float Current value of upper bound esimate. fopt : float Current best objective value xopt : ndarray Current best design values. node_num : int Index of this current node nodeHist : <NodeHist> Data structure containing information about this node. ubd_count : int Counter for number of generations. Returns ------- float New upper bound estimate. float New best objective value. ndaray New design variables. list List of parameters for new node. """ if OPTIMIZER == 'SNOPT': options = {'Major optimality tolerance': 1.0e-5} elif OPTIMIZER == 'SLSQP': options = {'ACC': 1.0e-5} elif OPTIMIZER == 'CONMIN': options = {'DABFUN': 1.0e-5} active_tol = self.options['active_tol'] local_search = self.options['local_search'] disp = self.options['disp'] trace_iter = self.options['trace_iter'] trace_iter_max = self.options['trace_iter_max'] obj_surrogate = self.obj_surrogate num_des = len(self.xI_lb) new_nodes = [] # Keep this to 0.49 to always round towards bottom-left xloc_iter = np.round(xL_iter + 0.49 * (xU_iter - xL_iter)) floc_iter = self.objective_callback(xloc_iter) # Genetic Algorithm if local_search == 0: # -------------------------------------------------------------- # Step 2: Obtain a local solution using a GA. # -------------------------------------------------------------- ga = GeneticAlgorithm(self.obj_for_GA) bits = np.ceil(np.log2(xU_iter - xL_iter + 1)).astype(int) bits[bits <= 0] = 1 vub_vir = (2**bits - 1) + xL_iter # More important nodes get a higher population size and number of generations. if nodeHist.priority_flag == 1: max_gen = 300 mfac = 6 else: max_gen = 200 mfac = 4 L = np.sum(bits) pop_size = mfac * L t0 = time() self.xU_iter = xU_iter xloc_iter_new, floc_iter_new, nfit = \ ga.execute_ga(xL_iter, xL_iter, vub_vir, vub_vir, bits, pop_size, max_gen, self._randomstate) t_GA = time() - t0 if floc_iter_new < floc_iter: floc_iter = floc_iter_new xloc_iter = xloc_iter_new # LHS Sampling or SNOPT else: # TODO Future research on sampling here num_samples = np.round(np.max([10, np.min([50, num_des / nodeHist.priority_flag])])) init_sam_node = lhs(num_des, samples=num_samples, criterion='center', random_state=self._randomstate) t_GA = 0. for ii in range(int(num_samples)): xloc_iter_new = np.round(xL_iter + init_sam_node[ii] * (xU_iter - xL_iter)) floc_iter_new = self.objective_callback(xloc_iter_new) # SNOPT if local_search == 2: # TODO: did we lose a tol check here? # active_tol: #Perform at non-flat starting point if np.abs(floc_iter_new) > -np.inf: # -------------------------------------------------------------- # Step 2: Obtain a local solution # -------------------------------------------------------------- # Using a gradient-based method here. # TODO: Make it more pluggable. def _objcall(dv_dict): """ Compute objective for SNOPT. """ fail = 0 x = dv_dict['x'] # Objective func_dict = {} func_dict['obj'] = self.objective_callback(x)[0] return func_dict, fail xC_iter = xloc_iter_new opt_x, opt_f, succ_flag, msg = snopt_opt(_objcall, xC_iter, xL_iter, xU_iter, title='LocalSearch', options=options) xloc_iter_new = np.round(np.asarray(opt_x).flatten()) floc_iter_new = self.objective_callback(xloc_iter_new) if floc_iter_new < floc_iter: floc_iter = floc_iter_new xloc_iter = xloc_iter_new # Do some prechecks before commencing for partitioning. ubdloc_best = nodeHist.ubdloc_best if nodeHist.ubdloc_best > floc_iter + 1.0e-6: ubd_track = np.concatenate((nodeHist.ubd_track, np.array([0])), axis=0) ubdloc_best = floc_iter else: ubd_track = np.concatenate((nodeHist.ubd_track, np.array([1])), axis=0) # diff_LBD = abs(LBD_prev - LBD_NegConEI) if len(ubd_track) >= trace_iter_max or \ (len(ubd_track) >= trace_iter and np.sum(ubd_track[-trace_iter:]) == 0): # TODO : Did we lose ths? -> #and UBD<=-1.0e-3: child_info = np.array([[par_node, np.inf, floc_iter], [par_node, np.inf, floc_iter]]) # Fathomed due to no change in UBD_loc for 'trace_iter' generations dis_flag = ['Y', 'Y'] else: # -------------------------------------------------------------------------- # Step 3: Partition the current rectangle as per the new branching scheme. # -------------------------------------------------------------------------- child_info = np.zeros([2, 3]) dis_flag = [' ', ' '] # Choose l_iter = (xU_iter - xL_iter).argmax() if xloc_iter[l_iter] < xU_iter[l_iter]: delta = 0.5 # 0<delta<1 else: delta = -0.5 # -1<delta<0 for ii in range(2): lb = xL_iter.copy() ub = xU_iter.copy() if ii == 0: ub[l_iter] = np.floor(xloc_iter[l_iter] + delta) elif ii == 1: lb[l_iter] = np.ceil(xloc_iter[l_iter] + delta) if np.linalg.norm(ub - lb) > active_tol: # Not a point # -------------------------------------------------------------- # Step 4: Obtain an LBD of f in the newly created node # -------------------------------------------------------------- S4_fail = False x_comL, x_comU, Ain_hat, bin_hat = gen_coeff_bound(lb, ub, obj_surrogate) sU, eflag_sU = self.maximize_S(x_comL, x_comU, Ain_hat, bin_hat) if eflag_sU: yL, eflag_yL = self.minimize_y(x_comL, x_comU, Ain_hat, bin_hat) if eflag_yL: NegEI = calc_conEI_norm([], obj_surrogate, SSqr=sU, y_hat=yL) else: S4_fail = True else: S4_fail = True # Convex approximation failed! if S4_fail: LBD_NegConEI = LBD_prev dis_flag[ii] = 'F' else: LBD_NegConEI = max(NegEI, LBD_prev) # -------------------------------------------------------------- # Step 5: Store any new node inside the active set that has LBD # lower than the UBD. # -------------------------------------------------------------- priority_flag = 0 if LBD_NegConEI < np.inf and LBD_prev > -np.inf: if np.abs((LBD_prev - LBD_NegConEI) / LBD_prev) < 0.005: priority_flag = 1 nodeHist_new = NodeHist() nodeHist_new.ubd_track = ubd_track nodeHist_new.ubdloc_best = ubdloc_best nodeHist_new.priority_flag = priority_flag if LBD_NegConEI < UBD - 1.0e-6: node_num += 1 new_node = [node_num, lb, ub, LBD_NegConEI, floc_iter, nodeHist_new] new_nodes.append(new_node) child_info[ii] = np.array([node_num, LBD_NegConEI, floc_iter]) else: child_info[ii] = np.array([par_node, LBD_NegConEI, floc_iter]) # Flag for child created but not added to active set. (fathomed) dis_flag[ii] = 'X' else: if ii == 1: xloc_iter = ub floc_iter = self.objective_callback(xloc_iter) child_info[ii] = np.array([par_node, np.inf, floc_iter]) # Flag for No child created dis_flag[ii] = 'x' # Update the active set whenever better solution found if floc_iter < UBD: UBD = floc_iter fopt = floc_iter xopt = xloc_iter.reshape(num_des) if disp: if (self.iter_count - 1) % 25 == 0: # Display output in a tabular format print("=" * 95) print("%19s%12s%14s%21s" % ("Global", "Parent", "Child1", "Child2")) template = "%s%8s%10s%8s%9s%11s%10s%11s%11s%11s" print(template % ("Iter", "LBD", "UBD", "Node", "Node1", "LBD1", "Node2", "LBD2", "Flocal", "GA time")) print("=" * 95) template = "%3d%10.2f%10.2f%6d%8d%1s%13.2f%8d%1s%13.2f%9.2f%9.2f" print(template % (self.iter_count, LBD, UBD, par_node, child_info[0, 0], dis_flag[0], child_info[0, 1], child_info[1, 0], dis_flag[1], child_info[1, 1], child_info[1, 2], t_GA)) return UBD, fopt, xopt, new_nodes def objective_callback(self, xI): """ Evalute main problem objective at the requested point. Objective is the expected improvement function with modifications to make it concave. Parameters ---------- xI : ndarray Value of design variables. Returns ------- float Objective value """ obj_surrogate = self.obj_surrogate # Normalized as per the convention in openmdao_Alpha:Kriging. xval = (xI - obj_surrogate.X_mean) / obj_surrogate.X_std NegEI = calc_conEI_norm(xval, obj_surrogate) # print(xI, f) return NegEI def maximize_S(self, x_comL, x_comU, Ain_hat, bin_hat): """ Maximize the SigmaSqr Error. This method finds an upper bound to the SigmaSqr Error, and scales up 'r' to provide a smooth design space for gradient-based approach. Parameters ---------- x_comL : ndarray Full lower bounds vector x_comU : ndarray Full upper bounds vector. Ain_hat : ndarray Matrix Ain_hat for linear model of constraints. bin_hat : ndarray Vector bin_hat for linear model of constraints. Returns ------- float Maximized upper bound for sigma squared error. bool Success flag True if successful. """ if OPTIMIZER == 'SNOPT': options = {'Major optimality tolerance': 1.0e-5} elif OPTIMIZER == 'SLSQP': options = {'ACC': 1.0e-5} elif OPTIMIZER == 'CONMIN': options = {'DABFUN': 1.0e-5} surrogate = self.obj_surrogate R_inv = surrogate.R_inv SigmaSqr = surrogate.SigmaSqr X = surrogate.X n, k = X.shape one = np.ones([n, 1]) xhat_comL = x_comL.copy() xhat_comU = x_comU.copy() xhat_comL[k:] = 0.0 xhat_comU[k:] = 1.0 # Calculate the convexity factor alpha rL = x_comL[k:] rU = x_comU[k:] dr_drhat = np.diag(rU[:, 0] - rL[:, 0]) T2_num = np.dot(np.dot(R_inv, one), np.dot(R_inv, one).T) T2_den = np.dot(one.T, np.dot(R_inv, one)) d2S_dr2 = 2.0 * SigmaSqr * (R_inv - (T2_num / T2_den)) H_hat = np.dot(np.dot(dr_drhat, d2S_dr2), dr_drhat) # Use Gershgorin's circle theorem to find a lower bound of the # min eigen value of the hessian eig_lb = np.zeros([n, 1]) for ii in range(n): dia_ele = H_hat[ii, ii] sum_rw = 0.0 sum_col = 0.0 for jj in range(n): if ii != jj: sum_rw += np.abs(H_hat[ii, jj]) sum_col += np.abs(H_hat[jj, ii]) eig_lb[ii] = dia_ele - np.min(np.array([sum_rw, sum_col])) eig_min = np.min(eig_lb) alpha = np.max(np.array([0.0, -0.5 * eig_min])) # Maximize S x0 = 0.5 * (xhat_comL + xhat_comU) # Just storing stuff here to pull it out in the callback. surrogate._alpha = alpha self.x_comL = x_comL self.x_comU = x_comU self.xhat_comL = xhat_comL self.xhat_comU = xhat_comU self.Ain_hat = Ain_hat self.bin_hat = bin_hat opt_x, opt_f, succ_flag, msg = snopt_opt(self.calc_SSqr_convex, x0, xhat_comL, xhat_comU, ncon=len(bin_hat), title='Maximize_S', options=options, jac=Ain_hat, sens=self.calc_SSqr_convex_grad) Neg_sU = opt_f # if not succ_flag: # eflag_sU = False # else: # eflag_sU = True eflag_sU = True tol = self.options['con_tol'] for ii in range(2 * n): if np.dot(Ain_hat[ii, :], opt_x) > (bin_hat[ii] + tol): eflag_sU = False break sU = - Neg_sU return sU, eflag_sU def calc_SSqr_convex(self, dv_dict): """ Callback function for minimization of mean squared error. Parameters ---------- dv_dict : dict Dictionary of design variable values. Returns ------- func_dict : dict Dictionary of all functional variables evaluated at design point. fail : int 0 for successful function evaluation 1 for unsuccessful function evaluation """ fail = 0 x_com = dv_dict['x'] surrogate = self.obj_surrogate R_inv = surrogate.R_inv SigmaSqr = surrogate.SigmaSqr alpha = surrogate._alpha n, k = surrogate.X.shape one = np.ones([n, 1]) rL = self.x_comL[k:] rU = self.x_comU[k:] rhat = x_com[k:].reshape(n, 1) r = rL + rhat * (rU - rL) rhat_L = self.xhat_comL[k:] rhat_U = self.xhat_comU[k:] term0 = np.dot(R_inv, r) term1 = -SigmaSqr * (1.0 - r.T.dot(term0) + ((1.0 - one.T.dot(term0))**2 / (one.T.dot(np.dot(R_inv, one))))) term2 = alpha * (rhat - rhat_L).T.dot(rhat - rhat_U) S2 = term1 + term2 # Objectives func_dict = {} func_dict['obj'] = S2[0, 0] # Constraints Ain_hat = self.Ain_hat bin_hat = self.bin_hat func_dict['con'] = np.dot(Ain_hat, x_com) - bin_hat # print('x', dv_dict) # print('obj', func_dict['obj']) return func_dict, fail def calc_SSqr_convex_grad(self, dv_dict, func_dict): """ Callback function for gradient of mean squared error. Parameters ---------- dv_dict : dict Dictionary of design variable values. func_dict : dict Dictionary of all functional variables evaluated at design point. Returns ------- sens_dict : dict Dictionary of dictionaries for gradient of each dv/func pair fail : int 0 for successful function evaluation 1 for unsuccessful function evaluation """ fail = 0 x_com = dv_dict['x'] surrogate = self.obj_surrogate X = surrogate.X R_inv = surrogate.R_inv SigmaSqr = surrogate.SigmaSqr alpha = surrogate._alpha n, k = X.shape nn = len(x_com) one = np.ones([n, 1]) rL = self.x_comL[k:] rU = self.x_comU[k:] rhat = x_com[k:].reshape(n, 1) r = rL + rhat * (rU - rL) rhat_L = self.xhat_comL[k:] rhat_U = self.xhat_comU[k:] dr_drhat = np.diag((rU - rL).flat) term0 = np.dot(R_inv, r) term1 = ((1.0 - one.T.dot(term0)) / (one.T.dot(np.dot(R_inv, one)))) * np.dot(R_inv, one) term = 2.0 * SigmaSqr * (term0 + term1) dterm1 = np.dot(dr_drhat, term) dterm2 = alpha * (2.0 * rhat - rhat_L - rhat_U) dobj_dr = (dterm1 + dterm2).T # Objectives sens_dict = OrderedDict() sens_dict['obj'] = OrderedDict() sens_dict['obj']['x'] = np.zeros((1, nn)) sens_dict['obj']['x'][:, k:] = dobj_dr # Constraints Ain_hat = self.Ain_hat sens_dict['con'] = OrderedDict() sens_dict['con']['x'] = Ain_hat # print('obj deriv', sens_dict['obj']['x'] ) # print('con deriv', sens_dict['con']['x']) return sens_dict, fail def minimize_y(self, x_comL, x_comU, Ain_hat, bin_hat): """ Minimize the lower bound. Parameters ---------- x_comL : ndarray Full lower bounds vector x_comU : ndarray Full upper bounds vector. Ain_hat : ndarray Matrix Ain_hat for linear model of constraints. bin_hat : ndarray Vector bin_hat for linear model of constraints. Returns ------- float Maximized upper bound for sigma squared error. bool Success flag True if successful. """ if OPTIMIZER == 'SNOPT': options = {'Major optimality tolerance': 1.0e-8} elif OPTIMIZER == 'SLSQP': options = {'ACC': 1.0e-8} elif OPTIMIZER == 'CONMIN': options = {'DABFUN': 1.0e-8} # 1- Formulates y_hat as LP (weaker bound) # 2- Uses non-convex relaxation technique (stronger bound) [Future release] app = 1 surrogate = self.obj_surrogate X = surrogate.X n, k = X.shape xhat_comL = x_comL.copy() xhat_comU = x_comU.copy() xhat_comL[k:] = 0.0 xhat_comU[k:] = 1.0 if app == 1: x0 = 0.5 * (xhat_comL + xhat_comU) # Just storing stuff here to pull it out in the callback. self.x_comL = x_comL self.x_comU = x_comU self.Ain_hat = Ain_hat self.bin_hat = bin_hat opt_x, opt_f, succ_flag, msg = snopt_opt(self.calc_y_hat_convex, x0, xhat_comL, xhat_comU, ncon=len(bin_hat), title='minimize_y', options=options, jac=Ain_hat, sens=self.calc_y_hat_convex_grad) yL = opt_f # if not succ_flag: # eflag_yL = False # else: # eflag_yL = True eflag_yL = True tol = self.options['con_tol'] for ii in range(2 * n): if np.dot(Ain_hat[ii, :], opt_x) > (bin_hat[ii] + tol): eflag_yL = False break return yL, eflag_yL def calc_y_hat_convex(self, dv_dict): """ Callback function for objective during minimization of y_hat. Parameters ---------- dv_dict : dict Dictionary of design variable values. Returns ------- func_dict : dict Dictionary of all functional variables evaluated at design point. fail : int 0 for successful function evaluation 1 for unsuccessful function evaluation """ fail = 0 x_com = dv_dict['x'] surrogate = self.obj_surrogate X = surrogate.X c_r = surrogate.c_r mu = surrogate.mu n, k = X.shape rL = self.x_comL[k:] rU = self.x_comU[k:] rhat = np.array([x_com[k:]]).reshape(n, 1) r = rL + rhat * (rU - rL) y_hat = mu + np.dot(r.T, c_r) # Objective func_dict = {} func_dict['obj'] = y_hat[0, 0] # Constraints Ain_hat = self.Ain_hat bin_hat = self.bin_hat func_dict['con'] = np.dot(Ain_hat, x_com) - bin_hat # print('x', dv_dict) # print('obj', func_dict['obj']) return func_dict, fail def calc_y_hat_convex_grad(self, dv_dict, func_dict): """ Callback function for gradient during minimization of y_hat. Parameters ---------- dv_dict : dict Dictionary of design variable values. func_dict : dict Dictionary of all functional variables evaluated at design point. Returns ------- sens_dict : dict Dictionary of dictionaries for gradient of each dv/func pair fail : int 0 for successful function evaluation 1 for unsuccessful function evaluation """ fail = 0 x_com = dv_dict['x'] surrogate = self.obj_surrogate X = surrogate.X c_r = surrogate.c_r n, k = X.shape nn = len(x_com) rL = self.x_comL[k:] rU = self.x_comU[k:] dobj_dr = c_r * (rU - rL) # Objectives sens_dict = OrderedDict() sens_dict['obj'] = OrderedDict() sens_dict['obj']['x'] = np.zeros((1, nn)) sens_dict['obj']['x'][:, k:] = dobj_dr.T # Constraints Ain_hat = self.Ain_hat sens_dict['con'] = OrderedDict() sens_dict['con']['x'] = Ain_hat # print('obj deriv', sens_dict['obj']['x'] ) # print('con deriv', sens_dict['con']['x']) return sens_dict, fail def obj_for_GA(self, x, icase): """ Evalute main problem objective at the requested point. Objective is the expected improvement function with modifications to make it concave. Parameters ---------- x : ndarray Value of design variables. icase : int Case number, used for identification when run in parallel. Returns ------- float Objective value bool Success flag, True if successful int Case number, used for identification when run in parallel. """ surrogate = self.obj_surrogate xU_iter = self.xU_iter num_des = len(x) P = 0.0 rp = 100.0 g = x / xU_iter - 1.0 idx = np.where(g > 0.0) if len(idx) > 0: P = np.einsum('i->', g[idx]**2) xval = (x - surrogate.X_mean) / surrogate.X_std NegEI = calc_conEI_norm(xval, surrogate) f = NegEI + rp * P return f, True, icase def update_active_set(active_set, ubd): """ Update the active set. Remove variables from the active set data structure if their current upper bound exceeds the given value. Parameters ---------- active_set : list of lists of floats Active set data structure of form [[NodeNumber, lb, ub, LBD, UBD], [], ..] ubd : float Maximum for bounds test. Returns ------- list of list of floats New active_set """ return [a for a in active_set if a[3] < ubd] def gen_coeff_bound(xI_lb, xI_ub, surrogate): """ Generate upper and lower bounds for r. This function generates the upper and lower bound of the artificial variable r and the coefficients for the linearized under estimator constraints. The version accepts design bound in the original design space, converts it to normalized design space. Parameters ---------- xI_lb : ndarray Lower bound of the integer design variables. xI_ub : ndarray Upper bound of the integer design variables. surrogate : <AMIEGOKrigingSurrogate> Surrogate model of optimized objective with respect to integer design variables. Returns ------- ndarray Full lower bounds vector ndarray Full upper bounds vector. ndarray Matrix Ain_hat for linear model of constraints. ndarray Vector bin_hat for linear model of constraints. """ mean = surrogate.X_mean std = surrogate.X_std # Normalized as per Openmdao kriging model xL_hat = (xI_lb - mean) / std xU_hat = (xI_ub - mean) / std rL, rU = interval_analysis(xL_hat, xU_hat, surrogate) # Combined design variables for supbproblem num = len(xL_hat) + len(rL) x_comL = np.append(xL_hat, rL).reshape(num, 1) x_comU = np.append(xU_hat, rU).reshape(num, 1) # Coefficients of the linearized constraints of the subproblem Ain_hat, bin_hat = lin_underestimator(x_comL, x_comU, surrogate) return x_comL, x_comU, Ain_hat, bin_hat def interval_analysis(lb_x, ub_x, surrogate): """ Predict lower and upper bounds for r. The module predicts the lower and upper bound of the artificial variable 'r' from the bounds of the design variable x r is related to x by the following equation: r_i = exp(-sum(theta_h*(x_h - x_h_i)^2)) Parameters ---------- lb_x : ndarray Lower bound of the integer design variables. ub_x : ndarray Upper bound of the integer design variables. surrogate : <AMIEGOKrigingSurrogate> Surrogate model of optimized objective with respect to integer design variables. Returns ------- ndarray Predicted lower bound for r ndarray Predicted upper bound for r """ p = surrogate.p if p % 2 == 0: X = surrogate.X thetas = surrogate.thetas n, k = X.shape t3L = np.empty([n, k]) t3U = np.empty([n, k]) t1L = lb_x - X t1U = ub_x - X fac1 = t1L * t1L fac2 = t1L * t1U fac3 = t1U * t1U for i in range(n): for h in range(k): fact = np.array([fac1[i, h], fac2[i, h], fac3[i, h]]) t2L = np.max(np.array([0, np.min(fact)])) t2U = np.max(np.array([0, np.max(fact)])) fact = -thetas[h] * np.array([t2L, t2U]) t3L[i, h] = np.min(fact) t3U[i, h] = np.max(fact) lb_r = np.exp(np.sum(t3L, axis=1)) ub_r = np.exp(np.sum(t3U, axis=1)) else: print("\nWarning! Value of p should be 2. Cannot perform interval analysis") print("\nReturing global bound of the r variable") lb_r = np.zeros([n, k]) ub_r = np.zeros([n, k]) return lb_r, ub_r def lin_underestimator(lb, ub, surrogate): """ Compute the coefficients of the linearized underestimator constraints. Parameters ---------- lb : ndarray Lower bound vector. ub : ndarray Upper bound vector surrogate : <AMIEGOKrigingSurrogate> Surrogate model of optimized objective with respect to integer design variables. Returns ------- ndarray Matrix Ain_hat for linear model of constraints. ndarray Vector bin_hat for linear model of constraints. """ X = surrogate.X thetas = surrogate.thetas p = surrogate.p n, k = X.shape lb_x = lb[:k] ub_x = ub[:k] lb_r = lb[k:] ub_r = ub[k:] a1_hat = np.zeros([n, n]) a3_hat = np.zeros([n, n]) a2 = np.empty([n, k]) a4 = np.empty([n, k]) b2 = np.empty([n, k]) b4 = np.empty([n, k]) b1_hat = np.empty([n, ]) b3_hat = np.empty([n, ]) dist_r = ub_r - lb_r dist_x = ub_x - lb_x x_m = 0.5 * (ub_x + lb_x) r_m = 0.5 * (lb_r + ub_r) ub_fact = (ub_x - X.T)**p lb_fact = (lb_x - X.T)**p fact_p = (x_m - X.T)**p fact_pm1 = (x_m - X.T)**(p - 1) for i in range(n): # T1: Linearize under-estimator of ln[r_i] = a1*r[i] + b1 if ub_r[i] <= lb_r[i]: a1 = 0.0 else: a1 = (np.log(ub_r[i]) - np.log(lb_r[i])) / dist_r[i] b1 = np.log(ub_r[i]) - a1 * ub_r[i] a1_hat[i, i] = a1 * dist_r[i] b1_hat[i] = a1 * lb_r[i] + b1 # T3: Linearize under-estimator of -ln[r_i] = a3*r[i] + b3 a3 = -1.0 / r_m[i] b3 = -np.log(r_m[i]) - a3 * r_m[i] a3_hat[i, i] = a3 * dist_r[i] b3_hat[i] = a3 * lb_r[i] + b3 for h in range(k): # T2: Linearize under-estimator of thetas_h*(x_h - X_h_i)^2 = a4[i,h]*x_h[h] + b4[i,h] a2[i, h] = p * thetas[h] * fact_pm1[h, i] yy = thetas[h] * fact_p[h, i] b2[i, h] = -a2[i, h] * x_m[h] + yy # T4: Linearize under-estimator of -theta_h*(x_h - X_h_i)^2 = a4[i,h]*x_h[h] + b4[i,h] yy1 = -thetas[h] * lb_fact[h, i] if ub_x[h] <= lb_x[h]: a4[i, h] = 0.0 else: yy2 = -thetas[h] * ub_fact[h, i] a4[i, h] = (yy2 - yy1) / dist_x[h] b4[i, h] = -a4[i, h] * lb_x[h] + yy1 Ain1 = np.concatenate((a2, a4), axis=0) Ain2 = np.concatenate((a1_hat, a3_hat), axis=0) Ain_hat = np.concatenate((Ain1, Ain2), axis=1) bin_hat = np.concatenate((-(b1_hat + np.sum(b2, axis=1)), -(b3_hat + np.sum(b4, axis=1))), axis=0) return Ain_hat, bin_hat def calc_conEI_norm(xval, obj_surrogate, SSqr=None, y_hat=None): """ Evaluate the expected improvement in the normalized design space. Parameters ---------- xval : ndarray Value of the current integer design variables. obj_surrogate : <AMIEGOKrigingSurrogate> Surrogate model of optimized objective with respect to integer design variables. SSqr : float Pre-calculated value for sigma squared from successful maximize S. y_hat : ndarray Pre-calculated value for y_hat from successful maximize S. Returns ------- float Negative of the expected improvement. """ y_min = obj_surrogate.y_best if SSqr is None: X = obj_surrogate.X c_r = obj_surrogate.c_r thetas = obj_surrogate.thetas SigmaSqr = obj_surrogate.SigmaSqr R_inv = obj_surrogate.R_inv mu = obj_surrogate.mu p = obj_surrogate.p r = np.exp(-np.einsum("ij->i", thetas.T * (xval - X)**p)) y_hat = mu +
np.dot(r, c_r)
numpy.dot
#!/usr/bin/env python # -*- coding: utf-8 -*- # Built-in imports from typing import Union # 3rd party imports import numpy as np from scipy import interpolate __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2020-2021" __license__ = "MIT" __version__ = "2.3.7" __status__ = "Prototype" surface_materials = ['cluster', 'themis', 'cassini', 'aluminium', 'aquadag', 'gold', 'graphite', 'solar cells', '1eV', 'TiN', 'elgiloy'] j_zeros = {"cassini": 25e-6, "tin": 25e-6, "cluster": 25e-6, "aluminium": 30e-6, "aquadag": 18e-6, "gold": 29e-6, "graphite": 7.2e-6, "solar cells": 20e-6, "solar cell": 20e-6, "elgiloy": 30e-6} def photo_current(iluminated_area: float = None, u: Union[float, np.ndarray] = None, distance_sun: float = None, flag: Union[str, float] = "cluster") -> Union[float, np.ndarray]: r"""Calculates the photo-current emitted by an arbitrary body. Parameters ---------- iluminated_area : float Cross section area [m^2]. u : float or numpy.ndarray Potential [V]. distance_sun : float Distance form the Sun [AU]. flag : str or float, Optional Surface materials or surface photoemission in [A/m^2]. Default is "cluster". Returns ------- j_photo : float or numpy.ndarray Photo-current emitted. Notes ----- Estimates are done for the solar minimum conditions. """ assert isinstance(flag, (str, float)) if not iluminated_area and not u and not distance_sun: for surf in surface_materials: j0 = photo_current(1, 0, 1, surf) print(f"{surf}: Io= {j0 * 1e6:3.2f} uA/m2") return # Assert than u is an array u = np.atleast_1d(u) if isinstance(flag, (float, int)): photoemisson = flag # Initialize j_photo =
np.ones(u.shape)
numpy.ones
from particle_swarm_optimization.helper import random_position import numpy as np class Particle(): def __init__(self): self.current_position = random_position() self.best_position = self.current_position self.best_value = self.fitness() self.velocity =
np.array([0,0])
numpy.array
#! /usr/bin/env python # Copyright 2021 <NAME> # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL import os import sys import yt sys.path.insert(1, '../../../../warpx/Regression/Checksum/') import checksumAPI import numpy as np import scipy.constants as scc ## This script performs various checks for the proton boron nuclear fusion module. The simulation ## that we check is made of 5 different tests, each with different proton, boron and alpha species. ## ## The first test is performed in the proton-boron center of mass frame. It could correspond to the ## physical case of a proton beam colliding with a boron beam. The kinetic energy of the colliding ## particles depends on the cell number in the z direction and varies in the few keV to few MeV ## range. All the particles within a cell have the exact same momentum, which allows detailed ## checks of the energy of produced alpha particles. The proton and boron species have the same ## density and number of particles in this test. The number of produced alphas is much smaller than ## the initial number of protons and borons. ## ## The second test is performed in the boron rest frame. It corresponds to the physical case of a ## low density proton beam colliding with a high-density proton+boron target. The energy of the ## proton beam is varied in the few keV to few MeV range, depending on the cell number in the z ## direction. As in the previous case, all the particles within a cell have the exact same ## momentum, which allows detailed checks of the energy of produced alpha particles. In this test, ## there are 100 immobile boron and 100 immobile proton macroparticles per cell, as well as 900 ## beam proton macroparticles per cell. The density of the immobile particles is 6 orders of ## magnitude higher than the number of beam particles, which means that they have a much higher ## weight. This test is similar to the example given in section 3 of Higginson et al., ## Journal of Computation Physics, 388 439–453 (2019), which was found to be sensitive to the way ## unsampled pairs are accounted for. As before, the number of produced alphas is much smaller than ## the initial number of protons and borons. ## ## The third test corresponds to a Maxwellian plasma with a 44 keV temperature. The alpha yield is ## directly compared to the analytical fits of <NAME> and <NAME>, Nuclear Fusion, 40, 865 ## (2000) for a thermal plasma. ## ## The fourth test corresponds to a plasma with an extremely small boron density, so that all boron ## macroparticles should have disappeared by the end of the simulation, which we verify. ## ## The fifth test is exactly the same as the fourth test, except that the ## fusion_probability_threshold parameter is increased to an excessive value. Because of that, we ## severely underestimate the fusion yield and boron macroparticles remain at the end of the ## simulation, which we verify. ## ## In all simulations, we check particle number, charge, momentum and energy conservation and ## perform basic checks regarding the produced particles. When possible, we also compare the number ## of produced macroparticles, fusion yield and energy of the produced particles to theoretical ## values. ## ## Please be aware that the relative tolerances are often set empirically in this analysis script, ## so it would not be surprising that some tolerances need to be increased in the future. default_tol = 1.e-12 # Default relative tolerance ## Some physical parameters keV_to_Joule = scc.e*1e3 MeV_to_Joule = scc.e*1e6 barn_to_square_meter = 1.e-28 m_p = scc.m_p # Proton mass m_b = 10.9298*m_p # Boron 11 mass m_reduced = m_p*m_b/(m_p+m_b) m_a = 3.97369*m_p # Alpha mass m_be = 7.94748*m_p # Beryllium 8 mass Z_boron = 5. Z_proton = 1. E_Gamow = (Z_boron*Z_proton*np.pi*scc.fine_structure)**2*2.*m_reduced*scc.c**2 E_Gamow_MeV = E_Gamow/MeV_to_Joule E_Gamow_keV = E_Gamow/keV_to_Joule E_fusion = 8.59009*MeV_to_Joule # Energy released during p + B -> alpha + Be E_decay = 0.0918984*MeV_to_Joule # Energy released during Be -> 2*alpha E_fusion_total = E_fusion + E_decay # Energy released during p + B -> 3*alpha ## Some numerical parameters for this test size_x = 8 size_y = 8 size_z = 16 dV_total = size_x*size_y*size_z # Total simulation volume # Volume of a slice corresponding to a single cell in the z direction. In tests 1 and 2, all the # particles of a given species in the same slice have the exact same momentum dV_slice = size_x*size_y dt = 1./(scc.c*np.sqrt(3.)) # In test 1 and 2, the energy in cells number i (in z direction) is typically Energy_step * i**2 Energy_step = 22.*keV_to_Joule def is_close(val1, val2, rtol=default_tol, atol=0.): ## Wrapper around numpy.isclose, used to override the default tolerances. return np.isclose(val1, val2, rtol=rtol, atol=atol) def add_existing_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix): data_dict[prefix+"_px_"+suffix] = yt_ad[species_name, "particle_momentum_x"].v data_dict[prefix+"_py_"+suffix] = yt_ad[species_name, "particle_momentum_y"].v data_dict[prefix+"_pz_"+suffix] = yt_ad[species_name, "particle_momentum_z"].v data_dict[prefix+"_w_"+suffix] = yt_ad[species_name, "particle_weight"].v data_dict[prefix+"_id_"+suffix] = yt_ad[species_name, "particle_id"].v data_dict[prefix+"_cpu_"+suffix] = yt_ad[species_name, "particle_cpu"].v data_dict[prefix+"_z_"+suffix] = yt_ad[species_name, "particle_position_z"].v def add_empty_species_to_dict(data_dict, species_name, prefix, suffix): data_dict[prefix+"_px_"+suffix] = np.empty(0) data_dict[prefix+"_py_"+suffix] = np.empty(0) data_dict[prefix+"_pz_"+suffix] = np.empty(0) data_dict[prefix+"_w_"+suffix] = np.empty(0) data_dict[prefix+"_id_"+suffix] = np.empty(0) data_dict[prefix+"_cpu_"+suffix] = np.empty(0) data_dict[prefix+"_z_"+suffix] = np.empty(0) def add_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix): try: ## If species exist, we add its data to the dictionary add_existing_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix) except yt.utilities.exceptions.YTFieldNotFound: ## If species does not exist, we avoid python crash and add empty arrays to the ## dictionnary. Currently, this happens for the boron species in test number 4, which ## entirely fuses into alphas. add_empty_species_to_dict(data_dict, species_name, prefix, suffix) def check_particle_number_conservation(data): total_w_proton_start = np.sum(data["proton_w_start"]) total_w_proton_end = np.sum(data["proton_w_end"]) total_w_boron_start = np.sum(data["boron_w_start"]) total_w_boron_end = np.sum(data["boron_w_end"]) consumed_proton = total_w_proton_start - total_w_proton_end consumed_boron = total_w_boron_start - total_w_boron_end created_alpha = np.sum(data["alpha_w_end"]) assert(consumed_proton >= 0.) assert(consumed_boron >= 0.) assert(created_alpha >= 0.) ## Check that number of consumed proton and consumed boron are equal assert_scale = max(total_w_proton_start, total_w_boron_start) assert(is_close(consumed_proton, consumed_boron, rtol = 0., atol = default_tol*assert_scale)) ## Check that number of consumed particles corresponds to number of produced alpha ## Factor 3 is here because each nuclear fusion reaction produces 3 alphas assert(is_close(total_w_proton_start, total_w_proton_end + created_alpha/3.)) assert(is_close(total_w_boron_start, total_w_boron_end + created_alpha/3.)) def compute_energy_array(data, species_name, suffix, m): ## Relativistic computation of kinetic energy for a given species psq_array = data[species_name+'_px_'+suffix]**2 + data[species_name+'_py_'+suffix]**2 + \ data[species_name+'_pz_'+suffix]**2 rest_energy = m*scc.c**2 return np.sqrt(psq_array*scc.c**2 + rest_energy**2) - rest_energy def check_energy_conservation(data): proton_energy_start = compute_energy_array(data, "proton", "start", m_p) proton_energy_end = compute_energy_array(data, "proton", "end", m_p) boron_energy_start = compute_energy_array(data, "boron", "start", m_b) boron_energy_end = compute_energy_array(data, "boron", "end", m_b) alpha_energy_end = compute_energy_array(data, "alpha", "end", m_a) total_energy_start = np.sum(proton_energy_start*data["proton_w_start"]) + \ np.sum(boron_energy_start*data["boron_w_start"]) total_energy_end = np.sum(proton_energy_end*data["proton_w_end"]) + \ np.sum(boron_energy_end*data["boron_w_end"]) + \ np.sum(alpha_energy_end*data["alpha_w_end"]) ## Factor 3 is here because each nuclear fusion reaction produces 3 alphas n_fusion_reaction =
np.sum(data["alpha_w_end"])
numpy.sum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 17 14:45:00 2017 @author: shenda class order: ['A', 'N', 'O', '~'] """ import numpy as np from sklearn import ensemble from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from OptF import OptF from copy import deepcopy import xgboost as xgb import ReadData import random from collections import Counter class MyXGB(object): """ bottom basic classifier, a warpper for xgboost the proba order is ['N', 'A', 'O', '~'] """ def __init__(self, n_estimators=5000, max_depth=10, subsample=0.85, colsample_bytree=0.85, min_child_weight=4, num_round = 500): self.param = {'learning_rate':0.1, 'eta':0.1, 'silent':1, 'objective':'multi:softprob', 'num_class': 4} self.bst = None self.num_round = num_round self.pred = None my_seed = random.randint(0, 1000) self.param['n_estimators'] = n_estimators self.param['max_depth'] = max_depth self.param['subsample'] = subsample self.param['colsample_bytree'] = colsample_bytree self.param['min_child_weight'] = min_child_weight # self.param['random_state'] = my_seed self.param['seed'] = my_seed self.param['n_jobs'] = -1 print(self.param.items()) print(self.num_round) def fit(self, train_data, train_label): train_label = ReadData.Label2Index(train_label) dtrain = xgb.DMatrix(train_data, label=train_label) self.bst = xgb.train(self.param, dtrain, num_boost_round=self.num_round) def predict_prob(self, test_data): dtest = xgb.DMatrix(test_data) self.pred = self.bst.predict(dtest) return self.pred def predict(self, test_data): pred_prob = self.predict_prob(test_data) pred_num = np.argmax(pred_prob, axis=1) pred = ReadData.Index2Label(pred_num) return pred def get_importance(self): return self.bst.get_score(importance_type='gain') def plot_importance(self): xgb.plot_importance(self.bst) class MyLR(object): """ Top level classifier, a warpper for Logistic Regression """ def __init__(self): self.clf = LogisticRegression() def fit(self, train_qrs_data, train_qrs_label): train_data =np.array(train_qrs_data) train_label = train_qrs_label self.clf.fit(train_data, train_label) def predict(self, test_qrs_data): test_data = np.array(test_qrs_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_qrs_data): test_qrs_data = np.array(test_qrs_data) if test_qrs_data.ndim == 1: test_qrs_data = np.expand_dims(np.array(test_qrs_data), axis=0) test_data = np.array(test_qrs_data) return list(list(self.clf.predict_proba(test_data))[0]) else: test_data = np.array(test_qrs_data) return self.clf.predict_proba(test_data) class MyKNN(object): """ bottom basic support unequal length vector """ def __init__(self, n_neighbors=3): self.n_neighbors = n_neighbors self.train_data = None self.train_label = None self.labels = ['N', 'A', 'O', '~'] # self.thresh = [0.5, 0.3, 0.2, ] def fit(self, train_data, train_label): self.train_data = np.array(train_data) self.train_label = np.array(train_label) def dist(self, vec1, vec2): res = 0.0 if len(vec1) <= len(vec2): vec1 = np.r_[vec1, np.zeros(len(vec2)-len(vec1))] else: vec2 = np.r_[vec2, np.zeros(len(vec1)-len(vec2))] dist_num = np.linalg.norm(vec1 - vec2) return dist_num def predict_prob(self, test_data): test_data = np.array(test_data) pred = [] for i in test_data: tmp_dist_list = [] tmp_pred = [] for j in self.train_data: tmp_dist_list.append(self.dist(i, j)) pred_n_neighbors = self.train_label[np.argsort(tmp_dist_list)[:self.n_neighbors]] pred_counter = Counter(pred_n_neighbors) # print(pred_counter) for ii in self.labels: tmp_pred.append(pred_counter[ii]) pred.append(tmp_pred) return pred def predict(self, test_data): pred = self.predict_prob(test_data) pred_label = [] for i in pred: pred_label.append(self.labels[np.argsort(i)[-1]]) return pred_label class MyGBDT(object): """ bottom basic a warpper for GradientBoostingClassifier """ def __init__(self): self.clf = ensemble.GradientBoostingClassifier() def fit(self, train_data, train_label): train_data =np.array(train_data) self.clf.fit(train_data, train_label) def predict(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) test_data = np.array(test_data) return list(list(self.clf.predict_proba(test_data))[0]) else: test_data = np.array(test_data) return self.clf.predict_proba(test_data) class MyExtraTrees(object): """ bottom basic a warpper for ExtraTreesClassifier """ def __init__(self): self.clf = ensemble.ExtraTreesClassifier(n_estimators=100) def fit(self, train_data, train_label): train_data =np.array(train_data) self.clf.fit(train_data, train_label) def predict(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_data): test_data =
np.array(test_data)
numpy.array
""" Compute lambdas for THC according to PRX QUANTUM 2, 030305 (2021) Section II. D. """ import numpy as np from chemftr.molecule import pyscf_to_cas def compute_lambda(pyscf_mf, etaPp: np.ndarray, MPQ: np.ndarray, use_eri_thc_for_t=False): """ Compute lambda thc Args: pyscf_mf - PySCF mean field object etaPp - leaf tensor for THC that is dim(nthc x norb). The nthc and norb is inferred from this quantity. MPQ - central tensor for THC factorization. dim(nthc x nthc) Returns: """ nthc = etaPp.shape[0] # grab tensors from pyscf_mf object h1, eri_full, _, _, _ = pyscf_to_cas(pyscf_mf) # computing Least-squares THC residual CprP = np.einsum("Pp,Pr->prP", etaPp, etaPp) # this is einsum('mp,mq->pqm', etaPp, etaPp) BprQ = np.tensordot(CprP, MPQ, axes=([2], [0])) Iapprox = np.tensordot(CprP, np.transpose(BprQ), axes=([2], [0])) deri = eri_full - Iapprox res = 0.5 * np.sum((deri) ** 2) # NOTE: remove in future once we resolve why it was being used in the first place. # NOTE: see T construction for details. eri_thc = np.einsum("Pp,Pr,Qq,Qs,PQ->prqs", etaPp, etaPp, etaPp, etaPp, MPQ, optimize=True) # projecting into the THC basis requires each THC factor mu to be be normalized. # we roll the normalization constant into the central tensor zeta SPQ = etaPp.dot(etaPp.T) # (nthc x norb) x (norb x nthc) -> (nthc x nthc) metric cP = np.diag(np.diag(SPQ)) # grab diagonal elements. equivalent to np.diag(np.diagonal(SPQ)) # no sqrts because we have two normalized THC vectors (index by mu and nu) on each side. MPQ_normalized = cP.dot(MPQ).dot(cP) # get normalized zeta in Eq. 11 & 12 lambda_z = np.sum(np.abs(MPQ_normalized)) * 0.5 # Eq. 13 # NCR: originally Joonho's code add np.einsum('llij->ij', eri_thc) # NCR: I don't know how much this matters. if use_eri_thc_for_t: # use eri_thc for second coulomb contraction. This was in the original code which is different than what the # paper says. T = h1 - 0.5 * np.einsum("illj->ij", eri_full) + np.einsum("llij->ij", eri_thc) # Eq. 3 + Eq. 18 else: T = h1 - 0.5 *
np.einsum("illj->ij", eri_full)
numpy.einsum
import click @click.group() def cli(): """A group of potential sub methods that are available for use through a command line interface """ @cli.command() @click.option('--dir', type=str) @click.option('--percentile', type=float, default=100.) @click.option('--modifier', type=str, default="-fidelity") @click.option('--load', is_flag=True, default=False) def agreement_heatmap(dir, percentile, modifier, load): import glob import os import tensorflow as tf import tqdm import numpy as np import pandas as pd import itertools import scipy.stats as stats from collections import defaultdict from collections import defaultdict import glob import os import re import pickle as pkl import tensorflow as tf import tqdm import seaborn as sns import matplotlib import matplotlib.pyplot as plt import numpy as np import json import design_bench as db from copy import deepcopy plt.rcParams['text.usetex'] = True matplotlib.rc('font', family='serif', serif='cm10') matplotlib.rc('mathtext', fontset='cm') color_palette = ['#EE7733', '#0077BB', '#33BBEE', '#009988', '#CC3311', '#EE3377', '#BBBBBB', '#000000'] palette = sns.color_palette(color_palette) sns.palplot(palette) sns.set_palette(palette) tasks = [ "gfp", "superconductor" ] baselines = [ "autofocused-cbas", "cbas", "bo-qei", # "cma-es", didn't finish by the deadline "gradient-ascent", "gradient-ascent-min-ensemble", "gradient-ascent-mean-ensemble", "mins", "reinforce" ] metrics = [ "rank-correlation", "max-shift", "avg-shift" ] baseline_to_logits = { "autofocused-cbas": False, "cbas": False, "bo-qei": True, "cma-es": True, "gradient-ascent": True, "gradient-ascent-min-ensemble": True, "gradient-ascent-mean-ensemble": True, "mins": False, "reinforce": False } task_to_oracles = { "gfp": [ "GP", "RandomForest", "FullyConnected", "ResNet", "Transformer" ], "superconductor": [ # "GP", "RandomForest", "FullyConnected" ] } p = defaultdict(list) task_pattern = re.compile(r'(\w+)-(\w+)-v(\d+)$') if not load: for baseline, task in tqdm.tqdm( list(itertools.product(baselines, tasks))): is_logits = baseline_to_logits[baseline] files = glob.glob(os.path.join(dir, f"{baseline}{modifier}-" f"{task}/*/*/*/solution.npy")) for f in files: solution_tensor = np.load(f) params = os.path.join(os.path.dirname( os.path.dirname(f)), "params.json") with open(params, "r") as params_file: params = json.load(params_file) for oracle in task_to_oracles[task]: matches = task_pattern.search(params["task"]) db_task = db.make(params["task"].replace( matches.group(2), oracle), **params["task_kwargs"]) if is_logits and db_task.is_discrete: db_task.map_to_logits() elif db_task.is_discrete: db_task.map_to_integers() if params["normalize_xs"]: db_task.map_normalize_x() scores = db_task.predict(solution_tensor) p[f"{baseline}-{task}-" f"{oracle}"].append(np.percentile(scores, percentile)) print("aggregating performance") p2 = dict() if not load: for task in tasks: for oracle in task_to_oracles[task]: p2[f"{task}-{oracle}"] = [ p[f"{baseline}-{task}-{oracle}"] for baseline in baselines] print("rendering heatmaps") for metric, task in tqdm.tqdm( list(itertools.product(metrics, tasks))): task_oracles = task_to_oracles[task] metric_data = np.zeros([len(task_oracles), len(task_oracles)]) if not load: for i, oracle0 in enumerate(task_oracles): for j, oracle1 in enumerate(task_oracles): oracle0_data = deepcopy(p2[f"{task}-{oracle0}"]) oracle1_data = deepcopy(p2[f"{task}-{oracle1}"]) oracle0_data = [0.0 if len(value) == 0 else np.mean(value) for value in oracle0_data] oracle1_data = [0.0 if len(value) == 0 else np.mean(value) for value in oracle1_data] oracle0_data = np.array(oracle0_data) oracle1_data = np.array(oracle1_data) if metric == "rank-correlation": rho = stats.spearmanr(oracle0_data, oracle1_data)[0] metric_data[j][i] = rho elif metric == "max-shift": table0_index = oracle0_data.argsort().argsort() table1_index = oracle1_data.argsort().argsort() max_shift = np.abs(table0_index - table1_index).max() metric_data[j][i] = max_shift elif metric == "avg-shift": table0_index = oracle0_data.argsort().argsort() table1_index = oracle1_data.argsort().argsort() avg_shift = np.abs(table0_index - table1_index).mean() metric_data[j][i] = avg_shift else: metric_data = np.load(f'{task}{modifier}-{metric}-heatmap.npy') # save a separate plot for every hyper parameter plt.clf() sns.heatmap(metric_data, xticklabels=task_oracles, yticklabels=task_oracles, cbar_kws={'label': metric}, square=True, vmin=0, vmax=1 if metric == "rank-correlation" else None) plt.title(f"Oracle Agreement: {task}") plt.xticks(rotation=90) plt.yticks(rotation=0) plt.savefig(f'{task}{modifier}-{metric}-heatmap.png', bbox_inches='tight') np.save(f'{task}{modifier}-{metric}-heatmap.npy', metric_data) @cli.command() @click.option('--table0', type=str) @click.option('--table1', type=str) def rank_tables(table0, table1): import glob import os import tensorflow as tf import tqdm import numpy as np import pandas as pd import scipy.stats as stats tasks = [ "gfp", "tf-bind-8", "utr", "hopper", "superconductor", "chembl", "ant", "dkitty" ] metrics = [ "rank-correlation", "max-shift", "avg-shift" ] table0_df = pd.read_csv(table0) table1_df = pd.read_csv(table1) final_data_numeric = [[None for t in tasks] for m in metrics] for i, task in enumerate(tasks): table0_rank = table0_df[task].to_numpy() table1_rank = table1_df[task].to_numpy() for j, metric in enumerate(metrics): if metric == "rank-correlation": rho = stats.spearmanr(table0_rank, table1_rank)[0] final_data_numeric[j][i] = rho elif metric == "max-shift": table0_index = table0_rank.argsort().argsort() table1_index = table1_rank.argsort().argsort() final_data_numeric[j][i] = np.abs(table0_index - table1_index).max() elif metric == "avg-shift": table0_index = table0_rank.argsort().argsort() table1_index = table1_rank.argsort().argsort() final_data_numeric[j][i] = np.abs(table0_index - table1_index).mean() final_df_numeric = pd.DataFrame(data=final_data_numeric, columns=tasks, index=metrics) print(final_df_numeric.to_latex()) final_df_numeric.to_csv(f"{os.path.basename(table0)[:-4]}-to-" f"{os.path.basename(table1)[:-4]}-rank-metrics.csv") @cli.command() @click.option('--dir', type=str) @click.option('--samples', type=int, default=128) @click.option('--percentile', type=int, default=100) @click.option('--main-table', type=str, default="performance.csv") @click.option('--load/--no-load', is_flag=True, default=False) def make_diversity_table(dir, samples, percentile, main_table, load): import glob import os import tqdm import numpy as np import itertools import design_bench as db import seaborn as sns import matplotlib import matplotlib.pyplot as plt import json import pandas as pd plt.rcParams['text.usetex'] = True matplotlib.rc('font', family='serif', serif='cm10') matplotlib.rc('mathtext', fontset='cm') color_palette = ['#EE7733', '#0077BB', '#33BBEE', '#009988', '#CC3311', '#EE3377', '#BBBBBB', '#000000'] palette = sns.color_palette(color_palette) sns.set_palette(palette) tasks = [ "gfp", "utr", ] baselines = [ "autofocused-cbas", "cbas", "bo-qei", #"cma-es", "gradient-ascent", "gradient-ascent-min-ensemble", "gradient-ascent-mean-ensemble", "mins", "reinforce" ] dist_options = [ "uniform", "linear", "quadratic", "circular", "exponential", ] task_to_name = { "gfp": "GFP", "utr": "UTR", } if not load: task_to_task = { "gfp": db.make("GFP-Transformer-v0"), "utr": db.make("UTR-ResNet-v0"), } baseline_to_logits = { "autofocused-cbas": False, "cbas": False, "bo-qei": True, "cma-es": True, "gradient-ascent": True, "gradient-ascent-min-ensemble": True, "gradient-ascent-mean-ensemble": True, "mins": False, "reinforce": False } dist_to_performance = dict() for dist in dist_options: dist_to_performance[dist] = dict() for task in tasks: dist_to_performance[dist][task] = dict() for baseline in baselines: dist_to_performance[dist][task][baseline] = list() for task, baseline in tqdm.tqdm(list(itertools.product(tasks, baselines))): dirs = glob.glob(os.path.join(dir, f"{baseline}-{task}/*/*")) for d in [d for d in dirs if os.path.isdir(d)]: solution_files = glob.glob(os.path.join(d, '*/solution.npy'))[:samples] for current_solution in solution_files: params = os.path.join(os.path.dirname( os.path.dirname(current_solution)), "params.json") with open(params, "r") as p_file: params = json.load(p_file) dist = params["task_kwargs"]["dataset_kwargs"]["distribution"] db_task = task_to_task[task] is_logits = baseline_to_logits[baseline] and not task == "chembl" if is_logits and db_task.is_discrete: db_task.map_to_logits() elif db_task.is_discrete: db_task.map_to_integers() if params["normalize_xs"]: db_task.map_normalize_x() scores = task_to_task[task].predict(np.load(current_solution)) dist_to_performance[dist][task][baseline]\ .append(np.percentile(scores, percentile)) for dist in dist_options: for task, baseline in tqdm.tqdm(list(itertools.product(tasks, baselines))): mean_perf = np.mean(dist_to_performance[dist][task][baseline]) dist_to_performance[dist][task][baseline] = mean_perf diversity = np.zeros([len(tasks), len(dist_options)]) for task_idx, task in enumerate(tasks): for dist_idx, dist in enumerate(dist_options): diversity[task_idx, dist_idx] = np.std([ dist_to_performance[dist][task][b] for b in baselines]) np.save(f"dist-diversity-{percentile}.npy", diversity) else: diversity =
np.load(f"dist-diversity-{percentile}.npy")
numpy.load
from __future__ import print_function, division import os, sys, warnings, platform from time import time import numpy as np if "PyPy" not in platform.python_implementation(): from scipy.io import loadmat, savemat from Florence.Tensor import makezero, itemfreq, unique2d, in2d from Florence.Utils import insensitive from .vtk_writer import write_vtu try: import meshpy.triangle as triangle has_meshpy = True except ImportError: has_meshpy = False from .HigherOrderMeshing import * from .NodeArrangement import * from .GeometricPath import * from warnings import warn from copy import deepcopy """ Mesh class providing most of the pre-processing functionalities of the Core module <NAME> - 13/06/2015 """ class Mesh(object): """Mesh class provides the following functionalities: 1. Generating higher order meshes based on a linear mesh, for tris, tets, quads and hexes 2. Generating linear tri and tet meshes based on meshpy back-end 3. Generating linear tri meshes based on distmesh back-end 4. Finding bounary edges and faces for tris and tets, in case they are not provided by the mesh generator 5. Reading Salome meshes in binary (.dat/.txt/etc) format 6. Reading gmsh files .msh 7. Checking for node numbering order of elements and fixing it if desired 8. Writing meshes to unstructured vtk file format (.vtu) in xml and binary formats, including high order elements """ def __init__(self, element_type=None): super(Mesh, self).__init__() # self.faces and self.edges ARE BOUNDARY FACES # AND BOUNDARY EDGES, RESPECTIVELY self.degree = None self.ndim = None self.edim = None self.nelem = None self.nnode = None self.elements = None self.points = None self.corners = None self.edges = None self.faces = None self.element_type = element_type self.face_to_element = None self.edge_to_element = None self.boundary_edge_to_element = None self.boundary_face_to_element = None self.all_faces = None self.all_edges = None self.interior_faces = None self.interior_edges = None # TYPE OF BOUNDARY FACES/EDGES self.boundary_element_type = None # FOR GEOMETRICAL CURVES/SURFACES self.edge_to_curve = None self.face_to_surface = None self.spatial_dimension = None self.reader_type = None self.reader_type_format = None self.reader_type_version = None self.writer_type = None self.filename = None # self.has_meshpy = has_meshpy def SetElements(self,arr): self.elements = arr def SetPoints(self,arr): self.points = arr def SetEdges(self,arr): self.edges = arr def SetFaces(self,arr): self.faces = arr def GetElements(self): return self.elements def GetPoints(self): return self.points def GetEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetEdgesTri() elif self.element_type == "quad": self.GetEdgesQuad() elif self.element_type == "pent": self.GetEdgesPent() elif self.element_type == "tet": self.GetEdgesTet() elif self.element_type == "hex": self.GetEdgesHex() else: raise ValueError('Type of element not understood') return self.all_edges def GetBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetBoundaryEdgesTri() elif self.element_type == "quad": self.GetBoundaryEdgesQuad() elif self.element_type == "pent": self.GetBoundaryEdgesPent() elif self.element_type == "tet": self.GetBoundaryEdgesTet() elif self.element_type == "hex": self.GetBoundaryEdgesHex() else: raise ValueError('Type of element not understood') return self.edges def GetInteriorEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetInteriorEdgesTri() elif self.element_type == "quad": self.GetInteriorEdgesQuad() elif self.element_type == "pent": self.GetInteriorEdgesPent() elif self.element_type == "tet": self.GetInteriorEdgesTet() elif self.element_type == "hex": self.GetInteriorEdgesHex() else: raise ValueError('Type of element not understood') return self.interior_edges def GetFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetFacesTet() elif self.element_type == "hex": self.GetFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.all_faces def GetBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetBoundaryFacesTet() elif self.element_type == "hex": self.GetBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.faces def GetInteriorFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetInteriorFacesTet() elif self.element_type == "hex": self.GetInteriorFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.interior_faces def GetElementsEdgeNumbering(self): assert self.element_type is not None if self.element_type == "tri": return self.GetElementsEdgeNumberingTri() elif self.element_type == "quad": return self.GetElementsEdgeNumberingQuad() else: raise ValueError('Type of element not understood') return self.edge_to_element def GetElementsWithBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": return self.GetElementsWithBoundaryEdgesTri() elif self.element_type == "quad": return self.GetElementsWithBoundaryEdgesQuad() else: raise ValueError('Type of element not understood') return self.boundary_edge_to_element def GetElementsFaceNumbering(self): assert self.element_type is not None if self.element_type == "tet": return self.GetElementsFaceNumberingTet() elif self.element_type == "hex": return self.GetElementsFaceNumberingHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.face_to_element def GetElementsWithBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": return self.GetElementsWithBoundaryFacesTet() elif self.element_type == "hex": return self.GetElementsWithBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.boundary_face_to_element @property def Bounds(self): """Returns bounds of a mesh i.e. the minimum and maximum coordinate values in every direction """ assert self.points is not None if self.points.shape[1] == 3: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1]), np.min(self.points[:,2])], [np.max(self.points[:,0]), np.max(self.points[:,1]), np.max(self.points[:,2])]]) makezero(bounds) return bounds elif self.points.shape[1] == 2: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1])], [np.max(self.points[:,0]), np.max(self.points[:,1])]]) makezero(bounds) return bounds elif self.points.shape[1] == 1: bounds = np.array([[np.min(self.points[:,0])], [np.max(self.points[:,0])]]) makezero(bounds) return bounds else: raise ValueError("Invalid dimension for mesh coordinates") def GetEdgesTri(self): """Find all edges of a triangular mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementTri(p-1)[0] # CHECK IF FACES ARE ALREADY AVAILABLE if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1 and self.all_edges.shape[1] == p+1: warn("Mesh edges seem to be already computed. I am going to recompute them") # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.zeros((3*self.elements.shape[0],p+1),dtype=np.uint64) edges[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]] edges[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]] edges[2*self.elements.shape[0]:,:] = self.elements[:,node_arranger[2,:]] # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesTet import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesTet": self.all_edges = edges return edges def GetBoundaryEdgesTri(self): """Find boundary edges (lines) of triangular mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementTri(p-1)[0] # CONCATENATE ALL THE EDGES MADE FROM ELEMENTS all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]]),axis=0) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesTri(self): """Computes interior edges of a triangular mesh returns: interior_edges ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesTri() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesTri() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetFacesTet(self): """Find all faces (surfaces) in the tetrahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 3 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementTet(p-1)[0] fsize = int((p+1.)*(p+2.)/2.) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.zeros((4*self.elements.shape[0],fsize),dtype=np.uint64) faces[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]] faces[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]] faces[2*self.elements.shape[0]:3*self.elements.shape[0],:] = self.elements[:,node_arranger[2,:]] faces[3*self.elements.shape[0]:,:] = self.elements[:,node_arranger[3,:]] # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetEdgesTet(self): """Find all edges (lines) of tetrahedral mesh (boundary & interior)""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1] == 2 and p > 1: pass else: return self.all_edges # FIRST GET BOUNDARY FACES if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 3 and p > 1: self.GetFacesTet() else: self.GetFacesTet() # BUILD A 2D MESH tmesh = Mesh() # tmesh = deepcopy(self) tmesh.element_type = "tri" tmesh.elements = self.all_faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # COMPUTE ALL EDGES self.all_edges = tmesh.GetEdgesTri() return self.all_edges def GetBoundaryFacesTet(self): """Find boundary faces (surfaces) of a tetrahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 3 and p > 1: pass else: return node_arranger = NodeArrangementTet(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # THE FOLLOWING WILL COMPUTE FACES BASED ON SORTING AND NOT TAKING INTO ACCOUNT # THE ELEMENT CONNECTIVITY # boundary_face_to_element[:,0] = np.remainder(idx[faces_ext_flags],self.elements.shape[0]) # boundary_face_to_element[:,1] = np.floor_divide(idx[faces_ext_flags],self.elements.shape[0]) # OR EQUIVALENTLY # boundary_face_to_element[:,0] = idx[faces_ext_flags] % self.elements.shape[0] # boundary_face_to_element[:,1] = idx[faces_ext_flags] // self.elements.shape[0] # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetBoundaryEdgesTet(self): """Find boundary edges (lines) of tetrahedral mesh. Note that for tetrahedrals this function is more robust than Salome's default edge generator """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesTet() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "tri" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesTri() def GetInteriorFacesTet(self): """Computes interior faces of a tetrahedral mesh returns: interior_faces ndarray of interior faces face_flags 1D array of face flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_faces,np.ndarray): self.GetFacesTet() if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesTet() face_flags = in2d(self.all_faces.astype(self.faces.dtype),self.faces,consider_sort=True) face_flags[face_flags==True] = 1 face_flags[face_flags==False] = 0 interior_faces = self.all_faces[face_flags==False,:] return interior_faces, face_flags def GetInteriorEdgesTet(self): """Computes interior faces of a tetrahedral mesh returns: interior_edges ndarray of interior edges edge_flags 1D array of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesTet() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesTet() edge_flags = in2d(self.all_edges.astype(self.edges.dtype),self.edges,consider_sort=True) edge_flags[edge_flags==True] = 1 edge_flags[edge_flags==False] = 0 interior_edges = self.all_edges[edge_flags==False,:] self.interior_edges = interior_edges return interior_edges, edge_flags def GetEdgesQuad(self): """Find the all edges of a quadrilateral mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesHex import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesHex": self.all_edges = edges return edges def GetBoundaryEdgesQuad(self): """Find boundary edges (lines) of a quadrilateral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesQuad(self): """Computes interior edges of a quadrilateral mesh returns: interior_faces ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesQuad() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesQuad() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetFacesHex(self): """Find all faces (surfaces) in the hexahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 4 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementHex(p-1)[0] fsize = int((p+1)**3) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetEdgesHex(self): """Find all edges (lines) of tetrahedral mesh (boundary & interior)""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1] == 2 and p > 1: pass else: return self.all_edges # FIRST GET BOUNDARY FACES if not isinstance(self.all_faces,np.ndarray): self.GetFacesHex() # BUILD A 2D MESH tmesh = Mesh() # tmesh = deepcopy(self) tmesh.element_type = "quad" tmesh.elements = self.all_faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # COMPUTE ALL EDGES self.all_edges = tmesh.GetEdgesQuad() return self.all_edges def GetBoundaryFacesHex(self): """Find boundary faces (surfaces) of a hexahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 4 and p > 1: pass else: return node_arranger = NodeArrangementHex(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetBoundaryEdgesHex(self): """Find boundary edges (lines) of hexahedral mesh. """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "quad" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesQuad() def GetInteriorFacesHex(self): """Computes interior faces of a hexahedral mesh returns: interior_faces ndarray of interior faces face_flags 1D array of face flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_faces,np.ndarray): self.GetFacesHex() if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() face_flags = in2d(self.all_faces.astype(self.faces.dtype),self.faces,consider_sort=True) face_flags[face_flags==True] = 1 face_flags[face_flags==False] = 0 interior_faces = self.all_faces[face_flags==False,:] return interior_faces, face_flags def GetInteriorEdgesHex(self): """Computes interior faces of a hexahedral mesh returns: interior_edges ndarray of interior edges edge_flags 1D array of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesHex() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesHex() edge_flags = in2d(self.all_edges.astype(self.edges.dtype),self.edges,consider_sort=True) edge_flags[edge_flags==True] = 1 edge_flags[edge_flags==False] = 0 interior_edges = self.all_edges[edge_flags==False,:] self.interior_edges = interior_edges return interior_edges, edge_flags def GetEdgesPent(self): """Find the all edges of a pentagonal mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = np.array([ [0,1], [1,2], [2,3], [3,4], [4,0], ]) # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]], self.elements[:,node_arranger[4,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element self.all_edges = edges return edges def GetBoundaryEdgesPent(self): """Find boundary edges (lines) of a pentagonal mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = np.array([ [0,1], [1,2], [2,3], [3,4], [4,0], ]) # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]], self.elements[:,node_arranger[4,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesPent(self): """Computes interior edges of a pentagonal mesh returns: interior_faces ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesPent() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesPent() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetHighOrderMesh(self,p=1, silent=True, **kwargs): """Given a linear tri, tet, quad or hex mesh compute high order mesh based on it. This is a static method linked to the HigherOrderMeshing module""" if not isinstance(p,int): raise ValueError("p must be an integer") else: if p < 1: raise ValueError("Value of p={} is not acceptable. Provide p>=1.".format(p)) if self.degree is None: self.InferPolynomialDegree() C = p-1 if 'C' in kwargs.keys(): if kwargs['C'] != p - 1: raise ValueError("Did not understand the specified interpolation degree of the mesh") del kwargs['C'] # DO NOT COMPUTE IF ALREADY COMPUTED FOR THE SAME ORDER if self.degree == None: self.degree = self.InferPolynomialDegree() if self.degree == p: return # SITUATIONS WHEN ANOTHER HIGH ORDER MESH IS REQUIRED, WITH ONE HIGH # ORDER MESH ALREADY AVAILABLE if self.degree != 1 and self.degree - 1 != C: dum = self.GetLinearMesh(remap=True) self.__dict__.update(dum.__dict__) if not silent: print('Generating p = '+str(C+1)+' mesh based on the linear mesh...') t_mesh = time() # BUILD A NEW MESH BASED ON THE LINEAR MESH if self.element_type == 'line': nmesh = HighOrderMeshLine(C,self,**kwargs) if self.element_type == 'tri': if self.edges is None: self.GetBoundaryEdgesTri() # nmesh = HighOrderMeshTri(C,self,**kwargs) nmesh = HighOrderMeshTri_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'tet': # nmesh = HighOrderMeshTet(C,self,**kwargs) nmesh = HighOrderMeshTet_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'quad': if self.edges is None: self.GetBoundaryEdgesQuad() nmesh = HighOrderMeshQuad(C,self,**kwargs) elif self.element_type == 'hex': nmesh = HighOrderMeshHex(C,self,**kwargs) self.points = nmesh.points self.elements = nmesh.elements.astype(np.uint64) if isinstance(self.corners,np.ndarray): # NOT NECESSARY BUT GENERIC self.corners = nmesh.corners.astype(np.uint64) if isinstance(self.edges,np.ndarray): self.edges = nmesh.edges.astype(np.uint64) if isinstance(self.faces,np.ndarray): if isinstance(nmesh.faces,np.ndarray): self.faces = nmesh.faces.astype(np.uint64) self.nelem = nmesh.nelem self.nnode = self.points.shape[0] self.element_type = nmesh.info self.degree = C+1 self.ChangeType() if not silent: print('Finished generating the high order mesh. Time taken', time()-t_mesh,'sec') def EdgeLengths(self,which_edges='boundary'): """Computes length of edges, for 2D and 3D meshes which_edges: [str] 'boundary' for boundary edges only and 'all' for all edges """ assert self.points is not None assert self.element_type is not None lengths = None if which_edges == 'boundary': if self.edges is None: self.GetBoundaryEdges() edge_coords = self.points[self.edges[:,:2],:] lengths = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) elif which_edges == 'all': if self.all_edges is None: self.GetEdges() edge_coords = self.points[self.all_edges[:,:2],:] lengths = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) return lengths def Lengths(self,): """Computes length of all types of elements """ self.__do_essential_memebers_exist__() if self.element_type == "line": coords = self.points[self.elements[:,:2],:] lengths = np.linalg.norm(coords[:,1,:] - coords[:,0,:],axis=1) else: self.GetEdges() coord = self.all_edges coords = self.points[self.elements[:,:2],:] lengths = np.linalg.norm(coords[:,1,:] - coords[:,0,:],axis=1) return lengths def Areas(self, with_sign=False, gpoints=None): """Find areas of all 2D elements [tris, quads]. For 3D elements returns surface areas of all faces input: with_sign: [str] compute with/without sign gpoints: [ndarray] given coordinates to use instead of self.points returns: 1D array of nelem x 1 containing areas """ assert self.elements is not None assert self.element_type is not None if gpoints is None: assert self.points is not None gpoints = self.points if self.element_type == "tri": points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2] = gpoints # FIND AREAS OF ALL THE ELEMENTS area = 0.5*np.linalg.det(points[self.elements[:,:3],:]) elif self.element_type == "quad": # NODE ORDERING IS IRRELEVANT, AS IT IS THESE AREAS # WHICH DETERMINE NODE ORDERING # AREA OF QUAD ABCD = AREA OF ABC + AREA OF ACD points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2] = gpoints # FIND AREAS ABC area0 = np.linalg.det(points[self.elements[:,:3],:]) # FIND AREAS ACD area1 = np.linalg.det(points[self.elements[:,[0,2,3]],:]) # FIND AREAS OF ALL THE ELEMENTS area = 0.5*(area0+area1) elif self.element_type == "tet": # GET ALL THE FACES faces = self.GetFacesTet() points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2]=gpoints[:,:2] area0 = np.linalg.det(points[faces[:,:3],:]) points[:,:2]=gpoints[:,[2,0]] area1 = np.linalg.det(points[faces[:,:3],:]) points[:,:2]=gpoints[:,[1,2]] area2 = np.linalg.det(points[faces[:,:3],:]) area = 0.5*np.linalg.norm(area0+area1+area2) elif self.element_type == "hex": from Florence.Tensor import unique2d C = self.InferPolynomialDegree() - 1 area = 0 node_arranger = NodeArrangementHex(C)[0] for i in range(node_arranger.shape[0]): # print node_arranger[i,:] # AREA OF FACES points = np.ones((gpoints.shape[0],3),dtype=np.float64) if i==0 or i==1: points[:,:2] = gpoints[:,:2] elif i==2 or i==3: points[:,:2] = gpoints[:,[0,2]] elif i==4 or i==5: points[:,:2] = gpoints[:,1:] # FIND AREAS ABC area0 = np.linalg.det(points[self.elements[:,node_arranger[i,:3]],:]) # FIND AREAS ACD area1 = np.linalg.det(points[self.elements[:,node_arranger[i,1:]],:]) # FIND AREAS OF ALL THE ELEMENTS area += 0.5*np.linalg.norm(area0+area1) # print area raise ValueError('Hex areas implementation requires further checks') else: raise NotImplementedError("Computing areas for", self.element_type, "elements not implemented yet") if with_sign is False: if self.element_type == "tri" or self.element_type == "quad": area = np.abs(area) elif self.element_type == "tet": raise NotImplementedError('Numbering order of tetrahedral faces could not be determined') return area def Volumes(self, with_sign=False, gpoints=None): """Find Volumes of all 3D elements [tets, hexes] input: with_sign: [str] compute with/without sign gpoints: [ndarray] given coordinates to use instead of self.points returns: 1D array of nelem x 1 containing volumes """ assert self.elements is not None assert self.element_type is not None if self.points.shape[1] == 2: raise ValueError("2D mesh does not have volume") if gpoints is None: assert self.points is not None gpoints = self.points if self.element_type == "tet": a = gpoints[self.elements[:,0],:] b = gpoints[self.elements[:,1],:] c = gpoints[self.elements[:,2],:] d = gpoints[self.elements[:,3],:] det_array = np.dstack((a-d,b-d,c-d)) # FIND VOLUME OF ALL THE ELEMENTS volume = 1./6.*np.linalg.det(det_array) elif self.element_type == "hex": # Refer: https://en.wikipedia.org/wiki/Parallelepiped a = gpoints[self.elements[:,0],:] b = gpoints[self.elements[:,1],:] c = gpoints[self.elements[:,3],:] d = gpoints[self.elements[:,4],:] det_array = np.dstack((b-a,c-a,d-a)) # FIND VOLUME OF ALL THE ELEMENTS volume = np.linalg.det(det_array) else: raise NotImplementedError("Computing volumes for", self.element_type, "elements not implemented yet") if with_sign is False: volume = np.abs(volume) return volume def Sizes(self, with_sign=False): """Computes the size of elements for all element types. This is a generic method that for 1D=lengths, for 2D=areas and for 3D=volumes. It works for planar and curved elements """ self.__do_essential_memebers_exist__() try: from Florence import DisplacementFormulation except ImportError: raise ValueError("This functionality requires Florence's support") if self.element_type != "line": # FOR LINE ELEMENTS THIS APPROACH DOES NOT WORK AS JACOBIAN IS NOT WELL DEFINED formulation = DisplacementFormulation(self) sizes = np.zeros(self.nelem) if not with_sign: for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetVolume(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) else: for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetSignedVolume(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) return sizes else: warn("Sizes of line elements could be incorrect if the mesh is curvilinear") return self.Lengths() def AspectRatios(self,algorithm='edge_based'): """Compute aspect ratio of the mesh element-by-element. For 2D meshes aspect ratio is aspect ratio is defined as the ratio of maximum edge length to minimum edge length. For 3D meshes aspect ratio can be either length or area based. input: algorithm: [str] 'edge_based' or 'face_based' returns: aspect_ratio: [1D array] of size (self.nelem) containing aspect ratio of elements """ assert self.points is not None assert self.element_type is not None aspect_ratio = None if algorithm == 'edge_based': if self.element_type == "tri": edge_coords = self.points[self.elements[:,:3],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) AC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) minimum = np.minimum(np.minimum(AB,AC),BC) maximum = np.maximum(np.maximum(AB,AC),BC) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "quad": edge_coords = self.points[self.elements[:,:4],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,0,:] - edge_coords[:,3,:],axis=1) minimum = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "tet": edge_coords = self.points[self.elements[:,:4],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) AC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,0,:],axis=1) AD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) BD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) minimum = np.minimum(np.minimum(np.minimum(np.minimum(np.minimum(AB,AC),AD),BC),BD),CD) maximum = np.maximum(np.maximum(np.maximum(np.maximum(np.maximum(AB,AC),AD),BC),BD),CD) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "hex": edge_coords = self.points[self.elements[:,:8],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,0,:] - edge_coords[:,3,:],axis=1) minimum0 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum0 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) AB = np.linalg.norm(edge_coords[:,5,:] - edge_coords[:,4,:],axis=1) BC = np.linalg.norm(edge_coords[:,6,:] - edge_coords[:,5,:],axis=1) CD = np.linalg.norm(edge_coords[:,7,:] - edge_coords[:,6,:],axis=1) DA = np.linalg.norm(edge_coords[:,4,:] - edge_coords[:,7,:],axis=1) minimum1 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum1 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) AB = np.linalg.norm(edge_coords[:,4,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,5,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,6,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,7,:] - edge_coords[:,3,:],axis=1) minimum2 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum2 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) minimum = np.minimum(minimum0,np.minimum(minimum1,minimum2)) maximum = np.maximum(maximum0,np.maximum(maximum1,maximum2)) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "line": raise ValueError("Line elments do no have aspect ratio") elif algorithm == 'face_based': raise NotImplementedError("Face/area based aspect ratio is not implemented yet") return aspect_ratio def FaceNormals(self): """Computes outward unit normals on faces. This is a generic method for all element types apart from lines. If the mesh is in 2D plane then the unit outward normals will point in Z direction. If the mesh is quad or tri type but in 3D plane, this will still compute the correct unit outward normals. outwardness can only be guaranteed for volume meshes. This method is different from the method self.Normals() as the latter can compute normals for 1D/2D elements in-plane """ self.__do_memebers_exist__() points = np.copy(self.points) if points.shape[1] < 3: dum = np.zeros((points.shape[0],3)) dum[:,:points.shape[1]] = points points = dum if self.element_type == "tet" or self.element_type == "hex": faces = self.faces elif self.element_type == "tri" or self.element_type == "quad": faces = self.elements else: raise ValueError("Cannot compute face normals on {}".format(self.element_type)) face_coords = self.points[faces[:,:3],:] p1p0 = face_coords[:,1,:] - face_coords[:,0,:] p2p0 = face_coords[:,2,:] - face_coords[:,0,:] normals = np.cross(p1p0,p2p0) norm_normals = np.linalg.norm(normals,axis=1) normals[:,0] /= norm_normals normals[:,1] /= norm_normals normals[:,2] /= norm_normals # CHECK IF THE NORMAL IS OUTWARD - FOR LINES DIRECTIONALITY DOES NOT MATTER if self.element_type == "tet" or self.element_type == "hex": self.GetElementsWithBoundaryFaces() meds = self.Medians() face_element_meds = meds[self.boundary_face_to_element[:,0],:] p1pm = face_coords[:,1,:] - face_element_meds # IF THE DOT PROUCT OF NORMALS AND EDGE-MED NODE VECTOR IS NEGATIVE THEN FLIP _check = np.einsum("ij,ij->i",normals,p1pm) normals[np.less(_check,0.)] = -normals[np.less(_check,0.)] return normals def Normals(self, show_plot=False): """Computes unit outward normals to the boundary for all element types. Unity and outwardness are guaranteed """ self.__do_memebers_exist__() ndim = self.InferSpatialDimension() if self.element_type == "tet" or self.element_type == "hex": normals = self.FaceNormals() elif self.element_type == "tri" or self.element_type == "quad" or self.element_type == "line": if self.points.shape[1] == 3: normals = self.FaceNormals() else: if self.element_type == "tri" or self.element_type == "quad": edges = self.edges elif self.element_type == "line": edges = self.elements edge_coords = self.points[edges[:,:2],:] p1p0 = edge_coords[:,1,:] - edge_coords[:,0,:] normals = np.zeros_like(p1p0) normals[:,0] = -p1p0[:,1] normals[:,1] = p1p0[:,0] norm_normals = np.linalg.norm(normals,axis=1) normals[:,0] /= norm_normals normals[:,1] /= norm_normals # CHECK IF THE NORMAL IS OUTWARD - FOR LINES DIRECTIONALITY DOES NOT MATTER if self.element_type == "tri" or self.element_type == "quad": self.GetElementsWithBoundaryEdges() meds = self.Medians() edge_element_meds = meds[self.boundary_edge_to_element[:,0],:] p1pm = edge_coords[:,1,:] - edge_element_meds # IF THE DOT PROUCT OF NORMALS AND EDGE-MED NODE VECTOR IS NEGATIVE THEN FLIP _check = np.einsum("ij,ij->i",normals,p1pm) normals[np.less(_check,0.)] = -normals[np.less(_check,0.)] if show_plot: if ndim == 2: mid_edge_coords = 0.5*(edge_coords[:,1,:] + edge_coords[:,0,:]) import matplotlib.pyplot as plt figure = plt.figure() self.SimplePlot(figure=figure, show_plot=False) q = plt.quiver(mid_edge_coords[:,0], mid_edge_coords[:,1], normals[:,0], normals[:,1], color='Teal', headlength=5, width=0.004) plt.axis('equal') plt.axis('off') plt.tight_layout() plt.show() elif ndim == 3: mid_face_coords = np.sum(self.points[self.faces,:3],axis=1)/self.faces.shape[1] import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) self.SimplePlot(figure=figure, show_plot=False) mlab.quiver3d(mid_face_coords[:,0], mid_face_coords[:,1], mid_face_coords[:,2], normals[:,0], normals[:,1], normals[:,2], color=(0.,128./255,128./255),line_width=2) mlab.show() return normals def Angles(self, degrees=True): """Compute angles of 2D meshes. Strictly 2D meshes and linear elements. If the mesh is curved the angles would be inaccurate input: degrees [bool] if True returns angles in degrees otherwise in radians returns: angles [2D array] of angles per element. Angles are computed per element so every element will have as many angles as it's nodes """ self.__do_essential_memebers_exist__() if self.InferElementalDimension() != 2: raise ValueError("Angles can be computed only for 2D elements") if self.InferSpatialDimension() != 2: raise ValueError("Angles can be computed only in 2-dimensional plane") nodeperelem = self.InferNumberOfNodesPerLinearElement() angles = np.zeros((self.nelem, nodeperelem)) norm = lambda x: np.linalg.norm(x,axis=1) edge_coords = self.points[self.elements[:,:],:] if self.element_type == "tri": AB = edge_coords[:,1,:] - edge_coords[:,0,:] AC = edge_coords[:,2,:] - edge_coords[:,0,:] BC = edge_coords[:,2,:] - edge_coords[:,1,:] angles[:,0] = np.einsum("ij,ij->i",AB,AC) / (norm(AB)*norm(AC)) angles[:,1] = np.einsum("ij,ij->i",AC,BC) / (norm(AC)*norm(BC)) angles[:,2] = np.einsum("ij,ij->i",BC,-AB)/ (norm(BC)*norm(AB)) angles = np.arccos(angles) elif self.element_type == "quad": AB = edge_coords[:,1,:] - edge_coords[:,0,:] BC = edge_coords[:,2,:] - edge_coords[:,1,:] CD = edge_coords[:,3,:] - edge_coords[:,2,:] DA = edge_coords[:,0,:] - edge_coords[:,3,:] angles[:,0] = np.einsum("ij,ij->i",AB,BC) / (norm(AB)*norm(BC)) angles[:,1] = np.einsum("ij,ij->i",BC,CD) / (norm(BC)*norm(CD)) angles[:,2] = np.einsum("ij,ij->i",CD,DA) / (norm(CD)*norm(DA)) angles[:,3] = np.einsum("ij,ij->i",DA,-AB)/ (norm(DA)*norm(AB)) angles = np.arccos(angles) if degrees: angles *= 180/np.pi return angles def BoundingBoxes(self, show_plot=False, figure=None): """Computes a bounding box for every element. This method complements the Bounds method/property in that it computes the bounds for every individual element returns: bboxes [3D array] of nelem x ndim x ndim of bounding boxes for every element """ self.__do_essential_memebers_exist__() ndim = self.InferSpatialDimension() all_elem_coords = self.points[self.elements] mins = all_elem_coords.min(axis=1) maxs = all_elem_coords.max(axis=1) bboxes = np.zeros((2*self.nelem,self.points.shape[1])) bboxes[::2] = mins bboxes[1::2] = maxs bboxes = bboxes.reshape(self.nelem,2,self.points.shape[1]) if show_plot: if ndim == 3: point_generator = lambda bbox: np.array([ [ bbox[0,0], bbox[0,1], bbox[0,2] ], [ bbox[1,0], bbox[0,1], bbox[0,2] ], [ bbox[1,0], bbox[1,1], bbox[0,2] ], [ bbox[0,0], bbox[1,1], bbox[0,2] ], [ bbox[0,0], bbox[0,1], bbox[1,2] ], [ bbox[1,0], bbox[0,1], bbox[1,2] ], [ bbox[1,0], bbox[1,1], bbox[1,2] ], [ bbox[0,0], bbox[1,1], bbox[1,2] ] ]) elif ndim == 2: point_generator = lambda bbox: np.array([ [ bbox[0,0], bbox[0,1] ], [ bbox[1,0], bbox[0,1] ], [ bbox[1,0], bbox[1,1] ], [ bbox[0,0], bbox[1,1] ] ]) nsize = 4 if ndim ==2 else 8 ranger = np.arange(nsize) bmesh = Mesh() bmesh.element_type = "quad" if ndim ==2 else "hex" bmesh.elements = np.arange(self.nelem*nsize).reshape(self.nelem,nsize) bmesh.points = np.zeros((self.nelem*nsize,ndim)) bmesh.nelem = self.nelem bmesh.nnode = bmesh.points.shape[0] for i in range(0,self.nelem): bmesh.points[i*nsize:(i+1)*nsize,:] = point_generator(bboxes[i]) if ndim == 2: import matplotlib.pyplot as plt if figure is None: figure = plt.figure() self.SimplePlot(figure=figure, show_plot=False) bmesh.SimplePlot(figure=figure, show_plot=False, edge_color='r') plt.show() else: import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) self.SimplePlot(figure=figure, show_plot=False) bmesh.SimplePlot(figure=figure, show_plot=False, plot_faces=False, edge_color='r') mlab.show() return bboxes def Medians(self, geometric=True): """Computes median of the elements tri, tet, quad, hex based on the interpolation function input: geometric [Bool] geometrically computes median without relying on FEM bases retruns: median: [ndarray] of median of elements bases_at_median: [1D array] of (p=1) bases at median """ self.__do_essential_memebers_exist__() median = None if geometric == True: median = np.sum(self.points[self.elements,:],axis=1)/self.elements.shape[1] return median else: try: from Florence.FunctionSpace import Tri, Tet from Florence.QuadratureRules import FeketePointsTri, FeketePointsTet except ImportError: raise ImportError("This functionality requires florence's support") if self.element_type == "tri": eps = FeketePointsTri(2) middle_point_isoparametric = eps[6,:] if not np.isclose(sum(middle_point_isoparametric),-0.6666666): raise ValueError("Median of triangle does not match [-0.3333,-0.3333]. " "Did you change your nodal spacing or interpolation functions?") hpBases = Tri.hpNodal.hpBases bases_for_middle_point = hpBases(0,middle_point_isoparametric[0], middle_point_isoparametric[1])[0] median = np.einsum('ijk,j',self.points[self.elements[:,:3],:],bases_for_middle_point) elif self.element_type == "tet": middle_point_isoparametric = FeketePointsTet(3)[21] if not np.isclose(sum(middle_point_isoparametric),-1.5): raise ValueError("Median of tetrahedral does not match [-0.5,-0.5,-0.5]. " "Did you change your nodal spacing or interpolation functions?") # C = self.InferPolynomialDegree() - 1 hpBases = Tet.hpNodal.hpBases bases_for_middle_point = hpBases(0,middle_point_isoparametric[0], middle_point_isoparametric[1],middle_point_isoparametric[2])[0] median = np.einsum('ijk,j',self.points[self.elements[:,:4],:],bases_for_middle_point) else: raise NotImplementedError('Median for {} elements not implemented yet'.format(self.element_type)) return median, bases_for_middle_point def FindElementContainingPoint(self, point, algorithm="fem", find_parametric_coordinate=True, scaling_factor=5., tolerance=1.0e-7, maxiter=20, use_simple_bases=False, return_on_geometric_finds=False, initial_guess=None, initial_guesses=None, restart=False): """Find which element does a point lie in using specificed algorithm. The FEM isoparametric coordinate of the point is returned as well. If the isoparametric coordinate of the point is not required, issue find_parametric_coordinate=False input: point: [tuple] XYZ of enquiry point algorithm: [str] either 'fem' or 'geometric'. The 'fem' algorithm uses k-d tree search to get the right bounding box around as few elements as possible. The size of the box can be specified by the user through the keyword scaling_factor. The geometric algorithm is a lot more stable and converges much quicker. The geomtric algorithm first identifies the right element using volume check, then tries all possible combination of initial guesses to get the FEM isoparametric point. Trying all possible combination with FEM can be potentially more costly since bounding box size can be large. return_on_geometric_finds: [bool] if geometric algorithm is chosen and this option is on, then it returns the indices of elements as soon as the volume check and no further checks are done. This is useful for situations when searching for points that are meant to be in the interior of the elements rather than at the boundaries or nodes otherwise the number of elements returned by geometric algorithm is going to be more than one return: element_index [int/1D array of ints] element(s) containing the point. If the point is shared between many elements a 1D array is returned iso_parametric_point [1D array] the parametric coordinate of the point within the element. return only if find_parametric_coordinate=True """ if restart: if initial_guesses is None: if self.element_type == "pent": initial_guesses = np.array([ [0.,0.], [1.,0.], [1.,0.5], [0.5,1.], [0.,1.], ]) else: raise ValueError("restart option for this element type is only supported if initial_guesses are available") for i in range(initial_guesses.shape[0]): ret_val = self.FindElementContainingPoint(point, algorithm=algorithm, find_parametric_coordinate=find_parametric_coordinate, scaling_factor=scaling_factor, tolerance=tolerance, maxiter=maxiter, use_simple_bases=use_simple_bases, return_on_geometric_finds=return_on_geometric_finds, initial_guess=initial_guesses[i,:], restart=False) if ret_val[1] is not None: break return ret_val self.__do_essential_memebers_exist__() C = self.InferPolynomialDegree() - 1 if C > 0: warn("Note that finding a point within higher order curved mesh is not supported yet") if C > 0 and algorithm == "geometric": warn("High order meshes are not supported using geometric algorithim. I am going to operate on linear mesh") if use_simple_bases: raise ValueError("Simple bases for high order elements are not available") return ndim = self.InferSpatialDimension() assert len(point) == ndim from Florence.FunctionSpace import PointInversionIsoparametricFEM candidate_element, candidate_piso = None, None if self.element_type == "tet" and algorithm == "fem": algorithm = "geometric" if algorithm == "fem": scaling_factor = float(scaling_factor) max_h = self.EdgeLengths().max() # max_h=1. # FOR CURVED ELEMENTS # max_h = self.LargestSegment().max() # GET A BOUNDING BOX AROUND THE POINT, n TIMES LARGER THAN MAXIMUM h, WHERE n is the SCALING FACTOR if ndim==3: bounding_box = (point[0]-scaling_factor*max_h, point[1]-scaling_factor*max_h, point[2]-scaling_factor*max_h, point[0]+scaling_factor*max_h, point[1]+scaling_factor*max_h, point[2]+scaling_factor*max_h) elif ndim==2: bounding_box = (point[0]-scaling_factor*max_h, point[1]-scaling_factor*max_h, point[0]+scaling_factor*max_h, point[1]+scaling_factor*max_h) # SELECT ELEMENTS ONLY WITHIN THE BOUNDING BOX mesh = deepcopy(self) idx_kept_element = self.RemoveElements(bounding_box)[1] if ndim==3: for i in range(self.nelem): coord = self.points[self.elements[i,:],:] p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=initial_guess) if converged: # if p_iso[0] >= -1. and p_iso[0] <=1. and \ # p_iso[1] >= -1. and p_iso[1] <=1. and \ # p_iso[2] >= -1. and p_iso[2] <=1. : if (p_iso[0] > -1. or np.isclose(p_iso[0],-1.,rtol=tolerance)) and \ (p_iso[0] < 1. or np.isclose(p_iso[0], 1.,rtol=tolerance)) and \ (p_iso[1] > -1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[1] < 1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[2] > -1. or np.isclose(p_iso[2],-1.,rtol=tolerance)) and \ (p_iso[2] < 1. or np.isclose(p_iso[2], 1.,rtol=tolerance)) : candidate_element, candidate_piso = i, p_iso break elif ndim==2: for i in range(self.nelem): coord = self.points[self.elements[i,:],:] p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=initial_guess) # if p_iso[0] >= -1. and p_iso[0] <=1. and \ # p_iso[1] >= -1. and p_iso[1] <=1.: # candidate_element, candidate_piso = i, p_iso # break if (p_iso[0] > -1. or np.isclose(p_iso[0],-1.,rtol=tolerance)) and \ (p_iso[0] < 1. or np.isclose(p_iso[0], 1.,rtol=tolerance)) and \ (p_iso[1] > -1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[1] < 1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) : candidate_element, candidate_piso = i, p_iso break self.__update__(mesh) # print(candidate_element) if candidate_element is not None: candidate_element = idx_kept_element[candidate_element] if find_parametric_coordinate: return candidate_element, candidate_piso else: return candidate_element else: if self.element_type == "tet": from Florence.QuadratureRules.FeketePointsTet import FeketePointsTet initial_guesses = FeketePointsTet(C) def GetVolTet(a0,b0,c0,d0): det_array = np.dstack((a0-d0,b0-d0,c0-d0)) # FIND VOLUME OF ALL THE ELEMENTS volume = 1./6.*np.abs(np.linalg.det(det_array)) return volume a = self.points[self.elements[:,0],:] b = self.points[self.elements[:,1],:] c = self.points[self.elements[:,2],:] d = self.points[self.elements[:,3],:] o = np.tile(point,self.nelem).reshape(self.nelem,a.shape[1]) # TOTAL VOLUME vol = self.Volumes() # PARTS' VOLUMES vol0 = GetVolTet(a,b,c,o) vol1 = GetVolTet(a,b,o,d) vol2 = GetVolTet(a,o,c,d) vol3 = GetVolTet(o,b,c,d) criterion_check = vol0+vol1+vol2+vol3-vol elems = np.isclose(criterion_check,0.,rtol=tolerance) elems_idx = np.where(elems==True)[0] elif self.element_type == "quad": from Florence.QuadratureRules.GaussLobattoPoints import GaussLobattoPointsQuad initial_guesses = GaussLobattoPointsQuad(C) def GetAreaQuad(a0,b0,c0,d0): # AREA OF QUAD ABCD = AREA OF ABC + AREA OF ACD a00 = np.ones((a0.shape[0],3),dtype=np.float64); a00[:,:2] = a0 b00 = np.ones((b0.shape[0],3),dtype=np.float64); b00[:,:2] = b0 c00 = np.ones((c0.shape[0],3),dtype=np.float64); c00[:,:2] = c0 d00 = np.ones((d0.shape[0],3),dtype=np.float64); d00[:,:2] = d0 # FIND AREAS ABC area0 = np.abs(np.linalg.det(np.dstack((a00,b00,c00)))) # FIND AREAS ACD area1 = np.abs(np.linalg.det(np.dstack((a00,c00,d00)))) # FIND AREAS OF ALL THE ELEMENTS area = 0.5*(area0+area1) return area a = self.points[self.elements[:,0],:] b = self.points[self.elements[:,1],:] c = self.points[self.elements[:,2],:] d = self.points[self.elements[:,3],:] o = np.tile(point,self.nelem).reshape(self.nelem,a.shape[1]) # TOTAL VOLUME vol = self.Areas() # PARTS' VOLUMES - DONT CHANGE THE ORDERING OF SPECIALLY vol1 vol0 = GetAreaQuad(o,c,b,a) vol1 = GetAreaQuad(o,a,d,c) criterion_check = vol0+vol1-vol elems = np.isclose(criterion_check,0.,rtol=tolerance) elems_idx = np.where(elems==True)[0] else: raise NotImplementedError("Geometric algorithm for {} elements not implemented yet".format(self.element_type)) if return_on_geometric_finds: return elems_idx for i in range(len(elems_idx)): coord = self.points[self.elements[elems_idx[i],:],:] # TRY ALL POSSIBLE INITIAL GUESSES - THIS IS CHEAP AS THE SEARCH SPACE CONTAINS ONLY A # FEW ELEMENTS for guess in initial_guesses: p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=guess) if converged: break if converged: candidate_element, candidate_piso = elems_idx[i], p_iso break if find_parametric_coordinate: return candidate_element, candidate_piso else: return candidate_element def AverageJacobian(self): """Computes average Jacobian of elements for all element types over a mesh This is a generic method that for 1D=lengths, for 2D=areas and for 3D=volumes. It works for planar and curved elements """ self.__do_essential_memebers_exist__() try: from Florence import DisplacementFormulation except ImportError: raise ValueError("This functionality requires Florence's support") if self.element_type != "line": # FOR LINE ELEMENTS THIS APPROACH DOES NOT WORK AS JACOBIAN IS NOT WELL DEFINED formulation = DisplacementFormulation(self) sizes = np.zeros(self.nelem) for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetAverageJacobian(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) return sizes.mean() else: raise ValueError("Not implemented for 1D elements") def LargestSegment(self, smallest_element=True, nsamples=30, plot_segment=False, plot_element=False, figure=None, save=False, filename=None): """Finds the largest segment that can fit in an element. For curvilinear elements this measure can be used as (h) for h-refinement studies input: smallest_element [bool] if the largest segment size is to be computed in the smallest element (i.e. element with the smallest area in 2D or smallest volume in 3D). Default is True. If False, then the largest segment in the largest element will be computed. nsample: [int] number of sample points along the curved edges of the elements. The maximum distance between all combinations of these points is the largest segment plot_segment: [bool] plots segment on tope of [curved/straight] mesh plot_element: [bool] plots the straight/curved element to which the segment belongs figure: [an instance of matplotlib/mayavi.mlab figure for 2D/3D] save: [bool] wether to save the figure or not filename: [str] file name for the figure to be save returns: largest_segment_length [float] maximum segment length that could be fit within either the """ self.__do_memebers_exist__() if self.element_type == "hex" or self.element_type == "tet": quantity = self.Volumes() elif self.element_type == "quad" or self.element_type == "tri": quantity = self.Areas() if smallest_element: omesh = self.GetLocalisedMesh(quantity.argmin()) else: omesh = self.GetLocalisedMesh(quantity.argmax()) try: from Florence.PostProcessing import PostProcess except: raise ImportError('This function requires florence PostProcessing module') return if save: if filename is None: raise ValueError("No file name provided. I am going to write one the current directory") filename = PWD(__file__) + "/output.png" if self.element_type == "tri": tmesh = PostProcess.TessellateTris(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "quad": tmesh = PostProcess.TessellateQuads(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "tet": tmesh = PostProcess.TessellateTets(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "hex": tmesh = PostProcess.TessellateHexes(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) ndim = omesh.InferSpatialDimension() nnode = tmesh.points.shape[0] largest_segment_lengths = [] nodes = np.array((1,ndim)) for i in range(nnode): tiled_points = np.tile(tmesh.points[i,:][:,None],nnode).T segment_lengths = np.linalg.norm(tmesh.points - tiled_points, axis=1) largest_segment_lengths.append(segment_lengths.max()) nodes = np.vstack((nodes, np.array([i,segment_lengths.argmax()])[None,:])) largest_segment_lengths = np.array(largest_segment_lengths) nodes = nodes[1:,:] largest_segment_length = largest_segment_lengths.max() corresponding_nodes = nodes[largest_segment_lengths.argmax(),:] if plot_segment: segment_coords = tmesh.points[corresponding_nodes,:] if ndim==2: import matplotlib.pyplot as plt if figure == None: figure = plt.figure() if plot_element: if omesh.element_type == "tri": PostProcess.CurvilinearPlotTri(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) elif omesh.element_type == "quad": PostProcess.CurvilinearPlotQuad(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) tmesh.SimplePlot(figure=figure,show_plot=False) if save: plt.savefig(filename,bbox_inches="tight",dpi=300) plt.show() elif ndim==3: import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) if plot_element: if omesh.element_type == "tet": PostProcess.CurvilinearPlotTet(omesh, np.zeros_like(omesh.points),plot_points=True, point_radius=0.13, figure=figure, interpolation_degree=nsamples, show_plot=False) elif omesh.element_type == "hex": PostProcess.CurvilinearPlotHex(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) tmesh.GetEdges() edge_coords = tmesh.points[np.unique(tmesh.all_edges),:] mlab.triangular_mesh(tmesh.points[:,0],tmesh.points[:,1],tmesh.points[:,2], tmesh.elements, representation='wireframe', color=(0,0,0)) # # mlab.points3d(edge_coords[:,0],edge_coords[:,1],edge_coords[:,2],color=(1., 99/255., 71./255), scale_factor=0.03) # # mlab.plot3d(segment_coords[:,0],segment_coords[:,1],segment_coords[:,2], color=(227./255, 66./255, 52./255)) mlab.points3d(edge_coords[:,0],edge_coords[:,1],edge_coords[:,2],color=(1., 99/255., 71./255), scale_factor=0.17) mlab.plot3d(segment_coords[:,0],segment_coords[:,1],segment_coords[:,2], color=(227./255, 66./255, 52./255), line_width=10., representation="wireframe") if save: mlab.savefig(filename,dpi=300) mlab.show() return largest_segment_length def CheckNodeNumbering(self,change_order_to='retain', verbose=True): """Checks for node numbering order of the imported mesh. Mesh can be tri or tet input: change_order_to: [str] {'clockwise','anti-clockwise','retain'} changes the order to clockwise, anti-clockwise or retains the numbering order - default is 'retain' output: original_order: [str] {'clockwise','anti-clockwise','retain'} returns the original numbering order""" self.__do_essential_memebers_exist__() # CHECK IF IT IS LINEAR MESH nodeperelem = self.InferNumberOfNodesPerLinearElement() assert self.elements.shape[1] == nodeperelem quantity = np.array([]) if self.element_type == "tri": quantity = self.Areas(with_sign=True) elif self.element_type == "quad": quantity = self.Areas(with_sign=True) elif self.element_type == "tet": quantity = self.Volumes(with_sign=True) elif self.element_type == "hex": quantity = self.Volumes(with_sign=True) original_order = '' # CHECK NUMBERING if (quantity > 0).all(): original_order = 'anti-clockwise' if change_order_to == 'clockwise': self.elements = np.fliplr(self.elements) elif (quantity < 0).all(): original_order = 'clockwise' if change_order_to == 'anti-clockwise': self.elements = np.fliplr(self.elements) else: original_order = 'mixed' if change_order_to == 'clockwise': self.elements[quantity>0,:] = np.fliplr(self.elements[quantity>0,:]) elif change_order_to == 'anti-clockwise': self.elements[quantity<0,:] = np.fliplr(self.elements[quantity<0,:]) if original_order == 'anti-clockwise': print(u'\u2713'.encode('utf8')+b' : ','Imported mesh has',original_order,'node ordering') else: print(u'\u2717'.encode('utf8')+b' : ','Imported mesh has',original_order,'node ordering') return original_order def GetElementsEdgeNumberingTri(self): """Finds edges of elements and their flags saying which edge they are [0,1,2]. At most a triangle can have all its three edges on the boundary. output: edge_elements: [1D array] array containing elements which have edges on the boundary Note that this method sets the self.edge_to_element to edge_elements, so the return value is not strictly necessary """ if isinstance(self.edge_to_element,np.ndarray): if self.edge_to_element.shape[0] > 1: return self.edge_to_element # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY if self.all_edges is None: self.GetEdgesTri() all_edges = np.concatenate((self.elements[:,:2],self.elements[:,[1,2]], self.elements[:,[2,0]]),axis=0).astype(np.int64) all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True) edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64) edge_elements[:,0] = idx % self.elements.shape[0] edge_elements[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_elements return self.edge_to_element def GetElementsWithBoundaryEdgesTri(self): """Finds elements which have edges on the boundary. At most an element can have all its three edges on the boundary. output: edge_elements: [2D array] array containing elements which have edge on the boundary [cloumn 0] and a flag stating which edges they are [column 1] """ if isinstance(self.boundary_edge_to_element,np.ndarray): if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1: return self.boundary_edge_to_element # DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.edges is not None edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64) # FIND WHICH FACE NODES ARE IN WHICH ELEMENT for i in range(self.edges.shape[0]): x = [] for j in range(2): x.append(np.where(self.elements[:,:3]==self.edges[i,j])[0]) # FIND WHICH ELEMENTS CONTAIN ALL FACE NODES - FOR INTERIOR ELEMENTS # THEIR CAN BE MORE THAN ONE ELEMENT CONTAINING ALL FACE NODES z = x[0] for k in range(1,len(x)): z = np.intersect1d(x[k],z) # CHOOSE ONLY ONE OF THESE ELEMENTS edge_elements[i,0] = z[0] # WHICH COLUMNS IN THAT ELEMENT ARE THE FACE NODES LOCATED cols = np.array([np.where(self.elements[z[0],:]==self.edges[i,0])[0], np.where(self.elements[z[0],:]==self.edges[i,1])[0] ]) cols = np.sort(cols.flatten()) if cols[0] == 0 and cols[1] == 1: edge_elements[i,1] = 0 elif cols[0] == 1 and cols[1] == 2: edge_elements[i,1] = 1 elif cols[0] == 0 and cols[1] == 2: edge_elements[i,1] = 2 self.boundary_edge_to_element = edge_elements return edge_elements def GetElementsWithBoundaryFacesTet(self): """Finds elements which have faces on the boundary. At most a tetrahedral element can have all its four faces on the boundary. output: boundary_face_to_element: [2D array] array containing elements which have face on the boundary [column 0] and a flag stating which faces they are [column 1] """ if self.boundary_face_to_element is not None: return self.boundary_face_to_element # DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.faces is not None # THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK # IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME # EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY # HENCE THIS MAPPING BECOMES NECESSARY all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0).astype(self.faces.dtype) all_faces_in_faces = in2d(all_faces,self.faces[:,:3],consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER # NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND # FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d. # WE NEED TO FIND THIS MAPPING NOW C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementTet(C)[0] # WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS faces = self.elements[boundary_face_to_element[:,0][:,None], node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype) # CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED assert np.sum(faces[:,:3].astype(np.int64) - self.faces[:,:3].astype(np.int64)) == 0 # NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES from Florence.Tensor import shuffle_along_axis row_mapper = shuffle_along_axis(faces[:,:3],self.faces[:,:3],consider_sort=True) # UPDATE THE MAP boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:] self.boundary_face_to_element = boundary_face_to_element return self.boundary_face_to_element def GetElementsFaceNumberingTet(self): """Finds which faces belong to which elements and which faces of the elements they are e.g. 0, 1, 2 or 3. output: face_elements: [2D array] nfaces x 2 array containing elements which have face on the boundary with their flags Note that this method also sets the self.face_to_element to face_elements, so the return value is not strictly necessary """ if isinstance(self.face_to_element,np.ndarray): if self.face_to_element.shape[0] > 1: return self.face_to_element assert self.elements is not None # GET ALL FACES FROM ELEMENT CONNECTIVITY if self.all_faces is None: self.GetFacesTet() all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0).astype(np.int64) _,idx = unique2d(all_faces,consider_sort=True,order=False, return_index=True) face_elements = np.zeros((self.all_faces.shape[0],2),dtype=np.int64) face_elements[:,0] = idx % self.elements.shape[0] face_elements[:,1] = idx // self.elements.shape[0] self.face_to_element = face_elements return self.face_to_element def ArrangeFacesTet(self): """Arranges all the faces of tetrahedral elements with triangular type node ordering """ if self.all_faces is None: self.all_faces = self.GetFacesTet() if self.face_to_element is None: self.GetElementsFaceNumberingTet() # DETERMINE DEGREE p = self.InferPolynomialDegree() node_arranger = NodeArrangementTet(p-1)[0] # for i in range(self.face_to_element.shape[0]): # self.all_faces = self.elements[self.face_to_element[i,0],node_arranger[self.face_to_element[i,1],:]] self.all_faces = self.elements[self.face_to_element[:,0][:,None],node_arranger[self.face_to_element[:,1],:]] def GetElementsEdgeNumberingQuad(self): """Finds edges of elements and their flags saying which edge they are [0,1,2,3]. At most a quad can have all its four edges on the boundary. output: edge_elements: [1D array] array containing elements which have edges on the boundary Note that this method sets the self.edge_to_element to edge_elements, so the return value is not strictly necessary """ if isinstance(self.edge_to_element,np.ndarray): if self.edge_to_element.shape[0] > 1: return self.edge_to_element # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY if self.all_edges is None: self.GetEdgesQuad() p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.int64) all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True) edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64) # edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64) edge_elements[:,0] = idx % self.elements.shape[0] edge_elements[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_elements return self.edge_to_element def GetElementsWithBoundaryEdgesQuad(self): """Finds elements which have edges on the boundary. At most a quad can have all its four edges on the boundary. output: boundary_edge_to_element: [2D array] array containing elements which have face on the boundary [cloumn 0] and a flag stating which edges they are [column 1] """ if isinstance(self.boundary_edge_to_element,np.ndarray): if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1: return self.boundary_edge_to_element # DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.edges is not None p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(self.edges.dtype) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.boundary_edge_to_element = boundary_edge_to_element return self.boundary_edge_to_element def GetElementsWithBoundaryFacesHex(self): """Finds elements which have faces on the boundary. At most a hexahedral can have all its 8 faces on the boundary. output: boundary_face_to_element: [2D array] array containing elements which have face on the boundary [column 0] and a flag stating which faces they are [column 1] """ # DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.faces is not None if self.boundary_face_to_element is not None: return self.boundary_face_to_element # THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK # IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME # EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY # HENCE THIS MAPPING BECOMES NECESSARY C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementHex(C)[0] all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(self.faces.dtype) all_faces_in_faces = in2d(all_faces,self.faces[:,:4],consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER # NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND # FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d. # WE NEED TO FIND THIS MAPPING NOW # WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS faces = self.elements[boundary_face_to_element[:,0][:,None], node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype) # CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED assert np.sum(faces[:,:4].astype(np.int64) - self.faces[:,:4].astype(np.int64)) == 0 # NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES from Florence.Tensor import shuffle_along_axis row_mapper = shuffle_along_axis(faces[:,:4],self.faces[:,:4],consider_sort=True) # UPDATE THE MAP boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:] self.boundary_face_to_element = boundary_face_to_element return self.boundary_face_to_element def GetElementsFaceNumberingHex(self): """Finds which faces belong to which elements and which faces of the elements they are e.g. 0, 1, 2 or 3. output: face_elements: [2D array] nfaces x 2 array containing elements which have face on the boundary with their flags Note that this method also sets the self.face_to_element to face_elements, so the return value is not strictly necessary """ if isinstance(self.face_to_element,np.ndarray): if self.face_to_element.shape[0] > 1: return self.face_to_element assert self.elements is not None # GET ALL FACES FROM ELEMENT CONNECTIVITY if self.all_faces is None: self.GetFacesHex() C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementHex(C)[0] all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(self.all_faces.dtype) _,idx = unique2d(all_faces,consider_sort=True,order=False, return_index=True) face_elements = np.zeros((self.all_faces.shape[0],2),dtype=np.int64) face_elements[:,0] = idx % self.elements.shape[0] face_elements[:,1] = idx // self.elements.shape[0] self.face_to_element = face_elements return self.face_to_element def ArrangeFacesHex(self): """Arranges all the faces of hexahedral elements with quadrilateral type node ordering """ if self.all_faces is None: self.all_faces = self.GetFacesHex() if self.face_to_element is None: self.GetElementsFaceNumberingHex() # DETERMINE DEGREE p = self.InferPolynomialDegree() node_arranger = NodeArrangementHex(p-1)[0] self.all_faces = self.elements[self.face_to_element[:,0][:,None],node_arranger[self.face_to_element[:,1],:]] def GetNodeCommonality(self): """Finds the elements sharing a node. The return values are linked lists [list of numpy of arrays]. Each numpy array within the list gives the elements that contain a given node. As a result the size of the linked list is nnode outputs: els: [list of numpy arrays] element numbers containing nodes pos: [list of numpy arrays] elemental positions of the nodes res_flat: [list of numpy arrays] position of nodes in the flattened element connectivity. """ self.__do_essential_memebers_exist__() elements = self.elements.ravel() idx_sort = np.argsort(elements) sorted_elements = elements[idx_sort] vals, idx_start = np.unique(sorted_elements, return_index=True) # Sets of indices flat_pos =
np.split(idx_sort, idx_start[1:])
numpy.split
""" @author: <NAME> """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import scipy.io from scipy.interpolate import griddata from mpl_toolkits.mplot3d import Axes3D from pyDOE import lhs import time from plotting import newfig, savefig import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable ############################################################################### ############################## Helper Functions ############################### ############################################################################### def initialize_NN(layers): weights = [] biases = [] num_layers = len(layers) for l in range(0,num_layers-1): W = xavier_init(size=[layers[l], layers[l+1]]) b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32) weights.append(W) biases.append(b) return weights, biases def xavier_init(size): in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2/(in_dim + out_dim)) return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev, dtype=tf.float32), dtype=tf.float32) def neural_net(X, weights, biases): num_layers = len(weights) + 1 H = X for l in range(0,num_layers-2): W = weights[l] b = biases[l] H = tf.sin(tf.add(tf.matmul(H, W), b)) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) return Y ############################################################################### ################################ DeepHPM Class ################################ ############################################################################### class DeepHPM: def __init__(self, t, x, u, x0, u0, tb, X_f, u_layers, pde_layers, layers, lb_idn, ub_idn, lb_sol, ub_sol): # Domain Boundary self.lb_idn = lb_idn self.ub_idn = ub_idn self.lb_sol = lb_sol self.ub_sol = ub_sol # Init for Identification self.idn_init(t, x, u, u_layers, pde_layers) # Init for Solution self.sol_init(x0, u0, tb, X_f, layers) # tf session self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) init = tf.global_variables_initializer() self.sess.run(init) ########################################################################### ############################# Identifier ################################## ########################################################################### def idn_init(self, t, x, u, u_layers, pde_layers): # Training Data for Identification self.t = t self.x = x self.u = u # Layers for Identification self.u_layers = u_layers self.pde_layers = pde_layers # Initialize NNs for Identification self.u_weights, self.u_biases = initialize_NN(u_layers) self.pde_weights, self.pde_biases = initialize_NN(pde_layers) # tf placeholders for Identification self.t_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.u_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.terms_tf = tf.placeholder(tf.float32, shape=[None, pde_layers[0]]) # tf graphs for Identification self.idn_u_pred = self.idn_net_u(self.t_tf, self.x_tf) self.pde_pred = self.net_pde(self.terms_tf) self.idn_f_pred = self.idn_net_f(self.t_tf, self.x_tf) # loss for Identification self.idn_u_loss = tf.reduce_sum(tf.square(self.idn_u_pred - self.u_tf)) self.idn_f_loss = tf.reduce_sum(tf.square(self.idn_f_pred)) # Optimizer for Identification self.idn_u_optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.idn_u_loss, var_list = self.u_weights + self.u_biases, method = 'L-BFGS-B', options = {'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol': 1.0*np.finfo(float).eps}) self.idn_f_optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.idn_f_loss, var_list = self.pde_weights + self.pde_biases, method = 'L-BFGS-B', options = {'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol': 1.0*np.finfo(float).eps}) self.idn_u_optimizer_Adam = tf.train.AdamOptimizer() self.idn_u_train_op_Adam = self.idn_u_optimizer_Adam.minimize(self.idn_u_loss, var_list = self.u_weights + self.u_biases) self.idn_f_optimizer_Adam = tf.train.AdamOptimizer() self.idn_f_train_op_Adam = self.idn_f_optimizer_Adam.minimize(self.idn_f_loss, var_list = self.pde_weights + self.pde_biases) def idn_net_u(self, t, x): X = tf.concat([t,x],1) H = 2.0*(X - self.lb_idn)/(self.ub_idn - self.lb_idn) - 1.0 u = neural_net(H, self.u_weights, self.u_biases) return u def net_pde(self, terms): pde = neural_net(terms, self.pde_weights, self.pde_biases) return pde def idn_net_f(self, t, x): u = self.idn_net_u(t, x) u_t = tf.gradients(u, t)[0] u_x = tf.gradients(u, x)[0] u_xx = tf.gradients(u_x, x)[0] terms = tf.concat([u,u_x,u_xx],1) f = u_t - self.net_pde(terms) return f def idn_u_train(self, N_iter): tf_dict = {self.t_tf: self.t, self.x_tf: self.x, self.u_tf: self.u} start_time = time.time() for it in range(N_iter): self.sess.run(self.idn_u_train_op_Adam, tf_dict) # Print if it % 10 == 0: elapsed = time.time() - start_time loss_value = self.sess.run(self.idn_u_loss, tf_dict) print('It: %d, Loss: %.3e, Time: %.2f' % (it, loss_value, elapsed)) start_time = time.time() self.idn_u_optimizer.minimize(self.sess, feed_dict = tf_dict, fetches = [self.idn_u_loss], loss_callback = self.callback) def idn_f_train(self, N_iter): tf_dict = {self.t_tf: self.t, self.x_tf: self.x} start_time = time.time() for it in range(N_iter): self.sess.run(self.idn_f_train_op_Adam, tf_dict) # Print if it % 10 == 0: elapsed = time.time() - start_time loss_value = self.sess.run(self.idn_f_loss, tf_dict) print('It: %d, Loss: %.3e, Time: %.2f' % (it, loss_value, elapsed)) start_time = time.time() self.idn_f_optimizer.minimize(self.sess, feed_dict = tf_dict, fetches = [self.idn_f_loss], loss_callback = self.callback) def idn_predict(self, t_star, x_star): tf_dict = {self.t_tf: t_star, self.x_tf: x_star} u_star = self.sess.run(self.idn_u_pred, tf_dict) f_star = self.sess.run(self.idn_f_pred, tf_dict) return u_star, f_star def predict_pde(self, terms_star): tf_dict = {self.terms_tf: terms_star} pde_star = self.sess.run(self.pde_pred, tf_dict) return pde_star ########################################################################### ############################### Solver #################################### ########################################################################### def sol_init(self, x0, u0, tb, X_f, layers): # Training Data for Solution X0 = np.concatenate((0*x0, x0), 1) # (0, x0) X_lb = np.concatenate((tb, 0*tb + self.lb_sol[1]), 1) # (tb, lb[1]) X_ub = np.concatenate((tb, 0*tb + self.ub_sol[1]), 1) # (tb, ub[1]) self.X_f = X_f # Collocation Points self.t0 = X0[:,0:1] # Initial Data (time) self.x0 = X0[:,1:2] # Initial Data (space) self.t_lb = X_lb[:,0:1] # Boundary Data (time) -- lower boundary self.x_lb = X_lb[:,1:2] # Boundary Data (space) -- lower boundary self.t_ub = X_ub[:,0:1] # Boundary Data (time) -- upper boundary self.x_ub = X_ub[:,1:2] # Boundary Data (space) -- upper boundary self.t_f = X_f[:,0:1] # Collocation Points (time) self.x_f = X_f[:,1:2] # Collocation Points (space) self.u0 = u0 # Boundary Data # Layers for Solution self.layers = layers # Initialize NNs for Solution self.weights, self.biases = initialize_NN(layers) # tf placeholders for Solution self.t0_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x0_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.u0_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.t_lb_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x_lb_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.t_ub_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x_ub_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.t_f_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x_f_tf = tf.placeholder(tf.float32, shape=[None, 1]) # tf graphs for Solution self.u0_pred, _ = self.sol_net_u(self.t0_tf, self.x0_tf) self.u_lb_pred, self.u_x_lb_pred = self.sol_net_u(self.t_lb_tf, self.x_lb_tf) self.u_ub_pred, self.u_x_ub_pred = self.sol_net_u(self.t_ub_tf, self.x_ub_tf) self.sol_f_pred = self.sol_net_f(self.t_f_tf, self.x_f_tf) # loss for Solution self.sol_loss = tf.reduce_sum(tf.square(self.u0_tf - self.u0_pred)) + \ tf.reduce_sum(tf.square(self.u_lb_pred - self.u_ub_pred)) + \ tf.reduce_sum(tf.square(self.u_x_lb_pred - self.u_x_ub_pred)) + \ tf.reduce_sum(tf.square(self.sol_f_pred)) # Optimizer for Solution self.sol_optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.sol_loss, var_list = self.weights + self.biases, method = 'L-BFGS-B', options = {'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol': 1.0*np.finfo(float).eps}) self.sol_optimizer_Adam = tf.train.AdamOptimizer() self.sol_train_op_Adam = self.sol_optimizer_Adam.minimize(self.sol_loss, var_list = self.weights + self.biases) def sol_net_u(self, t, x): X = tf.concat([t,x],1) H = 2.0*(X - self.lb_sol)/(self.ub_sol - self.lb_sol) - 1.0 u = neural_net(H, self.weights, self.biases) u_x = tf.gradients(u, x)[0] return u, u_x def sol_net_f(self, t, x): u, _ = self.sol_net_u(t,x) u_t = tf.gradients(u, t)[0] u_x = tf.gradients(u, x)[0] u_xx = tf.gradients(u_x, x)[0] terms = tf.concat([u,u_x,u_xx],1) f = u_t - self.net_pde(terms) return f def callback(self, loss): print('Loss: %e' % (loss)) def sol_train(self, N_iter): tf_dict = {self.t0_tf: self.t0, self.x0_tf: self.x0, self.u0_tf: self.u0, self.t_lb_tf: self.t_lb, self.x_lb_tf: self.x_lb, self.t_ub_tf: self.t_ub, self.x_ub_tf: self.x_ub, self.t_f_tf: self.t_f, self.x_f_tf: self.x_f} start_time = time.time() for it in range(N_iter): self.sess.run(self.sol_train_op_Adam, tf_dict) # Print if it % 10 == 0: elapsed = time.time() - start_time loss_value = self.sess.run(self.sol_loss, tf_dict) print('It: %d, Loss: %.3e, Time: %.2f' % (it, loss_value, elapsed)) start_time = time.time() self.sol_optimizer.minimize(self.sess, feed_dict = tf_dict, fetches = [self.sol_loss], loss_callback = self.callback) def sol_predict(self, t_star, x_star): u_star = self.sess.run(self.u0_pred, {self.t0_tf: t_star, self.x0_tf: x_star}) f_star = self.sess.run(self.sol_f_pred, {self.t_f_tf: t_star, self.x_f_tf: x_star}) return u_star, f_star ############################################################################### ################################ Main Function ################################ ############################################################################### if __name__ == "__main__": # Doman bounds lb_idn = np.array([0.0, -8.0]) ub_idn = np.array([10.0, 8.0]) lb_sol = np.array([0.0, -8.0]) ub_sol = np.array([10.0, 8.0]) ### Load Data ### data_idn = scipy.io.loadmat('../Data/burgers_sine.mat') t_idn = data_idn['t'].flatten()[:,None] x_idn = data_idn['x'].flatten()[:,None] Exact_idn = np.real(data_idn['usol']) T_idn, X_idn = np.meshgrid(t_idn,x_idn) keep = 2/3 index = int(keep*t_idn.shape[0]) T_idn = T_idn[:,0:index] X_idn = X_idn[:,0:index] Exact_idn = Exact_idn[:,0:index] t_idn_star = T_idn.flatten()[:,None] x_idn_star = X_idn.flatten()[:,None] X_idn_star = np.hstack((t_idn_star, x_idn_star)) u_idn_star = Exact_idn.flatten()[:,None] # data_sol = scipy.io.loadmat('../Data/burgers_sine.mat') t_sol = data_sol['t'].flatten()[:,None] x_sol = data_sol['x'].flatten()[:,None] Exact_sol = np.real(data_sol['usol']) T_sol, X_sol = np.meshgrid(t_sol,x_sol) t_sol_star = T_sol.flatten()[:,None] x_sol_star = X_sol.flatten()[:,None] X_sol_star = np.hstack((t_sol_star, x_sol_star)) u_sol_star = Exact_sol.flatten()[:,None] ### Training Data ### # For identification N_train = 10000 idx =
np.random.choice(t_idn_star.shape[0], N_train, replace=False)
numpy.random.choice
#!/usr/bin/env python # Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import sys import os sys.path.append(os.path.dirname(os.path.realpath(__file__))) import numpy as np from default_configs import DefaultConfigs class configs(DefaultConfigs): def __init__(self, server_env=None): ######################### # Preprocessing # ######################### self.root_dir = '/path/to/raw/data' self.raw_data_dir = '{}/data_nrrd'.format(self.root_dir) self.pp_dir = '{}/pp_norm'.format(self.root_dir) self.target_spacing = (0.7, 0.7, 1.25) ######################### # I/O # ######################### # one out of [2, 3]. dimension the model operates in. self.dim = 3 # one out of ['mrcnn', 'retina_net', 'retina_unet', 'detection_unet', 'ufrcnn', 'detection_unet']. self.model = 'mrcnn' DefaultConfigs.__init__(self, self.model, server_env, self.dim) # int [0 < dataset_size]. select n patients from dataset for prototyping. If None, all data is used. self.select_prototype_subset = 100 # path to preprocessed data. self.pp_name = 'lidc_mdt' self.input_df_name = 'info_df.pickle' self.pp_data_path = '/media/gregor/HDD2TB/data/lidc/{}'.format(self.pp_name) self.pp_test_data_path = self.pp_data_path #change if test_data in separate folder. # settings for deployment in cloud. if server_env: # path to preprocessed data. self.pp_name = 'lidc_mdt_npz' self.crop_name = 'pp_fg_slices_packed' self.pp_data_path = '/datasets/datasets_ramien/lidc_exp/data/{}'.format(self.pp_name) self.pp_test_data_path = self.pp_data_path self.select_prototype_subset = None ######################### # Data Loader # ######################### # select modalities from preprocessed data self.channels = [0] self.n_channels = len(self.channels) # patch_size to be used for training. pre_crop_size is the patch_size before data augmentation. self.pre_crop_size_2D = [300, 300] self.patch_size_2D = [288, 288] self.pre_crop_size_3D = [156, 156, 96] self.patch_size_3D = [128, 128, 64] self.patch_size = self.patch_size_2D if self.dim == 2 else self.patch_size_3D self.pre_crop_size = self.pre_crop_size_2D if self.dim == 2 else self.pre_crop_size_3D # ratio of free sampled batch elements before class balancing is triggered # (>0 to include "empty"/background patches.) self.batch_sample_slack = 0.2 # set 2D network to operate in 3D images. self.merge_2D_to_3D_preds = True # feed +/- n neighbouring slices into channel dimension. set to None for no context. self.n_3D_context = None if self.n_3D_context is not None and self.dim == 2: self.n_channels *= (self.n_3D_context * 2 + 1) ######################### # Architecture # ######################### self.start_filts = 48 if self.dim == 2 else 18 self.end_filts = self.start_filts * 4 if self.dim == 2 else self.start_filts * 2 self.res_architecture = 'resnet50' # 'resnet101' , 'resnet50' self.norm = None # one of None, 'instance_norm', 'batch_norm' self.weight_decay = 0 # one of 'xavier_uniform', 'xavier_normal', or 'kaiming_normal', None (=default = 'kaiming_uniform') self.weight_init = None ######################### # Schedule / Selection # ######################### self.num_epochs = 100 self.num_train_batches = 200 if self.dim == 2 else 200 self.batch_size = 20 if self.dim == 2 else 8 self.do_validation = True # decide whether to validate on entire patient volumes (like testing) or sampled patches (like training) # the former is morge accurate, while the latter is faster (depending on volume size) self.val_mode = 'val_sampling' # one of 'val_sampling' , 'val_patient' if self.val_mode == 'val_patient': self.max_val_patients = 50 # if 'None' iterates over entire val_set once. if self.val_mode == 'val_sampling': self.num_val_batches = 50 ######################### # Testing / Plotting # ######################### # set the top-n-epochs to be saved for temporal averaging in testing. self.save_n_models = 5 self.test_n_epochs = 5 # set a minimum epoch number for saving in case of instabilities in the first phase of training. self.min_save_thresh = 0 if self.dim == 2 else 0 self.report_score_level = ['patient', 'rois'] # choose list from 'patient', 'rois' self.class_dict = {1: 'benign', 2: 'malignant'} # 0 is background. self.patient_class_of_interest = 2 # patient metrics are only plotted for one class. self.ap_match_ious = [0.1] # list of ious to be evaluated for ap-scoring. self.model_selection_criteria = ['malignant_ap', 'benign_ap'] # criteria to average over for saving epochs. self.min_det_thresh = 0.1 # minimum confidence value to select predictions for evaluation. # threshold for clustering predictions together (wcs = weighted cluster scoring). # needs to be >= the expected overlap of predictions coming from one model (typically NMS threshold). # if too high, preds of the same object are separate clusters. self.wcs_iou = 1e-5 self.plot_prediction_histograms = True self.plot_stat_curves = False ######################### # Data Augmentation # ######################### self.da_kwargs={ 'do_elastic_deform': True, 'alpha':(0., 1500.), 'sigma':(30., 50.), 'do_rotation':True, 'angle_x': (0., 2 * np.pi), 'angle_y': (0., 0), 'angle_z': (0., 0), 'do_scale': True, 'scale':(0.8, 1.1), 'random_crop':False, 'rand_crop_dist': (self.patch_size[0] / 2. - 3, self.patch_size[1] / 2. - 3), 'border_mode_data': 'constant', 'border_cval_data': 0, 'order_data': 1 } if self.dim == 3: self.da_kwargs['do_elastic_deform'] = False self.da_kwargs['angle_x'] = (0, 0.0) self.da_kwargs['angle_y'] = (0, 0.0) #must be 0!! self.da_kwargs['angle_z'] = (0., 2 * np.pi) ######################### # Add model specifics # ######################### {'detection_unet': self.add_det_unet_configs, 'mrcnn': self.add_mrcnn_configs, 'ufrcnn': self.add_mrcnn_configs, 'retina_net': self.add_mrcnn_configs, 'retina_unet': self.add_mrcnn_configs, }[self.model]() def add_det_unet_configs(self): self.learning_rate = [1e-4] * self.num_epochs # aggregation from pixel perdiction to object scores (connected component). One of ['max', 'median'] self.aggregation_operation = 'max' # max number of roi candidates to identify per batch element and class. self.n_roi_candidates = 10 if self.dim == 2 else 30 # loss mode: either weighted cross entropy ('wce'), batch-wise dice loss ('dice), or the sum of both ('dice_wce') self.seg_loss_mode = 'dice_wce' # if <1, false positive predictions in foreground are penalized less. self.fp_dice_weight = 1 if self.dim == 2 else 1 self.wce_weights = [1, 1, 1] self.detection_min_confidence = self.min_det_thresh # if 'True', loss distinguishes all classes, else only foreground vs. background (class agnostic). self.class_specific_seg_flag = True self.num_seg_classes = 3 if self.class_specific_seg_flag else 2 self.head_classes = self.num_seg_classes def add_mrcnn_configs(self): # learning rate is a list with one entry per epoch. self.learning_rate = [1e-4] * self.num_epochs # disable the re-sampling of mask proposals to original size for speed-up. # since evaluation is detection-driven (box-matching) and not instance segmentation-driven (iou-matching), # mask-outputs are optional. self.return_masks_in_val = True self.return_masks_in_test = False # set number of proposal boxes to plot after each epoch. self.n_plot_rpn_props = 5 if self.dim == 2 else 30 # number of classes for head networks: n_foreground_classes + 1 (background) self.head_classes = 3 # seg_classes hier refers to the first stage classifier (RPN) self.num_seg_classes = 2 # foreground vs. background # feature map strides per pyramid level are inferred from architecture. self.backbone_strides = {'xy': [4, 8, 16, 32], 'z': [1, 2, 4, 8]} # anchor scales are chosen according to expected object sizes in data set. Default uses only one anchor scale # per pyramid level. (outer list are pyramid levels (corresponding to BACKBONE_STRIDES), inner list are scales per level.) self.rpn_anchor_scales = {'xy': [[8], [16], [32], [64]], 'z': [[2], [4], [8], [16]]} # choose which pyramid levels to extract features from: P2: 0, P3: 1, P4: 2, P5: 3. self.pyramid_levels = [0, 1, 2, 3] # number of feature maps in rpn. typically lowered in 3D to save gpu-memory. self.n_rpn_features = 512 if self.dim == 2 else 128 # anchor ratios and strides per position in feature maps. self.rpn_anchor_ratios = [0.5, 1, 2] self.rpn_anchor_stride = 1 # Threshold for first stage (RPN) non-maximum suppression (NMS): LOWER == HARDER SELECTION self.rpn_nms_threshold = 0.7 if self.dim == 2 else 0.7 # loss sampling settings. self.rpn_train_anchors_per_image = 6 #per batch element self.train_rois_per_image = 6 #per batch element self.roi_positive_ratio = 0.5 self.anchor_matching_iou = 0.7 # factor of top-k candidates to draw from per negative sample (stochastic-hard-example-mining). # poolsize to draw top-k candidates from will be shem_poolsize * n_negative_samples. self.shem_poolsize = 10 self.pool_size = (7, 7) if self.dim == 2 else (7, 7, 3) self.mask_pool_size = (14, 14) if self.dim == 2 else (14, 14, 5) self.mask_shape = (28, 28) if self.dim == 2 else (28, 28, 10) self.rpn_bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2]) self.bbox_std_dev =
np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2])
numpy.array
# coding = utf-8 import numpy as np from feature_extractor import log_power_spectrum_extractor from matplotlib import pylab import matplotlib.pyplot as plt from scikits.talkbox import lpc from scipy.signal import lfilter, lfilter_zi, lfiltic from scipy.io import wavfile def freq2bark(f): return 7.*np.log(f/650.+np.sqrt(np.power(1.+(f/650.), 2.))) def bark2freq(b): return 650.*np.sinh(b/7.) def get_fft_bark_mat(sr, fft_len, barks, min_frq=20, max_frq=None): if max_frq is None: max_frq = sr // 2 fft_frqs = np.arange(0, fft_len//2+1) / (1.*fft_len) * sr min_bark = freq2bark(min_frq) max_bark = freq2bark(max_frq) bark_bins = bark2freq(min_bark +
np.arange(0, barks+2)
numpy.arange
"""Makes flattened views of volumetric data on the cortical surface. """ from six import string_types from functools import reduce import os import glob import numpy as np import string from .. import utils from .. import dataset from ..database import db from ..options import config def make_flatmap_image(braindata, height=1024, recache=False, **kwargs): """Generate flatmap image from volumetric brain data This Parameters ---------- braindata : one of: {cortex.Volume, cortex.Vertex, cortex.Dataview) Object containing containing data to be plotted, subject (surface identifier), and transform. height : scalar Height of image. None defaults to height of images already present in figure. recache : boolean Whether or not to recache intermediate files. Takes longer to plot this way, potentially resolves some errors. Useful if you've made changes to the alignment. kwargs : idk idk Returns ------- image : extents : """ mask, extents = get_flatmask(braindata.subject, height=height, recache=recache) if not hasattr(braindata, "xfmname"): pixmap = get_flatcache(braindata.subject, None, height=height, recache=recache, **kwargs) if isinstance(braindata, dataset.Vertex2D): data = braindata.raw.vertices else: data = braindata.vertices else: pixmap = get_flatcache(braindata.subject, braindata.xfmname, height=height, recache=recache, **kwargs) if isinstance(braindata, dataset.Volume2D): data = braindata.raw.volume else: data = braindata.volume if data.shape[0] > 1: raise ValueError("Input data was not the correct dimensionality - please provide 3D Volume or 2D Vertex data") if data.dtype != np.uint8: # Convert data to float to avoid image artifacts data = data.astype(np.float) if data.dtype == np.uint8: img = np.zeros(mask.shape+(4,), dtype=np.uint8) img[mask] = pixmap * data.reshape(-1, 4) return img.transpose(1,0,2)[::-1], extents else: badmask = np.array(pixmap.sum(1) > 0).ravel() img = (np.nan*np.ones(mask.shape)).astype(data.dtype) mimg = (np.nan*np.ones(badmask.shape)).astype(data.dtype) mimg[badmask] = (pixmap*data.ravel())[badmask].astype(mimg.dtype) img[mask] = mimg return img.T[::-1], extents def get_flatmask(subject, height=1024, recache=False): """ Parameters ---------- subject : str Name of subject in pycortex store height : int Height in pixels to generate the image recache : bool Recache the intermediate files? Can resolve some issues but is slower. """ cachedir = db.get_cache(subject) cachefile = os.path.join(cachedir, "flatmask_{h}.npz".format(h=height)) if not os.path.exists(cachefile) or recache: mask, extents = _make_flatmask(subject, height=height) np.savez(cachefile, mask=mask, extents=extents) else: npz = np.load(cachefile) mask, extents = npz['mask'], npz['extents'] npz.close() return mask, extents def get_flatcache(subject, xfmname, pixelwise=True, thick=32, sampler='nearest', recache=False, height=1024, depth=0.5): """ Parameters ---------- subject : str Subject name in pycortex db xfmname : str Name of transform for subject pixelwise : bool thick : int sampler : recache : bool Recache intermediate files? Doing so is slower but can resolve some errors. height : int Height in pixels of image to generated depth : float Returns ------- """ cachedir = db.get_cache(subject) cachefile = os.path.join(cachedir, "flatverts_{height}.npz").format(height=height) if pixelwise and xfmname is not None: cachefile = os.path.join(cachedir, "flatpixel_{xfmname}_{height}_{sampler}_{extra}.npz") extra = "l%d"%thick if thick > 1 else "d%g"%depth cachefile = cachefile.format(height=height, xfmname=xfmname, sampler=sampler, extra=extra) if not os.path.exists(cachefile) or recache: print("Generating a flatmap cache") if pixelwise and xfmname is not None: pixmap = _make_pixel_cache(subject, xfmname, height=height, sampler=sampler, thick=thick, depth=depth) else: pixmap = _make_vertex_cache(subject, height=height) np.savez(cachefile, data=pixmap.data, indices=pixmap.indices, indptr=pixmap.indptr, shape=pixmap.shape) else: from scipy import sparse npz = np.load(cachefile) pixmap = sparse.csr_matrix((npz['data'], npz['indices'], npz['indptr']), shape=npz['shape']) npz.close() if not pixelwise and xfmname is not None: from scipy import sparse mapper = utils.get_mapper(subject, xfmname, sampler) pixmap = pixmap * sparse.vstack(mapper.masks) return pixmap def _return_pixel_pairs(vert_pair_list, x_dict, y_dict): """Janky and probably unnecessary""" pix_list = [] vert_pairs_valid = [] for (vert1, vert2) in vert_pair_list: if vert1 in x_dict and vert2 in x_dict: pix1 = np.array((x_dict[vert1], y_dict[vert1])) pix2 = np.array((x_dict[vert2], y_dict[vert2])) pix_list.append(np.array([pix1, pix2])) vert_pairs_valid.append((vert1, vert2)) else: #These are vertex pairs not represented in the flatmap. I have found them to belong to the middle brain are that is deleted while creating the flat map. pass return np.array(pix_list), np.array(vert_pairs_valid) ### --- Hidden helper functions --- ### def _color2hex(color): """Convert arbitrary color input to hex string""" from matplotlib import colors cc = colors.ColorConverter() rgba = cc.to_rgba(color) hexcol = colors.rgb2hex(rgba) return hexcol def _convert_svg_kwargs(kwargs): """Convert matplotlib-like plotting property names/values to svg object property names/values""" svg_style_key_mapping = dict( linewidth='stroke-width', lw='stroke-width', linecolor='stroke', lc='stroke', #labelcolor='', # FIX ME #labelsize='', # FIX ME linealpha='stroke-opacity', roifill='fill', fillcolor='fill', fillalpha='fill-opacity', dashes='stroke-dasharray' #dash_capstyle # ADD ME? #dash_joinstyle # ADD ME? ) svg_style_value_mapping = dict( linewidth=lambda x: x, lw=lambda x: x, linecolor=lambda x: _color2hex(x), lc=lambda x: _color2hex(x), labelcolor=lambda x: _color2hex(x), labelsize=lambda x: x, linealpha=lambda x: x, roifill=lambda x: _color2hex(x), fillcolor=lambda x: _color2hex(x), fillalpha=lambda x: x, dashes=lambda x: '{}, {}'.format(*x), #dash_capstyle # ADD ME? #dash_joinstyle # ADD ME? ) out = dict((svg_style_key_mapping[k], svg_style_value_mapping[k](v)) for k,v in kwargs.items() if v is not None) return out def _parse_defaults(section): defaults = dict(config.items(section)) for k in defaults.keys(): # Convert numbers to floating point numbers if defaults[k][0] in string.digits + '.': if ',' in defaults[k]: defaults[k] = [float(x) for x in defaults[k].split(',')] else: defaults[k] = float(defaults[k]) # Convert 'None' to None if defaults[k] == 'None': defaults[k] = None # Special case formatting if k=='stroke' or k=='fill': defaults[k] = _color2hex(defaults[k]) elif k=='stroke-dasharray' and isinstance(defaults[k], (list,tuple)): defaults[k] = '{}, {}'.format(*defaults[k]) return defaults def _get_fig_and_ax(fig): """Get figure and current ax. Input can be either a figure or an ax.""" import matplotlib.pyplot as plt if isinstance(fig, plt.Axes): ax = fig fig = ax.figure elif isinstance(fig, plt.Figure): ax = fig.gca() else: raise ValueError("fig should be a matplotlib Figure or Axes instance.") return fig, ax def _get_images(fig): """Get all images in a given matplotlib axis""" from matplotlib.image import AxesImage _, ax = _get_fig_and_ax(fig) images = dict((x.get_label(), x) for x in ax.get_children() if isinstance(x, AxesImage)) return images def _get_extents(fig): """Get extents of images current in a given matplotlib figure""" images = _get_images(fig) if 'data' not in images: raise ValueError("You must specify `extents` argument if you have not yet plotted a data flatmap!") extents = images['data'].get_extent() return extents def _get_height(fig): """Get height of images in currently in a given matplotlib figure""" images = _get_images(fig) if 'data_cutout' in images: raise Exception("Can't add plots once cutout has been performed! Do cutouts last!") if 'data' in images: height = images['data'].get_array().shape[0] else: # No images, revert to default height = 1024 return height def _make_hatch_image(hatch_data, height, sampler='nearest', hatch_space=4, recache=False): """Make hatch image Parameters ---------- hatch_data : cortex.Dataview brain data with values ranging from 0-1, specifying where to show hatch marks (data value will be mapped to alpha value of hatch marks) height : scalar height of image to display sampler : string pycortex sampler string, {'nearest', ...} (FILL ME IN ??) hatch_space : scalar space between hatch lines (in pixels) recache : boolean """ dmap, _ = make_flatmap_image(hatch_data, height=height, sampler=sampler, recache=recache) hx, hy = np.meshgrid(range(dmap.shape[1]), range(dmap.shape[0])) hatchpat = (hx+hy)%(2*hatch_space) < 2 # Leila code that breaks: #hatch_size = [0, 4, 4] #hatchpat = (hx + hy + hatch_size[0])%(hatch_size[1] * hatch_space) < hatch_size[2] hatchpat = np.logical_or(hatchpat, hatchpat[:,::-1]).astype(float) hatchim = np.dstack([1-hatchpat]*3 + [hatchpat]) hatchim[:, : ,3] *= np.clip(dmap, 0, 1).astype(float) return hatchim def _make_flatmask(subject, height=1024): from .. import polyutils from PIL import Image, ImageDraw pts, polys = db.get_surf(subject, "flat", merge=True, nudge=True) left, right = polyutils.trace_poly(polyutils.boundary_edges(polys)) aspect = (height / (pts.max(0) - pts.min(0))[1]) lpts = (pts[left] - pts.min(0)) * aspect rpts = (pts[right] - pts.min(0)) * aspect im = Image.new('L', (int(aspect * (pts.max(0) - pts.min(0))[0]), height)) draw = ImageDraw.Draw(im) draw.polygon(lpts[:,:2].ravel().tolist(), fill=255) draw.polygon(rpts[:,:2].ravel().tolist(), fill=255) extents = np.hstack([pts.min(0), pts.max(0)])[[0,3,1,4]] return np.array(im).T > 0, extents def _make_vertex_cache(subject, height=1024): from scipy import sparse from scipy.spatial import cKDTree flat, polys = db.get_surf(subject, "flat", merge=True, nudge=True) valid = np.unique(polys) fmax, fmin = flat.max(0), flat.min(0) size = fmax - fmin aspect = size[0] / size[1] width = int(aspect * height) grid = np.mgrid[fmin[0]:fmax[0]:width*1j, fmin[1]:fmax[1]:height*1j].reshape(2,-1) mask, extents = get_flatmask(subject, height=height) assert mask.shape[0] == width and mask.shape[1] == height kdt = cKDTree(flat[valid,:2]) dist, vert = kdt.query(grid.T[mask.ravel()]) dataij = (np.ones((len(vert),)), np.array([np.arange(len(vert)), valid[vert]])) return sparse.csr_matrix(dataij, shape=(mask.sum(), len(flat))) def _make_pixel_cache(subject, xfmname, height=1024, thick=32, depth=0.5, sampler='nearest'): from scipy import sparse from scipy.spatial import Delaunay flat, polys = db.get_surf(subject, "flat", merge=True, nudge=True) valid = np.unique(polys) fmax, fmin = flat.max(0), flat.min(0) size = fmax - fmin aspect = size[0] / size[1] width = int(aspect * height) grid = np.mgrid[fmin[0]:fmax[0]:width*1j, fmin[1]:fmax[1]:height*1j].reshape(2,-1) mask, extents = get_flatmask(subject, height=height) assert mask.shape[0] == width and mask.shape[1] == height # Get barycentric coordinates dl = Delaunay(flat[valid,:2]) simps = dl.find_simplex(grid.T[mask.ravel()]) missing = simps == -1 tfms = dl.transform[simps] l1, l2 = (tfms[:,:2].transpose(1,2,0) * (grid.T[mask.ravel()] - tfms[:,2]).T).sum(1) l3 = 1 - l1 - l2 ll = np.vstack([l1, l2, l3]) ll[:,missing] = 0 from ..mapper import samplers xfm = db.get_xfm(subject, xfmname, xfmtype='coord') sampclass = getattr(samplers, sampler) # Transform fiducial vertex locations to pixel locations using barycentric xfm try: pia, polys = db.get_surf(subject, "pia", merge=True, nudge=False) wm, polys = db.get_surf(subject, "wm", merge=True, nudge=False) piacoords = xfm((pia[valid][dl.vertices][simps] * ll[np.newaxis].T).sum(1)) wmcoords = xfm((wm[valid][dl.vertices][simps] * ll[np.newaxis].T).sum(1)) valid_p = np.array([np.all((0 <= piacoords), axis=1), piacoords[:,0] < xfm.shape[2], piacoords[:,1] < xfm.shape[1], piacoords[:,2] < xfm.shape[0]]) valid_p = np.all(valid_p, axis=0) valid_w = np.array([np.all((0 <= wmcoords), axis=1), wmcoords[:,0] < xfm.shape[2], wmcoords[:,1] < xfm.shape[1], wmcoords[:,2] < xfm.shape[0]]) valid_w = np.all(valid_w, axis=0) valid = np.logical_and(valid_p, valid_w) vidx =
np.nonzero(valid)
numpy.nonzero
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import defaultdict import math from federatedml.util import LOGGER from federatedml.model_base import Metric, MetricMeta from federatedml.param import EvaluateParam from federatedml.util import consts from federatedml.model_base import ModelBase from federatedml.evaluation.metric_interface import MetricInterface import numpy as np class Evaluation(ModelBase): def __init__(self): super().__init__() self.model_param = EvaluateParam() self.eval_results = defaultdict(list) self.save_single_value_metric_list = [consts.AUC, consts.EXPLAINED_VARIANCE, consts.MEAN_ABSOLUTE_ERROR, consts.MEAN_SQUARED_ERROR, consts.MEAN_SQUARED_LOG_ERROR, consts.MEDIAN_ABSOLUTE_ERROR, consts.R2_SCORE, consts.ROOT_MEAN_SQUARED_ERROR, consts.JACCARD_SIMILARITY_SCORE, consts.ADJUSTED_RAND_SCORE, consts.FOWLKES_MALLOWS_SCORE, consts.DAVIES_BOULDIN_INDEX ] self.special_metric_list = [consts.PSI] self.clustering_intra_metric_list = [consts.DAVIES_BOULDIN_INDEX, consts.DISTANCE_MEASURE] self.metrics = None self.round_num = 6 self.eval_type = None # where to call metric computations self.metric_interface: MetricInterface = None self.psi_train_scores, self.psi_validate_scores = None, None self.psi_train_labels, self.psi_validate_labels = None, None # multi unfold setting self.need_unfold_multi_result = False # summaries self.metric_summaries = {} def _init_model(self, model): self.model_param = model self.eval_type = self.model_param.eval_type self.pos_label = self.model_param.pos_label self.need_unfold_multi_result = self.model_param.unfold_multi_result self.metrics = model.metrics self.metric_interface = MetricInterface(pos_label=self.pos_label, eval_type=self.eval_type, ) def _run_data(self, data_sets=None, stage=None): if not self.need_run: return data = {} for data_key in data_sets: if data_sets[data_key].get("data", None): data[data_key] = data_sets[data_key]["data"] if stage == "fit": self.data_output = self.fit(data) else: LOGGER.warning("Evaluation has not transform, return") def split_data_with_type(self, data: list) -> dict: split_result = defaultdict(list) for value in data: mode = value[1][-1] split_result[mode].append(value) return split_result def _classification_and_regression_extract(self, data): """ extract labels and predict results from data in classification/regression type format """ labels = [] pred_scores = [] pred_labels = [] for d in data: labels.append(d[1][0]) pred_labels.append(d[1][1]) pred_scores.append(d[1][2]) if self.eval_type == consts.BINARY or self.eval_type == consts.REGRESSION: if self.pos_label and self.eval_type == consts.BINARY: labels_arr = np.array(labels) labels_arr[labels_arr == self.pos_label] = 1 labels_arr[labels_arr != self.pos_label] = 0 labels = list(labels_arr) pred_results = pred_scores else: pred_results = pred_labels return labels, pred_results def _clustering_extract(self, data): """ extract data according to data format """ true_cluster_index, predicted_cluster_index = [], [] intra_cluster_data, inter_cluster_dist = {'avg_dist': [], 'max_radius': []}, [] run_intra_metrics = False # run intra metrics or outer metrics ? if len(data[0][1]) == 3: # [int int] -> [true_label, predicted label] -> outer metric # [int np.array] - > [predicted label, distance] -> need no metric computation if not (isinstance(data[0][1][0], int) and isinstance(data[0][1][1], int)): return None, None, run_intra_metrics if len(data[0][1]) == 5: # the input format is for intra metrics run_intra_metrics = True cluster_index_list = [] for d in data: if run_intra_metrics: cluster_index_list.append(d[0]) intra_cluster_data['avg_dist'].append(d[1][1]) intra_cluster_data['max_radius'].append(d[1][2]) if len(inter_cluster_dist) == 0: inter_cluster_dist += d[1][3] else: true_cluster_index.append(d[1][0]) predicted_cluster_index.append(d[1][1]) # if cluster related data exists, sort by cluster index if len(cluster_index_list) != 0: to_sort = list(zip(cluster_index_list, intra_cluster_data['avg_dist'], intra_cluster_data['max_radius'])) sort_rs = sorted(to_sort, key=lambda x: x[0]) # cluster index intra_cluster_data['avg_dist'] = [i[1] for i in sort_rs] intra_cluster_data['max_radius'] = [i[2] for i in sort_rs] return (true_cluster_index, predicted_cluster_index, run_intra_metrics) if not run_intra_metrics else \ (intra_cluster_data, inter_cluster_dist, run_intra_metrics) def _evaluate_classification_and_regression_metrics(self, mode, data): labels, pred_results = self._classification_and_regression_extract(data) eval_result = defaultdict(list) for eval_metric in self.metrics: if eval_metric not in self.special_metric_list: res = getattr(self.metric_interface, eval_metric)(labels, pred_results) if res is not None: try: if math.isinf(res): res = float(-9999999) LOGGER.info("res is inf, set to {}".format(res)) except BaseException: pass eval_result[eval_metric].append(mode) eval_result[eval_metric].append(res) elif eval_metric == consts.PSI: if mode == 'train': self.psi_train_scores = pred_results self.psi_train_labels = labels elif mode == 'validate': self.psi_validate_scores = pred_results self.psi_validate_labels = labels if self.psi_train_scores is not None and self.psi_validate_scores is not None: res = self.metric_interface.psi(self.psi_train_scores, self.psi_validate_scores, self.psi_train_labels, self.psi_validate_labels) eval_result[eval_metric].append(mode) eval_result[eval_metric].append(res) # delete saved scores after computing a psi pair self.psi_train_scores, self.psi_validate_scores = None, None return eval_result def _evaluate_clustering_metrics(self, mode, data): eval_result = defaultdict(list) rs0, rs1, run_outer_metric = self._clustering_extract(data) if rs0 is None and rs1 is None: # skip evaluation computation if get this input format LOGGER.debug('skip computing, this clustering format is not for metric computation') return eval_result if not run_outer_metric: no_label = (np.array(rs0) is None).all() if no_label: LOGGER.debug('no label found in clustering result, skip metric computation') return eval_result for eval_metric in self.metrics: # if input format and required metrics matches ? XNOR if not ((not (eval_metric in self.clustering_intra_metric_list) and not run_outer_metric) + ((eval_metric in self.clustering_intra_metric_list) and run_outer_metric)): LOGGER.warning('input data format does not match current clustering metric: {}'.format(eval_metric)) continue LOGGER.debug('clustering_metrics is {}'.format(eval_metric)) if run_outer_metric: if eval_metric == consts.DISTANCE_MEASURE: res = getattr(self.metric_interface, eval_metric)(rs0['avg_dist'], rs1, rs0['max_radius']) else: res = getattr(self.metric_interface, eval_metric)(rs0['avg_dist'], rs1) else: res = getattr(self.metric_interface, eval_metric)(rs0, rs1) eval_result[eval_metric].append(mode) eval_result[eval_metric].append(res) return eval_result @staticmethod def _check_clustering_input(data): # one evaluation component is only available for one kmeans component in current version input_num = len(data.items()) if input_num > 1: raise ValueError('multiple input detected, ' 'one evaluation component is only available ' 'for one clustering(kmean) component in current version') @staticmethod def _unfold_multi_result(score_list): """ one-vs-rest transformation: multi classification result to several binary classification results """ binary_result = {} for key, multi_result in score_list: true_label = multi_result[0] predicted_label = multi_result[1] multi_score = multi_result[3] data_type = multi_result[-1] # to binary predict result format for multi_label in multi_score: bin_label = 1 if str(multi_label) == str(true_label) else 0 bin_predicted_label = 1 if str(multi_label) == str(predicted_label) else 0 bin_score = multi_score[multi_label] neg_bin_score = 1 - bin_score result_list = [bin_label, bin_predicted_label, bin_score, {1: bin_score, 0: neg_bin_score}, data_type] if multi_label not in binary_result: binary_result[multi_label] = [] binary_result[multi_label].append((key, result_list)) return binary_result def evaluate_metrics(self, mode: str, data: list) -> dict: eval_result = None if self.eval_type != consts.CLUSTERING: eval_result = self._evaluate_classification_and_regression_metrics(mode, data) elif self.eval_type == consts.CLUSTERING: LOGGER.debug('running clustering') eval_result = self._evaluate_clustering_metrics(mode, data) return eval_result def obtain_data(self, data_list): return data_list def check_data(self, data): if len(data) <= 0: return if self.eval_type == consts.CLUSTERING: self._check_clustering_input(data) else: for key, eval_data in data.items(): if eval_data is None: continue sample = eval_data.take(1)[0] # label, predict_type, predict_score, predict_detail, type if not isinstance(sample[1].features, list) or len(sample[1].features) != 5: raise ValueError('length of table header mismatch, expected length is 5, got:{},' 'please check the input of the Evaluation Module, result of ' 'cross validation is not supported.'.format(sample)) def fit(self, data, return_result=False): self.check_data(data) LOGGER.debug(f'running eval, data: {data}') self.eval_results.clear() for (key, eval_data) in data.items(): if eval_data is None: LOGGER.debug('data with {} is None, skip metric computation'.format(key)) continue collected_data = list(eval_data.collect()) if len(collected_data) == 0: continue eval_data_local = [] for k, v in collected_data: eval_data_local.append((k, v.features)) split_data_with_label = self.split_data_with_type(eval_data_local) for mode, data in split_data_with_label.items(): eval_result = self.evaluate_metrics(mode, data) self.eval_results[key].append(eval_result) if self.need_unfold_multi_result and self.eval_type == consts.MULTY: unfold_binary_eval_result = defaultdict(list) # set work mode to binary evaluation self.eval_type = consts.BINARY self.metric_interface.eval_type = consts.ONE_VS_REST back_up_metric = self.metrics self.metrics = [consts.AUC, consts.KS] for mode, data in split_data_with_label.items(): unfold_multi_data = self._unfold_multi_result(eval_data_local) for multi_label, marginal_bin_result in unfold_multi_data.items(): eval_result = self.evaluate_metrics(mode, marginal_bin_result) new_key = key + '_class_{}'.format(multi_label) unfold_binary_eval_result[new_key].append(eval_result) self.callback_ovr_metric_data(unfold_binary_eval_result) # recover work mode self.eval_type = consts.MULTY self.metric_interface.eval_type = consts.MULTY self.metrics = back_up_metric return self.callback_metric_data(self.eval_results, return_single_val_metrics=return_result) def __save_single_value(self, result, metric_name, metric_namespace, eval_name): metric_type = 'EVALUATION_SUMMARY' if eval_name in consts.ALL_CLUSTER_METRICS: metric_type = 'CLUSTERING_EVALUATION_SUMMARY' self.tracker.log_metric_data(metric_namespace, metric_name, [Metric(eval_name, np.round(result, self.round_num))]) self.tracker.set_metric_meta(metric_namespace, metric_name, MetricMeta(name=metric_name, metric_type=metric_type)) def __save_curve_data(self, x_axis_list, y_axis_list, metric_name, metric_namespace): points = [] for i, value in enumerate(x_axis_list): if isinstance(value, float): value = np.round(value, self.round_num) points.append((value, np.round(y_axis_list[i], self.round_num))) points.sort(key=lambda x: x[0]) metric_points = [Metric(point[0], point[1]) for point in points] self.tracker.log_metric_data(metric_namespace, metric_name, metric_points) def __save_curve_meta(self, metric_name, metric_namespace, metric_type, unit_name=None, ordinate_name=None, curve_name=None, best=None, pair_type=None, thresholds=None): extra_metas = {} metric_type = "_".join([metric_type, "EVALUATION"]) key_list = ["unit_name", "ordinate_name", "curve_name", "best", "pair_type", "thresholds"] for key in key_list: value = locals()[key] if value: if key == "thresholds": value = np.round(value, self.round_num).tolist() extra_metas[key] = value self.tracker.set_metric_meta(metric_namespace, metric_name, MetricMeta(name=metric_name, metric_type=metric_type, extra_metas=extra_metas)) @staticmethod def __multi_class_label_padding(metrics, label_indices): # in case some labels don't appear when running homo-multi-class algo label_num = np.max(label_indices) + 1 index_result_mapping = dict(zip(label_indices, metrics)) new_metrics, new_label_indices = [], [] for i in range(label_num): if i in index_result_mapping: new_metrics.append(index_result_mapping[i]) else: new_metrics.append(0.0) new_label_indices.append(i) return new_metrics, new_label_indices @staticmethod def __filt_override_unit_ordinate_coordinate(x_sets, y_sets): max_y_dict = {} for idx, x_value in enumerate(x_sets): if x_value not in max_y_dict: max_y_dict[x_value] = {"max_y": y_sets[idx], "idx": idx} else: max_y = max_y_dict[x_value]["max_y"] if max_y < y_sets[idx]: max_y_dict[x_value] = {"max_y": y_sets[idx], "idx": idx} x = [] y = [] idx_list = [] for key, value in max_y_dict.items(): x.append(key) y.append(value["max_y"]) idx_list.append(value["idx"]) return x, y, idx_list def __process_single_value_data(self, metric, metric_res): single_val_metric = None if metric in self.save_single_value_metric_list or \ (metric == consts.ACCURACY and self.eval_type == consts.MULTY): single_val_metric = metric_res[1] elif metric == consts.KS: best_ks, fpr, tpr, thresholds, cuts = metric_res[1] single_val_metric = best_ks elif metric in [consts.RECALL, consts.PRECISION] and self.eval_type == consts.MULTY: pos_score = metric_res[1][0] single_val_metric = float(np.array(pos_score).mean()) return single_val_metric @staticmethod def __filter_duplicate_roc_data_point(fpr, tpr, thresholds): data_point_set = set() new_fpr, new_tpr, new_threshold = [], [], [] for fpr_, tpr_, thres in zip(fpr, tpr, thresholds): if (fpr_, tpr_, thres) not in data_point_set: data_point_set.add((fpr_, tpr_, thres)) new_fpr.append(fpr_) new_tpr.append(tpr_) new_threshold.append(thres) return new_fpr, new_tpr, new_threshold def __save_roc_curve(self, data_name, metric_name, metric_namespace, metric_res): fpr, tpr, thresholds, _ = metric_res fpr, tpr, thresholds = self.__filter_duplicate_roc_data_point(fpr, tpr, thresholds) # set roc edge value fpr.append(1.0) tpr.append(1.0) thresholds.append(1.0) self.__save_curve_data(fpr, tpr, metric_name, metric_namespace) self.__save_curve_meta(metric_name=metric_name, metric_namespace=metric_namespace, metric_type="ROC", unit_name="fpr", ordinate_name="tpr", curve_name=data_name, thresholds=thresholds) def __save_ks_curve(self, metric, metric_res, metric_name, metric_namespace, data_name): best_ks, fpr, tpr, thresholds, cuts = metric_res[1] for curve_name, curve_data in zip(["fpr", "tpr"], [fpr, tpr]): metric_name_fpr = '_'.join([metric_name, curve_name]) curve_name_fpr = "_".join([data_name, curve_name]) self.__save_curve_data(cuts, curve_data, metric_name_fpr, metric_namespace) self.__save_curve_meta(metric_name=metric_name_fpr, metric_namespace=metric_namespace, metric_type=metric.upper(), unit_name="", curve_name=curve_name_fpr, pair_type=data_name, thresholds=thresholds) def __save_lift_gain_curve(self, metric, metric_res, metric_name, metric_namespace, data_name): score, cuts, thresholds = metric_res[1] score = [float(s[1]) for s in score] cuts = [float(c[1]) for c in cuts] cuts, score, idx_list = self.__filt_override_unit_ordinate_coordinate(cuts, score) thresholds = [thresholds[idx] for idx in idx_list] score.append(1.0) cuts.append(1.0) thresholds.append(0.0) self.__save_curve_data(cuts, score, metric_name, metric_namespace) self.__save_curve_meta(metric_name=metric_name, metric_namespace=metric_namespace, metric_type=metric.upper(), unit_name="", curve_name=data_name, thresholds=thresholds) def __save_accuracy_curve(self, metric, metric_res, metric_name, metric_namespace, data_name): if self.eval_type == consts.MULTY: return score, cuts, thresholds = metric_res[1] self.__save_curve_data(cuts, score, metric_name, metric_namespace) self.__save_curve_meta(metric_name=metric_name, metric_namespace=metric_namespace, metric_type=metric.upper(), unit_name="", curve_name=data_name, thresholds=thresholds) def __save_pr_curve(self, precision_and_recall, data_name): precision_res = precision_and_recall[consts.PRECISION] recall_res = precision_and_recall[consts.RECALL] if precision_res[0] != recall_res[0]: LOGGER.warning( "precision mode:{} is not equal to recall mode:{}".format(precision_res[0], recall_res[0])) return metric_namespace = precision_res[0] metric_name_precision = '_'.join([data_name, "precision"]) metric_name_recall = '_'.join([data_name, "recall"]) pos_precision_score = precision_res[1][0] precision_cuts = precision_res[1][1] if len(precision_res[1]) >= 3: precision_thresholds = precision_res[1][2] else: precision_thresholds = None pos_recall_score = recall_res[1][0] recall_cuts = recall_res[1][1] if len(recall_res[1]) >= 3: recall_thresholds = recall_res[1][2] else: recall_thresholds = None precision_curve_name = data_name recall_curve_name = data_name if self.eval_type == consts.BINARY: pos_precision_score = [score[1] for score in pos_precision_score] pos_recall_score = [score[1] for score in pos_recall_score] pos_recall_score, pos_precision_score, idx_list = self.__filt_override_unit_ordinate_coordinate( pos_recall_score, pos_precision_score) precision_cuts = [precision_cuts[idx] for idx in idx_list] recall_cuts = [recall_cuts[idx] for idx in idx_list] edge_idx = idx_list[-1] if edge_idx == len(precision_thresholds) - 1: idx_list = idx_list[:-1] precision_thresholds = [precision_thresholds[idx] for idx in idx_list] recall_thresholds = [recall_thresholds[idx] for idx in idx_list] elif self.eval_type == consts.MULTY: pos_recall_score, recall_cuts = self.__multi_class_label_padding(pos_recall_score, recall_cuts) pos_precision_score, precision_cuts = self.__multi_class_label_padding(pos_precision_score, precision_cuts) self.__save_curve_data(precision_cuts, pos_precision_score, metric_name_precision, metric_namespace) self.__save_curve_meta(metric_name_precision, metric_namespace, "_".join([consts.PRECISION.upper(), self.eval_type.upper()]), unit_name="", ordinate_name="Precision", curve_name=precision_curve_name, pair_type=data_name, thresholds=precision_thresholds) self.__save_curve_data(recall_cuts, pos_recall_score, metric_name_recall, metric_namespace) self.__save_curve_meta(metric_name_recall, metric_namespace, "_".join([consts.RECALL.upper(), self.eval_type.upper()]), unit_name="", ordinate_name="Recall", curve_name=recall_curve_name, pair_type=data_name, thresholds=recall_thresholds) def __save_confusion_mat_table(self, metric, confusion_mat, thresholds, metric_name, metric_namespace): extra_metas = {'tp': list(confusion_mat['tp']), 'tn': list(confusion_mat['tn']), 'fp': list(confusion_mat['fp']), 'fn': list(confusion_mat['fn']), 'thresholds': list(np.round(thresholds, self.round_num))} self.tracker.set_metric_meta(metric_namespace, metric_name, MetricMeta(name=metric_name, metric_type=metric.upper(), extra_metas=extra_metas)) def __save_f1_score_table(self, metric, f1_scores, thresholds, metric_name, metric_namespace): extra_metas = {'f1_scores': list(np.round(f1_scores, self.round_num)), 'thresholds': list(np.round(thresholds, self.round_num))} self.tracker.set_metric_meta(metric_namespace, metric_name, MetricMeta(name=metric_name, metric_type=metric.upper(), extra_metas=extra_metas)) def __save_psi_table(self, metric, metric_res, metric_name, metric_namespace): psi_scores, total_psi, expected_interval, expected_percentage, actual_interval, actual_percentage, \ train_pos_perc, validate_pos_perc, intervals = metric_res[1] extra_metas = {'psi_scores': list(
np.round(psi_scores, self.round_num)
numpy.round
"""Performance metrics for photo-z prediction.""" import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap import mpl_scatter_density import numpy as np import scipy from scipy.special import softmax from scipy.stats import gaussian_kde params = { "legend.fontsize": "x-large", "axes.labelsize": "x-large", "axes.titlesize": "x-large", "xtick.labelsize": "x-large", "ytick.labelsize": "x-large", "figure.facecolor": "w", "xtick.top": True, "ytick.right": True, "xtick.direction": "in", "ytick.direction": "in", } plt.rcParams.update(params) def bins_to_redshifts(ind_bin, z_min=None, num_class=None, dz=None, return_edges=False): """Convert bin labels into redshift bin edges or central values. Args: ind_bin (array): Index of redshift bins z_min (float): Minimum of the redshift range num_class (int): Number of redshift classes dz (float): Width of the redshift bins return_edges (bool): If True, return the bin edges, otherwise return the bin centers. Default is False. Returns: array: edges or centers or redshift bins (see `return_edges` arg) """ ind_bin = np.atleast_1d(ind_bin) z_max = z_min + num_class * dz edges =
np.arange(z_min, z_max + dz, dz)
numpy.arange
# GPS P code construction # # Copyright 2014 <NAME> import numpy as np chip_rate = 10230000 code_length = chip_rate*86400*7 def x1a_shift(x): return [x[11]^x[10]^x[7]^x[5]] + x[0:11] def x1b_shift(x): return [x[11]^x[10]^x[9]^x[8]^x[7]^x[4]^x[1]^x[0]] + x[0:11] def x2a_shift(x): return [x[11]^x[10]^x[9]^x[8]^x[7]^x[6]^x[4]^x[3]^x[2]^x[0]] + x[0:11] def x2b_shift(x): return [x[11]^x[8]^x[7]^x[3]^x[2]^x[1]] + x[0:11] def make_12bit(reg_shift,reg_initial,n): x = reg_initial s = np.zeros(n) for i in range(n): s[i] = x[11] x = reg_shift(x) return s x1a = make_12bit(x1a_shift,[0,0,0,1,0,0,1,0,0,1,0,0],4092) x1b = make_12bit(x1b_shift,[0,0,1,0,1,0,1,0,1,0,1,0],4093) x2a = make_12bit(x2a_shift,[1,0,1,0,0,1,0,0,1,0,0,1],4092) x2b = make_12bit(x2b_shift,[0,0,1,0,1,0,1,0,1,0,1,0],4093) def x1(prn,start,len): idx = start + np.arange(len) idx = idx % 15345000 p_x1a = x1a[idx % 4092] hold = idx>=(15345000-343) idx[hold] = 4092 p_x1b = x1b[idx % 4093] return np.logical_xor(p_x1a,p_x1b) def x2(prn,start,len): idx = start + np.arange(len) idx = idx % 15345037 idx_a = idx.copy() hold = idx_a>=(15345037-37) idx_a[hold] = 4091 p_x2a = x2a[idx_a % 4092] idx_b = idx.copy() hold = idx_b>=(15345037-37-343) idx_b[hold] = 4092 p_x2b = x2b[idx_b % 4093] return np.logical_xor(p_x2a,p_x2b) def last_x2(prn,start,len): idx = start + np.arange(len) idx_x2 = idx % 15345037 idx_a = idx % 15345000 hold = idx_a>=(15345000-1069) idx_x2_a = idx_x2.copy() idx_x2_a[hold] = 4091 p_x2a = x2a[idx_x2_a % 4092] idx_b = idx % 15345000 hold = idx_b>=(15345000-965) idx_x2_b = idx_x2.copy() idx_x2_b[hold] = 4092 p_x2b = x2b[idx_x2_b % 4093] return np.logical_xor(p_x2a,p_x2b) def p_code(prn,start,len): day = (prn-1)//37 prn = prn - 37*day start += chip_rate*86400*day start = start%code_length p_x1 = x1(prn,start,len) p_x2 = x2(prn,start-prn,len) p_last_x2 = last_x2(prn,(start-prn)%code_length,len) idx_x2 = (start - prn +
np.arange(len)
numpy.arange
import numpy as np from numpy.ma import isin from scipy.ndimage.interpolation import affine_transform import torch import matplotlib.pyplot as plt import os from pathlib import Path import glob from torchvision.transforms import RandomAffine import torchvision import time import random import pickle from PIL import Image # import comet_ml import io class Profile(object): def __enter__(self): self.begin = time.time() return self def __exit__(self,type, value, traceback): self.period = time.time()-self.begin def __call__(self): return self.period class averageArray(): def __init__(self,dim=0,MIN=1000,MAX=-1000): self.dim = dim self.sum = np.zeros(dim) self.avg = np.zeros(dim) self.min = np.full(shape=(self.dim),fill_value=MIN) self.max = np.full(shape=(self.dim),fill_value=MAX) self.count = 0 self.meta = [] self.metaarray = np.empty((1,dim)) def update(self,batch_data,need_abs=True): '''value is a batch of data''' assert isinstance(batch_data,np.ndarray) and batch_data.shape[1]==self.dim self.meta.append(batch_data) self.metaarray = np.concatenate(self.meta,axis=0) batches = batch_data.shape[0] if need_abs: self.sum += np.abs(batch_data).sum(axis=0) else: self.sum += batch_data.sum(axis=0) self.count += batches self.avg = self.sum*1.0/self.count self.val = batch_data self.min = np.where(batch_data.min(axis=0)<self.min,batch_data.min(axis=0),self.min) self.max = np.where(batch_data.max(axis=0)>self.max,batch_data.max(axis=0),self.max) self.std = np.std(self.metaarray,axis=0) class averageScalar(): def __init__(self): self.count = 0 self.sum = 0 self.avg = 0 def update(self,value,bb): self.count += bb self.sum += value*bb self.avg = self.sum/self.count self.val = value def draw_axis_on_img(img, yaw, pitch, roll, tdx=None, tdy=None, size = 50,thickness=(2,2,2)): import cv2 """ Function used to draw y (headpose label) on Input Image x. Implemented by: shamangary https://github.com/shamangary/FSA-Net/blob/master/demo/demo_FSANET.py Modified by: <NAME> """ pitch = pitch * np.pi / 180 yaw = -(yaw * np.pi / 180) roll = roll * np.pi / 180 if tdx != None and tdy != None: tdx = tdx tdy = tdy else: height, width = img.shape[:2] tdx = width / 2 tdy = height / 2 # X-Axis pointing to right. drawn in red x1 = size * (np.cos(yaw) * np.cos(roll)) + tdx y1 = size * (np.cos(pitch) * np.sin(roll) + np.cos(roll) * np.sin(pitch) * np.sin(yaw)) + tdy # Y-Axis | drawn in green # v x2 = size * (-np.cos(yaw) * np.sin(roll)) + tdx y2 = size * (np.cos(pitch) * np.cos(roll) - np.sin(pitch) * np.sin(yaw) * np.sin(roll)) + tdy # Z-Axis (out of the screen) drawn in blue x3 = size * (np.sin(yaw)) + tdx y3 = size * (-np.cos(yaw) * np.sin(pitch)) + tdy cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),thickness[0]) cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),thickness[1]) cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),thickness[2]) return img def save_model(model,optim,lr_scheduler,epoch,eval_error,path): if hasattr(model,"module"): model_state = model.module.state_dict() else: model_state = model.state_dict() if lr_scheduler is None: torch.save({"model":model_state,"optim":optim.state_dict(),"epoch":epoch,"eval_error":eval_error},path) else: torch.save({"model":model_state,"optim":optim.state_dict(),"lr_scheduler":lr_scheduler.state_dict(),"epoch":epoch,"eval_error":eval_error},path) def load_model(model,ckp_path): def remove_module_string(k): items = k.split(".") items = items[0:1] + items[2:] return ".".join(items) if isinstance(ckp_path,str): ckp = torch.load(ckp_path,map_location = lambda storage,loc:storage) ckp_model_dict = ckp['model'] else: ckp_model_dict = ckp_path example_key = list(ckp_model_dict.keys())[0] if "module" in example_key: ckp_model_dict = {remove_module_string(k):v for k,v in ckp_model_dict.items()} if hasattr(model,"module"): model.module.load_state_dict(ckp_model_dict) else: model.load_state_dict(ckp_model_dict) def generate_random_seed(): seed = hash(time.time()) % 10000 return seed def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) def my_load_state_dict_with_filter(model,ckp_path): ckp = torch.load(ckp_path,lambda storage,_:storage) ckp_state_dict = ckp['model'] model_state_dict = model.state_dict() to_be_updated = {k:v for k,v in ckp_state_dict.items() if k in model_state_dict and v.shape==model_state_dict[k].shape} model_state_dict.update(to_be_updated) print("length of pretained weights: ",len(list(to_be_updated.keys()))) model.load_state_dict(model_state_dict) def string_for_loss(names,losses): str = "" for name,loss in zip(names,losses): if isinstance(loss,torch.Tensor): loss = loss.item() str = str+f"{name}: {loss:.2f}\t" return str def get_grad_norm(parameters, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type total_norm = total_norm ** (1. / norm_type) return torch.tensor(total_norm) def fig2img(fig): """Convert a Matplotlib figure to a PIL Image and return it""" buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img def compute_rotated_position(abs_position,init_position,init_yaw,single=True): init_yaw = np.pi*init_yaw/180 if single: x_hat = np.array([np.cos(init_yaw), -np.sin(init_yaw)]) y_hat = np.array([np.cos(np.pi/2.0-init_yaw), np.sin(np.pi/2.0-init_yaw)]) else: x_hat = np.stack([
np.cos(init_yaw)
numpy.cos
import numpy as np def glog(im_input, alpha=1, range=None, theta=np.pi/4, tau=0.6, eps=0.6): """Performs generalized Laplacian of Gaussian blob detection. Parameters ---------- im_input : array_like A hematoxylin intensity image obtained from ColorDeconvolution. alpha : double A positive scalar used to normalize the gLoG filter responses. Controls the blob-center detection and eccentricities of detected blobs. Larger values emphasize more eccentric blobs. Default value = 1. range : array_like Scale range theta : double Angular increment for rotating gLoG filters. Default value = np.pi / 6. tau : double Tolerance for counting pixels in determining optimal scale SigmaC eps : double range to define SigmaX surrounding SigmaC Returns ------- Rsum : array_like Sum of filter responses at specified scales and orientations Maxima: : array_like A binary mask highlighting maxima pixels Notes ----- Return values are returned as a namedtuple References ---------- .. [#] <NAME>, <NAME>, <NAME>, "A Generalized Laplacian of Gaussian Filter for Blob Detection and Its Applications," in IEEE Transactions on Cybernetics, vol.43,no.6,pp.1719-33, 2013. """ import scipy.ndimage as ndi from skimage import morphology range = np.linspace(1.5, 3, int(np.round((3 - 1.5) / 0.2)) + 1) if range is None else range # initialize sigma Sigma = np.exp(range) # generate circular LoG scale-space to determine range of SigmaX l_g = 0 H = [] Bins = [] Min = np.zeros((len(Sigma), 1)) Max = np.zeros((len(Sigma), 1)) for i, s in enumerate(Sigma): Response = s**2 * ndi.filters.gaussian_laplace(im_input, s, output=None, mode='constant', cval=0.0) Min[i] = Response.min() Max[i] = Response.max() Bins.append(np.arange(0.01 * np.floor(Min[i] / 0.01), 0.01 * np.ceil(Max[i] / 0.01) + 0.01, 0.01)) Hist = np.histogram(Response, Bins[i]) H.append(Hist[0]) if Max[i] > l_g: l_g = Max[i] # re-normalized based on global max and local min, count threshold pixels Zeta = np.zeros((len(Sigma), 1)) for i, s in enumerate(Sigma): Bins[i] = (Bins[i] - Min[i]) / (l_g - Min[i]) Zeta[i] = np.sum(H[i][Bins[i][0:-1] > tau]) # identify best scale SigmaC based on maximum circular response Index = np.argmax(Zeta) # define range for SigmaX XRange = range(max(Index-2, 0), min(len(range), Index + 2) + 1) SigmaX = np.exp(range[XRange]) # define rotation angles Thetas = np.linspace(0, np.pi - theta, int(np.round(np.pi / theta))) # loop over SigmaX, SigmaY and then angle, summing up filter responses Rsum =
np.zeros(im_input.shape)
numpy.zeros
# -*- coding: utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # fluctmatch --- https://github.com/tclick/python-fluctmatch # Copyright (c) 2013-2017 The fluctmatch Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the New BSD license. # # Please cite your use of fluctmatch in published work: # # <NAME>, <NAME>, and <NAME>. # Calculation of Enzyme Fluctuograms from All-Atom Molecular Dynamics # Simulation. Meth Enzymology. 578 (2016), 327-342, # doi:10.1016/bs.mie.2016.05.024. # from __future__ import ( absolute_import, division, print_function, unicode_literals, ) from future.builtins import ( super, ) import numpy as np from MDAnalysis.core import selection class BioIonSelection(selection.Selection): """Contains atoms commonly found in proteins. """ token = "bioion" ion_atoms = np.array(["MG", "CAL", "MN", "FE", "CU", "ZN", "AG"]) def __init__(self, parser, tokens): pass def apply(self, group): mask = np.in1d(group.names, self.ion_atoms) return group[mask].unique class WaterSelection(selection.Selection): """Contains atoms commonly found in water. """ token = "water" water_atoms = np.array(["OW", "HW1", "HW2", "MW"]) def __init__(self, parser, tokens): pass def apply(self, group): mask = np.in1d(group.names, self.water_atoms) return group[mask].unique class BackboneSelection(selection.BackboneSelection): """Contains all heavy atoms within a protein backbone including the terminal carboxyl oxygens. """ token = "backbone" oxy_atoms = ["OXT", "OT1", "OT2"] def apply(self, group): mask = np.in1d(group.names, np.concatenate([self.bb_atoms, self.oxy_atoms])) mask &= np.in1d(group.resnames, self.prot_res) return group[mask].unique class HBackboneSelection(BackboneSelection): """Includes all atoms found within a protein backbone including hydrogens. """ token = "hbackbone" hbb_atoms = np.array([ "H", "HN", "H1", "H2", "H3", "HT1", "HT2", "HT3", "HA", "HA1", "HA2", "1HA", "2HA" ]) def apply(self, group): mask = np.in1d(group.names, np.concatenate( [self.bb_atoms, self.oxy_atoms, self.hbb_atoms])) mask &= np.in1d(group.resnames, self.prot_res) return group[mask].unique class CalphaSelection(selection.ProteinSelection): """Contains only the alpha-carbon of a protein. """ token = "calpha" calpha = np.array(["CA"]) def apply(self, group): mask = np.in1d(group.names, self.calpha) mask &= np.in1d(group.resnames, self.prot_res) return group[mask].unique class HCalphaSelection(CalphaSelection): """Contains the alpha-carbon and alpha-hydrogens of a protein. """ token = "hcalpha" hcalpha = np.array(["HA", "HA1", "HA2", "1HA", "2HA"]) def apply(self, group): mask = np.in1d(group.names, np.concatenate([self.calpha, self.hcalpha])) mask &= np.in1d(group.resnames, self.prot_res) return group[mask].unique class CbetaSelection(selection.ProteinSelection): """Contains only the beta-carbon of a protein. """ token = "cbeta" cbeta = np.array(["CB"]) def apply(self, group): mask = np.in1d(group.names, self.cbeta) mask &= np.in1d(group.resnames, self.prot_res) return group[mask].unique class AmineSelection(selection.ProteinSelection): """Contains atoms within the amine group of a protein. """ token = "amine" amine = np.array(["N", "HN", "H", "H1", "H2", "H3", "HT1", "HT2", "HT3"]) def apply(self, group): mask =
np.in1d(group.names, self.amine)
numpy.in1d
import cv2 import numpy as np import scipy.optimize import recordreader WHEELTICK_SCALE = 0.066 CAM_TILT = np.array([0, 22.*np.pi/180., 0]) K = np.load("../../tools/camcal/camera_matrix.npy") dist = np.load("../../tools/camcal/dist_coeffs.npy") K[:2] /= 4.05 fx, fy = np.diag(K)[:2] cx, cy = K[:2, 2] mapsz = 300 # map size Z = 14 # map zoom factor uv = np.mgrid[:480, :640][[1, 0]].transpose(1, 2, 0).astype(np.float32) ceilmask = ((uv[:, :, 1] - cy)**2 + (uv[:, :, 0] - cx + 60)**2) < (np.pi/2.4 * fx)**2 R = cv2.Rodrigues(CAM_TILT)[0] pts = cv2.fisheye.undistortPoints(uv[None, ceilmask], K, dist, R=R) ceilmap = np.zeros((mapsz, mapsz), np.float32) ceilN = np.ones((mapsz, mapsz), np.float32) ceilmean = ceilmap / ceilN def pix2floormap(): ''' undistortPoints doesn't support points behind the image plane, but we can solve for them ''' def solvetheta(thetad, k1): theta = thetad theta += (theta*(k1*theta**2 + 1) - thetad)/(-3*k1*theta**2 - 1) theta += (theta*(k1*theta**2 + 1) - thetad)/(-3*k1*theta**2 - 1) return theta mg = np.mgrid[:480, :640] u, v = (mg[1] - cx)/fx, (mg[0] - cy)/fy r = np.sqrt(u**2 + v**2) a, b = u/r, -v/r theta = solvetheta(r, dist[0]) mask = (theta > np.pi/2) & (theta < np.pi/1.9) t = 1.0 / np.tan(theta[mask] - np.pi/2) return mask, np.stack([a[mask] * t, b[mask] * t]).T floormap = np.zeros((mapsz, mapsz, 3), np.float32) floorN = np.ones((mapsz, mapsz), np.float32) * 1e-3 floormean = floormap / floorN[:, :, None] floormask, floorpts = pix2floormap() def Maplookup(x, y, theta): S, C = np.sin(theta), np.cos(theta) R = np.array([[C, S], [-S, C]])*Z p = np.dot(pts[0], R.T) + np.array([x, y]) pi = p.astype(np.int) pt = p - pi t00 = (1-pt[:, 1])*(1-pt[:, 0]) t01 = (1-pt[:, 1])*(pt[:, 0]) t10 = (pt[:, 1])*(1-pt[:, 0]) t11 = (pt[:, 1])*(pt[:, 0]) m = (t00*ceilmean[pi[:, 1], pi[:, 0]+1] + t01*ceilmean[pi[:, 1], pi[:, 0]+1] + t10*ceilmean[pi[:, 1]+1, pi[:, 0]+1] + t11*ceilmean[pi[:, 1]+1, pi[:, 0]+1]) return m def Mapupdate(xi, yi, theta, gray): S, C = np.sin(theta), np.cos(theta) R = np.array([[C, S], [-S, C]])*Z p = np.dot(pts[0], R.T) + np.array([xi, yi]) pi = p.astype(np.int) pt = p - pi t00 = (1-pt[:, 1])*(1-pt[:, 0]) t01 = (1-pt[:, 1])*(pt[:, 0]) t10 = (pt[:, 1])*(1-pt[:, 0]) t11 = (pt[:, 1])*(pt[:, 0]) idxs = pi[:, 1] * mapsz + pi[:, 0] ceilN[:] += np.bincount(idxs, t00.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) ceilN[:] += np.bincount(idxs+1, t01.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) ceilN[:] += np.bincount(idxs+mapsz, t10.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) ceilN[:] += np.bincount(idxs+mapsz+1, t11.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) mask = ceilmask ceilmap[:] += np.bincount(idxs, t00*gray[mask], mapsz*mapsz).reshape(mapsz, mapsz) ceilmap[:] += np.bincount(idxs+1, t01*gray[mask], mapsz*mapsz).reshape(mapsz, mapsz) ceilmap[:] +=
np.bincount(idxs+mapsz, t10*gray[mask], mapsz*mapsz)
numpy.bincount
import sys import io import numpy as np import scipy import math import gzip class SkvpVideoInvalidInitError(Exception): pass class SkvpVideoInvalidValueError(Exception): pass class SkvpForbiddenOperationError(Exception): pass class SkvpFileSyntaxError(Exception): pass class SkvpUsageError(Exception): pass SKVP_HEADER_TITLE_LINE = '*SKeleton Video Player File Header*' SKVP_VIDEO_TITLE_LINE = '*Video*' SKVP_HEADER_NUM_JOINTS_ENTRY = 'NumJoints' SKVP_HEADER_NUM_FRAMES_ENTRY = 'NumberOfFrames' SKVP_HEADER_FPS_ENTRY = 'FPS' SKVP_HEADER_CONNECTIONS_ENTRY = 'Connections' SKVP_HEADER_JOINT_RADIUSES_ENTRY = 'JointRadiuses' SKVP_HEADER_CONNECTIONS_RADIUS_ENTRY = 'ConnectionsRadius' SKVP_HEADER_CAMERA_LOCATION_ENTRY = 'CameraLocation' SKVP_HEADER_CAMERA_DESTINATION_ENTRY = 'CameraDestination' SKVP_HEADER_CAMERA_SCENE_ROTATION_ENTRY = 'CameraSceneRotation' class SkvpVideo: def __init__(self, input_file_handler = None, fps = None, num_joints = None, connections = None, joint_radiuses = None, connections_radius = None, camera_location = None, camera_destination = None, camera_scene_rotation = None): got_parameters = fps != None or num_joints != None or connections != None or joint_radiuses != None or connections_radius != None or camera_location != None or camera_destination != None or camera_scene_rotation != None if input_file_handler != None: if got_parameters: raise SkvpVideoInvalidInitError('Cannot specify both input file header and Skvp parameters') self.parse_skvp_file(input_file_handler) return self.set_fps(fps) self.set_num_joints(num_joints) self.set_connections(connections) self.set_joint_radiuses(joint_radiuses) self.set_connections_radius(connections_radius) self.set_camera_location(camera_location) self.set_camera_destination(camera_destination) self.set_camera_scene_rotation(camera_scene_rotation) self.frames = [] self.invideo_camera_settings = {} def validate_fps(self, fps): if fps == None: return if not (type(fps) is int or type(fps) is float): raise SkvpVideoInvalidValueError('\'fps\' must be a positive real number') if fps <= 0: raise SkvpVideoInvalidValueError('\'fps\' must be a positive real number') def set_fps(self, fps): self.validate_fps(fps) self.fps = fps if fps != None else None def get_fps(self): return self.fps def validate_num_joints(self, num_joints): if hasattr(self, 'frames'): if len(self.frames) > 0: raise SkvpForbiddenOperationError('Cannot modify number of joints while frames list is not empty') if hasattr(self, 'connections'): if self.connections != None and len(self.connections) > 0: raise SkvpForbiddenOperationError('Cannot modify number of joints while connections list is not empty') if hasattr(self, 'joint_radiuses'): if self.joint_radiuses != None and len(self.joint_radiuses) > 0: raise SkvpForbiddenOperationError('Cannot modify number of joints while joint radiuses are defined') if num_joints == None: return if not (type(num_joints) is int): raise SkvpVideoInvalidValueError('\'num_joints\' must be a positive integer') if num_joints <= 0: raise SkvpVideoInvalidValueError('\'num_joints\' must be a positive integer') def set_num_joints(self, num_joints): self.validate_num_joints(num_joints) self.num_joints = num_joints if num_joints != None else None def get_num_joints(self): return self.num_joints def validate_connections(self, connections): if connections == None: return if len(connections) == 0: return if not hasattr(self, 'num_joints'): raise SkvpForbiddenOperationError('Cannot define connections while number of joints is not defined') if self.num_joints == None: raise SkvpForbiddenOperationError('Cannot define connections while number of joints is not defined') for (j1, j2) in connections: if not (type(j1) is int and type(j2) is int): raise SkvpVideoInvalidValueError('Joint numbers must be integers between 1 and NUM_JOINTS') if j1 < 1 or j1 > self.num_joints or j2 < 1 or j2 > self.num_joints: raise SkvpVideoInvalidValueError('Joint numbers must be integers between 1 and NUM_JOINTS') if j1 == j2: raise SkvpVideoInvalidValueError('Cannot define a connection from a joint into itself') def set_connections(self, connections): self.validate_connections(connections) self.connections = tuple(connections) if connections != None else None def get_connections(self): return self.connections def validate_joint_radiuses(self, joint_radiuses): if joint_radiuses == None: return if len(joint_radiuses) == 0: return if not hasattr(self, 'num_joints'): raise SkvpForbiddenOperationError('Cannot define joint radiuses while number of joints is not defined') if self.num_joints == None: raise SkvpForbiddenOperationError('Cannot define joint radiuses while number of joints is not defined') if len(joint_radiuses) != self.num_joints: raise SkvpVideoInvalidValueError('Joint radiuses array must contain exactly J values, where J is number of joints') for val in joint_radiuses: if not (type(val) is int or type(val) is float): raise SkvpVideoInvalidValueError('Joint radiuses must be non-negative real numbers') if val < 0: raise SkvpVideoInvalidValueError('Joint radiuses must be non-negative real numbers') def set_joint_radiuses(self, joint_radiuses): self.validate_joint_radiuses(joint_radiuses) self.joint_radiuses = tuple(joint_radiuses) if joint_radiuses != None else None def get_joint_radiuses(self): return self.joint_radiuses def validate_connections_radius(self, connections_radius): if connections_radius == None: return if not (type(connections_radius) is int or type(connections_radius) is float): raise SkvpVideoInvalidValueError('Connections radius must be a single non_negative real number') if connections_radius < 0: raise SkvpVideoInvalidValueError('Connections radius must be a single non_negative real number') def set_connections_radius(self, connections_radius): self.validate_connections_radius(connections_radius) self.connections_radius = connections_radius if connections_radius != None else None def get_connections_radius(self): return self.connections_radius def validate_camera_coordinate(self, camera_coordinate, coordinate_type): if camera_coordinate == None: return if len(camera_coordinate) != 3: raise SkvpVideoInvalidValueError('Camera {0} should be an array containing 3 numbers (X,Y,Z)'.format(coordinate_type)) for val in camera_coordinate: val_type = type(val) if not (val_type is int or val_type is float): raise SkvpVideoInvalidValueError('Camera (X,Y,Z) coordinates must be real numbers') def set_camera_location(self, camera_location): self.validate_camera_coordinate(camera_location, 'location') self.camera_location = tuple(camera_location) if camera_location != None else None def get_camera_location(self): return self.camera_location def set_camera_destination(self, camera_destination): self.validate_camera_coordinate(camera_destination, 'destination') self.camera_destination = tuple(camera_destination) if camera_destination != None else None def get_camera_destination(self): return self.camera_destination def validate_camera_scene_rotation(self, camera_scene_rotation): if camera_scene_rotation == None: return val_type = type(camera_scene_rotation) if not (val_type is int or val_type is float): raise SkvpVideoInvalidValueError('Camera scene rotation must be a real number') def set_camera_scene_rotation(self, camera_scene_rotation): self.validate_camera_scene_rotation(camera_scene_rotation) self.camera_scene_rotation = camera_scene_rotation if camera_scene_rotation != None else None def get_camera_scene_rotation(self): return self.camera_scene_rotation def add_frame(self, joint_locations_iterable): if not hasattr(self, 'num_joints'): raise SkvpForbiddenOperationError('Cannot add frames while number of joints is not defined') if self.num_joints == None: raise SkvpForbiddenOperationError('Cannot add frames while number of joints is not defined') frame = [np.array(joint_loc) for joint_loc in joint_locations_iterable] if len(frame) != self.num_joints: raise SkvpVideoInvalidValueError('Frame joint locations must contain exactly J locations, where J is number of joints') self.frames.append(frame) def set_frame_camera_settings(self, i, camera_settings): if i < 0 or i >= len(self.num_frames): raise SkvpForbiddenOperationError('Index out of bounds') self.invideo_camera_settings[i] = camera_settings def get_frame_camera_settings(self, i): # This method returns the **LATEST**, *invideo* camera settings for frame i (can be defined in less than i) if i < 0 or i >= len(self.frames): raise SkvpForbiddenOperationError('frame index is out of video bounds: ' + str(i)) # We want to find largest index that is smaller or equals to i if len(self.invideo_camera_settings) == 0: return None if i in self.invideo_camera_settings: return self.invideo_camera_settings[i] relevant_frames = sorted([frame_num for frame_num in self.invideo_camera_settings.keys() if frame_num <= i]) if len(relevant_frames) == 0: return None return self.invideo_camera_settings[relevant_frames[-1]] def get_video_length(self, seconds = False): if seconds: if self.fps == None: raise SkvpForbiddenOperationError('Cannot calculate length in seconds while FPS is not defined') return len(self.frames) / float(self.fps) return len(self) def __len__(self): return len(self.frames) def __getitem__(self, val): if type(val) is int: start = len(self) + val if val < 0 else val end = start + 1 step = 1 elif type(val) is slice: start = val.start end = val.stop step = val.step if start == None: start = 0 if end == None: end = len(self) if step == None: step = 1 if not (type(start) is int and type(end) is int and type(step) is int): raise SkvpForbiddenOperationError('Slicing parameters must be integers') new_vid = SkvpVideo(fps = self.fps, num_joints = self.num_joints, connections = self.connections, joint_radiuses = self.joint_radiuses, connections_radius = self.connections_radius, camera_location = self.camera_location, camera_destination = self.camera_destination, camera_scene_rotation = self.camera_scene_rotation) new_vid.frames = self.frames[start:end:step] start_pos = (len(self) + start) if start < 0 else start end_pos = (len(self) + end) if end < 0 else end last_camera_settings = None for i, frame_key in enumerate(range(start_pos, end_pos, step)): camera_settings = self.get_frame_camera_settings(frame_key) if camera_settings != None: if camera_settings == last_camera_settings: continue new_vid.invideo_camera_settings[i] = dict(camera_settings) last_camera_settings = camera_settings return new_vid def __add__(self, vid_2): if type(vid_2) is not SkvpVideo: raise SkvpForbiddenOperationError('Cannot add a non SkvpVideo object') if self.num_joints != vid_2.num_joints: raise SkvpForbiddenOperationError('Cannot add two videos with different number of joints') if self.fps != vid_2.fps: sys.stderr.write('Warning: adding videos with mismatching frame rates. Frames will be copied without modification\n') new_vid = SkvpVideo(fps = self.fps, num_joints = self.num_joints, connections = self.connections, joint_radiuses = self.joint_radiuses, connections_radius = self.connections_radius, camera_location = self.camera_location, camera_destination = self.camera_destination, camera_scene_rotation = self.camera_scene_rotation) new_vid.frames = self.frames + vid_2.frames for frame_index, camera_settings in self.invideo_camera_settings.items(): new_vid.invideo_camera_settings[frame_index] = dict(camera_settings) num_frames_self = len(self) for frame_index, camera_settings in vid_2.invideo_camera_settings.items(): new_vid.invideo_camera_settings[frame_index + num_frames_self] = dict(camera_settings) if num_frames_self not in new_vid.invideo_camera_settings: camera_settings = {} if vid_2.get_camera_location() != None: camera_settings['camera_location'] = vid_2.get_camera_location() if vid_2.get_camera_destination() != None: camera_settings['camera_destination'] = vid_2.get_camera_destination() if vid_2.get_camera_scene_rotation() != None: camera_settings['camera_scene_rotation'] = vid_2.get_camera_scene_rotation() if len(camera_settings) > 0: new_vid.invideo_camera_settings[num_frames_self] = camera_settings return new_vid def dump(skvp_video, ostream_or_filename): if type(ostream_or_filename).__name__ == 'str': self_opened = True if ostream_or_filename.lower().endswith('.gz'): ostream = gzip.open(ostream_or_filename, 'wt') else: ostream = open(ostream_or_filename, 'w') else: self_opened = False ostream = ostream_or_filename self = skvp_video if self.fps == None: raise SkvpForbiddenOperationError('Cannot dump SkvpVideo while FPS is not defined') if self.num_joints == None: raise SkvpForbiddenOperationError('Cannot dump SkvpVideo while number of joints is not defined') ostream.write(SKVP_HEADER_TITLE_LINE) ostream.write('\n') ostream.write('{0}={1}'.format(SKVP_HEADER_NUM_JOINTS_ENTRY, str(self.num_joints))) ostream.write('\n') ostream.write('{0}={1}'.format(SKVP_HEADER_NUM_FRAMES_ENTRY, str(len(self.frames)))) ostream.write('\n') ostream.write('{0}={1}'.format(SKVP_HEADER_FPS_ENTRY, str(self.fps))) ostream.write('\n') if self.connections != None: ostream.write('{0}={1}'.format(SKVP_HEADER_CONNECTIONS_ENTRY, ','.join(['{0}-{1}'.format(str(c[0]), str(c[1])) for c in self.connections]))) ostream.write('\n') if self.joint_radiuses != None: ostream.write('{0}={1}'.format(SKVP_HEADER_JOINT_RADIUSES_ENTRY, ','.join([str(val) for val in self.joint_radiuses]))) ostream.write('\n') if self.connections_radius != None: ostream.write('{0}={1}'.format(SKVP_HEADER_CONNECTIONS_RADIUS_ENTRY, str(self.connections_radius))) ostream.write('\n') if self.camera_location != None: ostream.write('{0}={1}'.format(SKVP_HEADER_CAMERA_LOCATION_ENTRY, ','.join([str(val) for val in self.camera_location]))) ostream.write('\n') if self.camera_destination != None: ostream.write('{0}={1}'.format(SKVP_HEADER_CAMERA_DESTINATION_ENTRY, ','.join([str(val) for val in self.camera_destination]))) ostream.write('\n') if self.camera_scene_rotation != None: ostream.write('{0}={1}'.format(SKVP_HEADER_CAMERA_SCENE_ROTATION_ENTRY, str(self.camera_scene_rotation))) ostream.write('\n') ostream.write('\n') ostream.write(SKVP_VIDEO_TITLE_LINE) ostream.write('\n') for i, frame in enumerate(self.frames): if i in self.invideo_camera_settings: if 'camera_location' in self.invideo_camera_settings[i]: ostream.write('{0}={1}'.format(SKVP_HEADER_CAMERA_LOCATION_ENTRY, ','.join([str(val) for val in self.invideo_camera_settings[i]['camera_location']]))) ostream.write('\n') if 'camera_destination' in self.invideo_camera_settings[i]: ostream.write('{0}={1}'.format(SKVP_HEADER_CAMERA_DESTINATION_ENTRY, ','.join([str(val) for val in self.invideo_camera_settings[i]['camera_destination']]))) ostream.write('\n') if 'camera_scene_rotation' in self.invideo_camera_settings[i]: ostream.write('{0}={1}'.format(SKVP_HEADER_CAMERA_SCENE_ROTATION_ENTRY, str(self.invideo_camera_settings[i]['camera_scene_rotation']))) ostream.write('\n') ostream.write(';'.join([','.join([str(coor) for coor in joint_xyz]) for joint_xyz in frame])) if i < len(self.frames) - 1: ostream.write('\n') if self_opened: ostream.close() def dumps(skvp_video): string_stream = io.StringIO() dump(skvp_video, string_stream) return string_stream.getvalue() def find_skvp_header_beginning(istream): while True: line = istream.readline() if line == '': # Empty line within file must contain '\n' char raise SkvpFileSyntaxError('SKVP file is empty') line = line.strip() if line == '': continue if line == SKVP_HEADER_TITLE_LINE: return raise SkvpFileSyntaxError('SKVP file must start with line: ' + SKVP_HEADER_TITLE_LINE) def find_skvp_video_start_and_get_header(istream): header = {} while True: line = istream.readline() if line == '': # Empty line within file must contain '\n' char raise SkvpFileSyntaxError('Could not find line which indicates starting of video: ' + SKVP_VIDEO_TITLE_LINE) line = line.strip() if line == '': continue if line == SKVP_VIDEO_TITLE_LINE: return header parts = line.split('=', 1) if len(parts) != 2: raise SkvpFileSyntaxError('Header lines must be in the format: ENTRY_NAME=ENTRY_VALUE') header[parts[0].strip()] = parts[1].strip() def header_to_video_object(header, skvp_video): if SKVP_HEADER_NUM_JOINTS_ENTRY not in header: raise SkvpFileSyntaxError('Header does not contain entry: ' + SKVP_HEADER_NUM_JOINTS_ENTRY) try: num_joints = int(header[SKVP_HEADER_NUM_JOINTS_ENTRY]) except: raise SkvpFileSyntaxError(SKVP_HEADER_NUM_JOINTS_ENTRY + ' must be a natural number') skvp_video.set_num_joints(num_joints) if SKVP_HEADER_FPS_ENTRY not in header: raise SkvpFileSyntaxError('Header does not contain entry: ' + SKVP_HEADER_FPS_ENTRY) try: fps = float(header[SKVP_HEADER_FPS_ENTRY]) except: raise SkvpFileSyntaxError(SKVP_HEADER_FPS_ENTRY + ' must be a real number') skvp_video.set_fps(fps) if SKVP_HEADER_CONNECTIONS_ENTRY in header: try: connections = [(int(p.split('-')[0]), int(p.split('-')[1])) for p in header[SKVP_HEADER_CONNECTIONS_ENTRY].split(',')] except: raise SkvpFileSyntaxError(SKVP_HEADER_CONNECTIONS_ENTRY + ' must be pairs of natural numbers separated by commas, where each pair is separated by a hyphen') skvp_video.set_connections(connections) if SKVP_HEADER_JOINT_RADIUSES_ENTRY in header: try: radiuses = [float(rad) for rad in header[SKVP_HEADER_JOINT_RADIUSES_ENTRY].split(',')] except: raise SkvpFileSyntaxError(SKVP_HEADER_JOINT_RADIUSES_ENTRY + ' must be a list of real numbers, separated by commas') skvp_video.set_joint_radiuses(radiuses) if SKVP_HEADER_CONNECTIONS_RADIUS_ENTRY in header: try: radius = float(header[SKVP_HEADER_CONNECTIONS_RADIUS_ENTRY]) except: raise SkvpFileSyntaxError(SKVP_HEADER_CONNECTIONS_RADIUS_ENTRY + ' must be a real number') skvp_video.set_connections_radius(radius) if SKVP_HEADER_CAMERA_LOCATION_ENTRY in header: try: location = [float(val) for val in header[SKVP_HEADER_CAMERA_LOCATION_ENTRY].split(',')] except: raise SkvpFileSyntaxError(SKVP_HEADER_CAMERA_LOCATION_ENTRY + ' must be a list of real numbers, separated by commas') skvp_video.set_camera_location(location) if SKVP_HEADER_CAMERA_DESTINATION_ENTRY in header: try: destination = [float(val) for val in header[SKVP_HEADER_CAMERA_DESTINATION_ENTRY].split(',')] except: raise SkvpFileSyntaxError(SKVP_HEADER_CAMERA_DESTINATION_ENTRY + ' must be a list of real numbers, separated by commas') skvp_video.set_camera_destination(destination) if SKVP_HEADER_CAMERA_SCENE_ROTATION_ENTRY in header: try: rotation = float(header[SKVP_HEADER_CAMERA_SCENE_ROTATION_ENTRY]) except: raise SkvpFileSyntaxError(SKVP_HEADER_CAMERA_SCENE_ROTATION_ENTRY + ' must be a real number') skvp_video.set_camera_scene_rotation(rotation) def get_invideo_camera_parameter(line): parts = line.split('=', 1) if len(parts) != 2: raise SkvpFileSyntaxError('Invalid invideo camera settings line: ' + line) return parts[1].strip() def read_frames_into_video_object(istream, skvp_video): num_frames_read = 0 camera_location = None camera_destination = None camera_scene_rotation = None while True: line = istream.readline() if line == '': # Empty line within file must contain '\n' char break line = line.strip() if line == '': continue if line.startswith(SKVP_HEADER_CAMERA_LOCATION_ENTRY): param_str = get_invideo_camera_parameter(line) continue elif line.startswith(SKVP_HEADER_CAMERA_DESTINATION_ENTRY): param_str = get_invideo_camera_parameter(line) continue elif line.startswith(SKVP_HEADER_CAMERA_SCENE_ROTATION_ENTRY): param_str = get_invideo_camera_parameter(line) continue joint_locations_as_strings = line.split(';') joint_locations_as_np_arrays = [np.array([float(coor) for coor in joint_loc_str.split(',')]) for joint_loc_str in joint_locations_as_strings] skvp_video.add_frame(joint_locations_as_np_arrays) camera_settings = {} if camera_location != None: camera_settings['camera_location'] = camera_location if camera_destination != None: camera_settings['camera_destination'] = camera_destination if camera_scene_rotation != None: camera_settings['camera_scene_rotation'] = camera_scene_roatation if len(camera_settings) > 0: skvp_video.set_frame_camera_settings(num_frames_read, camera_settings) camera_location = None camera_destination = None camera_scene_rotation = None num_frames_read += 1 def load(istream_or_filename): if (type(istream_or_filename).__name__ == 'str'): self_opened = True if istream_or_filename.lower().endswith('.gz'): istream = gzip.open(istream_or_filename, 'rt') else: istream = open(istream_or_filename, 'r') else: self_opened = False istream = istream_or_filename find_skvp_header_beginning(istream) header = find_skvp_video_start_and_get_header(istream) skvp_video = SkvpVideo() header_to_video_object(header, skvp_video) read_frames_into_video_object(istream, skvp_video) if self_opened: istream.close() return skvp_video def loads(video_string): string_stream = io.StringIO(video_string) return load(string_stream) def create_length_scaled_video(ref_video, scale = None, num_frames = None, num_seconds = None): if scale == None and num_frames == None and num_seconds == None: raise SkvpUsageError('Must specify one of parameters {scale, num_frames, num_seconds}') if (scale != None and num_frames != None) or (scale != None and num_seconds != None) or (num_frames != None and num_seconds != None): raise SkvpUsageError('Must specify only one of parameters {scale, num_frames, num_seconds}') if scale != None: if not (type(scale) is int or type(scale) is float): raise SkvpUsageError('scale parameter must be a number') if scale <= 0: raise SkvpForbiddenOperationError('Scale must be a positive real number') if num_frames != None: if not type(num_frames) is int: raise SkvpUsageError('num_frames parameter must be an ineteger') if num_frames <= 0: raise SkvpForbiddenOperationError('Number of target frames must be a positive number') if num_seconds != None: if not (type(num_seconds) is int or type(num_seconds) is float): raise SkvpUsageError('num_seconds parameter must be a number') if num_seconds <= 0: raise SkvpForbiddenOperationError('Number of target seconds must be a positive number') if len(ref_video) == 0: raise SkvpForbiddenOperationError('Cannot scale empty video') final_scale = scale if num_frames != None: final_scale = num_frames / float(len(ref_video)) elif num_seconds != None: final_scale = num_seconds / float(ref_video.get_video_length(seconds = True)) if final_scale == 1.0: return ref_video[:] new_vid = ref_video[0:0] # Creating empty video with same header num_frames_target_vid = int(round(len(ref_video) * final_scale)) num_frames_ref_vid = len(ref_video) for i in range(num_frames_target_vid): if num_frames_target_vid == 1: frame_perc = 0 else: frame_perc = (i) / float(num_frames_target_vid - 1) ref_frame = (num_frames_ref_vid - 1) * frame_perc upper_weight = ref_frame - int(ref_frame) lower_weight = 1.0 - upper_weight lower_index = int(ref_frame) if lower_weight == 1 or upper_weight == 1: new_vid.add_frame(ref_video.frames[lower_index]) else: new_frame = [] for j in range(ref_video.get_num_joints()): new_frame.append(lower_weight * ref_video.frames[lower_index][j] + upper_weight * ref_video.frames[lower_index + 1][j]) new_vid.add_frame(new_frame) return new_vid def create_fps_changed_video(ref_video, new_fps): if ref_video.fps == None: raise SkvpForbiddenOperationError('Cannot create fps-changed video while reference video has no fps defined') scale = float(new_fps) / ref_video.fps new_vid = create_length_scaled_video(ref_video, scale = scale) new_vid.set_fps(new_fps) return new_vid def gradient(ref_video): new_vid = ref_video[0:0] for i in range(len(ref_video) - 1): next_frame = ref_video.frames[i + 1] curr_frame = ref_video.frames[i] der_frame = [] for next_joint, curr_joint in zip(next_frame, curr_frame): der_frame.append(next_joint - curr_joint) new_vid.add_frame(der_frame) return new_vid def equalize(ref_video, num_bins = None): new_vid = ref_video[0:0] num_frames = float(len(ref_video)) joint_vectors = [] if num_bins != None: bin_size = int(round(len(ref_video) / float(num_bins))) for i in range(ref_video.get_num_joints()): joint_vectors.append([frame[i] for frame in ref_video.frames]) sorted_by_magnitude = sorted(range(len(joint_vectors[i])), key = lambda x : np.linalg.norm(joint_vectors[i][x])) for j in range(len(sorted_by_magnitude)): if num_bins == None: coef = (j + 1) / num_frames else: bin_index = int(j / bin_size) + 1 if bin_index > num_bins: bin_index -= 1 coef = (bin_index / float(num_bins)) frame_index = sorted_by_magnitude[j] vec_norm = np.linalg.norm(joint_vectors[i][frame_index]) if vec_norm == 0: vec_norm = 1 joint_vectors[i][frame_index] = (coef / vec_norm) * joint_vectors[i][frame_index] for i in range(len(ref_video)): frame = [joint_vec[i] for joint_vec in joint_vectors] new_vid.add_frame(frame) return new_vid def norm(ref_video, selective_norm = False): new_vid = ref_video[0:0] if selective_norm: joint_vec_sizes_opp = [] for i in range(ref_video.get_num_joints()): joint_vec_sizes_opp.append([np.linalg.norm(ref_video.frames[frame_num][i]) ** (-1) for frame_num in range(len(ref_video))]) joint_nonorm_indices = [] for i in range(ref_video.get_num_joints()): joint_opp_size_mean = np.mean(joint_vec_sizes_opp[i]) joint_nonorm_indices.append(set((frame_num for frame_num in range(len(joint_vec_sizes_opp[i])) if joint_vec_sizes_opp[i][frame_num] > joint_opp_size_mean))) for i in range(len(ref_video)): frame = [] for joint_num, joint in enumerate(ref_video.frames[i]): if selective_norm and (i in joint_nonorm_indices[joint_num]): frame.append(joint) else: vec_magn = np.linalg.norm(joint) if vec_magn == 0: vec_magn = 1 frame.append(joint / float(vec_magn)) new_vid.add_frame(frame) return new_vid def median(ref_video, mask_size = 3): if mask_size <= 0 or mask_size % 2 != 1: raise Exception('Mask size must be positive and odd') if mask_size > len(ref_video): raise Exception('Mask size must not be greater than video length') new_vid = ref_video[0:0] for frame_i in range(len(ref_video) - mask_size + 1): new_frame = [] frame_range = ref_video.frames[frame_i:frame_i + mask_size] for joint in range(ref_video.get_num_joints()): x_med = np.median([frame[joint][0] for frame in frame_range]) y_med = np.median([frame[joint][1] for frame in frame_range]) z_med = np.median([frame[joint][2] for frame in frame_range]) new_frame.append(np.array((x_med, y_med, z_med))) new_vid.add_frame(new_frame) return new_vid def conv(ref_video, mask): if len(mask) % 2 != 1 or len(mask) < 0: raise Exception('Mask size must be positive and odd') if len(mask) > len(ref_video): raise Exception('Mask size must not be greater than video length') x_per_joint = [] y_per_joint = [] z_per_joint = [] x_per_joint_filtered = [] y_per_joint_filtered = [] z_per_joint_filtered = [] new_vid = ref_video[0:0] for frame in ref_video.frames: for i, joint in enumerate(frame): if i >= len(x_per_joint): x_per_joint.append([]) y_per_joint.append([]) z_per_joint.append([]) x_per_joint[i].append(joint[0]) y_per_joint[i].append(joint[1]) z_per_joint[i].append(joint[2]) for joint_num in range(ref_video.get_num_joints()): x_per_joint_filtered.append(np.convolve(x_per_joint[joint_num], mask, 'valid')) y_per_joint_filtered.append(np.convolve(y_per_joint[joint_num], mask, 'valid')) z_per_joint_filtered.append(np.convolve(z_per_joint[joint_num], mask, 'valid')) new_num_frames = len(x_per_joint_filtered[0]) for i in range(new_num_frames): frame = [] for joint_num in range(ref_video.get_num_joints()): joint_at_frame = np.array((x_per_joint_filtered[joint_num][i], y_per_joint_filtered[joint_num][i], z_per_joint_filtered[joint_num][i])) frame.append(joint_at_frame) new_vid.add_frame(frame) return new_vid def get_gaussian_value_at(std, mean, x): a = 1 / (2 * math.pi * (std ** 2)) ** 0.5 b = ((-1) * (x - mean) ** 2) / (2 * (std ** 2)) return a * (math.e ** b) def generate_gaussian_mask(std, length): if length % 2 == 0: raise Exception('Mask size must be odd') mask_center_idx = int(length / 2) # Counting indices from 0 :) mask = [] for i in range(length): at_std = abs(mask_center_idx - i) mask.append(get_gaussian_value_at(std, 0, at_std)) #current_norm = np.linalg.norm(mask) #factor = 1.0 / current_norm mask_sum = np.sum(mask) factor = 1.0 / mask_sum return [factor * val for val in mask] def gaussian_filter(ref_vid, mask_size, std): mask = generate_gaussian_mask(std, mask_size) return conv(ref_vid, mask) def to_vector(ref_video): num_vals = len(ref_video) * ref_video.get_num_joints() * 3 vec = np.zeros(num_vals) offset = 0 for frame in ref_video.frames: for joint in frame: vec[offset:offset + 3] = joint offset += 3 return vec def compress(ref_video): new_vid = ref_video[:] for joint in range(new_vid.get_num_joints()): for dim in range(3): vals = [frame[joint][dim] for frame in new_vid.frames] std = np.std(vals) min_detail_level = std / len(vals) num_decimal_points = int(- (round(np.log10(min_detail_level)) - 1)) num_decimal_points = 0 if num_decimal_points < 0 else num_decimal_points for frame in new_vid.frames: frame[joint][dim] = round(frame[joint][dim], num_decimal_points) return new_vid class SkvpPyramid: def __init__(self, skvp_video, filter_sizes, filter_stds): self.original_video = skvp_video[:] self.levels = [] if len(filter_sizes) != len(filter_stds): raise SkvpVideoInvalidInitError('"filter sizes" and "filter stds" must have the same lengths') self.filter_sizes = list(filter_sizes) self.filter_stds = list(filter_stds) self._create_pyramid() def get_num_levels(self): return len(self.levels) def get_level(self, level): return self.levels[level] def _create_pyramid(self): self.levels.append(self.original_video) for f_size, f_std in zip(self.filter_sizes, self.filter_stds): ref_vid = self.levels[-1] ref_vid_blurred = gaussian_filter(ref_vid, f_size, f_std) next_vid = create_length_scaled_video(ref_vid_blurred, num_frames = int(len(ref_vid) / 2)) self.levels.append(next_vid) def map_index(self, index, orig_level, dst_level): if orig_level < 0 or orig_level >= len(self.levels): raise SkvpVideoInvalidValueError('"orig level" is out of range') if dst_level < 0 or dst_level >= len(self.levels): raise SkvpVideoInvalidValueError('"dst level" is out of range') if index < 0 or index >= len(self.levels[orig_level]): raise SkvpVideoInvalidValueError('Index {0} is out of range for level {1}'.format(str(index), str(orig_level))) direction = 1 if (dst_level - orig_level > 0) else -1 new_index = index for i in range(orig_level, dst_level, direction): if direction == 1: new_index = self._map_adjacent(new_index, i, i + 1, True) else: new_index = self._map_adjacent(new_index, i - 1, i) return new_index def _map_adjacent(self, index, parent_level, child_level, parent_to_child = False): offset = int(self.filter_sizes[parent_level] / 2) parent_vid_size = len(self.levels[parent_level]) - 2 * offset child_vid_size = len(self.levels[child_level]) if parent_to_child: if index - offset < 0 or index + offset >= parent_vid_size: raise SkvpForbiddenOperationError('Cannot map index {0} from level {1} to level {2} because it was clipped out by the filter'.format(str(index), str(parent_level), str(child_level))) return int(round(child_vid_size * ((index - offset) / parent_vid_size))) return int(round(parent_vid_size * (index / child_vid_size) + offset)) def pyramid(ref_vid, filter_sizes, filter_stds): return SkvpPyramid(ref_vid, filter_sizes, filter_stds) def pyramid_old(ref_vid, max_depth = None, min_length = 3): ret_pyr = [ref_vid[:]] curr_len = len(ret_pyr[-1]) if curr_len <= min_length: return ret_pyr if max_depth != None and len(ret_pyr) > max_depth: return ret_pyr while True: if len(ret_pyr) > max_depth: return ret_pyr curr_len = len(ret_pyr[-1]) next_len = int(curr_len / 2.0) if next_len < min_length: return ret_pyr last_vid_blurred = gaussian_filter(ret_pyr[-1], 3, 1) ret_pyr.append(create_length_scaled_video(last_vid_blurred, num_frames = next_len)) def project_to_body_plane(ref_vid, spine_base_index, shoulder_left_index, shoulder_right_index): ret_vid = ref_vid[0:0] for i, frame in enumerate(ref_vid.frames): shoulder_center = 0.5 * (frame[shoulder_left_index] + frame[shoulder_right_index]) y_axis = shoulder_center - frame[spine_base_index] y_axis /=
np.linalg.norm(y_axis)
numpy.linalg.norm
#!/usr/bin/env python __copyright__ = """ Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import tensorflow as tf def rot_z(t): """ Rotation about the z-axis. """ c = np.cos(t) s = np.sin(t) ones = np.ones_like(c) zeros = np.zeros_like(c) return np.asarray([[c, -s, zeros], [s, c, zeros], [zeros, zeros, ones]]) def make_eight_points_boxes(bboxes_xyzlwhy): bboxes_xyzlwhy = np.asarray(bboxes_xyzlwhy) l = bboxes_xyzlwhy[:, 3] / 2.0 w = bboxes_xyzlwhy[:, 4] / 2.0 h = bboxes_xyzlwhy[:, 5] / 2.0 # 3d bounding box corners x_corners = np.asarray([l, l, -l, -l, l, l, -l, -l]) y_corners = np.asarray([w, -w, -w, w, w, -w, -w, w]) z_corners = np.asarray([-h, -h, -h, -h, h, h, h, h]) corners_3d = np.concatenate(([x_corners], [y_corners], [z_corners]), axis=0) yaw =
np.asarray(bboxes_xyzlwhy[:, -1], dtype=np.float)
numpy.asarray
import numpy as np import matplotlib.pyplot as plt import seaborn as sns all from viabel import all_bounds from viabel.vb import black_box_klvi, black_box_chivi, adagrad_optimize from utils import Timer from psis import psislw ## Display bounds information ## def print_bounds(results): print('Bounds on...') print(' 2-Wasserstein {:.3g}'.format(results['W2'])) print(' 2-divergence {:.3g}'.format(results['d2'])) print(' mean error {:.3g}'.format(results['mean_error'])) print(' stdev error {:.3g}'.format(results['std_error'])) print(' sqrt cov error {:.3g}'.format(np.sqrt(results['cov_error']))) print(' cov error {:.3g}'.format(results['cov_error'])) ## Check approximation accuracy ## def check_accuracy(true_mean, true_cov, approx_mean, approx_cov, verbose=False, method=None): true_std = np.sqrt(np.diag(true_cov)) approx_std = np.sqrt(np.diag(approx_cov)) results = dict(mean_error=np.linalg.norm(true_mean - approx_mean), cov_error_2=np.linalg.norm(true_cov - approx_cov, ord=2), cov_norm_2=np.linalg.norm(true_cov, ord=2), cov_error_nuc=np.linalg.norm(true_cov - approx_cov, ord='nuc'), cov_norm_nuc=np.linalg.norm(true_cov, ord='nuc'), std_error=np.linalg.norm(true_std - approx_std), rel_std_error=np.linalg.norm(approx_std/true_std - 1), ) if method is not None: results['method'] = method if verbose: print('mean =', approx_mean) print('stdevs =', approx_std) print() print('mean error = {:.3g}'.format(results['mean_error'])) print('stdev error = {:.3g}'.format(results['std_error'])) print('||cov error||_2^{{1/2}} = {:.3g}'.format(np.sqrt(results['cov_error_2']))) print('||true cov||_2^{{1/2}} = {:.3g}'.format(np.sqrt(results['cov_norm_2']))) return results def check_approx_accuracy(var_family, var_param, true_mean, true_cov, verbose=False, name=None): return check_accuracy(true_mean, true_cov, *var_family.mean_and_cov(var_param), verbose, name) ## Convenience functions and PSIS ## def get_samples_and_log_weights(logdensity, var_family, var_param, n_samples): samples = var_family.sample(var_param, n_samples) log_weights = logdensity(samples) - var_family.logdensity(samples, var_param) return samples, log_weights def psis_correction(logdensity, var_family, var_param, n_samples): samples, log_weights = get_samples_and_log_weights(logdensity, var_family, var_param, n_samples) smoothed_log_weights, khat = psislw(log_weights) return samples.T, smoothed_log_weights, khat def improve_with_psis(logdensity, var_family, var_param, n_samples, true_mean, true_cov, transform=None, verbose=False): samples, slw, khat = psis_correction(logdensity, var_family, var_param, n_samples) if verbose: print('khat = {:.3g}'.format(khat)) print() if transform is not None: samples = transform(samples) slw -= np.max(slw) wts = np.exp(slw) wts /= np.sum(wts) approx_mean = np.sum(wts[np.newaxis,:]*samples, axis=1) approx_cov = np.cov(samples, aweights=wts, ddof=0) res = check_accuracy(true_mean, true_cov, approx_mean, approx_cov, verbose) res['khat'] = khat return res, approx_mean, approx_cov ## Plotting ## def plot_approx_and_exact_contours(logdensity, var_family, var_param, xlim=[-10,10], ylim=[-3, 3], cmap2='Reds', savepath=None): xlist =
np.linspace(*xlim, 100)
numpy.linspace
import numpy as np import math w1 = np.array([ [-1], [-1], ], dtype=float) w2 = np.array([ [0], [0], ], dtype=float) w3 = np.array([ [1], [1], ], dtype=float) # 初始化 预处理 C = 1 m, n = w1.shape w = np.zeros((m + 1, 3)) print("Initial:\n", w) add_row =
np.ones(n)
numpy.ones
""" Copyright (c) Facebook, Inc. and its affiliates. """ import numpy as np import os import sys import random GEOSCORER_DIR = os.path.dirname(os.path.realpath(__file__)) CRAFTASSIST_DIR = os.path.join(GEOSCORER_DIR, "../../") sys.path.append(CRAFTASSIST_DIR) import shapes import shape_helpers as sh import torch import torch.utils.data from geoscorer_util import * # subshapes by everything in a l1 or l2 ball from a point. # put pairs + triples of shapes in frame, sometimes one partially built PERM = torch.randperm(256) r = np.arange(0, 256) / 256 CMAP = np.stack((r, np.roll(r, 80), np.roll(r, 160))) SMALL = 5 LARGE = 20 def get_shape(name="random", opts=None): if name != "random" and name not in SHAPENAMES: pretty_log("Shape name {} not in dict, choosing randomly".format(name)) name = "random" if name == "random": name = random.choice(SHAPENAMES) if not opts: opts = SHAPE_HELPERS[name]() opts["labelme"] = False return SHAPEFNS[name](**opts), opts, name def options_cube(): return {"size": np.random.randint(SMALL, LARGE)} def options_hollow_cube(): opts = {} opts["size"] = np.random.randint(SMALL, LARGE) opts["thickness"] = np.random.randint(1, opts["size"] - 3) return opts def options_rectanguloid(): return {"size": np.random.randint(SMALL, LARGE, size=3)} def options_hollow_rectanguloid(): opts = {} opts["size"] = np.random.randint(SMALL, LARGE, size=3) ms = min(opts["size"]) opts["thickness"] = np.random.randint(1, ms - 3) return opts def options_sphere(): return {"radius": np.random.randint(SMALL, LARGE)} def options_spherical_shell(): opts = {} opts["radius"] = np.random.randint(SMALL, LARGE) opts["thickness"] = np.random.randint(1, opts["radius"] - 3) return opts def options_square_pyramid(): opts = {} opts["radius"] = np.random.randint(SMALL, LARGE) opts["slope"] = np.random.rand() * 0.4 + 0.8 fullheight = opts["radius"] * opts["slope"] opts["height"] = np.random.randint(0.5 * fullheight, fullheight) return opts def options_square(): return {"size": np.random.randint(SMALL, LARGE), "orient": sh.orientation3()} def options_rectangle(): return {"size": np.random.randint(SMALL, LARGE, size=2), "orient": sh.orientation3()} def options_circle(): return {"radius": np.random.randint(SMALL, LARGE), "orient": sh.orientation3()} def options_disk(): return {"radius": np.random.randint(SMALL, LARGE), "orient": sh.orientation3()} def options_triangle(): return {"size": np.random.randint(SMALL, LARGE), "orient": sh.orientation3()} def options_dome(): return {"radius": np.random.randint(SMALL, LARGE)} def options_arch(): return {"size": np.random.randint(SMALL, LARGE), "distance": 2 * np.random.randint(2, 5) + 1} def options_ellipsoid(): return {"size": np.random.randint(SMALL, LARGE, size=3)} def options_tower(): return {"height":
np.random.randint(3, 30)
numpy.random.randint
""" .. module:: VisMPL :platform: Unix, Windows :synopsis: Matplotlib visualization component for NURBS-Python .. moduleauthor:: <NAME> <<EMAIL>> """ from geomdl import vis import numpy as np import matplotlib as mpl import matplotlib.tri as mpltri import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from matplotlib import animation class VisConfig(vis.VisConfigAbstract): """ Configuration class for Matplotlib visualization module. This class is only required when you would like to change the visual defaults of the plots and the figure, such as hiding control points plot or legend. The ``VisMPL`` module has the following configuration variables: * ``ctrlpts`` (bool): Control points polygon/grid visibility. *Default: True* * ``evalpts`` (bool): Curve/surface points visibility. *Default: True* * ``bbox`` (bool): Bounding box visibility. *Default: False* * ``legend`` (bool): Figure legend visibility. *Default: True* * ``axes`` (bool): Axes and figure grid visibility. *Default: True* * ``labels`` (bool): Axis labels visibility. *Default: True* * ``trims`` (bool): Trim curves visibility. *Default: True* * ``axes_equal`` (bool): Enables or disables equal aspect ratio for the axes. *Default: True* * ``figure_size`` (list): Size of the figure in (x, y). *Default: [10, 8]* * ``figure_dpi`` (int): Resolution of the figure in DPI. *Default: 96* * ``trim_size`` (int): Size of the trim curves. *Default: 20* * ``alpha`` (float): Opacity of the evaluated points. *Default: 1.0* There is also a ``debug`` configuration variable which currently adds quiver plots to 2-dimensional curves to show their directions. The following example illustrates the usage of the configuration class. .. code-block:: python :linenos: # Create a curve (or a surface) instance curve = NURBS.Curve() # Skipping degree, knot vector and control points assignments # Create a visualization configuration instance with no legend, no axes and set the resolution to 120 dpi vis_config = VisMPL.VisConfig(legend=False, axes=False, figure_dpi=120) # Create a visualization method instance using the configuration above vis_obj = VisMPL.VisCurve2D(vis_config) # Set the visualization method of the curve object curve.vis = vis_obj # Plot the curve curve.render() Please refer to the **Examples Repository** for more details. """ def __init__(self, **kwargs): super(VisConfig, self).__init__(**kwargs) self.dtype = np.float self.display_ctrlpts = kwargs.get('ctrlpts', True) self.display_evalpts = kwargs.get('evalpts', True) self.display_bbox = kwargs.get('bbox', False) self.display_legend = kwargs.get('legend', True) self.display_axes = kwargs.get('axes', True) self.display_labels = kwargs.get('labels', True) self.display_trims = kwargs.get('trims', True) self.axes_equal = kwargs.get('axes_equal', True) self.figure_size = kwargs.get('figure_size', [10, 8]) self.figure_dpi = kwargs.get('figure_dpi', 96) self.trim_size = kwargs.get('trim_size', 20) self.alpha = kwargs.get('alpha', 1.0) self.figure_image_filename = "temp-figure.png" self.debug_mode = kwargs.get('debug', False) # debugging mode for determining the trim directions @staticmethod def set_axes_equal(ax): """ Sets equal aspect ratio across the three axes of a 3D plot. Contributed by <NAME>. :param ax: a Matplotlib axis, e.g., as output from plt.gca(). """ bounds = [ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()] ranges = [abs(bound[1] - bound[0]) for bound in bounds] centers = [np.mean(bound) for bound in bounds] radius = 0.5 * max(ranges) lower_limits = centers - radius upper_limits = centers + radius ax.set_xlim3d([lower_limits[0], upper_limits[0]]) ax.set_ylim3d([lower_limits[1], upper_limits[1]]) ax.set_zlim3d([lower_limits[2], upper_limits[2]]) @staticmethod def save_figure_as(fig, filename): """ Saves the figure as a file. :param fig: a Matplotlib figure instance :param filename: file name to save """ if filename is not None: fig.savefig(str(filename), bbox_inches='tight') def is_notebook(self): """ Detects if Jupyter notebook GUI toolkit is active return: True if the module is running inside a Jupyter notebook rtype: bool """ return True if "nbAgg" == mpl.get_backend() else False class VisCurve2D(vis.VisAbstract): """ Matplotlib visualization module for 2D curves """ def __init__(self, config=VisConfig(), **kwargs): super(VisCurve2D, self).__init__(config, **kwargs) def render(self, **kwargs): """ Plots the 2D curve and the control points polygon. """ # Calling parent function super(VisCurve2D, self).render(**kwargs) # Initialize variables legend_proxy = [] legend_names = [] # Draw control points polygon and the curve fig = plt.figure(figsize=self.vconf.figure_size, dpi=self.vconf.figure_dpi) ax = fig.gca() # Start plotting for plot in self._plots: pts = np.array(plot['ptsarr'], dtype=self.vconf.dtype) # Plot control points if plot['type'] == 'ctrlpts' and self.vconf.display_ctrlpts: cpplot, = plt.plot(pts[:, 0], pts[:, 1], color=plot['color'], linestyle='-.', marker='o') legend_proxy.append(cpplot) legend_names.append(plot['name']) # Plot evaluated points if plot['type'] == 'evalpts' and self.vconf.display_evalpts: curveplt, = plt.plot(pts[:, 0], pts[:, 1], color=plot['color'], linestyle='-', alpha=self.vconf.alpha) legend_proxy.append(curveplt) legend_names.append(plot['name']) # Debugging for curve directions if self.vconf.debug_mode: plt.quiver(pts[0, 0], pts[0, 1], pts[-1, 0] - pts[0, 0], pts[-1, 1] - pts[0, 1], color='k', angles='xy', scale_units='xy', scale=1, width=0.003) # Plot bounding box if plot['type'] == 'bbox' and self.vconf.display_bbox: bboxplt, = plt.plot(pts[:, 0], pts[:, 1], color=plot['color'], linestyle='--') legend_proxy.append(bboxplt) legend_names.append(plot['name']) # Plot extras if plot['type'] == 'extras': extrasplt, = plt.plot(pts[:, 0], pts[:, 1], color=plot['color'][0], linestyle='-', linewidth=plot['color'][1]) legend_proxy.append(extrasplt) legend_names.append(plot['name']) # Add legend if self.vconf.display_legend: plt.legend(legend_proxy, legend_names) # Remove axes if not self.vconf.display_axes: plt.axis('off') # Set aspect ratio if self.vconf.axes_equal: ax.set_aspect('equal') # Axis labels if self.vconf.display_labels: ax.set_xlabel('x') ax.set_ylabel('y') # Process keyword arguments fig_filename = kwargs.get('fig_save_as', None) fig_display = kwargs.get('display_plot', True) # Check if running inside a Jupyter notebook if not self.vconf.is_notebook(): # Display the plot or save the figure if fig_display: plt.show() else: fig_filename = self.vconf.figure_image_filename if fig_filename is None else fig_filename self.vconf.save_figure_as(fig, fig_filename) class VisCurve3D(vis.VisAbstract): """ Matplotlib visualization module for 3D curves. """ def __init__(self, config=VisConfig(), **kwargs): super(VisCurve3D, self).__init__(config, **kwargs) def render(self, **kwargs): """ Plots the 3D curve and the control points polygon. """ # Calling parent function super(VisCurve3D, self).render(**kwargs) # Initialize variables legend_proxy = [] legend_names = [] # Draw control points polygon and the 3D curve fig = plt.figure(figsize=self.vconf.figure_size, dpi=self.vconf.figure_dpi) ax = Axes3D(fig) # Start plotting for plot in self._plots: pts = np.array(plot['ptsarr'], dtype=self.vconf.dtype) # Try not to fail if the input is 2D if pts.shape[1] == 2: pts = np.c_[pts, np.zeros(pts.shape[0])] # Plot control points if plot['type'] == 'ctrlpts' and self.vconf.display_ctrlpts: ax.plot(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'], linestyle='-.', marker='o') plot_proxy = mpl.lines.Line2D([0], [0], linestyle='-.', color=plot['color'], marker='o') legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot evaluated points if plot['type'] == 'evalpts' and self.vconf.display_evalpts: ax.plot(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'], linestyle='-', alpha=self.vconf.alpha) plot_proxy = mpl.lines.Line2D([0], [0], linestyle='-', color=plot['color']) legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot bounding box if plot['type'] == 'bbox' and self.vconf.display_bbox: ax.plot(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'], linestyle='--') plot_proxy = mpl.lines.Line2D([0], [0], linestyle='--', color=plot['color']) legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot extras if plot['type'] == 'extras': ax.plot(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'][0], linestyle='-', linewidth=plot['color'][1]) plot_proxy = mpl.lines.Line2D([0], [0], linestyle='-', color=plot['color'][0]) legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Add legend to 3D plot, @ref: https://stackoverflow.com/a/20505720 if self.vconf.display_legend: ax.legend(legend_proxy, legend_names, numpoints=1) # Remove axes if not self.vconf.display_axes: plt.axis('off') # Set axes equal if self.vconf.axes_equal: self.vconf.set_axes_equal(ax) # Axis labels if self.vconf.display_labels: ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') # Process keyword arguments fig_filename = kwargs.get('fig_save_as', None) fig_display = kwargs.get('display_plot', True) # Check if running inside a Jupyter notebook if not self.vconf.is_notebook(): # Display the plot or save the figure if fig_display: plt.show() else: fig_filename = self.vconf.figure_image_filename if fig_filename is None else fig_filename self.vconf.save_figure_as(fig, fig_filename) class VisSurface(vis.VisAbstract): """ Matplotlib visualization module for surfaces. Wireframe plot for the control points and triangulated plot (using ``plot_trisurf``) for the surface points. The surface is triangulated externally using :py:func:`.utilities.make_triangle_mesh()` function. """ def __init__(self, config=VisConfig(), **kwargs): super(VisSurface, self).__init__(config, **kwargs) self._module_config['ctrlpts'] = "quads" self._module_config['evalpts'] = "triangles" def animate(self, **kwargs): """ Animates the surface. This function only animates the triangulated surface. There will be no other elements, such as control points grid or bounding box. Keyword arguments: * ``colormap``: applies colormap to the surface Colormaps are a visualization feature of Matplotlib. They can be used for several types of surface plots via the following import statement: ``from matplotlib import cm`` The following link displays the list of Matplolib colormaps and some examples on colormaps: https://matplotlib.org/tutorials/colors/colormaps.html """ # Calling parent render function super(VisSurface, self).render(**kwargs) # Colormaps surf_cmaps = kwargs.get('colormap', None) # Initialize variables tri_idxs = [] vert_coords = [] trisurf_params = [] frames = [] frames_tris = [] num_vertices = 0 # Start plotting of the surface and the control points grid fig = plt.figure(figsize=self.vconf.figure_size, dpi=self.vconf.figure_dpi) ax = Axes3D(fig) # Start plotting surf_count = 0 for plot in self._plots: # Plot evaluated points if plot['type'] == 'evalpts' and self.vconf.display_evalpts: # Use internal triangulation algorithm instead of Qhull (MPL default) verts = plot['ptsarr'][0] tris = plot['ptsarr'][1] # Extract zero-indexed vertex number list tri_idxs += [[ti + num_vertices for ti in tri.data] for tri in tris] # Extract vertex coordinates vert_coords += [vert.data for vert in verts] # Update number of vertices num_vertices = len(vert_coords) # Determine the color or the colormap of the triangulated plot params = {} if surf_cmaps: try: params['cmap'] = surf_cmaps[surf_count] surf_count += 1 except IndexError: params['color'] = plot['color'] else: params['color'] = plot['color'] trisurf_params += [params for _ in range(len(tris))] # Pre-processing for the animation pts = np.array(vert_coords, dtype=self.vconf.dtype) # Create the frames (Artists) for tidx, pidx in zip(tri_idxs, trisurf_params): frames_tris.append(tidx) # Create MPL Triangulation object triangulation = mpltri.Triangulation(pts[:, 0], pts[:, 1], triangles=frames_tris) # Use custom Triangulation object and the choice of color/colormap to plot the surface p3df = ax.plot_trisurf(triangulation, pts[:, 2], alpha=self.vconf.alpha, **pidx) # Add to frames list frames.append([p3df]) # Create MPL ArtistAnimation ani = animation.ArtistAnimation(fig, frames, interval=100, blit=True, repeat_delay=1000) # Remove axes if not self.vconf.display_axes: plt.axis('off') # Set axes equal if self.vconf.axes_equal: self.vconf.set_axes_equal(ax) # Axis labels if self.vconf.display_labels: ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') # Process keyword arguments fig_filename = kwargs.get('fig_save_as', None) fig_display = kwargs.get('display_plot', True) # Check if running inside a Jupyter notebook if not self.vconf.is_notebook(): # Display the plot or save the figure if fig_display: plt.show() else: fig_filename = self.vconf.figure_image_filename if fig_filename is None else fig_filename self.vconf.save_figure_as(fig, fig_filename) def render(self, **kwargs): """ Plots the surface and the control points grid. Keyword arguments: * ``colormap``: applies colormap to the surface Colormaps are a visualization feature of Matplotlib. They can be used for several types of surface plots via the following import statement: ``from matplotlib import cm`` The following link displays the list of Matplolib colormaps and some examples on colormaps: https://matplotlib.org/tutorials/colors/colormaps.html """ # Calling parent function super(VisSurface, self).render(**kwargs) # Colormaps surf_cmaps = kwargs.get('colormap', None) # Initialize variables legend_proxy = [] legend_names = [] # Start plotting of the surface and the control points grid fig = plt.figure(figsize=self.vconf.figure_size, dpi=self.vconf.figure_dpi) ax = Axes3D(fig) surf_count = 0 # Start plotting for plot in self._plots: # Plot control points if plot['type'] == 'ctrlpts' and self.vconf.display_ctrlpts: vertices = [v.data for v in plot['ptsarr'][0]] faces = [q.data for q in plot['ptsarr'][1]] for q in faces: el = np.array([vertices[i] for i in q], dtype=self.vconf.dtype) el[:, 2] += self._ctrlpts_offset pc3d = Poly3DCollection([el], alpha=0.0, edgecolors=plot['color'], linewidths=1.0, linestyles='-.') pc3d.set_facecolor(None) ax.add_collection3d(pc3d) pts = np.array(vertices, dtype=self.vconf.dtype) pts[:, 2] += self._ctrlpts_offset ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'], linestyle='-.', marker='o') plot_proxy = mpl.lines.Line2D([0], [0], linestyle='-.', color=plot['color'], marker='o') legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot evaluated points if plot['type'] == 'evalpts' and self.vconf.display_evalpts: # Use internal triangulation algorithm instead of Qhull (MPL default) verts = plot['ptsarr'][0] tris = plot['ptsarr'][1] # Extract zero-indexed vertex number list tri_idxs = [tri.data for tri in tris] # Extract vertex coordinates vert_coords = [vert.data for vert in verts] pts = np.array(vert_coords, dtype=self.vconf.dtype) # Determine the color or the colormap of the triangulated plot trisurf_params = {} if surf_cmaps: try: trisurf_params['cmap'] = surf_cmaps[surf_count] surf_count += 1 except IndexError: trisurf_params['color'] = plot['color'] else: trisurf_params['color'] = plot['color'] # Create MPL Triangulation object if pts.size != 0: triangulation = mpltri.Triangulation(pts[:, 0], pts[:, 1], triangles=tri_idxs) # Use custom Triangulation object and the choice of color/colormap to plot the surface ax.plot_trisurf(triangulation, pts[:, 2], alpha=self.vconf.alpha, **trisurf_params) # Add to legend plot_proxy = mpl.lines.Line2D([0], [0], linestyle='none', color=plot['color'], marker='^') legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot bounding box if plot['type'] == 'bbox' and self.vconf.display_bbox: pts = np.array(plot['ptsarr'], dtype=self.vconf.dtype) ax.plot(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'], linestyle='--') plot_proxy = mpl.lines.Line2D([0], [0], linestyle='--', color=plot['color']) legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot trim curves if self.vconf.display_trims: if plot['type'] == 'trimcurve': pts = np.array(plot['ptsarr'], dtype=self.vconf.dtype) ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'], marker='o', s=self.vconf.trim_size, depthshade=False) plot_proxy = mpl.lines.Line2D([0], [0], linestyle='none', color=plot['color'], marker='o') legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot extras if plot['type'] == 'extras': pts = np.array(plot['ptsarr'], dtype=self.vconf.dtype) ax.plot(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'][0], linestyle='-', linewidth=plot['color'][1]) plot_proxy = mpl.lines.Line2D([0], [0], linestyle='-', color=plot['color'][0]) legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Add legend to 3D plot, @ref: https://stackoverflow.com/a/20505720 if self.vconf.display_legend: ax.legend(legend_proxy, legend_names, numpoints=1) # Remove axes if not self.vconf.display_axes: plt.axis('off') # Set axes equal if self.vconf.axes_equal: self.vconf.set_axes_equal(ax) # Axis labels if self.vconf.display_labels: ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') # Process keyword arguments fig_filename = kwargs.get('fig_save_as', None) fig_display = kwargs.get('display_plot', True) # Check if running inside a Jupyter notebook if not self.vconf.is_notebook(): # Display the plot or save the figure if fig_display: plt.show() else: fig_filename = self.vconf.figure_image_filename if fig_filename is None else fig_filename self.vconf.save_figure_as(fig, fig_filename) class VisSurfWireframe(vis.VisAbstract): """ Matplotlib visualization module for surfaces. Scatter plot for the control points and wireframe plot for the surface points. """ def __init__(self, config=VisConfig(), **kwargs): super(VisSurfWireframe, self).__init__(config, **kwargs) self._module_config['ctrlpts'] = "points" self._module_config['evalpts'] = "quads" def render(self, **kwargs): """ Plots the surface and the control points grid. """ # Calling parent function super(VisSurfWireframe, self).render(**kwargs) # Initialize variables legend_proxy = [] legend_names = [] # Start plotting of the surface and the control points grid fig = plt.figure(figsize=self.vconf.figure_size, dpi=self.vconf.figure_dpi) ax = Axes3D(fig) # Start plotting for plot in self._plots: # Plot control points if plot['type'] == 'ctrlpts' and self.vconf.display_ctrlpts: pts = np.array(plot['ptsarr'], dtype=self.vconf.dtype) cp_z = pts[:, 2] + self._ctrlpts_offset ax.scatter(pts[:, 0], pts[:, 1], cp_z, color=plot['color'], s=25, depthshade=True) plot_proxy = mpl.lines.Line2D([0], [0], linestyle='-.', color=plot['color'], marker='o') legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot evaluated points if plot['type'] == 'evalpts' and self.vconf.display_evalpts: vertices = [v.data for v in plot['ptsarr'][0]] faces = [q.data for q in plot['ptsarr'][1]] for q in faces: el = np.array([vertices[i] for i in q], dtype=self.vconf.dtype) el[:, 2] += self._ctrlpts_offset pc3d = Poly3DCollection([el], alpha=0.0, edgecolors=plot['color'], linewidths=0.5, linestyles='-') pc3d.set_facecolor(None) ax.add_collection3d(pc3d) pts = np.array(vertices, dtype=self.vconf.dtype) ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'], s=5) plot_proxy = mpl.lines.Line2D([0], [0], linestyle='-', color=plot['color']) legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot bounding box if plot['type'] == 'bbox' and self.vconf.display_bbox: pts = np.array(plot['ptsarr'], dtype=self.vconf.dtype) ax.plot(pts[:, 0], pts[:, 1], pts[:, 2], color=plot['color'], linestyle='--') plot_proxy = mpl.lines.Line2D([0], [0], linestyle='--', color=plot['color']) legend_proxy.append(plot_proxy) legend_names.append(plot['name']) # Plot trim curves if self.vconf.display_trims: if plot['type'] == 'trimcurve': pts =
np.array(plot['ptsarr'], dtype=self.vconf.dtype)
numpy.array
# pylint: disable=R0201 import os import numpy as np import pytest from PartSegImage import Image, ImageWriter, TiffImageReader from PartSegImage.image import FRAME_THICKNESS class TestImageBase: image_class = Image def needed_shape(self, shape, axes: str, drop: str): new_axes = self.image_class.axis_order for el in drop: new_axes = new_axes.replace(el, "") res_shape = [1] * len(new_axes) for size, name in zip(shape, axes): res_shape[new_axes.index(name)] = size return tuple(res_shape) def image_shape(self, shape, axes): return self.needed_shape(shape, axes, "") def mask_shape(self, shape, axes): return self.needed_shape(shape, axes, "C") def reorder_axes_letter(self, letters: str): res = "".join(x for x in self.image_class.axis_order if x in letters) assert len(res) == len(letters) return res def prepare_mask_shape(self, shape): base_axes = set("TZYX") refer_axes = self.image_class.axis_order.replace("C", "") i, j = 0, 0 new_shape = [1] * len(refer_axes) for i, val in enumerate(refer_axes): if val in base_axes: new_shape[i] = shape[j] j += 1 return new_shape def prepare_image_initial_shape(self, shape, channel): new_shape = self.prepare_mask_shape(shape) new_shape.insert(self.image_class.axis_order.index("C"), channel) return new_shape def test_fit_mask_simple(self): initial_shape = self.prepare_image_initial_shape([1, 10, 20, 20], 1) data = np.zeros(initial_shape, np.uint8) image = self.image_class(data, (1, 1, 1), "") mask = np.zeros((1, 10, 20, 20), np.uint8) mask[0, 2:-2, 4:-4, 4:-4] = 5 image.fit_mask_to_image(mask) def test_fit_mask_mapping_val(self): initial_shape = self.prepare_image_initial_shape([1, 10, 20, 20], 1) data = np.zeros(initial_shape, np.uint8) image = self.image_class(data, (1, 1, 1), "") mask = np.zeros((1, 10, 20, 20), np.uint16) mask[0, 2:-2, 4:-4, 4:10] = 5 mask[0, 2:-2, 4:-4, 11:-4] = 7 mask2 = image.fit_mask_to_image(mask) assert np.all(np.unique(mask2) == [0, 1, 2]) assert np.all(np.unique(mask) == [0, 5, 7]) map_arr = np.array([0, 0, 0, 0, 0, 1, 0, 2]) assert np.all(map_arr[mask] == mask2) assert mask2.dtype == np.uint8 def test_fit_mask_to_image_change_type(self): initial_shape = self.prepare_image_initial_shape([1, 30, 50, 50], 1) data = np.zeros(initial_shape, np.uint8) image = self.image_class(data, (1, 1, 1), "") mask_base = np.zeros(30 * 50 * 50, dtype=np.uint32) mask_base[:50] = np.arange(50, dtype=np.uint32) image.set_mask(np.reshape(mask_base, (1, 30, 50, 50))) assert image.mask.dtype == np.uint8 mask_base[:50] = np.arange(50, dtype=np.uint32) + 5 image.set_mask(np.reshape(mask_base, (1, 30, 50, 50))) assert image.mask.dtype == np.uint8 mask_base[:350] = np.arange(350, dtype=np.uint32) image.set_mask(np.reshape(mask_base, (1, 30, 50, 50))) assert image.mask.dtype == np.uint16 mask_base[:350] = np.arange(350, dtype=np.uint32) + 5 image.set_mask(np.reshape(mask_base, (1, 30, 50, 50))) assert image.mask.dtype == np.uint16 mask_base[: 2 ** 16 + 5] = np.arange(2 ** 16 + 5, dtype=np.uint32) image.set_mask(np.reshape(mask_base, (1, 30, 50, 50))) assert image.mask.dtype == np.uint32 mask_base[: 2 ** 16 + 5] = np.arange(2 ** 16 + 5, dtype=np.uint32) + 5 image.set_mask(np.reshape(mask_base, (1, 30, 50, 50))) assert image.mask.dtype == np.uint32 def test_image_mask(self): initial_shape = self.prepare_image_initial_shape([1, 10, 50, 50], 4) self.image_class(np.zeros(initial_shape), (5, 5, 5), mask=np.zeros((10, 50, 50))) self.image_class(np.zeros(initial_shape), (5, 5, 5), mask=np.zeros((1, 10, 50, 50))) with pytest.raises(ValueError): self.image_class(np.zeros((1, 10, 50, 50, 4)), (5, 5, 5), mask=np.zeros((1, 10, 50, 40))) with pytest.raises(ValueError): self.image_class(np.zeros((1, 10, 50, 50, 4)), (5, 5, 5), mask=np.zeros((1, 10, 50, 50, 4))) mask = np.zeros((1, 10, 50, 50)) mask[0, 2:-2] = 1 im = self.image_class(np.zeros(initial_shape), (5, 5, 5), mask=mask) assert np.all(im.mask == mask) def test_reorder_axes(self): fixed_array = self.image_class.reorder_axes(np.zeros((10, 20)), axes="XY") assert fixed_array.shape == self.image_shape((10, 20), "XY") fixed_image = self.image_class(np.zeros((10, 20)), image_spacing=(1, 1, 1), axes_order="XY") assert fixed_image.shape == self.image_shape((10, 20), "XY") with pytest.raises(ValueError): Image.reorder_axes(np.zeros((10, 20)), axes="XYZ") def test_reorder_axes_with_mask(self): im = self.image_class(np.zeros((10, 50, 50, 4)), (5, 5, 5), mask=np.zeros((10, 50, 50)), axes_order="ZYXC") assert im.shape == self.image_shape((10, 50, 50, 4), "ZYXC") # (1, 10, 50, 50, 4) im = self.image_class(np.zeros((50, 10, 50, 4)), (5, 5, 5), mask=np.zeros((50, 10, 50)), axes_order="YZXC") assert im.shape == self.image_shape((50, 10, 50, 4), "YZXC") # (1, 10, 50, 50, 4) def test_wrong_dim_create(self): with pytest.raises(ValueError) as exception_info: self.image_class(np.zeros((10, 20)), (1, 1, 1), axes_order="XYZ") assert "Data should" in str(exception_info.value) def test_channel_pos(self): initial_shape = self.prepare_image_initial_shape([1, 10, 20, 20], 1) image = self.image_class(np.zeros(initial_shape), (1, 1, 1), "") assert image.channel_pos == image.axis_order.index("C") def test_get_dimension_number(self): assert ( self.image_class( np.zeros((1, 10, 20, 20, 1), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_number() == 3 ) assert ( self.image_class( np.zeros((1, 1, 20, 20, 1), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_number() == 2 ) assert ( self.image_class( np.zeros((10, 1, 20, 20, 1), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_number() == 3 ) assert ( self.image_class( np.zeros((1, 1, 20, 20, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_number() == 3 ) assert ( self.image_class( np.zeros((10, 1, 20, 20, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_number() == 4 ) assert ( self.image_class( np.zeros((10, 3, 20, 20, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_number() == 5 ) def test_get_dimension_letters(self): assert self.image_class( np.zeros((1, 10, 20, 20, 1), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_letters() == self.reorder_axes_letter("ZYX") assert self.image_class( np.zeros((1, 1, 20, 20, 1), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_letters() == self.reorder_axes_letter("YX") assert self.image_class( np.zeros((10, 1, 20, 20, 1), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_letters() == self.reorder_axes_letter("TYX") assert self.image_class( np.zeros((1, 1, 20, 20, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_letters() == self.reorder_axes_letter("YXC") assert self.image_class( np.zeros((10, 1, 20, 20, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_letters() == self.reorder_axes_letter("TYXC") assert self.image_class( np.zeros((10, 3, 20, 20, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC" ).get_dimension_letters() == self.reorder_axes_letter("TZYXC") def test_set_mask(self): initial_shape = self.prepare_image_initial_shape([1, 10, 20, 30], 1) image = self.image_class(np.zeros(initial_shape, np.uint8), (1, 1, 1), "") assert image.mask is None assert not image.has_mask image.set_mask(np.ones((10, 20, 30), np.uint8)) assert image.mask.shape == tuple(self.prepare_mask_shape((1, 10, 20, 30))) assert image.has_mask assert np.all(image.mask == 1) image.set_mask(np.full((10, 20, 30), 5, np.uint8)) assert image.mask.shape == tuple(self.prepare_mask_shape((1, 10, 20, 30))) assert np.all(image.mask == 1) mask = np.full((10, 20, 30), 5, np.uint8) mask[0, 0, 0] = 1 image.set_mask(mask) assert image.mask.shape == tuple(self.prepare_mask_shape((1, 10, 20, 30))) assert np.all(np.bincount(image.mask.flat) == (0, 1, 10 * 20 * 30 - 1)) image.set_mask(None) assert image.mask is None def test_set_mask_reorder(self): image = self.image_class(np.zeros((1, 10, 20, 30, 1), np.uint8), (1, 1, 1), "", axes_order="TZYXC") image.set_mask(np.ones((30, 20, 10), np.uint8), "XYZ") assert image.mask.shape == self.mask_shape((1, 10, 20, 30), "TZYX") def test_get_image_for_save(self): image = self.image_class(np.zeros((1, 10, 3, 20, 30), np.uint8), (1, 1, 1), "", axes_order="TZCYX") assert image.get_image_for_save().shape == (1, 10, 3, 20, 30) image = self.image_class(np.zeros((1, 10, 20, 30, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC") assert image.get_image_for_save().shape == (1, 10, 3, 20, 30) def test_get_mask_for_save(self): image = self.image_class(np.zeros((1, 10, 3, 20, 30), np.uint8), (1, 1, 1), "", axes_order="TZCYX") assert image.get_mask_for_save() is None image.set_mask(np.zeros((1, 10, 20, 30), np.uint8), axes="TZYX") assert image.get_mask_for_save().shape == (1, 10, 1, 20, 30) def test_image_properties(self): image = self.image_class(np.zeros((1, 10, 20, 30, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC") assert not image.has_mask assert not image.is_time assert image.is_stack assert not image.is_2d assert image.channels == 3 assert image.layers == 10 assert image.times == 1 assert image.plane_shape == (20, 30) def test_swap_time_and_stack(self): image = self.image_class(np.zeros((1, 10, 20, 30, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC") image2 = image.swap_time_and_stack() assert image.times == 1 assert image.layers == 10 assert image2.times == 10 assert image2.layers == 1 def test_get_channel(self): image = self.image_class( np.zeros((1, 10, 20, 30, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC", channel_names=["a", "b", "c"] ) channel = image.get_channel(1) assert channel.shape == self.mask_shape((1, 10, 20, 30), "TZYX") channel = image.get_channel("b") assert channel.shape == self.mask_shape((1, 10, 20, 30), "TZYX") with pytest.raises(IndexError): image.get_channel(4) def test_get_layer(self): image = self.image_class(np.zeros((1, 10, 20, 30, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC") layer = image.get_layer(0, 5) assert layer.shape == self.needed_shape((20, 30, 3), "YXC", "TZ") def test_spacing(self): image = self.image_class(np.zeros((1, 10, 20, 30, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC") assert image.spacing == (1, 1, 1) assert image.voxel_size == (1, 1, 1) image.set_spacing((1, 2, 3)) assert image.spacing == (1, 2, 3) assert image.voxel_size == (1, 2, 3) with pytest.raises(ValueError): image.set_spacing((1, 2, 3, 4)) with pytest.raises(TypeError): # noinspection PyTypeChecker image.set_spacing(1) image.set_spacing((1, 0, 4)) assert image.spacing == (1, 2, 3) assert image.voxel_size == (1, 2, 3) def test_spacing_2d(self): image = self.image_class(np.zeros((1, 1, 20, 30, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC") assert image.spacing == (1, 1) assert image.voxel_size == (1, 1) image.set_spacing((1, 2)) assert image.spacing == (1, 2) assert image.voxel_size == (1, 2) def test_cut_image(self): # TODO add tests for more irregular shape image = self.image_class(np.zeros((1, 10, 20, 30, 3), np.uint8), (1, 1, 1), "", axes_order="TZYXC") mask1 = np.zeros((1, 10, 20, 30), np.uint8) mask1[0, 2:-2, 2:9, 2:-2] = 1 mask1[0, 2:-2, 11:-2, 2:-2] = 2 image.set_mask(mask1, "TZYX") mask = image.mask image.set_mask(np.zeros((1, 10, 20, 30), np.uint8), "TZYX") im = image.cut_image(mask == 1, replace_mask=False) assert np.all(im.mask == 0) assert im.shape == self.image_shape((1, 10, 11, 30, 3), axes="TZYXC") im = image.cut_image(mask == 2, replace_mask=True) assert np.all( im.mask[ :, FRAME_THICKNESS:-FRAME_THICKNESS, FRAME_THICKNESS:-FRAME_THICKNESS, FRAME_THICKNESS:-FRAME_THICKNESS ] == 1 ) assert im.shape == self.image_shape((1, 10, 11, 30, 3), axes="TZYXC") # Test cutting with list of slices points = np.nonzero(mask == 2) lower_bound = np.min(points, axis=1) upper_bound =
np.max(points, axis=1)
numpy.max
import math import os import numpy as np import pygame from gym import spaces from gym.utils import seeding from scipy.spatial import distance as ssd from .._utils import Agent os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = 'hide' class Archea(Agent): def __init__(self, idx, radius, n_sensors, sensor_range, max_accel, speed_features=True): self._idx = idx self._radius = radius self._n_sensors = n_sensors self._sensor_range = sensor_range self._max_accel = max_accel # Number of observation coordinates from each sensor self._sensor_obscoord = 5 if speed_features: self._sensor_obscoord += 3 self._sensor_obs_coord = self._n_sensors * self._sensor_obscoord self._obs_dim = self._sensor_obs_coord + 2 # +1 for is_colliding_evader, +1 for is_colliding_poison self._position = None self._velocity = None # Generate self._n_sensors angles, evenly spaced from 0 to 2pi # We generate 1 extra angle and remove it because linspace[0] = 0 = 2pi = linspace[-1] angles = np.linspace(0., 2. * np.pi, self._n_sensors + 1)[:-1] # Convert angles to x-y coordinates sensor_vectors = np.c_[np.cos(angles), np.sin(angles)] self._sensors = sensor_vectors @property def observation_space(self): return spaces.Box(low=np.float32(-np.sqrt(2)), high=np.float32(2 * np.sqrt(2)), shape=(self._obs_dim,), dtype=np.float32) @property def action_space(self): return spaces.Box(low=np.float32(-self._max_accel), high=np.float32(self._max_accel), shape=(2,), dtype=np.float32) @property def position(self): assert self._position is not None return self._position @property def velocity(self): assert self._velocity is not None return self._velocity def set_position(self, pos): assert pos.shape == (2,) self._position = pos def set_velocity(self, velocity): assert velocity.shape == (2,) self._velocity = velocity @property def sensors(self): assert self._sensors is not None return self._sensors def sensed(self, object_coord, object_radius, same=False): """Whether object would be sensed by the pursuers""" relative_coord = object_coord - np.expand_dims(self.position, 0) # Projection of object coordinate in direction of sensor sensorvals = self.sensors.dot(relative_coord.T) # Set sensorvals to np.inf when object should not be seen by sensor distance_squared = (relative_coord**2).sum(axis=1)[None, :] sensorvals[ (sensorvals < 0) # Wrong direction (by more than 90 degrees in both directions) | (sensorvals - object_radius > self._sensor_range) # Outside sensor range | (distance_squared - sensorvals**2 > object_radius**2) # Sensor does not intersect object ] = np.inf if same: # Set sensors values for sensing the current object to np.inf sensorvals[:, self._idx - 1] = np.inf return sensorvals def sense_barriers(self, min_pos=0, max_pos=1): sensor_vectors = self.sensors * self._sensor_range sensor_endpoints = sensor_vectors + self.position # Clip sensor lines on the environment's barriers. # Note that any clipped vectors may not be at the same angle as the original sensors clipped_endpoints = np.clip(sensor_endpoints, min_pos, max_pos) # Extract just the sensor vectors after clipping clipped_vectors = clipped_endpoints - self.position # Find the ratio of the clipped sensor vector to the original sensor vector # Scaling the vector by this ratio will limit the end of the vector to the barriers ratios = np.divide(clipped_vectors, sensor_vectors, out=np.ones_like(clipped_vectors), where=np.abs(sensor_vectors) > 0.00000001) # Find the minimum ratio (x or y) of clipped endpoints to original endpoints minimum_ratios = np.amin(ratios, axis=1) # Convert to 2d array of size (n_sensors, 1) sensor_values =
np.expand_dims(minimum_ratios, 0)
numpy.expand_dims
import unittest import os from datetime import datetime from datetime import timedelta import numpy as np from cassandra.cqlengine import connection from cassandra.cqlengine.query import BatchQuery from cassandra.cqlengine.management import sync_table from solar_data_pipeline.database.cassandra import CassandraDataAccess from solar_data_pipeline.database.models.measurements import MeasurementRaw from solar_data_pipeline.database.models.measurements import Geopoint @unittest.skip("This test accesses Cassandra database." + "Thus, this test will not be a part of continuous integration.") class TestCassandraDataAccess(unittest.TestCase): """ This test depends on Cassandra database thus cannot be run in Continuous Integration Server, since Cassandra database doesn't have in-memory database as sqlite in-memory database that can be used for testing in place of other relational database such as PostgreSQL or MySQL. """ @classmethod def setUpClass(self): input_power_signals_file_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "../../fixtures/one_year_power_signals_1.csv")) with open(input_power_signals_file_path) as file: one_year_power_signals = np.loadtxt(file, delimiter=',') # Use only 6 days in order to reduce execution time: TestCassandraDataAccess._power_signals_site_1 = one_year_power_signals[ :, :6] TestCassandraDataAccess._power_signals_site_2 = one_year_power_signals[ :, 6:12] # Temp: # import matplotlib.pyplot as plt # plt.imshow(TestCassandraDataAccess._power_signals_site_1) # plt.show() TestCassandraDataAccess._cassandra_ip_address = '127.0.0.1' connection.setup([TestCassandraDataAccess._cassandra_ip_address], "measurements") # Note: For now, populate database and keep the data. # When commit, make sure to put back the code to clean database. # start_time = datetime(2019, 1, 1, 0, 0, 0) # # TestCassandraDataAccess._raw_measurements = [] # TestCassandraDataAccess._populate_database( # TestCassandraDataAccess._power_signals_site_1, "SLACA0000001", # start_time) # TestCassandraDataAccess._populate_database( # TestCassandraDataAccess._power_signals_site_2, "SLACA0000002", # start_time) @classmethod def tearDownClass(self): # Note: For now, populate database and keep the data. # When commit, make sure to put back the code to clean database. # for raw_measurement in TestCassandraDataAccess._raw_measurements: # raw_measurement.delete() pass @classmethod def _populate_database(self, power_signals, site_name, start_time): timedelta_value = 0 for i, daily_signal in enumerate(power_signals.T): for j, value in enumerate(daily_signal): TestCassandraDataAccess._raw_measurements.append( MeasurementRaw.create( site = site_name, meas_name = "ac_power", ts = start_time + timedelta(minutes=timedelta_value), sensor = "000001-0A00-0001_ABC-1000p-AA-1", station = "001_inverter", company = "SLAC", lat_lon = Geopoint(latitude = 35.00000, longitude = -120.00000), meas_description = None, meas_status = True, meas_unit = "kW", meas_val_b = None, meas_val_f = value, meas_val_s = None) ) timedelta_value += 5 def _assert_number_of_matching_daily_signals(self, actual, original_data, expected_number_of_data_match): # data_match = (actual == original_data) data_match = np.array([np.allclose(actual[i], original_data[i], rtol=1e-04, atol=1e-06) for i in range(len(original_data))]) actual_number_of_data_match = np.sum(data_match) self.assertEqual(actual_number_of_data_match, expected_number_of_data_match) @unittest.skip("This test accesses Cassandra database." + "Thus, this test will not be a part of continuous integration.") def test_find_sites(self): data_access = CassandraDataAccess( TestCassandraDataAccess._cassandra_ip_address) actual_sites = data_access.find_sites("SLACA0000001") expected_sites = np.array(["SLACA0000001"]) np.testing.assert_array_equal(actual_sites, expected_sites) actual_nonexisting_sites = data_access.find_sites("SLACA9999999") expected_nonexisting_sites =
np.array([])
numpy.array
import re import math from collections import Counter import os import string from read import * import pandas as pd from pandas import ExcelWriter, ExcelFile import numpy as np import matplotlib.pyplot as plt import spacy from nltk.corpus import stopwords import nltk from sklearn.linear_model import LinearRegression from sklearn.cross_validation import train_test_split from sklearn.metrics import mean_squared_error from sklearn.externals import joblib import sendgrid from sendgrid.helpers.mail import * pd.options.mode.chained_assignment = None ''' CODES AND THEIR MEANINGS: ml -> Machine Learning bc -> Blockchain ai -> Artificial Intelligence su -> StartUp prod -> Product dev -> Development ''' ######################################### CUSTOM FUNCTIONS TO PERFORM TASKS ############################################# email_list = ["<EMAIL>","<EMAIL>", "<EMAIL>"] sg = sendgrid.SendGridAPIClient(apikey="<KEY>") WORD = re.compile(r'\w+') def custom_sum(df_list): #Custom sum function to calculate likes as some fields have video views as well in dataset summ = 0 #Initialising value to zero for val in df_list: #Running through the entire column if(type(val)!=int): #Checking if the value is a pure integer or not continue #If not, then continue to next value summ += val #Else add the val to summ return summ def custom_time_sum(df_list): #Custom time sum function to calculate the sum of times in the dataset by removing " hours" summ = 0 for val in df_list: #Checking for every value in the column val = val.replace(u' hours',u'') #Replacing " hours" with a null string summ += int(val) #Adding the integral value of hours to summ return summ def custom_time_list(df_list): #Custom time sum function to calculate the sum of times in the dataset by removing " hours" #print(df_list) for i in range(0,len(df_list)): #Checking for every value in the column df_list[i] = df_list[i].replace(u' hours',u'') #Replacing " hours" with a null string df_list[i] = int(df_list[i]) #Adding the integral value of hours to summ return df_list def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x]**2 for x in vec1.keys()]) sum2 = sum([vec2[x]**2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) return float(numerator) / denominator def text_to_vector(text): words = WORD.findall(text) return Counter(words) def dataset_hashtag_generator(df_list): try: nlp = spacy.load("en_core_web_sm") except: os.system("python3 -m spacy download en") nlp = spacy.load("en_core_web_sm") try: stopw = stopwords.words("english") except: os.system("python3 -m nltk.downloader stopwords") stopw = stopwords.words("english") noun_list = [] for i in range(0, len(df_list)-1): print(df_list[i]) try: if(np.isnan(df_list[i])): continue except: df_list[i] = re.sub(r'https?:\/\/.*\/\w*','',df_list[i]) # Remove hyperlinks df_list[i] = re.sub(r'['+string.punctuation+']+', ' ',df_list[i]) # Remove puncutations like 's df_list[i] = df_list[i].replace("#","") emoji_pattern = re.compile("["u"\U0001F600-\U0001F64F" u"\U0001F300-\U0001F5FF" u"\U0001F680-\U0001F6FF" u"\U0001F1E0-\U0001F1FF""]+", flags=re.UNICODE) #Removes emoji df_list[i] = emoji_pattern.sub(r'', df_list[i]) # no emoji doc = nlp(df_list[i]) temp_list = [] for sent in doc.sents: for token in sent: token_temp = str(token) if(token.pos_=="NOUN" and token.text not in stopw): #print(sent) #print(i, token.text) temp_list.append(token.text) noun_list.append(temp_list) temp_list = [] print(noun_list) return noun_list def caption_hashtag_generator(sentence): nlp = spacy.load("en_core_web_sm") stopw = stopwords.words("english") noun_list = [] sentence = re.sub(r'https?:\/\/.*\/\w*','',sentence) # Remove hyperlinks sentence = re.sub(r'['+string.punctuation+']+', ' ',sentence) # Remove puncutations like 's sentence = sentence.replace("#","") emoji_pattern = re.compile("["u"\U0001F600-\U0001F64F" u"\U0001F300-\U0001F5FF" u"\U0001F680-\U0001F6FF" u"\U0001F1E0-\U0001F1FF""]+", flags=re.UNICODE) #Removes emoji sentence = emoji_pattern.sub(r'', sentence) # no emoji doc = nlp(sentence) temp_list = [] for sent in doc.sents: for token in sent: token_temp = str(token) #print(sent) print(token.text, token.pos_) if(token.pos_=="NOUN" and token.text not in stopw): #print(sent) #print(i, token.text) temp_list.append(token.text) noun_list.append(temp_list) temp_list = [] #print(noun_list) return noun_list def data_science(df, df_list): hashtags = [] #Initialising hashtags list for hs in df["Hashtags"]: #Reading every hashtag that was used in posts hashtags += hs.split("#") #Every field in Hashtags column contains more than one hashtag so need to identify all. That's why using the split at # thing #print(hashtags) for elem in range(0,len(hashtags)): #If we print hashtags list before, it gives a non breaking space(\xa0) so need to replace it with null character or empty string hashtags[elem] = hashtags[elem].replace(u'\xa0',u'') #Replacement happens here #print(hashtags) fdist = nltk.FreqDist(hashtags) #freqdist function present in nltk fdist.plot(20) #Finding top 20 hashtags frame_ml.plot(x="Followers", y="Likes", figsize=(50,100), style="o") frame_ai.plot(x="Followers", y="Likes", figsize=(50,100), style="o") frame_bc.plot(x="Followers", y="Likes", figsize=(50,100), style="o") frame_su.plot(x="Followers", y="Likes", figsize=(50,100), style="o") frame_prod.plot(x="Followers", y="Likes", figsize=(50,100), style="o") frame_dev.plot(x="Followers", y="Likes", figsize=(50,100), style="o") plt.show() mean_likes_ml = round(custom_sum(frame_ml['Likes'].tolist())/len(frame_ml)) mean_likes_bc = round(custom_sum(frame_bc['Likes'].tolist())/len(frame_bc)) mean_likes_ai = round(custom_sum(frame_ai['Likes'].tolist())/len(frame_ai)) mean_likes_su = round(custom_sum(frame_su['Likes'].tolist())/len(frame_su)) mean_likes_prod = round(custom_sum(frame_prod['Likes'].tolist())/len(frame_prod)) mean_likes_dev = round(custom_sum(frame_dev['Likes'].tolist())/len(frame_dev)) mean_time_ml = round(custom_time_sum(frame_ml['Time since posted'].tolist())/len(frame_ml)) mean_time_bc = round(custom_time_sum(frame_bc['Time since posted'].tolist())/len(frame_bc)) mean_time_ai = round(custom_time_sum(frame_ai['Time since posted'].tolist())/len(frame_ai)) mean_time_su = round(custom_time_sum(frame_su['Time since posted'].tolist())/len(frame_su)) mean_time_prod = round(custom_time_sum(frame_prod['Time since posted'].tolist())/len(frame_prod)) mean_time_dev = round(custom_time_sum(frame_dev['Time since posted'].tolist())/len(frame_dev)) mean_follow_ml = round(np.sum(frame_ml['Followers'])/len(frame_ml)) mean_follow_bc = round(np.sum(frame_bc['Followers'])/len(frame_bc)) mean_follow_ai = round(np.sum(frame_ai['Followers'])/len(frame_ai)) mean_follow_su = round(np.sum(frame_su['Followers'])/len(frame_su)) mean_follow_prod = round(np.sum(frame_prod['Followers'])/len(frame_prod)) mean_follow_dev = round(
np.sum(frame_dev['Followers'])
numpy.sum
import numpy as np from powerbox.tools import angular_average_nd, angular_average, get_power from powerbox.powerbox import PowerBox import pytest def test_angular_avg_nd_3(): x = np.linspace(-3,3,400) X,Y = np.meshgrid(x,x) r2 = X**2 + Y**2 P = r2**-1. P = np.repeat(P,100).reshape(400,400,100) freq = [x,x,np.linspace(-2,2,100)] p_k, k_av_bins = angular_average_nd(P,freq,bins=50,n=2) print(p_k[6:,0], k_av_bins[6:]**-2.) assert np.max(np.abs((p_k[6:,0] - k_av_bins[6:]**-2.)/k_av_bins[6:]**-2.)) < 0.05 def test_angular_avg_nd_4_2(): x = np.linspace(-3,3,200) X,Y = np.meshgrid(x,x) r2 = X**2 + Y**2 P = r2**-1. P = np.repeat(P, 10).reshape(200,200,10) P = np.repeat(P, 10).reshape(200, 200, 10, 10) freq = [x,x,np.linspace(-2,2,10), np.linspace(-2,2,10)] p_k, k_av_bins = angular_average_nd(P,freq,bins=50,n=2) print(np.abs((p_k[7:,0,0] - k_av_bins[7:]**-2.)/k_av_bins[7:]**-2.)) assert np.max(np.abs((p_k[6:,0,0] - k_av_bins[6:]**-2.)/k_av_bins[6:]**-2.)) < 0.06 def test_angular_avg_nd_2_1_varnull(): x = np.linspace(-3,3,200) P = np.ones((200,10)) coords = [x, np.linspace(-2,2,10)] p_k, k_av_bins, var = angular_average_nd(P,coords, bins=20, n=1, get_variance=True) assert np.all(var==0) def test_null_variance_2d(): x = np.linspace(-3, 3, 400) X, Y = np.meshgrid(x, x) r2 = X ** 2 + Y ** 2 P = np.ones_like(r2) ave, coord, var = angular_average(P, np.sqrt(r2), bins=np.linspace(0,x.max(), 20), get_variance=True) assert np.all(var==0) def test_variance_2d(): x = np.linspace(-3, 3, 400) X, Y = np.meshgrid(x, x) r2 = X ** 2 + Y ** 2 P = np.ones_like(r2) P += np.random.normal(scale=1, size=(len(x), len(x))) ave, coord, var = angular_average(P, np.sqrt(r2), bins=np.linspace(0,x.max(), 20), get_variance=True) print(np.diff(var)) assert np.all(np.diff(var)<=0) def test_complex_variance(): x = np.linspace(-3, 3, 400) X, Y = np.meshgrid(x, x) r2 = X ** 2 + Y ** 2 P = np.ones_like(r2) + np.ones_like(r2)*1j with pytest.raises(NotImplementedError): ave, coord, var = angular_average(P, np.sqrt(r2), bins=np.linspace(0, x.max(), 20), get_variance=True) def test_bin_edges(): x = np.linspace(-3,3,200) X,Y = np.meshgrid(x,x) r2 = X**2 + Y**2 P = r2**-1. bins = np.linspace(0, x.max(), 20) ave, coord = angular_average(P, np.sqrt(r2), bins=bins, bin_ave=False) assert np.all(coord==bins) def test_sum(): x = np.linspace(-3, 3, 200) X, Y =
np.meshgrid(x, x)
numpy.meshgrid
from scipy import sparse #import matplotlib.pyplot as plt import os #import tensorflow as tf import numpy as np import scipy from mpl_toolkits.mplot3d import Axes3D from plyfile import PlyData, PlyElement # from IPython.display import clear_output import os from shapely.geometry import Point from shapely.geometry.polygon import Polygon import vispy.geometry from matplotlib import path from scipy.spatial.distance import cdist def totuple(a): return [ tuple(i) for i in a] def plotly_trisurf(V, TRIV): p3.clear() p3.plot_trisurf(V[:,0], V[:,1], V[:,2], triangles=TRIV) p3.scatter(V[:,0], V[:,1], V[:,2], marker='sphere', color='blue', size=0.33) p3.squarelim() p3.show() import time def TicTocGenerator(): # Generator that returns time differences ti = 0 # initial time tf = time.time() # final time while True: ti = tf tf = time.time() yield tf-ti # returns the time difference TicToc = TicTocGenerator() # create an instance of the TicTocGen generator # This will be the main function through which we define both tic() and toc() def toc(tempBool=True): # Prints the time difference yielded by generator instance TicToc tempTimeInterval = next(TicToc) if tempBool: print( "Elapsed time: %f seconds.\n" %tempTimeInterval ) def tic(): # Records a time in TicToc, marks the beginning of a time interval toc(False) #def pteval(X): def tfeval(X): gpu_options = tf.GPUOptions(allow_growth = True) config = tf.ConfigProto(device_count={'CPU': 1, 'GPU': 0}, allow_soft_placement = False, gpu_options=gpu_options) sess = tf.Session(config=config) tf.global_variables_initializer().run(session=sess) #[tfEvals, tfEvecs] = tf.self_adjoint_eig(X) #[evals, evecs] = sess.run( [tfEvals, tfEvecs] ); x = sess.run(tf.identity(X) ); sess.close(); return x def tfeig(X): gpu_options = tf.GPUOptions(allow_growth = True) config = tf.ConfigProto(device_count={'CPU': 1, 'GPU': 0}, allow_soft_placement = False, gpu_options=gpu_options) sess = tf.Session(config=config) tf.global_variables_initializer().run(session=sess) #[tfEvals, tfEvecs] = tf.self_adjoint_eig(X) #[evals, evecs] = sess.run( [tfEvals, tfEvecs] ); LAP = sess.run(tf.identity(X) ); sess.close(); [evals, evecs] = scipy.linalg.eigh(LAP); evals = np.diag(evals) return evals, evecs, LAP def load_mesh(path): VERT = np.loadtxt(path+'/mesh.vert') TRIV = np.loadtxt(path+'/mesh.triv',dtype='int32')-1 return VERT, TRIV def totuple(a): return [ tuple(i) for i in a] def save_ply(V,T,filename): if(V.shape[1]==2): Vt = np.zeros((V.shape[0],3)) Vt[:,0:2] = V V = Vt vertex = np.array(totuple(V),dtype=[('x', 'f4'), ('y', 'f4'),('z', 'f4')]) # print([ tuple([i]) for i in T]) face = np.array([ tuple([i]) for i in T],dtype=[('vertex_indices', 'i4', (3,))]) el1 = PlyElement.describe(vertex, 'vertex') el2 = PlyElement.describe(face, 'face') PlyData([el1,el2]).write(filename) #PlyData([el2]).write('some_binary.ply') def load_ply(fname): plydata = PlyData.read(fname) VERT = np.asarray([ (v[0],v[1],v[2]) for v in plydata.elements[0].data]) TRIV = np.asarray([ t[0] for t in plydata.elements[1].data]) return VERT,TRIV def ismember(T, pts): out = np.zeros(np.shape(T)[0]) for r in range(np.shape(T)[0]): s=0 for c in range(np.shape(T)[1]): if np.sum(T[r,c]==pts)>0: s=s+1; out[r] = s>0; return out def prepare_mesh(VERT,TRIV,dtype='float32'): edges = np.ones(shape=(np.shape(VERT)[0],np.shape(VERT)[0],2),dtype='int32')*-1 edges_count = np.zeros(shape=(np.shape(VERT)[0],np.shape(VERT)[0]),dtype='int32') def setedg(i,j,k): _setedg(i,j,k) _setedg(j,i,k) def _setedg(i,j,k): edges_count[i,j] +=1 if edges[i,j,0]==k: return if edges[i,j,1]==k: return if edges[i,j,0]==-1: # print(edges[i,j,0]) edges[i,j,0]=k else: edges[i,j,1]=k for ti in range(np.shape(TRIV)[0]): setedg(TRIV[ti,0],TRIV[ti,1],TRIV[ti,2]) setedg(TRIV[ti,2],TRIV[ti,0],TRIV[ti,1]) setedg(TRIV[ti,1],TRIV[ti,2],TRIV[ti,0]) n = np.shape(VERT)[0] m = int(np.sum( ((edges[:,:,0]>=0) + (edges[:,:,1]>=0)) >0)/2); map_ = np.ones(shape=(n,n),dtype='int32')*-1; invmap = np.ones(shape=(m,2),dtype='int32')*-1; iM = np.zeros(shape=(m,n),dtype=dtype); bound_edges = np.zeros(shape=(m,1),dtype='bool'); idx=0 for i in range(n): for j in range(i+1,n): if(edges[i,j,0]==-1 and edges[i,j,1]==-1): continue; map_[i,j] = idx; map_[j,i] = idx; invmap[idx,:] = [i,j] iM[idx,i] = 1; iM[idx,j] = -1; bound_edges[idx,0] = edges_count[i,j]<2 idx=idx+1; # print(idx) # Set Ael for existing edgeIdx with vertex i to 1 Ael = np.zeros(shape=(n,m),dtype=dtype); for i in range(n): Ael[i,map_[i,np.nonzero(map_[i,:]+1)]]=1 Ik = np.zeros(shape=(m,m),dtype=dtype); Ih = np.zeros(shape=(m,m),dtype=dtype); Ik_k = np.zeros(shape=(m,m,3),dtype=dtype); Ih_k =
np.zeros(shape=(m,m,3),dtype=dtype)
numpy.zeros
import pytest import numpy as np def test_randlanet_torch(): import torch import open3d.ml.torch as ml3d net = ml3d.models.RandLANet(num_points=5000, num_classes=10, dim_input=6) net.device = 'cpu' data = { 'point': np.array(np.random.random((1000, 3)), dtype=np.float32), 'feat': np.array(np.random.random((1000, 3)), dtype=np.float32), 'label': np.array([np.random.randint(10) for i in range(1000)], dtype=np.int32) } attr = {'split': 'train'} data = net.preprocess(data, attr) inputs = net.transform(data, attr) inputs = { 'xyz': [torch.from_numpy(np.array([item])) for item in inputs['xyz']], 'neigh_idx': [ torch.from_numpy(np.array([item])) for item in inputs['neigh_idx'] ], 'sub_idx': [ torch.from_numpy(np.array([item])) for item in inputs['sub_idx'] ], 'interp_idx': [ torch.from_numpy(
np.array([item])
numpy.array
import itertools as it import numpy as np import torch as tr import matplotlib.pyplot as pt from ghu import * from codec import Codec from controller import Controller from lvd import lvd from reinforce import * import json def trials(i, avgrew, avggen, gradnorm): print("***************************** Trial ",str(i+1)," *******************************") # Configuration num_symbols = 10 layer_sizes = {"rinp": 32, "rout":32, "rtemp":32} hidden_size = 32 rho = .99 plastic = [] num_episodes = 500 # Setup GHU symbols = [str(a) for a in range(num_symbols)] pathways, associations = default_initializer( # all to all layer_sizes.keys(), symbols) codec = Codec(layer_sizes, symbols, rho=rho, ortho=True) controller = Controller(layer_sizes, pathways, hidden_size, plastic) ghu = GatedHebbianUnit( layer_sizes, pathways, controller, codec, plastic=plastic, batch_size = num_episodes) ghu.associate(associations) # Initialize layers separator = symbols[0] ghu.fill_layers(separator) # Generate dataset input_length = 5 all_inputs = [
np.array(inputs)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @ package pi_FPE @ file marginsofstability.py @ author <NAME> @ brief calculates the margins of stability in ap and ml direction. Spits out the relavant PIs in yaml format. @usage: events = calcMOS(joint,com,events,trlinfo) Copyright (C) 2020 Vrije Universiteit Amsterdam (FGB-Human Movement Sciences) Distributed under the pache 2.0 license. """ import numpy as np def calcMOS(joint,com,events,trlinfo): print("Calculating Margins of Stability...") # get time vector t = joint.time # get sampling frequency fs = 1/np.nanmean(np.diff(t)) # set the gravitational acceleration g = 9.81 #m/s # event timing to index number lhs = np.array(events.l_heel_strike)*fs rhs = np.array(events.r_heel_strike)*fs lto = np.array(events.l_toe_off)*fs rto = np.array(events.r_toe_off)*fs # get toe markers ltoe = np.transpose(np.vstack((joint.l_TTII_x,joint.l_TTII_y,joint.l_TTII_z))) rtoe = np.transpose(np.vstack((joint.r_TTII_x,joint.r_TTII_y,joint.r_TTII_z))) # get heel markers lheel = np.transpose(np.vstack((joint.l_heel_x,joint.l_heel_y,joint.l_heel_z))) rheel = np.transpose(np.vstack((joint.r_heel_x,joint.r_heel_y,joint.r_heel_z))) # get hips rhip = np.transpose(np.vstack((joint.l_hip_x,joint.l_hip_y,joint.l_hip_z))) lhip = np.transpose(np.vstack((joint.r_hip_x,joint.r_hip_y,joint.r_hip_z))) # determine walking directions walkdir = np.argmax(np.ptp(
np.array(lheel)
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy.signal import * def srange(x): x -= x.min() x /= x.max() return x def signal(i,x,sigma,n1,n2,n3,n4): n_ftrs = x.shape[0] n = np.random.normal(0,sigma,n_ftrs) n1 =
np.random.uniform(1-n1,1+n1)
numpy.random.uniform
## interaction / scripts / create_translation_repository.py ''' This script will pre-calculate the translation operators for a given bounding box, max level, and frequency steps for a multi-level fast multipole algorithm. This can take hours to days depending on the number of threads available, size of bounding box, number of levels etc. The output is stored in a single H5 file. To use, run with a corresponding yaml config file for setting the input parameters. python create_translation_repository.py <path to config file> Author: <NAME> (<EMAIL>) ''' import numpy as np import pandas as pd import sqlite3 as sql import multiprocessing from itertools import repeat from contextlib import closing import os from tqdm import tqdm from interaction3.bem.core import fma_functions as fma from interaction3.bem.core.db_functions import get_order # register adapters for sqlite to convert numpy types sql.register_adapter(np.float64, float) sql.register_adapter(np.float32, float) sql.register_adapter(np.int64, int) sql.register_adapter(np.int32, int) ## PROCESS FUNCTIONS ## def generate_translations(file, f, k, dims, levels, orders_db): xdim, ydim = dims minlevel, maxlevel = levels for l in range(minlevel, maxlevel + 1): order = get_order(orders_db, f, l) qrule = fma.fft_quadrule(order, order) group_xdim, group_ydim = xdim / (2 ** l), ydim / (2 ** l) kcoordT = qrule['kcoordT'] theta = qrule['theta'] phi = qrule['phi'] unique_coords = fma.get_unique_coords() for coords in unique_coords: r = coords * np.array([group_xdim, group_ydim, 1]) rhat = r / fma.mag(r) cos_angle = rhat.dot(kcoordT) translation = np.ascontiguousarray(fma.mod_ff2nf_op(fma.mag(r), cos_angle, k, order)) with write_lock: with closing(sql.connect(file)) as conn: update_translations_table(conn, f, k, l, order, tuple(coords), theta, phi, translation) def init_process(_write_lock): global write_lock write_lock = _write_lock def process(proc_args): file, f, k, dims, levels, orders_db = proc_args generate_translations(file, f, k, dims, levels, orders_db) with write_lock: with closing(sql.connect(file)) as conn: update_progress(conn, f) ## ENTRY POINT ## def main(**kwargs): threads = kwargs['threads'] freqs = kwargs['freqs'] levels = kwargs['levels'] dims = kwargs['dims'] c = kwargs['sound_speed'] file = kwargs['file'] orders_db = kwargs['orders_db'] # set default threads to logical core count if threads is None: threads = multiprocessing.cpu_count() kwargs['threads'] = threads # path to this module's directory module_dir = os.path.dirname(os.path.realpath(__file__)) # set default file name for database if file is None: file = os.path.join(module_dir, 'translations_dims_{:0.4f}_{:0.4f}.db'.format(*dims)) kwargs['file'] = file # set default file nam of orders database to use if orders_db is None: orders_db = os.path.join(module_dir, 'orders_dims_{:0.4f}_{:0.4f}.db'.format(*dims)) kwargs['orders_db'] = orders_db # read orders database and form interpolating functions # orders_interp_funcs = get_orders_interp_funcs(orders_db, levels) # check for existing file if os.path.isfile(file): # conn = sql.connect(file) response = input('Database ' + str(file) + ' already exists. \nContinue (c), Overwrite (o), or Do nothing (' 'any other key)?') if response.lower() in ['o', 'overwrite']: os.remove(file) # determine frequencies and wavenumbers f_start, f_stop, f_step = freqs fs = np.arange(f_start, f_stop + f_step, f_step) ks = 2 * np.pi * fs / c # create database with closing(sql.connect(file)) as conn: # create database tables create_metadata_table(conn, **kwargs) create_frequencies_table(conn, fs, ks) create_levels_table(conn, levels) create_coordinates_table(conn) create_translations_table(conn) elif response.lower() in ['c', 'continue']: with closing(sql.connect(file)) as conn: query = ''' SELECT frequency, wavenumber FROM frequencies WHERE is_complete=0 ''' table = pd.read_sql(query, conn) fs = np.array(table['frequency']) ks = np.array(table['wavenumber']) else: raise Exception('Database already exists') else: # Make directories if they do not exist file_dir = os.path.dirname(file) if not os.path.exists(file_dir): os.makedirs(file_dir) # determine frequencies and wavenumbers f_start, f_stop, f_step = freqs fs =
np.arange(f_start, f_stop + f_step, f_step)
numpy.arange
#Tools to study and correct for trends in spectroscopic succes rate (ssr) #Initial LRG model fitting taken from <NAME> notebook import sys, os, glob, time, warnings, gc import numpy as np import matplotlib.pyplot as plt from astropy.table import Table, vstack, hstack, join import fitsio from scipy.optimize import curve_fit, minimize import LSS.common_tools as common elgcol = ['SUBSET','EBV','PRIORITY','TARGETID','OII_FLUX','OII_FLUX_IVAR','ELG_LOP','ELG_VLO','TSNR2_ELG','TSNR2_LRG','PHOTSYS','MASKBITS','FIBERFLUX_G','FIBERFLUX_R','FIBERFLUX_Z','COADD_FIBERSTATUS','Z','ZWARN','DELTACHI2'] def ELG_goodobs(data,fbs_col='COADD_FIBERSTATUS'):#,dt_col='DESI_TARGET'): mask = data[fbs_col]==0 print(fbs_col,np.sum(mask), np.sum(~mask), np.sum(~mask)/len(mask)) # Remove "no data" fibers mask &= data['ZWARN'] & 2**9==0 print('& No data', np.sum(mask), np.sum(~mask), np.sum(~mask)/len(mask)) # Apply imaging mask #mask &= data['lrg_mask']==0 #print('& LRG imaging mask', np.sum(mask), np.sum(~mask), np.sum(~mask)/len(mask)) data['q'] = ELG_goodz(data)#data['ZWARN']==0 print('failure rate is '+str(np.sum(~data['q'])/len(data))) return data def ELG_goodz(data,zcol='Z'): o2c = np.log10(data['OII_FLUX'] * np.sqrt(data['OII_FLUX_IVAR']))+0.2*np.log10(data['DELTACHI2']) sel = o2c > 0.9 return sel def LRG_goodobs(data,fbs_col='COADD_FIBERSTATUS',dt_col='DESI_TARGET'): mask = data[fbs_col]==0 print(fbs_col,np.sum(mask), np.sum(~mask), np.sum(~mask)/len(mask)) # Remove "no data" fibers mask &= data['ZWARN'] & 2**9==0 print('& No data', np.sum(mask), np.sum(~mask), np.sum(~mask)/len(mask)) # Apply LRG mask #mask &= data['lrg_mask']==0 #print('& LRG imaging mask', np.sum(mask), np.sum(~mask), np.sum(~mask)/len(mask)) # Remove QSO targets mask &= data[dt_col] & 2**2 ==0 print('& Remove QSO targets', np.sum(mask), np.sum(~mask), np.sum(~mask)/len(mask)) data = data[mask] data['q'] = LRG_goodz(data)#data['ZWARN']==0 #data['q'] &= data['Z']<1.5 #data['q'] &= data['DELTACHI2']>15 print('failure rate is '+str(np.sum(~data['q'])/len(data))) return data def LRG_goodz(data,zcol='Z'): sel = data['ZWARN']==0 sel &= data[zcol]<1.5 sel &= data['DELTACHI2']>15 return sel def get_ELG_data_full(tracer,surveys=['DA02'],versions=['test'],specrels=['guadalupe']): cats = [] for sur,ver,sr in zip(surveys,versions,specrels): dir = '/global/cfs/cdirs/desi/survey/catalogs/'+sur+'/LSS/'+sr+'/LSScats/'+ver+'/' tfn = tracer if sur == 'DA02': tfn+='zdone' fn = dir+tfn+'_full.dat.fits' data = Table(fitsio.read(fn)) print(len(data)) sel = data['ZWARN'] != 999999 data = data[sel] print(len(data)) data['q'] = data['o2c'] > 0.9 cats.append(data) if len(cats) == 1: cat = cats[0] cat['EFFTIME_ELG'] = 8.60 * cat['TSNR2_ELG'] cat['EFFTIME_LRG'] = 12.15 * cat['TSNR2_LRG'] cat['zfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_Z']) - 1.211 * cat['EBV'] cat['FIBERFLUX_Z_EC'] = cat['FIBERFLUX_Z']*10**(0.4*1.211*cat['EBV']) gextc = 3.214 cat['gfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_G']) - gextc * cat['EBV'] cat['FIBERFLUX_G_EC'] = cat['FIBERFLUX_G']*10**(0.4*gextc*cat['EBV']) rextc = 2.165 cat['rfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_R']) - rextc * cat['EBV'] cat['FIBERFLUX_R_EC'] = cat['FIBERFLUX_R']*10**(0.4*rextc*cat['EBV']) cat['qf'] = np.array(cat['q'], dtype=float) return cat def get_BGS_data_full(tracer,surveys=['DA02'],versions=['test'],specrels=['guadalupe']): cats = [] for sur,ver,sr in zip(surveys,versions,specrels): dir = '/global/cfs/cdirs/desi/survey/catalogs/'+sur+'/LSS/'+sr+'/LSScats/'+ver+'/' tfn = tracer if sur == 'DA02': tfn+='zdone' fn = dir+tfn+'_full.dat.fits' data = Table(fitsio.read(fn)) print(len(data)) sel = data['ZWARN'] != 999999 data = data[sel] print(len(data)) gz = data['ZWARN'] == 0 gz &= data['DELTACHI2'] > 40 data['q'] = gz cats.append(data) if len(cats) == 1: cat = cats[0] cat['EFFTIME_ELG'] = 8.60 * cat['TSNR2_ELG'] cat['EFFTIME_LRG'] = 12.15 * cat['TSNR2_LRG'] cat['EFFTIME_BGS'] = 12.15/89.8 * cat['TSNR2_BGS'] cat['zfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_Z']) - 1.211 * cat['EBV'] cat['FIBERFLUX_Z_EC'] = cat['FIBERFLUX_Z']*10**(0.4*1.211*cat['EBV']) gextc = 3.214 cat['gfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_G']) - gextc * cat['EBV'] cat['FIBERFLUX_G_EC'] = cat['FIBERFLUX_G']*10**(0.4*gextc*cat['EBV']) rextc = 2.165 cat['rfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_R']) - rextc * cat['EBV'] cat['FIBERFLUX_R_EC'] = cat['FIBERFLUX_R']*10**(0.4*rextc*cat['EBV']) cat['qf'] = np.array(cat['q'], dtype=float) return cat def get_QSO_data_full(tracer,surveys=['DA02'],versions=['test'],specrels=['guadalupe']): cats = [] for sur,ver,sr in zip(surveys,versions,specrels): dir = '/global/cfs/cdirs/desi/survey/catalogs/'+sur+'/LSS/'+sr+'/LSScats/'+ver+'/' tfn = tracer if sur == 'DA02': tfn+='zdone' fn = dir+tfn+'_full.dat.fits' data = Table(fitsio.read(fn)) print(len(data)) sel = data['ZWARN'] != 999999 sel &= data['SPECTYPE'] != 'STAR' data = data[sel] wz = data['Z_not4clus']*0 == 0 wz &= data['Z_not4clus'] != 999999 wz &= data['Z_not4clus'] != 1.e20 print(len(data),len(wz),np.sum(wz)) data['q'] = wz cats.append(data) if len(cats) == 1: cat = cats[0] cat['EFFTIME_ELG'] = 8.60 * cat['TSNR2_ELG'] cat['EFFTIME_QSO'] = 8.60/0.255 * cat['TSNR2_QSO'] cat['EFFTIME_LRG'] = 12.15 * cat['TSNR2_LRG'] cat['zfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_Z']) - 1.211 * cat['EBV'] cat['FIBERFLUX_Z_EC'] = cat['FIBERFLUX_Z']*10**(0.4*1.211*cat['EBV']) gextc = 3.214 cat['gfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_G']) - gextc * cat['EBV'] cat['FIBERFLUX_G_EC'] = cat['FIBERFLUX_G']*10**(0.4*gextc*cat['EBV']) rextc = 2.165 cat['rfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_R']) - rextc * cat['EBV'] cat['FIBERFLUX_R_EC'] = cat['FIBERFLUX_R']*10**(0.4*rextc*cat['EBV']) cat['qf'] = np.array(cat['q'], dtype=float) return cat def get_ELG_data(specrel='fuji',tr='ELG_LOP',maskbits=[1,11,12,13],notqso=True): maintids = fitsio.read('/global/cfs/cdirs/desi/survey/catalogs/main/LSS/'+tr+'targetsDR9v1.1.1.fits',columns=['TARGETID','DESI_TARGET','MASKBITS','NOBS_G','NOBS_R','NOBS_Z']) maintids = common.cutphotmask(maintids,maskbits) elgcatdir = '/global/cfs/cdirs/desi/users/raichoor/spectro/'+specrel sv3 = fitsio.read(elgcatdir+'/sv3-elg-fuji-tiles.fits',columns=elgcol) st = [] for i in range(0,len(sv3)): st.append(sv3['SUBSET'][i][:4]) st = np.array(st) wg = st == "thru" sv3 = sv3[wg] if tr != 'ELG': print('cutting SV3 to main '+tr) sel = sv3[tr] == True print('length before is '+str(len(sv3))) sv3 = sv3[sel] print('length after is '+str(len(sv3))) sel = sv3['PRIORITY'] > 10000 sv3 = sv3[sel] print('length after cutting to priority > 10000 '+str(len(sv3))) sv3 = ELG_goodobs(Table(sv3)) sv3 = join(sv3,maintids,keys=['TARGETID']) print('length after join to main targets to get DESI_TARGET and cut on maskbits values '+str(len(sv3))) elgcatdirg = '/global/cfs/cdirs/desi/users/raichoor/spectro/guadalupe' main = fitsio.read(elgcatdirg+'/main-elg-guadalupe-tiles.fits',columns=elgcol) st = [] for i in range(0,len(main)): st.append(main['SUBSET'][i][:4]) st = np.array(st) wg = st == "thru" main = main[wg] if tr != 'ELG': print('cutting main to main '+tr) sel = main[tr] == True print('length before is '+str(len(main))) main = main[sel] print('length after is '+str(len(main))) main = ELG_goodobs(Table(main)) main = join(main,maintids,keys=['TARGETID']) print('length after join to main targets to get DESI_TARGET and cut on maskbits values '+str(len(main))) sv1 = fitsio.read(elgcatdir+'/sv1-elg-fuji-tiles.fits',columns=elgcol) if tr != 'ELG': print('cutting SV1 to main '+tr) sel = sv1[tr] == True print('length before is '+str(len(sv1))) sv1 = sv1[sel] print('length after is '+str(len(sv1))) sv1 = ELG_goodobs(Table(sv1)) sv1 = join(sv1,maintids,keys=['TARGETID']) print('length after join to main targets to get DESI_TARGET and cut on maskbits values '+str(len(sv1))) #cat = vstack([sv1, sv3, main], join_type='inner') #cat = vstack([sv1, main], join_type='inner') cat = main print(len(cat)) if notqso: # Remove QSO targets mask = cat['DESI_TARGET'] & 2**2 ==0 print(' Remove QSO targets', np.sum(mask), np.sum(~mask), np.sum(~mask)/len(mask)) cat = cat[mask] cat['EFFTIME_ELG'] = 8.60 * cat['TSNR2_ELG'] cat['EFFTIME_LRG'] = 12.15 * cat['TSNR2_LRG'] cat['zfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_Z']) - 1.211 * cat['EBV'] cat['FIBERFLUX_Z_EC'] = cat['FIBERFLUX_Z']*10**(0.4*1.211*cat['EBV']) gextc = 3.214 cat['gfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_G']) - gextc * cat['EBV'] cat['FIBERFLUX_G_EC'] = cat['FIBERFLUX_G']*10**(0.4*gextc*cat['EBV']) rextc = 2.165 cat['rfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_R']) - rextc * cat['EBV'] cat['FIBERFLUX_R_EC'] = cat['FIBERFLUX_R']*10**(0.4*rextc*cat['EBV']) cat['qf'] = np.array(cat['q'], dtype=float) return cat def get_LRG_data(specrel='fuji'): maintids = fitsio.read('/global/cfs/cdirs/desi/survey/catalogs/main/LSS/LRGtargetsDR9v1.1.1.fits',columns=['TARGETID','lrg_mask']) sel = maintids['lrg_mask'] == 0 maintids = maintids[sel] zcatdir = '/global/cfs/cdirs/desi/spectro/redux/'+specrel+'/zcatalog/' perexpall = Table(fitsio.read(zcatdir+'ztile-sv1-dark-perexp.fits')) sel = np.isin(perexpall['TARGETID'],maintids['TARGETID']) perexplrg = perexpall[sel] del perexpall perexplrg = LRG_goodobs(perexplrg,'COADD_FIBERSTATUS','SV1_DESI_TARGET') cat_1xall = Table(fitsio.read(zcatdir+'ztile-sv1-dark-1x_depth.fits')) sel = np.isin(cat_1xall['TARGETID'],maintids['TARGETID']) cat_1xlrg = cat_1xall[sel] del cat_1xall cat_1xlrg = LRG_goodobs(cat_1xlrg,'COADD_FIBERSTATUS','SV1_DESI_TARGET') cat_deepall = Table(fitsio.read(zcatdir+'ztile-sv1-dark-cumulative.fits')) sel = np.isin(cat_deepall['TARGETID'],maintids['TARGETID']) cat_deeplrg = cat_deepall[sel] del cat_deepall cat_deeplrg = LRG_goodobs(cat_deeplrg,'COADD_FIBERSTATUS','SV1_DESI_TARGET') cat_sv3all = Table(fitsio.read(zcatdir+'ztile-sv3-dark-cumulative.fits')) sel = np.isin(cat_sv3all['TARGETID'],maintids['TARGETID']) sel &= cat_sv3all['PRIORITY'] == 103200 #we don't want to include the failed repeats in the statistics cat_sv3lrg = cat_sv3all[sel] del cat_sv3all cat_sv3lrg = LRG_goodobs(cat_sv3lrg,'COADD_FIBERSTATUS','SV3_DESI_TARGET') if specrel == 'fuji': specrelmain = 'guadalupe' zcatdirm = '/global/cfs/cdirs/desi/spectro/redux/'+specrelmain+'/zcatalog/' cat_mainall = Table(fitsio.read(zcatdirm+'ztile-main-dark-cumulative.fits')) sel = np.isin(cat_mainall['TARGETID'],maintids['TARGETID']) cat_mainlrg = cat_mainall[sel] del cat_mainall cat_mainlrg = LRG_goodobs(cat_mainlrg,'COADD_FIBERSTATUS','DESI_TARGET') cat = vstack([perexplrg, cat_1xlrg, cat_mainlrg, cat_deeplrg, cat_sv3lrg], join_type='inner') print(len(cat)) cat['EFFTIME_ELG'] = 8.60 * cat['TSNR2_ELG'] cat['EFFTIME_LRG'] = 12.15 * cat['TSNR2_LRG'] cat['zfibermag'] = 22.5 - 2.5*np.log10(cat['FIBERFLUX_Z']) - 1.211 * cat['EBV'] cat['FIBERFLUX_Z_EC'] = cat['FIBERFLUX_Z']*10**(0.4*1.211*cat['EBV']) cat['qf'] = np.array(cat['q'], dtype=float) return cat def fit_cons(dl,el,minv=0,step=0.01): c = minv newcost = np.sum((dl-c)**2./el**2.) oldcost = newcost + 1 while newcost < oldcost: oc = c oldcost = newcost c += step newcost = np.sum((dl-c)**2./el**2.) return oldcost,c class LRG_ssr: def __init__(self,specrel='fuji',efftime_min=500,efftime_max=2000): self.cat = get_LRG_data(specrel) mask = self.cat['EFFTIME_LRG']>efftime_min mask &= self.cat['EFFTIME_LRG']<efftime_max self.cat = self.cat[mask] def cost(self,q_predict): return np.sum((self.cat['qf']-q_predict)**2) def wrapper(self,params): q_predict = 1-self.failure_rate(self.cat['FIBERFLUX_Z_EC'], self.cat['EFFTIME_LRG'], *params) return self.cost(q_predict) def failure_rate(self,flux, efftime, a, b, c): sn = flux * np.sqrt(efftime) return np.clip(np.exp(-(sn+a)/b)+c/flux, 0, 1) def add_modpre(self,data): res = minimize(self.wrapper, [0, 10., 0.01], bounds=((-200, 200), (0, 100), (0., 1)), method='Powell', tol=1e-6) pars = res.x print(pars) dflux = data['FIBERFLUX_Z']*10**(0.4*1.211*data['EBV'])#data['FIBERFLUX_Z_EC'] deff = 12.15 * data['TSNR2_LRG']#data['EFFTIME_LRG'] data['mod_success_rate'] = 1. -self.failure_rate(dflux,deff,*pars) return data class BGS_ssr: def __init__(self,specrel='fuji',efftime_min=100,efftime_max=300): self.cat = get_BGS_data_full('BGS_BRIGHT') mask = self.cat['EFFTIME_BGS']>efftime_min mask &= self.cat['EFFTIME_BGS']<efftime_max self.cat = self.cat[mask] self.selgz = self.cat['q'] == 1 ha,bine = np.histogram(self.cat['EFFTIME_BGS']) hf,_ = np.histogram(self.cat['EFFTIME_BGS'][~self.selgz]) self.nzf = hf/ha print(self.nzf) self.nzfe = np.sqrt(hf)/ha bc = [] bs = bine[1]-bine[0] for i in range(0,len(bine)-1): bc.append(bine[i]+bs/2.) self.bc = np.array(bc) self.bine = bine def cost(self,q_predict): return np.sum((self.cat['qf']-q_predict)**2) def wrapper(self,params): q_predict = 1-self.failure_rate(self.cat['FIBERFLUX_R_EC'], self.cat['EFFTIME_BGS'], *params) return self.cost(q_predict) def failure_rate(self,flux, efftime, a, b, c): sn = flux * np.sqrt(efftime) return np.clip(np.exp(-(sn+a)/b)+c/flux, 0, .5) def add_modpre(self,data): res = minimize(self.wrapper, [0, 10., 0.01], bounds=((-200, 200), (0, 100), (0., 1)), method='Powell', tol=1e-6) pars = res.x print(pars,self.wrapper(pars)) dflux = data['FIBERFLUX_R']*10**(0.4*2.165*data['EBV'])#data['FIBERFLUX_Z_EC'] deff = 12.15/89.8 * data['TSNR2_BGS']#data['EFFTIME_LRG'] data['mod_success_rate'] = 1. -self.failure_rate(dflux,deff,*pars) #print(len(data),np.sum(data['mod_success_rate'])) ha,_ = np.histogram(deff,bins=self.bine) gz = data['ZWARN'] == 0 gz &= data['DELTACHI2'] > 40 hf,_ = np.histogram(deff[gz],weights=1/data[gz]['mod_success_rate'],bins=self.bine) plt.errorbar(self.bc,1.-self.nzf,self.nzfe,fmt='ko') plt.errorbar(self.bc,hf/ha,self.nzfe,fmt='rd') plt.show() return data class ELG_ssr: def __init__(self,specrel='fuji',efftime_min=450,efftime_max=1500): self.cat = get_ELG_data_full('ELG_LOPnotqso')#get_ELG_data(specrel) mask = self.cat['EFFTIME_ELG']>efftime_min mask &= self.cat['EFFTIME_ELG']<efftime_max self.cat = self.cat[mask] self.selgz = self.cat['q'] == 1 ha,bine = np.histogram(self.cat['EFFTIME_ELG']) hf,_ = np.histogram(self.cat['EFFTIME_ELG'][~self.selgz]) self.nzf = hf/ha print(self.nzf) self.nzfe = np.sqrt(hf)/ha bc = [] bs = bine[1]-bine[0] for i in range(0,len(bine)-1): bc.append(bine[i]+bs/2.) self.bc = np.array(bc) self.bine = bine self.vis_5hist = False def cost(self,q_predict): return np.sum((self.cat['qf']-q_predict)**2) def wrapper(self,params): q_predict = 1-self.failure_rate(self.cat['FIBERFLUX_G_EC'], self.cat['EFFTIME_ELG'], *params) return self.cost(q_predict) def wrapper_hist(self,params): h_predict = self.failure_rate_eff(self.bc, *params) diff = self.nzf-h_predict cost = np.sum((diff/self.nzfe)**2.) return cost def failure_rate(self,flux, efftime, a, b, c): #sn = flux * np.sqrt(efftime) #return np.clip(np.exp(-(sn+a)/b)+c/flux, 0, 1) return np.clip(np.exp(-(efftime+a)/b)+c/flux, 0, 1) def failure_rate_eff(self, efftime, a, b, c): #sn = flux * np.sqrt(efftime) #return np.clip(np.exp(-(sn+a)/b)+c/flux, 0, 1) return np.clip(np.exp(-(efftime+a)/b)+c, 0, 1) def hist_norm(self,fluxc): nzfper = [] consl = [] nb = 5 pstep = 100//5 costt = 0 for i in range(0,nb): sel = self.cat['FIBERFLUX_G_EC'] > np.percentile(self.cat['FIBERFLUX_G_EC'],i*pstep) sel &= self.cat['FIBERFLUX_G_EC'] < np.percentile(self.cat['FIBERFLUX_G_EC'],(i+1)*pstep) mf = np.median(self.cat['FIBERFLUX_G_EC'][sel]) if self.vis_5hist: print(mf) #fper.append(mf) wtf = (fluxc*(self.mft-self.cat['FIBERFLUX_G_EC'])/self.mft+1)*(self.wts_fid-1)+1 selw = wtf < 1 wtf[selw] = 1 ha,_ = np.histogram(self.cat['EFFTIME_ELG'][sel],bins=self.bine) hf,_ = np.histogram(self.cat['EFFTIME_ELG'][sel&self.selgz],weights=wtf[sel&self.selgz],bins=self.bine) #if self.vis_5hist: # print(mf) # print(np.sum(ha)) # print(np.sum(hf)) dl = hf/ha nzfper.append(dl) def ccost(c): return np.sum((dl-c)**2./self.nzfpere[i]**2.) resc = minimize(ccost, np.ones(1)) bc = resc.x cost = ccost(bc) consl.append(bc) costt += cost if self.vis_5hist: for i in range(0,nb): plt.errorbar(self.bc,nzfper[i],self.nzfpere[i]) plt.plot(self.bc,np.ones(len(self.bc))*consl[i],'k:') plt.show() return costt def add_modpre(self,data): res = minimize(self.wrapper_hist, [-200, 10., 0.01], bounds=((-10000, 0), (0, 10000), (0., 1)), method='Powell', tol=1e-6) pars = res.x print(pars,self.wrapper_hist(pars)) gextc = 3.214 dflux = data['FIBERFLUX_G']*10**(0.4*gextc*data['EBV']) #data['FIBERFLUX_G_EC'] deff = 8.60 * data['TSNR2_ELG']#data['EFFTIME_ELG'] #data['mod_success_rate'] = 1. -self.failure_rate(dflux,deff,*pars) data['mod_success_rate'] = 1. -self.failure_rate_eff(deff,*pars) assr = 1. -self.failure_rate_eff(self.cat['EFFTIME_ELG'],*pars) relssr = assr/np.max(assr) drelssr = data['mod_success_rate']/np.max(assr)#np.max(data['mod_success_rate']) seld = deff > 450 seld &= deff < 1500 print(len(relssr),len(drelssr[seld]),np.max(assr),np.max(data[seld]['mod_success_rate'])) self.wts_fid = 1/relssr nzfper = [] nzfpere = [] fper = [] self.mft = np.median(self.cat['FIBERFLUX_G_EC']) nb = 5 pstep = 100//5 for i in range(0,nb): sel = self.cat['FIBERFLUX_G_EC'] > np.percentile(self.cat['FIBERFLUX_G_EC'],i*pstep) sel &= self.cat['FIBERFLUX_G_EC'] < np.percentile(self.cat['FIBERFLUX_G_EC'],(i+1)*pstep) mf = np.median(self.cat['FIBERFLUX_G_EC'][sel]) fper.append(mf) ha,_ = np.histogram(self.cat['EFFTIME_ELG'][sel],bins=self.bine) hf,_ = np.histogram(self.cat['EFFTIME_ELG'][sel&self.selgz],bins=self.bine) hfw,_ = np.histogram(self.cat['EFFTIME_ELG'][sel&self.selgz],weights=self.wts_fid[sel&self.selgz],bins=self.bine) nzfper.append(hf/ha) nzfpere.append(np.sqrt(ha-hf)/ha) #plt.plot(self.bc,hfw/ha) #plt.title('inputs') #plt.show() self.nzfpere = nzfpere rest = minimize(self.hist_norm, np.ones(1))#, bounds=((-10, 10)), #method='Powell', tol=1e-6) fcoeff = rest.x self.vis_5hist = True print(fcoeff,self.hist_norm(fcoeff))#,self.hist_norm(0.),self.hist_norm(1.)) wtf = (fcoeff*(self.mft-dflux)/self.mft+1)*(1/drelssr-1)+1 sel = wtf < 1 wtf[sel] = 1 data['WEIGHT_ZFAIL'] = wtf return data # nb = 5 # pstep = 100//5 # costt = 0 # # seld = np.ones(len(dflux),dtype='bool') # dflux = dflux[seld] # deff =deff[seld] # dselgz = data[seld]['o2c'] > 0.9 # wtf = (1/drelssr[seld]-1)+1 #print('are weight arrays equal?',np.array_equal(self.wts_fid,wtf)) # for i in range(0,nb): # sel = dflux > np.percentile(dflux,i*pstep) # sel &= dflux < np.percentile(dflux,(i+1)*pstep) # mf = np.median(dflux[sel]) # # # # ha,_ = np.histogram(deff[sel],bins=self.bine) # hf,_ = np.histogram(deff[sel&dselgz],weights=wtf[sel&dselgz],bins=self.bine) class QSO_ssr: def __init__(self,specrel='fuji',efftime_min=450,efftime_max=1500): self.cat = get_QSO_data_full('QSO')#get_ELG_data(specrel) mask = self.cat['EFFTIME_QSO']>efftime_min mask &= self.cat['EFFTIME_QSO']<efftime_max self.cat = self.cat[mask] self.selgz = self.cat['q'] == 1 ha,bine = np.histogram(self.cat['EFFTIME_QSO']) hf,_ = np.histogram(self.cat['EFFTIME_QSO'][~self.selgz]) self.nzf = hf/ha print(self.nzf) self.nzfe =
np.sqrt(hf)
numpy.sqrt
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num =
N.array([1,0,0])
numpy.array
""" Interval unit commitment @author:<NAME> @e-mail:<EMAIL> """ from pypower import loadcase, ext2int, makeBdc from scipy.sparse import csr_matrix as sparse from numpy import zeros, c_, shape, ix_, ones, r_, arange, sum, concatenate, array, diag, eye from solvers.mixed_integer_solvers_cplex import mixed_integer_linear_programming as lp import pandas as pd def problem_formulation(case, BETA=0.15, BETA_HYDRO=0.05, BETA_LOAD=0.03): """ :param case: The test case for unit commitment problem :return: """ CAP_WIND = 1 # The capacity of wind farm # The disturbance range of wind farm # The disturbance range of wind farm CAPVALUE = 10 # The capacity value Price_energy = r_[ones(8), 3 * ones(8), ones(8)] from pypower.idx_brch import F_BUS, T_BUS, BR_X, TAP, SHIFT, BR_STATUS, RATE_A from pypower.idx_cost import MODEL, NCOST, PW_LINEAR, COST, POLYNOMIAL from pypower.idx_bus import BUS_TYPE, REF, VA, VM, PD, GS, VMAX, VMIN, BUS_I from pypower.idx_gen import GEN_BUS, VG, PG, QG, PMAX, PMIN, QMAX, QMIN mpc = ext2int.ext2int(case) baseMVA, bus, gen, branch, gencost = mpc["baseMVA"], mpc["bus"], mpc["gen"], mpc["branch"], mpc["gencost"] nb = shape(mpc['bus'])[0] ## number of buses nl = shape(mpc['branch'])[0] ## number of branches ng = shape(mpc['gen'])[0] ## number of dispatchable injections # Bbus = makeBdc.makeBdc(baseMVA, bus, branch) # Distribution_factor = Bbus[1] * inv(Bbus[0]) Distribution_factor = array([ [0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-0.005, -0.005, -0.005, -1.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, -0.005, ], [0.47, 0.47, 0.47, 0.47, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03], [0.47, 0.47, 0.47, 0.47, -0.03, - 0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03, -0.03], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0.32, 0.32, 0.32, 0.32, 0.32, 0.32, -0.68, -0.68, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32], [0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, 0.32, -0.68, -0.68, 0.32, 0.32, 0.32, 0.32], [0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, -0.84, 0.16, 0.16, 0.16, 0.16], [-0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -1.16, -0.16, -1.16, -0.16], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0], [-0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -1.16, -0.16, -0.16], [-0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -0.08, -1.08], ]) Distribution_factor = sparse(Distribution_factor) # Formulate connection matrix for wind farms i = [] PWMAX = [] PWMIN = [] for index in range(ng): if gen[index, PMIN] == 0: i.append(index) PWMAX.append(gen[index, PMAX]) PWMIN.append(gen[index, PMIN]) i = array(i) nw = i.shape[0] Cw = sparse((ones(nw), (gen[i, GEN_BUS], arange(nw))), shape=(nb, nw)) PWMAX = array(PWMAX).reshape((len(PWMAX), 1)) PWMIN = array(PWMIN).reshape((len(PWMIN), 1)) # Formulate the connection matrix for hydro power plants i = [] PHMAX = [] PHMIN = [] for index in range(ng): if gen[index, PMIN] > 0: i.append(index) PHMAX.append(gen[index, PMAX]) PHMIN.append(gen[index, PMIN]) i = array(i) nh = i.shape[0] Ch = sparse((ones(nh), (gen[i, GEN_BUS], arange(nh))), shape=(nb, nh)) PHMAX = array(PHMAX).reshape((len(PHMAX), 1)) PHMIN = array(PHMIN).reshape((len(PHMIN), 1)) # Formulate the external power systems i = [] PEXMAX = [] PEXMIN = [] for index in range(ng): if gen[index, PMIN] < 0: i.append(index) PEXMAX.append(gen[index, PMAX]) PEXMIN.append(gen[index, PMIN]) i = array(i) nex = i.shape[0] Cex = sparse((ones(nex), (gen[i, GEN_BUS], arange(nex))), shape=(nb, nex)) PEXMAX = array(PEXMAX).reshape((len(PEXMAX), 1)) PEXMIN = array(PEXMIN).reshape((len(PEXMIN), 1)) PLMAX = branch[:, RATE_A].reshape((nl, 1)) # The power flow limitation T = 24 ## Profiles # Wind profile WIND_PROFILE = array( [591.35, 714.50, 1074.49, 505.06, 692.78, 881.88, 858.48, 609.11, 559.95, 426.86, 394.54, 164.47, 27.15, 4.47, 54.08, 109.90, 111.50, 130.44, 111.59, 162.38, 188.16, 216.98, 102.94, 229.53]).reshape((T, 1)) WIND_PROFILE = WIND_PROFILE / WIND_PROFILE.max() WIND_PROFILE_FORECAST = zeros((T * nw, 1)) Delta_wind = zeros((T * nw, 1)) for i in range(T): WIND_PROFILE_FORECAST[i * nw:(i + 1) * nw, :] = WIND_PROFILE[i] * PWMAX Delta_wind[i * nw:(i + 1) * nw, :] = WIND_PROFILE[i] * PWMAX * BETA # Load profile LOAD_PROFILE = array([0.632596195634005, 0.598783973523217, 0.580981513054525, 0.574328051348912, 0.584214221241601, 0.631074282084712, 0.708620833751212, 0.797665730618795, 0.877125330124026, 0.926981579915087, 0.947428654208872, 0.921588439808779, 0.884707317888543, 0.877717046100358, 0.880387289807107, 0.892056129442049, 0.909233443653261, 0.926748403704075, 0.968646575067696, 0.999358974358974, 0.979169591816267, 0.913517534182463, 0.806453715775750, 0.699930632166617]).reshape((T, 1)) LOAD_FORECAST = zeros((T * nb, 1)) Delta_load = zeros((T * nb, 1)) load_base = bus[:, PD].reshape(nb, 1) for i in range(T): LOAD_FORECAST[i * nb:(i + 1) * nb, :] = load_base * LOAD_PROFILE[i] Delta_load[i * nb:(i + 1) * nb, :] = load_base * BETA_LOAD # Hydro information HYDRO_INJECT = array([6, 2, 4, 3]).reshape((nh, 1)) HYDRO_INJECT_FORECAST = zeros((T * nh, 1)) Delta_hydro = zeros((T * nh, 1)) for i in range(T): HYDRO_INJECT_FORECAST[i * nh:(i + 1) * nh, :] = HYDRO_INJECT Delta_hydro[i * nh:(i + 1) * nh, :] = HYDRO_INJECT * BETA_HYDRO MIN_DOWN = ones((nh, 1)) MIN_UP = ones((nh, 1)) QMIN = array([1.5, 1, 1, 1]).reshape((nh, 1)) QMAX = array([20, 10, 10, 10]).reshape((nh, 1)) VMIN = array([70, 50, 70, 40]).reshape((nh, 1)) VMAX = array([160, 140, 150, 130]).reshape((nh, 1)) V0 = array([110, 90, 100, 80]).reshape((nh, 1)) M_transfer = diag(array([8.8649, 6.4444, 6.778, 7.3333])) C_TEMP = array([30, 2, 9, 4]).reshape((4, 1)) Q_TEMP = array([1.5, 1, 1, 1]).reshape((4, 1)) # Define the first stage decision variables ON = 0 OFF = 1 IHG = 2 PHG = 3 RUHG = 4 RDHG = 5 QHG = 6 QUHG = 7 QDHG = 8 V = 9 S = 10 PWC = 11 PLC = 12 PEX = 13 CEX = 14 NX = PWC * nh * T + nw * T + nb * T + nex * T + 1 lb = zeros((NX, 1)) ub = zeros((NX, 1)) c = zeros((NX, 1)) vtypes = ["c"] * NX for i in range(T): for j in range(nh): # lower boundary information lb[ON * nh * T + i * nh + j] = 0 lb[OFF * nh * T + i * nh + j] = 0 lb[IHG * nh * T + i * nh + j] = 0 lb[PHG * nh * T + i * nh + j] = 0 lb[RUHG * nh * T + i * nh + j] = 0 lb[RDHG * nh * T + i * nh + j] = 0 lb[QHG * nh * T + i * nh + j] = 0 lb[QUHG * nh * T + i * nh + j] = 0 lb[QDHG * nh * T + i * nh + j] = 0 lb[V * nh * T + i * nh + j] = VMIN[j] lb[S * nh * T + i * nh + j] = 0 # upper boundary information ub[ON * nh * T + i * nh + j] = 1 ub[OFF * nh * T + i * nh + j] = 1 ub[IHG * nh * T + i * nh + j] = 1 ub[PHG * nh * T + i * nh + j] = PHMAX[j] ub[RUHG * nh * T + i * nh + j] = PHMAX[j] ub[RDHG * nh * T + i * nh + j] = PHMAX[j] ub[QHG * nh * T + i * nh + j] = QMAX[j] ub[QUHG * nh * T + i * nh + j] = QMAX[j] ub[QDHG * nh * T + i * nh + j] = QMAX[j] ub[V * nh * T + i * nh + j] = VMAX[j] ub[S * nh * T + i * nh + j] = 10 ** 8 # objective value c[S * nh * T + i * nh + j] = 1 c[RUHG * nh * T + i * nh + j] = -Price_energy[j] c[RDHG * nh * T + i * nh + j] = Price_energy[j] # variables types vtypes[ON * nh * T + i * nh + j] = "D" vtypes[OFF * nh * T + i * nh + j] = "D" vtypes[IHG * nh * T + i * nh + j] = "D" if i == T - 1: lb[V * nh * T + i * nh + j] = V0[j] ub[V * nh * T + i * nh + j] = V0[j] for j in range(nw): # lower boundary information lb[PWC * nh * T + i * nw + j] = 0 # upper boundary information ub[PWC * nh * T + i * nw + j] = WIND_PROFILE_FORECAST[i * nw + j] # objective value c[PWC * nh * T + i * nw + j] = 1 for j in range(nb): # lower boundary information lb[PWC * nh * T + nw * T + i * nb + j] = 0 # upper boundary information ub[PWC * nh * T + nw * T + i * nb + j] = bus[j, PD] * LOAD_PROFILE[i] # objective value c[PWC * nh * T + nw * T + i * nb + j] = 10 ** 8 for j in range(nex): # lower boundary information lb[PWC * nh * T + nw * T + nb * T + i * nex + j] = PEXMIN[j] # upper boundary information ub[PWC * nh * T + nw * T + nb * T + i * nex + j] = PEXMAX[j] # objective value c[PWC * nh * T + nw * T + nb * T + i * nex + j] = -Price_energy[i] # lower boundary information lb[PWC * nh * T + nw * T + nb * T + nex * T] = PEXMIN[0] # upper boundary information ub[PWC * nh * T + nw * T + nb * T + nex * T] = PEXMAX[0] # objective value # c[PWC * nh * T + nw * T + nb * T + nex * T] = -CAPVALUE # 2) Constraint set # 2.1) Power balance equation Aeq = zeros((T, NX)) beq = zeros((T, 1)) for i in range(T): # For the hydro units for j in range(nh): Aeq[i, PHG * nh * T + i * nh + j] = 1 # For the wind farms for j in range(nw): Aeq[i, PWC * nh * T + i * nw + j] = -1 # For the loads for j in range(nb): Aeq[i, PWC * nh * T + nw * T + i * nb + j] = 1 # For the power exchange for j in range(nex): Aeq[i, PWC * nh * T + nw * T + nb * T + i * nex + j] = -1 beq[i] = sum(load_base) * LOAD_PROFILE[i] - sum(WIND_PROFILE_FORECAST[i * nw:(i + 1) * nw]) # 2.2) Status transformation of each unit Aeq_temp = zeros((T * nh, NX)) beq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aeq_temp[i * nh + j, ON * nh * T + i * nh + j] = -1 Aeq_temp[i * nh + j, OFF * nh * T + i * nh + j] = 1 Aeq_temp[i * nh + j, IHG * nh * T + i * nh + j] = 1 if i != 0: Aeq_temp[i * nh + j, IHG * nh * T + (i - 1) * nh + j] = -1 else: beq_temp[i * T + j] = 0 Aeq = concatenate((Aeq, Aeq_temp), axis=0) beq = concatenate((beq, beq_temp), axis=0) # 2.3) water status change Aeq_temp = zeros((T * nh, NX)) beq_temp = HYDRO_INJECT_FORECAST for i in range(T): for j in range(nh): Aeq_temp[i * nh + j, V * nh * T + i * nh + j] = 1 Aeq_temp[i * nh + j, S * nh * T + i * nh + j] = 1 Aeq_temp[i * nh + j, QHG * nh * T + i * nh + j] = 1 if i != 0: Aeq_temp[i * nh + j, V * nh * T + (i - 1) * nh + j] = -1 else: beq_temp[i * T + j] += V0[j] Aeq = concatenate((Aeq, Aeq_temp), axis=0) beq = concatenate((beq, beq_temp), axis=0) # 2.4) Power water transfering Aeq_temp = zeros((T * nh, NX)) beq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aeq_temp[i * nh + j, PHG * nh * T + i * nh + j] = 1 Aeq_temp[i * nh + j, QHG * nh * T + i * nh + j] = -M_transfer[j, j] Aeq_temp[i * nh + j, IHG * nh * T + i * nh + j] = -C_TEMP[j] + M_transfer[j, j] * Q_TEMP[j] Aeq = concatenate((Aeq, Aeq_temp), axis=0) beq = concatenate((beq, beq_temp), axis=0) # 2.5) Power range limitation Aineq = zeros((T * nh, NX)) bineq = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq[i * nh + j, ON * nh * T + i * nh + j] = 1 Aineq[i * nh + j, OFF * nh * T + i * nh + j] = 1 bineq[i * nh + j] = 1 Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = PHMIN[j] Aineq_temp[i * nh + j, PHG * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, RDHG * nh * T + i * nh + j] = 1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = -PHMAX[j] Aineq_temp[i * nh + j, PHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, RUHG * nh * T + i * nh + j] = 1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.6) Water reserve constraints Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, PHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, RUHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = -C_TEMP[j] + M_transfer[j, j] * Q_TEMP[j] Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = -M_transfer[j, j] Aineq_temp[i * nh + j, QUHG * nh * T + i * nh + j] = -M_transfer[j, j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, PHG * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, RDHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = C_TEMP[j] - M_transfer[j, j] * Q_TEMP[j] Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = M_transfer[j, j] Aineq_temp[i * nh + j, QDHG * nh * T + i * nh + j] = -M_transfer[j, j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.7) water flow constraints Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = QMIN[j] Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, QDHG * nh * T + i * nh + j] = 1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, IHG * nh * T + i * nh + j] = -QMAX[j] Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, QUHG * nh * T + i * nh + j] = 1 Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) # 2.8) Water reserve limitation Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, V * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, QDHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, S * nh * T + i * nh + j] = -1 bineq_temp[i * nh + j] = VMAX[j] - HYDRO_INJECT_FORECAST[i * nh + j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq = concatenate((bineq, bineq_temp), axis=0) Aineq_temp = zeros((T * nh, NX)) bineq_temp = zeros((T * nh, 1)) for i in range(T): for j in range(nh): Aineq_temp[i * nh + j, V * nh * T + i * nh + j] = -1 Aineq_temp[i * nh + j, QHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, QUHG * nh * T + i * nh + j] = 1 Aineq_temp[i * nh + j, S * nh * T + i * nh + j] = 1 bineq_temp[i * nh + j] = -VMIN[j] + HYDRO_INJECT_FORECAST[i * nh + j] Aineq = concatenate((Aineq, Aineq_temp), axis=0) bineq =
concatenate((bineq, bineq_temp), axis=0)
numpy.concatenate
# -*- coding: utf-8 -*- """ Created on Wed May 11 08:08:52 2016 @author: tkc """ import re from collections import defaultdict import pandas as pd import numpy as np import scipy import scipy.stats from scipy import optimize from math import factorial # used by Savgol matrix from scipy.optimize import curve_fit #%% def organizecolumns(df1,mycols): ''' Pass df and template (list of desired columns in desired order) and return reorganized newdf ''' cols1=df1.columns.tolist() newdf=df1 # avoids modification of passed df uniquelist=[i for i in cols1 if i not in mycols] for i,colname in enumerate(uniquelist): # remove cols from df1 that are absent from df2 # newdf.drop(colname, axis=1, inplace=True) # this modifies both passed and returned dfs newdf=newdf.drop(colname, axis=1) newdf=newdf[mycols] # reorder columns based on template df return newdf def parseelemlist(elemlist): '''Find and separate multielement peaks to be averaged (e.g. Fe2 & Fe) from longer string of element peaks e.g. splits "Mg Fe Fe2 Si" into "Mg Si" and "{Fe,[Fe,Fe2]} dictionary''' # Strip numbers from strings within list newlist=[re.match('\D+',i).group(0) for i in elemlist] # find duplicated peaks (multiple peaks per element) Multielem = defaultdict(list) for i, item in enumerate(newlist): Multielem[item].append(i) Multielem = {k:v for k,v in Multielem.items() if len(v)>1} # dictionary with duplicated item and list with indices duplist=list(Multielem.values()) # get list duplist=[item for sublist in duplist for item in sublist] # single list with positions of duplicated elements # now alter multipeak elements list to give dict with element and then list of peak for that element for key,value in Multielem.items(): templist=value # dictionary value is list of elem peak index positions peaklist=[] for i, index in enumerate(templist): # create new list with original elem peak from index positions peaklist.append(elemlist[index]) # now replace list of index positions with elempeak names Multielem.update({key:peaklist}) # key will be multipeak element string i.e. "Fe" # finally construct new single elements list with multipeak ones removed (handle each separately) newelemlist=[] for i in range(0,len(elemlist)): if i not in duplist: newelemlist.append(elemlist[i]) return newelemlist, Multielem def parseelem2(elemlist, Multielem): ''' After multielement peaks removed, also move secondary peaks used as primary to dict (handle separately) e.g. splits "S Mg Fe2 Si" into "S Mg Si" and "{Fe,[Fe2]} dictionary; same structure and df output for averaging of Fe, Fe2, or straight Fe2 or straight Fe''' # starting elemlist will only have single entries (i.e Ti2 but not Ti & Ti2) newelemlist=[] for i, elem in enumerate(elemlist): if re.search(r'\d',elem): # has number match=re.search(r'\d',elem) newkey=elem[0:match.start()] # store alt quant (i.e. on Ti2) with same structure as multiple quant (Ti & Ti2) # Another entry in multielement list... makes things easier for later quant comparisons templist=[] # peakIDs added as list (of length 1) templist.append(elem) # list containing single string (keeps identical data structure) Multielem.update({newkey:templist}) # add to existing dictionary for separate handling else: newelemlist.append(elemlist[i]) # just copy over return newelemlist, Multielem # return altered element list and multielem dictionary def getelemthresholds(elemlist, AESquantparams): '''get element-dependent significance thresholds for each peak from AESquantparams return dictionary with element and associated significance level''' thresholds={} # returns list of element dependent thresholds for this element set for i, elem in enumerate(elemlist): # find row in AESquantparams for this element thiselemdata=AESquantparams[(AESquantparams['element']==elem)] thiselemdata=thiselemdata.squeeze() # series with this elements params thresholds.update({elem:thiselemdata.siglevel}) return thresholds def cloneparamrows(df): ''' Make param log entry for for each areanum - used by calccomposition to correctly process spe files with multiple spatial areas passed df is usually list of spe files this solves problem that AugerParamLog only has one entry (despite possibly having multiple distinct areas with different spectra''' df['Areanumber']=1 # set existing entries as area 1 mycols=df.dtypes.index newrows=pd.DataFrame(columns=mycols) # blank df for new entries for index, row in df.iterrows(): numareas=int(df.loc[index]['Areas']) for i in range(2,numareas+1): newrow=df.loc[index] # clone this row as series newrow=newrow.set_value('Areanumber',i) newrows=newrows.append(newrow) df=pd.concat([df,newrows], ignore_index=True) # merge new rows with existing ones df=df.sort_values(['Filenumber','Areanumber']) return df def calccomp(df, Integquantlog, elemlist, AESquantparams): '''Calculate elemental composition of given files based on input element list threshold - ratio of element peak to noise peak (0 means no threshold applied load element-dependent significance level from AESquantparams''' thresholds=getelemthresholds(elemlist, AESquantparams) # Get list of sigma levels for significance/inclusion # thresholds for both single and multipeak elemlist, multipeaklist = parseelemlist(elemlist) # list of single peak elements and dict with multipeaks # check if any of the single peaks are secondary (i.e. quant on Fe2 not main Fe) elemlist, multipeaklist= parseelem2(elemlist, multipeaklist) # two element lists needed (elements with one peak and elements with compositions averaged from two peaks i.e. Fe2, Fe3) # to process compositions from multiple areas, clone rows from spe log (one for each areanum) df=cloneparamrows(df) # splits single entry for 5 spatial area spe into 5 rows with Areanumber 1-5 df=df.reset_index(drop=True) df['AESbasis']=0.0 # resets to zero if already present from calcamplitude mycols=['Filenumber', 'Project', 'Filename', 'FilePath', 'Sample', 'Comments','AESbasis','Areanumber'] for i, elem in enumerate(elemlist): # add columns for basis df[elem]=0.0 # add col for each element to spelist df['sig'+elem]=0.0 # copy peak significance (ratio of integrated counts over 1 sigma of background) df['err'+elem]=0.0 # another for total error in adjusted counts basis mycols.append(elem) mycols.append('sig'+elem) mycols.append('err'+elem) for i,elem in enumerate(list(multipeaklist.keys())): # get elements (keys) from dict df[elem]=0.0 df['sig'+elem]=0.0 df['err'+elem]=0.0 mycols.append(elem) mycols.append('sig'+elem) mycols.append('err'+elem) for i, elem in enumerate(elemlist): # now add at.% columns (e.g. %S, %Mg) colname='%'+elem # at % columns named %S, %Mg, etc. errname='err%'+elem mycols.append(colname) # add to column list template mycols.append(errname) df[colname]=0.0 df[errname]=0.0 for i,elem in enumerate(list(multipeaklist.keys())): # add multipeak elements colname='%'+elem # at % columns named %S, %Mg, etc. errname='err%'+elem mycols.append(colname) # add to column list template mycols.append(errname) df[colname]=0.0 df[errname]=0.0 for i in range(0,len(df)): # loop through all desired spectrum (multiarea ones already have duplicated rows) filenum=df.iloc[i]['Filenumber'] areanum=df.iloc[i]['Areanumber'] match=Integquantlog[Integquantlog['Filenumber']==filenum] # find integ data for this filenumber match=match[match['Areanumber']==areanum] basis=0.0 # for j, elem in enumerate(elemlist): # handle the single peak elements temp=match[match['Element']==elem] # finds entry for this element if len(temp)==1: # thresholds is dict with required significance level for each element thisthresh=thresholds.get(elem) # sig level for this element df=df.set_value(i, 'sig'+elem, temp.iloc[0]['Significance']) # always copy peak significance level if temp.iloc[0]['Significance']>thisthresh: # if above set threshold then calculate elem's value and add to basis df=df.set_value(i, elem, temp.iloc[0]['Adjcnts']) # copy adjusted counts of this element df=df.set_value(i, 'err'+elem, temp.iloc[0]['Erradjcnts']) basis+=temp.iloc[0]['Adjcnts'] # add this element's value to AES basis # now handle the multipeak elements (get average value from both peaks) for key, value in multipeaklist.items(): # key is element (aka colname in df), value is list of peaks in Smdifpeakslog templist=value # dictionary value is list of elem peak index positions numlines=len(templist) # this is number of lines that are average (i.e. 2 for Fe&Fe2) avgval=0.0 # working value for averaged adjamplitude erravgval=0.0 # combined error from erradjcnts of each line for k, peak in enumerate(templist): # create new list with original elem peak from index positions temp=match[match['Element']==peak] # finds integquantlog entry for this peak (match already trimmed to filenum and area) if len(temp)==1: thisthresh=thresholds.get(peak) # sig level for this element/peak df=df.set_value(i, 'sig'+elem, temp.iloc[0]['Significance']) # copy peak significance level if temp.iloc[0]['Significance']>thisthresh: avgval+=temp.iloc[0]['Adjcnts'] thiserrperc=temp.iloc[0]['Erradjcnts']/temp.iloc[0]['Adjcnts']**2 erravgval+=thiserrperc # sum of square of relative error else: numlines=numlines-1 # if peak is zeroed out and not added, this reduces # peaks in average if numlines>0: # avoid divbyzero if peak is too small avgval=avgval/numlines # this is now average basis for given element erravgval=np.sqrt(erravgval) # sqrt of sum of squares is relative error df=df.set_value(i, key, avgval) # copy adjusted amplitude of this element df=df.set_value(i, key+'err', avgval*erravgval) # combined actual error of this elem (as detemined from mulitple lines) # add value from this element to AESbasis basis+=avgval # end of multipeak elements loop df=df.set_value(i, 'AESbasis', basis) # write total basis value to df # Now compute at.% for each listed element (incl errors) for j, elem in enumerate(elemlist): colname='%'+elem ratio=df.iloc[i][elem]/df.iloc[i]['AESbasis'] # initialized to zero in cases where peak is below significance threshold df.set_value(i, colname, ratio) temp=match[match['Element']==elem] # again find peak entry and get finds entry for this peak # TODO maybe check threshold again (although element's value will be zero) if len(temp)==1: thiserr=temp.iloc[0]['Erradjcnts'] atpercerr=thiserr/df.iloc[i]['AESbasis'] errname='err%'+elem # error column df.set_value(i, errname, atpercerr) # Writes absolute error in at% # Also calculate for elements w/ multiple peaks (if present) for key, value in multipeaklist.items(): templist=value # dictionary value is list of elem peak index positions numlines=len(templist) # this is number of lines that are average (i.e. 2 for Fe&Fe2) colname='%'+key ratio=df.iloc[i][key]/df.iloc[i]['AESbasis'] df.set_value(i, colname, ratio) # TODO need to propagate errors through Fe & Fe2 errlist=[] # list of errors in % (usually max of two) for k, peak in enumerate(templist): # create new list with original elem peak from index positions temp=match[match['Element']==peak] # finds entry for this peak if len(temp)==1: if temp.iloc[0]['Adjcnts']>0: # skip negative values err=temp.iloc[0]['Erradjcnts']/temp.iloc[0]['Adjcnts'] errlist.append(err) # add this to list # combine errors in quadrature totalerr=0.0 for j, err in enumerate(errlist): totalerr+=err**2 totalerr=np.sqrt(totalerr) # percent error in at % # now get actual error thisval=df.iloc[i][key] # this is averaged value computed above (possibly zero if below thresholds ) thiserr=thisval*totalerr # error (in Fe) as actual value based on average of multiple peaks atpercerr=thiserr/df.iloc[i]['AESbasis'] errname='err%'+ key # error column df.set_value(i, errname, atpercerr) # Writes absolute error in at% # end of loop calculation for each spectrum # organize data based on mycols template df=organizecolumns(df,mycols) return df def calcadjcounts(df, AESquantparams, sig=2, kerrors=True): '''For each elemental peak in interquantlog, calculate or recalcuated adjusted counts using k-factor2 and mass result stored in adjcnts column and used for subsequent compositional determinations can change AESquantresults and recalc at any time; sig (aka 2 sigma errors) is default setting kerrors -- include error associated with kfactor (along with Poisson errors)''' if 'Adjcnts' not in df: df['Adjcnts']=0.0 # new column for adjusted amplitude (if not already present) if 'Erradjcnts' not in df: df['Erradjcnts']=0.0 # new column for associated error if 'err%cnts' not in df: df['err%cnts']=0.0 # percentage error only from counting statistics (not including kfactor err) if 'err%total' not in df: df['err%total']=0.0 # percentage error only from counting statistics (not including kfactor err) # loop for each element, mask df, get appropriate k-factor & mass df=df.reset_index(drop=True) # go ahead and reset index elemlist=np.ndarray.tolist(df.Element.unique()) # list of unique elements from df for i,elem in enumerate(elemlist): match=AESquantparams[(AESquantparams['element']==elem)] match=match.reset_index(drop=True) kfactor2=match.iloc[0]['kfactor2'] # kfactor and mass for this element/peak errkf2=match.iloc[0]['errkf2'] # percent error in above for integ method mass=match.iloc[0]['mass'] elemmask=(df['Element']==elem) # mask for this element in loop for j in range(0,len(df)): # loop and set adjamplitude to amp*kfact/mass if elemmask[j]==True: # row has this element newval=df.iloc[j]['Integcounts']*kfactor2/mass percerr=sig/np.sqrt(df.iloc[j]['Integcounts']) # 2/sqrt(N) is percent error totalerr=
np.sqrt(errkf2**2+percerr**2)
numpy.sqrt
# 13 Nov 2018 from __future__ import print_function import glob, os, json, sys from PIL import Image import numpy as np import open3d from collections import defaultdict from data3d.indoor_data_util import random_sample_pcl BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(os.path.dirname(BASE_DIR)) sys.path.append(BASE_DIR) sys.path.append(ROOT_DIR) USER_DIR = os.path.dirname(os.path.dirname(ROOT_DIR)) from wall_preprocessing import preprocess_walls from window_preprocessing import preprocess_windows from door_preprocessing import preprocess_doors from celing_floor_room_preprocessing import preprocess_cfr from utils3d.bbox3d_ops import Bbox3D from data3d.dataset_metas import DSET_METAS0 from scene_samples import SceneSamples Debug = True FunctionUncomplemented = True MIN_CAM_NUM = 10 MIN_POINT_NUM = 10000*10 ENABLE_NO_RECTANGLE = ['Ceiling', 'Floor', 'Room'] SAGE = True ONLY_LEVEL_1 = True SUNCG_V1_DIR = '/DS/SUNCG/suncg_v1' PARSED_DIR_GOING = '_parsed_NewPcl__' PARSED_DIR_READY = 'parsed_NewPcl' #PARSED_PATH = f'{SUNCG_V1_DIR}/{PARSED_DIR_GOING}' def show_pcl(pcl): pcd = open3d.PointCloud() pcd.points = open3d.Vector3dVector(pcl[:,0:3]) if pcl.shape[1] == 6: pcd.colors = open3d.Vector3dVector(pcl[:,3:6]) open3d.draw_geometries([pcd]) def camPos2Extrinsics(cam_pos): ''' cam: ref: https://github.com/shurans/SUNCGtoolbox/blob/master/gaps/apps/scn2cam/scn2cam.cpp Line207 vx, vy, vz, tx, ty, tz, ux, uy, uz, xf, yf, value [vx, vy, vz] is the centroid [tx,ty,tz] is cam forward orientation [ux,uy,uz] is cam right orientation value is the score of camera xf: xfov yf:yfov ref: https://github.com/shurans/sscnet/blob/master/matlab_code/utils/camPose2Extrinsics.m cam_pos: [12] ''' #cam_pos = np.array([38.2206 , 1.2672 , 41.8938 , 0.9785 , -0.1961 , -0.0644 , 0.1957, 0.9806 , -0.0129 , 0.5500 , 0.4310, 14.2487]) cam_pos = np.reshape(cam_pos, [12,1]) vv = cam_pos[0:3,:] tv = cam_pos[3:6,:] uv = cam_pos[6:9,:] rv = np.reshape(np.cross(tv[:,0],uv[:,0]), [3,1]) extrinsics = np.concatenate([rv, -uv, tv, vv], 1) # check R R = extrinsics[0:3,0:3] I = np.matmul(R, R.T) assert np.sum( np.abs(np.diag(I)-1) ) < 1e-2 assert np.sum(np.abs(I-
np.eye(3)
numpy.eye
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 9 00:54:57 2017 @author: scott """ import os import re import numpy as np # import matplotlib as mpl from scipy.interpolate import interp1d from matplotlib import pyplot as plt import time import pickle try: from moviepy.editor import VideoClip from moviepy.video.io.bindings import mplfig_to_npimage except ImportError: print("you need the package moviepy to be able to make movies!") from .import_data import ( load_from_file, read_macro, epoch_time_to_timestamp, timestamp_to_epoch_time, ) from .pilatus import Pilatus, calibration_0, shape_0 from .XRD import integrate_peak, get_background_line, get_peak_background from .XRD import Peak timestamp_matcher = "([0-9]{2}\:){2}[0-9]{2}" def get_images( directory, tag, shape=shape_0, calibration=calibration_0, slits=True, xslits=None, yslits=[60, 430], pixelmax=None, verbose=True, vverbose=False, ): if verbose: print("\n\nfunction 'get_images' at your service!\n") try: lslist = os.listdir(directory) except FileNotFoundError: print( "The directory doesn't exist. get_images is returning a blank dictionary." ) return {} # print(tag) # debugging if verbose: print(str(len(lslist)) + " items in " + directory) imagenames = [f for f in lslist if f[-4:] == ".raw" and tag in f] if verbose: print( " of which " + str(len(imagenames)) + " are image files including '" + tag + "'" ) images = {} for f in imagenames: n = int(f[-8:-4]) # this is the image number as SPEC saves them filepath = directory + os.sep + f images[n] = Pilatus( filepath, shape=shape, calibration=calibration, slits=slits, xslits=xslits, yslits=yslits, pixelmax=pixelmax, verbose=vverbose, ) if verbose: print("\nfunction 'get_images' finished!\n\n") return images def peak_colors(peak_list, colors=["k", "b", "r", "g", "c", "m"]): """ This is a fill-in function until I've got some kind of standard colors implemented. It takes a list of integral ranges and returns an identically indexed dictionary with each value of the form (integral_range, color) """ integrals = {} for i, integral in enumerate(peak_list): integrals[i] = (integral, colors[i]) return integrals def get_direction_mask(x, direction=True): """ Returns a mask selecting the values of x that are greater than (direction = True) or less than (direction = False) all previous values """ if type(direction) in [int, float]: direction = direction > 0 mask = [] X = x[0] for x_i in x: mask += [(x_i > X) == direction] if mask[-1]: X = x_i return np.array(mask) # ----------------- here comes the CLASS ----------------- class ScanImages: # -------------- functions for defining the scan ---------- def __init__( self, name=None, csvfile=None, directory=None, pilatusfilebase="default", usecsv=True, tag=None, scan_type="time", calibration=calibration_0, macro=None, tth=None, alpha=None, timestamp=None, tstamp=None, pixelmax=None, timecol=None, abstimecol=None, tz=None, slits=True, xslits=None, yslits=[60, 430], scan=None, copy=False, load=False, verbose=True, vverbose=False, ): """ give EITHER a csvfile name with full path, or a directory and a tag. pilatusfilebase can be constructed from this, and used to import the Pilatus image objects. The calibration is passed on to the Pilatus objects. The macro is read to get the (tth, alpha) values which aren't scanned, though they can also be put in manually.os.path.expanduser('~/o/FYSIK/list-SurfCat/setups/Synchrotron/May2018') timestamp can be either a str like 'hh:mm:ss' or a pointer. timestamp='abstimecol' uses the first value of the specified timecol in the csvfile timestamp=None tries to get it from the file """ # ------- load a pickle, to save computing time and space -------- # if load: try: with open(name, "rb") as f: scan = pickle.load(f) except FileNotFoundError: print("Couldn't find " + name) loadname = name + ".pkl" print("Trying " + loadname + ".") with open(loadname, "rb") as f: scan = pickle.load(f) print("Loaded " + name) # ------ for development: new code with pre-loaded data -------# if copy or load: # take all data (images, csv_data, etc) from another scan for attr in dir(scan): if attr not in dir( self ): # because we don't want to replace e.g. functions setattr(self, attr, getattr(scan, attr)) try: self.copied += 1 except AttributeError: self.copied = 1 return # ---- parse inputs for name and, if csv used, csvname -----------------# csvname = None if usecsv: if csvfile is None: csv_directory = directory # print(load) # debugging if (tag is None or directory is None) and not load: print("need a csv file name or a directory and a tag!") return lslist = os.listdir(directory) try: csvname = next( f for f in lslist if f[-4:] == ".csv" and "_scan" in f and tag in f ) except StopIteration: if load: pass else: print(lslist) print( "Cound not find a csvname containing " + tag + " in " + directory + "\n(ls above)" ) else: csv_directory, csvname = os.path.split(csvfile) if len(csv_directory) == 0: csv_directory = directory if csvname is not None: print( "Loading Scan from directory = " + directory + "\n found csvname = " + str(csvname) ) if name is None: if tag is not None: name = tag elif csvname is not None: name = csvname[:-4] # to drop the .csv elif csvfile is not None: name = csvfile print("scan name = '" + name + "'") # -------------- install easy metadata ------------- # self.directory = directory self.name = name self.timecol = timecol self.abstimecol = abstimecol self.tz = tz self.bg = False # stores whether background has been subtracted self.verbose = verbose self.vverbose = vverbose if scan_type in ["time", "t"]: self.scan_type = "t" elif scan_type in ["tth", "TwoTheta"]: self.scan_type = "tth" elif scan_type in ["alpha", "a", "th", "Theta"]: self.scan_type = "alpha" if macro is not None: self.macro = macro self.settings = read_macro(macro) if tth is None: tth = self.settings["tth"][-1] if alpha is None: alpha = self.settings["alpha"][-1] self.tth = tth self.alpha = alpha # try to read stuff from file name if csvname is not None: for match in re.findall("_[A-Za-z]+[n?][0-9]+[p[0-9]+]?", csvname): attr = re.search("[A-Za-z]", match).group() value = re.search("[0-9]+[n]?[p[0-9]+]?", match).group() try: value = float(value.replace("p", ".").replace("n", "-")) except ValueError: print("not sure what " + value + " is.") if not hasattr(self, attr): setattr(self, attr, value) elif getattr(self, value) is None: setattr(self, attr, value) # --------- import csv if requested if csvname is not None: csvfilepath = csv_directory + os.sep + csvname self.csv_data = load_from_file( csvfilepath, data_type="SPEC", timestamp=timestamp, tstamp=tstamp, tz=tz ) self.csvfilepath = csvfilepath # -------------------- get images! ------------------------# if pilatusfilebase == "default": for foldername in ["images", "Pilatus"]: pilatus_directory = directory + os.sep + foldername if os.path.isdir(pilatus_directory): break else: print("could not find pilatus directory!") tag_pilatus = name else: pilatus_directory, tag_pilatus = os.path.split(pilatusfilebase) self.images = get_images( pilatus_directory, tag=tag_pilatus, calibration=calibration, verbose=verbose, pixelmax=pixelmax, slits=slits, xslits=xslits, yslits=yslits, vverbose=vverbose, ) if len(self.images) == 0: raise Warning("THIS SCAN IS EMPTY!!!!") self.empty = True return else: self.empty = False # ------------------------- organize csvdata and metadata ---------- # if hasattr(self, "csv_data"): self.data = self.csv_data.copy() # self.csv_into_images() # this causes problems now. csv is more likely to be currupt than images. else: self.data = {"title": name, "data_type": "spec"} self.data["data_cols"] = [] for col, attr in [("tth_scan", "tth"), ("alpha", "alpha"), ("t_abs", "tstamp")]: try: self.data[col] = np.array( [getattr(self.images[i], attr) for i in range(len(self))] ) self.data["data_cols"] += [col] if verbose: print( "got '" + attr + "' from Pilatus objects" + " and saved it as self.data['" + col + "']" ) except AttributeError: if verbose: print("could not get " + col + ", (" + attr + ") from images.") # this will conveniently store useful data, some from csv_data if timecol is None and abstimecol is not None: # put in the timecol! self.get_timecol_from_abstimecol() # ---------------------- get timestamp and timecol -----------------# if verbose: print( "\nGetting tstamp and t according to inputs:\n\t" + "timestamp = " + str(timestamp) + ", tstamp = " + str(tstamp) ) if timestamp in ["filename", "csv", "file"]: tstamp = self.csv_data["tstamp"] timestamp = epoch_time_to_timestamp(tstamp, tz=tz) if verbose: print("got self.tstamp from self.csv_data") elif timestamp in ["pdi"]: tstamp = self.images[0].tstamp if verbose: print("got self.tstamp from self.images[0]") elif timestamp in ["abstimecol"]: try: value = self.csv_data[abstimecol][0] try: a = re.search(timestamp_matcher, value) except TypeError: print( "ERROR: You're trying to get the timestamp from an absolute" + " time column.\n Inputs:\ttimestamp='abstimecol',\tabstimecol='" + str(abstimecol) + "'\n but self.csv_data[abstimecol] = " + str(value) + "." ) raise timestamp = a.group() tstamp = timestamp_to_epoch_time(value, tz=tz) # print('line 163: timestamp = ' + timestamp) # debugging if timecol is not None: t = a.csv_data[timecol] tstamp = tstamp - t[0] # this is to correct for the fact that tstamp refers to the timestamp = epoch_time_to_timestamp(tstamp, tz=tz) # first datapoint if verbose: print( "got self.tstamp from self.csv_data['" + abstimecol + "'], i.e., abstimecol." ) except OSError: # a dummy error... I want to actually get the error messages at first pass elif "tstamp" in self.csv_data: tstamp = self.csv_data["tstamp"] print("got tstamp from self.csv_data") if "t" not in self.data: if timecol is not None: print("getting t from self.csv_data['" + timecol + "'].") t = self.csv_data[timecol] elif "t_abs" in self.data: tstamp = self.data["t_abs"][0] t = self.data["t_abs"] - tstamp if verbose: print("got self.tstamp and self.t from self.data['t_abs']") else: try: t = self.csv_data[self.timecol] if verbose: print( "got self.t from self.csv_data['" + self.timecol + "'], i.e. timecol." ) except KeyError: if self.timecol is not None: print( "self.timecol = " + str(self.timecol) + " is not in csv data. Check yo self." ) else: print( "This is a timescan but there's no time " + "variable specified. \nConsider using " + "EC_Xray.time_cal() to calibrate and specify one." ) return # we can only reach here if 't' has been successfully put into self.data_cols self.tstamp = tstamp self.timestamp = timestamp self.data["tstamp"] = tstamp self.data["timestamp"] = timestamp self.data["t"] = t if "t" not in self.data["data_cols"]: self.data["data_cols"] += ["t"] # print('line 170: self.timestamp = ' + str(self.timestamp)) # This code is a bit of a mess, and timestamp is here only for sanity-checking # purposes. All math will refer to tstamp # ------- finished ---------- # if self.verbose: print("\nScanImages object with name " + self.name + " imported!\n\n") def __len__(self): try: return len(self.images) except AttributeError: print( "len(self) is tricky for scan named '" + self.name + "' which was loaded without images. Will try to use " + "len(self.data['t']) instead" ) try: return len(self.data["t"]) except AttributeError: print("There is no self.data") except KeyError: print("self.data has no t.") return None def __getitem__(self, indices): if type(indices) is int: if type(indices) is int and indices < 0: indices = len(self) + indices return self.images[indices] elif type(indices) in [list, tuple]: return [self.images[i] for i in indices] print("indices must be an integer or sequence of integers") def save(self, filename=None, with_images=False): savescan = ScanImages(copy=True, scan=self) if not with_images and hasattr(savescan, "images"): del savescan.images if filename is None: filename = "./" + self.name + ".pkl" with open(filename, "wb") as f: pickle.dump(savescan, f) def append(self, scan): N = len(self) for n in range(len(scan)): self.images[N + n] = scan.images[n] for col, attr in [("tth_scan", "tth"), ("alpha", "alpha"), ("t_abs", "tstamp")]: self.data[col] = np.array( [getattr(self.images[i], attr) for i in range(len(self))] ) self.data["data_cols"] += [col] tstamp = self.data["t_abs"][0] t = self.data["t_abs"] - tstamp self.data["t"] = t def csv_into_images(self): if self.scan_type == "t": for i in range(len(self)): # I don't like it, but that's where SPEC saves t. # data columns 'TTIMER' and 'Seconds' contain nothing. # If t is recorded, tth and alpha are constant, but... # The tth and alpha are not saved anywhere. The user must # input them, or input a macro to read. Done in self.__init__ # print('putting tth=' + str(self.tth) + ' into image!') #debugging if self.images[i].tth is None: self.images[i].tth = self.tth if self.images[i].alpha is None: self.images[i].alpha = self.alpha elif self.scan_type == "tth": self.data["tth_scan"] = self.csv_data["TwoTheta"] self.data["data_cols"] += ["tth_scan"] for i in range(len(self)): # self.data['tth'] will be saved for when calculating the spectrum from the images self.images[i].tth = self.data["tth_scan"][i] self.images[i].alpha = self.alpha elif self.scan_type == "alpha": for i in range(len(self)): self.images[i].tth = self.tth def set_tth(self, tth, update_images=True): self.tth = tth if update_images: for image in self.images.values(): image.tth = tth def get_timecol_from_abstimecol(self): abstimecol = self.csv_data[self.abstimecol] t = [] # print('line 228: self.timestamp = ' + str(self.timestamp)) t0 = self.tstamp for timecol in abstimecol: t += [timestamp_to_epoch_time(time, tz=self.tz) - t0] self.data["t"] = t if "t" not in self.data["data_cols"]: self.data["data_cols"] += ["t"] # -------------- functions for calculating XRD spectra ---------- def get_combined_spectrum( self, stepsize=0.05, override=False, slits=True, xslits=None, yslits=None, method="sum", min_pixels=10, tth=None, scan_method="sum", out="spectrum", weight=None, recalculate=False, normalize=None, ): """ Calculates conventional tth spectrum (diffractogram) from the pixels of each Pilatus image. If the image spectra have already been calculated, they are used unless override is True. scan_method says whether to add ('sum') or average ('average') the contributions from each image. stepsize, method, min_pixels, xslits, yslits, and weight are all arguments which are passed on to Pilatus.tth_spectrum() """ if self.verbose: print("\n\nfunction 'get_combined_spectrum' at your service!\n") if hasattr(self, "spectrum") and not recalculate: return self.spectrum elif not hasattr(self, "images"): print("scan '" + self.name + "' has no images! Can't calcualte spectrum") return if self.verbose: t0 = time.time() print("t = 0") print( "calculating tth spectrum for each of " + str(len(self)) + " images, storing in Pilatus objects, and adding them all up." ) if tth is not None: self.tth = tthTru if normalize: try: normalizer = self.data[normalize] if self.verbose: print( "normalizing spectra according to self.data['" + normalize + "']." ) except KeyError: normalize = False raise Warning("normalize must be a key to self.data won't normalize") bins = {} contributors = {} raw_spectra = {} for i in range(len(self)): bins_i = self.images[i].tth_spectrum( out="bins", override=override, stepsize=stepsize, method=method, min_pixels=min_pixels, tth=tth, xslits=xslits, yslits=yslits, weight=weight, verbose=self.vverbose, ) raw_spectra[i] = self.images[i].spectrum if normalize: try: norm = normalizer[i] if type(norm) not in [int, float, np.float64]: raise IndexError except IndexError: print( "encountered a problem in normalizer for image #" + str(i) + ". Terminating." ) break else: norm = 1 for n, counts in bins_i.items(): if type(n) is not int: continue if n in bins: bins[n] += counts / norm contributors[n] += [i] else: bins[n] = counts / norm contributors[n] = [i] if self.verbose: print("Counts per tth interval calculated locally and globally. ") tth_vec = [] counts_vec = [] n_min = min(bins.keys()) n_max = max(bins.keys()) for n in range(n_min, n_max + 1): tth_vec += [(n + 0.5) * stepsize] if scan_method == "average": counts_vec += [bins[n] / len(contributors[n])] else: counts_vec += [bins[n]] tth_vec =
np.array(tth_vec)
numpy.array
import numpy as np import yaml import plotly.graph_objects as go import os from operator import itemgetter def cleanup_test_files(): """ The Rust code panics if the files it writes to already exists. This fn removes them after they have been used so that the example can be run again. It also prevents files used only for the tests from accumulating in the repo. """ os.remove("./target/debug/examples/reservoirs.yaml") os.remove("./target/debug/examples/population.yaml") parameters = {} with open("./visualizations_python/parameters.yaml") as parameters_file: parameters = yaml.load(parameters_file, Loader=yaml.CLoader) with open("./target/debug/examples/reservoirs.yaml") as res_file, open( "./target/debug/examples/population.yaml" ) as pop_file: # create iterators containing the data from the yaml docs reservoirs = yaml.load_all(res_file, Loader=yaml.CLoader) population = yaml.load_all(pop_file, Loader=yaml.CLoader) # For the population, extract the sample values; forget the enumeration. population = [value for i, value in population] population = np.array(population, dtype=float) # print("population", population) # Initialize an array with rows [index, reservoir_mean, population_slice_mean] where: # index = enumeration of the reservoirs, # reservoir_mean = mean of the reservoir # population_slice_mean = mean of the slice of the population from which the reservoir sample was taken arr =
np.full((parameters["num_res"], 3), 0, dtype=float)
numpy.full
import os import torch import pickle import gensim import numpy as np import pandas as pd from config import model_config as config from gensim.scripts.glove2word2vec import glove2word2vec from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, recall_score import itertools import matplotlib.pyplot as plt def generate_word_embeddings(vocab): if not os.path.exists('{}gensim.glove.6B.{}d.txt'.format( config['embeddings_dir'], config['embedding_dim'])): glove2word2vec(glove_input_file='{}glove.6B.{}d.txt'.format( config['embeddings_dir'], config['embedding_dim']), word2vec_output_file='{}gensim.glove.6B.{}d.txt'.format( config['embeddings_dir'], config['embedding_dim'])) embeddings_all = gensim.models.KeyedVectors.load_word2vec_format( '{}gensim.glove.6B.{}d.txt'.format(config['embeddings_dir'], config['embedding_dim'])) print('Loaded original embeddings') # initialize word embeddings matrix combined_word_embeddings = np.zeros((vocab.size, config['embedding_dim'])) for index, word in vocab.index2word.items(): try: if index < 4: # deal with special tokens combined_word_embeddings[index] = np.random.normal( size=(config['embedding_dim'], )) continue combined_word_embeddings[index] = embeddings_all[word] except KeyError as e: print('KeyError triggered for {}'.format(word)) combined_word_embeddings[index] = np.random.normal( size=(config['embedding_dim'], )) print('Created combined + filtered embeddings.') with open('{}saved_{}d_word_embeddings.pkl'.format( config['embeddings_dir'], config['embedding_dim']), 'wb') as f: pickle.dump(combined_word_embeddings, f) combined_word_embeddings = torch.from_numpy(combined_word_embeddings).float() return combined_word_embeddings def load_word_embeddings(): with open('{}saved_{}d_word_embeddings.pkl'.format( config['embeddings_dir'], config['embedding_dim']), 'rb') as f: combined_word_embeddings = pickle.load(f) return torch.from_numpy(combined_word_embeddings).float() def zero_padding(l, fillvalue=config['<PAD>']): return list(itertools.zip_longest(*l, fillvalue=fillvalue)) def binary_matrix(l, value=config['<PAD>']): m = [] for i, seq in enumerate(l): m.append([]) for token in seq: if token == 0: m[i].append(0) else: m[i].append(1) return m # Returns padded input sequence tensor and lengths def input_var(l, vocab): indexes_batch = [indexes_from_sentence(vocab, sentence) for sentence in l] for idx, indexes in enumerate(indexes_batch): indexes_batch[idx] = indexes_batch[idx] + [config['<EOS>']] lengths = torch.tensor([len(indexes) for indexes in indexes_batch]) pad_list = zero_padding(indexes_batch) pad_var = torch.LongTensor(pad_list) return pad_var, lengths def indexes_from_sentence(vocab, sentence): indexes = [] for word in sentence.strip().split(): try: indexes.append(vocab.word2index[word]) except KeyError as e: indexes.append(config['<UNK>']) return indexes[:config['max_sequence_length']] def load_data(batched=True, test=False, file_dir='../../data/t2e/'): # Load vocab with open(config['vocab_path'], 'rb') as f: vocab = pickle.load(f) bs = config['batch_size'] ftype = 'test' if test else 'train' df = pd.read_csv('{}text_{}.csv'.format(file_dir, ftype)) data = (np.array(list(df['transcription'])),
np.array(df['label'])
numpy.array
# This is modified from Upenn MEAM 620 course: # https://alliance.seas.upenn.edu/~meam620/wiki/index.php import numpy as np import torch import matplotlib.pyplot as plt class qd_object: """ Struct to hold qd information """ def __init__(self): self.pos = 0 self.vel = 0 self.euler = 0 self.omega = 0 class state_object: """ Struct to hold state information """ def __init__(self): self.pos = np.zeros(3) self.vel = np.zeros(3) self.acc = np.zeros(3) self.yaw = 0 self.yawdot = 0 def init_state(s_start): """ Initialize 13 x 1 state vector """ s = np.zeros(13) phi0 = 0.0 theta0 = 0.0 psi0 = s_start.yaw Rot0 = RPYtoRot_ZXY(phi0, theta0, psi0) Quat0 = RotToQuat(Rot0) s[0] = s_start.pos[0] #x s[1] = s_start.pos[1] #y s[2] = s_start.pos[2] #z s[3] = s_start.vel[0] #xdot s[4] = s_start.vel[1] #ydot s[5] = s_start.vel[2] #zdot s[6] = Quat0[0] #qw s[7] = Quat0[1] #qx s[8] = Quat0[2] #qy s[9] = Quat0[3] #qz s[10] = 0 #p s[11] = 0 #q s[12] = 0 #r return s def QuatToRot(q): """ QuatToRot Converts a Quaternion to Rotation matrix written by Daniel Mellinger """ # normalize q q = q / np.sqrt(np.sum(q**2)) qahat = np.zeros([3, 3] ) qahat[0, 1] = -q[3] qahat[0, 2] = q[2] qahat[1, 2] = -q[1] qahat[1, 0] = q[3] qahat[2, 0] = -q[2] qahat[2, 1] = q[1] R = np.identity(3) + 2 * qahat @ qahat + 2 * q[0] * qahat return R def RotToQuat(R): """ ROTTOQUAT Converts a Rotation matrix into a Quaternion written by <NAME> from the following website, deals with the case when tr<0 http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm """ tr = np.sum(np.trace(R)) if (tr > 0): S = np.sqrt(tr + 1.0) * 2 # S=4*qw qw = 0.25 * S qx = (R[2, 1] - R[1, 2]) / S qy = (R[0, 2] - R[2, 0]) / S qz = (R[1, 0] - R[0, 1]) / S elif (R[0, 0] > R[1, 1]) and (R[0, 0] > R[2, 2]): S = np.sqrt(1.0 + R(1,1) - R(2,2) - R(3,3)) * 2 # S=4*qx qw = (R[2, 1] - R[1, 2]) / S qx = 0.25 * S qy = (R[0, 1] + R[1, 0]) / S qz = (R[0, 2] + R[2, 0]) / S elif R[1, 1] > R[2, 2] : S = np.sqrt(1.0 + R[1, 1] - R[0, 0] - R[2, 2] ) * 2 # S=4*qy qw = (R[0, 2] - R[2, 0] ) / S qx = (R[0, 1] + R[1, 0] ) / S qy = 0.25 * S qz = (R[1, 2] + R[2, 1] ) / S else: S = np.sqrt(1.0 + R[2, 2] - R[0, 0] - R[1, 1] ) * 2 # S=4*qz qw = (R[1, 0] - R[0, 1] ) / S qx = (R[0, 2] + R[2, 0] ) / S qy = (R[1, 2] + R[2, 1] ) / S qz = 0.25 * S q = np.array([[qw], [qx], [qy], [qz]]) q = q * np.sign(qw) return q def RPYtoRot_ZXY(phi, theta, psi): """ RPYtoRot_ZXY Converts roll, pitch, yaw to a body-to-world Rotation matrix. The rotation matrix in this function is world to body [bRw] you will need to transpose this matrix to get the body to world [wRb] such that [wP] = [wRb] * [bP], where [bP] is a point in the body frame and [wP] is a point in the world frame written by <NAME> """ R = np.array([[np.cos(psi) * np.cos(theta) - np.sin(phi) * np.sin(psi) * np.sin(theta), np.cos(theta)*np.sin(psi) + np.cos(psi)*np.sin(phi)*np.sin(theta), -np.cos(phi)*np.sin(theta)], [-np.cos(phi)*np.sin(psi), np.cos(phi)*np.cos(psi), np.sin(phi)], [np.cos(psi)*np.sin(theta) + np.cos(theta)*np.sin(phi)*np.sin(psi), np.sin(psi)*np.sin(theta) - np.cos(psi)*np.cos(theta)*np.sin(phi), np.cos(phi)*np.cos(theta)]]) return R def RotToRPY_ZXY(R): """ RotToRPY_ZXY Extract Roll, Pitch, Yaw from a world-to-body Rotation Matrix The rotation matrix in this function is world to body [bRw] you will need to transpose the matrix if you have a body to world [wRb] such that [wP] = [wRb] * [bP], where [bP] is a point in the body frame and [wP] is a point in the world frame written by <NAME> bRw = [ cos(psi)*cos(theta) - sin(phi)*sin(psi)*sin(theta), cos(theta)*sin(psi) + cos(psi)*sin(phi)*sin(theta), -cos(phi)*sin(theta)] [-cos(phi)*sin(psi), cos(phi)*cos(psi), sin(phi)] [ cos(psi)*sin(theta) + cos(theta)*sin(phi)*sin(psi), sin(psi)*sin(theta) - cos(psi)*cos(theta)*sin(phi), cos(phi)*cos(theta)] """ phi = np.arcsin(R[1, 2]) psi = np.arctan2(-R[1, 0] / np.cos(phi), R[1, 1] / np.cos(phi)) theta = np.arctan2(-R[0, 2] / np.cos(phi), R[2, 2] / np.cos(phi)) return phi, theta, psi def qdToState(qd): """ Converts state vector for simulation to qd struct used in hardware. x is 1 x 13 vector of state variables [pos vel quat omega] qd is a struct including the fields pos, vel, euler, and omega """ x = np.zeros(13) #initialize dimensions x[0:3] = qd.pos x[3:6] = qd.vel Rot = RPYtoRot_ZXY(qd.euler[0], qd.euler[1], qd.euler[2]) quat = RotToQuat(Rot) x[6:10] = quat x[11:13] = qd.omega return x def stateToQd(x): """ Converts qd struct used in hardware to x vector used in simulation x is 1 x 13 vector of state variables [pos vel quat omega] qd is a struct including the fields pos, vel, euler, and omega """ qd = qd_object() # current state qd.pos = x[0:3] qd.vel = x[3:6] qd.Rot = QuatToRot(x[6:10]) #print("Rot:\n", Rot) print("rotmat in my qd struct:\n", qd.Rot) [phi, theta, yaw] = RotToRPY_ZXY(qd.Rot) qd.euler = np.array([phi, theta, yaw]) qd.omega = x[10:13] return qd def diamond(t): """ Desired diamond trajectory """ T = 15 if t < 0: pos = np.array([0, 0, 0]) vel = np.array([0, 0, 0]) acc = np.array([0, 0, 0]) elif t < T / 4: pos = np.array([0, np.sqrt(2), np.sqrt(2)]) * t / (T / 4) vel = np.array([0, np.sqrt(2), np.sqrt(2)]) / (T / 4) acc = np.array([0, 0, 0]) elif t < T / 2: pos = np.array([0, np.sqrt(2), np.sqrt(2)]) * (2 - 4 * t / T) + np.array([0, 0, 2 * np.sqrt(2)]) * ( 4 * t / T - 1) vel = np.array([0, np.sqrt(2), np.sqrt(2)]) * (-4 / T) + np.array([0, 0, 2 * np.sqrt(2)]) * (4 / T) acc = np.array([0, 0, 0]) elif t < 3 * T / 4: pos = np.array([0, 0, 2 * np.sqrt(2)]) * (3 - 4 * t / T) + np.array([0, -np.sqrt(2), np.sqrt(2)]) * ( 4 * t / T - 2) vel = np.array([0, 0, 2 * np.sqrt(2)]) * (-4 / T) + np.array([0, -np.sqrt(2), np.sqrt(2)]) * (4 / T) acc =
np.array([0, 0, 0])
numpy.array
# Copyright 2020 The PGDL Competition organizers. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Scoring program for the PGDL competition # Main contributor: <NAME>, July 2020-October 2020 # Code for computing the conditional mutual information. import copy import numpy as np def create_combination_name(hparams): combination = [] for ch, chv in hparams.items(): single_hparam_combination = [] for v in chv: for w in chv: single_hparam_combination.append(str(v) + str(w)) if len(combination) == 0: combination = single_hparam_combination else: new_combination = [] for ch in combination: for sh in single_hparam_combination: new_combination.append(ch + sh) combination = new_combination return combination def make_key_from_models(model_1, model_2, conditioning_hparam): key = "" for ch in conditioning_hparam: key += str(model_1["hparams"][ch]["current_value"]) + str( model_2["hparams"][ch]["current_value"] ) return key def mi_empty_conditioning_set_table(prediction, model_specs): a0 = {"+gap": 0, "-gap": 1} a1 = {"+measure": 0, "-measure": 1} table = np.zeros((2, 2, 1)) # fill the table for mid_1 in model_specs: for mid_2 in model_specs: try: k0 = ( "+gap" if model_specs[mid_1]["gen_gap"] > all_model_repr[mid_2]["gen_gap"] else "-gap" ) k1 = "+measure" if prediction[mid_1] > prediction[mid_2] else "-measure" all_table[a0[k0], a1[k1], 0] += 1 except KeyError as e: continue axis_meaning = [a0, a1, None] return all_table, axis_meaning def build_mi_table(prediction, model_specs, conditioning_hparams): if len(conditioning_hparams) == 0: return mi_empty_conditioning_set_table(prediction, model_specs) third_axis_len = 1 for hparam in conditioning_hparams: values = conditioning_hparams[hparam] third_axis_len *= len(values) ** 2 table = np.zeros((2, 2, third_axis_len)) combinations = create_combination_name(conditioning_hparams) assert ( len(combinations) == third_axis_len ), "combination length and axis length do not match" # map to index mapping a0 = {"+gap": 0, "-gap": 1} a1 = {"+measure": 0, "-measure": 1} a2 = {k: i for i, k in enumerate(combinations)} # fill the table count = 0 for mid_1 in model_specs: for mid_2 in model_specs: try: gap_positive = ( model_specs[mid_1]["metrics"]["gen_gap"] > model_specs[mid_2]["metrics"]["gen_gap"] ) measure_diff_positive = prediction[mid_1] > prediction[mid_2] k0 = "+gap" if gap_positive else "-gap" k1 = "+measure" if measure_diff_positive else "-measure" # assert not gap_positive^measure_diff_positive, 'gap: {:.3f} {:.3f} measure: {:.3f} {:.3f}'.format(model_specs[mid_1]['metrics']['gen_gap'], model_specs[mid_2]['metrics']['gen_gap'], prediction[mid_1], prediction[mid_2]) k2 = make_key_from_models( model_specs[mid_1], model_specs[mid_2], conditioning_hparams ) table[a0[k0], a1[k1], a2[k2]] += 1 count += 1 except KeyError as e: print(e) continue axis_meaning = [a0, a1, a2] return table, axis_meaning def entropy(p): total = p.sum() normalized_p = p / total log =
np.log2(normalized_p + 1e-12)
numpy.log2
# -*- coding: utf-8 -*- # from shapely.geometry import LineString, Point from math import tan, pi, atan, sqrt, sin, cos, copysign, atan2, asin, acos # import utility from pylab import plt, np, mpl mpl.rcParams['mathtext.fontset'] = 'stix' mpl.rcParams['font.family'] = ['STIXGeneral', 'Times New Roman'] CUSTOM = 2 JMAG = 1 FEMM = 0 __all__ = ['VanGogh'] class VanGogh(object): """One VanGogh for both FEMM and JMAG""" __all__ = None def __init__(self, im, child_index): self.im = im self.child_index = child_index self.plot_object_list = [] def draw_model(self, fraction=1): # utility functions than wrap shapely functions if self.child_index == JMAG: # for being consistent with obselete codes self.plot_sketch_shaft() # Shaft if any self.draw_rotor_eMach(fraction) # self.draw_stator_without_non_accurate_shapely(fraction) elif self.child_index == FEMM: # for easy selecting of objects # utility.blockPrint() self.draw_stator_without_non_accurate_shapely(fraction) self.draw_rotor_without_non_accurate_shapely(fraction) # self.draw_rotor_eMach(fraction) # utility.enablePrint() # self.draw_stator(fraction) # try: # self.draw_rotor(fraction) # except Exception as e: # raise e elif self.child_index == CUSTOM: self.draw_rotor_without_non_accurate_shapely() self.draw_stator_without_non_accurate_shapely() def draw_rotor_without_non_accurate_shapely(self, fraction=1): # Shapely is very poor in accuracy, use your high school geometry knowledge to derive the coordinates! im = self.im # origin = Point(0,0) Stator_Sector_Angle = 2 * pi / im.Qs * 0.5 Rotor_Sector_Angle = 2 * pi / im.Qr * 0.5 ''' Part: Rotor ''' if self.child_index == JMAG: self.init_sketch_rotorCore() # Draw Points as direction of CCW # P1 P1 = (-im.Radius_Shaft, 0) # P2 P2 = (-im.Radius_Shaft * cos(Rotor_Sector_Angle), im.Radius_Shaft * sin(Rotor_Sector_Angle)) # P3 P2_angle = P3_angle = Rotor_Sector_Angle P3 = (-im.Radius_OuterRotor * cos(Rotor_Sector_Angle), im.Radius_OuterRotor * sin(Rotor_Sector_Angle)) # P4 # print('::', im.Radius_OuterRotor, im.Width_RotorSlotOpen) # quit() P4 = (-sqrt(im.Radius_OuterRotor ** 2 - (0.5 * im.Width_RotorSlotOpen) ** 2), 0.5 * im.Width_RotorSlotOpen) self.draw_arc(P3, P4, P3_angle - self.get_postive_angle(P4), center=(0, 0)) # P5 P5 = (-im.Location_RotorBarCenter - sqrt(im.Radius_of_RotorSlot ** 2 - (0.5 * im.Width_RotorSlotOpen) ** 2), 0.5 * im.Width_RotorSlotOpen) self.draw_line(P4, P5) if im.use_drop_shape_rotor_bar == True: # P6 P6 = (-im.Location_RotorBarCenter, im.Radius_of_RotorSlot) self.draw_arc(P6, P5, 0.5 * pi - self.get_postive_angle(P5, (-im.Location_RotorBarCenter, 0)), center=(-im.Location_RotorBarCenter, 0)) # P7 P7 = (-im.Location_RotorBarCenter2, im.Radius_of_RotorSlot2) self.draw_line(P6, P7) # P8 P8 = (-im.Location_RotorBarCenter2 + im.Radius_of_RotorSlot2, 0) self.draw_arc(P8, P7, 0.5 * pi, center=(-im.Location_RotorBarCenter2, 0)) else: P6 = P7 = None P8 = (-im.Location_RotorBarCenter + im.Radius_of_RotorSlot, 0) self.draw_arc(P8, P5, pi - self.get_postive_angle(P5, (-im.Location_RotorBarCenter, 0)), center=(-im.Location_RotorBarCenter, 0)) if self.child_index == FEMM: self.some_solver_related_operations_rotor_before_mirror_rotation(im, P6, P8) # call this before mirror_and_copyrotate if self.child_index == JMAG: self.draw_line(P8, P1) self.draw_arc(P2, P1, P2_angle) self.draw_line(P2, P3) self.mirror_and_copyrotate(im.Qr, im.Radius_OuterRotor, fraction, symmetry_type=2) self.init_sketch_cage() if self.child_index == CUSTOM: # self.draw_line(P8, P1, ls='-.') self.draw_arc(P2, P1, P2_angle) # self.draw_line(P2, P3, ls='-.') # 导条 # P_Bar P_Bar = (-im.Location_RotorBarCenter - im.Radius_of_RotorSlot, 0) self.draw_arc(P5, P_Bar, self.get_postive_angle(P5, (-im.Location_RotorBarCenter, 0)), center=(-im.Location_RotorBarCenter, 0), ls=':') if self.child_index == JMAG: self.add_line(P_Bar, P8) if im.use_drop_shape_rotor_bar == True: # draw the outline of rotor core for coil to form a region in JMAG self.draw_arc(P6, P5, 0.5 * pi - self.get_postive_angle(P5, (-im.Location_RotorBarCenter, 0)), center=(-im.Location_RotorBarCenter, 0)) self.draw_arc(P8, P7, 0.5 * pi, center=(-im.Location_RotorBarCenter2, 0)) else: raise Exception('Not implemented error') self.mirror_and_copyrotate(im.Qr, None, fraction, symmetry_type=2 # merge=False, # bars are not connected to each other, so you don't have to specify merge=False, they will not merge anyway... # do_you_have_region_in_the_mirror=True # In short, this should be true if merge is false... ) if self.child_index == FEMM: self.mirror_and_copyrotate(im.Qr, im.Radius_OuterRotor, fraction) self.some_solver_related_operations_fraction(im, fraction) if self.child_index == CUSTOM: # self.draw_line(P8, P_Bar, ls='-.') self.mirror_and_copyrotate(im.Qr, im.Radius_OuterRotor, fraction) # self.Pr_list = [P1,P2,P3,P4,P5,P6,P7,P8,P_Bar] self.Pr_list = [np.array(P) for P in [P1, P2, P3, P4, P5, P6, P7, P8] if P is not None] for P in self.Pr_list: self.ax.scatter(*P, c='k', marker='None') # rotor objects self.rotor_object_list = self.plot_object_list self.plot_object_list = [] for ind, P in enumerate([P1, P2, P3, P4, P5, P6, P7, P8]): print('rP' + str(ind + 1), P) def draw_stator_without_non_accurate_shapely(self, fraction=1): im = self.im # origin = Point(0,0) origin = [0, 0] Stator_Sector_Angle = 2 * pi / im.Qs * 0.5 Rotor_Sector_Angle = 2 * pi / im.Qr * 0.5 ''' Part: Stator ''' if self.child_index == JMAG: self.init_sketch_statorCore() # Draw Points as direction of CCW # P1 P1 = (-im.Radius_OuterRotor - im.Length_AirGap, 0) # P2 Radius_InnerStator = im.Radius_OuterRotor + im.Length_AirGap P2_angle = im.Angle_StatorSlotOpen * 0.5 / 180 * pi P2_rot = (-Radius_InnerStator * cos(P2_angle), -Radius_InnerStator * sin(P2_angle)) P2 = self.park_transform(P2_rot, Stator_Sector_Angle) self.draw_arc(P2, P1, self.get_postive_angle(P2)) # P3 P3_rot = (P2_rot[0] - im.Width_StatorTeethHeadThickness, P2_rot[1]) P3 = self.park_transform(P3_rot, Stator_Sector_Angle) self.draw_line(P2, P3) # P4 (P4 is better to compute using intersection, error from shapely will not really cause a problem while modeling) c = ( origin, im.Radius_OuterRotor + im.Length_AirGap + im.Width_StatorTeethHeadThickness + im.Width_StatorTeethNeck) l = [(0, 0.5 * im.Width_StatorTeethBody), (-im.Radius_OuterStatorYoke, 0.5 * im.Width_StatorTeethBody)] intersections = self.get_node_at_intersection(c, l) if intersections[0][0] < 0: P4 = intersections[0] else: P4 = intersections[1] self.draw_line(P3, P4) # P5 P5 = ( -sqrt(im.Radius_InnerStatorYoke ** 2 - (0.5 * im.Width_StatorTeethBody) ** 2), 0.5 * im.Width_StatorTeethBody) self.draw_line(P4, P5) # P6 # k = -tan(Stator_Sector_Angle) # l_sector = LineString([(0,0), (-im.Radius_OuterStatorYoke, -im.Radius_OuterStatorYoke*k)]) # P6 = self.get_node_at_intersection(c,l_sector) P6 = ( -im.Radius_InnerStatorYoke * cos(Stator_Sector_Angle), im.Radius_InnerStatorYoke * sin(Stator_Sector_Angle)) self.draw_arc(P6, P5, Stator_Sector_Angle - self.get_postive_angle(P5)) # P7 # c = self.create_circle(origin, im.Radius_OuterStatorYoke) # P7 = self.get_node_at_intersection(c,l_sector) P7 = [-im.Radius_OuterStatorYoke * cos(Stator_Sector_Angle), im.Radius_OuterStatorYoke * sin(Stator_Sector_Angle)] # P8 P8 = (-im.Radius_OuterStatorYoke, 0) if self.child_index == JMAG: self.draw_line(P6, P7) self.draw_arc(P7, P8, Stator_Sector_Angle) self.draw_line(P8, P1) self.mirror_and_copyrotate(im.Qs, None, fraction, symmetry_type=2, # 2: x-axis ) self.init_sketch_coil() if self.child_index == CUSTOM: # self.draw_line(P6, P7, ls='-.') self.draw_arc(P7, P8, Stator_Sector_Angle) # self.draw_line(P8, P1, ls='-.') # P_Coil # l = LineString([(P3[0], P3[1]), (P3[0], im.Radius_OuterStatorYoke)]) # P_Coil = self.get_node_at_intersection(l_sector, l) P_Coil = (P3[0], abs(P3[0]) * tan(Stator_Sector_Angle)) if self.child_index == JMAG: # F*ck you, Shapely for putting me through this! # temp = 0.7071067811865476*(P_Coil[1] - P4[1]) # P4 = [ P4[0], P4[1] + temp] # P5 = [P5[0] + 0.7071067811865476*(P4[0] - P5[0]), P5[1] + temp] # P6 = [] # we use sin cos to find P6 and P7, now this suffices. P6[1] -= 0.01 # Conclusion: do not use the intersection between l_sector and a circle! # Conclusion: do not use the intersection between l_sector and a circle! # Conclusion: do not use the intersection between l_sector and a circle! # 总之,如果overlap了,merge一下是没事的,麻烦就在Coil它不能merge,所以上层绕组和下层绕组之间就产生了很多Edge Parts。 if self.child_index == CUSTOM: # self.Ps_list = [P1,P2,P3,P4,P5,P6,P7,P8,P_Coil] self.Ps_list = [np.array(P) for P in [P1, P2, P3, P4, P5, P6, P7, P8]] for P in self.Ps_list: self.ax.scatter(*P, c='k', marker='None') # stator objects self.stator_object_list = self.plot_object_list self.plot_object_list = [] for ind, P in enumerate([P1, P2, P3, P4, P5, P6, P7, P8]): print('sP' + str(ind + 1), P) else: self.draw_line(P4, P_Coil) self.draw_line(P6, P_Coil) if self.child_index == JMAG: # draw the outline of stator core for coil to form a region in JMAG self.draw_line(P4, P5) self.draw_arc(P6, P5, Stator_Sector_Angle - self.get_postive_angle(P5)) self.mirror_and_copyrotate(im.Qs, None, fraction, edge4ref=self.artist_list[1], # 'Line.2' # symmetry_type=2, merge=False, # two layers of windings do_you_have_region_in_the_mirror=True # In short, this should be true if merge is false... ) # it is super wierd that use edge Line.2 as symmetry axis will lead to redundant parts imported into JMAG Designers (Extra Coil and Stator Core Parts) # symmetry_type=2 will not solve this problem either # This is actually caused by the overlap of different regions, because the precision of shapely is shit! # FEMM does not model coil and stator core separately if self.child_index == FEMM: self.mirror_and_copyrotate(im.Qs, im.Radius_OuterStatorYoke, fraction) def draw_rotor_eMach(self, fraction): def utilityTangentPointsOfTwoCircles(C1, C2, r, R): x1 = C1[0]; y1 = C1[1] x2 = C2[0]; y2 = C2[1] gamma = -atan((y2 - y1) / (x2 - x1)) distance = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) beta = asin((R - r) / distance) alpha = gamma - beta x3 = x1 + r * cos(0.5 * pi - alpha) y3 = y1 + r * sin(0.5 * pi - alpha) x4 = x2 + R * cos(0.5 * pi - alpha) y4 = y2 + R * sin(0.5 * pi - alpha) # (x3,y3) and (x4,y4) are outer tangent points on one side. coord3 = [x3, y3] coord4 = [x4, y4] return coord3, coord4 d_rs = self.im.Location_RotorBarCenter - self.im.Location_RotorBarCenter2 d_ro = self.im.Length_HeadNeckRotorSlot w_ro = self.im.Width_RotorSlotOpen w_rs1 = self.im.Radius_of_RotorSlot w_rs2 = self.im.Radius_of_RotorSlot2 R_or = self.im.Radius_OuterRotor R_ir = self.im.Radius_Shaft Qr = self.im.Qr # origin = [0,0] angleRotorSector = 2 * pi / Qr * 0.5 ''' Part: Rotor ''' if self.child_index == JMAG: self.init_sketch_rotorCore() # Draw Points as direction of CCW P1 = (-R_ir, 0) P2 = [-R_ir * cos(angleRotorSector), R_ir * sin(angleRotorSector)] P3 = [-R_or * cos(angleRotorSector), R_or * sin(angleRotorSector)] x, y = self.linecirc(0, 0.5 * w_ro, 0, 0, R_or) if np.isnan(y).all(): # all element are True? raise Exception('Error: provided line and circle have no intersection.') elif x[0] < 0: P4 = [x[0], y[0]] else: P4 = [x[1], y[1]] CenterP5P6 = [-(R_or - d_ro - w_rs1), 0] [x, y] = self.linecirc(0, 0.5 * w_ro, CenterP5P6[0], CenterP5P6[1], w_rs1) if np.isnan(y).all(): raise Exception('Error: provided line and circle have no intersection.') elif x[0] < CenterP5P6[0]: P5 = [x[0], y[0]] else: P5 = [x[1], y[1]] if self.im.use_drop_shape_rotor_bar == True: CenterP7P8 = [-(R_or - d_ro - w_rs1 - d_rs), 0] [P6, P7] = utilityTangentPointsOfTwoCircles(CenterP5P6, CenterP7P8, w_rs1, w_rs2) if P6[1] < 0: P6[1] = -1 * P6[1] P7[1] = -1 * P7[1] if P6[0] > P7[0]: P6, P7 = P7, P6 P8 = [-(R_or - d_ro - w_rs1 - d_rs - w_rs2), 0] else: P6 = P7 = None P8 = [-(R_or - d_ro - 2 * w_rs1), 0] self.listKeyPoints = [P1, P2, P3, P4, P5, P6, P7, P8]; drawer = self arc21 = drawer.drawArc([0, 0], P2, P1) line23 = drawer.drawLine(P2, P3) arc34 = drawer.drawArc([0, 0], P3, P4) line45 = drawer.drawLine(P4, P5) line81 = drawer.drawLine(P8, P1) if self.im.use_drop_shape_rotor_bar == True: arc65 = drawer.drawArc(CenterP5P6, P6, P5) line67 = drawer.drawLine(P6, P7) arc87 = drawer.drawArc(CenterP7P8, P8, P7) segments = [arc21, line23, arc34, line45, arc65, line67, arc87, line81] else: arc85 = drawer.drawArc(CenterP5P6, P8, P5) # CenterP5P6 is the same as CenterP5P8 segments = [arc21, line23, arc34, line45, arc85, line81] csToken = segments im = self.im if self.child_index == FEMM: self.some_solver_related_operations_rotor_before_mirror_rotation(im, P6, P8) # call this before mirror_and_copyrotate to asign segment size to the arc to reduce element number if self.child_index == JMAG: # JMAG needs to explictly draw the rotor slot. drawer.drawLine(P8, P1) drawer.drawArc([0, 0], P2, P1) drawer.drawLine(P2, P3) self.mirror_and_copyrotate(im.Qr, im.Radius_OuterRotor, fraction, symmetry_type=2) self.init_sketch_cage() if self.child_index == CUSTOM: # self.draw_line(P8, P1, ls='-.') self.draw_arc(P2, P1, P2_angle) # self.draw_line(P2, P3, ls='-.') # P_Bar P_Bar = (-im.Location_RotorBarCenter - im.Radius_of_RotorSlot, 0) drawer.drawArc((-im.Location_RotorBarCenter, 0), P5, P_Bar, ls=':') if self.child_index == JMAG: drawer.drawLine(P_Bar, P8) drawer.drawLine(P6, P7) # draw the outline of stator core for coil to form a region in JMAG drawer.drawArc((-im.Location_RotorBarCenter, 0), P6, P5) drawer.drawArc((-im.Location_RotorBarCenter2, 0), P8, P7) self.mirror_and_copyrotate(im.Qr, None, fraction, symmetry_type=2 # merge=False, # bars are not connected to each other, so you don't have to specify merge=False, they will not merge anyway... # do_you_have_region_in_the_mirror=True # In short, this should be true if merge is false... ) if self.child_index == FEMM: self.mirror_and_copyrotate(im.Qr, im.Radius_OuterRotor, fraction) self.some_solver_related_operations_fraction(im, fraction) if self.child_index == CUSTOM: # self.draw_line(P8, P_Bar, ls='-.') self.mirror_and_copyrotate(im.Qr, im.Radius_OuterRotor, fraction) # self.Pr_list = [P1,P2,P3,P4,P5,P6,P7,P8,P_Bar] self.Pr_list = [np.array(P) for P in [P1, P2, P3, P4, P5, P6, P7, P8]] for P in self.Pr_list: self.ax.scatter(*P, c='k', marker='None') # rotor objects self.rotor_object_list = self.plot_object_list self.plot_object_list = [] for ind, P in enumerate([P1, P2, P3, P4, P5, P6, P7, P8]): print('rP' + str(ind + 1), P) def drawLine(self, PA, PB): self.draw_line(PA, PB) def drawArc(self, CenterPAPB, PA, PB, **kwarg): if self.child_index == JMAG: # plot arc using center and two points self.draw_arc(CenterPAPB, PA, PB) elif self.child_index == FEMM or self.child_index == CUSTOM: # plot arc using arc angle and two points angle = abs(self.get_postive_angle(PA) - self.get_postive_angle(PB)) self.draw_arc(PA, PB, angle, **kwarg) # angle in rad @staticmethod def park_transform(P_rot, angle): return (cos(angle) * P_rot[0] + sin(angle) * P_rot[1], -sin(angle) * P_rot[0] + cos(angle) * P_rot[1]) # this method is found to be very low in accuracy, don't use it, just specify the center if know! @staticmethod def find_center_of_a_circle_using_2_points_and_arc_angle(p1, p2, angle): return find_center_and_radius_of_a_circle_using_2_points_and_arc_angle(p1, p2, angle)[0] @staticmethod def find_center_and_radius_of_a_circle_using_2_points_and_arc_angle(p1, p2, angle): distance = sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) radius = distance * 0.5 / sin(angle * 0.5) c1 = Point(p1[0], p1[1]).buffer(radius).boundary c2 = Point(p2[0], p2[1]).buffer(radius).boundary i = c1.intersection(c2) # print len(i.geoms) # print i.geoms[0].coords[0] # print i.geoms[1].coords[0] # if len(i.geoms) > 2: # print 'There are more than 2 intersections!' # print p1, p2, angle # print c1.coords[0], c1.coords[1], c1.coords[2] # print c2.coords[0], c2.coords[1], c2.coords[2] # for el in i.geoms: # print '\t', el.coords[0] # print 'Crazy Shapely.' # # (0.013059471222689467, 0.46233200000038793) # # (0.013059471222689467, 0.462332) # # (-93.94908807906135, 4.615896979306289) # # raise Exception('Too many intersections.') if i.geoms is None: raise Exception('There is no intersection.') for center in [el.coords[0] for el in i.geoms]: # shapely does not return intersections in a known order # print center determinant = (center[0] - p1[0]) * (p2[1] - p1[1]) - (center[1] - p1[1]) * (p2[0] - p1[0]) if copysign(1, determinant) < 0: # CCW from p1 to p2 return center, radius @staticmethod def create_circle(p, radius): return p.buffer(radius).boundary @staticmethod def get_postive_angle(p, center=(0, 0)): # using atan loses info about the quadrant, so it is "positive" return atan(abs((p[1] - center[1]) / (p[0] - center[0]))) @staticmethod def get_node_at_intersection(c, l): # this works for c and l having one or two intersections if c[0][0] != 0 or c[0][1] != 0: raise Exception('Not implemented for non-origin centered circle.') r = c[1] c = None x1, y1 = l[0][0], l[0][1] x2, y2 = l[1][0], l[1][1] if x1 == x2: raise Exception('Not implemented.') a = -(y2 - y1) / (x2 - x1) b = 1 c = y1 - (y2 - y1) / (x2 - x1) * x1 Delta = sqrt(r ** 2 * (a ** 2 + b ** 2) - c ** 2) if Delta < 0: raise Exception('No intersection for given line and circle') x_solutions = (a * c + b * Delta) / (a ** 2 + b ** 2), (a * c - b * Delta) / (a ** 2 + b ** 2) y_solutions = (b * c - a * Delta) / (a ** 2 + b ** 2), (b * c + a * Delta) / (a ** 2 + b ** 2) return (x_solutions[0], y_solutions[0]), (x_solutions[1], y_solutions[1]) @staticmethod def linecirc(slope, intercpt, centerx, centery, r): # Input data are in alpha-beta frame: # -slope*alpha + beta = intercpt # (alpha - c_x)**2 + (beta - c_y)**2 = r**2 # Translation of coordinates: # let x = alpha - c_x # let y = beta - c_y # We have: # a*x + b*y = c # x**2 + y**2 = r**2 # The solution in x-y coordinates should be transormed back: # alpha = x + c_x # beta = y + c_y a = -slope b = 1 c = intercpt Delta = sqrt(r ** 2 * (a ** 2 + b ** 2) - c ** 2) if Delta < 0: raise Exception('No intersection for given line and circle') x_solutions = (a * c + b * Delta) / (a ** 2 + b ** 2), (a * c - b * Delta) / (a ** 2 + b ** 2) y_solutions = (b * c - a * Delta) / (a ** 2 + b ** 2), (b * c + a * Delta) / (a ** 2 + b ** 2) return (x_solutions[0] + centerx, x_solutions[1] + centerx), ( y_solutions[0] + centery, y_solutions[1] + centery) from .utility import csv_row_reader class VanGogh_pyPlotter(VanGogh): """VanGogh_pyPlotter is child class of VanGogh for plotting IM geometry in matplotlib.""" def __init__(self, im, child_index=2): super(VanGogh_pyPlotter, self).__init__(im, child_index) self.add_line = self.draw_line self.add_arc = self.draw_arc self.fig = plt.figure(figsize=(8, 8), facecolor='w', edgecolor='k') self.ax = self.fig.add_subplot(111, aspect='equal') # self.ax = self.fig.gca() # self.ax.set_xlim([-74,-40]) self.ax.set_ylim([-10, 25]) # plt.gcf().gca().invert_yaxis() # Embeded TikZ function self.tikz = VanGogh_TikZPlotter() @staticmethod def mirror_and_copyrotate(Q, Radius, fraction): # Mirror # femm.mi_selectcircle(0,0,Radius+EPS,SELECT_ALL) # this EPS is sometime necessary to selece the arc at Radius. # femm.mi_mirror2(0,0,-Radius,0, SELECT_ALL) # Rotate # femm.mi_selectcircle(0,0,Radius+EPS,SELECT_ALL) # femm.mi_copyrotate2(0, 0, 360./Q, int(Q)/fraction, SELECT_ALL) return def draw_arc(self, p1, p2, angle, center=(0, 0), **kwarg): # Embeded TikZ function self.tikz.draw_arc(p1, p2, center, relangle=-0.5 * angle) # center, radius = self.find_center_and_radius_of_a_circle_using_2_points_and_arc_angle(p1, p2, angle) # ordered p1 and p2 are # print sqrt((p1[0]-center[0])**2 + (p1[1]-center[0])**2) # print sqrt((p2[0]-center[0])**2 + (p2[1]-center[0])**2) distance = sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) radius = distance * 0.5 / sin(angle * 0.5) obj = self.pyplot_arc(radius, angle_span=angle, rotation=atan2(p1[1] - center[1], p1[0] - center[0]), center=center, **kwarg) self.plot_object_list.append(obj[0]) return obj def pyplot_arc(self, radius, angle_span=3.14, center=(0, 0), rotation=0, maxseg=0.1, ax=None, **kwarg): # Plot an arc starting from x-axis to axis aligned to angle_span. Use rotation to change the beginning axis. # make sure ax is not empty if ax is None: ax = self.ax # ax = plt.gcf().gca() # turn Polar into Cartesian def xy(radius, phi, center): return radius * np.cos(phi) + center[0], radius * np.sin(phi) + center[1] # get list of points # phis = np.arange(rotation, rotation+angle_span, 2*radius*np.pi / (360./maxseg)) phis = np.linspace(rotation, rotation + angle_span, int(360. / maxseg)) return ax.plot(*xy(radius, phis, center), c='k', **kwarg) def draw_line(self, p1, p2, ax=None, **kwarg): # Embeded TikZ function self.tikz.draw_line(p1, p2) # make sure ax is not empty if ax is None: ax = self.ax obj = ax.plot([p1[0], p2[0]], [p1[1], p2[1]], c='k', **kwarg) self.plot_object_list.append(obj[0]) return obj import pyx # from pyx import * # text.set(mode="latex") # text.preamble(r"\usepackage{ulem}") # underlining text... # text.preamble(r"\usepackage{anyfontsize}") # one way of scaling fonts (except math fonts).... # import PyX_Utility class VanGogh_TikZPlotter(): """VanGogh_TikzPlotter is child class of VanGogh for plotting IM geometry in TikZ. The idea here is to incorporate this class with VanGogh_pyPlotter, such that what you see in Matplotlib is what you get in TikZ.""" def __init__(self): self.add_line = self.draw_line self.add_arc = self.draw_arc self.file = open('VanGogh_TikZ.tex', 'w') self.c = pyx.canvas.canvas() self.track_path = [] self.gray_color_auto = 1.0 @staticmethod def mirror_and_copyrotate(Q, Radius, fraction): return def getSketch(self, sketchName, color=None): print('%s @ getSketch: I am dummy function to be consistent with JMAG codes.' % (sketchName)) def prepareSection(self, list_regions, bMirrorMerge=True, bRotateMerge=True, color=None, **kwarg): # print('@ prepareSection: I am dummy function to be consistent with JMAG codes.') # print('_________________________________________________') for list_segments in list_regions: for segment in list_segments: 路径列表 = [] # bool_first_segment = True # if False: # fill not as expected for segment in list_segments: # print(segment) 路径列表.append(self.pyx_draw_path(segment, sign=1)) # sign必须调整的,否则画出来的arc的方向可能是错的 # print('路径列表长度:', len(路径列表)) # print(路径列表) # Note that joining two paths might insert a line connecting the first and the second path. For example, we could skip the second line when constructing rect2 in our example above without any change in the result. --https://pyx-project.org/examples/path/addjoin.html # 如果自动添加的线在染色区域内部,那么fill了以后,那根线也看不见了。 # 此外,如果自动添加的线在染色区域外部,那么你只能额外画一个图形把多涂色的地方给覆盖掉了。 # 路径 = self.draw_line([0,0], [0,0], untrack=True) # 路径 = pyx.path.path(pyx.path.moveto(0,0)) # 路径 = pyx.path.path(路径列表[0]) # 路径 = self.draw_arc([0,-0.1], [0,0.1], [0,0], relangle=2, untrack=True) # 路径 = 路径 + 路径列表[0] 路径 = 路径列表[0] for el in 路径列表[1:]: 路径 = 路径 << el # << means join; + means add 路径.append( pyx.path.closepath()) # see https://stackoverflow.com/questions/50570100/filling-a-closed-curve-in-pyx-python-failing # print(路径.normpath().normsubpaths) if color is None: self.gray_color_auto -= 0.075 color_setting = pyx.color.gray(self.gray_color_auto) else: color_setting = pyx.color.rgb(*color) self.c.fill(路径, [color_setting]) # self.c.stroke(路径, [pyx.style.linewidth.THICK]) if self.iRotateCopy == 0 and self.bMirror == True: self.c.fill(路径, [color_setting, pyx.trafo.mirror(0)]) # self.c.stroke(路径, [pyx.style.linewidth.THICK, pyx.trafo.mirror(0)]) # self.c.fill(路径, [color_setting, pyx.trafo.rotate(360/self.iRotateCopy)]) # self.c.fill(路径, [color_setting, pyx.trafo.mirror(0), pyx.trafo.rotate(360/self.iRotateCopy)]) # self.c.fill(路径, [color_setting, pyx.trafo.rotate(360/self.iRotateCopy*2)]) # self.c.fill(路径, [color_setting, pyx.trafo.mirror(0), pyx.trafo.rotate(360/self.iRotateCopy*2)]) if self.iRotateCopy != 0: for i in range(self.iRotateCopy): self.c.fill(路径, [color_setting, pyx.trafo.rotate(i * 360 / self.iRotateCopy)]) # self.c.stroke(路径, [pyx.style.linewidth.THICK, pyx.trafo.rotate(i*360/self.iRotateCopy)]) if self.bMirror == True: self.c.fill(路径, [color_setting, pyx.trafo.mirror(0), pyx.trafo.rotate(i * 360 / self.iRotateCopy)]) # self.c.stroke(路径, [pyx.style.linewidth.THICK, pyx.trafo.mirror(0), pyx.trafo.rotate(i*360/self.iRotateCopy)]) def drawLine(self, p1, p2): self.draw_line(p1, p2) # return [str(p1)+','+str(p2)] # easy to read for human return [(p1[0], p1[1], p2[0], p2[1])] # This is segment # Consistent with : self.track_path.append([p1[0], p1[1], p2[0], p2[1]]) def draw_line(self, p1, p2, ax=None, bool_stroke=False, **kwarg): msg = '\\draw[black] (%12.8f,%12.8f) -- (%12.8f,%12.8f);\n' % (p1[0], p2[0], p1[1], p2[1]) # print(msg) self.file.write(msg) # PyX 路径 = pyx.path.line(p1[0], p1[1], p2[0], p2[1]) if bool_stroke: self.c.stroke(路径, [pyx.color.rgb.black, pyx.style.linewidth.THICK]) self.c.fill(pyx.path.circle(p1[0], p1[1], 1 * 0.075)) # use this if THICK is used. 这里前面乘的7是和pyx.unit.set(wscale=7)一致的。按照官方manual,如果用的join,就不用担心连接处断裂,但是咱们默认都是用的add。 self.c.fill(pyx.path.circle(p2[0], p2[1], 1 * 0.075)) # use this if THICK is used. 这里前面乘的7是和pyx.unit.set(wscale=7)一致的。按照官方manual,如果用的join,就不用担心连接处断裂,但是咱们默认都是用的add。 # p = pyx.path.path(pyx.path.moveto(p1[0], p1[1]), pyx.path.lineto(p2[0], p2[1]), pyx.path.closepath()) # self.c.stroke(p, [pyx.color.rgb.black, pyx.style.linewidth.Thick]) if 'untrack' not in kwarg: self.track_path.append([p1[0], p1[1], p2[0], p2[1]]) # # extra vertices # self.c.fill(pyx.path.circle(p1[0], p1[1], 0.25)) # self.c.fill(pyx.path.circle(p2[0], p2[1], 0.25)) return 路径 def drawArc(self, centerxy, startxy, endxy): # wrong: # angle_between_points = self.get_postive_angle(endxy, center=centerxy) - self.get_postive_angle(startxy, center=centerxy) # assume both points are on the circle of the arc # correct: angle_between_points = atan2(endxy[1], endxy[0]) - atan2(startxy[1], startxy[0]) relangle = -0.5 * angle_between_points # simple math: https://pyx-project.org/manual/connector.html?highlight=relangle self.draw_arc(startxy, endxy, centerxy=centerxy, relangle=relangle) # return [str(startxy)+','+str(endxy)] # easy to read for human return [(startxy[0], startxy[1], endxy[0], endxy[1], centerxy[0], centerxy[1], relangle)] # This is segment # Consistent with: self.track_path.append([startxy[0], startxy[1], endxy[0], endxy[1], centerxy[0], centerxy[1], kwarg['relangle']]) def draw_arc(self, startxy, endxy, centerxy=(0, 0), bool_stroke=False, **kwarg): # ccw=-1, # Example: Output to .tex file if False: # %DRAWARC Draw an arc in the current TikZ graphic. # % drawarc(mn, [center_x,_y], [start_x, _y], [end_x, _y]) # % draws an arc # % Extract and rename variables for processing h = centerxy[0] k = centerxy[1] x1 = startxy[0] y1 = startxy[1] x2 = endxy[0] y2 = endxy[1] # % Need to calculate: x, y, start, stop, radius... x = x1 y = y1 radius = sqrt((x1 - h) ** 2 + (y1 - k) ** 2) # % These are both "correct" ways of determining start variable, # % but only one works depending on orientation of arc. Hacks # % below help solve this issue. start = acos((x1 - h) / radius) start2 = asin((y1 - k) / radius) temp = (x2 - h) / radius if temp >= 1: # print 'temp=', temp temp = 1 elif temp <= -1: # print 'temp=', temp temp = -1 stop = acos(temp) # % ---------- # % HACKS START # % ---------- # % The code in this "hack" section is special cases for drawing # % an arc... This involves mostly cases where x1==x2 or # % y1==y2. I have not proved these are the correct solutions, # % but I have tried many arcs using various stator geometries # % and it seems to work for all cases... �_(?)_/� if (start > stop): start = -start stop = -stop # % Trying to check for start == stop. # % BUT, issues with rounding and floating numbers.... # % Using this delta comparison fixes one silly case where # % rounding causes issues for direct comparison for equality... # % # % Silly! # % if (abs(start - stop) < 0.0000001): if (y1 - k < 0): start = -start elif (x1 - h < 0): stop = start + (2 * start2) # % -------- # % HACKS END # % -------- def rad2deg(rad): return rad / pi * 180. msg = '\\draw[black] (%12.8f,%12.8f) arc (%12.8f:%12.8f:%12.8f);\n' % ( x, y, rad2deg(start), rad2deg(stop), radius) # print(msg) self.file.write(msg) # Below is PyX | Above is TikZ (FYI, TikZ is written by Eric and is not working as expected, so use my PyX codes instead) # Below is PyX | Above is TikZ (FYI, TikZ is written by Eric and is not working as expected, so use my PyX codes instead) # Below is PyX | Above is TikZ (FYI, TikZ is written by Eric and is not working as expected, so use my PyX codes instead) if 'untrack' not in kwarg: self.track_path.append( [startxy[0], startxy[1], endxy[0], endxy[1], centerxy[0], centerxy[1], kwarg['relangle']]) if True: # PyX: Option 1: use pyx.connector textattrs = [pyx.text.halign.center, pyx.text.vshift.middlezero] X = pyx.text.text(startxy[0], startxy[1], r"", textattrs) # must have textattrs or else you will have normsubpath cannot close error: AssertionError: normsubpathitems do not match Y = pyx.text.text(endxy[0], endxy[1], r"", textattrs) 路径 = pyx.connector.arc(X, Y, boxdists=[0.0, 0.0], relangle=kwarg['relangle'] / pi * 180) if bool_stroke: self.c.stroke(路径, [pyx.color.rgb.black, pyx.style.linewidth.THICK]) # https://pyx-project.org/manual/connector.html?highlight=relangle # print '[%g,%g,%g,%g,%g],'%(startxy[0], startxy[1], endxy[0], endxy[1], 0.5*kwarg['relangle']) else: # PyX: Option 2: use pyx.arc. radius = np.sqrt((startxy[0] - centerxy[0]) ** 2 + (startxy[1] - centerxy[1]) ** 2) angle_start = np.arctan2((startxy[1] - centerxy[1]), (startxy[0] - centerxy[0])) / np.pi * 180 angle_end = np.arctan2((endxy[1] - centerxy[1]), (endxy[0] - centerxy[0])) / np.pi * 180 if ccw == 1: 路径 = pyx.path.path(pyx.path.arc(centerxy[0], centerxy[1], radius, angle_start, angle_end - angle_start)) else: 路径 = pyx.path.path( pyx.path.arcn(centerxy[0], centerxy[1], radius, angle_start, angle_end - angle_start)) if bool_stroke: pass # See PyX_Utility.py # Or # See pyx_fill_example.py # from pylab import np # upArc = path.path(path.arc(0,0,1,240,300)) # right = path.line(0,0,1*np.cos(240/180*np.pi),1*np.sin(240/180*np.pi)) # left = path.line(1*np.cos(300/180*np.pi),1*np.sin(300/180*np.pi),0,0) # p = right<<upArc<<left # c.fill(p,[color.gray(0.9)]) # c.stroke(p, [style.linewidth.thin]) # comment this for no outline/ # c.insert(cL,[trafo.translate(-2,0)]) # c.insert(cR,[trafo.translate( 2,0)]) # c.writePDFfile("minfail") # p.append(path.closepath()) # see https://stackoverflow.com/questions/50570100/filling-a-closed-curve-in-pyx-python-failing # # extra vertices # self.c.fill(pyx.path.circle(startxy[0], startxy[1], 0.25)) # self.c.fill(pyx.path.circle(endxy[0], endxy[1], 0.25)) return 路径 def pyx_draw_path(tool_tikz, path, sign=1, bool_exclude_path=False, bool_stroke=False): # 这个函数完全可以写成 VanGogh.VanGogh_TikZPlotter() 的成员函数的。。。 if bool_exclude_path == False: if len(path) == 4: # line p = tool_tikz.draw_line(path[:2], path[2:4], untrack=True, bool_stroke=bool_stroke) else: # == 6 for arc p = tool_tikz.draw_arc(path[:2], path[2:4], path[4:6], relangle=sign * path[6], untrack=True, ccw=sign, bool_stroke=bool_stroke) return p # wiki: https://en.wikipedia.org/wiki/Tangent_lines_to_circles def get_tangent_points_of_two_circles(center1, radius1, center2, radius2): x1, y1 = center1[0], center1[1] r = radius1 x2, y2 = center2[0], center2[1] R = radius2 gamma = - atan((y2 - y1) / (x2 - x1)) beta = asin((R - r) / sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)) alpha = gamma - beta x3, y3 = x1 + r * cos(0.5 * pi - alpha), y1 + r * sin(0.5 * pi - alpha), x4, y4 = x2 + R * cos(0.5 * pi - alpha), y2 + R * sin(0.5 * pi - alpha), return (x3, y3), (x4, y4) # Eric required plot geometry with LaTeX labels if __name__ == '!__main__': import matplotlib.patches as mpatches import matplotlib.pyplot as plt plt.rcParams["font.family"] = "Times New Roman" myfontsize = 13.5 plt.rcParams.update({'font.size': myfontsize}) from population import * im_list = [] with open(r'D:\OneDrive - UW-Madison\c\pop\initial_design.txt', 'r') as f: for row in csv_row_reader(f): # fea_config_dict = {} # fea_config_dict['DPNV'] = True # fea_config_dict['flag_optimization'] = False # fea_config_dict['End_Ring_Resistance'] = 0.0 im = bearingless_induction_motor_design([row[0]] + [float(el) for el in row[1:]], None) im_list.append(im) # print im.show(toString=True) # 示意图而已,改改尺寸吧 im.Radius_OuterStatorYoke -= 37 im.Radius_InnerStatorYoke -= 20 im.Radius_Shaft += 20 # im.Location_RotorBarCenter2 += 5 # this will change the shape of rotor slot vg = VanGogh_pyPlotter(im, CUSTOM) vg.draw_model() # PyX vg.tikz.c = pyx.canvas.canvas() # clear the canvas because we want to redraw 90 deg with the data vg.tikz.track_path from copy import deepcopy def pyx_draw_path(vg, path, sign=1): if len(path) == 4: vg.tikz.draw_line(path[:2], path[2:4], untrack=True) else: vg.tikz.draw_arc(path[:2], path[2:4], path[4:6], relangle=sign * path[6], untrack=True) def rotate(_, x, y): return cos(_) * x + sin(_) * y, -sin(_) * x + cos(_) * y def is_at_stator(im, path): return sqrt(path[0] ** 2 + path[1] ** 2) > im.Radius_OuterRotor + 0.5 * im.Length_AirGap # 整体转动90度。 for path in vg.tikz.track_path: path[0], path[1] = rotate(0.5 * pi, path[0], path[1]) path[2], path[3] = rotate(0.5 * pi, path[2], path[3]) pyx_draw_path(vg, path) track_path_backup = deepcopy(vg.tikz.track_path) # Rotate for path in deepcopy(vg.tikz.track_path): if is_at_stator(im, path): Q = im.Qs else: Q = im.Qr _ = 2 * pi / Q path[0], path[1] = rotate(_, path[0], path[1]) path[2], path[3] = rotate(_, path[2], path[3]) pyx_draw_path(vg, path) # Mirror for path in (vg.tikz.track_path): # track_path is passed by reference and is changed by mirror path[0] *= -1 path[2] *= -1 pyx_draw_path(vg, path, sign=-1) for path in (vg.tikz.track_path): if sqrt(path[0] ** 2 + path[1] ** 2) > im.Radius_OuterRotor + 0.5 * im.Length_AirGap: Q = im.Qs else: Q = im.Qr _ = 2 * pi / Q path[0], path[1] = rotate(_, path[0], path[1]) path[2], path[3] = rotate(_, path[2], path[3]) pyx_draw_path(vg, path, sign=-1) def pyx_label_dimention(track_path): def myarrow(c, PA, PB): c.stroke(path.line(PA[0], PA[1], PB[0], PB[1]), [style.linewidth.Thick, style.linestyle.solid, color.rgb.black, deco.earrow([deco.stroked([color.rgb.black, style.linejoin.round]), deco.filled([color.rgb.black])], size=0.5)]) def mytext(c, PText, label): print(PText) textattrs = [text.halign.center, text.vshift.middlezero, text.size(5), trafo.scale(2)] handle = text.text(PText[0], PText[1], label, textattrs) c.insert(handle) def add_label_inside(c, label, PA, PB, PText=None): if PText is None: PText = 0.5 * (PA + PB) mytext(c, PText, label) myarrow(c, PA, PB) myarrow(c, PB, PA) def add_label_outside(c, label, PA, PB, PText=None, ext_factor=1, left_or_right=True): vector_AB = np.array((PB[0] - PA[0], PB[1] - PA[1])) PB, PBExt = PB, PB + vector_AB * ext_factor myarrow(c, PBExt, PB) PA, PAExt = PA, PA - vector_AB * ext_factor myarrow(c, PAExt, PA) if PText is None: PText = 0.5 * (PA + PB) mytext(c, PText, label) def mymarker(l_PA): for P in l_PA: vg.tikz.c.fill(pyx.path.circle(P[0], P[1], 0.25)) count_stator = 0 count_rotor = 0 dictKeyPoints = {} for ind, el in enumerate(track_path): if is_at_stator(im, el): count_stator += 1 print('S-Path' + str(count_stator), el) dictKeyPoints['S-Path' + str(count_stator)] = el else: count_rotor += 1 print('R-Path' + str(count_rotor), el) dictKeyPoints['R-Path' + str(count_rotor)] = el # above SP means stator path, below SP means stator point d = dictKeyPoints # too long to type RP2 = array(d['R-Path6'][0:2]) RP3 = array(d['R-Path1'][0:2]) RP4 = array(d['R-Path2'][0:2]) RP5 = array(d['R-Path7'][0:2]) RP6 = array(d['R-Path3'][0:2]) RP7 = array(d['R-Path4'][2:4]) SP2 = array(d['S-Path1'][0:2]) SP3 = array(d['S-Path3'][0:2]) SP4 = array(d['S-Path3'][2:4]) SP5 = array(d['S-Path4'][2:4]) _s = 2 * pi / im.Qs _r = 2 * pi / im.Qr PA = 0.5 * (SP4 + SP5) PB = -PA[0], PA[1] PText = 0.5 * (PA[0] + PB[0]), PA[1] + 1.5 add_label_inside(vg.tikz.c, r'$w_{st}$', PA, PB, PText=PText) PA = 0.5 * (SP2 + SP3) PB = rotate(_s, -PA[0], PA[1]) PText = 0.5 * (PA[0] + PB[0]), PA[1] + 1.5 add_label_inside(vg.tikz.c, r'$\theta_{so}$', PA, PB, PText=PText) PA = SP2 PB = SP3 PA = rotate(-0.9 * _s, PA[0], PA[1]) PB = rotate(-0.9 * _s, PB[0], PB[1]) # PText = 0.5*(PA[0]+PB[0]), PA[1] + 2.25 # add_label_inside(vg.tikz.c, r'$d_{so}$', PA, PB, PText=PText) PText = 0.5 * (PA[0] + PB[0]), PA[1] + 3 add_label_outside(vg.tikz.c, r'$d_{so}$', PA, PB, PText=PText) # 辅助线 vg.tikz.c.stroke(path.line(-SP2[0], SP2[1], PA[0], PA[1]), [style.linewidth(0.08), style.linestyle.dashed, color.gray(0.5)]) vg.tikz.c.stroke(path.line(-SP3[0], SP3[1], PB[0], PB[1]), [style.linewidth(0.08), style.linestyle.dashed, color.gray(0.5)]) PA = 0.5 * (RP6 + RP7) PB = rotate(_r, -PA[0], PA[1]) PText = 0.5 * (PA[0] + PB[0]), PA[1] + 1.5 add_label_inside(vg.tikz.c, r'$w_{rt}$', PA, PB, PText=PText) PA = 0.5 * (RP4 + RP5) PB = -PA[0], PA[1] # PText = 0.5*(PA[0]+PB[0]), PA[1] + 1.45 # add_label_inside(vg.tikz.c, r'$w_{ro}$', PA, PB, PText=PText) PText = 0.5 * (PA[0] + PB[0]) + 3, PA[1] - 0.1 add_label_outside(vg.tikz.c, r'$w_{ro}$', PA, PB, PText=PText) PA = RP4 PB = RP5 PA = rotate(1.08 * _s, PA[0], PA[1]) PB = rotate(1.08 * _s, PB[0], PB[1]) # PText = 0.5*(PA[0]+PB[0]) - 1.5, PA[1] - 1. # add_label_inside(vg.tikz.c, r'$d_{ro}$', PA, PB, PText=PText) PText = 0.5 * (PA[0] + PB[0]) - 1.5, PA[1] - 2 add_label_outside(vg.tikz.c, r'$d_{ro}$', PA, PB, PText=PText) # 辅助线 RP4 = rotate(_r, RP4[0], RP4[1]) RP5 = rotate(_r, RP5[0], RP5[1]) vg.tikz.c.stroke(path.line(RP4[0], RP4[1], PA[0], PA[1]), [style.linewidth(0.08), style.linestyle.dashed, color.gray(0.5)]) vg.tikz.c.stroke(path.line(RP5[0], RP5[1], PB[0], PB[1]), [style.linewidth(0.08), style.linestyle.dashed, color.gray(0.5)]) # Air gap PA = array([-cos(0.5 * pi - 0.5 * _r), sin(0.5 * pi - 0.5 * _r)]) * im.Radius_OuterRotor PB = array([-cos(0.5 * pi - 0.5 * _r), sin(0.5 * pi - 0.5 * _r)]) * (im.Radius_OuterRotor + im.Length_AirGap) PText = 0.5 * (PA[0] + PB[0]), PA[1] - 1 add_label_inside(vg.tikz.c, r'$L_{g}$', PA, PB, PText=PText) # Outer Rotor Diameter PA = array([cos(0.5 * pi - 0.5 * _r), sin(0.5 * pi - 0.5 * _r)]) * im.Radius_OuterRotor PB = array([cos(0.5 * pi - 0.5 * _r), sin(0.5 * pi - 0.5 * _r)]) * (im.Radius_OuterRotor * 0.975) PText = PA[0] + 1.2, PA[1] - 1.5 myarrow(vg.tikz.c, PB, PA) mytext(vg.tikz.c, PText, r'$r_{or}$') # Outer Sator Diameter PA = array([cos(0.5 * pi - 0.5 * _r), sin(0.5 * pi - 0.5 * _r)]) * im.Radius_OuterStatorYoke PB = array([cos(0.5 * pi - 0.5 * _r), sin(0.5 * pi - 0.5 * _r)]) * (im.Radius_OuterStatorYoke * 0.975) PText = PA[0] - 1.5, PA[1] - 1.5 myarrow(vg.tikz.c, PB, PA) mytext(vg.tikz.c, PText, r'$r_{os}$') # mymarker([PA, PB, PText]) # print dir(color.rgb) # print dir(style.linestyle) # vg.tikz.c.stroke(path.line(0, 0, 0, 40), # [style.linewidth.THICK, style.linestyle.solid, color.gray(0.5), # deco.earrow([deco.stroked([color.rgb.black, style.linejoin.round]), # deco.filled([color.rgb.black])], size=0.5)]) from pyx import * pyx_label_dimention(track_path_backup) vg.tikz.c.writePDFfile("pyx_output") # vg.tikz.c.writeEPSfile("pyx_output") print('Write to pdf file: pyx_output.pdf.') quit() # 以下应该是旧代码,用matplotlib画电机二维截面 BIAS = 1 Stator_Sector_Angle = 2 * pi / im.Qs * 0.5 Rotor_Sector_Angle = 2 * pi / im.Qr * 0.5 # draw the mirrored slot new_objs = [] for obj in vg.rotor_object_list: xy_data = obj.get_xydata().T new_obj = vg.ax.plot(xy_data[0], -array(xy_data[1]), 'k-', zorder=0) # 'k--' new_objs.append(new_obj[0]) vg.rotor_object_list += new_objs new_objs = [] for obj in vg.stator_object_list: xy_data = obj.get_xydata().T new_obj = vg.ax.plot(xy_data[0], -array(xy_data[1]), 'k-', zorder=0) # 'k--' new_objs.append(new_obj[0]) vg.stator_object_list += new_objs # draw the rotated slot # rotor angle = Rotor_Sector_Angle * 2 TR = array([[cos(angle), sin(angle)], [-sin(angle), cos(angle)]]) for obj in vg.rotor_object_list: xy_data = obj.get_xydata().T xy_data_rot = np.dot(TR, xy_data) # xy_data_rot = xy_data_rot.T vg.ax.plot(xy_data_rot[0], xy_data_rot[1], 'k-', zorder=0) # 'k--' # stator angle = Stator_Sector_Angle * 2 TS = array([[cos(angle), sin(angle)], [-sin(angle), cos(angle)]]) for obj in vg.stator_object_list: xy_data = obj.get_xydata().T xy_data_rot = np.dot(TS, xy_data) # xy_data_rot = xy_data_rot.T vg.ax.plot(xy_data_rot[0], xy_data_rot[1], 'k-', zorder=0) # 'k--' ################################################################ # add labels to geometry ################################################################ # xy = (-0.5*(im.Location_RotorBarCenter+im.Location_RotorBarCenter2), 2.5) # vg.ax.annotate('Parallel tooth', xytext=(xy[0],-(xy[1]+5)), xy=(xy[0],-xy[1]), xycoords='data', arrowprops=dict(arrowstyle="->"),fontsize=24,rotation=90) xy = (-im.Radius_OuterStatorYoke, 0) vg.ax.annotate(r'$D_{os}$', xytext=(xy[0] + 2.5, xy[1] - 0.25), xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->"), fontsize=24, rotation=90) xy = (-im.Radius_OuterRotor, -4) vg.ax.annotate(r'$D_{or}$', xytext=(xy[0] + 2.5, xy[1] - 0.25), xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->"), fontsize=24, rotation=90) xy = (-im.Radius_Shaft, 0) vg.ax.annotate(r'$D_{ir}$', xytext=(xy[0] + 2.5, xy[1] - 0.25), xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->"), fontsize=24, rotation=90) vg.ax.set_xlim([-74, -45]) def add_label_inside(vg, label, PA, PB): # vector_AB = (PB[0]-PA[0], PB[1]-PA[1]) xy, xytext = PA, PB vg.ax.annotate('', xytext=xytext, xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->"), fontsize=24, rotation=90) xy, xytext = xytext, xy vg.ax.annotate('', xytext=xytext, xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->"), fontsize=24, rotation=90) vg.ax.text(0.5 + 0.5 * (xy[0] + xytext[0]), 0. + 0.5 * (xy[1] + xytext[1]), label, fontsize=24, rotation=90, bbox=dict(facecolor='w', edgecolor='w', boxstyle='round,pad=0', alpha=0.9)) def add_label_outside(vg, label, PA, PB, ext_factor=1, left_or_right=True): vector_AB = np.array((PB[0] - PA[0], PB[1] - PA[1])) xy, xytext = PB, PB + vector_AB * ext_factor vg.ax.annotate('', xytext=xytext, xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->"), fontsize=24, rotation=90) xy, xytext = PA, PA - vector_AB * ext_factor vg.ax.annotate('', xytext=xytext, xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->"), fontsize=24, rotation=90) if left_or_right: vg.ax.text(0.5 + PB[0], -1.75 + PB[1], label, fontsize=24, rotation=90, bbox=dict(facecolor='w', edgecolor='w', boxstyle='round,pad=0', alpha=0.9)) else: vg.ax.text(0.5 + PB[0], +1.75 + PB[1], label, fontsize=24, rotation=90, bbox=dict(facecolor='w', edgecolor='w', boxstyle='round,pad=0', alpha=0.9)) def add_extension_line(vg, P, vector_ext, distance_factor=1): distance = sqrt(vector_ext[0] ** 2 + vector_ext[1] ** 2) vector_ext /= distance / distance_factor # a unit vector * distance_factor x = [P[0], P[0] + vector_ext[0]] y = [P[1], P[1] + vector_ext[1]] vg.ax.plot(x, y, 'k-', lw=0.6) return vector_ext # 1 Ps2 = vg.Ps_list[2 - BIAS] * array((1, -1)) # mirror Ptemp1 = Ps2[0], Ps2[1] - 5 Ptemp1 = vg.park_transform(Ptemp1, -Stator_Sector_Angle) # this is not exact but close enough, you can find the exact point by solve a triangle with Radius_OuterRotor + Length_AirGap from Pr3 vector_ext = np.array((Ptemp1[0] - Ps2[0], Ptemp1[1] - Ps2[1])) vector_ext = add_extension_line(vg, Ps2, vector_ext, distance_factor=2.5) Ptemp1 = (Ps2 + 0.5 * vector_ext) Pr3 = vg.Pr_list[3 - BIAS] * array((1, -1)) # mirror Ptemp2 = array((Pr3[0], Pr3[1] - 5)) Ptemp2 = vg.park_transform(Ptemp2, -Rotor_Sector_Angle) vector_ext = np.array((Ptemp2[0] - Pr3[0], Ptemp2[1] - Pr3[1])) vector_ext = add_extension_line(vg, Pr3, vector_ext, distance_factor=2.5) Ptemp2 = (Pr3 + 0.8 * vector_ext) # change this factor before vector_ext to rotate the label add_label_outside(vg, r'$L_g$', Ptemp1, Ptemp2, ext_factor=2) # 2 Ps4 = vg.Ps_list[4 - BIAS] Ps5 = vg.Ps_list[5 - BIAS] Ptemp = 0.5 * (Ps4 + Ps5) add_label_inside(vg, r'$W_{\rm st}$', (Ptemp[0], -Ptemp[1]), Ptemp) # 3 Pr6 = array(vg.Pr_list[6 - BIAS]) Pr7 = array(vg.Pr_list[7 - BIAS]) Ptemp2 = 0.5 * (Pr6 + Pr7) # middle point Ptemp1 = Ptemp2[0], -Ptemp2[1] # mirror Ptemp1 = np.dot(TR, Ptemp1) # rotate # vector_r67 = Pr7 - Pr6 # vector_r67_perpendi = (-vector_r67[1], vector_r67[0]) # some_angle = atan2(vector_r67[1], vector_r67[0]) add_label_inside(vg, r'$W_{\rm rt}$', Ptemp1, Ptemp2) # 4 (This one is angle, so we add text independently) Ps3 = vg.Ps_list[3 - BIAS] Ptemp1 = Ps3 * np.array((1, -1)) # mirror Ptemp2 = np.dot(TS, Ptemp1) # rotate if False: # treat it as width add_label_inside(vg, r'$w_{\rm open,s}$', Ps3, Ptemp2) else: # it is an angle, ok. Ps2 = vg.Ps_list[2 - BIAS] vector_ext = Ps3 - Ps2 vector_ext = add_extension_line(vg, Ps3, vector_ext, distance_factor=3) Ptemp1 = (Ps3 + 0.5 * vector_ext) vector_ext *= array([1, -1]) # mirror vector_ext = np.dot(TS, vector_ext) # rotate vector_ext = add_extension_line(vg, Ptemp2, vector_ext, distance_factor=3) Ptemp2 = (Ptemp2 + 0.5 * vector_ext) some_angle = atan2(vector_ext[1], vector_ext[0]) print(some_angle / pi * 180, 180 - Stator_Sector_Angle / pi * 180) vg.pyplot_arc(im.Radius_OuterRotor + im.Length_AirGap + im.Width_StatorTeethHeadThickness + 2, angle_span=0.95 * im.Angle_StatorSlotOpen / 180 * pi, rotation=some_angle - 0.475 * im.Angle_StatorSlotOpen / 180 * pi, center=(0, 0), lw=0.6) # vg.ax.text(Ptemp1[0], Ptemp1[1], r'$w_{\rm open,s}$',fontsize=24,rotation=90, # bbox=dict(facecolor='w', edgecolor='r',boxstyle='round,pad=0',alpha=0.9)) vg.ax.text(0.5 * (Ptemp1[0] + Ptemp2[0]) - 5, 0.5 * (Ptemp1[1] + Ptemp2[1]), r'$\theta_{\rm so}$', fontsize=24, rotation=90, bbox=dict(facecolor='w', edgecolor='w', boxstyle='round,pad=0', alpha=0.9)) # 5 Pr4 = vg.Pr_list[4 - BIAS] Pr5 = vg.Pr_list[5 - BIAS] Ptemp1 = 0.5 * (Pr4 + Pr5) Ptemp2 = Ptemp1 * np.array((1, -1)) # mirror add_label_outside(vg, r'$W_{\rm ro}$', Ptemp1, Ptemp2, ext_factor=2, left_or_right=False) # 6 Ps2 = vg.Ps_list[2 - BIAS] Ps3 = vg.Ps_list[3 - BIAS] Ptemp1 = np.dot(TS, Ps2) Ptemp11 = np.dot(TS, Ps3) vector_ext = -np.array((Ptemp11[0] - Ptemp1[0], Ptemp11[1] - Ptemp1[1])) vector_ext = np.array((-vector_ext[1], vector_ext[0])) vector_ext = add_extension_line(vg, Ptemp1, vector_ext, distance_factor=1) Ptemp1 = (Ptemp1 + 0.5 * vector_ext) Ptemp2 = np.dot(TS, Ps3) Ptemp22 = np.dot(TS, Ps2) vector_ext = np.array((Ptemp22[0] - Ptemp2[0], Ptemp22[1] - Ptemp2[1])) vector_ext = np.array((-vector_ext[1], vector_ext[0])) vector_ext = add_extension_line(vg, Ptemp2, vector_ext, distance_factor=1) Ptemp2 = (Ptemp2 + 0.5 * vector_ext) add_label_outside(vg, r'$d_{\rm so}$', Ptemp1, Ptemp2, ext_factor=3) # 7 Pr4 = vg.Pr_list[4 - BIAS] Ptemp1 = np.dot(TR, Pr4) Ptemp11 = np.array((Pr4[0], Pr4[1] + 5)) Ptemp11 = np.dot(TR, Ptemp11) vector_ext = np.array((Ptemp11[0] - Ptemp1[0], Ptemp11[1] - Ptemp1[1])) vector_ext = add_extension_line(vg, Ptemp1, vector_ext, distance_factor=6) Ptemp1 = (Ptemp1 + 0.5 * vector_ext) Pr5 = vg.Pr_list[5 - BIAS] Ptemp2 = np.dot(TR, Pr5) Ptemp22 = np.array((Pr5[0], Pr5[1] + 5)) Ptemp22 = np.dot(TR, Ptemp22) vector_ext = np.array((Ptemp22[0] - Ptemp2[0], Ptemp22[1] - Ptemp2[1])) vector_ext = add_extension_line(vg, Ptemp2, vector_ext, distance_factor=6) Ptemp2 = (Ptemp2 + 0.5 * vector_ext) add_label_outside(vg, r'$d_{\rm ro}$', Ptemp1, Ptemp2, ext_factor=3) vg.ax.get_xaxis().set_visible(False) vg.ax.get_yaxis().set_visible(False) vg.fig.tight_layout() # vg.fig.savefig(r'D:\OneDrive\[00]GetWorking\32 blimopti\p2019_ecce_bearingless_induction_full_paper\images\CAD_CrossSection.png') vg.fig.savefig( r'D:\OneDrive\[00]GetWorking\31 Bearingless_Induction_FEA_Model\p2019_iemdc_bearingless_induction full paper\images\CAD_CrossSection_Rot.png') show() quit() # My plot geometry with LaTeX labels if __name__ == '!__main__': import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np plt.rcParams["font.family"] = "Times New Roman" myfontsize = 13.5 plt.rcParams.update({'font.size': myfontsize}) from population import * im_list = [] with open(r'D:\OneDrive - UW-Madison\c\pop\initial_design.txt', 'r') as f: for row in csv_row_reader(f): im = bearingless_induction_motor_design([row[0]] + [float(el) for el in row[1:]], None) im_list.append(im) # print im.show(toString=True) # 示意图而已,改改尺寸吧 im.Radius_OuterStatorYoke -= 25 im.Radius_InnerStatorYoke -= 20 im.Radius_Shaft += 10 vg = VanGogh_pyPlotter(im, CUSTOM) vg.draw_model() # BIAS = 1 Stator_Sector_Angle = 2 * pi / im.Qs * 0.5 Rotor_Sector_Angle = 2 * pi / im.Qr * 0.5 # draw the mirrored slot new_objs = [] for obj in vg.rotor_object_list: xy_data = obj.get_xydata().T new_obj = vg.ax.plot(xy_data[0], -array(xy_data[1]), 'k-', zorder=0) # 'k--' new_objs.append(new_obj[0]) vg.rotor_object_list += new_objs new_objs = [] for obj in vg.stator_object_list: xy_data = obj.get_xydata().T new_obj = vg.ax.plot(xy_data[0], -array(xy_data[1]), 'k-', zorder=0) # 'k--' new_objs.append(new_obj[0]) vg.stator_object_list += new_objs # draw the rotated slot # rotor angle = Rotor_Sector_Angle * 2 TR = array([[cos(angle), sin(angle)], [-sin(angle), cos(angle)]]) for obj in vg.rotor_object_list: xy_data = obj.get_xydata().T xy_data_rot = np.dot(TR, xy_data) # xy_data_rot = xy_data_rot.T vg.ax.plot(xy_data_rot[0], xy_data_rot[1], 'k-', zorder=0) # 'k--' # stator angle = Stator_Sector_Angle * 2 TS = array([[cos(angle), sin(angle)], [-sin(angle), cos(angle)]]) for obj in vg.stator_object_list: xy_data = obj.get_xydata().T xy_data_rot = np.dot(TS, xy_data) # xy_data_rot = xy_data_rot.T vg.ax.plot(xy_data_rot[0], xy_data_rot[1], 'k-', zorder=0) # 'k--' ################################################################ # add labels to geometry ################################################################ # xy = (-0.5*(im.Location_RotorBarCenter+im.Location_RotorBarCenter2), 2.5) # vg.ax.annotate('Parallel tooth', xytext=(xy[0],-(xy[1]+5)), xy=(xy[0],-xy[1]), xycoords='data', arrowprops=dict(arrowstyle="->")) xy = (-im.Radius_OuterStatorYoke, 0) vg.ax.annotate(r'$r_{so}=86.9$ mm', xytext=(xy[0] + 2.5, xy[1] - 0.25), xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->")) xy = (-im.Radius_OuterRotor, -4) vg.ax.annotate(r'$r_{ro}=47.1$ mm', xytext=(xy[0] + 2.5, xy[1] - 0.25), xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->")) def add_label_inside(vg, label, PA, PB): # vector_AB = (PB[0]-PA[0], PB[1]-PA[1]) xy, xytext = PA, PB vg.ax.annotate('', xytext=xytext, xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->")) xy, xytext = xytext, xy vg.ax.annotate('', xytext=xytext, xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->")) vg.ax.text(0.5 + 0.5 * (xy[0] + xytext[0]), 0. + 0.5 * (xy[1] + xytext[1]), label, bbox=dict(facecolor='w', edgecolor='r', boxstyle='round,pad=0', alpha=0.9)) def add_label_outside(vg, label, PA, PB, ext_factor=1): vector_AB = np.array((PB[0] - PA[0], PB[1] - PA[1])) xy, xytext = PB, PB + vector_AB * ext_factor vg.ax.annotate('', xytext=xytext, xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->")) xy, xytext = PA, PA - vector_AB * ext_factor vg.ax.annotate('', xytext=xytext, xy=xy, xycoords='data', arrowprops=dict(arrowstyle="->")) vg.ax.text(0.5 + PB[0], -1.75 + PB[1], label, bbox=dict(facecolor='w', edgecolor='r', boxstyle='round,pad=0', alpha=0.9)) def add_extension_line(vg, P, vector_ext, distance_factor=1): distance = sqrt(vector_ext[0] ** 2 + vector_ext[1] ** 2) vector_ext /= distance / distance_factor # a unit vector * distance_factor x = [P[0], P[0] + vector_ext[0]] y = [P[1], P[1] + vector_ext[1]] vg.ax.plot(x, y, 'k-', lw=0.6) return vector_ext # 1 Ps2 = vg.Ps_list[2 - BIAS] * array((1, -1)) # mirror Ptemp1 = Ps2[0], Ps2[1] - 5 Ptemp1 = vg.park_transform(Ptemp1, -Stator_Sector_Angle) # this is not exact but close enough, you can find the exact point by solve a triangle with Radius_OuterRotor + Length_AirGap from Pr3 vector_ext = np.array((Ptemp1[0] - Ps2[0], Ptemp1[1] - Ps2[1])) vector_ext = add_extension_line(vg, Ps2, vector_ext, distance_factor=2.5) Ptemp1 = (Ps2 + 0.5 * vector_ext) Pr3 = vg.Pr_list[3 - BIAS] * array((1, -1)) # mirror Ptemp2 = array((Pr3[0], Pr3[1] - 5)) Ptemp2 = vg.park_transform(Ptemp2, -Rotor_Sector_Angle) vector_ext = np.array((Ptemp2[0] - Pr3[0], Ptemp2[1] - Pr3[1])) vector_ext = add_extension_line(vg, Pr3, vector_ext, distance_factor=2.5) Ptemp2 = (Pr3 + 0.5 * vector_ext) add_label_outside(vg, r'$\delta$', Ptemp1, Ptemp2, ext_factor=2) # 2 Ps4 = vg.Ps_list[4 - BIAS] Ps5 = vg.Ps_list[5 - BIAS] Ptemp = 0.5 * (Ps4 + Ps5) add_label_inside(vg, r'$b_{\rm tooth,s}$', (Ptemp[0], -Ptemp[1]), Ptemp) # 3 Pr6 = array(vg.Pr_list[6 - BIAS]) Pr7 = array(vg.Pr_list[7 - BIAS]) Ptemp2 = 0.5 * (Pr6 + Pr7) # middle point Ptemp1 = Ptemp2[0], -Ptemp2[1] # mirror Ptemp1 = np.dot(TR, Ptemp1) # rotate # vector_r67 = Pr7 - Pr6 # vector_r67_perpendi = (-vector_r67[1], vector_r67[0]) # some_angle = atan2(vector_r67[1], vector_r67[0]) add_label_inside(vg, r'$b_{\rm tooth,r}$', Ptemp1, Ptemp2) # 4 (This one is angle) Ps3 = vg.Ps_list[3 - BIAS] Ptemp1 = Ps3 * np.array((1, -1)) # mirror Ptemp2 = np.dot(TS, Ptemp1) # rotate if False: # treat it as width add_label_inside(vg, r'$w_{\rm open,s}$', Ps3, Ptemp2) else: # it is an angle, ok. Ps2 = vg.Ps_list[2 - BIAS] vector_ext = Ps3 - Ps2 vector_ext = add_extension_line(vg, Ps3, vector_ext, distance_factor=3) Ptemp1 = (Ps3 + 0.5 * vector_ext) vector_ext *= array([1, -1]) # mirror vector_ext = np.dot(TS, vector_ext) # rotate vector_ext = add_extension_line(vg, Ptemp2, vector_ext, distance_factor=3) Ptemp2 = (Ptemp2 + 0.5 * vector_ext) some_angle = atan2(vector_ext[1], vector_ext[0]) print(some_angle / pi * 180, 180 - Stator_Sector_Angle / pi * 180) vg.pyplot_arc(im.Radius_OuterRotor + im.Length_AirGap + im.Width_StatorTeethHeadThickness + 2, angle_span=0.95 * im.Angle_StatorSlotOpen / 180 * pi, rotation=some_angle - 0.475 * im.Angle_StatorSlotOpen / 180 * pi, center=(0, 0), lw=0.6) # vg.ax.text(Ptemp1[0], Ptemp1[1], r'$w_{\rm open,s}$', # bbox=dict(facecolor='w', edgecolor='r',boxstyle='round,pad=0',alpha=0.9)) vg.ax.text(0.5 * (Ptemp1[0] + Ptemp2[0]) - 5, 0.5 * (Ptemp1[1] + Ptemp2[1]), r'$w_{\rm open,s}$', bbox=dict(facecolor='w', edgecolor='r', boxstyle='round,pad=0', alpha=0.9)) # 5 Pr4 = vg.Pr_list[4 - BIAS] Pr5 = vg.Pr_list[5 - BIAS] Ptemp1 = 0.5 * (Pr4 + Pr5) Ptemp2 = Ptemp1 * np.array((1, -1)) # mirror add_label_outside(vg, r'$w_{\rm open,r}$', Ptemp1, Ptemp2, ext_factor=2) # 6 Ps2 = vg.Ps_list[2 - BIAS] Ps3 = vg.Ps_list[3 - BIAS] Ptemp1 = np.dot(TS, Ps2) Ptemp11 = np.dot(TS, Ps3) vector_ext = -np.array((Ptemp11[0] - Ptemp1[0], Ptemp11[1] - Ptemp1[1])) vector_ext = np.array((-vector_ext[1], vector_ext[0])) vector_ext = add_extension_line(vg, Ptemp1, vector_ext, distance_factor=1) Ptemp1 = (Ptemp1 + 0.5 * vector_ext) Ptemp2 = np.dot(TS, Ps3) Ptemp22 = np.dot(TS, Ps2) vector_ext = np.array((Ptemp22[0] - Ptemp2[0], Ptemp22[1] - Ptemp2[1])) vector_ext = np.array((-vector_ext[1], vector_ext[0])) vector_ext = add_extension_line(vg, Ptemp2, vector_ext, distance_factor=1) Ptemp2 = (Ptemp2 + 0.5 * vector_ext) add_label_outside(vg, r'$h_{\rm head,s}$', Ptemp1, Ptemp2, ext_factor=3) # 7 Pr4 = vg.Pr_list[4 - BIAS] Ptemp1 = np.dot(TR, Pr4) Ptemp11 = np.array((Pr4[0], Pr4[1] + 5)) Ptemp11 = np.dot(TR, Ptemp11) vector_ext = np.array((Ptemp11[0] - Ptemp1[0], Ptemp11[1] - Ptemp1[1])) vector_ext = add_extension_line(vg, Ptemp1, vector_ext, distance_factor=6) Ptemp1 = (Ptemp1 + 0.5 * vector_ext) Pr5 = vg.Pr_list[5 - BIAS] Ptemp2 = np.dot(TR, Pr5) Ptemp22 = np.array((Pr5[0], Pr5[1] + 5)) Ptemp22 = np.dot(TR, Ptemp22) vector_ext =
np.array((Ptemp22[0] - Ptemp2[0], Ptemp22[1] - Ptemp2[1]))
numpy.array
#!/usr/bin/env python from pyiri2016 import IRI2016,IRI2016Profile from numpy import arange from matplotlib.pyplot import figure, legend, show import seaborn def example02(): """ Geog. Latitude Profile Example """ latlim = [-60, 60] latstp = 2. iri2016Obj = IRI2016Profile(alt=600, hour=17., latlim=latlim, latstp=latstp, \ lon=-76.77, option=2, verbose=False, year=2004) latbins =
arange(latlim[0], latlim[1] + latstp, latstp)
numpy.arange
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for the available built-in discrete-variable quantum operations. """ import pytest import functools import numpy as np from numpy.linalg import multi_dot from scipy.linalg import block_diag import pennylane as qml from pennylane.templates.layers import StronglyEntanglingLayers from gate_data import I, X, Y, Z, H, CNOT, SWAP, CZ, S, T, CSWAP, Toffoli # Standard observables, their matrix representation, and eigenvlaues OBSERVABLES = [ (qml.PauliX, X, [1, -1]), (qml.PauliY, Y, [1, -1]), (qml.PauliZ, Z, [1, -1]), (qml.Hadamard, H, [1, -1]), (qml.Identity, I, [1, 1]), ] # Hermitian matrices, their corresponding eigenvalues and eigenvectors. EIGVALS_TEST_DATA = [ (np.array([[1, 0], [0, 1]]), np.array([1.0, 1.0]), np.array([[1.0, 0.0], [0.0, 1.0]])), ( np.array([[0, 1], [1, 0]]), np.array([-1.0, 1.0]), np.array([[-0.70710678, 0.70710678], [0.70710678, 0.70710678]]), ), ( np.array([[0, -1j], [1j, 0]]), np.array([-1.0, 1.0]), np.array( [[-0.70710678 + 0.0j, -0.70710678 + 0.0j], [0.0 + 0.70710678j, 0.0 - 0.70710678j]] ), ), (np.array([[1, 0], [0, -1]]), np.array([-1.0, 1.0]), np.array([[0.0, 1.0], [1.0, 0.0]])), ( 1 / np.sqrt(2) * np.array([[1, 1], [1, -1]]), np.array([-1.0, 1.0]), np.array([[0.38268343, -0.92387953], [-0.92387953, -0.38268343]]), ), ] EIGVALS_TEST_DATA_MULTI_WIRES = [ functools.reduce(np.kron, [Y, I, Z]) ] @pytest.mark.usefixtures("tear_down_hermitian") class TestObservables: """Tests for observables""" @pytest.mark.parametrize("obs, mat, eigs", OBSERVABLES) def test_diagonalization(self, obs, mat, eigs, tol): """Test the method transforms standard observables into the Z-gate.""" ob = obs(wires=0) A = ob.matrix diag_gates = ob.diagonalizing_gates() U = np.eye(2) if diag_gates: mats = [i.matrix for i in diag_gates] # Need to revert the order in which the matrices are applied such that they adhere to the order # of matrix multiplication # E.g. for PauliY: [PauliZ(wires=self.wires), S(wires=self.wires), Hadamard(wires=self.wires)] # becomes Hadamard @ S @ PauliZ, where @ stands for matrix multiplication mats = mats[::-1] U = multi_dot([np.eye(2)] + mats) res = U @ A @ U.conj().T expected = np.diag(eigs) assert np.allclose(res, expected, atol=tol, rtol=0) @pytest.mark.parametrize("obs, mat, eigs", OBSERVABLES) def test_eigvals(self, obs, mat, eigs, tol): """Test eigenvalues of standard observables are correct""" obs = obs(wires=0) res = obs.eigvals assert np.allclose(res, eigs, atol=tol, rtol=0) @pytest.mark.parametrize("obs, mat, eigs", OBSERVABLES) def test_matrices(self, obs, mat, eigs, tol): """Test matrices of standard observables are correct""" obs = obs(wires=0) res = obs.matrix assert np.allclose(res, mat, atol=tol, rtol=0) @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_eigegendecomposition_single_wire( self, observable, eigvals, eigvecs, tol ): """Tests that the eigendecomposition property of the Hermitian class returns the correct results for a single wire.""" eigendecomp = qml.Hermitian(observable, wires=0).eigendecomposition assert np.allclose(eigendecomp["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(eigendecomp["eigvec"], eigvecs, atol=tol, rtol=0) key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("observable", EIGVALS_TEST_DATA_MULTI_WIRES) def test_hermitian_eigegendecomposition_multiple_wires( self, observable, tol ): """Tests that the eigendecomposition property of the Hermitian class returns the correct results for multiple wires.""" num_wires = int(np.log2(len(observable))) eigendecomp = qml.Hermitian(observable, wires=list(range(num_wires))).eigendecomposition eigvals, eigvecs = np.linalg.eigh(observable) assert np.allclose(eigendecomp["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(eigendecomp["eigvec"], eigvecs, atol=tol, rtol=0) key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("obs1", EIGVALS_TEST_DATA) @pytest.mark.parametrize("obs2", EIGVALS_TEST_DATA) def test_hermitian_eigvals_eigvecs_two_different_observables(self, obs1, obs2, tol): """Tests that the eigvals method of the Hermitian class returns the correct results for two observables.""" if np.all(obs1[0] == obs2[0]): pytest.skip("Test only runs for pairs of differing observable") observable_1 = obs1[0] observable_1_eigvals = obs1[1] observable_1_eigvecs = obs1[2] key = tuple(observable_1.flatten().tolist()) qml.Hermitian(observable_1, 0).eigvals assert np.allclose( qml.Hermitian._eigs[key]["eigval"], observable_1_eigvals, atol=tol, rtol=0 ) assert np.allclose( qml.Hermitian._eigs[key]["eigvec"], observable_1_eigvecs, atol=tol, rtol=0 ) assert len(qml.Hermitian._eigs) == 1 observable_2 = obs2[0] observable_2_eigvals = obs2[1] observable_2_eigvecs = obs2[2] key_2 = tuple(observable_2.flatten().tolist()) qml.Hermitian(observable_2, 0).eigvals assert np.allclose( qml.Hermitian._eigs[key_2]["eigval"], observable_2_eigvals, atol=tol, rtol=0 ) assert np.allclose( qml.Hermitian._eigs[key_2]["eigvec"], observable_2_eigvecs, atol=tol, rtol=0 ) assert len(qml.Hermitian._eigs) == 2 @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_eigvals_eigvecs_same_observable_twice( self, observable, eigvals, eigvecs, tol ): """Tests that the eigvals method of the Hermitian class keeps the same dictionary entries upon multiple calls.""" key = tuple(observable.flatten().tolist()) qml.Hermitian(observable, 0).eigvals assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 qml.Hermitian(observable, 0).eigvals assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_diagonalizing_gates(self, observable, eigvals, eigvecs, tol): """Tests that the diagonalizing_gates method of the Hermitian class returns the correct results.""" qubit_unitary = qml.Hermitian(observable, wires=[0]).diagonalizing_gates() key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert np.allclose(qubit_unitary[0].params, eigvecs.conj().T, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("obs1", EIGVALS_TEST_DATA) @pytest.mark.parametrize("obs2", EIGVALS_TEST_DATA) def test_hermitian_diagonalizing_gates_two_different_observables(self, obs1, obs2, tol): """Tests that the diagonalizing_gates method of the Hermitian class returns the correct results for two observables.""" if np.all(obs1[0] == obs2[0]): pytest.skip("Test only runs for pairs of differing observable") observable_1 = obs1[0] observable_1_eigvals = obs1[1] observable_1_eigvecs = obs1[2] qubit_unitary = qml.Hermitian(observable_1, wires=[0]).diagonalizing_gates() key = tuple(observable_1.flatten().tolist()) assert np.allclose( qml.Hermitian._eigs[key]["eigval"], observable_1_eigvals, atol=tol, rtol=0 ) assert np.allclose( qml.Hermitian._eigs[key]["eigvec"], observable_1_eigvecs, atol=tol, rtol=0 ) assert np.allclose(qubit_unitary[0].params, observable_1_eigvecs.conj().T, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 observable_2 = obs2[0] observable_2_eigvals = obs2[1] observable_2_eigvecs = obs2[2] qubit_unitary_2 = qml.Hermitian(observable_2, wires=[0]).diagonalizing_gates() key = tuple(observable_2.flatten().tolist()) assert np.allclose( qml.Hermitian._eigs[key]["eigval"], observable_2_eigvals, atol=tol, rtol=0 ) assert np.allclose( qml.Hermitian._eigs[key]["eigvec"], observable_2_eigvecs, atol=tol, rtol=0 ) assert np.allclose( qubit_unitary_2[0].params, observable_2_eigvecs.conj().T, atol=tol, rtol=0 ) assert len(qml.Hermitian._eigs) == 2 @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_diagonalizing_gatesi_same_observable_twice( self, observable, eigvals, eigvecs, tol ): """Tests that the diagonalizing_gates method of the Hermitian class keeps the same dictionary entries upon multiple calls.""" qubit_unitary = qml.Hermitian(observable, wires=[0]).diagonalizing_gates() key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert np.allclose(qubit_unitary[0].params, eigvecs.conj().T, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 qubit_unitary = qml.Hermitian(observable, wires=[0]).diagonalizing_gates() key = tuple(observable.flatten().tolist()) assert np.allclose(qml.Hermitian._eigs[key]["eigval"], eigvals, atol=tol, rtol=0) assert np.allclose(qml.Hermitian._eigs[key]["eigvec"], eigvecs, atol=tol, rtol=0) assert np.allclose(qubit_unitary[0].params, eigvecs.conj().T, atol=tol, rtol=0) assert len(qml.Hermitian._eigs) == 1 @pytest.mark.parametrize("observable, eigvals, eigvecs", EIGVALS_TEST_DATA) def test_hermitian_diagonalizing_gates_integration(self, observable, eigvals, eigvecs, tol): """Tests that the diagonalizing_gates method of the Hermitian class diagonalizes the given observable.""" tensor_obs = np.kron(observable, observable) eigvals = np.kron(eigvals, eigvals) diag_gates = qml.Hermitian(tensor_obs, wires=[0, 1]).diagonalizing_gates() assert len(diag_gates) == 1 U = diag_gates[0].parameters[0] x = U @ tensor_obs @ U.conj().T assert np.allclose(np.diag(np.sort(eigvals)), x, atol=tol, rtol=0) def test_hermitian_matrix(self, tol): """Test that the hermitian matrix method produces the correct output.""" H = np.array([[1, 1], [1, -1]]) / np.sqrt(2) out = qml.Hermitian(H, wires=0).matrix # verify output type assert isinstance(out, np.ndarray) # verify equivalent to input state assert np.allclose(out, H, atol=tol, rtol=0) def test_hermitian_exceptions(self): """Tests that the hermitian matrix method raises the proper errors.""" H = np.array([[1, 1], [1, -1]]) / np.sqrt(2) # test non-square matrix with pytest.raises(ValueError, match="must be a square matrix"): qml.Hermitian(H[1:], wires=0).matrix # test non-Hermitian matrix H2 = H.copy() H2[0, 1] = 2 with pytest.raises(ValueError, match="must be Hermitian"): qml.Hermitian(H2, wires=0).matrix # Non-parametrized operations and their matrix representation NON_PARAMETRIZED_OPERATIONS = [ (qml.CNOT, CNOT), (qml.SWAP, SWAP), (qml.CZ, CZ), (qml.S, S), (qml.T, T), (qml.CSWAP, CSWAP), (qml.Toffoli, Toffoli) ] class TestOperations: """Tests for the operations""" @pytest.mark.parametrize("ops, mat", NON_PARAMETRIZED_OPERATIONS) def test_matrices(self, ops, mat, tol): """Test matrices of non-parametrized operations are correct""" op = ops(wires=range(ops.num_wires)) res = op.matrix assert np.allclose(res, mat, atol=tol, rtol=0) def test_phase_shift(self, tol): """Test phase shift is correct""" # test identity for theta=0 assert np.allclose(qml.PhaseShift._matrix(0), np.identity(2), atol=tol, rtol=0) assert np.allclose(qml.U1._matrix(0), np.identity(2), atol=tol, rtol=0) # test arbitrary phase shift phi = 0.5432 expected = np.array([[1, 0], [0, np.exp(1j * phi)]]) assert np.allclose(qml.PhaseShift._matrix(phi), expected, atol=tol, rtol=0) assert np.allclose(qml.U1._matrix(phi), expected, atol=tol, rtol=0) def test_x_rotation(self, tol): """Test x rotation is correct""" # test identity for theta=0 assert np.allclose(qml.RX._matrix(0), np.identity(2), atol=tol, rtol=0) # test identity for theta=pi/2 expected = np.array([[1, -1j], [-1j, 1]]) / np.sqrt(2) assert np.allclose(qml.RX._matrix(np.pi / 2), expected, atol=tol, rtol=0) # test identity for theta=pi expected = -1j * np.array([[0, 1], [1, 0]]) assert np.allclose(qml.RX._matrix(np.pi), expected, atol=tol, rtol=0) def test_y_rotation(self, tol): """Test y rotation is correct""" # test identity for theta=0 assert np.allclose(qml.RY._matrix(0), np.identity(2), atol=tol, rtol=0) # test identity for theta=pi/2 expected = np.array([[1, -1], [1, 1]]) / np.sqrt(2) assert np.allclose(qml.RY._matrix(np.pi / 2), expected, atol=tol, rtol=0) # test identity for theta=pi expected = np.array([[0, -1], [1, 0]]) assert np.allclose(qml.RY._matrix(np.pi), expected, atol=tol, rtol=0) def test_z_rotation(self, tol): """Test z rotation is correct""" # test identity for theta=0 assert np.allclose(qml.RZ._matrix(0), np.identity(2), atol=tol, rtol=0) # test identity for theta=pi/2 expected = np.diag(np.exp([-1j * np.pi / 4, 1j * np.pi / 4])) assert np.allclose(qml.RZ._matrix(np.pi / 2), expected, atol=tol, rtol=0) # test identity for theta=pi assert np.allclose(qml.RZ._matrix(np.pi), -1j * Z, atol=tol, rtol=0) def test_arbitrary_rotation(self, tol): """Test arbitrary single qubit rotation is correct""" # test identity for phi,theta,omega=0 assert np.allclose(qml.Rot._matrix(0, 0, 0), np.identity(2), atol=tol, rtol=0) # expected result def arbitrary_rotation(x, y, z): """arbitrary single qubit rotation""" c = np.cos(y / 2) s = np.sin(y / 2) return np.array( [ [np.exp(-0.5j * (x + z)) * c, -np.exp(0.5j * (x - z)) * s], [np.exp(-0.5j * (x - z)) * s, np.exp(0.5j * (x + z)) * c], ] ) a, b, c = 0.432, -0.152, 0.9234 assert np.allclose(qml.Rot._matrix(a, b, c), arbitrary_rotation(a, b, c), atol=tol, rtol=0) def test_C_x_rotation(self, tol): """Test controlled x rotation is correct""" # test identity for theta=0 assert np.allclose(qml.CRX._matrix(0), np.identity(4), atol=tol, rtol=0) # test identity for theta=pi/2 expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1/np.sqrt(2), -1j/np.sqrt(2)], [0, 0, -1j/np.sqrt(2), 1/np.sqrt(2)]]) assert np.allclose(qml.CRX._matrix(np.pi / 2), expected, atol=tol, rtol=0) # test identity for theta=pi expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1j], [0, 0, -1j, 0]]) assert np.allclose(qml.CRX._matrix(np.pi), expected, atol=tol, rtol=0) def test_C_y_rotation(self, tol): """Test controlled y rotation is correct""" # test identity for theta=0 assert np.allclose(qml.CRY._matrix(0), np.identity(4), atol=tol, rtol=0) # test identity for theta=pi/2 expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1/np.sqrt(2), -1/np.sqrt(2)], [0, 0, 1/np.sqrt(2), 1/np.sqrt(2)]]) assert np.allclose(qml.CRY._matrix(np.pi / 2), expected, atol=tol, rtol=0) # test identity for theta=pi expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1], [0, 0, 1, 0]]) assert np.allclose(qml.CRY._matrix(np.pi), expected, atol=tol, rtol=0) def test_C_z_rotation(self, tol): """Test controlled z rotation is correct""" # test identity for theta=0 assert np.allclose(qml.CRZ._matrix(0),
np.identity(4)
numpy.identity
""" Functions are useful untilities for SITperturb experiments Notes ----- Author : <NAME> Date : 13 August 2017 Usage ----- [1] calcDecJan(varx,vary,lat,lon,level,levsq) [2] calcDecJanFeb(varx,vary,lat,lon,level,levsq) [3] calc_FDR_ttest(varx,vary,alpha_f) [4] calc_indttest(varx,vary) [5] calc_weightedAve(var,lats) [6] calc_spatialCorr(varx,vary,lats,lons,weight) [7] calc_RMSE(varx,vary,lats,lons,weight) [8] calc_spatialCorrHeight(varx,vary,lats,lons,weight) [9] calc_spatialCorrHeightLev(varx,vary,lats,lons,weight,levelq) [10] detrendData(datavar,years,level,yearmn,yearmx) [11] detrendDataR(datavar,years,level,yearmn,yearmx) [12] mk_test(x, alpha) """ def calcDecJan(varx,vary,lat,lon,level,levsq): """ Function calculates average for December-January Parameters ---------- varx : 4d array or 5d array [year,month,lat,lon] or [year,month,lev,lat,lon] vary : 4d array or 5d array [year,month,lat,lon] or [year,month,lev,lat,lon] lat : 1d numpy array latitudes lon : 1d numpy array longitudes level : string Height of variable (surface or profile) levsq : integer number of levels Returns ------- varx_dj : 3d array or 4d array [year,lat,lon] or [year,lev,lat,lon] vary_dj : 3d array [year,lat,lon] or [year,lev,lat,lon] Usage ----- varx_dj,vary_dj = calcDecJan(varx,vary,lat,lon,level,levsq) """ print('\n>>> Using calcDecJan function!') ### Import modules import numpy as np ### Reshape for 3d variables if level == 'surface': varxravel = np.reshape(varx.copy(), (int(varx.shape[0]*12), int(lat.shape[0]),int(lon.shape[0]))) varyravel = np.reshape(vary.copy(), (int(vary.shape[0]*12), int(lat.shape[0]),int(lon.shape[0]))) varx_dj = np.empty((varx.shape[0]-1,lat.shape[0],lon.shape[0])) vary_dj = np.empty((vary.shape[0]-1,lat.shape[0],lon.shape[0]) ) for i in range(0,varxravel.shape[0]-12,12): counter = 0 if i >= 12: counter = i//12 djappendh = np.append(varxravel[11+i,:,:],varxravel[12+i,:,:]) djappendf = np.append(varyravel[11+i,:,:],varyravel[12+i,:,:]) varx_dj[counter,:,:] = np.nanmean(np.reshape(djappendh, (2,int(lat.shape[0]),int(lon.shape[0]))), axis=0) vary_dj[counter,:,:] = np.nanmean(np.reshape(djappendf, (2,int(lat.shape[0]),int(lon.shape[0]))), axis=0) ### Reshape for 4d variables elif level == 'profile': varxravel = np.reshape(varx.copy(), (int(varx.shape[0]*12.),levsq, int(lat.shape[0]),int(lon.shape[0]))) varyravel = np.reshape(vary.copy(), (int(vary.shape[0]*12.),levsq, int(lat.shape[0]),int(lon.shape[0]))) varx_dj = np.empty((int(varx.shape[0]-1),levsq, int(lat.shape[0]),int(lon.shape[0]))) vary_dj = np.empty((int(vary.shape[0]-1),levsq, int(lat.shape[0]),int(lon.shape[0])) ) for i in range(0,varxravel.shape[0]-12,12): counter = 0 if i >= 12: counter = i//12 djappendh = np.append(varxravel[11+i,:,:,:], varxravel[12+i,:,:,:]) djappendf = np.append(varyravel[11+i,:,:,:], varyravel[12+i,:,:,:]) varx_dj[counter,:,:] = np.nanmean(np.reshape(djappendh, (2,levsq,int(lat.shape[0]), int(lon.shape[0]))),axis=0) vary_dj[counter,:,:] = np.nanmean(np.reshape(djappendf, (2,levsq,int(lat.shape[0]), int(lon.shape[0]))),axis=0) else: print(ValueError('Selected wrong height - (surface or profile!)!')) print('Completed: Organized data by months (ON,DJ,FM)!') print('*Completed: Finished calcDecJan function!') return varx_dj,vary_dj ############################################################################### ############################################################################### ############################################################################### def calcDecJanFeb(varx,vary,lat,lon,level,levsq): """ Function calculates average for December-January-February Parameters ---------- varx : 4d array or 5d array [year,month,lat,lon] or [year,month,lev,lat,lon] vary : 4d array or 5d array [year,month,lat,lon] or [year,month,lev,lat,lon] lat : 1d numpy array latitudes lon : 1d numpy array longitudes level : string Height of variable (surface or profile) levsq : integer number of levels Returns ------- varx_djf : 3d array or 4d array [year,lat,lon] or [year,lev,lat,lon] vary_djf : 3d array [year,lat,lon] or [year,lev,lat,lon] Usage ----- varx_djf = calcDecJanFeb(varx,vary,lat,lon,level,levsq) """ print('\n>>> Using calcDecJanFeb function!') ### Import modules import numpy as np ### Reshape for 3d variables if level == 'surface': varxravel = np.reshape(varx.copy(), (int(varx.shape[0]*12), int(lat.shape[0]),int(lon.shape[0]))) varyravel = np.reshape(vary.copy(), (int(vary.shape[0]*12), int(lat.shape[0]),int(lon.shape[0]))) varx_djf = np.empty((varx.shape[0]-1,lat.shape[0],lon.shape[0])) vary_djf = np.empty((vary.shape[0]-1,lat.shape[0],lon.shape[0]) ) for i in range(0,varxravel.shape[0]-12,12): counter = 0 if i >= 12: counter = i//12 djfappendh1 = np.append(varxravel[11+i,:,:],varxravel[12+i,:,:]) djfappendf1 = np.append(varyravel[11+i,:,:],varyravel[12+i,:,:]) djfappendh = np.append(djfappendh1,varxravel[13+i,:,:]) djfappendf = np.append(djfappendf1,varyravel[13+i,:,:]) varx_djf[counter,:,:] = np.nanmean(np.reshape(djfappendh, (3,int(lat.shape[0]),int(lon.shape[0]))), axis=0) vary_djf[counter,:,:] = np.nanmean(np.reshape(djfappendf, (3,int(lat.shape[0]),int(lon.shape[0]))), axis=0) ### Reshape for 4d variables elif level == 'profile': varxravel = np.reshape(varx.copy(), (int(varx.shape[0]*12.),levsq, int(lat.shape[0]),int(lon.shape[0]))) varyravel = np.reshape(vary.copy(), (int(vary.shape[0]*12.),levsq, int(lat.shape[0]),int(lon.shape[0]))) varx_djf = np.empty((int(varx.shape[0]-1),levsq, int(lat.shape[0]),int(lon.shape[0]))) vary_djf = np.empty((int(vary.shape[0]-1),levsq, int(lat.shape[0]),int(lon.shape[0])) ) for i in range(0,varxravel.shape[0]-12,12): counter = 0 if i >= 12: counter = i//12 djfappendh1 = np.append(varxravel[11+i,:,:,:], varxravel[12+i,:,:,:]) djfappendf1 = np.append(varyravel[11+i,:,:,:], varyravel[12+i,:,:,:]) djfappendh = np.append(djfappendh1, varxravel[13+i,:,:,:]) djfappendf = np.append(djfappendf1, varyravel[13+i,:,:,:]) varx_djf[counter,:,:] = np.nanmean(np.reshape(djfappendh, (3,levsq,int(lat.shape[0]), int(lon.shape[0]))),axis=0) vary_djf[counter,:,:] = np.nanmean(np.reshape(djfappendf, (3,levsq,int(lat.shape[0]), int(lon.shape[0]))),axis=0) else: print(ValueError('Selected wrong height - (surface or profile!)!')) print('Completed: Organized data by months (DJF)!') print('*Completed: Finished calcDecJanFeb function!') return varx_djf ############################################################################### ############################################################################### ############################################################################### def calc_FDR_ttest(varx,vary,alpha_f): """ Function first calculates statistical difference for 2 independent sample t-test and then adjusts using a false discovery rate (FDR) where alpha_o = alpha_FDR Parameters ---------- varx : 2d or 3d array vary : 2d or 3d array alpha_f : float (alpha_o = alpha_FDR) Returns ------- pruns : 1d or 2d array of adjusted p values Usage ----- calc_FDR_ttest(varx,vary,alpha_f) """ print('\n>>> Using calc_FDR_ttest function!') ### Import modules import numpy as np import scipy.stats as sts import statsmodels.stats.multitest as fdr ### 2-independent sample t-test stat,pvalue = sts.ttest_ind(varx,vary,nan_policy='omit') ### Ravel all 2d pvalues if pvalue.ndim == 2: pvalall =
np.reshape(pvalue,(pvalue.shape[0]* pvalue.shape[1]))
numpy.reshape
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from mo.front.mxnet.extractors.utils import get_mxnet_layer_attrs from mo.front.extractor import FrontExtractorOp from mo.ops.op import Op class ProposalFrontExtractor(FrontExtractorOp): op = '_contrib_Proposal' enabled = True @staticmethod def extract(node): attrs = get_mxnet_layer_attrs(node.symbol_dict) pre_nms_topn = attrs.int('rpn_pre_nms_top_n', 6000) post_nms_topn = attrs.int('rpn_post_nms_top_n', 300) nms_thresh = attrs.float('threshold', 0.7) min_size = attrs.int('rpn_min_size', 16) scale = attrs.tuple("scales", float, (4, 8, 16, 32)) ratio = attrs.tuple("ratios", float, (0.5, 1, 2)) feat_stride = attrs.int('feature_stride', 16) update_attrs = { 'feat_stride': feat_stride, 'ratio': np.array(ratio), 'min_size': min_size, 'scale':
np.array(scale)
numpy.array
"""This module simulates trajectories of interacting particles in 3D space.\n Particles are called "Walkers", in reference to the fact at each iteration each particle is "walking" towards or away from others. Various mathematical interaction laws and relationship generation rules are provided, yielding very different simulation results. """ from collections import namedtuple from dataclasses import dataclass from operator import attrgetter from time import perf_counter_ns import numpy as np import numpy.linalg as la from numpy.random import default_rng from dynasty.utils import LabeledEnum def rand_spread_array(shape, avg=0, var=1, rng=None): """Generate a ndarray with given shape populated with random float values in the range ]avg-var, avg+var[. """ rng = rng or default_rng() return var * (2*rng.random(shape) - 1) + avg def repeat_newaxis(array, n): """Repeat the given `array` `n` times along a new outer axis.""" return np.repeat(array[None, ...], n, axis=0) def diff_array(array): """Returns a square matrix of all differences of an array's elements.\n This function supports arbitrary shapes (for exemple, (n, 3) if the input array represents multiple points in 3D space). Example: diff_array([a, b, c]) -> a-a b-a c-a a-b b-b c-b a-c b-c c-c """ tiled = repeat_newaxis(array, array.shape[0]) # Swap the two first axis (this is equivalent to transposition when input # array has one dimention), and return the element-wie difference return tiled - tiled.swapaxes(0, 1) class InterLaw(LabeledEnum): """Enumeration of interaction laws.\n Impacts the mathematical formula binding walkers together. """ POSITION = 0, "Distance fraction" VELOCITY = 1, "Velocity" NEWTON_LINEAR = 2, "Newton's (linear variant)" NEWTON = 3, "Newton's (quadratic)" ASYMMETRY = 4, "Asymmetry" class RelModel(LabeledEnum): """Enumeration of relation models.\n Impacts relation mask generation. """ ONE_TO_ONE = 0, "One to one" SPARSE = 1, "Sparse (25%)" MANY_TO_MANY = 2, "Many to many" class SeedableRNG: """Class that wraps a NumPy pseudo-random `Generator`, and provide utility methods to restart or reseed it. """ def __init__(self, seed=None): self.seed = seed self.generator = default_rng(seed) def reseed(self, seed=None): """Reseed the PRNG.\n If no `seed` argument is given, the last seed will be used, hence the PRNG will generate the same sequence of numbers again. """ if seed is not None: self.seed = seed self.generator = default_rng(self.seed) @dataclass class SystemParameters: count: int = 3 spread: float = 10 inter_law: InterLaw = InterLaw.POSITION rel_model: RelModel = RelModel.ONE_TO_ONE rel_avg: float = .1 rel_var: float = 0 rel_sym: bool = False iterations: int = 10 SystemRNGs = namedtuple('RNGs', ('start_pos', 'rel_mask', 'rel_matrix')) class WalkerSystem: def __init__(self, params=SystemParameters()): self.params = params # Use perf_counter_ns for seeding, because time_ns precision is very # poor on some systems - Windows, not to name it self.rngs = SystemRNGs( *(SeedableRNG(perf_counter_ns() + i) for i in range(3)) ) # Those will be populated later by various computing methods self.rel_mask, self.rel_matrix = None, None self.start_pos, self.positions = None, None def generate_start_pos(self): rng = self.rngs.start_pos rng.reseed() # Start pos in ]-1, 1[ self.start_pos = rand_spread_array( (self.params.count, 3), rng=rng.generator ) def generate_relation_mask(self): n, model = attrgetter('count', 'rel_model')(self.params) rng = self.rngs.rel_mask rng.reseed() if model == RelModel.ONE_TO_ONE: # One walker is in relation with another self.rel_mask = np.roll(
np.eye(n, dtype=bool)
numpy.eye
import numpy as np from scipy.linalg import blas from .fourier_transform import FourierTransform, multiplex_for_tensor_fields, _get_float_and_complex_dtype from ..field import Field from ..config import Configuration import numexpr as ne class MatrixFourierTransform(FourierTransform): '''A Matrix Fourier Transform (MFT) object. This Fourier transform is based on the MFT described in [Soummer2007]_. It requires both the input and output grid to be separated in Cartesian coordinates. Additionally, due to current implementation limitations, this Fourier transform only supports one- and two-dimensional grids. .. [Soummer2007] Soummer et al. 2007, "Fast computation of Lyot-style coronagraph propagation". Parameters ---------- input_grid : Grid The grid that is expected for the input field. output_grid : Grid The grid that is produced by the Fourier transform. precompute_matrices : boolean or None Whether to precompute the matrices used in the MFT. Turning this on will provide a 20-30% speedup, in exchange for higher memory usage.If this is False, the matrices will be calculated each time a Fourier transform is performed. If this is True, the matrices will be calculated once, and reused for future evaluations. If this is None, the choice will be determined by the configuration file. allocate_intermediate : boolean or None Whether to reserve memory for the intermediate result for the MFT. This provides a 5-10% speedup in exchange for higher memory usage. If this is None, the choice will be determined by the configuration file. Raises ------ ValueError If the input grid is not separated in Cartesian coordinates, if it's not one- or two- dimensional, or if the output grid has a different dimension than the input grid. ''' def __init__(self, input_grid, output_grid, precompute_matrices=None, allocate_intermediate=None): # Check input grid assumptions if not input_grid.is_separated or not input_grid.is_('cartesian'): raise ValueError('The input_grid must be separable in cartesian coordinates.') if not output_grid.is_separated or not output_grid.is_('cartesian'): raise ValueError('The output_grid must be separable in cartesian coordinates.') if input_grid.ndim not in [1, 2]: raise ValueError('The input_grid must be one- or two-dimensional.') if input_grid.ndim != output_grid.ndim: raise ValueError('The input_grid must have the same dimensions as the output_grid.') self.input_grid = input_grid self.output_grid = output_grid self.shape_input = input_grid.shape self.shape_output = output_grid.shape self.ndim = input_grid.ndim # Get the value from the configuration file if left at default. if precompute_matrices is None: precompute_matrices = Configuration().fourier.mft.precompute_matrices self.precompute_matrices = precompute_matrices # Get the value from the configuration file if left at default. if allocate_intermediate is None: allocate_intermediate = Configuration().fourier.mft.allocate_intermediate self.allocate_intermediate = allocate_intermediate self.matrices_dtype = None self.intermediate_dtype = None self._remove_matrices() def _compute_matrices(self, dtype): '''Compute the matrices for the MFT using the specified data type. Parameters --- dtype : numpy data type The data type for which to calculate the matrices. ''' # Set the correct complex and real data type, based on the input data type. float_dtype, complex_dtype = _get_float_and_complex_dtype(dtype) # Check if the matrices need to be (re)calculated. if self.matrices_dtype != complex_dtype: self.weights_input = (self.input_grid.weights).astype(float_dtype, copy=False) self.weights_output = (self.output_grid.weights / (2 * np.pi)**self.ndim).astype(float_dtype, copy=False) # If all input weights are all the same, use a scalar instead. if not np.isscalar(self.weights_input) and np.all(self.weights_input == self.weights_input[0]): self.weights_input = self.weights_input[0] # If all output weights are all the same, use a scalar instead. if not np.isscalar(self.weights_output) and np.all(self.weights_output == self.weights_output[0]): self.weights_output = self.weights_output[0] if self.ndim == 1: xu = np.outer(self.output_grid.x, self.input_grid.x) self.M = ne.evaluate('exp(-1j * xu)').astype(complex_dtype, copy=False) elif self.ndim == 2: x, y = self.input_grid.coords.separated_coords u, v = self.output_grid.coords.separated_coords vy = np.outer(v, y) xu = np.outer(x, u) self.M1 = ne.evaluate('exp(-1j * vy)').astype(complex_dtype, copy=False) self.M2 = ne.evaluate('exp(-1j * xu)').astype(complex_dtype, copy=False) self.matrices_dtype = complex_dtype # Checki if the intermediate array needs to be (re)allocated. if self.intermediate_dtype != complex_dtype: if self.ndim == 2: self.intermediate_array = np.empty((self.input_grid.shape[0], self.M2.shape[1]), dtype=complex_dtype) self.intermediate_dtype = complex_dtype def _remove_matrices(self): '''Remove the matrices after a Fourier transform. This is is used to clean up the used matrices after a Fourier transform operation. ''' if not self.precompute_matrices: if self.ndim == 1: self.M = None elif self.ndim == 2: self.M1 = None self.M2 = None self.matrices_dtype = None if not self.allocate_intermediate: if self.ndim == 2: self.intermediate_array = None self.intermediate_dtype = None @multiplex_for_tensor_fields def forward(self, field): '''Returns the forward Fourier transform of the :class:`Field` field. Parameters ---------- field : Field The field to Fourier transform. Returns -------- Field The Fourier transform of the field. ''' self._compute_matrices(field.dtype) field = field.astype(self.matrices_dtype, copy=False) if self.ndim == 1: f = field * self.weights_input res =
np.dot(self.M, f)
numpy.dot
import numpy as np from io import BytesIO import os import re import tempfile import warnings import xml.parsers.expat import pytest import matplotlib as mpl from matplotlib import dviread from matplotlib.figure import Figure import matplotlib.pyplot as plt from matplotlib.testing.decorators import image_comparison with warnings.catch_warnings(): warnings.simplefilter('ignore') needs_usetex = pytest.mark.skipif( not mpl.checkdep_usetex(True), reason="This test needs a TeX installation") def test_visibility(): fig, ax = plt.subplots() x = np.linspace(0, 4 * np.pi, 50) y = np.sin(x) yerr = np.ones_like(y) a, b, c = ax.errorbar(x, y, yerr=yerr, fmt='ko') for artist in b: artist.set_visible(False) fd = BytesIO() fig.savefig(fd, format='svg') fd.seek(0) buf = fd.read() fd.close() parser = xml.parsers.expat.ParserCreate() parser.Parse(buf) # this will raise ExpatError if the svg is invalid @image_comparison(baseline_images=['fill_black_with_alpha'], remove_text=True, extensions=['svg']) def test_fill_black_with_alpha(): fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.scatter(x=[0, 0.1, 1], y=[0, 0, 0], c='k', alpha=0.1, s=10000) @image_comparison(baseline_images=['noscale'], remove_text=True) def test_noscale(): X, Y = np.meshgrid(np.arange(-5, 5, 1), np.arange(-5, 5, 1)) Z =
np.sin(Y ** 2)
numpy.sin
import batoid import numpy as np from test_helpers import timer, init_gpu, rays_allclose, checkAngle, do_pickle @timer def test_properties(): rng = np.random.default_rng(5) size = 10 for i in range(100): x = rng.normal(size=size) y = rng.normal(size=size) z = rng.normal(size=size) vx = rng.normal(size=size) vy = rng.normal(size=size) vz = rng.normal(size=size) t = rng.normal(size=size) w = rng.normal(size=size) fx = rng.normal(size=size) vig = rng.choice([True, False], size=size) fa = rng.choice([True, False], size=size) cs = batoid.CoordSys( origin=rng.normal(size=3), rot=batoid.RotX(rng.normal())@batoid.RotY(rng.normal()) ) rv = batoid.RayVector(x, y, z, vx, vy, vz, t, w, fx, vig, fa, cs) np.testing.assert_array_equal(rv.x, x) np.testing.assert_array_equal(rv.y, y) np.testing.assert_array_equal(rv.z, z) np.testing.assert_array_equal(rv.r[:, 0], x) np.testing.assert_array_equal(rv.r[:, 1], y) np.testing.assert_array_equal(rv.r[:, 2], z) np.testing.assert_array_equal(rv.vx, vx) np.testing.assert_array_equal(rv.vy, vy) np.testing.assert_array_equal(rv.vz, vz) np.testing.assert_array_equal(rv.v[:, 0], vx) np.testing.assert_array_equal(rv.v[:, 1], vy) np.testing.assert_array_equal(rv.v[:, 2], vz) np.testing.assert_array_equal(rv.k[:, 0], rv.kx) np.testing.assert_array_equal(rv.k[:, 1], rv.ky) np.testing.assert_array_equal(rv.k[:, 2], rv.kz) np.testing.assert_array_equal(rv.t, t) np.testing.assert_array_equal(rv.wavelength, w) np.testing.assert_array_equal(rv.flux, fx) np.testing.assert_array_equal(rv.vignetted, vig) np.testing.assert_array_equal(rv.failed, fa) assert rv.coordSys == cs rv._syncToDevice() do_pickle(rv) @timer def test_positionAtTime(): rng = np.random.default_rng(57) size = 10_000 x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0 - vx*vx - vy*vy) # Try with default t=0 first rv = batoid.RayVector(x, y, z, vx, vy, vz) np.testing.assert_equal(rv.x, x) np.testing.assert_equal(rv.y, y) np.testing.assert_equal(rv.z, z) np.testing.assert_equal(rv.vx, vx) np.testing.assert_equal(rv.vy, vy) np.testing.assert_equal(rv.vz, vz) np.testing.assert_equal(rv.t, 0.0) np.testing.assert_equal(rv.wavelength, 0.0) for t1 in [0.0, 1.0, -1.1, 2.5]: np.testing.assert_equal( rv.positionAtTime(t1), rv.r + t1 * rv.v ) # Now add some random t's t = rng.uniform(-1.0, 1.0, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t) np.testing.assert_equal(rv.x, x) np.testing.assert_equal(rv.y, y) np.testing.assert_equal(rv.z, z) np.testing.assert_equal(rv.vx, vx) np.testing.assert_equal(rv.vy, vy) np.testing.assert_equal(rv.vz, vz) np.testing.assert_equal(rv.t, t) np.testing.assert_equal(rv.wavelength, 0.0) for t1 in [0.0, 1.4, -1.3, 2.1]: np.testing.assert_equal( rv.positionAtTime(t1), rv.r + rv.v*(t1-rv.t)[:,None] ) @timer def test_propagate(): rng = np.random.default_rng(577) size = 10_000 x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0 - vx*vx - vy*vy) # Try with default t=0 first rv = batoid.RayVector(x, y, z, vx, vy, vz) for t1 in [0.0, 1.0, -1.1, 2.5]: rvcopy = rv.copy() r1 = rv.positionAtTime(t1) rvcopy.propagate(t1) np.testing.assert_equal( rvcopy.r, r1 ) np.testing.assert_equal( rvcopy.v, rv.v ) np.testing.assert_equal( rvcopy.t, t1 ) # Now add some random t's t = rng.uniform(-1.0, 1.0, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t) for t1 in [0.0, 1.0, -1.1, 2.5]: rvcopy = rv.copy() r1 = rv.positionAtTime(t1) rvcopy.propagate(t1) np.testing.assert_equal( rvcopy.r, r1 ) np.testing.assert_equal( rvcopy.v, rv.v ) np.testing.assert_equal( rvcopy.t, t1 ) @timer def test_phase(): rng = np.random.default_rng(5772) size = 10_000 for n in [1.0, 1.3]: x = rng.uniform(-1, 1, size=size) y = rng.uniform(-1, 1, size=size) z = rng.uniform(-0.1, 0.1, size=size) vx = rng.uniform(-0.05, 0.05, size=size) vy = rng.uniform(-0.05, 0.05, size=size) vz = np.sqrt(1.0/(n*n) - vx*vx - vy*vy) t = rng.uniform(-1.0, 1.0, size=size) wavelength = rng.uniform(300e-9, 1100e-9, size=size) rv = batoid.RayVector(x, y, z, vx, vy, vz, t, wavelength) # First explicitly check that phase is 0 at position and time of individual # rays for i in rng.choice(size, size=10): np.testing.assert_equal( rv.phase(rv.r[i], rv.t[i])[i], 0.0 ) # Now use actual formula # phi = k.(r-r0) - (t-t0)omega # k = 2 pi v / lambda |v|^2 # omega = 2 pi / lambda # |v| = 1 / n for r1, t1 in [ ((0, 0, 0), 0), ((0, 1, 2), 3), ((-1, 2, 4), -1), ((0, 1, -4), -2) ]: phi = np.einsum("ij,ij->i", rv.v, r1-rv.r) phi *= n*n phi -= (t1-rv.t) phi *= 2*np.pi/wavelength np.testing.assert_allclose( rv.phase(r1, t1), phi, rtol=0, atol=1e-7 ) for i in rng.choice(size, size=10): s = slice(i, i+1) rvi = batoid.RayVector( x[s], y[s], z[s], vx[s], vy[s], vz[s], t[s].copy(), wavelength[s].copy() ) # Move integer number of wavelengths ahead ti = rvi.t[0] wi = rvi.wavelength[0] r1 = rvi.positionAtTime(ti + 5123456789*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, 1.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=2e-5) # Half wavelength r1 = rvi.positionAtTime(ti + 6987654321.5*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, -1.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 0.0, rtol=0, atol=2e-5) # Quarter wavelength r1 = rvi.positionAtTime(ti + 0.25*wi)[0] a = rvi.amplitude(r1, ti) np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=2e-5) np.testing.assert_allclose(a.imag, 1.0, rtol=0, atol=2e-5) # Three-quarters wavelength r1 = rvi.positionAtTime(ti + 7182738495.75*wi)[0] a = rvi.amplitude(r1, ti)
np.testing.assert_allclose(a.real, 0.0, rtol=0, atol=2e-5)
numpy.testing.assert_allclose
import numpy as np import matplotlib.pyplot as plt from matplotlib.cm import get_cmap from pandas import DataFrame from scipy.interpolate import griddata import glob import os #Package Imports from .read import load_mol_abund,\ load_rates, get_reac_str, total_rates,\ load_radfield,\ read_levels,read_trans from .misc import contour_points, get_contour_arr, remove_nan, sigfig, iterable, nint from . import __path__ as pkg_path #Functions for setting and getting global directory path # where chemical code is located, base_dir def set_base_dir(direc): if direc[-1]!='/': direc = direc+'/' fpath = pkg_path[0]+'/pkg_files/base_dir.txt' f = open(fpath,'w') f.write(direc) f.close() def get_base_dir(): fpath = pkg_path[0]+'/pkg_files/base_dir.txt' try: f = open(fpath) direc = f.read() f.close() assert os.path.exists(direc) except (OSError, AssertionError) as e: direc = pkg_path[0]+'/test_files/' return direc #Some constants that get used throughout. mp = 1.67e-24 #Mass of proton in g mau = 1.496e11 #Conversion from AU to meters. class chem_mod: ''' A class to handle loading, viewing, and manipulating output from the disk chemical modeling code presented in Fogel et al. 2011. For more in-depth documentation, visit https://github.com/richardseifert/Chemvene To create an instance, the following three paths must be provided. outdir - string path to the runs/ directory where model output is stored. environ - string path to the environ/ directory used to run your chemical model. (Must given it outdir/environ doesn't exist) inp - string filename of the input file used to run your model. (Must be given if outdir/0io* doesn't exits) ''' ################################################################################ ################################ Initialization ################################ ################################################################################ def __init__(self,outdir,environ=None,inp=None,base_dir=None): self.outdir = outdir if self.outdir[-1] != '/': self.outdir += '/' if base_dir is None: self.bsd = get_base_dir() else: self.bsd = base_dir if not environ is None: self.set_environ(environ) elif os.path.exists(self.outdir+'environ/'): self.set_environ(self.outdir+'environ/') else: raise FileNotFoundError("Could not determine environ/ directory to use for this model.") if not inp is None: self.set_environ(environ) else: outdir_0io_paths = glob.glob(self.outdir+'0io*') if len(outdir_0io_paths) > 0: self.set_inp(outdir_0io_paths[0].split('/')[-1]) else: raise FileNotFoundError("Could not determine 0io file to use for this model.") self.phys = DataFrame() self.radfields = {} self.abunds = {} self.rates = {} self.load_physical() self.load_times() def set_environ(self,environ): self.environ = environ if self.environ[-1] != '/': self.environ += '/' def set_inp(self,inp): self.inp = self.environ+inp inp_types = ['spec','reac','uv','xray','isrf','rn'] self.inp_paths = {k:None for k in inp_types} d = np.genfromtxt(self.inp,dtype=str) for i,k in enumerate(inp_types): if os.path.exists(self.bsd+d[i]): self.inp_paths[k] = self.bsd+d[i] def copy(self): ''' Make a hard copy of a chem_mod instance. ''' #Initialize new_inst = chem_mod(outdir=self.outdir,environ=self.environ,inp=self.inp) #Hard copy physical quantities new_inst.phys = self.phys.copy() #for q in self.phys.columns: # new_inst.set_quant(q,self.phys[q]) #Hard copy abundances for mol in self.abunds.keys(): new_inst.abunds[mol] = self.abunds[mol].copy() #Hard copy rates for rid in self.rates.keys(): new_inst.rates[rid] = self.rates[rid].copy() return new_inst ################################################################################ ############################### General Loading ################################ ################################################################################ def merge(self,tbl): ''' Prepare a given table to be merged according to position, R and zAU. ARGUMENTS: tbl - A pandas table containing the two columns 'R' and either 'shell' or 'zAU'. RETURNS: merged - A tbl with the same number of rows as phys. The returned table has values ordered according to phys['R'] and phys['shell'] ''' #Match R values to their nearest R values in phys['R']. #This is necessary for the relational merge to work. phys_R = np.array(list(set(self.phys['R']))) diffs = np.vstack([(pr-tbl['R'])**2 for pr in phys_R]) inds = np.argmin(diffs,axis=0) tbl['R'] = phys_R[inds] #Merge according to columns of phys. if 'shell' in tbl.columns: merged = self.phys.merge(tbl,'left',on=['R','shell']) elif 'zAU' in tbl.columns: #Match by nearest R and zAU. # pandas.DataFrame.merge has failed me in this reguard.. :( # So I just had to do it myself, huney, using griddata. merge_cols = [col for col in tbl.columns if not col in self.phys.columns] points = np.vstack([tbl['R'],tbl['zAU']]).T values = np.array(tbl[merge_cols]) phys_points = np.array([self.phys['R'],self.phys['zAU']]).T matched = griddata(points,values,phys_points,method='nearest') merged = self.phys.copy() for i,col in enumerate(merge_cols): merged[col] = matched[:,i] return merged def set_times(self,tbl): ''' Method that takes a table with times as column headers and changes the headers to match the nearest model timesteps. ARGUMENTS: tbl - A pandas.DataFrame object with times (in years) as columns header. RETURNS: The same table, but times have been corrected to the nearest model times. ''' ctimes = tbl.columns mtimes = self.nearest_times(ctimes,itr=True) return tbl.rename(columns=dict(zip(ctimes,mtimes))) ################################################################################ ############################# Handling Timesteps ############################### ################################################################################ def load_times(self): ''' Method that reads the 2times.inp file for the model and produces an array of the time at each model timestep. No arguments or returns; times are stored in self.times variable. ''' f = open(self.outdir+'2times.inp') f.readline() t_end = float(f.readline().split()[0].replace('D','E')) t_start = float(f.readline().split()[0].replace('D','E')) nsteps = int(f.readline().split()[0]) self.times = sigfig(np.logspace(np.log10(t_start),np.log10(t_end),nsteps), 4) def nearest_times(self,times,itr=False): ''' Function for finding nearest timesteps to a given time or list of times. ARGUMENTS: times - Time or list of times. Must be values that can be cast to floats. itr - Boolean whether or not to return a scalar if possible. Default False. If a single time is given, itr=False will return a scalar value. itr=True will return a list of length one. ''' #If None was given, do nothing. Return None. if times is None: return times #Otherwise, check if time is iterable. If it's not, make it a single-valued array. try: iter(times) times = np.array(times).astype(float) except TypeError: times = np.asarray([times]).astype(float) #Find the nearest times in self.times. nearest = self.times[ np.argmin([ (self.times - t)**2 for t in times ], axis=1) ] #Depending on the number of times given, return an array or a scalar. if len(nearest) == 1 and not itr: return nearest[0] else: return nearest def nearest_time_i(self,time): return np.argmin( (self.times - time)**2 ) ################################################################################ ######################## Read/Write Model Quantities ########################### ################################################################################ def load_physical(self): ''' Method that loads the disk physical model from 1environ files. ''' env_paths = glob.glob(self.environ+'1environ*') #Determine number of shells in model. f1 = open(env_paths[0]) for i,line in enumerate(f1): if i==2: nshells = int(line.strip()) f1.close() break dat = np.array([]) shells = np.array([np.arange(nshells)+1]).T for path in env_paths: d = np.loadtxt(path,skiprows=3) d = np.hstack([d,shells]) if len(dat) != 0: dat = np.vstack([dat,d]) else: dat = d #Get header from test file. f = open(env_paths[0]) header = f.readline() f.close() for i,k in enumerate(header.split()+['shell']): self.phys[k] = dat[:,i] def load_field(self,field,path=None): if path is None: path = self.inp_paths[field] print("Loading %s field from: %s"%(field,path)) dat = load_radfield(path) R = dat[:,0] zAU = dat[:,1] spec = dat[:,2] flux = dat[:,3] self.radfields[field] = DataFrame() spec_vals =
np.unique(spec)
numpy.unique
from __future__ import print_function import numpy as np import pandas as pd import inspect import os import time from . import Model from . import Utils as U #------------------------------ #FINDING NEAREST NEIGHBOR #------------------------------ def mindistance(x,xma,Nx): distx = 0 mindist = 1000000 * U.PC * U.AU j = None for i in range(Nx): distx = abs(x-xma[i]) if (distx<mindist): mindist=distx j=i return j #------------------------------ #OVERLAPING SUBMODELS INTO GRID #------------------------------ def overlap(GRID, submodels = [''], folder = './Subgrids/', T_min = 30., rho_min = 1.e9, all = False, radmc3d = False): func_name = inspect.stack()[0][3] if folder[-1] != '/': folder = folder + '/' t0 = time.time() num=int(np.loadtxt(os.popen("ls -1 %s*.dat| wc -l"%folder))) data=os.popen("ls -1 %s*.dat"%folder).read().split('\n',num)[:-1] if all: names = [name for name in data] # if '_S.' in name or '_MSW' in name] files = [
np.loadtxt(name)
numpy.loadtxt
# Calculates the LMC example in LVM_Coordinates.doc # import numpy as np import LVMutils as LVMu # Contains utility routines np.set_printoptions(precision=3,suppress=True) # Minimize on-screen digits #---------------- MAIN ROUTINE STARTS HERE ------------------------- r2d = 180.0 / np.pi # Converts radians to degrees r360 = 2 * np.pi # 360 deg in radians (2pi) r180 = np.pi # 180 deg in radians r90 = np.pi / 2 # 90 deg in radians latD = LVMu.latD # Latitude of Las Campanas in degrees raD = (5.0 + 23.0/60 + 34.5/3600) / 24.0 * 360.0 # RA of LMC (05h 23m 34.5s) in degrees decD = -1.0*(69.0 + 45.0/60 + 22.0/3600) # dec of LMC (-69 45 22) in degrees haD = -1.0 / 24 * 360 # HA of LMC in degrees one hour before transit print ("lat = ",latD) print ("RA = ",raD) print ("Dec = ",decD) print ("HA = ",haD) print ("") #---- Calculate Azimuth and Elevation (Section 4.1 of doc) azD,elD = LVMu.RAdec2AzEl(raD,decD,raD+haD) # Calculate Az and El (degrees) of target 1 hr before transit print ("Az = ",azD) print ("El = ",elD) print ("") #---- Calculate the SEl and SAz siderostat angles (Section 4.3 of doc) sazD,selD = LVMu.AzEl2SazSel(azD,elD) # Calculate siderostat angles print ("SAz = ",sazD) print ("SEl = ",selD) print ("") #---- Generate the base mirror matrices for the SAz and SEl mirrors - See Doc nx,ny,nz = -1.0/np.sqrt(2.0) , +1.0/np.sqrt(2.0) , 0.0 # Normal unit vector to SAz mirror mSAz = LVMu.MirMat(nx,ny,nz) # Calculate mirror matrix nx,ny,nz = 1.0/np.sqrt(2.0) , 0.0 , 1.0/
np.sqrt(2.0)
numpy.sqrt
####################################################################### # Copyright (C) # # 2016-2018 <NAME>(<EMAIL>) # # 2016 <NAME>(<EMAIL>) # # 2017 <NAME>(<EMAIL>) # # Permission given to modify the code as long as you keep this # # declaration at the top # ####################################################################### import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm # actions: hit or stand ACTION_HIT = 0 # 拿牌 ACTION_STAND = 1 # "strike" in the book, 不拿牌 ACTIONS = [ACTION_HIT, ACTION_STAND] # policy for player POLICY_PLAYER = np.zeros(22, dtype=np.int) for i in range(12, 20): POLICY_PLAYER[i] = ACTION_HIT POLICY_PLAYER[20] = ACTION_STAND POLICY_PLAYER[21] = ACTION_STAND # function form of target policy of player def target_policy_player(usable_ace_player, player_sum, dealer_card): return POLICY_PLAYER[player_sum] # function form of behavior policy of player def behavior_policy_player(usable_ace_player, player_sum, dealer_card): if np.random.binomial(1, 0.5) == 1: return ACTION_STAND return ACTION_HIT # policy for dealer POLICY_DEALER = np.zeros(22) for i in range(12, 17): POLICY_DEALER[i] = ACTION_HIT for i in range(17, 22): POLICY_DEALER[i] = ACTION_STAND # get a new card def get_card_1_to_10(): """ 这个改为获取点数更合适 获取 1~10的裸点数,不考虑A为11的情况 :return: """ card = np.random.randint(1, 14) card = min(card, 10) return card # get the value of a card (11 for ace). def transform_ace_to_11(card_id): return 11 if card_id == 1 else card_id # play a game # @policy_player: specify policy for player # @initial_state: [whether player has a usable Ace, sum of player's cards, one card of dealer] # @initial_action: the initial action def play(policy_player, initial_state=None, initial_action=None): # player status # sum of player player_sum = 0 # trajectory of player player_trajectory = [] # whether player uses Ace as 11 usable_ace_player = False # dealer status dealer_card1 = 0 dealer_card2 = 0 usable_ace_dealer = False if initial_state is None: # generate a random initial state while player_sum < 12: # if sum of player is less than 12, always hit card = get_card_1_to_10() # 获取 1~10的裸点数,不考虑A为11的情况 player_sum += transform_ace_to_11(card) # If the player's sum is larger than 21, he may hold one or two aces. if player_sum > 21: assert player_sum == 22 # last card must be ace player_sum -= 10 # 将其中一个A转为1 else: usable_ace_player |= (1 == card) # initialize cards of dealer, suppose dealer will show the first card he gets dealer_card1 = get_card_1_to_10() dealer_card2 = get_card_1_to_10() else: # use specified initial state usable_ace_player, player_sum, dealer_card1 = initial_state dealer_card2 = get_card_1_to_10() # initial state of the game state = [usable_ace_player, player_sum, dealer_card1] # initialize dealer's sum (并且如果有A就转换为11点) dealer_sum = transform_ace_to_11(dealer_card1) + transform_ace_to_11(dealer_card2) usable_ace_dealer = 1 in (dealer_card1, dealer_card2) # if the dealer's sum is larger than 21, he must hold two aces. if dealer_sum > 21: assert dealer_sum == 22 # use one Ace as 1 rather than 11 dealer_sum -= 10 # 将其中一个A转为1 assert dealer_sum <= 21 assert player_sum <= 21 # game starts! # player's turn while True: if initial_action is not None: action = initial_action initial_action = None else: # get action based on current sum action = policy_player(usable_ace_player, player_sum, dealer_card1) # track player's trajectory for importance sampling player_trajectory.append([(usable_ace_player, player_sum, dealer_card1), action]) # 停止要牌 if action == ACTION_STAND: break # 要牌 # if hit, get new card card = get_card_1_to_10() # 记录A的个数 # Keep track of the ace count. the usable_ace_player flag is insufficient alone as it cannot # distinguish between having one ace or two. ace_count = int(usable_ace_player) if card == 1: ace_count += 1 # 求和 player_sum += transform_ace_to_11(card) # 如果超过21点,则把手中的A降为1点 while player_sum > 21 and ace_count: player_sum -= 10 ace_count -= 1 # 超过21点,且没有A,爆点 if player_sum > 21: return state, -1, player_trajectory # 小于21点则继续 assert player_sum <= 21 usable_ace_player = (ace_count == 1) # dealer's turn while True: # get action based on current sum action = POLICY_DEALER[dealer_sum] # 停止要牌 if action == ACTION_STAND: break # 要牌 # if hit, get a new card new_card = get_card_1_to_10() # 记录A的个数 ace_count = int(usable_ace_dealer) if new_card == 1: ace_count += 1 # 求和 dealer_sum += transform_ace_to_11(new_card) # 如果超过21点,则把手中的A降为1点 # If the dealer has a usable ace, use it as 1 to avoid busting and continue. while dealer_sum > 21 and ace_count: dealer_sum -= 10 ace_count -= 1 # 超过21点,且没有A,爆点 # dealer busts if dealer_sum > 21: return state, 1, player_trajectory # 小于21点则继续 usable_ace_dealer = (ace_count == 1) # compare the sum between player and dealer assert player_sum <= 21 and dealer_sum <= 21 if player_sum > dealer_sum: return state, 1, player_trajectory elif player_sum == dealer_sum: return state, 0, player_trajectory else: return state, -1, player_trajectory # Monte Carlo Sample with On-Policy def monte_carlo_on_policy(episodes): # state value 表格1(针对usable_ace) states_usable_ace = np.zeros((10, 10)) # initialze counts to 1 to avoid 0 being divided states_usable_ace_count = np.ones((10, 10)) # state value 表格2(针对no usable_ace) states_no_usable_ace = np.zeros((10, 10)) # initialze counts to 1 to avoid 0 being divided states_no_usable_ace_count = np.ones((10, 10)) for i in tqdm(range(0, episodes)): # 1 个 episode _, reward, player_trajectory = play(target_policy_player) # episode结束后累积reward (以便后面求平均) for (usable_ace, player_sum, dealer_card), _ in player_trajectory: player_sum -= 12 dealer_card -= 1 if usable_ace: states_usable_ace_count[player_sum, dealer_card] += 1 states_usable_ace[player_sum, dealer_card] += reward else: states_no_usable_ace_count[player_sum, dealer_card] += 1 states_no_usable_ace[player_sum, dealer_card] += reward # 估计state value return states_usable_ace / states_usable_ace_count, states_no_usable_ace / states_no_usable_ace_count # Monte Carlo with Exploring Starts def monte_carlo_es(episodes): # (playerSum, dealerCard, usableAce, action) state_action_values =
np.zeros((10, 10, 2, 2))
numpy.zeros
import pytest import sympy import numpy as np import scipy.linalg as la from .. import kwant_rmt from ..hamiltonian_generator import continuum_hamiltonian, check_symmetry, \ bloch_family, make_basis_pretty, constrain_family, continuum_variables, \ continuum_pairing, remove_duplicates, subtract_family, display_family from ..groups import PointGroupElement, Model, time_reversal, chiral, rotation from ..model import _commutative_momenta, Model, BlochModel from ..linalg import nullspace, family_to_vectors def test_check_symmetry(): """Test discrete symmetries for the Hamiltonian generator without momentum dependence, and that antiunitary and anticommuting symmetries are correctly treated in check_symmetry. """ # No momentum dependence dim = 0 total_power = 0 n = 8 R = np.eye(dim, dtype=int) for sym in kwant_rmt.sym_list: symmetries = [] if kwant_rmt.p(sym): p_mat = np.array(kwant_rmt.h_p_matrix[sym]) p_mat = np.kron(np.identity(n // len(p_mat)), p_mat) symmetries.append(PointGroupElement(R, True, True, p_mat)) if kwant_rmt.t(sym): t_mat = np.array(kwant_rmt.h_t_matrix[sym]) t_mat = np.kron(np.identity(n // len(t_mat)), t_mat) symmetries.append(PointGroupElement(R, True, False, t_mat)) if kwant_rmt.c(sym): c_mat = np.kron(np.identity(n // 2), np.diag([1, -1])) symmetries.append(PointGroupElement(R, False, True, c_mat)) if len(symmetries): Hamiltonian_family = continuum_hamiltonian(symmetries, dim, total_power) # Check that the symmetries hold. check_symmetry(Hamiltonian_family, symmetries) # Also manually check that the family has the symmetries, to test # the function check_symmetry. # Check several random linear combinations of all family members. for _ in range(5): ham = sum([np.random.rand()*matrix for member in Hamiltonian_family for matrix in member.values()]) # Iterate over all symmetries for symmetry in symmetries: Left = ham.dot(symmetry.U) if symmetry.conjugate: # Symmetry is antiunitary Right = symmetry.U.dot(ham.conj()) else: # Symmetry is unitary Right = symmetry.U.dot(ham) if symmetry.antisymmetry: # Symmetry anticommutes assert np.allclose(Left + Right, 0) else: # Symmetry commutes assert np.allclose(Left - Right, 0) def test_bloch_generator(): """Square lattice with time reversal and rotation symmetry, such that all hoppings are real. """ # Time reversal trU = np.eye(2) trR = sympy.Matrix([[1, 0], [0, 1]]) trS = PointGroupElement(trR, True, False, trU) # 2-fold rotation rotU =
np.eye(2)
numpy.eye
""" Functions for converting text documents into vector space and dealing with dirty data. Features: - no external dependencies - feature selection methods: - CHI - WCP (Within Class Probability) - CMFS (Comprehensively Measure Feature Selection) - improved GINI - CO matrix calcualtion - DF calculation - IDF calculation """ from multiprocessing import Pool from collections import Counter from itertools import groupby,chain from math import log,ceil import re from batch import partitions as _partitions # TODO resampling # TODO przeniesienie feature selection do osobnego pliku # TODO __init__.py # TODO przyjecie nomenklatury t-term,c-category, tk, ci # TODO reorder functions top-down vs bottom-up vs subject # TODO smart lowercase (prosty NER w oparciu o DF[t] vs DF[t.lower]) # TODO sklearn model.fit/transform interface OR SIMILAR via functools.partial # TODO liczenie lift dla co # TODO wybieranie ngramow na podstawie liftu # ---[ document frequency ]----------------------------------------------------- def get_df_part(kwargs): min_df_part = kwargs['min_df_part'] max_df_part = kwargs['max_df_part'] min_tf_doc = kwargs['min_tf_doc'] df = Counter() for tokens in iter_tokens_part(kwargs): if min_tf_doc: unique_tokens = [t for t,f in Counter(tokens).items() if f>=min_tf_doc] else: unique_tokens = set(tokens) df.update(unique_tokens) # limit within partition if min_df_part: below = [t for t in df if df[t]<min_df_part] for t in below: del df[t] if max_df_part < 1.0: x = max_df_part * len(X) above = [t for t in df if df[t]>x] for t in above: del df[t] return df # TODO option to include whole words shorter than char ngram_range 'lo' value # TODO option to mark word begin/end in char ngrams # TODO max_df float # TODO max_df int # TODO max_df_part float # TODO min_df float # TODO reorder ARGS def get_df(X, workers=4, as_dict=True, partitions=None, token_pattern='[\w][\w-]*', split_pattern='', encoding=None, lowercase=True, min_df=0, min_df_part=0, max_df=1.0, max_df_part=1.0, analyzer='word', tokenizer=None, preprocessor=None, decode_error='strict', stop_words=None, mp_pool=None, min_tf_doc=0, ngram_range=None, postprocessor=None, ngram_words=None): """Calculate document frequency from a collection of text documents. Parameters ---------- X : iterable Collection of text documents. workers : int, default=4 partitions : int or None (default) Number of partitons. By default it will be equal to number of workers token_pattern : string, default='[\w][\w-]*' Regular expression denoting what constitute a "token". Will not be used when tokenizer or split_pattern is defined. split_pattern : string, default='' Regular expression denoting what separetes "tokens". Will not be used when tokenizer is defined. ngram_range : tuple (lo, hi) The lower and upper "n" for n-grams to be extracted ngram_words: iterable or None (default) Limit n-gram generation to cases where at least one word occurs in the provided list. encoding: string or None (default) lowercase: boolean, default=True analyzer: str {'word','char'} Whether the features should be made of word or character n-grams. Option 'char' creates character n-grams only from text inside word boundaries. tokenizer: callable or None (default) Function which transforms text into list of tokens (before postprocessing and n-gram generation). preprocessor: callable, list of callable or None (default) Function or list of functions which transforms text before tokenization. postprocessor: callable, list of callable or None (default) Function(s) or list of functions which transforms list of tokens (before n-gram generation) min_df: int, default=0 min_df_part: int, default=0 min_tf_doc: int, default=0 max_df: float, default=1.0 max_df_part: float, default=1.0 decode_error: str, default='strict' stop_words: iterable or None (default) mp_pool: multiprocessing.Pool or None (default) Multiprocessing pool object that will be used to parallelize execution. If none is provided a new one will be created. as_dict: boolean, default=True Whether the result should be converted into dict or left as collections.Counter (which doesn't support marshaling) """ data = [] kwargs = dict( token_pattern = token_pattern ,split_pattern = split_pattern ,encoding = encoding ,lowercase = lowercase ,min_df_part = min_df_part ,max_df_part = max_df_part ,analyzer = analyzer ,ngram_range = ngram_range ,tokenizer = tokenizer ,preprocessor = preprocessor ,decode_error = decode_error ,stop_words = stop_words ,min_tf_doc = min_tf_doc ,postprocessor = postprocessor ,ngram_words = ngram_words ) part_cnt = partitions or workers if mp_pool and not partitions: part_cnt = max(part_cnt,len(mp_pool._pool)) for lo,hi in _partitions(len(X),part_cnt): kw = dict(X=X[lo:hi], **kwargs) data.append(kw) pool = mp_pool or Pool(workers) df_partitions = pool.map(get_df_part, data) df=df_partitions[0] for df_ in df_partitions[1:]: df.update(df_) if min_df: below = [t for t in df if df[t]<min_df] for t in below: del df[t] if max_df < 1.0: max_df_cnt = max_df * len(X) above = [t for t in df if df[t]>max_df_cnt] for t in above: del df[t] if as_dict: df = dict(df) return df ### 24s get_dfy vs 11s get_df vs 25s get_dfy2(specialized) def get_dfy(X,Y,workers=4,sort=True,mp_pool=None,**kwargs): """Calcualte per topic document frequency. """ dfy = {} if sort: data = sorted(zip(Y,X)) else: data = zip(Y,X) pool = mp_pool or Pool(workers) for y,g in groupby(data,lambda x:x[0]): x = [v[1] for v in g] dfy[y] = get_df(x,mp_pool=pool,**kwargs) return dfy def get_df_from_dfy(dfy,as_dict=True): """Convert per topic document frequency into total document frequency. """ df = Counter() for y in dfy: df.update(dfy[y]) if as_dict: df = dict(df) return df # ---[ clean ]------------------------------------------------------------------ def limit_df(df,min_tokens=2,token_pattern='[\w][\w-]*', split_pattern='', tokenizer=None): """function for limiting noise df to sentences with minimum number of tokens""" if token_pattern: re_tok = re.compile(token_pattern,re.U) if split_pattern: re_split = re.compile(split_pattern,re.U) new_df = {} for t in df: if tokenizer: tokens = tokenizer(t) elif split_pattern: tokens = re_split.split(t) elif token_pattern: tokens = re_tok.findall(t) if len(tokens)<min_tokens: continue new_df[t] = df[t] return new_df # TODO replace based on matched split_pattern def get_clean_x_part(kwargs): replace = kwargs['replace'] out = [] for tokens in iter_tokens_part(kwargs): out.append(replace.join(tokens)) return out # TODO refactor with get_df def get_clean_x(X, workers=4, partitions=None, token_pattern='[\w][\w-]*', split_pattern='', encoding=None, lowercase=True, tokenizer=None, preprocessor=None, decode_error='strict', stop_words=None, mp_pool=None, postprocessor=None, replace=u' ; ', stop_hashes=None, hash_fun=None): """Replace noise tokens (words/phrases). Parameters ---------- X : iterable Collection of text documents. stop_words : iterable or None (default) Collection of tokens that should be replaced stop_hashes : iterable or None (default) Collection of hashes of tokens that should be replaced replace : str, default=u' ; ' Replacement text for noise tokens workers : int, default=4 token_pattern : string, default='[\w][\w-]*' Regular expression denoting what constitute a "token". Will not be used when tokenizer or split_pattern is defined. ... TODO rest of params """ data = [] part_cnt = partitions or workers if mp_pool and not partitions: part_cnt = max(part_cnt,len(mp_pool._pool)) for lo,hi in _partitions(len(X),part_cnt): kwargs = dict( X = X[lo:hi] ,token_pattern = token_pattern ,split_pattern = split_pattern ,encoding = encoding ,lowercase = lowercase ,tokenizer = tokenizer ,preprocessor = preprocessor ,decode_error = decode_error ,stop_words = stop_words ,postprocessor = postprocessor ,replace = replace ,stop_hashes = stop_hashes ,hash_fun = hash_fun ) data.append(kwargs) pool = mp_pool or Pool(workers) x_partitions = pool.map(get_clean_x_part, data) x=x_partitions[0] for x_ in x_partitions[1:]: x.extend(x_) return x # ---[ feature selection ]------------------------------------------------------ def get_idf(df, n, a1=1, a2=1, a3=1, min_df=0): """Calculate inverse document frequency. """ idf = Counter() for t in df: if min_df and df[t]<min_df: continue idf[t] = log( (a1+n) / (a2+df[t]) ) + a3 return idf # TODO mcd def get_chiy(df,n,dfy,ny,alpha=0): chiy = {} for y in dfy: chiy[y] = get_chi(df,n,dfy[y],ny[y],alpha) return chiy # TODO rename dfy,ny def get_chi(df,n,dfy,ny,alpha=0): """Calculate chi scores for features from one topic """ chi = {} for t,val in iter_chi(df,n,dfy,ny,alpha): chi[t] = val return chi # TODO rename dfy,ny def get_chi_explain(df,n,dfy,ny,alpha=0): chi_explain = iter_chi(df,n,dfy,ny,alpha,explain=True) return dict(chi_explain) # TODO rename dfy,ny -> dfc (class), dft (topic) # TODO rename chi variables def iter_chi(df,n,dfy,ny,alpha=0,explain=False): all = df topic = dfy for t in df: # observed o_c1_t1 = topic.get(t,0) o_c1_t0 = ny - topic.get(t,0) o_c0_t1 = all[t] - topic.get(t,0) o_c0_t0 = n - o_c1_t1 - o_c1_t0 - o_c0_t1 # expected e_c1_t1 = 1.0 * ny * all[t]/n e_c1_t0 = 1.0 * ny * (n-all[t])/n e_c0_t1 = 1.0 * (n-ny)/n * all[t] e_c0_t0 = 1.0 * (n-ny)/n * (n-all[t]) # chi components c1_t1 = (o_c1_t1 - e_c1_t1)**2 / (e_c1_t1 + alpha) c1_t0 = (o_c1_t0 - e_c1_t0)**2 / (e_c1_t0 + alpha) c0_t1 = (o_c0_t1 - e_c0_t1)**2 / (e_c0_t1 + alpha) c0_t0 = (o_c0_t0 - e_c0_t0)**2 / (e_c0_t0 + alpha) # chi chi = c0_t0 + c1_t0 + c0_t1 + c1_t1 # result if explain: ex = dict() ex['o_c1_t1'] = o_c1_t1 ex['o_c1_t0'] = o_c1_t0 ex['o_c0_t1'] = o_c0_t1 ex['o_c0_t0'] = o_c0_t0 ex['e_c1_t1'] = e_c1_t1 ex['e_c1_t0'] = e_c1_t0 ex['e_c0_t1'] = e_c0_t1 ex['e_c0_t0'] = e_c0_t0 ex['c1_t1'] = c1_t1 ex['c1_t0'] = c1_t0 ex['c0_t1'] = c0_t1 ex['c0_t0'] = c0_t0 ex['chi'] = chi ex = {k:int(v) for k,v in ex.items()} yield t,ex else: yield t,chi # TODO gini(wcp) ??? def iter_wcpy(df,dfy,explain=False): topics = dfy.keys() V = len(df) for t in df: wcpy = {} py = {} for y in topics: nom = 1 + dfy[y].get(t,0) denom = V + df[t] py[y] = 1.0 * nom / denom sum_py = sum(py.values()) for y in topics: wcpy[y] = py[y] / sum_py if explain: ex = dict() # TODO yield t,ex else: yield t,wcpy def iter_giniy(df,dfy,ny,explain=False): topics = dfy.keys() for t in df: giniy = {} for y in topics: p_t_when_y = 1.0 * dfy[y].get(t,0) / ny[y] p_y_when_t = 1.0 * dfy[y].get(t,0) / df[t] giniy[y] = p_t_when_y**2 + p_y_when_t**2 if explain: ex = dict() # TODO yield t,ex else: yield t,giniy def iter_cmfsy(df,dfy,explain=False): topics = dfy.keys() C = len(topics) V = len(df) sum_dfy = {y:sum(dfy[y].values()) for y in topics} for t in df: cmfsy = {} for y in topics: nom = dfy[y].get(t,0) + 1 denom1 = df[t] + C denom2 = sum_dfy[y] + V cmfsy[y] = 1.0 * nom / (denom1 * denom2) if explain: ex = dict() # TODO yield t,ex else: yield t,cmfsy def get_giniy(df, dfy, ny): """Calculate improved GINI for all topics """ items = iter_giniy(df,dfy,ny) topics = dfy.keys() return transform_items_topics(items, topics) def get_cmfsy(df, dfy): """ http://www.dafl.yuntech.edu.tw/download/2012.IPM.48.A%20new%20feature%20selection%20based%20on%20comprehensive%20measurement%20both%20in%20inter-category%20and%20intra-category%20for%20text%20categorization.pdf """ items = iter_cmfsy(df,dfy) topics = dfy.keys() return transform_items_topics(items, topics) def get_wcpy(df, dfy): """Calculate WCP for all topics """ items = iter_wcpy(df, dfy) topics = dfy.keys() return transform_items_topics(items, topics) # TODO opisac def get_mcdy(fsy): "minimal class difference of feature score" topics = fsy.keys() mcdy = {y:{} for y in topics} vocab = set() for y in topics: vocab.update(fsy[y]) for t in vocab: for y in topics: val = min([abs(fsy[y].get(t,0)-fsy[y2].get(t,0)) for y2 in topics if y!=y2]) if val: mcdy[y][t] = val return mcdy # ---[ vectorization ]---------------------------------------------------------- # TODO token_id iter not token_cnt # TODO refactor using iter_tokens_part def vectorize_part(kwargs): vocabulary = kwargs['vocabulary'] binary = kwargs['binary'] sparse = kwargs['sparse'] stream = kwargs['stream'] upper_limit = kwargs['upper_limit'] dtype = kwargs['dtype'] if dtype: import numpy as np typecode = kwargs['typecode'] if typecode: from array import array if vocabulary==None: pass elif callable(vocabulary): pass elif hasattr(vocabulary,'items'): vocab_dict = vocabulary vocab_len = max(vocab_dict.values()) + 1 else: vocab_dict = {t:t_id for t_id,t in enumerate(vocabulary)} vocab_len = len(vocabulary) out = [] for tokens in iter_tokens_part(kwargs): # TODO filter tokens - keep only vocabulary -> here or after ngrams ??? # output if stream: v = [] if vocabulary==None: v.extend(tokens) elif callable(vocabulary): for t in tokens: v.append(vocabulary(t)) else: empty = True # detection and removal of empty tokens combos for t in tokens: if t not in vocab_dict: continue # XXX if not empty: v.append(0) # XXX empty = True #continue # TODO optional -1 token else: t_id = vocab_dict[t] v.append(t_id) empty = False if dtype: v = np.array(v,dtype=dtype) if typecode: v = array(typecode,v) elif sparse: if binary: v = [vocab_dict[t] for t in set(tokens) if t in vocab_dict] if dtype: v = np.array(v,dtype=dtype) if typecode: v = array(typecode,v) else: tf = {} for t in tokens: if t not in vocab_dict: continue t_id = vocab_dict[t] if t_id not in tf: tf[t_id]=1 else: tf[t_id]+=1 if upper_limit: for t in tf: tf[t] = min(upper_limit,tf[t]) v = tf if dtype: v = np.array(tf.items(),dtype=dtype) if typecode: pass # TODO else: v = [0]*vocab_len if binary: for t in tokens: if t not in vocab_dict: continue t_id = vocab_dict[t] v[t_id] = 1 else: for t in tokens: if t not in vocab_dict: continue t_id = vocab_dict[t] v[t_id] += 1 if dtype: v =
np.array(v, dtype=dtype)
numpy.array
#!/usr/bin/env python # coding: utf-8 # In[ ]: from emojinator_files.utils import detector_utils as detector_utils import cv2 from keras.models import load_model import numpy as np import os from collections import deque from flask import Flask,render_template,Response, redirect, url_for import time app=Flask(__name__) def setValues(x): print("") def generate_frames(colorIndex,colors,kernel,bpoints,gpoints,rpoints,ypoints,bkpoints, blue_index,green_index,red_index,yellow_index, black_index): cap = cv2.VideoCapture(0) canvas = None while True: ret, frame = cap.read() frame = cv2.flip(frame, 1) if canvas is None: canvas = np.zeros_like(frame) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) u_hue = cv2.getTrackbarPos("Upper Hue", "Color detectors") u_saturation = cv2.getTrackbarPos("Upper Saturation", "Color detectors") u_value = cv2.getTrackbarPos("Upper Value", "Color detectors") l_hue = cv2.getTrackbarPos("Lower Hue", "Color detectors") l_saturation = cv2.getTrackbarPos("Lower Saturation", "Color detectors") l_value = cv2.getTrackbarPos("Lower Value", "Color detectors") Upper_hsv = np.array([u_hue,u_saturation,u_value]) Lower_hsv = np.array([l_hue,l_saturation,l_value]) frame = cv2.rectangle(frame, (40,1), (140,65), (122,122,122), -1) frame = cv2.rectangle(frame, (160,1), (255,65), colors[0], -1) frame = cv2.rectangle(frame, (275,1), (370,65), colors[1], -1) frame = cv2.rectangle(frame, (390,1), (485,65), colors[2], -1) frame = cv2.rectangle(frame, (505,1), (600,65), colors[3], -1) frame = cv2.rectangle(frame, (570,422), (640,480), (122,122,122), -1) frame = cv2.rectangle(frame, (0,422), (70,480), (122,122,122), -1) cv2.putText(frame, "CLEAR ALL", (49, 33), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA) cv2.putText(frame, "BLUE", (185, 33), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA) cv2.putText(frame, "GREEN", (298, 33), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA) cv2.putText(frame, "RED", (420, 33), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA) cv2.putText(frame, "YELLOW", (520, 33), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (150,150,150), 2, cv2.LINE_AA) cv2.putText(frame, "PAUSE", (582, 455), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA) cv2.putText(frame, "ERASE", (10, 455), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA) Mask = cv2.inRange(hsv, Lower_hsv, Upper_hsv) Mask = cv2.erode(Mask, kernel, iterations=1) Mask = cv2.morphologyEx(Mask, cv2.MORPH_OPEN, kernel) Mask = cv2.dilate(Mask, kernel, iterations=1) cnts,_ = cv2.findContours(Mask.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) center = None if len(cnts) > 0: cnt = sorted(cnts, key = cv2.contourArea, reverse = True)[0] ((x, y), radius) = cv2.minEnclosingCircle(cnt) cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2) M = cv2.moments(cnt) center = (int(M['m10'] / M['m00']), int(M['m01'] / M['m00'])) if center[1] >= 422 and center[0] >= 570: break if center[1] >= 422 and center[0] <= 70: colorIndex = 4 if center[1] <= 65: if 40 <= center[0] <= 140: bpoints = [deque(maxlen=512)] gpoints = [deque(maxlen=512)] rpoints = [deque(maxlen=512)] ypoints = [deque(maxlen=512)] bkpoints = [deque(maxlen=512)] blue_index = 0 green_index = 0 red_index = 0 yellow_index = 0 canvas[67:,:,:] = 0 elif 160 <= center[0] <= 255: colorIndex = 0 elif 275 <= center[0] <= 370: colorIndex = 1 elif 390 <= center[0] <= 485: colorIndex = 2 elif 505 <= center[0] <= 600: colorIndex = 3 else : if colorIndex == 0: bpoints[blue_index].appendleft(center) elif colorIndex == 1: gpoints[green_index].appendleft(center) elif colorIndex == 2: rpoints[red_index].appendleft(center) elif colorIndex == 3: ypoints[yellow_index].appendleft(center) else: bpoints.append(deque(maxlen=512)) blue_index += 1 gpoints.append(deque(maxlen=512)) green_index += 1 rpoints.append(deque(maxlen=512)) red_index += 1 ypoints.append(deque(maxlen=512)) yellow_index += 1 points = [bpoints, gpoints, rpoints, ypoints] for i in range(len(points)): for j in range(len(points[i])): for k in range(1, len(points[i][j])): if points[i][j][k - 1] is None or points[i][j][k] is None: continue cv2.line(canvas, points[i][j][k - 1], points[i][j][k], colors[i], 2) _ , mask = cv2.threshold(cv2.cvtColor (canvas, cv2.COLOR_BGR2GRAY), 20, 255, cv2.THRESH_BINARY) foreground = cv2.bitwise_and(canvas, canvas, mask = mask) background = cv2.bitwise_and(frame, frame, mask = cv2.bitwise_not(mask)) frame = cv2.add(foreground,background) # cv2.imshow("Tracking", canvas) # cv2.imshow("Paint", paintWindow) cv2.imshow("mask",Mask) ret, buffer = cv2.imencode('.jpg', frame) frame = buffer.tobytes() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') # concat frame one by one and show result if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows() #def setValues(x): # print("") def updated_generate_frames(): load_from_disk = True if load_from_disk: penval = np.load('penval.npy') cap = cv2.VideoCapture(0) # Load these 2 images and resize them to the same size. # pen_img = cv2.resize(cv2.imread('air canvas files/pen.png',1), (50, 50)) # eraser_img = cv2.resize(cv2.imread('air canvas files/eraser.jpg',1), (50, 50)) kernel = np.ones((5,5),np.uint8) # Making window size adjustable cv2.namedWindow('image', cv2.WINDOW_NORMAL) # This is the canvas on which we will draw upon canvas = None # Create a background subtractor Object backgroundobject = cv2.createBackgroundSubtractorMOG2(detectShadows = False) # This threshold determines the amount of disruption in the background. background_threshold = 600 # A variable which tells you if you're using a pen or an eraser. switch = 'Pen' # With this variable we will monitor the time between previous switch. last_switch = time.time() # Initilize x1,y1 points x1,y1=0,0 # Threshold for noise noiseth = 800 # Threshold for wiper, the size of the contour must be bigger than this for # us to clear the canvas wiper_thresh = 40000 # A variable which tells when to clear canvas clear = False colorIndex=0 while(1): _, frame = cap.read() frame = cv2.flip( frame, 1 ) # Initilize the canvas as a black image if canvas is None: canvas = np.zeros_like(frame) colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (0, 255, 255), (0,0,0)] # Take the top left of the frame and apply the background subtractor # there # top_left = frame[422: 480, 0: 70] # fgmask = backgroundobject.apply(top_left) # # Note the number of pixels that are white, this is the level of # # disruption. # switch_thresh = np.sum(fgmask==255) # # If the disruption is greater than background threshold and there has # # been some time after the previous switch then you. can change the # # object type. # if switch_thresh>background_threshold and (time.time()-last_switch) > 1: # # Save the time of the switch. # last_switch = time.time() # if switch == 'Pen': # switch = 'Eraser' # else: # switch = 'Pen' # Convert BGR to HSV hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # If you're reading from memory then load the upper and lower ranges # from there if load_from_disk: lower_range = penval[0] upper_range = penval[1] # Otherwise define your own custom values for upper and lower range. else: lower_range =
np.array([26,80,147])
numpy.array
import numpy as np import tensorflow as tf import gzip import os import platform import pickle class DataSet(object): def __init__(self, dataSetName, is_IID, dtype=tf.float32): dype = tf.as_dtype(dtype).base_dtype if dtype not in (tf.uint8, tf.float32): raise TypeError('Invalid image dtype {}, expected uint8 or float32'.format(dtype)) self.name = dataSetName self.train_data = None self.train_label = None self.test_data = None self.test_label = None self.train_data_size = None self.test_data_size = None self._index_in_train_epoch = 0 if self.name == 'mnist': self.mnist_dataset_construct(is_IID, dtype) elif self.name == 'cifar10': self.cifar10_dataset_construct(is_IID) else: pass def mnist_dataset_construct(self, is_IID, dtype): data_dir = r'./data/MNIST' train_images_path = os.path.join(data_dir, 'train-images-idx3-ubyte.gz') train_labels_path = os.path.join(data_dir, 'train-labels-idx1-ubyte.gz') test_images_path = os.path.join(data_dir, 't10k-images-idx3-ubyte.gz') test_labels_path = os.path.join(data_dir, 't10k-labels-idx1-ubyte.gz') train_images = extract_images(train_images_path) train_labels = extract_labels(train_labels_path) test_images = extract_images(test_images_path) test_labels = extract_labels(test_labels_path) assert train_images.shape[0] == train_labels.shape[0] assert test_images.shape[0] == test_labels.shape[0] self.train_data_size = train_images.shape[0] self.test_data_size = test_images.shape[0] assert train_images.shape[3] == 1 assert test_images.shape[3] == 1 train_images = train_images.reshape(train_images.shape[0], train_images.shape[1] * train_images.shape[2]) test_images = test_images.reshape(test_images.shape[0], test_images.shape[1] * test_images.shape[2]) if dtype == tf.float32: train_images = train_images.astype(np.float32) train_images = np.multiply(train_images, 1.0 / 255.0) test_images = test_images.astype(np.float32) test_images = np.multiply(test_images, 1.0 / 255.0) if is_IID == 1: order = np.arange(self.train_data_size) np.random.shuffle(order) self.train_data = train_images[order] self.train_label = train_labels[order] else: labels = np.argmax(train_labels, axis=1) order = np.argsort(labels) self.train_data = train_images[order] self.train_label = train_labels[order] self.test_data = test_images self.test_label = test_labels def cifar10_dataset_construct(self, is_IID): images, labels = [], [] for filename in ['./data/CIFAR-10/cifar-10-batches-py/data_batch_{}'.format(i) for i in range(1, 6)]: with open(filename, 'rb') as fo: if 'Windows' in platform.platform(): cifar10 = pickle.load(fo, encoding='bytes') elif 'Linux' in platform.platform(): cifar10 = pickle.load(fo, encoding='bytes') for i in range(len(cifar10[b'labels'])): image = np.reshape(cifar10[b'data'][i], (3, 32, 32)) image = np.transpose(image, (1, 2, 0)) image = image.astype(float) images.append(image) labels += cifar10[b'labels'] images = np.array(images, dtype='float') labels = np.array(labels, dtype='int') # self.train_data, self.train_label = images, labels if is_IID == 1: order = np.arange(images.shape[0]) np.random.shuffle(order) self.train_data = images[order] self.train_label = dense_to_one_hot(labels[order]) else: order = np.argsort(labels) self.train_data = images[order] self.train_label = dense_to_one_hot(labels[order]) images, labels = [], [] with open(r'./data//CIFAR-10/cifar-10-batches-py/test_batch', 'rb') as fo: if 'Windows' in platform.platform(): cifar10 = pickle.load(fo, encoding='bytes') elif 'Linux' in platform.platform(): cifar10 = pickle.load(fo, encoding='bytes') for i in range(len(cifar10[b'labels'])): image = np.reshape(cifar10[b'data'][i], (3, 32, 32)) image = np.transpose(image, (1, 2, 0)) image = image.astype(float) images.append(image) labels += cifar10[b'labels'] images = np.array(images, dtype='float') labels = np.array(labels, dtype='int') self.test_label = dense_to_one_hot(labels) self.test_data = [] shape = (24, 24, 3) for i in range(images.shape[0]): old_image = images[i, :, :, :] old_image = np.pad(old_image, [[4, 4], [4, 4], [0, 0]], 'constant') left = int((old_image.shape[0] - shape[0]) / 2) top = int((old_image.shape[1] - shape[1]) / 2) old_image = old_image[left: left + shape[0], top: top + shape[1], :] mean = np.mean(old_image) std = np.max([
np.std(old_image)
numpy.std
# -*- coding: utf-8 -*- """aula_python_4.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/10JwswxJwA6xL3sSl9tIH0HMp3-ZLC5gH # Revisão def inicia a definição de uma função """ def parabola(x, a, b, c): y = a * x ** 2 + b * x + c return y parabola(1, 5, 2, 4) """Funções com argumentos com valor padrão:""" def parabola_2(x, a=5, b=2, c=4): y = a * x ** 2 + b * x + c return y parabola_2(1, 6, 7, 8) """Funções anônimas podem ser criadas com a palavra-chave lambda. As funções lambdas são restritas a uma única (em geral pequena) expressão. """ f2 = lambda x: x ** 2 f2(5) f_soma = lambda a, b: a + b f_soma(5, 9) """# Estrutura de dados Veja a seguir mais métodos de objetos do tipo lista: """ l = [5, 18, 43, 77, 91, 18, 77] """Adicionar um elemento ao final da lista""" l.append(100) print(l) """Inserir um elemento em uma dada posição. Nesse caso insere o elemento 9 na posição de índice 1. """ l.insert(1, 9) print(l) """Remover o primeiro elemento da lista que tem valor igual ao argumento (nesse caso remove o elemento 18)""" l.remove(18) print(l) """Contar o número de vezes que um elemento aparece na lista""" l.count(77) print(l) """Remover o elemento em uma dada posição. Esse método remove o elemento e o retorna. Nesse caso remove o elemento de índice 1. """ l.pop(1) print(l) """Devolver o índice do primeiro elemento cujo valor é igual ao argumento (nesse caso 91) """ l.index(91) l.index(77) l.index(53) """Ordenar os elementos da lista""" print("lista:", l) l.sort() print("lista ordenada:", l) """Ordenar em ordem reversa""" l = [5, 43, 77, 91, 18, 77, 100] # definindo novamente a lista l l.sort(reverse=True) print(l) """Inverter a ordem dos elementos""" l = [5, 43, 77, 91, 18, 77, 100] # definindo novamente a lista l l.reverse() print(l) """Copiar os elementos da lista""" l_c = l.copy() print(l_c) """Para iterar sobre uma lista, a posição e o valor podem ser obtidos simultaneamente com a função enumerate()""" for i, v in enumerate(l_c): print(i, v) """Para percorrer duas ou mais listas ao mesmo tempo, as entradas podem ser pareadas com a função zip()""" l1 = [2.5, 3.9, 8.7] # definindo lista l1 l2 = [8.7, 23.4, 12.5] # definindo lista l2 for a, b in zip(l1, l2): print(a, b) """Uma lista pode ser percorrida na ordem inversa com a função reversed()""" for z in reversed(range(10)): print(z) """**Compreensões de listas** Compreensões de listas são uma maneira concisa de criar uma lista. Uma aplicação comum é criar uma nova lista onde cada elemento é resultante da avaliação de uma expressão no contexto das cláusulas for e if. Por exemplo, podemos criar uma lista com os quadrados desta forma: """ quadrados = [] # cria uma lista vazia e armazena na variável quadrados for x in range(10): quadrados.append(x ** 2) print(quadrados) """Alternativamente, podemos fazer:""" quadrados2 = [x ** 2 for x in range(10)] print(quadrados2) quadrados3 = list(map(lambda x: x ** 2, range(10))) print(quadrados3) """**Tuplas** Uma tupla consiste em uma sequência de valores separados por vírgulas. Na sua criação os valores de uma tupla podem ser envolvidos ou não por parênteses. Na saída do console tuplas são sempre envolvidas por parênteses. Apesar de serem similares às listas, as tuplas são frequentemente utilizadas em situações e com propósitos distintos. O principal motivo é que tuplas são imutáveis, enquanto listas são mutáveis. """ t = 5, 87, 'bla' print(t) """Tuplas podem ser indexadas """ print(t[2]) """É possível criar uma tupla contendo outras tuplas """ u = t, (56, 89, 346) print(u[0][0]) """Tuplas são **imutáveis**!""" t[0] = 65 v = (27.6, 45.9) # 'empacotamento' de dois valores em uma tupla vx, vy = v # processo inverso de 'desempacotamento' também é possível print(vx) """ **Dicionários** Uma estrutura de dados muito útil é o dicionário. Eles são indexados por palavras-chaves (keys), que podem ser de qualquer tipo imutável. Os dicionários são delimitados por {} e contém uma lista de pares chave:valor separados por vírgulas. O dicionário vazio é {}. Os dicionários são utilizados para armazenar e recuperar valores a partir das palavras-chaves. É possivel substituir uma valor de uma chave por um novo valor. """ ramais = {'Cristina': 6473, 'Ana': 6486, 'Marina': 7256, 'Allan': 7257, 'Gustavo': 7257} print(ramais['Marina']) """Remover um par chave:valor""" del (ramais['Allan']) print(ramais) """Incluir novo par chave:valor""" ramais['Charles'] = 6486 print(ramais) """Alterar o valor de uma chave""" ramais['Cristina'] = 6478 print(ramais) """Listar todas as chaves presentes no dicionário """ list(ramais) """Verificar se uma palavra-chave está ou não no dicionário""" 'Cristina' in ramais 'Sandra' in ramais """O construtor dict cria um dicionário a partir de sequências de pares chave,valor""" dict([('Cristina', 6473), ('Ana', 6486), ('Marina', 7256)]) dict(Allan=7257, Charles=6486) """As compreensões de dicionário também podem ser usadas para criar dicionários a partir de expressões""" dici = {x: x ** 2 for x in range(10)} print(dici) """Ao iterar sobre dicionários, a chave e o valor podem ser obtidos simultaneamente usando o método items()""" for nome, fone in ramais.items(): print(nome, fone) """# Módulos Uma boa prática ao escrever códigos maiores é dividí-lo em arquivos menores, o que pode facilitar a manutenção. Um módulo é um arquivo contendo definições e instruções Python. O nome do arquivo é o nome do módulo acrescido do sufixo .py. Um módulo também pode ser muito útil para escrever funções que são usadas em vários programas diferentes. É preferível usar um arquivo separado para uma função do que copiá-la para dentro de vários programas. Por exemplo, usando um editor de texto, foi criado um arquivo chamado fibonacci.py, contendo as funções fib e fib_lista, apresentadas na última aula. Ao importar um módulo, as funções definidas no arquivo são colocadas diretamente na tabelas de símbolos atual e poderão ser chamadas e executadas. """ import fibonacci fibonacci.fib(20) fibonacci.fib_lista(50) """Módulos podem importar outros módulos. É costume colocar todos os comandos de import no início do módulo ou de um programa. Outras maneiras de importar as definições de um módulo são: """ from fibonacci import fib, fib_lista from fibonacci import * # Importa todos os nomes definidos em um módulo # Nem sempre aconselhado, pois introduz um conjunto desconhecido de nomes no ambiente, # podendo levar a conflitos com outros nomes previamente definidos import fibonacci as fibo fibo.fib(10) from fibonacci import fib_lista as f_l f_l(30) """O Python guarda versões compiladas de cada módulo no diretório \__ pycache__ com o nome modulo.versão.pyc para acelerar o carregamento de módulos. # Pacotes Os pacotes são uma maneira de estruturar o “espaço de nomes” (namespace) dos módulos Python. Eles são uma coleção de módulos. Nos referimos a um módulo dentro de um pacote como nomedopacote.nomedomodulo. Os arquivos \__ init__.py são necessários para que o Python trate diretórios contendo o arquivo como pacotes. \__ init__.py pode ser apenas um arquivo vazio. O pacote **math** contém todas as funções matemáticas padrão (sqrt,log, log10, exp, funções trigonométricas). """ from math import log x = log(3) print(x) from math import pi print(pi) from math import exp from math import sin, cos from math import * # Algoritmo para converter a posição de um ponto dada em coordenadas polares (r,theta) para coordenadas # Cartesianas (x,y) from math import sin, cos, pi r = float(input('Entre o valor de r: ')) d = float(input('Entre o valor de theta em graus: ')) theta = d * pi / 180. # conversão de graus para radianos x = r * cos(theta) y = r * sin(theta) print('x=', x, 'y=', y) """O pacote **numpy** é fundamental para computação científica com Python. Ele oferece funções matemáticas, geradores de números aleatórios, rotinas de álgebra linear, transformada de Fourier e muito mais. Mas o seu poder está em permitir cálculos em arrays multidimensionais. O numpy executa facilmente cálculos numéricos que são muito utilizados em problemas de machine learning (aprendizado de máquina) e de processamento de imagem (imagens no computador são representadas como arrays multidimensionais de números). Além disso, o numpy oferece várias outras tarefas matemáticas. Para mais informações, consulte https://numpy.org/. # Arrays Um array é um conjunto ordenado de valores. Mas há diferenças importantes entre listas e arrays: * O número de elementos de um array é fixo e não é possível adicionar ou remover elementos de um array após criá-lo; * Os elementos de um array devem ser todos de um mesmo tipo, como float ou inteiros. As principais vantagens de usar arrays em vez de listas são: * Arrays podem ter qualquer número de dimensões. Arrays unidimensionais e bidimensionais são, respectivamente, como vetores e matrizes em álgebra linear. Listas são sempre unidimensionais. * Como se comportam como vetores ou matrizes, podemos fazer qualquer aritmética com eles, ao contrário de listas. * Arrays funcionam mais rápido que listas em Python. Cada dimensão de um array é chamada axis. O número de axes é chamada de rank do array. A indexação dos arrays também começa em 0, com um número para cada axis do array. """ from numpy import array a = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a) # Minha recomendação import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a) type(a) # checar que o tipo é um numpy array a.dtype # fornece o tipo dos elementos do array a.shape # dimensões do array a.ndim # número de dimensões a.size # número de elementos """Indexação de um array: o índice da linha vem primeiro e depois o da coluna""" print(a) print(a[2, 1]) a[1, 0:2] """Iterando sobre um array """ b = np.array([0, 2, 5, 8], dtype=int) print(b) for z in b: print(z) for i in range(len(b)): print(b[i]) """Outras formas de criar arrays """ a0 = np.zeros(5) print(a0) a0_2 = np.zeros([3, 4]) print(a0_2) a1 = np.ones(7) print(a1) a1_2 = np.ones([2, 3]) print(a1_2) a1_3 =
np.ones([2, 3, 4])
numpy.ones
import os import sys baseName = os.path.basename(__file__) dirName = os.path.dirname(__file__) print("basename: ", baseName) print("dirname: ", dirName) sys.path.append(dirName + r"/../..") import pandas as pd import numpy as np from RFEM.initModel import * from RFEM.BasicObjects.node import Node from RFEM.BasicObjects.material import Material from RFEM.BasicObjects.section import Section from RFEM.BasicObjects.member import Member from RFEM.BasicObjects.line import Line def util_num_to_ndarray(nodes: np.ndarray, nums): arr = np.array([]) if isinstance(nums, (int, float)): arr = np.array([nums] * nodes.shape[0]).flatten() elif isinstance(nums, list): arr = np.array(nums).flatten() elif isinstance(nums, np.ndarray): arr =
np.array([nums])
numpy.array
""" =============== emc2.core.Model =============== This module contains the Model class and example Models for your use. """ import xarray as xr import numpy as np from act.io.armfiles import read_netcdf from .instrument import ureg, quantity from netCDF4 import Dataset try: from wrf import tk, getvar, ALL_TIMES WRF_PYTHON_AVAILABLE = True except ImportError: WRF_PYTHON_AVAILABLE = False class Model(): """ This class stores the model specific parameters for the radar simulator. Attributes ---------- Rho_hyd: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the density of said hydrometeors in :math:`kg\ m^{-3}` fluffy: dict A dictionary whose keys are the names of the model's ice hydrometeor classes and whose values are the ice fluffiness factor for the fwd calculations using r_e, where values of 0 - equal volume sphere, 1 - fluffy sphere i.e., diameter = maximum dimension. lidar_ratio: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the lidar_ratio of said hydrometeors. vel_param_a: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the :math:`a` parameters to the equation :math:`V = aD^b` used to calculate terminal velocity corresponding to each hydrometeor. vel_param_b: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the :math:`b` parameters to the equation :math:`V = aD^b` used to calculate terminal velocity corresponding to each hydrometeor. N_field: dict A dictionary whose keys are the names of the model's hydrometeor classes and whose values are the number concentrations in :math:`cm^{-3}` corresponding to each hydrometeor class. T_field: str A string containing the name of the temperature field in the model. q_field: str A string containing the name of the water vapor mixing ratio field (in kg/kg) in the model. p_field: str A string containing the name of the pressure field (in mbar) in the model. z_field: str A string containing the name of the height field (in m) in the model. conv_frac_names: dict A dictionary containing the names of the convective fraction corresponding to each hydrometeor class in the model. strat_frac_names: dict A dictionary containing the names of the stratiform fraction corresponding to each hydrometeor class in the model. conv_frac_names_for_rad: dict A dictionary containing the names of the convective fraction corresponding to each hydrometeor class in the model for the radiation scheme. strat_frac_names_for_rad: dict A dictionary containing the names of the stratiform fraction corresponding to each hydrometeor class in the model for the radiation scheme. conv_re_fields: dict A dictionary containing the names of the effective radii of each convective hydrometeor class strat_re_fields: dict A dictionary containing the names of the effective radii of each stratiform hydrometeor class time_dim: str The name of the time dimension in the model. height_dim: str The name of the height dimension in the model. model_name: str The name of the model (used for plotting). x_dim: str The name of the x dimension of the model. y_dim: str The name of the y dimension of the model. """ def __init__(self): self.Rho_hyd = {} self.fluffy = {} self.lidar_ratio = {} self.LDR_per_hyd = {} self.vel_param_a = {} self.vel_param_b = {} self.q_names_convective = {} self.q_names_stratiform = {} self.N_field = {} self.T_field = "" self.q_field = "" self.p_field = "" self.z_field = "" self.qp_field = {} self.conv_frac_names = {} self.strat_frac_names = {} self.conv_frac_names_for_rad = {} self.strat_frac_names_for_rad = {} self.conv_re_fields = {} self.strat_re_fields = {} self.ds = None self.time_dim = "time" self.height_dim = "height" self.model_name = "empty_model" self.x_dim = None self.y_dim = None self.lat_name = None self.lon_name = None self.consts = {"c": 299792458.0, # m/s "R_d": 287.058, # J K^-1 Kg^-1 "g": 9.80665, # m/s^2 "Avogadro_c": 6.022140857e23, "R": 8.3144598} # J K^-1 mol^-1 def _add_vel_units(self): for my_keys in self.vel_param_a.keys(): self.vel_param_a[my_keys] = self.vel_param_a[my_keys] * ( ureg.meter ** (1 - self.vel_param_b[my_keys].magnitude) / ureg.second) def _prepare_variables(self): for variable in self.ds.variables.keys(): attrs = self.ds[variable].attrs try: self.ds[variable] = self.ds[variable].astype('float64') except TypeError: continue self.ds[variable].attrs = attrs def _crop_time_range(self, time_range): """ Crop model output time range. Can significantly cut subcolumn processing time. Parameters ---------- time_range: tuple, list, or array, typically in datetime64 format Two-element array with starting and ending of time range. """ time_ind = np.logical_and(self.ds[self.time_dim] >= time_range[0], self.ds[self.time_dim] < time_range[1]) if np.sum(time_ind) == 0: self.ds.close() print("The requested time range: {0} to {1} is out of the \ model output range; Ignoring crop request.".format(time_range[0], time_range[1])) else: self.ds = self.ds.isel({self.time_dim: time_ind}) @property def hydrometeor_classes(self): """ The list of hydrometeor classes. """ return list(self.N_field.keys()) @property def num_hydrometeor_classes(self): """ The number of hydrometeor classes """ return len(list(self.N_field.keys())) @property def num_subcolumns(self): """ Gets the number of subcolumns in the model. Will return 0 if the number of subcolumns has not yet been set. """ if 'subcolumn' in self.ds.dims.keys(): return self.ds.dims['subcolumn'] else: return 0 @num_subcolumns.setter def num_subcolumns(self, a): """ This will set the number of subcolumns in the simulated radar output. This is a handy shortcut for setting the number of subcolumns if you do not want to use any of the functions in the simulator module to do so. """ subcolumn = xr.DataArray(np.arange(a), dims='subcolumn') self.ds['subcolumn'] = subcolumn def subcolumns_to_netcdf(self, file_name): """ Saves all of the simulated subcolumn parameters to a netCDF file. Parameters ---------- file_name: str The name of the file to save to. """ # Set all relevant variables to save: vars_to_keep = ["sub_col", "subcol", "strat_", "conv_", "_tot", "_ext", "_mask", "_min", "mpr", "fpr"] var_dict = {} for my_var in self.ds.variables.keys(): if np.any([x in my_var for x in vars_to_keep]): var_dict[my_var] = self.ds[my_var] out_ds = xr.Dataset(var_dict) out_ds.to_netcdf(file_name) def load_subcolumns_from_netcdf(self, file_name): """ Load all of the subcolumn data from a previously saved netCDF file. The dataset being loaded must match the current number of subcolumns if there are any generated. Parameters ---------- file_name: str Name of the file to save. """ my_file = xr.open_dataset(file_name) self.ds = xr.merge([self.ds, my_file]) my_file.close() class ModelE(Model): def __init__(self, file_path, time_range=None): """ This loads a ModelE simulation with all of the necessary parameters for EMC^2 to run. Parameters ---------- file_path: str Path to a ModelE simulation. """ super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m**3), 'ci': 500. * ureg.kg / (ureg.m**3), 'pl': 1000. * ureg.kg / (ureg.m**3), 'pi': 250. * ureg.kg / (ureg.m**3)} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m**3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m**3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m**3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m**3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} super()._add_vel_units() self.q_field = "q" self.N_field = {'cl': 'ncl', 'ci': 'nci', 'pl': 'npl', 'pi': 'npi'} self.p_field = "p_3d" self.z_field = "z" self.T_field = "t" self.height_dim = "p" self.time_dim = "time" self.conv_frac_names = {'cl': 'cldmccl', 'ci': 'cldmcci', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names = {'cl': 'cldsscl', 'ci': 'cldssci', 'pl': 'cldsspl', 'pi': 'cldsspi'} self.conv_frac_names_for_rad = {'cl': 'cldmcr', 'ci': 'cldmcr', 'pl': 'cldmcpl', 'pi': 'cldmcpi'} self.strat_frac_names_for_rad = {'cl': 'cldssr', 'ci': 'cldssr', 'pl': 'cldssr', 'pi': 'cldssr'} self.conv_re_fields = {'cl': 're_mccl', 'ci': 're_mcci', 'pi': 're_mcpi', 'pl': 're_mcpl'} self.strat_re_fields = {'cl': 're_sscl', 'ci': 're_ssci', 'pi': 're_sspi', 'pl': 're_sspl'} self.q_names_convective = {'cl': 'QCLmc', 'ci': 'QCImc', 'pl': 'QPLmc', 'pi': 'QPImc'} self.q_names_stratiform = {'cl': 'qcl', 'ci': 'qci', 'pl': 'qpl', 'pi': 'qpi'} self.ds = read_netcdf(file_path) # Check to make sure we are loading a single column if 'lat' in [x for x in self.ds.dims.keys()]: if self.ds.dims['lat'] != 1 or self.ds.dims['lon'] != 1: self.ds.close() raise RuntimeError("%s is not an SCM run. EMC^2 will only work with SCM runs." % file_path) # No need for lat and lon dimensions self.ds = self.ds.squeeze(dim=('lat', 'lon')) # crop specific model output time range (if requested) if time_range is not None: if np.issubdtype(time_range.dtype, np.datetime64): super()._crop_time_range(time_range) else: raise RuntimeError("input time range is not in the required datetime64 data type") # ModelE has pressure units in mb, but pint only supports hPa self.ds["p_3d"].attrs["units"] = "hPa" self.model_name = "ModelE" class E3SM(Model): def __init__(self, file_path, time_range=None): """ This loads an E3SM simulation output with all of the necessary parameters for EMC^2 to run. Parameters ---------- file_path: str Path to an E3SM simulation. """ super().__init__() self.Rho_hyd = {'cl': 1000. * ureg.kg / (ureg.m**3), 'ci': 500. * ureg.kg / (ureg.m**3), 'pl': 1000. * ureg.kg / (ureg.m**3), 'pi': 250. * ureg.kg / (ureg.m**3)} self.fluffy = {'ci': 0.5 * ureg.dimensionless, 'pi': 0.5 * ureg.dimensionless} self.lidar_ratio = {'cl': 18. * ureg.dimensionless, 'ci': 24. * ureg.dimensionless, 'pl': 5.5 * ureg.dimensionless, 'pi': 24.0 * ureg.dimensionless} self.LDR_per_hyd = {'cl': 0.03 * 1 / (ureg.kg / (ureg.m**3)), 'ci': 0.35 * 1 / (ureg.kg / (ureg.m**3)), 'pl': 0.1 * 1 / (ureg.kg / (ureg.m**3)), 'pi': 0.40 * 1 / (ureg.kg / (ureg.m**3))} self.vel_param_a = {'cl': 3e-7, 'ci': 700., 'pl': 841.997, 'pi': 11.72} self.vel_param_b = {'cl': 2. * ureg.dimensionless, 'ci': 1. * ureg.dimensionless, 'pl': 0.8 * ureg.dimensionless, 'pi': 0.41 * ureg.dimensionless} super()._add_vel_units() self.q_field = "Q" self.N_field = {'cl': 'NUMLIQ', 'ci': 'NUMICE', 'pl': 'NUMRAI', 'pi': 'NUMSNO'} self.p_field = "p_3d" self.z_field = "Z3" self.T_field = "T" self.height_dim = "lev" self.time_dim = "ncol" self.conv_frac_names = {'cl': 'zeros_cf', 'ci': 'zeros_cf', 'pl': 'zeros_cf', 'pi': 'zeros_cf'} self.strat_frac_names = {'cl': 'CLOUD', 'ci': 'CLOUD', 'pl': 'CLOUD', 'pi': 'CLOUD'} self.conv_frac_names_for_rad = {'cl': 'zeros_cf', 'ci': 'zeros_cf', 'pl': 'zeros_cf', 'pi': 'zeros_cf'} self.strat_frac_names_for_rad = {'cl': 'CLOUD', 'ci': 'CLOUD', 'pl': 'CLOUD', 'pi': 'CLOUD'} self.conv_re_fields = {'cl': 'zeros_cf', 'ci': 'zeros_cf', 'pi': 'zeros_cf', 'pl': 'zeros_cf'} self.strat_re_fields = {'cl': 'AREL', 'ci': 'AREI', 'pi': 'ADSNOW', 'pl': 'ADRAIN'} self.q_names_convective = {'cl': 'zeros_cf', 'ci': 'zeros_cf', 'pl': 'zeros_cf', 'pi': 'zeros_cf'} self.q_names_stratiform = {'cl': 'CLDLIQ', 'ci': 'CLDICE', 'pl': 'RAINQM', 'pi': 'SNOWQM'} self.ds = read_netcdf(file_path) # Check to make sure we are loading a single column if 'lat' in [x for x in self.ds.dims.keys()]: if self.ds.dims['lat'] != 1 or self.ds.dims['lon'] != 1: self.ds.close() raise RuntimeError("%s is not a column dataset. EMC^2 will currently works with column data." % file_path) # No need for lat and lon dimensions self.ds = self.ds.squeeze(dim=('lat', 'lon')) # crop specific model output time range (if requested) if time_range is not None: if np.issubdtype(time_range.dtype, np.datetime64): super()._crop_time_range(time_range) else: raise RuntimeError("input time range is not in the required datetime64 data type") self.ds[self.p_field] = (self.ds["P0"] * self.ds["hyam"] + self.ds["PS"] * self.ds["hybm"]).T / 1e2 # hPa self.ds[self.p_field].attrs["units"] = "hPa" self.ds["zeros_cf"] = xr.DataArray(
np.zeros_like(self.ds[self.p_field].values)
numpy.zeros_like
import numpy as np from prml.linear.classifier import Classifier from prml.rv.gaussian import Gaussian class LinearDiscriminantAnalyzer(Classifier): """ Linear discriminant analysis model """ def _fit(self, X, t, clip_min_norm=1e-10): self._check_input(X) self._check_target(t) self._check_binary(t) X0 = X[t == 0] X1 = X[t == 1] m0 =
np.mean(X0, axis=0)
numpy.mean
# Copyright 2020 Q-CTRL Pty Ltd & Q-CTRL Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ======================== Tests for Predefined DDS ======================== """ import numpy as np import pytest from qctrlopencontrols import new_predefined_dds from qctrlopencontrols.dynamic_decoupling_sequences import ( CARR_PURCELL, CARR_PURCELL_MEIBOOM_GILL, PERIODIC_SINGLE_AXIS, QUADRATIC, SPIN_ECHO, UHRIG_SINGLE_AXIS, WALSH_SINGLE_AXIS, X_CONCATENATED, XY_CONCATENATED, ) from qctrlopencontrols.exceptions import ArgumentsValueError SIGMA_X = np.array([[0.0, 1.0], [1.0, 0.0]]) SIGMA_Y = np.array([[0.0, -1.0j], [1.0j, 0.0]]) SIGMA_Z = np.array([[1.0, 0.0], [0.0, -1.0]]) def test_ramsey(): """Tests Ramsey sequence """ duration = 10.0 sequence = new_predefined_dds(scheme="Ramsey", duration=duration) _offsets = np.array([]) _rabi_rotations = np.array([]) _azimuthal_angles = np.array([]) _detuning_rotations = np.array([]) assert np.allclose(_offsets, sequence.offsets) assert np.allclose(_rabi_rotations, sequence.rabi_rotations) assert np.allclose(_azimuthal_angles, sequence.azimuthal_angles) assert np.allclose(_detuning_rotations, sequence.detuning_rotations) sequence = new_predefined_dds( scheme="Ramsey", duration=duration, pre_post_rotation=True ) _rabi_rotations = np.array([np.pi / 2, np.pi / 2]) _azimuthal_angles = np.array([0.0, np.pi]) _detuning_rotations = np.array([0.0, 0.0]) assert np.allclose(_rabi_rotations, sequence.rabi_rotations) assert
np.allclose(_azimuthal_angles, sequence.azimuthal_angles)
numpy.allclose
import sys sys.path.insert(0, "../") from PINN_Survey.problems.burgers.v1 import Burgers, Burgers_Siren, Burgers_Random_Fourier from PINN_Survey.problems.burgers.data.load import load_burgers_bounds from PINN_Survey.problems.helmholtz.data.load import load_helmholtz_bounds from PINN_Survey.problems.helmholtz.v1 import Helmholtz, Helmholtz_Siren, Helmholtz_Random_Fourier from PINN_Base.util import bounds_from_data, random_choice import numpy as np import tensorflow as tf def rmsprop_init_optimizers(self): self.optimizer_RMSProp = tf.train.RMSPropOptimizer( learning_rate=.001).minimize(self.loss) def rmsprop_train(self, X, U, X_df, batch_size, epochs): self._train_stochastic_optimizer( self.optimizer_RMSProp, X, U, X_df, batch_size, epochs) class Burgers_Base_RMSProp(Burgers): def _init_optimizers(self): rmsprop_init_optimizers(self) def train_RMSProp_batched(self, X, U, X_df, batch_size, epochs): rmsprop_train(self, X, U, X_df, batch_size, epochs) class Helmholtz_Base_RMSProp(Helmholtz): def _init_optimizers(self): rmsprop_init_optimizers(self) def train_RMSProp_batched(self, X, U, X_df, batch_size, epochs): rmsprop_train(self, X, U, X_df, batch_size, epochs) MAX_THREADS = 32 config = tf.ConfigProto( intra_op_parallelism_threads=MAX_THREADS ) def burgers_big_adam(): X_true, U_true, X_bounds, U_bounds, _ = load_burgers_bounds() X = np.vstack(X_bounds) U = np.vstack(U_bounds) X_df = random_choice(X_true) lower_bound, upper_bound = bounds_from_data(X_true) layers = [2, 256, 256, 256, 256, 256, 1] nu = .01 / np.pi model = Burgers( lower_bound, upper_bound, layers, nu, session_config=config, use_collocation_residual=False) model.train_Adam_batched(X, U, X_df, batch_size=64, epochs=50000) U_hat = model.predict(X_true) rel_error = np.linalg.norm(U_true - U_hat, 2) / np.linalg.norm(U_true, 2) print(rel_error) with open("big_log.csv", "a+") as f: f.write(f"burgers,adam,{rel_error}\n") def burgers_big_rmsprop(): X_true, U_true, X_bounds, U_bounds, _ = load_burgers_bounds() X = np.vstack(X_bounds) U = np.vstack(U_bounds) X_df = random_choice(X_true) lower_bound, upper_bound = bounds_from_data(X_true) layers = [2, 256, 256, 256, 256, 256, 1] nu = .01 / np.pi model = Burgers_Base_RMSProp( lower_bound, upper_bound, layers, nu, session_config=config, use_collocation_residual=False) model.train_RMSProp_batched(X, U, X_df, batch_size=64, epochs=50000) U_hat = model.predict(X_true) rel_error = np.linalg.norm(U_true - U_hat, 2) / np.linalg.norm(U_true, 2) print(rel_error) with open("big_log.csv", "a+") as f: f.write(f"burgers,rms,{rel_error}\n") def burgers_big_siren(): X_true, U_true, X_bounds, U_bounds, _ = load_burgers_bounds() X = np.vstack(X_bounds) U = np.vstack(U_bounds) X_df = random_choice(X_true) lower_bound, upper_bound = bounds_from_data(X_true) layers = [2, 256, 256, 256, 256, 256, 1] nu = .01 / np.pi model = Burgers_Siren( lower_bound, upper_bound, layers, nu, session_config=config, use_collocation_residual=False) model.train_Adam_batched(X, U, X_df, batch_size=64, epochs=50000) U_hat = model.predict(X_true) rel_error = np.linalg.norm(U_true - U_hat, 2) / np.linalg.norm(U_true, 2) print(rel_error) with open("big_log.csv", "a+") as f: f.write(f"burgers_siren,Adam,{rel_error}\n") def burgers_big_rf(): X_true, U_true, X_bounds, U_bounds, _ = load_burgers_bounds() X = np.vstack(X_bounds) U = np.vstack(U_bounds) X_df = random_choice(X_true) lower_bound, upper_bound = bounds_from_data(X_true) layers = [2, 256, 256, 256, 256, 256, 1] nu = .01 / np.pi model = Burgers_Random_Fourier( lower_bound, upper_bound, layers, nu, session_config=config, use_collocation_residual=False) model.train_Adam_batched(X, U, X_df, batch_size=64, epochs=50000) U_hat = model.predict(X_true) rel_error = np.linalg.norm(U_true - U_hat, 2) / np.linalg.norm(U_true, 2) print(rel_error) with open("big_log.csv", "a+") as f: f.write(f"burgers_rf,Adam,{rel_error}\n") def helmholtz_big_adam(): X_true, U_true, X_bounds, U_bounds, _ = load_helmholtz_bounds() X = np.vstack(X_bounds) U = np.vstack(U_bounds) X_df = random_choice(X_true) lower_bound, upper_bound = bounds_from_data(X_true) layers = [2, 256, 256, 256, 256, 256, 1] a = 1 b = 4 model = Helmholtz( lower_bound, upper_bound, layers, a, b, session_config=config, use_collocation_residual=False, df_multiplier=1e-2) model.train_Adam_batched(X, U, X_df, batch_size=64, epochs=50000) U_hat = model.predict(X_true) rel_error = np.linalg.norm(U_true - U_hat, 2) / np.linalg.norm(U_true, 2) print(rel_error) with open("big_log.csv", "a+") as f: f.write(f"helmholtz,adam,{rel_error}\n") def helmholtz_big_rmsprop(): X_true, U_true, X_bounds, U_bounds, _ = load_helmholtz_bounds() X = np.vstack(X_bounds) U = np.vstack(U_bounds) X_df = random_choice(X_true) lower_bound, upper_bound = bounds_from_data(X_true) layers = [2, 256, 256, 256, 256, 256, 1] a = 1 b = 4 model = Helmholtz_Base_RMSProp( lower_bound, upper_bound, layers, a, b, session_config=config, use_collocation_residual=False, df_multiplier=1e-2) model.train_RMSProp_batched(X, U, X_df, batch_size=64, epochs=50000) U_hat = model.predict(X_true) rel_error = np.linalg.norm(U_true - U_hat, 2) / np.linalg.norm(U_true, 2) print(rel_error) with open("big_log.csv", "a+") as f: f.write(f"helmholtz,rms,{rel_error}\n") def helmholtz_big_siren(): X_true, U_true, X_bounds, U_bounds, _ = load_helmholtz_bounds() X = np.vstack(X_bounds) U = np.vstack(U_bounds) X_df = random_choice(X_true) lower_bound, upper_bound = bounds_from_data(X_true) layers = [2, 256, 256, 256, 256, 256, 1] a = 1 b = 4 model = Helmholtz_Siren( lower_bound, upper_bound, layers, a, b, session_config=config, use_collocation_residual=False, df_multiplier=1e-2) model.train_Adam_batched(X, U, X_df, batch_size=64, epochs=50000) U_hat = model.predict(X_true) rel_error = np.linalg.norm(U_true - U_hat, 2) / np.linalg.norm(U_true, 2) print(rel_error) with open("big_log.csv", "a+") as f: f.write(f"helmholtz_siren,Adam,{rel_error}\n") def helmholtz_big_rf(): X_true, U_true, X_bounds, U_bounds, _ = load_helmholtz_bounds() X = np.vstack(X_bounds) U = np.vstack(U_bounds) X_df = random_choice(X_true) lower_bound, upper_bound = bounds_from_data(X_true) layers = [2, 256, 256, 256, 256, 256, 1] a = 1 b = 4 model = Helmholtz_Random_Fourier( lower_bound, upper_bound, layers, a, b, session_config=config, use_collocation_residual=False, df_multiplier=1e-2) model.train_Adam_batched(X, U, X_df, batch_size=64, epochs=50000) U_hat = model.predict(X_true) rel_error = np.linalg.norm(U_true - U_hat, 2) /
np.linalg.norm(U_true, 2)
numpy.linalg.norm
# Copyright 2020 AstroLab Software # Author: <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import healpy as hp import numpy as np import pandas as pd import gzip import io from astropy.io import fits from astroquery.mpc import MPC from astropy.convolution import convolve as astropy_convolve from astropy.convolution import Gaussian2DKernel from astropy.convolution import Box2DKernel from astropy.coordinates import SkyCoord, get_constellation from astropy.visualization import AsymmetricPercentileInterval, simple_norm from astropy.time import Time hbase_type_converter = { 'integer': int, 'long': int, 'float': float, 'double': float, 'string': str, 'fits/image': str } def format_hbase_output( hbase_output, schema_client, group_alerts: bool, truncated: bool = False, extract_color: bool = True, with_constellation: bool = True): """ """ if hbase_output.isEmpty(): return pd.DataFrame({}) # Construct the dataframe pdfs = pd.DataFrame.from_dict(hbase_output, orient='index') if 'd:knscore' not in pdfs.columns: pdfs['d:knscore'] = np.zeros(len(pdfs), dtype=float) # Remove hbase specific fields if 'key:key' in pdfs.columns or 'key:time' in pdfs.columns: pdfs = pdfs.drop(columns=['key:key', 'key:time']) # Type conversion pdfs = pdfs.astype( {i: hbase_type_converter[schema_client.type(i)] for i in pdfs.columns}) if not truncated: # Fink final classification classifications = extract_fink_classification( pdfs['d:cdsxmatch'], pdfs['d:roid'], pdfs['d:mulens_class_1'], pdfs['d:mulens_class_2'], pdfs['d:snn_snia_vs_nonia'], pdfs['d:snn_sn_vs_all'], pdfs['d:rfscore'], pdfs['i:ndethist'], pdfs['i:drb'], pdfs['i:classtar'], pdfs['i:jd'], pdfs['i:jdstarthist'], pdfs['d:knscore'] ) pdfs['v:classification'] = classifications if extract_color: # Extract color evolution pdfs = pdfs.sort_values('i:objectId') pdfs['v:g-r'] = extract_last_g_minus_r_each_object(pdfs, kind='last') pdfs['v:rate(g-r)'] = extract_last_g_minus_r_each_object(pdfs, kind='rate') pdfs = pdfs.sort_values('i:jd', ascending=False) pdfs['v:dg'], pdfs['v:rate(dg)'] = extract_delta_color(pdfs, filter_=1) pdfs['v:dr'], pdfs['v:rate(dr)'] = extract_delta_color(pdfs, filter_=2) # Human readable time pdfs['v:lastdate'] = pdfs['i:jd'].apply(convert_jd) if with_constellation: coords = SkyCoord( pdfs['i:ra'], pdfs['i:dec'], unit='deg' ) constellations = get_constellation(coords) pdfs['v:constellation'] = constellations # Display only the last alert if group_alerts: pdfs['i:jd'] = pdfs['i:jd'].astype(float) pdfs = pdfs.loc[pdfs.groupby('i:objectId')['i:jd'].idxmax()] # sort values by time pdfs = pdfs.sort_values('i:jd', ascending=False) return pdfs def isoify_time(t): try: tt = Time(t) except ValueError as e: ft = float(t) if ft // 2400000: tt = Time(ft, format='jd') else: tt = Time(ft, format='mjd') return tt.iso def markdownify_objectid(objectid): """ """ objectid_markdown = '[{}](/{})'.format( objectid, objectid ) return objectid_markdown def validate_query(query, query_type): """ Validate a query. Need to be rewritten in a better way. """ empty_query_type = (query_type is None) or (query_type == '') if empty_query_type: # This can only happen in queries formed from URL parameters header = "Empty query type" text = "You need to specify a query_type in your request (e.g. ?query_type=Conesearch&ra=value&dec=value&radius=value)" return {'flag': False, 'header': header, 'text': text} empty_query = (query is None) or (query == '') # no queries if empty_query and ((query_type == 'objectID') or (query_type == 'Conesearch') or (query_type == 'Date')): header = "Empty query" text = "You need to choose a query type and fill the search bar" return {'flag': False, 'header': header, 'text': text} # bad objectId bad_objectid = (query_type == 'objectID') and not (query.startswith('ZTF')) if bad_objectid: header = "Bad ZTF object ID" text = "ZTF object ID must start with `ZTF`" return {'flag': False, 'header': header, 'text': text} # bad conesearch lenquery = len(query.split(',')) bad_conesearch = (query_type == 'Conesearch') and not ((lenquery == 3) or (lenquery == 5)) if bad_conesearch: header = "Bad Conesearch formula" text = "Conesearch must contain comma-separated RA, Dec, radius or RA, Dec, radius, startdate, window. See Help for more information." return {'flag': False, 'header': header, 'text': text} # bad search date if query_type == 'Date': try: _ = isoify_time(query) except (ValueError, TypeError) as e: header = 'Bad start time' return {'flag': False, 'header': header, 'text': str(e)} return {'flag': True, 'header': 'Good query', 'text': 'Well done'} def extract_row(key: str, clientresult) -> dict: """ Extract one row from the client result, and return result as dict """ data = clientresult[key] return dict(data) def readstamp(stamp: str, return_type='array') -> np.array: """ Read the stamp data inside an alert. Parameters ---------- alert: dictionary dictionary containing alert data field: string Name of the stamps: cutoutScience, cutoutTemplate, cutoutDifference return_type: str Data block of HDU 0 (`array`) or original FITS uncompressed (`FITS`) as file-object. Default is `array`. Returns ---------- data: np.array 2D array containing image data (`array`) or FITS file uncompressed as file-object (`FITS`) """ with gzip.open(io.BytesIO(stamp), 'rb') as f: with fits.open(io.BytesIO(f.read())) as hdul: if return_type == 'array': data = hdul[0].data elif return_type == 'FITS': data = io.BytesIO() hdul.writeto(data) data.seek(0) return data def extract_cutouts(pdf: pd.DataFrame, client, col=None, return_type='array') -> pd.DataFrame: """ Query and uncompress cutout data from the HBase table Inplace modifications Parameters ---------- pdf: Pandas DataFrame DataFrame returned by `format_hbase_output` (see api.py) client: com.Lomikel.HBaser.HBaseClient HBase client used to query the database col: str Name of the cutouts to be downloaded (e.g. b:cutoutScience_stampData). If None, return all 3 return_type: str array or original gzipped FITS Returns ---------- pdf: Pandas DataFrame Modified original DataFrame with cutout data uncompressed (2D array) """ if col is not None: cols = ['b:cutoutScience_stampData', 'b:cutoutTemplate_stampData', 'b:cutoutDifference_stampData'] assert col in cols pdf[col] = pdf[col].apply( lambda x: readstamp(client.repository().get(x), return_type=return_type) ) return pdf if 'b:cutoutScience_stampData' not in pdf.columns: pdf['b:cutoutScience_stampData'] = 'binary:' + pdf['i:objectId'] + '_' + pdf['i:jd'].astype('str') + ':cutoutScience_stampData' pdf['b:cutoutTemplate_stampData'] = 'binary:' + pdf['i:objectId'] + '_' + pdf['i:jd'].astype('str') + ':cutoutTemplate_stampData' pdf['b:cutoutDifference_stampData'] = 'binary:' + pdf['i:objectId'] + '_' + pdf['i:jd'].astype('str') + ':cutoutDifference_stampData' pdf['b:cutoutScience_stampData'] = pdf['b:cutoutScience_stampData'].apply( lambda x: readstamp(client.repository().get(x), return_type=return_type) ) pdf['b:cutoutTemplate_stampData'] = pdf['b:cutoutTemplate_stampData'].apply( lambda x: readstamp(client.repository().get(x), return_type=return_type) ) pdf['b:cutoutDifference_stampData'] = pdf['b:cutoutDifference_stampData'].apply( lambda x: readstamp(client.repository().get(x), return_type=return_type) ) return pdf def extract_properties(data: str, fieldnames: list): """ """ pdfs = pd.DataFrame.from_dict(data, orient='index') if fieldnames is not None: return pdfs[fieldnames] else: return pdfs def extract_fink_classification_single(data): """ """ if data is None: return 'Error' pdf = extract_properties( data, [ 'i:jd', 'd:cdsxmatch', 'd:mulens_class_1', 'd:mulens_class_2', 'd:roid', 'd:snn_sn_vs_all', 'd:snn_snia_vs_nonia', 'd:rfscore', 'i:ndethist', 'i:drb', 'i:classtar', 'i:jd', 'i:jdstarthist', 'd:knscore' ] ) pdf = pdf.sort_values('i:jd', ascending=False) classification = extract_fink_classification( pdf['d:cdsxmatch'], pdf['d:roid'], pdf['d:mulens_class_1'], pdf['d:mulens_class_2'], pdf['d:snn_snia_vs_nonia'], pdf['d:snn_sn_vs_all'], pdf['d:rfscore'], pdf['i:ndethist'], pdf['i:drb'], pdf['i:classtar'], pdfs['i:jd'], pdfs['i:jdstarthist'], pdfs['d:knscore'] ) return classification[0] def extract_fink_classification( cdsxmatch, roid, mulens_class_1, mulens_class_2, snn_snia_vs_nonia, snn_sn_vs_all, rfscore, ndethist, drb, classtar, jd, jdstarthist, knscore_): """ Extract the classification of an alert based on module outputs See https://arxiv.org/abs/2009.10185 for more information """ classification = pd.Series(['Unknown'] * len(cdsxmatch)) ambiguity = pd.Series([0] * len(cdsxmatch)) # Microlensing classification medium_ndethist = ndethist.astype(int) < 100 f_mulens = (mulens_class_1 == 'ML') & (mulens_class_2 == 'ML') & medium_ndethist # SN Ia snn1 = snn_snia_vs_nonia.astype(float) > 0.5 snn2 = snn_sn_vs_all.astype(float) > 0.5 active_learn = rfscore.astype(float) > 0.5 # KN high_knscore = knscore_.astype(float) > 0.5 # Others # Note jdstarthist is not really reliable... # see https://github.com/astrolabsoftware/fink-science-portal/issues/163 # KN & SN candidate still affected (not Early SN Ia candidate) # Perhaps something to report to ZTF sn_history = jd.astype(float) - jdstarthist.astype(float) <= 90 new_detection = jd.astype(float) - jdstarthist.astype(float) < 20 high_drb = drb.astype(float) > 0.5 high_classtar = classtar.astype(float) > 0.4 early_ndethist = ndethist.astype(int) < 20 no_mpc = roid.astype(int) != 3 no_first_det = ndethist.astype(int) > 1 list_simbad_galaxies = [ "galaxy", "Galaxy", "EmG", "Seyfert", "Seyfert_1", "Seyfert_2", "BlueCompG", "StarburstG", "LSB_G", "HII_G", "High_z_G", "GinPair", "GinGroup", "BClG", "GinCl", "PartofG", ] keep_cds = \ ["Unknown", "Candidate_SN*", "SN", "Transient", "Fail"] + list_simbad_galaxies base_sn = (snn1 | snn2) & cdsxmatch.isin(keep_cds) & high_drb & high_classtar & no_mpc & no_first_det f_sn = base_sn & sn_history f_sn_early = base_sn & early_ndethist & active_learn # Kilonova keep_cds = \ ["Unknown", "Transient", "Fail"] + list_simbad_galaxies f_kn = high_knscore & high_drb & high_classtar & new_detection f_kn = f_kn & early_ndethist & cdsxmatch.isin(keep_cds) # Solar System Objects f_roid_2 = roid.astype(int) == 2 f_roid_3 = roid.astype(int) == 3 # Simbad xmatch f_simbad = ~cdsxmatch.isin(['Unknown', 'Transient', 'Fail']) classification.mask(f_mulens.values, 'Microlensing candidate', inplace=True) classification.mask(f_sn.values, 'SN candidate', inplace=True) classification.mask(f_sn_early.values, 'Early SN Ia candidate', inplace=True) classification.mask(f_kn.values, 'Kilonova candidate', inplace=True) classification.mask(f_roid_2.values, 'Solar System candidate', inplace=True) classification.mask(f_roid_3.values, 'Solar System MPC', inplace=True) # If several flags are up, we cannot rely on the classification ambiguity[f_mulens.values] += 1 ambiguity[f_sn.values] += 1 ambiguity[f_roid_2.values] += 1 ambiguity[f_roid_3.values] += 1 f_ambiguity = ambiguity > 1 classification.mask(f_ambiguity.values, 'Ambiguous', inplace=True) classification = np.where(f_simbad, cdsxmatch, classification) return classification def convert_jd(jd, to='iso'): """ Convert Julian Date into ISO date (UTC). """ return Time(jd, format='jd').to_value(to) def convolve(image, smooth=3, kernel='gauss'): """ Convolve 2D image. Hacked from aplpy """ if smooth is None and isinstance(kernel, str) and kernel in ['box', 'gauss']: return image if smooth is not None and not np.isscalar(smooth): raise ValueError("smooth= should be an integer - for more complex " "kernels, pass an array containing the kernel " "to the kernel= option") # The Astropy convolution doesn't treat +/-Inf values correctly yet, so we # convert to NaN here. image_fixed = np.array(image, dtype=float, copy=True) image_fixed[np.isinf(image)] = np.nan if isinstance(kernel, str): if kernel == 'gauss': kernel = Gaussian2DKernel( smooth, x_size=smooth * 5, y_size=smooth * 5) elif kernel == 'box': kernel = Box2DKernel(smooth, x_size=smooth * 5, y_size=smooth * 5) else: raise ValueError("Unknown kernel: {0}".format(kernel)) return astropy_convolve(image, kernel, boundary='extend') def _data_stretch( image, vmin=None, vmax=None, pmin=0.25, pmax=99.75, stretch='linear', vmid: float = 10, exponent=2): """ Hacked from aplpy """ if vmin is None or vmax is None: interval = AsymmetricPercentileInterval(pmin, pmax, n_samples=10000) try: vmin_auto, vmax_auto = interval.get_limits(image) except IndexError: # no valid values vmin_auto = vmax_auto = 0 if vmin is None: #log.info("vmin = %10.3e (auto)" % vmin_auto) vmin = vmin_auto else: pass #log.info("vmin = %10.3e" % vmin) if vmax is None: #log.info("vmax = %10.3e (auto)" % vmax_auto) vmax = vmax_auto else: pass #log.info("vmax = %10.3e" % vmax) if stretch == 'arcsinh': stretch = 'asinh' normalizer = simple_norm( image, stretch=stretch, power=exponent, asinh_a=vmid, min_cut=vmin, max_cut=vmax, clip=False) data = normalizer(image, clip=True).filled(0) data = np.nan_to_num(data) #data = np.clip(data * 255., 0., 255.) return data#.astype(np.uint8) def mag2fluxcal_snana(magpsf: float, sigmapsf: float): """ Conversion from magnitude to Fluxcal from SNANA manual Parameters ---------- magpsf: float PSF-fit magnitude from ZTF sigmapsf: float Returns ---------- fluxcal: float Flux cal as used by SNANA fluxcal_err: float Absolute error on fluxcal (the derivative has a minus sign) """ if magpsf is None: return None, None fluxcal = 10 ** (-0.4 * magpsf) * 10 ** (11) fluxcal_err = 9.21034 * 10 ** 10 * np.exp(-0.921034 * magpsf) * sigmapsf return fluxcal, fluxcal_err def apparent_flux(fid, magpsf, sigmapsf, magnr, sigmagnr, magzpsci, isdiffpos): """ Compute apparent flux from difference magnitude supplied by ZTF This was heavily influenced by the computation provided by Lasair: https://github.com/lsst-uk/lasair/blob/master/src/alert_stream_ztf/common/mag.py Paramters --------- fid filter, 1 for green and 2 for red magpsf,sigmapsf; floats magnitude from PSF-fit photometry, and 1-sigma error magnr,sigmagnr: floats magnitude of nearest source in reference image PSF-catalog within 30 arcsec and 1-sigma error magzpsci: float Magnitude zero point for photometry estimates isdiffpos: str t or 1 => candidate is from positive (sci minus ref) subtraction; f or 0 => candidate is from negative (ref minus sci) subtraction Returns -------- dc_flux: float Apparent magnitude dc_sigflux: float Error on apparent magnitude """ if magpsf is None: return None, None # zero points. Looks like they are fixed. ref_zps = {1: 26.325, 2: 26.275, 3: 25.660} magzpref = ref_zps[fid] # reference flux and its error magdiff = magzpref - magnr if magdiff > 12.0: magdiff = 12.0 ref_flux = 10**(0.4 * magdiff) ref_sigflux = (sigmagnr / 1.0857) * ref_flux # difference flux and its error if magzpsci == 0.0: magzpsci = magzpref magdiff = magzpsci - magpsf if magdiff > 12.0: magdiff = 12.0 difference_flux = 10**(0.4 * magdiff) difference_sigflux = (sigmapsf / 1.0857) * difference_flux # add or subract difference flux based on isdiffpos if isdiffpos == 't': dc_flux = ref_flux + difference_flux else: dc_flux = ref_flux - difference_flux # assumes errors are independent. Maybe too conservative. dc_sigflux = np.sqrt(difference_sigflux**2 + ref_sigflux**2) return dc_flux, dc_sigflux def dc_mag(fid, magpsf, sigmapsf, magnr, sigmagnr, magzpsci, isdiffpos): """ Compute apparent magnitude from difference magnitude supplied by ZTF Parameters Stolen from Lasair. ---------- fid filter, 1 for green and 2 for red magpsf,sigmapsf magnitude from PSF-fit photometry, and 1-sigma error magnr,sigmagnr magnitude of nearest source in reference image PSF-catalog within 30 arcsec and 1-sigma error magzpsci Magnitude zero point for photometry estimates isdiffpos t or 1 => candidate is from positive (sci minus ref) subtraction; f or 0 => candidate is from negative (ref minus sci) subtraction """ # zero points. Looks like they are fixed. ref_zps = {1: 26.325, 2: 26.275, 3: 25.660} magzpref = ref_zps[fid] # difference flux and its error if magzpsci is None: magzpsci = magzpref dc_flux, dc_sigflux = apparent_flux( fid, magpsf, sigmapsf, magnr, sigmagnr, magzpsci, isdiffpos ) # apparent mag and its error from fluxes if (dc_flux == dc_flux) and dc_flux > 0.0: dc_mag = magzpsci - 2.5 * np.log10(dc_flux) dc_sigmag = dc_sigflux / dc_flux * 1.0857 else: dc_mag = magzpsci dc_sigmag = sigmapsf return dc_mag, dc_sigmag def g_minus_r(fid, mag): """ Compute r-g based on vectors of filters and magnitudes """ if len(fid) == 2: # +1 if [g, r] # -1 if [r, g] sign = np.diff(fid)[0] else: # last measurement last_fid = fid[-1] # last measurement with different filter # could take the mean index_other = np.where(
np.array(fid)
numpy.array
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data =
np.array([])
numpy.array
import pytest import numpy as np import pandas as pd import numpy.testing as npt import pandas.testing as pdt from scipy.stats import logistic import zepid as ze from zepid import (RiskRatio, RiskDifference, OddsRatio, NNT, IncidenceRateRatio, IncidenceRateDifference, Sensitivity, Specificity, Diagnostics, interaction_contrast, interaction_contrast_ratio, spline, table1_generator) from zepid.calc import sensitivity, specificity @pytest.fixture def data_set(): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 df['dis'] = [1]*25 + [0]*25 + [1]*25 + [0]*25 return df @pytest.fixture def multi_exposures(): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 + [2]*50 df['dis'] = [1]*25 + [0]*25 + [1]*25 + [0]*25 + [1]*25 + [0]*25 return df @pytest.fixture def time_data(): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 df['dis'] = [1]*6 + [0]*44 + [1]*14 + [0]*36 df['t'] = [2]*50 + [8]*50 return df class TestRiskRatio: def test_risk_ratio_reference_equal_to_1(self, data_set): rr = RiskRatio() rr.fit(data_set, exposure='exp', outcome='dis') assert rr.risk_ratio[0] == 1 def test_risk_ratio_equal_to_1(self, data_set): rr = RiskRatio() rr.fit(data_set, exposure='exp', outcome='dis') assert rr.risk_ratio[1] == 1 def test_multiple_exposures(self, multi_exposures): rr = RiskRatio() rr.fit(multi_exposures, exposure='exp', outcome='dis') assert rr.results.shape[0] == 3 assert list(rr.results.index) == ['Ref:0', '1', '2'] def test_match_sas_ci(self, data_set): sas_ci = 0.6757, 1.4799 rr = RiskRatio() rr.fit(data_set, exposure='exp', outcome='dis') df = rr.results npt.assert_allclose(np.round(df.loc[df.index == '1'][['RR_LCL', 'RR_UCL']], 4), [sas_ci]) def test_match_sas_sampledata(self): sas_rd = 0.742118331 sas_se = 0.312612740 sas_ci = 0.402139480, 1.369523870 df = ze.load_sample_data(False) rr = RiskRatio() rr.fit(df, exposure='art', outcome='dead') npt.assert_allclose(rr.risk_ratio[1], sas_rd, rtol=1e-5) rf = rr.results npt.assert_allclose(rf.loc[rf.index == '1'][['RR_LCL', 'RR_UCL']], [sas_ci], rtol=1e-5) npt.assert_allclose(rf.loc[rf.index == '1'][['SD(RR)']], sas_se, rtol=1e-5) class TestRiskDifference: def test_risk_difference_reference_equal_to_0(self, data_set): rd = RiskDifference() rd.fit(data_set, exposure='exp', outcome='dis') assert rd.risk_difference[0] == 0 def test_risk_difference_equal_to_0(self, data_set): rd = RiskDifference() rd.fit(data_set, exposure='exp', outcome='dis') assert rd.risk_difference[1] == 0 def test_multiple_exposures(self, multi_exposures): rd = RiskDifference() rd.fit(multi_exposures, exposure='exp', outcome='dis') assert rd.results.shape[0] == 3 assert list(rd.results.index) == ['Ref:0', '1', '2'] def test_match_sas_ci(self, data_set): sas_ci = -0.195996398, 0.195996398 rd = RiskDifference() rd.fit(data_set, exposure='exp', outcome='dis') df = rd.results npt.assert_allclose(df.loc[df.index == '1'][['RD_LCL', 'RD_UCL']], [sas_ci]) def test_match_sas_se(self, data_set): sas_se = 0.1 rd = RiskDifference() rd.fit(data_set, exposure='exp', outcome='dis') df = rd.results npt.assert_allclose(df.loc[df.index == '1'][['SD(RD)']], sas_se) def test_match_sas_sampledata(self): sas_rr = -0.045129870 sas_se = 0.042375793 sas_ci = -0.128184899, 0.037925158 df = ze.load_sample_data(False) rd = RiskDifference() rd.fit(df, exposure='art', outcome='dead') npt.assert_allclose(rd.risk_difference[1], sas_rr) rf = rd.results npt.assert_allclose(rf.loc[rf.index == '1'][['RD_LCL', 'RD_UCL']], [sas_ci]) npt.assert_allclose(rf.loc[rf.index == '1'][['SD(RD)']], sas_se) def test_frechet_bounds(self): df = ze.load_sample_data(False) rd = RiskDifference() rd.fit(df, exposure='art', outcome='dead') npt.assert_allclose(rd.results['UpperBound'][1] - rd.results['LowerBound'][1], 1.0000) def test_frechet_bounds2(self, multi_exposures): rd = RiskDifference() rd.fit(multi_exposures, exposure='exp', outcome='dis') npt.assert_allclose(rd.results['UpperBound'][1:] - rd.results['LowerBound'][1:], [1.0000, 1.0000]) class TestOddsRatio: def test_odds_ratio_reference_equal_to_1(self, data_set): ord = OddsRatio() ord.fit(data_set, exposure='exp', outcome='dis') assert ord.odds_ratio[0] == 1 def test_odds_ratio_equal_to_1(self, data_set): ord = OddsRatio() ord.fit(data_set, exposure='exp', outcome='dis') assert ord.odds_ratio[1] == 1 def test_multiple_exposures(self, multi_exposures): ord = OddsRatio() ord.fit(multi_exposures, exposure='exp', outcome='dis') assert ord.results.shape[0] == 3 assert list(ord.results.index) == ['Ref:0', '1', '2'] def test_match_sas_ci(self, data_set): sas_ci = 0.4566, 2.1902 ord = OddsRatio() ord.fit(data_set, exposure='exp', outcome='dis') df = ord.results npt.assert_allclose(df.loc[df.index == '1'][['OR_LCL', 'OR_UCL']], [sas_ci], rtol=1e-4) def test_match_sas_sampledata(self): sas_or = 0.7036 sas_se = 0.361479191 sas_ci = 0.3465, 1.4290 df = ze.load_sample_data(False) ord = OddsRatio() ord.fit(df, exposure='art', outcome='dead')
npt.assert_allclose(ord.odds_ratio[1], sas_or, rtol=1e-4)
numpy.testing.assert_allclose
from __future__ import division, print_function, absolute_import import numpy from numpy import (atleast_1d, poly, polyval, roots, real, asarray, resize, pi, absolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, zeros, sinh, append, concatenate, prod, ones, array, mintypecode) from .filters import * from .helpers import fminbound, fmin, newton from mpmath import ellipk, ellipfun, besselk import numpy as np __all__ = ['iirfilter', 'cheb1ord', 'cheb2ord', 'buttord'] def iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=False, ftype='butter', output='ba'): """ IIR digital and analog filter design given order and critical points. Design an Nth-order digital or analog filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g. rad/s). rp : float, optional For Chebyshev and elliptic filters, provides the maximum ripple in the passband. (dB) rs : float, optional For Chebyshev and elliptic filters, provides the minimum attenuation in the stop band. (dB) btype : {'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional The type of filter. Default is 'bandpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. ftype : str, optional The type of IIR filter to design: - Butterworth : 'butter' - Chebyshev I : 'cheby1' - Chebyshev II : 'cheby2' - Cauer/elliptic: 'ellip' - Bessel/Thomson: 'bessel' output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba') or pole-zero ('zpk'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- butter : Filter design using order and critical points cheby1, cheby2, ellip, bessel buttord : Find order and critical points from passband and stopband spec cheb1ord, cheb2ord, ellipord iirdesign : General filter design using passband and stopband spec Notes ----- The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Generate a 17th-order Chebyshev II bandpass filter and plot the frequency response: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.iirfilter(17, [50, 200], rs=60, btype='band', ... analog=True, ftype='cheby2') >>> w, h = signal.freqs(b, a, 1000) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.semilogx(w, 20 * np.log10(abs(h))) >>> ax.set_title('Chebyshev Type II bandpass frequency response') >>> ax.set_xlabel('Frequency [radians / second]') >>> ax.set_ylabel('Amplitude [dB]') >>> ax.axis((10, 1000, -100, 10)) >>> ax.grid(which='both', axis='both') >>> plt.show() """ ftype, btype, output = [x.lower() for x in (ftype, btype, output)] Wn = asarray(Wn) try: btype = band_dict[btype] except KeyError: raise ValueError("'%s' is an invalid bandtype for filter." % btype) try: typefunc = filter_dict[ftype][0] except KeyError: raise ValueError("'%s' is not a valid basic IIR filter." % ftype) if output not in ['ba', 'zpk']: raise ValueError("'%s' is not a valid output form." % output) if rp is not None and rp < 0: raise ValueError("passband ripple (rp) must be positive") if rs is not None and rs < 0: raise ValueError("stopband attenuation (rs) must be positive") # Get analog lowpass prototype if typefunc == buttap: z, p, k = typefunc(N) # elif typefunc == besselap: # z, p, k = typefunc(N, norm=bessel_norms[ftype]) elif typefunc == cheb1ap: if rp is None: raise ValueError("passband ripple (rp) must be provided to " "design a Chebyshev I filter.") z, p, k = typefunc(N, rp) elif typefunc == cheb2ap: if rs is None: raise ValueError("stopband attenuation (rs) must be provided to " "design an Chebyshev II filter.") z, p, k = typefunc(N, rs) # elif typefunc == ellipap: # if rs is None or rp is None: # raise ValueError("Both rp and rs must be provided to design an " # "elliptic filter.") # z, p, k = typefunc(N, rp, rs) else: raise NotImplementedError("'%s' not implemented in iirfilter." % ftype) # Pre-warp frequencies for digital filter design if not analog: if
numpy.any(Wn <= 0)
numpy.any
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 14 19:50:56 2020 @author: hiroyasu """ import cvxpy as cp import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import control import SCPmulti as scp import pickle import TrainRNN as trnn import torch import pandas as pd DT = scp.DT TSPAN = scp.TSPAN M = scp.M II = scp.II L = scp.L bb = scp.bb FMIN = scp.FMIN FMAX = scp.FMAX RungeNum = scp.RungeNum AA = scp.AA Robs = scp.Robs Rsafe = scp.Rsafe XOBSs = scp.XOBSs XXd0 = np.load('data/params/desired_n/Xhis.npy') UUd0 = np.load('data/params/desired_n/Uhis.npy') dratio = 0.2 d_over = np.sqrt(3)*dratio X0 = scp.X0 Xf = scp.Xf n_input = trnn.n_input n_hidden = trnn.n_hidden n_output = trnn.n_output n_layers = trnn.n_layers class Spacecraft: def __init__(self,XXd0,UUd0,tspan=TSPAN,dt=DT,runge_num=RungeNum,m=M,I=II,l=L,b=bb,A=AA,fmin=FMIN,fmax=FMAX): self.XXd = XXd0 self.UUd = UUd0 self.tspan = tspan self.dt = dt self.runge_num = runge_num self.h = dt/runge_num self.m = m self.I = I self.l = l self.b = b self.A = A self.fmin = fmin self.fmax = fmax self.net = trnn.RNN(n_input,n_hidden,n_output,n_layers) self.net.load_state_dict(torch.load('data/trained_nets/RNNLorenz.pt')) self.net.eval() self.YC = np.load('data/trained_nets/Y_params.npy') self.ns = 6 self.RNN = 1 def GetP(self,X): Xnet = self.Np2Var(X) if self.RNN == 1: cP = self.net(Xnet.view(1,1,-1)) cP = cP.data.numpy()*self.YC P = self.cP2P(cP[0,0,:]) else: cP = self.net(Xnet) cP = cP.data.numpy() P = self.cP2P(cP) return P def GetK(self,X): P = self.GetP(X) B = self.GetB(X) K = B.T@P return K def Np2Var(self,X): X = X.astype(np.float32) X = torch.from_numpy(X) return X def cP2P(self,cP): cPnp = 0 for i in range(self.ns): lb = i*(i+1)/2 lb = int(lb) ub = (i+1)*(i+2)/2 ub = int(ub) Di = cP[lb:ub] Di = np.diag(Di,self.ns-(i+1)) cPnp += Di P = (cPnp.T)@cPnp return P def GetPdot(self,X,Ud,Xdp1): dX = Xdp1-X P = self.GetP(X) Pdot = 0 dXdt = self.dynamics(0,X,Ud) for i in range(self.ns): dx = np.zeros(self.ns) dx[i] = dX[i] Pdot += (self.GetP(X+dx)-P)/np.linalg.norm(dx)*dXdt[i] return Pdot def dynamics(self,t,states,inputs): A = self.A B = self.GetB(states) Xv = np.transpose(np.array([states])) Uv = np.transpose(np.array([inputs])) dXdt = A.dot(Xv)+B.dot(Uv) dXdt = dXdt[:,0] return dXdt def GetB(self,states): m = self.m I = self.I l = self.l b = self.b th = states[2] T = np.array([[np.cos(th)/m,np.sin(th)/m,0],[-np.sin(th)/m,np.cos(th)/m,0],[0,0,1/2./I]]) H = np.array([[-1,-1,0,0,1,1,0,0],[0,0,-1,-1,0,0,1,1],[-l,l,-b,b,-l,l,-b,b]]) B = np.vstack((np.zeros((3,8)),T@H)) return B def rk4(self,t,X,U): h = self.h k1 = self.dynamics(t,X,U) k2 = self.dynamics(t+h/2.,X+k1*h/2.,U) k3 = self.dynamics(t+h/2.,X+k2*h/2.,U) k4 = self.dynamics(t+h,X+k3*h,U) return t+h,X+h*(k1+2.*k2+2.*k3+k4)/6. def one_step_sim(self,t,X,U): runge_num = self.runge_num for num in range(0, runge_num): t,X = self.rk4(t,X,U) return t,X def GetCCM(self,alp): dt = self.dt epsilon = 0. XX = self.XXd N = XX.shape[0]-1 I = np.identity(6) WW = {} for i in range(N+1): WW[i] = cp.Variable((6,6),PSD=True) nu = cp.Variable(nonneg=True) chi = cp.Variable(nonneg=True) constraints = [chi*I-WW[0] >> epsilon*I,WW[0]-I >> epsilon*I] for k in range(N): Xk = XX[k,:] Ax = self.A Bx = self.GetB(Xk) Wk = WW[k] Wkp1 = WW[k+1] constraints += [-2*alp*Wk-(-(Wkp1-Wk)/dt+Ax@[email protected]*nu*[email protected]) >> epsilon*I] constraints += [chi*I-Wkp1 >> epsilon*I,Wkp1-I >> epsilon*I] prob = cp.Problem(cp.Minimize(chi),constraints) prob.solve(solver=cp.MOSEK) cvx_status = prob.status print(cvx_status) WWout = {} MMout = {} for i in range(N+1): WWout[i] = WW[i].value/nu.value MMout[i] = np.linalg.inv(WWout[i]) chi = chi.value nu = nu.value cvx_optval = chi/alp return cvx_status,cvx_optval,WWout,MMout,chi,nu def CLFQP(self,X,Xd,Xdp1,M,Ud,alp): dt = self.dt U = cp.Variable((8,1)) Ud = np.array([Ud]).T p = cp.Variable((1,1)) fmin = self.fmin fmax = self.fmax A = self.A Bx = self.GetB(X) Bxd = self.GetB(Xd) evec = np.array([X-Xd]).T Mdot = self.GetPdot(X,Ud,Xdp1) constraints = [evec.T@(Mdot+M@A+A.T@M)@evec+2*evec.T@M@Bx@U-2*evec.T@M@Bxd@Ud <= -2*alp*evec.T@M@evec+p] for i in range(8): constraints += [U[i,0] <= fmax, U[i,0] >= fmin] prob = cp.Problem(cp.Minimize(cp.sum_squares(U-Ud)+p**2),constraints) prob.solve() cvx_status = prob.status U = U.value U = np.ravel(U) return U def FinalTrajectory(self,MM,alp,XXdRCT,UUdRCT): dt = self.dt XXd = self.XXd UUd = self.UUd N = UUd.shape[0] X0 = XXd[0,:] B = self.GetB(X0) t = 0 t1 = 0 t2 = 0 X1 = X0 X2 = X0 X3 = X0 Xd = XXd[0,:] XdRCT = XXdRCT[0,:] this = np.zeros(N+1) X1his = np.zeros((N+1,X0.size)) X2his = np.zeros((N+1,X0.size)) X3his = np.zeros((N+1,X0.size)) this[0] = t X1his[0,:] = X1 U1his = np.zeros((N,B.shape[1])) X2his[0,:] = X2 U2his = np.zeros((N,B.shape[1])) X3his[0,:] = X3 U3his = np.zeros((N,B.shape[1])) U1hisN = np.zeros(N) U2hisN = np.zeros(N) U3hisN = np.zeros(N) U1hisND = np.zeros(N) U2hisND = np.zeros(N) U3hisND = np.zeros(N) dnMs = np.zeros(N) dnUs = np.zeros(N) dnXs = np.zeros(N) for i in range(N): M = MM[i] A = self.A Bx3 = self.GetB(X3) Q = 2.4*np.identity(6) R = 1*np.identity(8) K,P,E = control.lqr(A,Bx3,Q,R) P1 = self.GetP(X1) U3 = UUd[i,:]-Bx3.T@P@(X3-Xd) for j in range(8): if U3[j] >= self.fmax: U3[j] = self.fmax elif U3[j] <= self.fmin: U3[j] = self.fmin #U1 = self.CLFQP(X1,Xd,XXd[i+1,:],P,UUd[i,:],alp) U1 = self.CLFQP(X1,XdRCT,XXdRCT[i+1,:],P1,UUdRCT[i,:],alp) U2 = self.CLFQP(X2,XdRCT,XXdRCT[i+1,:],M,UUdRCT[i,:],alp) t,X1 = self.one_step_sim(t,X1,U1) t1,X2 = self.one_step_sim(t1,X2,U2) t2,X3 = self.one_step_sim(t2,X3,U3) Xd = XXd[i+1,:] XdRCT = XXdRCT[i+1,:] d1 = np.random.choice(np.array([-1,1]),1)[0] d2 = np.random.choice(np.array([-1,1]),1)[0] d3 = np.random.choice(np.array([-1,1]),1)[0] d1 = np.array([0,0,0,d1,d2,d3])*2 #d1 = 0 #d1 = np.hstack((np.zeros(3),(np.random.rand(3)*2-1)))*dratio*20 #d1 = (np.random.rand(6)*2-1)*0.1 X1 = X1+d1*dt X2 = X2+d1*dt X3 = X3+d1*dt this[i+1] = t X1his[i+1,:] = X1 U1his[i,:] = U1 X2his[i+1,:] = X2 U2his[i,:] = U2 X3his[i+1,:] = X3 U3his[i,:] = U3 U1hisN[i] = np.linalg.norm(U1) U2hisN[i] = np.linalg.norm(U2) U3hisN[i] = np.linalg.norm(U3) U1hisND[i] = np.linalg.norm(U1-UUd[i,:]) U2hisND[i] = np.linalg.norm(U2-UUdRCT[i,:]) U3hisND[i] = np.linalg.norm(U3-UUdRCT[i,:]) dnMs[i] = np.linalg.norm(M-P1,ord=2) dnUs[i] = np.linalg.norm(U1-U2) dnXs[i] = np.linalg.norm(X1-X2) return this,X1his,U1his,X2his,U2his,X3his,U3his,U1hisN,U2hisN,U3hisN,U1hisND,U2hisND,U3hisND,dnMs,dnUs,dnXs def Rot2d(th): R = np.array([[np.cos(th),-np.sin(th)],[np.sin(th),np.cos(th)]]) return R def GetTubePlot(XXdRCT,alp,chi,d_over,th): Rtube = d_over*np.sqrt(chi)/alp xxdRCT = XXdRCT[:,0:2] dxxdRCT = np.diff(xxdRCT,axis=0) for i in range(dxxdRCT.shape[0]): dxxdRCT[i,:] = Rot2d(th)@(dxxdRCT[i,:]/np.linalg.norm(dxxdRCT[i,:])) return xxdRCT[0:dxxdRCT.shape[0],:]+dxxdRCT*Rtube def SaveDict(filename,var): output = open(filename,'wb') pickle.dump(var,output) output.close() pass def LoadDict(filename): pkl_file = open(filename,'rb') varout = pickle.load(pkl_file) pkl_file.close() return varout if __name__ == "__main__": sc = Spacecraft(XXd0,UUd0) alp =
np.load('data/params/alpha_mmicro/alp.npy')
numpy.load
import numpy as np from tqdm import tqdm import gensim import os import wget import sys import shutil from ufal.udpipe import Model, Pipeline from sklearn.metrics.pairwise import cosine_similarity from nltk.translate.bleu_score import sentence_bleu from nltk.translate.bleu_score import corpus_bleu DATA_DIR = "../data" fasttext_model_url = "http://vectors.nlpl.eu/repository/20/213.zip" fasttext_filename = "ru_fasttext/model.model" if not os.path.isfile(os.path.join(DATA_DIR, fasttext_filename)): print("FastText model not found. Downloading...", file=sys.stderr) wget.download(fasttext_model_url, out=DATA_DIR) shutil.unpack_archive(os.path.join(DATA_DIR, fasttext_model_url.split("/")[-1]), os.path.join(DATA_DIR, "ru_fasttext/")) model = gensim.models.KeyedVectors.load(os.path.join(DATA_DIR, fasttext_filename)) udpipe_model_url = "https://rusvectores.org/static/models/udpipe_syntagrus.model" udpipe_filename = udpipe_model_url.split("/")[-1] if not os.path.isfile(os.path.join(DATA_DIR, udpipe_filename)): print("\nUDPipe model not found. Downloading...", file=sys.stderr) wget.download(udpipe_model_url, out=DATA_DIR) model_udpipe = Model.load(os.path.join(DATA_DIR, udpipe_filename)) process_pipeline = Pipeline(model_udpipe, 'tokenize', Pipeline.DEFAULT, Pipeline.DEFAULT, 'conllu') def tokenize(text, tags=False, lemmas=False): processed = process_pipeline.process(text) content = [l for l in processed.split('\n') if not l.startswith('#')] tagged = [w.split('\t') for w in content if w] tokens = [] for token in tagged: if token[3] == 'PUNCT': continue token_res = '' if lemmas: token_res = token[2] else: token_res = token[1] if tags: token_res += '_' + token[3] tokens.append(token_res) return tokens def get_sentence_vector(text): tokens = tokenize(text, lemmas=True) embd = [model[token] for token in tokens] return np.mean(embd, axis=0).reshape(1, -1) def get_cosine_sim(text1, text2): try: return cosine_similarity(get_sentence_vector(text1), get_sentence_vector(text2)) except: return 0 def get_cosine_sim_corpus(original_sentences, transferred_sentences): results = [] for index in tqdm(range(len(original_sentences))): results.append(get_cosine_sim(original_sentences[index], transferred_sentences[index])) return np.mean(results) def get_word_overlap(text1, text2): tokens1 = tokenize(text1, lemmas=True) tokens2 = tokenize(text2, lemmas=True) union = set(tokens1 + tokens2) intersection = list(set(tokens1) & set(tokens2)) return len(intersection) / len(union) def get_word_overlap_corpus(original_sentences, transferred_sentences): results = [] for index in tqdm(range(len(original_sentences))): results.append(get_word_overlap(original_sentences[index], transferred_sentences[index])) return
np.mean(results)
numpy.mean
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import torch import numpy as np import math try: from .chamfer_distance import ChamferDistance except (ModuleNotFoundError, ImportError) as err: from chamfer_distance import ChamferDistance # Part of the code is referred from: https://github.com/WangYueFt/dcp, https://github.com/itailang/SampleNet, # https://www.codegrepper.com/code-examples/python/Rotation+matrix+to+Euler+angles+Python. def quat2mat(quat): x, y, z, w = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w*x, w*y, w*z xy, xz, yz = x*y, x*z, y*z rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz, 2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx, 2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).reshape(B, 3, 3) return rotMat def transform_point_cloud(point_cloud, rotation, translation): return torch.matmul(rotation, point_cloud) + translation.unsqueeze(2) def reverse_transform_point_cloud(point_cloud, rotation, translation): return torch.matmul(rotation.permute(0, 2, 1).contiguous(), point_cloud - translation.unsqueeze(2)) def pca(pc, directions=None): # A is of size B (batch) X n (features) X m (samples) b, n, m = pc.shape mass = torch.mean(pc, dim=2, keepdim=True) pc = pc - mass cov_pc = torch.matmul(pc, pc.permute(0, 2, 1).contiguous()) / (m - 1) e, v = torch.symeig(cov_pc, eigenvectors=True) if directions is not None: signs = torch.sign( torch.diagonal(torch.matmul(directions.permute(0, 2, 1).contiguous(), v), dim1=1, dim2=2)).unsqueeze(1) v *= signs return pc, v, mass def invariant_coordinates_pca_chamfer(pc1, pc2): pc1_centered, vecs1, mass1 = pca(pc1) pc2_centered, vecs2, mass2 = pca(pc2) batch_size = pc1.shape[0] device = pc1.device totensor = lambda vec: torch.tensor(vec, device=device) quadrants = totensor([[1, 1, 1], [-1, -1, -1], [-1, 1, 1], [1, -1, 1], [1, 1, -1], [-1, -1, 1], [1, -1, -1], [-1, 1, -1]]) def project(pc, axes): if len(pc.shape) == 3: return torch.matmul(axes.permute(0, 2, 1).contiguous(), pc) if len(pc.shape) == 2: return torch.matmul(axes.T, pc) else: assert 'pc shape length is either 2 or 3' projected1 = project(pc1_centered, vecs1) new_vecs2 = torch.zeros_like(vecs2) projected2 = torch.zeros_like(pc2_centered) quadrants_mats = torch.diag_embed(quadrants).type(torch.float).to(device) for i in range(batch_size): distances = [] for idx, option in enumerate(quadrants_mats): distances.append(chamfer(projected1[i].unsqueeze(0), project(pc2_centered[i], torch.matmul(vecs2[i], option)).unsqueeze(0))[0]) chosen_quadrant = torch.argmin(totensor(distances)) new_vecs2[i] = torch.matmul(vecs2[i], quadrants_mats[chosen_quadrant]) projected2[i] = project(pc2_centered[i], new_vecs2[i]) return projected1, vecs1, mass1, \ projected2, new_vecs2, mass2 def chamfer(pc1, pc2): # ref_pc and samp_pc are B x N x 3 matrices if pc1.shape[2] is not 3: pc1 = pc1.permute(0, 2, 1).contiguous() pc2 = pc2.permute(0, 2, 1).contiguous() cost_pc1_pc2, cost_pc2_pc1 = ChamferDistance()(pc1, pc2) max_cost = torch.mean(torch.max(cost_pc1_pc2, dim=1)[0] + torch.max(cost_pc2_pc1, dim=1)[0]) # furthest points cost_pc1_pc2 = torch.mean(cost_pc1_pc2) cost_pc2_pc1 = torch.mean(cost_pc2_pc1) loss = cost_pc1_pc2 + cost_pc2_pc1 return loss, max_cost def RRMSE(R_pred, R_gt): R_pred_euler = npmat2euler_fullrange(R_pred.detach().cpu().numpy()) R_gt_euler = npmat2euler_fullrange(R_gt.detach().cpu().numpy()) return np.sqrt(np.mean((np.degrees(R_pred_euler) -
np.degrees(R_gt_euler)
numpy.degrees
import pandas as pd import numpy as np import re def del_null_str(str_list): while '' in str_list: str_list.remove('') return str_list def load_dataset(filename): dataset = pd.read_csv('../data/'+filename+'.csv') r = "[^a-z\s]+" dataset.iloc[:, 0] = dataset.iloc[:, 0].apply(lambda x: np.array(del_null_str(re.sub(r, '', x.strip().lower()).split(' ')))) return dataset def create_words_set(dataset): words = np.unique(np.hstack(dataset.iloc[:, 0])) return words def get_words_vector(words_set, input_words): return np.in1d(words_set, input_words) def train_bayes(dataset, words_set): words_matrix = create_words_matrix(dataset, words_set) normal_words_matrix = words_matrix[words_matrix.iloc[:, 1] == 'Normal_text']['Tweet'] abusive_words_matrix = words_matrix[words_matrix.iloc[:, 1] == 'bully_or_abusive_text']['Tweet'] normal_number = normal_words_matrix.shape[0] sentence_number = words_matrix.shape[0] p_normal = normal_number/sentence_number sentence_number += 1 normal_vector = np.log((normal_words_matrix.apply(lambda x: x.astype(int)).sum() + 1)/sentence_number) abusive_vector = np.log((abusive_words_matrix.apply(lambda x: x.astype(int)).sum() + 1) / sentence_number) p_matrix = pd.DataFrame([normal_vector, abusive_vector], index=['normal', 'abusive'], columns=words_set) return p_matrix, p_normal def classify(vector, p_matrix, p_normal): p_n =
np.sum(vector * p_matrix.iloc[0, :])
numpy.sum
import numpy as np from torch.utils.data import Dataset, DataLoader from torchvision.datasets import CIFAR10 import torchvision.transforms as transforms from PIL import Image from collections import defaultdict import os from tqdm import tqdm from torchvision.datasets.folder import IMG_EXTENSIONS, has_file_allowed_extension from typing import Tuple, List, Dict, Optional, Callable, cast from .config import DATA_PATHS from .utils import shuffle_sampler class DigitsDataset(Dataset): all_domains = ['MNIST', 'SVHN', 'USPS', 'SynthDigits', 'MNIST_M'] resorted_domains = { 0: ['MNIST', 'SVHN', 'USPS', 'SynthDigits', 'MNIST_M'], 1: ['SVHN', 'USPS', 'SynthDigits', 'MNIST_M', 'MNIST'], 2: ['USPS', 'SynthDigits', 'MNIST_M', 'MNIST', 'SVHN'], 3: ['SynthDigits', 'MNIST_M', 'MNIST', 'SVHN', 'USPS'], 4: ['MNIST_M', 'MNIST', 'SVHN', 'USPS', 'SynthDigits'], } num_classes = 10 # may not be correct def __init__(self, domain, percent=0.1, filename=None, train=True, transform=None): data_path = os.path.join(DATA_PATHS["Digits"], domain) if filename is None: if train: if percent >= 0.1: for part in range(int(percent*10)): if part == 0: self.images, self.labels = np.load( os.path.join(data_path, 'partitions/train_part{}.pkl'.format(part)), allow_pickle=True) else: images, labels = np.load( os.path.join(data_path, 'partitions/train_part{}.pkl'.format(part)), allow_pickle=True) self.images = np.concatenate([self.images,images], axis=0) self.labels = np.concatenate([self.labels,labels], axis=0) else: self.images, self.labels = np.load( os.path.join(data_path, 'partitions/train_part0.pkl'), allow_pickle=True) data_len = int(self.images.shape[0] * percent*10) self.images = self.images[:data_len] self.labels = self.labels[:data_len] else: self.images, self.labels = np.load(os.path.join(data_path, 'test.pkl'), allow_pickle=True) else: self.images, self.labels = np.load(os.path.join(data_path, filename), allow_pickle=True) self.transform = transform self.channels = 3 if domain in ['SVHN', 'SynthDigits', 'MNIST_M'] else 1 self.labels = self.labels.astype(np.long).squeeze() self.classes = np.unique(self.labels) def __len__(self): return self.images.shape[0] def __getitem__(self, idx): image = self.images[idx] label = self.labels[idx] if self.channels == 1: image = Image.fromarray(image, mode='L') elif self.channels == 3: image = Image.fromarray(image, mode='RGB') else: raise ValueError("{} channel is not allowed.".format(self.channels)) if self.transform is not None: image = self.transform(image) return image, label class CifarDataset(CIFAR10): all_domains = ['cifar10'] resorted_domains = { 0: ['cifar10'], } num_classes = 10 # may not be correct def __init__(self, domain='cifar10', train=True, transform=None, download=False): assert domain in self.all_domains, f"Invalid domain: {domain}" data_path = os.path.join(DATA_PATHS["Cifar10"], domain) super().__init__(data_path, train=train, transform=transform, download=download) class DomainNetDataset(Dataset): all_domains = ['clipart', 'infograph', 'painting', 'quickdraw', 'real', 'sketch'] resorted_domains = { 0: ['real', 'clipart', 'infograph', 'painting', 'quickdraw', 'sketch'], 1: ['clipart', 'infograph', 'painting', 'quickdraw', 'sketch', 'real'], 2: ['infograph', 'painting', 'quickdraw', 'sketch', 'real', 'clipart'], 3: ['painting', 'quickdraw', 'sketch', 'real', 'clipart', 'infograph'], 4: ['quickdraw', 'sketch', 'real', 'clipart', 'infograph', 'painting'], 5: ['sketch', 'real', 'clipart', 'infograph', 'painting', 'quickdraw'], } num_classes = 10 # may not be correct def __init__(self, site, train=True, transform=None, full_set=False): self.full_set = full_set self.base_path = DATA_PATHS['DomainNet'] if full_set: classes, class_to_idx = find_classes(f"{self.base_path}/{site}") self.text_labels = classes self.paths, self.labels = make_dataset_from_dir(f"{self.base_path}/{site}", class_to_idx, IMG_EXTENSIONS) self.num_classes = len(class_to_idx) else: self.paths, self.text_labels = np.load('{}/DomainNet/{}_{}.pkl'.format( DATA_PATHS['DomainNetPathList'], site, 'train' if train else 'test'), allow_pickle=True) class_to_idx = {'bird': 0, 'feather': 1, 'headphones': 2, 'ice_cream': 3, 'teapot': 4, 'tiger': 5, 'whale': 6, 'windmill': 7, 'wine_glass': 8, 'zebra': 9} self.labels = [class_to_idx[text] for text in self.text_labels] self.num_classes = len(class_to_idx) self.transform = transform self.classes = np.unique(self.labels) def __len__(self): return len(self.labels) def __getitem__(self, idx): site, cls, fname = self.paths[idx].split('/')[-3:] img_path = os.path.join(self.base_path, site, cls, fname) label = self.labels[idx] image = Image.open(img_path) if len(image.split()) != 3: image = transforms.Grayscale(num_output_channels=3)(image) if self.transform is not None: image = self.transform(image) return image, label # //////////// Data processing //////////// def find_classes(dir: str) -> Tuple[List[str], Dict[str, int]]: """ Finds the class folders in a dataset. Args: dir (string): Root directory path. Returns: tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. Ensures: No class is a subdirectory of another. """ classes = [d.name for d in os.scandir(dir) if d.is_dir()] classes.sort() class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} return classes, class_to_idx def make_dataset_from_dir( directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> Tuple[List[str], List[int]]: """Different Pytorch version, we return path and labels in two lists.""" paths, labels = [], [] directory = os.path.expanduser(directory) both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the " "same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if is_valid_file(path): paths.append(path) labels.append(class_index) return paths, labels class Partitioner(object): """Class for partition a sequence into multiple shares (or users). Args: rng (np.random.RandomState): random state. partition_mode (str): 'dir' for Dirichlet distribution or 'uni' for uniform. max_n_sample_per_share (int): max number of samples per share. min_n_sample_per_share (int): min number of samples per share. max_n_sample (int): max number of samples verbose (bool): verbosity """ def __init__(self, rng=None, partition_mode="dir", max_n_sample_per_share=-1, min_n_sample_per_share=2, max_n_sample=-1, verbose=True ): assert max_n_sample_per_share < 0 or max_n_sample_per_share > min_n_sample_per_share, \ f"max ({max_n_sample_per_share}) > min ({min_n_sample_per_share})" self.rng = rng if rng else np.random self.partition_mode = partition_mode self.max_n_sample_per_share = max_n_sample_per_share self.min_n_sample_per_share = min_n_sample_per_share self.max_n_sample = max_n_sample self.verbose = verbose def __call__(self, n_sample, n_share, log=print): """Partition a sequence of `n_sample` into `n_share` shares. Returns: partition: A list of num of samples for each share. """ assert n_share > 0, f"cannot split into {n_share} share" if self.verbose: log(f" {n_sample} smp => {n_share} shards by {self.partition_mode} distr") if self.max_n_sample > 0: n_sample = min((n_sample, self.max_n_sample)) if self.max_n_sample_per_share > 0: n_sample = min((n_sample, n_share * self.max_n_sample_per_share)) if n_sample < self.min_n_sample_per_share * n_share: raise ValueError(f"Not enough samples. Require {self.min_n_sample_per_share} samples" f" per share at least for {n_share} shares. But only {n_sample} is" f" available totally.") n_sample -= self.min_n_sample_per_share * n_share if self.partition_mode == "dir": partition = (self.rng.dirichlet(n_share * [1]) * n_sample).astype(int) elif self.partition_mode == "uni": partition = int(n_sample // n_share) * np.ones(n_share, dtype='int') else: raise ValueError(f"Invalid partition_mode: {self.partition_mode}") # uniformly add residual to as many users as possible. for i in self.rng.choice(n_share, n_sample - np.sum(partition)): partition[i] += 1 # partition[-1] += n_sample - np.sum(partition) # add residual assert sum(partition) == n_sample, f"{sum(partition)} != {n_sample}" partition = partition + self.min_n_sample_per_share n_sample += self.min_n_sample_per_share * n_share # partition = np.minimum(partition, max_n_sample_per_share) partition = partition.tolist() assert sum(partition) == n_sample, f"{sum(partition)} != {n_sample}" assert len(partition) == n_share, f"{len(partition)} != {n_share}" return partition class ClassWisePartitioner(Partitioner): """Partition a list of labels by class. Classes will be shuffled and assigned to users sequentially. Args: n_class_per_share (int): number of classes per share (user). rng (np.random.RandomState): random state. partition_mode (str): 'dir' for Dirichlet distribution or 'uni' for uniform. max_n_sample_per_share (int): max number of samples per share. min_n_sample_per_share (int): min number of samples per share. max_n_sample (int): max number of samples verbose (bool): verbosity """ def __init__(self, n_class_per_share=2, **kwargs): super(ClassWisePartitioner, self).__init__(**kwargs) self.n_class_per_share = n_class_per_share self._aux_partitioner = Partitioner(**kwargs) def __call__(self, labels, n_user, log=print, user_ids_by_class=None, return_user_ids_by_class=False, consistent_class=False): """Partition a list of labels into `n_user` shares. Returns: partition: A list of users, where each user include a list of sample indexes. """ # reorganize labels by class idx_by_class = defaultdict(list) if len(labels) > 1e5: labels_iter = tqdm(labels, leave=False, desc='sort labels') else: labels_iter = labels for i, label in enumerate(labels_iter): idx_by_class[label].append(i) n_class = len(idx_by_class) assert n_user * self.n_class_per_share > n_class, f"Cannot split {n_class} classes into " \ f"{n_user} users when each user only " \ f"has {self.n_class_per_share} classes." # assign classes to each user. if user_ids_by_class is None: user_ids_by_class = defaultdict(list) label_sampler = shuffle_sampler(list(range(n_class)), self.rng if consistent_class else None) for s in range(n_user): s_classes = [label_sampler.next() for _ in range(self.n_class_per_share)] for c in s_classes: user_ids_by_class[c].append(s) # assign sample indexes to clients idx_by_user = [[] for _ in range(n_user)] if n_class > 100 or len(labels) > 1e5: idx_by_class_iter = tqdm(idx_by_class, leave=True, desc='split cls') log = lambda log_s: idx_by_class_iter.set_postfix_str(log_s[:10]) # tqdm.write else: idx_by_class_iter = idx_by_class for c in idx_by_class_iter: l = len(idx_by_class[c]) log(f" class-{c} => {len(user_ids_by_class[c])} shares") l_by_user = self._aux_partitioner(l, len(user_ids_by_class[c]), log=log) base_idx = 0 for i_user, tl in zip(user_ids_by_class[c], l_by_user): idx_by_user[i_user].extend(idx_by_class[c][base_idx:base_idx+tl]) base_idx += tl if return_user_ids_by_class: return idx_by_user, user_ids_by_class else: return idx_by_user def extract_labels(dataset: Dataset): if hasattr(dataset, 'targets'): return dataset.targets dl = DataLoader(dataset, batch_size=512, drop_last=False, num_workers=4, shuffle=False) labels = [] dl_iter = tqdm(dl, leave=False, desc='load labels') if len(dl) > 100 else dl for _, targets in dl_iter: labels.extend(targets.cpu().numpy().tolist()) return labels def test_class_partitioner(): print(f"\n==== Extract from random labels =====") split = ClassWisePartitioner() n_class = 10 n_sample = 1000 n_user = 100 labels = np.random.randint(0, n_class, n_sample) idx_by_user = split(labels, n_user) _n_smp = 0 for u in range(n_user): u_labels = labels[idx_by_user[u]] u_classes =
np.unique(u_labels)
numpy.unique
import scine_utilities as su import scine_molassembler as masm import scine_database as db import sys import numpy as np import random import glob from typing import Optional, Tuple, List, Iterable, Dict, Callable, Union from functools import partial from collections import defaultdict from householding import Householder """ Overview - Find Cp in each structure - Substitute the Cp with something else - Generate conformers - First coordination sphere (excluding Cp and R) fixed, rest free - Enough to sample Cp rotational freedom """ # Main variables to set up the structure generation templatepath = "templates/UR.xyz" newpath = "UR.xyz" nconfs = 50 CENTRAL_ELEMENT = su.ElementType.Rh # Approximate coordinates of the metal center in the template, useful to define clockwise/counterclockwise angles ref_coords = [-1.5, -2, 0] MaybePredicate = Optional[Callable[[su.AtomCollection], bool]] # Indices to define either an angle (3 indices) or a dihedral (4 indices) to keep track of axial chirality. Can be None if not needed. idxs = None # e.g. [31, 32, 33] # [6, 17, 18, 29] # Direction can be True or False to switch the direction (axial chirality) of the attachment of the Cp direction = True # The SMILES in this string will be used to replace Cp in the template. Must contain a Cp-like structure. func_smiles = ( "c12c[cH-]cc1[C@H](C)[C@H]3OC(c1ccccc1)(c1ccccc1)O[C@@H]3[C@@H]2(C)" # Catalyst 1 ) # Options to functionalize other positions of the Cp ring, in case the SMILES is not convenient tip_smiles = None tip_atom = su.ElementType.C cindex_choice = 2 def is_flat_carbon(idx: int, mol: masm.Molecule) -> bool: if mol.graph.element_type(idx) != su.ElementType.C: return False permutator = mol.stereopermutators.option(idx) if not permutator: return False Shape = masm.shapes.Shape flat_shapes = [Shape.Bent, Shape.EquilateralTriangle] return permutator.shape in flat_shapes def find_cyclopentadienyl(mol: masm.Molecule) -> Optional[List[int]]: cp_pattern = masm.io.experimental.from_smiles("[C]1[C][C][C][C]1") matches = masm.subgraphs.complete(cp_pattern, mol) if len(matches) == 0: return None # There are likely to be multiple matches since the pattern is rotationally # symmetric, so just pick the first one that works for match in matches: atoms = [j for i, j in match.left] if all(map(partial(is_flat_carbon, mol=mol), atoms)): return atoms return None class StableIndexManager: """ Allows you to keep using your atom indices while you're deleting atoms in a molecule (which principally invalidates atom indices) >>> manager = StableIndexManager() >>> # Let's use partial, which doesn't raise on reusing deleted indices >>> [manager.partial(i) for i in range(8)] [0, 1, 2, 3, 4, 5, 6, 7] >>> manager.delete(4) >>> [manager.partial(i) for i in range(8)] [0, 1, 2, 3, None, 4, 5, 6] >>> manager.delete(2) >>> [manager.partial(i) for i in range(8)] [0, 1, None, 2, None, 3, 4, 5] """ deleted_indices: List[int] def __init__(self): self.deleted_indices = [] def __call__(self, index: int) -> int: result = index for i in self.deleted_indices: if i == index: raise RuntimeError("This atom was deleted!") if result > i: result -= 1 return result def partial(self, index: int) -> Optional[int]: try: return self(index) except RuntimeError: return None def delete(self, index: int): self.deleted_indices.append(index) self.deleted_indices.sort(reverse=True) def find_cyclopentadienyl_site(mol: masm.Molecule) -> Optional[Tuple[int, int]]: """Returns atom index and site index pair""" flat_carbon = partial(is_flat_carbon, mol=mol) for permutator in mol.stereopermutators.atom_stereopermutators(): for site_idx, site in enumerate(permutator.ranking.sites): if len(site) == 5 and all(map(flat_carbon, site)): return (permutator.placement, site_idx) return None class Pseudodihedral: """Class for calculating rotation of a substituted cyclopentadienyl""" Sequence = List[Union[int, List[int]]] definition: Sequence def __init__(self, mol: masm.Molecule): """Find a working definition of the pseudodihedral""" maybe_atom_site_pair = find_cyclopentadienyl_site(mol) if not maybe_atom_site_pair: raise RuntimeError("Couldn't find Cp for pseudodihedral") second, cyclopentadienyl_site = maybe_atom_site_pair ranking = mol.stereopermutators[second].ranking sites = ranking.sites ranked_substituents = ranking.ranked_substituents # Select the first fixture as the lowest ranked non-haptic site atom lowest_ranked_nonhaptic_sites = [ equivalent_sites[0] for equivalent_sites in ranking.ranked_sites if len(equivalent_sites) == 1 and len(sites[equivalent_sites[0]]) == 1 ] assert len(lowest_ranked_nonhaptic_sites) > 0 first = sites[lowest_ranked_nonhaptic_sites[0]][0] third = sites[cyclopentadienyl_site] # Select the highest ranked unique substituent in the haptic site def atom_rank(atom: int) -> int: for i, equivalent_atom_list in enumerate(ranked_substituents): if atom in equivalent_atom_list: return i raise IndexError(f"No atom {atom} in ranked substituents") ranks: Dict[int, List[int]] = defaultdict(list) for atom in third: ranks[atom_rank(atom)].append(atom) rank_descending = sorted(ranks.items(), reverse=True) uniques = [atoms[0] for rank, atoms in rank_descending if len(atoms) == 1] if len(uniques) == 0: raise RuntimeError("No uniquely ranked atom in haptic site") fourth = uniques[0] self.definition = [first, second, third, fourth] def __call__(self, ac: su.AtomCollection) -> float: """Returns a calculated dihedral in radians in [-pi, pi)""" def average(ac: su.AtomCollection, x: Union[int, List[int]]) -> np.ndarray: if isinstance(x, int): return ac.get_position(x) return sum([ac.get_position(i) for i in x]) / len(x) m = np.array([average(ac, atom_or_list) for atom_or_list in self.definition]) return Pseudodihedral.dihedral_angle(m) @staticmethod def dihedral_angle(p: np.ndarray) -> float: """Calculates the dihedral between four points""" b0 = -1.0 * (p[1] - p[0]) b1 = p[2] - p[1] b2 = p[3] - p[2] b1 /= np.linalg.norm(b1) v = b0 - np.dot(b0, b1) * b1 w = b2 - np.dot(b2, b1) * b1 x = np.dot(v, w) y = np.dot(np.cross(b1, v), w) return np.arctan2(y, x) @staticmethod def normal_angle(p: np.ndarray, ref: np.ndarray) -> float: """Calculates the angle between three points""" b0 = p[0] - p[1] b1 = p[2] - p[1] b0 /= np.linalg.norm(b0) b1 /= np.linalg.norm(b1) x = np.dot(b0, b1) w = ref - p[1] w /= np.linalg.norm(w) y = np.dot(w, np.cross(b0, b1)) a =
np.arctan2(y, x)
numpy.arctan2
import numpy as np def exp_running_avg(running, new, gamma=.9): return gamma * running + (1. - gamma) * new def accuracy(y_true, y_pred): return
np.mean(y_pred == y_true)
numpy.mean
import os import numpy as np import hyperspy.api as hs from pyiron_base._tests import TestWithCleanProject import pyiron_experimental class TestHSLineProfiles(TestWithCleanProject): @classmethod def setUpClass(cls): super().setUpClass() data = hs.load(os.path.join(cls.project.path, '../../notebooks/experiment.emd')) cls.signal = data[0] def setUp(self): self.job = self.project.create.job.HSLineProfiles('tem') def test_set_signal(self): signal = self.signal with self.subTest('No hs signal'): with self.assertRaises(ValueError): self.job.signal = None with self.subTest('intended use case'): self.job.signal = signal self.assertEqual(self.job.input.signal.hs_class_name, 'Signal2D') self.assertEqual(self.job.input.signal.axes, list(signal.axes_manager.as_dictionary().values())) self.assertTrue(np.array_equal(self.job.input.signal.data, signal.data)) self.assertDictEqual(self.job.input.signal.metadata, signal.metadata.as_dictionary()) self.assertDictEqual(self.job.input.signal.original_metadata, signal.original_metadata.as_dictionary()) with self.subTest('already running'): self.job.status.running = True with self.assertRaises(RuntimeError): self.job.signal = signal def test_hs(self): data = self.job.hs.load(os.path.join(self.project.path, '../../notebooks/experiment.emd')) self.assertEqual(data[0], self.signal) def test_static_workflow(self): self.job.signal = self.signal self.job.input.x = [[0, 50], [50, 50]] self.job.input.y = [[10, 10], [0, 50]] self.job.run() self.assertEqual(len(self.job.output), 2) with self.subTest('Output line 0'): output = self.job.output[0] self.assertEqual(output['line'], 0) self.assertTrue(np.array_equal(output['x'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [10, 10]), msg=f"Expected {[10, 10]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1577323.2) with self.subTest('Output line 1'): output = self.job.output[1] self.assertEqual(output['line'], 1) self.assertTrue(np.array_equal(output['x'], [50, 50]), msg=f"Expected {[50, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1509104.4) def test_interactive_workflow(self): self.job.signal = self.signal self.job._useblit = False fig = self.job.plot_signal() fig.show() self.job.add_line(x=[0, 50], y=[10, 10]) self.job.plot_line_profiles() with self.subTest('Output line 0'): output = self.job.output[0] self.assertEqual(output['line'], 0) self.assertTrue(np.array_equal(output['x'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [10, 10]), msg=f"Expected {[10, 10]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1577323.2) self.job.add_line(x=[50, 50], y=[0, 50]) self.job.plot_line_profiles() with self.subTest('Output line 1'): output = self.job.output[1] self.assertEqual(output['line'], 0) self.assertTrue(np.array_equal(output['x'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [10, 10]), msg=f"Expected {[10, 10]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1577323.2) with self.subTest('Output line 2'): output = self.job.output[2] self.assertEqual(output['line'], 1) self.assertTrue(np.array_equal(output['x'], [50, 50]), msg=f"Expected {[50, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1509104.4) def test_load_static_workflow(self): self.test_static_workflow() job = self.project.load('tem') self.assertEqual(job.signal, self.signal) with self.subTest('Output line 0'): output = job.output[0] self.assertEqual(output['line'], 0) self.assertTrue(np.array_equal(output['x'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [10, 10]), msg=f"Expected {[10, 10]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1577323.2) with self.subTest('Output line 1'): output = job.output[1] self.assertEqual(output['line'], 1) self.assertTrue(np.array_equal(output['x'], [50, 50]), msg=f"Expected {[50, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1509104.4) def test_load_interactive_workflow(self): self.test_interactive_workflow() job = self.project.load('tem') self.assertEqual(job.signal, self.signal) with self.subTest('Output line 0'): output = job.output[0] self.assertEqual(output['line'], 0) self.assertTrue(np.array_equal(output['x'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [10, 10]), msg=f"Expected {[10, 10]} but got {output['y']}.") self.assertAlmostEqual(np.sum(output['data']), 1577323.2) with self.subTest('Output line 1'): output = job.output[1] self.assertEqual(output['line'], 0) self.assertTrue(np.array_equal(output['x'], [0, 50]), msg=f"Expected {[0, 50]} but got {output['x']}.") self.assertTrue(np.array_equal(output['y'], [10, 10]), msg=f"Expected {[10, 10]} but got {output['y']}.") self.assertAlmostEqual(
np.sum(output['data'])
numpy.sum
# Copyright (c) 2017,2018 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Tests for the `_util` module.""" from datetime import datetime import matplotlib import matplotlib.pyplot as plt import numpy as np import pytest from metpy.plots import add_metpy_logo, add_timestamp, add_unidata_logo, convert_gempak_color # Fixture to make sure we have the right backend from metpy.testing import set_agg_backend # noqa: F401, I202 MPL_VERSION = matplotlib.__version__[:3] @pytest.mark.mpl_image_compare(tolerance=2.638, remove_text=True) def test_add_timestamp(): """Test adding a timestamp to an axes object.""" fig = plt.figure(figsize=(9, 9)) ax = plt.subplot(1, 1, 1) add_timestamp(ax, time=datetime(2017, 1, 1)) return fig @pytest.mark.mpl_image_compare(tolerance=2.635, remove_text=True) def test_add_timestamp_custom_format(): """Test adding a timestamp to an axes object with custom time formatting.""" fig = plt.figure(figsize=(9, 9)) ax = plt.subplot(1, 1, 1) add_timestamp(ax, time=datetime(2017, 1, 1), time_format='%H:%M:%S %Y/%m/%d') return fig @pytest.mark.mpl_image_compare(tolerance=5.389, remove_text=True) def test_add_timestamp_pretext(): """Test adding a timestamp to an axes object with custom pre-text.""" fig = plt.figure(figsize=(9, 9)) ax = plt.subplot(1, 1, 1) add_timestamp(ax, time=datetime(2017, 1, 1), pretext='Valid: ') return fig @pytest.mark.mpl_image_compare(tolerance=0.844, remove_text=True) def test_add_timestamp_high_contrast(): """Test adding a timestamp to an axes object.""" fig = plt.figure(figsize=(9, 9)) ax = plt.subplot(1, 1, 1) add_timestamp(ax, time=datetime(2017, 1, 1), high_contrast=True) return fig @pytest.mark.mpl_image_compare(tolerance=0.004, remove_text=True) def test_add_metpy_logo_small(): """Test adding a MetPy logo to a figure.""" fig = plt.figure(figsize=(9, 9)) add_metpy_logo(fig) return fig @pytest.mark.mpl_image_compare(tolerance=0.004, remove_text=True) def test_add_metpy_logo_large(): """Test adding a large MetPy logo to a figure.""" fig = plt.figure(figsize=(9, 9)) add_metpy_logo(fig, size='large') return fig @pytest.mark.mpl_image_compare(tolerance=0.004, remove_text=True) def test_add_unidata_logo(): """Test adding a Unidata logo to a figure.""" fig = plt.figure(figsize=(9, 9)) add_unidata_logo(fig) return fig def test_add_logo_invalid_size(): """Test adding a logo to a figure with an invalid size specification.""" fig = plt.figure(figsize=(9, 9)) with pytest.raises(ValueError): add_metpy_logo(fig, size='jumbo') @pytest.mark.mpl_image_compare(tolerance={'3.0': 1.072}.get(MPL_VERSION, 0), remove_text=True) def test_gempak_color_image_compare(): """Test creating a plot with all the GEMPAK colors.""" c = range(32) mplc = convert_gempak_color(c) delta = 0.025 x = y = np.arange(-3.0, 3.01, delta) xx, yy =
np.meshgrid(x, y)
numpy.meshgrid
import numpy as np from pyray.shapes.twod.paraboloid import * from pyray.shapes.twod.functional import * from pyray.rotation import * from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import matplotlib as mpl import os basedir = '.\\Images\\RotatingCube\\' if os.name == 'posix': basedir = 'Images/RotatingCube/' def draw_cubic(): fn = lambda x,y: x**3+y**3 for i in range(20): im = Image.new("RGB", (2048, 2048), "black") draw = ImageDraw.Draw(im, 'RGBA') r = general_rotation(np.array([1,0,0]),np.pi/120*i) #drawFunctionalXYGridInCircle(draw, r, fn=fn, scale=10.0) im.save(basedir + 'im' + str(i) + '.png') def three_d_grid(): fig = plt.figure() ax = fig.gca(projection='3d') # Make data. X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = (X**3 + Y**3) Z = R # Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False) # Customize the z axis. #ax.set_zlim(-1.01, 1.01) #ax.zaxis.set_major_locator(LinearLocator(10)) #ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') theta = np.linspace(0, 2 * np.pi, 100) for r in np.arange(0.1,1.0,0.1): #r = 1.0 x = r * np.sin(theta) y = r * np.cos(theta) z = x**3+y**3 ax.plot(x, y, z, label='parametric curve') #ax.legend() plt.show() def paraboloid_w_grad(im_ind=0, scale=200, shift=np.array([1000,1000,0]), opacity=60, basepath='.\\'): r1 = np.eye(4) rot = general_rotation(np.array([0,0,1]), np.pi/20.0 * (8 + im_ind/3.0)) j=4 r = rotation(3, 2 * np.pi* j /30.0) rr = general_rotation(np.array([0,1,0]), np.pi/20.0 * (im_ind/7.0)) r = np.dot(r,rr) r = np.dot(r, rot) r1[:3,:3] = r im = Image.new("RGB", (2048, 2048), "black") draw = ImageDraw.Draw(im, 'RGBA') render_scene_4d_axis(draw, r1, 4, scale, shift) # This is what draws the pink paraboloid. for z in np.arange(0.001, 3.5, 0.02): point1 = np.array([np.sqrt(z),0,z]) generalized_arc(draw, r, center=np.array([0,0,z]), vec=np.array([0,0,1]), point=point1, radius=np.sqrt(z), prcnt=1.0, rgba=(255,20,147,50)) xax1=np.array([-100.0,0,0.0]);xax1=np.dot(r,xax1)*scale+shift xax2=np.array([100.0,0,0.0]);xax2=np.dot(r,xax2)*scale+shift draw.line((xax1[0], xax1[1], xax2[0], xax2[1]), fill=(255,255,0), width=4) xax1=np.array([0.0,-100,0.0]);xax1=np.dot(r,xax1)*scale+shift xax2=np.array([0.0,100,0.0]);xax2=np.dot(r,xax2)*scale+shift draw.line((xax1[0], xax1[1], xax2[0], xax2[1]), fill=(255,255,0), width=4) #gradients(draw,r) pt = shift draw.ellipse((pt[0]-10, pt[1]-10, pt[0]+10, pt[1]+10), fill = (0,255,0)) draw_paraboloid_plane(draw,r,3.3) draw_paraboloid_plane(draw,r,2.0,extent=1.4) draw_paraboloid_plane(draw,r,1.0,extent=1.0) im.save(basepath + 'im' + str(im_ind) + '.png') def gradients(draw,r): #for z in [0.3,1.3,2.3,3.3]: for z in [3.3,2.0,1.0]: x = np.sqrt(z) for x in np.arange(-x,x,x/2): y =
np.sqrt(z-x*x)
numpy.sqrt
""" Test functions for linalg module """ import os import sys import itertools import traceback import textwrap import subprocess import pytest import numpy as np from numpy import array, single, double, csingle, cdouble, dot, identity, matmul from numpy import multiply, atleast_2d, inf, asarray from numpy import linalg from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError from numpy.linalg.linalg import _multi_dot_matrix_chain_order from numpy.testing import ( assert_, assert_equal, assert_raises, assert_array_equal, assert_almost_equal, assert_allclose, suppress_warnings, assert_raises_regex, HAS_LAPACK64, ) from numpy.testing._private.utils import requires_memory def consistent_subclass(out, in_): # For ndarray subclass input, our output should have the same subclass # (non-ndarray input gets converted to ndarray). return type(out) is (type(in_) if isinstance(in_, np.ndarray) else np.ndarray) old_assert_almost_equal = assert_almost_equal def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw): if asarray(a).dtype.type in (single, csingle): decimal = single_decimal else: decimal = double_decimal old_assert_almost_equal(a, b, decimal=decimal, **kw) def get_real_dtype(dtype): return {single: single, double: double, csingle: single, cdouble: double}[dtype] def get_complex_dtype(dtype): return {single: csingle, double: cdouble, csingle: csingle, cdouble: cdouble}[dtype] def get_rtol(dtype): # Choose a safe rtol if dtype in (single, csingle): return 1e-5 else: return 1e-11 # used to categorize tests all_tags = { 'square', 'nonsquare', 'hermitian', # mutually exclusive 'generalized', 'size-0', 'strided' # optional additions } class LinalgCase: def __init__(self, name, a, b, tags=set()): """ A bundle of arguments to be passed to a test case, with an identifying name, the operands a and b, and a set of tags to filter the tests """ assert_(isinstance(name, str)) self.name = name self.a = a self.b = b self.tags = frozenset(tags) # prevent shared tags def check(self, do): """ Run the function `do` on this test case, expanding arguments """ do(self.a, self.b, tags=self.tags) def __repr__(self): return f'<LinalgCase: {self.name}>' def apply_tag(tag, cases): """ Add the given tag (a string) to each of the cases (a list of LinalgCase objects) """ assert tag in all_tags, "Invalid tag" for case in cases: case.tags = case.tags | {tag} return cases # # Base test cases # np.random.seed(1234) CASES = [] # square test cases CASES += apply_tag('square', [ LinalgCase("single", array([[1., 2.], [3., 4.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("double", array([[1., 2.], [3., 4.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_2", array([[1., 2.], [3., 4.]], dtype=double), array([[2., 1., 4.], [3., 4., 6.]], dtype=double)), LinalgCase("csingle", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("cdouble", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_2", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)), LinalgCase("0x0", np.empty((0, 0), dtype=double), np.empty((0,), dtype=double), tags={'size-0'}), LinalgCase("8x8", np.random.rand(8, 8), np.random.rand(8)), LinalgCase("1x1", np.random.rand(1, 1), np.random.rand(1)), LinalgCase("nonarray", [[1, 2], [3, 4]], [2, 1]), ]) # non-square test-cases CASES += apply_tag('nonsquare', [ LinalgCase("single_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("single_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=single), array([2., 1., 3.], dtype=single)), LinalgCase("double_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=double), array([2., 1., 3.], dtype=double)), LinalgCase("csingle_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("csingle_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)), LinalgCase("cdouble_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)), LinalgCase("cdouble_nsq_1_2", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("cdouble_nsq_2_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("8x11", np.random.rand(8, 11), np.random.rand(8)), LinalgCase("1x5", np.random.rand(1, 5), np.random.rand(1)), LinalgCase("5x1", np.random.rand(5, 1), np.random.rand(5)), LinalgCase("0x4", np.random.rand(0, 4), np.random.rand(0), tags={'size-0'}), LinalgCase("4x0", np.random.rand(4, 0), np.random.rand(4), tags={'size-0'}), ]) # hermitian test-cases CASES += apply_tag('hermitian', [ LinalgCase("hsingle", array([[1., 2.], [2., 1.]], dtype=single), None), LinalgCase("hdouble", array([[1., 2.], [2., 1.]], dtype=double), None), LinalgCase("hcsingle", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle), None), LinalgCase("hcdouble", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble), None), LinalgCase("hempty", np.empty((0, 0), dtype=double), None, tags={'size-0'}), LinalgCase("hnonarray", [[1, 2], [2, 1]], None), LinalgCase("matrix_b_only", array([[1., 2.], [2., 1.]]), None), LinalgCase("hmatrix_1x1", np.random.rand(1, 1), None), ]) # # Gufunc test cases # def _make_generalized_cases(): new_cases = [] for case in CASES: if not isinstance(case.a, np.ndarray): continue a = np.array([case.a, 2 * case.a, 3 * case.a]) if case.b is None: b = None else: b = np.array([case.b, 7 * case.b, 6 * case.b]) new_case = LinalgCase(case.name + "_tile3", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape) if case.b is None: b = None else: b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape) new_case = LinalgCase(case.name + "_tile213", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) return new_cases CASES += _make_generalized_cases() # # Generate stride combination variations of the above # def _stride_comb_iter(x): """ Generate cartesian product of strides for all axes """ if not isinstance(x, np.ndarray): yield x, "nop" return stride_set = [(1,)] * x.ndim stride_set[-1] = (1, 3, -4) if x.ndim > 1: stride_set[-2] = (1, 3, -4) if x.ndim > 2: stride_set[-3] = (1, -4) for repeats in itertools.product(*tuple(stride_set)): new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)] slices = tuple([slice(None, None, repeat) for repeat in repeats]) # new array with different strides, but same data xi = np.empty(new_shape, dtype=x.dtype) xi.view(np.uint32).fill(0xdeadbeef) xi = xi[slices] xi[...] = x xi = xi.view(x.__class__) assert_(np.all(xi == x)) yield xi, "stride_" + "_".join(["%+d" % j for j in repeats]) # generate also zero strides if possible if x.ndim >= 1 and x.shape[-1] == 1: s = list(x.strides) s[-1] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0" if x.ndim >= 2 and x.shape[-2] == 1: s = list(x.strides) s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_x" if x.ndim >= 2 and x.shape[:-2] == (1, 1): s = list(x.strides) s[-1] = 0 s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_0" def _make_strided_cases(): new_cases = [] for case in CASES: for a, a_label in _stride_comb_iter(case.a): for b, b_label in _stride_comb_iter(case.b): new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b, tags=case.tags | {'strided'}) new_cases.append(new_case) return new_cases CASES += _make_strided_cases() # # Test different routines against the above cases # class LinalgTestCase: TEST_CASES = CASES def check_cases(self, require=set(), exclude=set()): """ Run func on each of the cases with all of the tags in require, and none of the tags in exclude """ for case in self.TEST_CASES: # filter by require and exclude if case.tags & require != require: continue if case.tags & exclude: continue try: case.check(self.do) except Exception as e: msg = f'In test case: {case!r}\n\n' msg += traceback.format_exc() raise AssertionError(msg) from e class LinalgSquareTestCase(LinalgTestCase): def test_sq_cases(self): self.check_cases(require={'square'}, exclude={'generalized', 'size-0'}) def test_empty_sq_cases(self): self.check_cases(require={'square', 'size-0'}, exclude={'generalized'}) class LinalgNonsquareTestCase(LinalgTestCase): def test_nonsq_cases(self): self.check_cases(require={'nonsquare'}, exclude={'generalized', 'size-0'}) def test_empty_nonsq_cases(self): self.check_cases(require={'nonsquare', 'size-0'}, exclude={'generalized'}) class HermitianTestCase(LinalgTestCase): def test_herm_cases(self): self.check_cases(require={'hermitian'}, exclude={'generalized', 'size-0'}) def test_empty_herm_cases(self): self.check_cases(require={'hermitian', 'size-0'}, exclude={'generalized'}) class LinalgGeneralizedSquareTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_sq_cases(self): self.check_cases(require={'generalized', 'square'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_sq_cases(self): self.check_cases(require={'generalized', 'square', 'size-0'}) class LinalgGeneralizedNonsquareTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_nonsq_cases(self): self.check_cases(require={'generalized', 'nonsquare'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_nonsq_cases(self): self.check_cases(require={'generalized', 'nonsquare', 'size-0'}) class HermitianGeneralizedTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_herm_cases(self): self.check_cases(require={'generalized', 'hermitian'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_herm_cases(self): self.check_cases(require={'generalized', 'hermitian', 'size-0'}, exclude={'none'}) def dot_generalized(a, b): a = asarray(a) if a.ndim >= 3: if a.ndim == b.ndim: # matrix x matrix new_shape = a.shape[:-1] + b.shape[-1:] elif a.ndim == b.ndim + 1: # matrix x vector new_shape = a.shape[:-1] else: raise ValueError("Not implemented...") r = np.empty(new_shape, dtype=np.common_type(a, b)) for c in itertools.product(*map(range, a.shape[:-2])): r[c] = dot(a[c], b[c]) return r else: return dot(a, b) def identity_like_generalized(a): a = asarray(a) if a.ndim >= 3: r = np.empty(a.shape, dtype=a.dtype) r[...] = identity(a.shape[-2]) return r else: return identity(a.shape[0]) class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): # kept apart from TestSolve for use for testing with matrices. def do(self, a, b, tags): x = linalg.solve(a, b) assert_almost_equal(b, dot_generalized(a, x)) assert_(consistent_subclass(x, b)) class TestSolve(SolveCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.solve(x, x).dtype, dtype) def test_0_size(self): class ArraySubclass(np.ndarray): pass # Test system of 0x0 matrices a = np.arange(8).reshape(2, 2, 2) b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0, :] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # Test errors for non-square and only b's dimension being 0 assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b) assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :]) # Test broadcasting error b = np.arange(6).reshape(1, 3, 2) # broadcasting error assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) # Test zero "single equations" with 0x0 matrices. b = np.arange(2).reshape(1, 2).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) b = np.arange(3).reshape(1, 3) assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) def test_0_size_k(self): # test zero multiple equation (K=0) case. class ArraySubclass(np.ndarray): pass a = np.arange(4).reshape(1, 2, 2) b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass) expected = linalg.solve(a, b)[:, :, 0:0] result = linalg.solve(a, b[:, :, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # test both zero. expected = linalg.solve(a, b)[:, 0:0, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): a_inv = linalg.inv(a) assert_almost_equal(dot_generalized(a, a_inv), identity_like_generalized(a)) assert_(consistent_subclass(a_inv, a)) class TestInv(InvCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.inv(x).dtype, dtype) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res.shape) assert_(isinstance(res, ArraySubclass)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res.shape) assert_(isinstance(res, ArraySubclass)) class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): ev =
linalg.eigvals(a)
numpy.linalg.eigvals
import os import copy import sys import numpy as np import math import torchvision.transforms as transforms from torchvision.utils import save_image from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch def rescale(x): x = np.asarray(x) x = x.reshape(81, 1, 32, 32) #x = x.reshape(16, 1, 32, 32) return x def convert(n, sudokus, digit_map, name, rate): ret = [] ret_labels = [] n_iter = n // len(sudokus) + 1 offset = 1 if "digit" in name: offset = 0 for i in range(10): interval = int(len(digit_map[i]) // 4) np.random.seed(123) idx = np.arange(len(digit_map[i])) np.random.shuffle(idx) digit_map[i] = np.array(digit_map[i]) digit_map[i] = digit_map[i][idx] digit_map[i] = digit_map[i][interval * rate:min(interval * (rate + 1), len(digit_map[i]))] for i in range(n_iter): for sudoku in sudokus: flatten = [number - offset for sublist in sudoku for number in sublist] ret_labels.append(flatten) emnist_sudoku = [] for number in flatten: rnd = np.random.randint(len(digit_map[number])) emnist_sudoku.append(digit_map[number][rnd]) ret.append(rescale(emnist_sudoku)) return ret, ret_labels seed = int(sys.argv[2]) np.random.seed(seed) n = int(sys.argv[1]) img_sz = 32 #dataloader = torch.utils.data.DataLoader( # datasets.EMNIST( # "./emnist", # split="byclass", # train=True, # download=True, # transform=transforms.Compose( # [transforms.Resize(img_sz), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])] # ), # ), # batch_size=1, # shuffle=True, #collate_fn=my_collate, #) sudokus = np.load("minimum.npy")[:, 1, :, :] #sudokus = np.load("all4sudoku.npy") label2digits = {} label2upper = {} #label2lower = {} ''' tot = 0 for img, label in dataloader: tot += 1 img = img.transpose(2, 3) label = label[0].item() img = img[0].data.numpy() if label >= 10: if label < 10 + 26: label = label - 10 if label in label2upper: label2upper[label].append(img) else: label2upper[label] = [img] else: label = label - 36 if label in label2lower: label2lower[label].append(img) else: label2lower[label] = [img] else: if label in label2digits: label2digits[label].append(img) else: label2digits[label] = [img] ''' #label2digits = np.load("/atlaslocaldisk/shared/9by9_dichen/selected_digits.npy").item() #label2upper = np.load("/atlaslocaldisk/shared/9by9_dichen/selected_uppers.npy").item() label2digits = np.load("selected_digits_offset2.npy", allow_pickle=True).item() label2upper = np.load("selected_uppers_offset2.npy", allow_pickle=True).item() aaa = [label2digits, label2upper] names = ["digit", "upper"] rate_suffix = [(0, "train"), (1, "valid"), (2, "test")] for item, name in zip(aaa, names): ori_digit_map = copy.deepcopy(item) for rate, suffix in rate_suffix: rtn, rtn_labels = convert(n, sudokus, item, name, rate) rtn, rtn_labels = rtn[:n], rtn_labels[:n] rtn, rtn_labels = np.array(rtn), np.array(rtn_labels) print (rtn.shape) print (rtn_labels.shape) s_rtn = [] s_rtn_labels = [] idx = np.arange(len(rtn)) np.random.shuffle(idx) for i in idx: s_rtn.append(rtn[i]) s_rtn_labels.append(rtn_labels[i]) np.save("9by9_%s_%s.npy" % (name, suffix), s_rtn)
np.save("9by9_%s_labels_%s.npy" % (name, suffix), s_rtn_labels)
numpy.save
import numpy as np import cv2 #import matplotlib.pyplot as plt import moviepy.editor as mvEdit #import matplotlib.image as mpimg import os, pickle, sys # pdb is used for debugging purposes; uncomment when needed #import pdb # Define a Line class to store the characteristics of each line detection class Line(): def __init__(self): # was the line detected in the last iteration? self.detected = False self.alreadyRan = False #polynomial coefficients averaged over the last n iterations self.best_fit = None #polynomial coefficients for the most recent fit self.current_fit = None # Mean-squared error in coefficients between last and best fits self.coeff_msErr = float(0) def bestFit_calc(self): if not self.best_fit: avg = self.current_fit else: n = len(self.best_fit) avg = [0, 0, 0] for i in range(len(self.current_fit)): avg[i] = (self.best_fit[-1][i] * n + self.current_fit[i])\ / (n + 1) return avg def msError_calc(self): error = np.array(self.current_fit) - np.array(self.best_fit[-1]) # Return the mean-squared error return error.dot(error.T) def grad_clr_thresh(img, s_thresh=(170, 255), sx_thresh=(20, 100)): img = np.copy(img) # Convert to HLS color space and separate the V channel hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) l_channel = hls[:, :, 1] s_channel = hls[:, :, 2] # Sobel x sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0) # Take the derivative in x abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx)) # Threshold x gradient sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= sx_thresh[0]) &\ (scaled_sobel <= sx_thresh[1])] = 1 # Threshold color channel s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1 # Stack each channel color_binary = np.dstack((np.zeros_like(sxbinary),\ sxbinary, s_binary)) * 255 # Combine the two binary thresholds combined_binary =
np.zeros_like(sxbinary)
numpy.zeros_like
import pandas as pd import numpy as np import matplotlib.pyplot as plt # import palettable # tcrdist not found from sklearn.decomposition import PCA, KernelPCA from sklearn.manifold import Isomap, LocallyLinearEmbedding, TSNE, MDS """Embedding of pairwise-distance matrices.""" __all__ = [ 'embedDistanceMatrix', 'plotEmbedding', 'clusteredScatter'] def embedDistanceMatrix(dmatDf, method='kpca', n_components=2, **kwargs): """Two-dimensional embedding of sequence distances in dmatDf, returning Nx2 x,y-coords: tsne, isomap, pca, mds, kpca, sklearn-tsne""" if isinstance(dmatDf, pd.DataFrame): dmat = dmatDf.values else: dmat = dmatDf if method == 'isomap': isoObj = Isomap(n_neighbors=10, n_components=n_components) xy = isoObj.fit_transform(dmat) elif method == 'mds': mds = MDS(n_components=n_components, max_iter=3000, eps=1e-9, random_state=15, dissimilarity="precomputed", n_jobs=1) xy = mds.fit(dmat).embedding_ rot = PCA(n_components=n_components) xy = rot.fit_transform(xy) elif method == 'pca': pcaObj = PCA(n_components=None) xy = pcaObj.fit_transform(dmat)[:, :n_components] elif method == 'kpca': pcaObj = KernelPCA(n_components=dmat.shape[0], kernel='precomputed', eigen_solver='dense') try: gram = dist2kernel(dmat) except: print('Could not convert dmat to kernel for KernelPCA; using 1 - dmat/dmat.max() instead') gram = 1 - dmat / dmat.max() xy = pcaObj.fit_transform(gram)[:, :n_components] elif method == 'lle': lle = LocallyLinearEmbedding(n_neighbors=30, n_components=n_components, method='standard') xy = lle.fit_transform(dist) elif method == 'sklearn-tsne': tsneObj = TSNE(n_components=n_components, metric='precomputed', random_state=0, perplexity=kwargs['perplexity']) xy = tsneObj.fit_transform(dmat) else: print(('Method unknown: %s' % method)) return assert xy.shape[0] == dmatDf.shape[0] xyDf = pd.DataFrame(xy[:, :n_components], index=dmatDf.index, columns=np.arange(n_components)) if method == 'kpca': """Not sure how negative eigenvalues should be handled here, but they are usually small so it shouldn't make a big difference""" xyDf.explained_variance_ = pcaObj.lambdas_[:n_components]/pcaObj.lambdas_[pcaObj.lambdas_>0].sum() return xyDf def plotEmbedding(dmatDf, xyDf=None, labels=None, method='kpca', plotLabels=False, plotDims=[0, 1], weights=None, txtSize='large', alpha=0.8, sz=50, mxSz=500, markers=None, plotLegend=True, colors=None, markerLabels=None, continuousLabel=False): """Two-dimensional plot of embedded distance matrix, colored by labels""" if labels is None: labels = np.zeros(dmatDf.shape[0]) assert dmatDf.shape[0] == dmatDf.shape[1] assert labels.shape[0] == dmatDf.shape[0] uLabels = freqSort(labels) if xyDf is None: xyDf = embedDistanceMatrix(dmatDf, method=method, n_components=np.max(plotDims) + 1) clusteredScatter(xyDf, labels=labels, plotDims=plotDims, weights=weights, alpha=alpha, sz=sz, mxSz=mxSz, markerLabels=markerLabels, markers=markers, continuousLabel=continuousLabel, colors=colors) if plotLabels: annotationParams = dict(xytext=(0, 5), textcoords='offset points', size=txtSize) for coli, col in enumerate(dmatDf.columns): if plotLabels: axh.annotate(col, xy=(xyDf.loc[col, plotDims[0]], xyDf.loc[col, plotDims[1]]), **annotationParams) if len(uLabels) > 1 and plotLegend: if labels is None and markerLabels is None: pass else: if labels is None: legTit = markerLabels.name elif markerLabels is None: legTit = abels.name else: legTit = '%s | %s' % (labels.name, markerLabels.name) plt.legend(loc=0, title=legTit) if hasattr(xyDf, 'explained_variance_'): plt.xlabel('KPCA %1.0f (%1.0f%% variance explained)' % (plotDims[0]+1, 100*xyDf.explained_variance_[plotDims[0]])) plt.ylabel('KPCA %1.0f (%1.0f%% variance explained)' % (plotDims[1]+1, 100*xyDf.explained_variance_[plotDims[1]])) else: plt.xlabel('KPCA %1.0f' % (plotDims[0]+1)) plt.ylabel('KPCA %1.0f' % (plotDims[1]+1)) plt.show() return xyDf def clusteredScatter(xyDf, labels=None, plotDims=[0, 1], weights=None, alpha=0.8, sz=50, mxSz=500, markerLabels=None, markers=None, colors=None, continuousLabel=False): """Produce a scatter plot with axes, shaded by values in labels and with specified markers Parameters ---------- xyDf : pd.DataFrame One column for each plot dimension specified labels : pd.Series Holds categorical or continuous metadata used for coloring plotDims : list len 2 Specifies the columns in xyDf for plotting on X and Y axes weights : pd.Series Relative weights that are mapped for sizing each symbol alpha : float Transparency of each point sz : float Size of each symbol or minimum size of a symbol if there are weights mxSz : float Maximum size of a symbol if there are weights markerLabels : pd.Series Holds categorical labels used for plotting different symbols markers : list List of marker symbols to use. Defaults to: "ov8sp*hDPX" colors : list List of colors to use for categorical labels or a colormap for a continuousLabel. Defaults to colors from Set1 or the YlOrRd colormap continuousLabel : bool Indicates whether labels are categorical or continuous""" if weights is None: sVec = sz * pd.Series(np.ones(xyDf.shape[0]), index=xyDf.index) else: sVec = weights * mxSz + sz if labels is None: labels = pd.Series(np.ones(xyDf.shape[0]), index=xyDf.index) useColors = False else: useColors = True if continuousLabel: if not colors is None: cmap = colors else: cmap = palettable.colorbrewer.sequential.YlOrRd_9.mpl_colormap else: cmap = None uLabels = freqSort(labels) if colors is None: nColors = min(max(len(uLabels), 3), 9) colors = palettable.colorbrewer.get_map('Set1', 'Qualitative', nColors).mpl_colors elif isinstance(colors, pd.Series): colors = colors[uLabels].values if markerLabels is None: markerLabels = pd.Series(np.ones(xyDf.shape[0]), index=xyDf.index) useMarkers = False else: useMarkers = True uMLabels = freqSort(markerLabels) if markers is None: nMarkers = len(uMLabels) markers = ['o', 'v', '8', 's', 'p', '*', 'h', 'D', 'P', 'X'][:nMarkers] elif isinstance(markers, pd.Series): markers = markers[uMLabels].values figh = plt.gcf() plt.clf() axh = figh.add_axes([0.05, 0.05, 0.9, 0.9]) axh.patch.set_facecolor('white') # axh.axis('off') figh.patch.set_facecolor('white') if continuousLabel: for mi, m in enumerate(uMLabels): ind = markerLabels == m if useMarkers: labS = '%s (N=%d)' % (m, ind.sum()) else: labS = None plt.scatter(xyDf.loc[ind, plotDims[0]], xyDf.loc[ind, plotDims[1]], marker=markers[mi], s=sVec.loc[ind], alpha=alpha, c=labels.loc[ind], label=labS, cmap=cmap) else: for vi, v in enumerate(uLabels): for mi, m in enumerate(uMLabels): ind = (labels == v) & (markerLabels == m) if useMarkers and useColors: labS = '%s|%s (N=%d)' % (v, m, ind.sum()) elif useColors: labS = '%s (N=%d)' % (v, ind.sum()) elif useMarkers: labS = '%s (N=%d)' % (m, ind.sum()) else: labS = None plt.scatter(xyDf.loc[ind, plotDims[0]], xyDf.loc[ind, plotDims[1]], marker=markers[mi], s=sVec.loc[ind], alpha=alpha, c=[colors[vi % len(colors)], ] * ind.sum(), label=labS, cmap=cmap) axh.set_xticks(()) axh.set_yticks(()) plt.show() def dist2kernel(dmat): """Convert a distance matrix into a similarity kernel for KernelPCA or kernel regression methods. Implementation of D2K in MiRKAT, Zhao et al., 2015 Parameters ---------- dmat : ndarray shape (n,n) Pairwise-distance matrix. Returns ------- kernel : ndarray shape (n,n)""" n = dmat.shape[0] I = np.identity(n) """m = I - dot(1,1')/n""" m = I - np.ones((n, n))/float(n) kern = -0.5 *
np.linalg.multi_dot((m, dmat**2, m))
numpy.linalg.multi_dot
"""Module for remapping complex data for display.""" from inspect import getmembers, isfunction import sys import numpy as np from scipy.stats import scoreatpercentile as prctile __classification__ = "UNCLASSIFIED" __author__ = "<NAME>" def get_remap_list(): """ Create list of remap functions accessible from this module. Returns ------- List[Tuple[str, callable], ...] List of tuples of the form `(<function name>, <function>)`. """ # We specifically list these as the only funtions in is this module that are # not remaps. If we later add other utility functions to this module, we # will have to manually add them to this list as well. However, we don't # have to do anything if we are just adding more remap functions. names_nonremap_funs = ['get_remap_list', 'amplitude_to_density', '_clip_cast'] # Get all functions from this module all_funs = getmembers(sys.modules[__name__], isfunction) # all_funs is list of (function name, function object) tuples. fun[0] is name. just_remap_funs = [fun for fun in all_funs if fun[0] not in names_nonremap_funs] return just_remap_funs def amplitude_to_density(a, dmin=30, mmult=40, data_mean=None): """ Convert to density data for remap. Parameters ---------- a : numpy.ndarray dmin : float|int mmult : float|int data_mean : None|float|int Returns ------- numpy.ndarray """ EPS = 1e-5 if (a==0).all(): return np.zeros(a.shape) else: a = abs(a) if not data_mean: data_mean = np.mean(a[np.isfinite(a)]) cl = 0.8 * data_mean ch = mmult * cl m = (255 - dmin)/np.log10(ch/cl) b = dmin - (m * np.log10(cl)) return (m * np.log10(np.maximum(a, EPS))) + b # Does Python not have a builtin way to do this fundamental operation??? def _clip_cast(x, dtype='uint8'): """ Cast by clipping values outside of valid range, rather than wrapping. Parameters ---------- x : numpy.ndarray dtype : str|numpy.dtype Returns ------- numpy.ndarray """ np_type = np.dtype(dtype) return np.clip(x, np.iinfo(np_type).min, np.iinfo(np_type).max).astype(dtype) def density(x): """ Standard set of parameters for density remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ return _clip_cast(amplitude_to_density(x)) def brighter(x): """ Brighter set of parameters for density remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ return _clip_cast(amplitude_to_density(x, 60, 40)) def darker(x): """ Darker set of parameters for density remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ return _clip_cast(amplitude_to_density(x, 0, 40)) def highcontrast(x): """ Increased contrast set of parameters for density remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ return _clip_cast(amplitude_to_density(x, 30, 4)) def linear(x): """ Linear remap - just the magnitude. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ if np.iscomplexobj(x): return np.abs(x) else: return x def log(x): """ Logarithmic remap. Parameters ---------- x : numpy.ndarray Returns ------- numpy.ndarray """ out = np.log(np.abs(x)) out[np.logical_not(
np.isfinite(out)
numpy.isfinite
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.models.rgb.transfer_functions.itur_bt_2100` module. """ from __future__ import division, unicode_literals import numpy as np import unittest from colour.models.rgb.transfer_functions import ( oetf_PQ_BT2100, oetf_inverse_PQ_BT2100, eotf_PQ_BT2100, eotf_inverse_PQ_BT2100, ootf_PQ_BT2100, ootf_inverse_PQ_BT2100, oetf_HLG_BT2100, oetf_inverse_HLG_BT2100) from colour.models.rgb.transfer_functions.itur_bt_2100 import ( eotf_HLG_BT2100_1, eotf_HLG_BT2100_2, eotf_inverse_HLG_BT2100_1, eotf_inverse_HLG_BT2100_2, ootf_HLG_BT2100_1, ootf_HLG_BT2100_2, ootf_inverse_HLG_BT2100_1, ootf_inverse_HLG_BT2100_2) from colour.models.rgb.transfer_functions.itur_bt_2100 import ( gamma_function_HLG_BT2100) from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'TestOetf_PQ_BT2100', 'TestOetf_inverse_PQ_BT2100', 'TestEotf_PQ_BT2100', 'TestEotf_inverse_PQ_BT2100', 'TestOotf_PQ_BT2100', 'TestOotf_inverse_PQ_BT2100', 'TestGamma_function_HLG_BT2100', 'TestOetf_HLG_BT2100', 'TestOetf_inverse_HLG_BT2100', 'TestEotf_HLG_BT2100_1', 'TestEotf_HLG_BT2100_2', 'TestEotf_inverse_HLG_BT2100_1', 'TestEotf_inverse_HLG_BT2100_2', 'TestOotf_HLG_BT2100_1', 'TestOotf_HLG_BT2100_2', 'TestOotf_inverse_HLG_BT2100_1', 'TestOotf_inverse_HLG_BT2100_2' ] class TestOetf_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition unit tests methods. """ def test_oetf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition. """ self.assertAlmostEqual( oetf_PQ_BT2100(0.0), 0.000000730955903, places=7) self.assertAlmostEqual( oetf_PQ_BT2100(0.1), 0.724769816665726, places=7) self.assertAlmostEqual( oetf_PQ_BT2100(1.0), 0.999999934308041, places=7) def test_n_dimensional_oetf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition n-dimensional arrays support. """ E = 0.1 E_p = oetf_PQ_BT2100(E) E = np.tile(E, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal(oetf_PQ_BT2100(E), E_p, decimal=7) E = np.reshape(E, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal(oetf_PQ_BT2100(E), E_p, decimal=7) E = np.reshape(E, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal(oetf_PQ_BT2100(E), E_p, decimal=7) def test_domain_range_scale_oetf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition domain and range scale support. """ E = 0.1 E_p = oetf_PQ_BT2100(E) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( oetf_PQ_BT2100(E * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_oetf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition nan support. """ oetf_PQ_BT2100(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOetf_inverse_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition unit tests methods. """ def test_oetf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition. """ self.assertAlmostEqual( oetf_inverse_PQ_BT2100(0.000000730955903), 0.0, places=7) self.assertAlmostEqual( oetf_inverse_PQ_BT2100(0.724769816665726), 0.1, places=7) self.assertAlmostEqual( oetf_inverse_PQ_BT2100(0.999999934308041), 1.0, places=7) def test_n_dimensional_oetf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition n-dimensional arrays support. """ E_p = 0.724769816665726 E = oetf_inverse_PQ_BT2100(E_p) E_p = np.tile(E_p, 6) E = np.tile(E, 6) np.testing.assert_almost_equal( oetf_inverse_PQ_BT2100(E_p), E, decimal=7) E_p = np.reshape(E_p, (2, 3)) E = np.reshape(E, (2, 3)) np.testing.assert_almost_equal( oetf_inverse_PQ_BT2100(E_p), E, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) E = np.reshape(E, (2, 3, 1)) np.testing.assert_almost_equal( oetf_inverse_PQ_BT2100(E_p), E, decimal=7) def test_domain_range_scale_oetf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition domain and range scale support. """ E_p = 0.724769816665726 E = oetf_inverse_PQ_BT2100(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( oetf_inverse_PQ_BT2100(E_p * factor), E * factor, decimal=7) @ignore_numpy_errors def test_nan_oetf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition nan support. """ oetf_inverse_PQ_BT2100( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition unit tests methods. """ def test_eotf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition. """ self.assertAlmostEqual(eotf_PQ_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_PQ_BT2100(0.724769816665726), 779.98836083408537, places=7) self.assertAlmostEqual(eotf_PQ_BT2100(1.0), 10000.0, places=7) def test_n_dimensional_eotf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition n-dimensional arrays support. """ E_p = 0.724769816665726 F_D = eotf_PQ_BT2100(E_p) E_p = np.tile(E_p, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(eotf_PQ_BT2100(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(eotf_PQ_BT2100(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(eotf_PQ_BT2100(E_p), F_D, decimal=7) def test_domain_range_scale_eotf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition domain and range scale support. """ E_p = 0.724769816665726 F_D = eotf_PQ_BT2100(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_PQ_BT2100(E_p * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition nan support. """ eotf_PQ_BT2100(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_inverse_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition unit tests methods. """ def test_eotf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition. """ self.assertAlmostEqual( eotf_inverse_PQ_BT2100(0.0), 0.000000730955903, places=7) self.assertAlmostEqual( eotf_inverse_PQ_BT2100(779.98836083408537), 0.724769816665726, places=7) self.assertAlmostEqual(eotf_inverse_PQ_BT2100(10000.0), 1.0, places=7) def test_n_dimensional_eotf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition n-dimensional arrays support. """ F_D = 779.98836083408537 E_p = eotf_inverse_PQ_BT2100(F_D) F_D = np.tile(F_D, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal( eotf_inverse_PQ_BT2100(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal( eotf_inverse_PQ_BT2100(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal( eotf_inverse_PQ_BT2100(F_D), E_p, decimal=7) def test_domain_range_scale_eotf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition domain and range scale support. """ F_D = 779.98836083408537 E_p = eotf_inverse_PQ_BT2100(F_D) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_inverse_PQ_BT2100(F_D * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition nan support. """ eotf_inverse_PQ_BT2100( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOotf_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition unit tests methods. """ def test_ootf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition. """ self.assertAlmostEqual(ootf_PQ_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( ootf_PQ_BT2100(0.1), 779.98836083411584, places=7) self.assertAlmostEqual( ootf_PQ_BT2100(1.0), 9999.993723673924300, places=7) def test_n_dimensional_ootf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition n-dimensional arrays support. """ E = 0.1 F_D = ootf_PQ_BT2100(E) E = np.tile(E, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(ootf_PQ_BT2100(E), F_D, decimal=7) E = np.reshape(E, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(ootf_PQ_BT2100(E), F_D, decimal=7) E = np.reshape(E, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(ootf_PQ_BT2100(E), F_D, decimal=7) def test_domain_range_scale_ootf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition domain and range scale support. """ E = 0.1 F_D = ootf_PQ_BT2100(E) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( ootf_PQ_BT2100(E * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_ootf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition nan support. """ ootf_PQ_BT2100(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOotf_inverse_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition unit tests methods. """ def test_ootf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition. """ self.assertAlmostEqual(ootf_inverse_PQ_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( ootf_inverse_PQ_BT2100(779.98836083411584), 0.1, places=7) self.assertAlmostEqual( ootf_inverse_PQ_BT2100(9999.993723673924300), 1.0, places=7) def test_n_dimensional_ootf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition n-dimensional arrays support. """ F_D = 779.98836083411584 E = ootf_inverse_PQ_BT2100(F_D) F_D = np.tile(F_D, 6) E = np.tile(E, 6) np.testing.assert_almost_equal( ootf_inverse_PQ_BT2100(F_D), E, decimal=7) F_D = np.reshape(F_D, (2, 3)) E = np.reshape(E, (2, 3)) np.testing.assert_almost_equal( ootf_inverse_PQ_BT2100(F_D), E, decimal=7) F_D = np.reshape(F_D, (2, 3, 1)) E = np.reshape(E, (2, 3, 1)) np.testing.assert_almost_equal( ootf_inverse_PQ_BT2100(F_D), E, decimal=7) def test_domain_range_scale_ootf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition domain and range scale support. """ F_D = 779.98836083411584 E = ootf_inverse_PQ_BT2100(F_D) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( ootf_inverse_PQ_BT2100(F_D * factor), E * factor, decimal=7) @ignore_numpy_errors def test_nan_ootf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition nan support. """ ootf_inverse_PQ_BT2100( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestGamma_function_HLG_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ gamma_function_HLG_BT2100` definition unit tests methods. """ def test_gamma_function_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ gamma_function_HLG_BT2100` definition. """ self.assertAlmostEqual( gamma_function_HLG_BT2100(1000.0), 1.2, places=7) self.assertAlmostEqual( gamma_function_HLG_BT2100(2000.0), 1.326432598178872, places=7) self.assertAlmostEqual( gamma_function_HLG_BT2100(4000.0), 1.452865196357744, places=7) self.assertAlmostEqual( gamma_function_HLG_BT2100(10000.0), 1.619999999999999, places=7) class TestOetf_HLG_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition unit tests methods. """ def test_oetf_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition. """ self.assertAlmostEqual(oetf_HLG_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( oetf_HLG_BT2100(0.18 / 12), 0.212132034355964, places=7) self.assertAlmostEqual( oetf_HLG_BT2100(1.0), 0.999999995536569, places=7) def test_n_dimensional_oetf_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition n-dimensional arrays support. """ E = 0.18 / 12 E_p = oetf_HLG_BT2100(E) E = np.tile(E, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal(oetf_HLG_BT2100(E), E_p, decimal=7) E = np.reshape(E, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal(oetf_HLG_BT2100(E), E_p, decimal=7) E = np.reshape(E, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal(oetf_HLG_BT2100(E), E_p, decimal=7) def test_domain_range_scale_oetf_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition domain and range scale support. """ E = 0.18 / 12 E_p = oetf_HLG_BT2100(E) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( oetf_HLG_BT2100(E * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_oetf_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition nan support. """ oetf_HLG_BT2100(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOetf_inverse_HLG_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition unit tests methods. """ def test_oetf_inverse_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition. """ self.assertAlmostEqual(oetf_inverse_HLG_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( oetf_inverse_HLG_BT2100(0.212132034355964), 0.18 / 12, places=7) self.assertAlmostEqual( oetf_inverse_HLG_BT2100(0.999999995536569), 1.0, places=7) def test_n_dimensional_oetf_inverse_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition n-dimensional arrays support. """ E_p = 0.212132034355964 E = oetf_inverse_HLG_BT2100(E_p) E_p = np.tile(E_p, 6) E = np.tile(E, 6) np.testing.assert_almost_equal( oetf_inverse_HLG_BT2100(E_p), E, decimal=7) E_p = np.reshape(E_p, (2, 3)) E = np.reshape(E, (2, 3)) np.testing.assert_almost_equal( oetf_inverse_HLG_BT2100(E_p), E, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) E = np.reshape(E, (2, 3, 1)) np.testing.assert_almost_equal( oetf_inverse_HLG_BT2100(E_p), E, decimal=7) def test_domain_range_scale_oetf_inverse_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition domain and range scale support. """ E_p = 0.212132034355964 E = oetf_inverse_HLG_BT2100(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( oetf_inverse_HLG_BT2100(E_p * factor), E * factor, decimal=7) @ignore_numpy_errors def test_nan_oetf_inverse_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition nan support. """ oetf_inverse_HLG_BT2100( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_HLG_BT2100_1(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition unit tests methods. """ def test_eotf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition. """ self.assertAlmostEqual(eotf_HLG_BT2100_1(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_1(0.212132034355964), 6.476039825649814, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_1(1.0), 1000.000032321769100, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_1(0.212132034355964, 0.001, 10000, 1.4), 27.96039175299561, places=7) def test_n_dimensional_eotf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition n-dimensional arrays support. """ E_p = 0.212132034355964 F_D = eotf_HLG_BT2100_1(E_p) E_p = np.tile(E_p, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (6, 1)) F_D = np.reshape(F_D, (6, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.array([0.25, 0.50, 0.75]) F_D = np.array([12.49759413, 49.99037650, 158.94693786]) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.tile(E_p, (6, 1)) F_D = np.tile(F_D, (6, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 3)) F_D = np.reshape(F_D, (2, 3, 3)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) def test_domain_range_scale_eotf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition domain and range scale support. """ E_p = 0.212132034355964 F_D = eotf_HLG_BT2100_1(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_HLG_BT2100_1(E_p * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition nan support. """ eotf_HLG_BT2100_1(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_HLG_BT2100_2(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition unit tests methods. """ def test_eotf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition. """ self.assertAlmostEqual(eotf_HLG_BT2100_2(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_2(0.212132034355964), 6.476039825649814, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_2(1.0), 1000.000032321769100, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_2(0.212132034355964, 0.001, 10000, 1.4), 29.581261576946076, places=7) def test_n_dimensional_eotf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition n-dimensional arrays support. """ E_p = 0.212132034355964 F_D = eotf_HLG_BT2100_2(E_p) E_p = np.tile(E_p, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (6, 1)) F_D = np.reshape(F_D, (6, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.array([0.25, 0.50, 0.75]) F_D = np.array([12.49759413, 49.99037650, 158.94693786]) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.tile(E_p, (6, 1)) F_D = np.tile(F_D, (6, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 3)) F_D = np.reshape(F_D, (2, 3, 3)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) def test_domain_range_scale_eotf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition domain and range scale support. """ E_p = 0.212132034355964 F_D = eotf_HLG_BT2100_2(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_HLG_BT2100_2(E_p * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition nan support. """ eotf_HLG_BT2100_2(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_inverse_HLG_BT2100_1(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition unit tests methods. """ def test_eotf_inverse_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition. """ self.assertAlmostEqual(eotf_inverse_HLG_BT2100_1(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_1(6.476039825649814), 0.212132034355964, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_1(1000.000032321769100), 1.0, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_1(27.96039175299561, 0.001, 10000, 1.4), 0.212132034355964, places=7) def test_n_dimensional_eotf_inverse_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition n-dimensional arrays support. """ F_D = 6.476039825649814 E_p = eotf_inverse_HLG_BT2100_1(F_D) F_D = np.tile(F_D, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (6, 1)) E_p = np.reshape(E_p, (6, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.array([12.49759413, 49.99037650, 158.94693786]) E_p = np.array([0.25, 0.50, 0.75]) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.tile(F_D, (6, 1)) E_p = np.tile(E_p, (6, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 3)) E_p = np.reshape(E_p, (2, 3, 3)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) def test_domain_range_scale_eotf_inverse_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition domain and range scale support. """ F_D = 6.476039825649814 E_p = eotf_inverse_HLG_BT2100_1(F_D) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_inverse_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition nan support. """ eotf_inverse_HLG_BT2100_1( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_inverse_HLG_BT2100_2(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_2` definition unit tests methods. """ def test_eotf_inverse_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_2` definition. """ self.assertAlmostEqual(eotf_inverse_HLG_BT2100_2(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_2(6.476039825649814), 0.212132034355964, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_2(1000.000032321769100), 1.0, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_2(29.581261576946076, 0.001, 10000, 1.4), 0.212132034355964, places=7) def test_n_dimensional_eotf_inverse_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_2` definition n-dimensional arrays support. """ F_D = 6.476039825649814 E_p = eotf_inverse_HLG_BT2100_2(F_D) F_D = np.tile(F_D, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (6, 1)) E_p = np.reshape(E_p, (6, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D = np.array([12.49759413, 49.99037650, 158.94693786]) E_p = np.array([0.25, 0.50, 0.75]) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D = np.tile(F_D, (6, 1)) E_p = np.tile(E_p, (6, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 3)) E_p = np.reshape(E_p, (2, 3, 3)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) def test_domain_range_scale_eotf_inverse_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_2` definition domain and range scale support. """ F_D = 6.476039825649814 E_p = eotf_inverse_HLG_BT2100_2(F_D) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_inverse_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_2` definition nan support. """ eotf_inverse_HLG_BT2100_2( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOotf_HLG_BT2100_1(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_HLG_BT2100_1` definition unit tests methods. """ def test_ootf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_HLG_BT2100_1` definition. """ self.assertAlmostEqual(ootf_HLG_BT2100_1(0.0), 0.0, places=7) self.assertAlmostEqual( ootf_HLG_BT2100_1(0.1), 63.095734448019336, places=7) self.assertAlmostEqual(ootf_HLG_BT2100_1(1.0), 1000.0, places=7) self.assertAlmostEqual( ootf_HLG_BT2100_1(0.1, 0.001, 10000, 1.4), 398.108130742780300, places=7) a = np.array( [[45.884942278760597, 0.000000000000000, -45.884942278760597], [ -63.095734448019336, -63.095734448019336, -63.095734448019336 ], [63.095734448019336, 63.095734448019336, 63.095734448019336], [51.320396090100672, -51.320396090100672, 51.320396090100672]], ) np.testing.assert_almost_equal( ootf_HLG_BT2100_1( np.array([[0.1, 0.0, -0.1], [-0.1, -0.1, -0.1], [0.1, 0.1, 0.1], [0.1, -0.1, 0.1]])), a, decimal=7) def test_n_dimensional_ootf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_HLG_BT2100_1` definition n-dimensional arrays support. """ E = 0.1 F_D = ootf_HLG_BT2100_1(E) E = np.tile(E, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(ootf_HLG_BT2100_1(E), F_D, decimal=7) E = np.reshape(E, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(ootf_HLG_BT2100_1(E), F_D, decimal=7) E = np.reshape(E, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(ootf_HLG_BT2100_1(E), F_D, decimal=7) E = np.reshape(E, (6, 1)) F_D = np.reshape(F_D, (6, 1)) np.testing.assert_almost_equal(ootf_HLG_BT2100_1(E), F_D, decimal=7) E = np.array([0.25, 0.50, 0.75]) F_D = np.array([213.01897444, 426.03794887, 639.05692331]) np.testing.assert_almost_equal(ootf_HLG_BT2100_1(E), F_D, decimal=7) E = np.tile(E, (6, 1)) F_D = np.tile(F_D, (6, 1)) np.testing.assert_almost_equal(ootf_HLG_BT2100_1(E), F_D, decimal=7) E = np.reshape(E, (2, 3, 3)) F_D = np.reshape(F_D, (2, 3, 3)) np.testing.assert_almost_equal(ootf_HLG_BT2100_1(E), F_D, decimal=7) def test_domain_range_scale_ootf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_HLG_BT2100_1` definition domain and range scale support. """ E = 0.1 F_D = ootf_HLG_BT2100_1(E) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( ootf_HLG_BT2100_1(E * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_ootf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_HLG_BT2100_1` definition nan support. """ ootf_HLG_BT2100_1(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOotf_HLG_BT2100_2(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_HLG_BT2100_2` definition unit tests methods. """ def test_ootf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_HLG_BT2100_2` definition. """ self.assertAlmostEqual(ootf_HLG_BT2100_2(0.0), 0.0, places=7) self.assertAlmostEqual( ootf_HLG_BT2100_2(0.1), 63.095734448019336, places=7) self.assertAlmostEqual(ootf_HLG_BT2100_2(1.0), 1000.0, places=7) self.assertAlmostEqual( ootf_HLG_BT2100_2(0.1, 10000, 1.4), 398.107170553497380, places=7) a = np.array([ [45.884942278760597, 0.000000000000000, -45.884942278760597], [-63.095734448019336, -63.095734448019336, -63.095734448019336], [63.095734448019336, 63.095734448019336, 63.095734448019336], [51.320396090100672, -51.320396090100672, 51.320396090100672], ], ) np.testing.assert_almost_equal( ootf_HLG_BT2100_2( np.array([[0.1, 0.0, -0.1], [-0.1, -0.1, -0.1], [0.1, 0.1, 0.1], [0.1, -0.1, 0.1]])), a, decimal=7) def test_n_dimensional_ootf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_HLG_BT2100_2` definition n-dimensional arrays support. """ E = 0.1 F_D = ootf_HLG_BT2100_2(E) E = np.tile(E, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(ootf_HLG_BT2100_2(E), F_D, decimal=7) E = np.reshape(E, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(ootf_HLG_BT2100_2(E), F_D, decimal=7) E = np.reshape(E, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(ootf_HLG_BT2100_2(E), F_D, decimal=7) E = np.reshape(E, (6, 1)) F_D = np.reshape(F_D, (6, 1)) np.testing.assert_almost_equal(ootf_HLG_BT2100_2(E), F_D, decimal=7) E = np.array([0.25, 0.50, 0.75]) F_D = np.array([213.01897444, 426.03794887, 639.05692331]) np.testing.assert_almost_equal(ootf_HLG_BT2100_2(E), F_D, decimal=7) E = np.tile(E, (6, 1)) F_D =
np.tile(F_D, (6, 1))
numpy.tile
""" The module 'solver' contains the LeeWaveSolver class, which allows solution of the 2D, steady, linear, lee wave problem. """ import numpy as np from numpy import pi import matplotlib.pyplot as plt import xarray as xr import scipy.fft as fft import cmocean class LeeWaveSolver: """ A 2D, steady, linear, solver for lee waves Given user preferences of domain size, topography, background flow, upper boundary type, rotation, viscosity/diffusivity, and hydrostatic/nonhydrostatic, LeeWaveSolver solves the linear lee wave problem and finds the wave variables and energy diagnostics. Attributes ---------- nx : int Grid size in the horizontal x-direction. Set in class initialisation. Should be even, default: 800 nz : int Grid size in the vertical z-direction. Set in class initialisation. Should be odd, default: 201 nm : int Number of modes to be used in Galerkin solver. Set in class initialisation. Should be less than nz, default: 200 H : int Fluid depth in metres. Set in class initialisation. Default 3000. L : int Horizontal domain half-length in metres. Set in class initialisation. Default 20000. dx : float Horizontal grid spacing. Set by solver and shouldn't be changed. x : np.ndarray Horizontal x coordinate, length nx. Set by solver and shouldn't be changed. dz : float Vertical grid spacing. Set by solver and shouldn't be changed. z : np.ndarray Vertical z coordinate, length nz. Set by solver and shouldn't be changed. h_topo : np.ndarray Topographic height, length nx. Set by method set_topo(), defaults to Gaussian. U : np.ndarray Vertical profile of background flow speed, length nz. Set by method set_mean_velocity(). Defaults to a uniform 0.1 m/s. U_type : str Type of background flow speed, 'Uniform', 'Linear', or 'Custom'. Set by parameter to set_mean_velocity(), defaults to 'Uniform'. N : np.ndarray Vertical profile of background buoyancy frequency N (stratification), length nz. Set by method set_mean_stratification(). Defaults to a uniform 0.001 s^{-1}. uniform_mean : bool True if background flows are uniform (speeds up solver). False otherwise. Set internally. f : float Coriolis parameter (s^{-1}). Set as a parameter to solve(), defaults to 0. Ah : float Horizontal Laplacian viscosity (m^2/s). Set as a parameter to solve(), defaults to 1 m^2/s. Dh : float Horizontal Laplacian diffusivity (m^2/s). Set as a parameter to solve(), defaults to Ah. rho_0 : float Reference density (kg/m^3). Set in initialisation of class. Default 1027 kg/m^3. hydrostatic : bool True if using hydrostatic approximation, False otherwise. Set as a parameter to solve(), defaults to False. open_boundary : bool True if using a freely radiating upper boundary, False for a rigid lid boundary condition. Set as a parameter to solve(), defaults to True. wave_fields : xarray.core.dataset.Dataset Dataset created by method solve() containing solution wave fields and background flow. None until solve() is called diags : xarray.core.dataset.Dataset Dataset created by method solve() containing 1D and 2D energy diagnostics. None until solve() is called Methods ------- set_topo(topo_type='Gaussian', h0=50, width=1000, k_topo=2 * pi / 5000, k_max=0.01, k_min=0.001, K0=2.3e-4, L0=1.3e-4, mu=3.5, h_input=None) Sets the topography according to user preferences. set_mean_velocity(U_type='Uniform', U_0=0.1, U_H=0.3, U_input=None) Sets the mean (background) vertical velocity profile according to user preferences. set_mean_stratification(N_type='Uniform', N_0=0.001, N_H=0.003, N_input=None) Sets the mean (background) vertical buoyancy frequency (N) profile according to user preferences. plot_inputs() Show a plot of the topography, background velocity and stratification profiles. solve(f=0, open_boundary=True, hydrostatic=True, Ah=1.0, Dh=None) Solves the given lee wave problem. plot(array) Custom plotting function to easily create 1D profiles or 2D pcolormesh plots of an field from wave_fields or diags """ def __init__(self, nx=800, nz=201, nm=200, H=3000, L=20000, rho_0=1027.): """ Parameters ---------- nx : int Grid size in the horizontal x-direction. Should be even, default: 800 nz : int Grid size in the vertical z-direction. Should be odd, default: 201 nm : int Number of modes to be used in Galerkin solver. Should be less than nz, default: 200 H : int Fluid depth in metres, default 3000. L : int Horizontal domain half-length in metres, default 20000. rho_0 : float Reference density (kg/m^3), default 1027 kg/m^3. """ if nx % 2 != 0 or nz % 2 != 1: raise ValueError('nx should be even and nz should be odd') # Initialise attributes self.nx = nx self.nz = nz self.nm = nm self.H = H self.L = L self.dx = 2 * self.L / self.nx self.x = np.linspace(-self.L, self.L - self.dx, self.nx) self.dz = self.H / self.nz self.z = np.linspace(0, self.H, self.nz) self.h_topo = None self.U = 0.1 * np.ones_like(self.z) self.U_type = 'Uniform' self.N = 0.001 * np.ones_like(self.z) self.uniform_mean = True self.f = 0. self.Ah = 0. self.Dh = 0. self.rho_0 = float(rho_0) self.hydrostatic = False self.open_boundary = True self.wave_fields = None self.diags = None # Call methods to initialise topography and background flow to default. self.set_topo() self.set_mean_velocity() self.set_mean_stratification() def set_topo(self, topo_type='Gaussian', h0=50., width=1000, k_topo=2 * pi / 5000, k_max=0.01, k_min=0.001, K0=2.3e-4, L0=1.3e-4, mu=3.5, h_input=None): """ Finds topography given by user preference and sets internally as an attribute to the solver. Parameters ---------- topo_type : str Type of topography to create. - 'Gaussian' creates h(x) = h0*exp(-x**2/width**2), uses only h0 and width - 'WitchOfAgnesi' creates h(x) = h0/(1 + x**2/width**2), uses only h0 and width - 'Monochromatic' creates h(x) = h0*cos(k_topo*x), uses only h0 and k_topo. If a full number of wavelengths doesn't fit in the horizontal domain, the domain half-length L and x will be adjusted. - 'GJ98' creates topography according to the Goff & Jordan (1998) theoretical spectrum. The 2D spectrum is integrated over cross-stream wavenumbers l to get a 1D spectrum. k_min is the minimum wavelength cutoff, k_max is the maximum wavelength cutoff, K0 is the rolloff k-wavenumber, L0 is the rolloff l-wavenumber, mu/2 is the 'slope'. Default parameters are as described for the Drake Passage in Nikurashin & Ferrari (2010b). The resulting topography is normalised so that the RMS height is h0. - 'Custom' allows the user to input a topographic profile h(x) in h_input, it must have the same shape as x. h0 : float Topographic height (m), used in 'Gaussian', 'WitchOfAgnesi', 'Monochromatic', and 'GJ98' topography types. Defaults to 50m. width : float Topographic width (m), used in 'Gaussian' and 'WitchOfAgnesi' topography types. Defaults to 1000m. k_topo : float Topographic wavenumber (rad/m), used in 'Monochromatic' topography. Defaults to 2*pi/5000 rad/m. k_max : float Maximum wavenumber cutoff (rad/m), used in 'GJ1998' topography. Usually N/U. Defaults to 0.01 rad/m. k_min : float Minimum wavenumber cutoff (rad/m), used in 'GJ1998' topography. Usually f/U. Defaults to 0.001 rad/m. K0 : float Rolloff wavenumber in x, used in 'GJ1998' topography. Defaults to 2.3e-4 rad/m. L0 : float Rolloff wavenumber in y, used in 'GJ1998' topography. Defaults to 1.3e-4 rad/m. mu : float Slope parameter, used in 'GJ1998' topography. Defaults to 3.5. h_input : np.ndarray User input topography, length nx. Used in 'Custom' topography """ if topo_type == 'Gaussian': if h0 > self.H: raise ValueError('Topography height should be less than domain height') elif width > self.L / 5: raise ValueError('Topography width is too large compared to the length of domain') self.h_topo = h0 * np.exp(-self.x ** 2 / width ** 2) elif topo_type == 'WitchOfAgnesi': if h0 > self.H: raise ValueError('Topography height should be less than domain height') elif width > self.L / 5: raise ValueError('Topography width is too large compared to the length of domain') self.h_topo = h0 / (1 + self.x ** 2 / width ** 2) elif topo_type == 'Monochromatic': if h0 > self.H: raise ValueError('Topography height should be less than domain height') elif k_topo < 2 * pi / self.L: raise ValueError('Topography width is too large compared to the length of domain') lam = 2 * pi / k_topo n = self.L / lam if round(n) != n: self.L = lam * round(n) self.dx = 2 * self.L / self.nx self.x = np.linspace(-self.L, self.L - self.dx, self.nx) warnings.warn( f'Domain width L has been adjusted to {self.L:.2f}m to allow topography with wavelength {lam:.2f}m') self.h_topo = h0 * np.cos(self.x * k_topo) elif topo_type == 'GJ98': if h0 > self.H: raise ValueError('Topography height should be less than domain height') self.h_topo = self.__GJ98topo(h0, k_max, k_min, K0, L0, mu) elif topo_type == 'Custom': if h_input is None: raise ValueError('Topography needs to be given in \'h_input\'') elif len(h_input) != len(self.x): raise ValueError('\'h_input\' should be the same length as x (solver.x)') self.h_topo = h_input self.h_topo -= np.min(self.h_topo) def set_mean_velocity(self, U_type='Uniform', U_0=0.1, U_H=0.3, U_input=None): """ Finds velocity profile given by user preference and sets internally as an attribute to the solver. Parameters ---------- U_type: str Type of background velocity profile to create - 'Uniform' creates U(z) as a uniform profile of length nz with value U_0. Uses only U_0. - 'Linear' creates U(z) as a linear profile of length nz with bottom value U_0 and surface value U_H. Uses U_0 and U_H. - 'Custom' creates a user input velocity profile given by U_input. Must be of length nz. For a strictly 2D background flow, geostrophic balance requires fU_zz = 0. Be aware of this if you choose a non-constant shear. U_0 : float Bottom flow speed (m/s). Used in 'Uniform' and 'Linear' profiles, defaults to 0.1m/s. U_H : float Surface flow speed (m/s). Used in 'Linear' profile, defaults to 0.3m/s. U_input: np.ndarray User input velocity profile, length nz, used in 'Custom' type. """ self.U_type = U_type if U_type == 'Uniform': self.U = U_0 * np.ones_like(self.z) elif U_type == 'Linear': self.uniform_mean = False self.U = U_0 + (U_H - U_0) / self.H * self.z elif U_type == 'Custom': self.uniform_mean = False if U_input is None: raise ValueError('U needs to be given in \'U_input\'') elif len(U_input) != len(self.z): raise ValueError('\'U_input\' should be the same length as z (solver.z)') self.U = U_input def set_mean_stratification(self, N_type='Uniform', N_0=0.001, N_H=0.003, N_input=None): """ Finds buoyancy frequency profile given by user preference and sets internally as an attribute to the solver. Parameters ---------- N_type: str Type of background stratification profile to create - 'Uniform' creates N(z) as a uniform profile of length nz with value N_0. Uses only N_0. - 'Linear' creates N(z) as a linear profile of length nz with bottom value N_0 and surface value N_H. Uses N_0 and N_H. - 'Custom' creates a user input stratification profile given by N_input. Must be of length nz. N_0 : float Bottom buoyancy frequency (s^{-1}). Used in 'Uniform' and 'Linear' profiles, defaults to 0.001s^{-1}. N_H : float Surface buoyancy frequency (s^{-1}). Used in 'Linear' profile, defaults to 0.003s^{-1}. N_input: np.ndarray User input buoyancy frequency profile, length nz, used in 'Custom' type. """ if N_type == 'Uniform': self.N = N_0 * np.ones_like(self.z) elif N_type == 'Linear': self.uniform_mean = False self.N = N_0 + (N_H - N_0) / self.H * self.z elif N_type == 'Custom': self.uniform_mean = False if N_input is None: raise ValueError('N needs to be given in \'N_input\'') elif len(N_input) != len(self.z): raise ValueError('\'N_input\' should be the same length as z (solver.z)') self.N = N_input def plot_inputs(self): """ Show a plot of the topography, background velocity and stratification profiles.""" plt.rcParams.update({'font.size': 20}) fig, axes = plt.subplots(1, 3, gridspec_kw={'width_ratios': [3, 1, 1]}, figsize=(30, 7)) axes[0].fill(np.append(np.insert(self.x, 0, -self.L), self.L), np.append(np.insert(self.h_topo, 0, np.min(self.h_topo)), np.min(self.h_topo)), 'k') axes[0].set_xlabel('x [m]') axes[0].set_ylabel('Height above bottom [m]') axes[0].set_ylim([0, self.H]) axes[0].set_xlim([-self.L, self.L]) axes[1].plot(self.U, self.z, 'r', linewidth=3) axes[1].set_xlabel('U [m/s]') # axes[1].set_ylabel('Height above bottom [m]') axes[1].set_ylim([0, self.H]) axes[2].plot(self.N, self.z, 'b', linewidth=3) axes[2].set_xlabel('N [1/s]') # axes[2].set_ylabel('Height above bottom [m]') axes[2].set_ylim([0, self.H]) fig.suptitle('Topography and background flow input to the lee wave solver') plt.show() def solve(self, f=0, open_boundary=True, hydrostatic=True, Ah=1.0, Dh=None): """ Method to solve linear lee wave problem with the previously set/ default flow and domain. Creates the solver attributes 'wave_fields' and 'diags'. Parameters ---------- f : float Coriolis parameter (s^{-1}), defaults to 0. open_boundary : bool True if using a freely radiating upper boundary, False for a rigid lid boundary condition. Defaults to True. hydrostatic : bool True if using hydrostatic approximation, False otherwise. Defaults to False. Ah : float Horizontal Laplacian viscosity (m^2/s). Defaults to 1 m^2/s. Dh : float Horizontal Laplacian diffusivity (m^2/s). Defaults to Ah. """ self.f = float(f) self.open_boundary = open_boundary self.hydrostatic = hydrostatic self.Ah = float(Ah) self.Dh = float(Dh) if Dh is not None else float(Ah) # First check the inputs are consistent, raise errors or warn if not: self.__check_inputs() # Find the transformed topography and truncated and full wavenumber vectors k_full, k_trunc, h_topo_hat, h_topo_hat_trunc = self.__transform_topo() # Define the coefficients of the ODE P, Q = self.__ODEcoeffs(k_trunc) # Solve for the Fourier transformed wave fields psi_hat, u_hat, v_hat, w_hat, b_hat, p_hat = self.__fourier_solve(k_full, k_trunc, h_topo_hat_trunc, P, Q) # Invert to give the real space wave fields psi = self.__inverse_transform(psi_hat) u = self.__inverse_transform(u_hat) v = self.__inverse_transform(v_hat) w = self.__inverse_transform(w_hat) b = self.__inverse_transform(b_hat) p = self.__inverse_transform(p_hat) # Get 2D background fields if self.uniform_mean: U_2D = np.ones((self.nx, self.nz)) * self.U N2_2D = np.ones((self.nx, self.nz)) * self.N ** 2 B_2D = np.cumsum(N2_2D, 1) * self.dz else: U_2D = np.tile(np.expand_dims(self.U, 0), [self.nx, 1]) N2_2D = np.tile(np.expand_dims(self.N ** 2, 0), [self.nx, 1]) B_2D = np.cumsum(N2_2D, 1) * self.dz # Package everything into a datasets for output self.wave_fields = self.__make_wave_fields_dataset(k_full, psi, u, v, w, b, p, h_topo_hat, psi_hat, u_hat, v_hat, w_hat, b_hat, p_hat, U_2D, B_2D, N2_2D) self.diags = self.__make_diags_dataset() def plot(self, array, vmin = 'default',vmax='default'): """ Simple plotting function to plot output variables from solver. Uses matplotlib.pyplot and xarray plotting functionality. If array given is 1D, creates a line plot. If array is 2D, creates a pcolormesh plot, with topography shown. Parameters ---------- array : xarray.core.dataset.Dataset Output array created from calling solve(). Can be an array from 'wave_variables' or 'diags'. """ plt.rcParams.update({'font.size': 14}) if vmin == 'default': vmin = array.min().values if vmax == 'default': vmax = array.max().values if len(array.dims) == 0: print('Needs more than one dimension to make a plot') elif len(array.dims) == 1: fig, ax = plt.subplots(1, 1, figsize=(5, 10)) array.plot(y='z', linewidth=2, ax=ax) else: fig, ax = plt.subplots(1, 1, figsize=(15, 7)) if (array.min() < 0) & (array.max() > 0): # Want a symmetric colormap cmap = cmocean.cm.balance array.plot(y='z', ax=ax, cmap=cmap) ax.fill(np.append(np.insert(self.x, 0, -self.L), self.L), np.append(np.insert(self.h_topo, 0, np.min(self.h_topo)), np.min(self.h_topo)), 'k') ax.set_ylim([np.min(self.h_topo), self.H]) else: cmap = cmocean.cm.thermal array.plot(y='z', ax=ax, cmap=cmap, vmin=vmin, vmax=vmax) ax.fill(np.append(np.insert(self.x, 0, -self.L), self.L), np.append(np.insert(self.h_topo, 0, np.min(self.h_topo)), np.min(self.h_topo)), 'k') ax.set_ylim([np.min(self.h_topo), self.H]) plt.show() def __GJ98topo(self, h0=25, k_max=0.01, k_min=0.001, K0=2.3e-4, L0=1.3e-4, mu=3.5): """ Called by set_topo(), creates a realisation of the Goff Jordan (1998) theoretical topography spectrum.""" # Define spectral vectors: l = pi / self.L * np.arange(-self.nx / 2, self.nx / 2) k = pi / self.L * np.arange(-self.nx / 2, self.nx / 2) lm, km =
np.meshgrid(l, k)
numpy.meshgrid