prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ Created on Tue Dec 10 14:26:54 2019 @author: Mnemosyne Functions to compute the features of the song """ import os import shutil import glob import sys import random import re import numpy as np import scipy as sp import scipy.io.wavfile as wav from scipy.fftpack import fft, rfft from scipy.optimize import curve_fit import scipy.signal as signal from scipy.stats.mstats import gmean from sklearn.cluster import KMeans from pydub import AudioSegment from pydub import silence import matplotlib.pyplot as plt import matplotlib.colors as colors from mpl_toolkits.mplot3d import axes3d import matplotlib.colors as colors from threading import Thread import librosa.feature import librosa.effects from songbird_data_analysis import Song_functions # Onset and offset of the syllables: to compute duration of syllables and gaps def cut(rawsong, sr, threshold, min_syl_dur, min_silent_dur, f_cut_min, f_cut_max): """ This function is meant to be used on a single recording, create an external loop to apply on several recordings (see function distribution). VARIABLES: - rawsong: the wav file a song - sr: sampling rate OUTPUT: - onset and offset of each syllable of the song So for syllable 1 of a song, its onset is onsets[0] and its offset is offsets[0]. To get that segment of the spectrogram, you'd take spect[:,onsets[0]:offsets[0]] """ # parameters that might be adjusted dependending on the bird rawsong = rawsong.astype(float) rawsong = rawsong.flatten() amp = Song_functions.smooth_data(rawsong,sr,freq_cutoffs=(f_cut_min, f_cut_max)) (onsets, offsets) = Song_functions.segment_song(amp,segment_params={'threshold': threshold, 'min_syl_dur': min_syl_dur, 'min_silent_dur': min_silent_dur},samp_freq=sr) # Detects syllables according to the threshold you set return amp, onsets, offsets def test_features(songfile, args): """ A function to tune the parameter depending on the dataset and test the feature extraction INPUT: One recording. OUTPUT - plot of the spectrogram, onset & offset and amplitude of the selected syllables - plot the pitches - plot the coupling of the features two by two """ # read the data sr, samples = wav.read(songfile[0]) y, sr = librosa.load(songfile[0], sr=16000) # determine onset and offset of the syllables for this song amp, onsets, offsets = cut(samples, sr, args.threshold, args.min_syl_dur, args.min_silent_dur, args.f_cut_min, args.f_cut_max) # Make output directory aux_output_dir = os.path.join(args.data_dir,args.output_dir) if not os.path.isdir(aux_output_dir): os.makedirs(aux_output_dir) os.chdir(aux_output_dir) # Spectrogram with librosa X = librosa.stft(y, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) Y = np.log(1 + 100 * np.abs(X) ** 2) T_coef = np.arange(X.shape[1]) * args.H / sr K = args.N // 2 F_coef = np.arange(K + 1) * sr / args.N # Plot noverlap = args.nperseg - args.overlap fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, sharex=True) # Plots spectrogram #(f,t,spect)=sp.signal.spectrogram(samples, sr, args.window, args.nperseg, noverlap, mode='complex') #ax1.imshow(10*np.log10(np.square(abs(spect))), origin="lower", aspect="auto", interpolation="none", extent=[0, max(t)*1000, min(f), max(f)], cmap = 'inferno') extent = [T_coef[0], T_coef[-1], F_coef[0], 8000] ax1.imshow(Y, cmap=args.color, aspect='auto', origin='lower', extent=extent, norm=colors.PowerNorm(gamma=0.2)) ax1.set_ylabel('Frequency (Hz)') # Plots song signal amplitude x_amp=np.arange(len(amp)) ax2.plot(x_amp/sr*1000,samples,color='grey') for i in range(0,len(onsets)): ax2.axvline(x=onsets[i]/sr*1000,color='olivedrab',linestyle='dashed') ax2.axvline(x=offsets[i]/sr*1000,color='darkslategrey',linestyle='dashed') ax2.set_ylabel('Amplitude (V)') # Plot smoothed amplitude of the song as per spectrogram index ax3.plot(x_amp/sr*1000, amp,color='grey') for i in range(0,len(onsets)): ax3.axvline(x=onsets[i]/sr*1000,color='olivedrab',linestyle='dashed') ax3.axvline(x=offsets[i]/sr*1000,color='darkslategrey',linestyle='dashed') ax3.axhline(y=args.threshold,color='black',label='Threshold') ax3.legend() ax3.set_ylabel('Amplitude (V)') ax3.set_xlabel('Time (ms)') ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.spines['bottom'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['top'].set_visible(False) ax2.spines['bottom'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.spines['top'].set_visible(False) ax3.spines['bottom'].set_visible(False) ax1.tick_params(axis='x', labelbottom=False, bottom=False) ax2.tick_params(axis='x', labelbottom=False, bottom=False) ax3.tick_params(axis='x', labelbottom=True, bottom=True) plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'Test_selection_0' + '.' + args.format) # Duration, spectral flatness, mean pitch dur_syll = np.zeros((np.size(onsets),)) dur_gap = np.zeros((np.size(onsets),)) wiener = np.zeros((np.size(onsets),)) mean_pitch = np.zeros((np.size(onsets),)) max_pitch = np.zeros((np.size(onsets),)) min_pitch = np.zeros((np.size(onsets),)) direction_pitch = np.zeros((np.size(onsets),)) for j in range(0,np.size(onsets)): # Syllable duration dur_syll[j] = offsets[j] - onsets[j] if j<(np.size(onsets)-1): dur_gap[j] = onsets[j+1] - offsets[j] # Spectral flatness/wiener entropy wiener[j] = np.mean(librosa.feature.spectral_flatness(samples[onsets[j]:offsets[j]].astype(np.float))) # Pitch detection, max and min frequency pitches, magnitudes = librosa.core.piptrack(samples[onsets[j]:offsets[j]].astype(np.float), sr=sr, n_fft=256, fmin=1000, fmax=8000) #, win_length=100) pitches_all = 0 for interval in range(0,magnitudes.shape[1]): index = magnitudes[:,interval].argmax() pitches_all = np.append(pitches_all,pitches[index,interval]) pitches_all = pitches_all[np.nonzero(pitches_all)] mean_pitch[j] = np.mean(pitches_all) max_pitch[j] = np.max(pitches_all) min_pitch[j] = np.min(pitches_all) if pitches_all[0]<pitches_all[-1]: direction_pitch[j] = 1 else: direction_pitch[j] = -1 np.save('pitches_syll_' + str(j) + '.npy', pitches_all) # Plot all the pitches colors_list = list(colors._colors_full_map.values())[0::5] fig, ax = plt.subplots() #(f, t, spect) = sp.signal.spectrogram(samples, sr, args.window, args.nperseg, noverlap, mode='complex') #ax.imshow(10 * np.log10(np.square(abs(spect))), origin="lower", aspect="auto", interpolation="none", extent=[0, max(t) * 1000, min(f), max(f)], cmap='inferno') extent = [T_coef[0], T_coef[-1], F_coef[0], 8000] ax.imshow(Y, cmap=args.color, aspect='auto', origin='lower', extent=extent, norm=colors.PowerNorm(gamma=0.2)) for j in range(0, np.size(onsets)): pitches_all= np.load('pitches_syll_' + str(j) + '.npy') x = np.linspace(onsets[j]/sr*1000, offsets[j]/sr*1000 - 25, np.size(pitches_all)) ax.plot(x, pitches_all, 'o', c=colors_list[j]) plt.ylabel('Frequency(Hz)') plt.xlabel('Time(ms)') plt.title('Pitch') plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'syll_pitch.' + args.format) # Mean pitch over the interval of computation x_axis_pitches = np.zeros((np.size(samples),)) for j in range(0, np.size(onsets)): x_axis_pitches[int(np.mean([onsets[j], offsets[j]]) / sr * 1000)] = mean_pitch[j] x_axis_pitches_max = np.zeros((np.size(samples),)) for j in range(0, np.size(onsets)): x_axis_pitches_max[int(np.mean([onsets[j], offsets[j]]) / sr * 1000)] = max_pitch[j] x_axis_pitches_min = np.zeros((np.size(samples),)) for j in range(0, np.size(onsets)): x_axis_pitches_min[int(np.mean([onsets[j], offsets[j]]) / sr * 1000)] = min_pitch[j] # Plot the mean, min and max pitches fig, ax = plt.subplots() #ax.imshow(10 * np.log10(np.square(abs(spect))), origin="lower", aspect="auto", interpolation="none", extent=[0, max(t) * np.size(samples), min(f), max(f)], cmap='inferno') extent = [T_coef[0], T_coef[-1], F_coef[0], 8000] ax.imshow(Y, cmap=args.color, aspect='auto', origin='lower', extent=extent, norm=colors.PowerNorm(gamma=0.2)) ax.plot(x_axis_pitches, color='black', linewidth=0, markersize=4, marker='X', label='mean') ax.plot(x_axis_pitches_max, color='red', linewidth=0, markersize=4, marker='*', label='max') ax.plot(x_axis_pitches_min, color='red', linewidth=0, markersize=4, marker='*', label='min') ax.legend() ax.set_xlim([0, T_coef[-1]]) plt.ylabel('Frequency(Hz)') plt.xlabel('Time(ms)') plt.title('Pitch') plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'Pitch.' + args.format) # Cumulative plot fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(15,9)) # Plot the spectrogram #ax3.imshow(10*np.log10(np.square(abs(spect))), origin="lower", aspect="auto", interpolation="none", extent=[0, max(t)*1000, min(f), max(f)], cmap = 'inferno') ax1.imshow(Y, cmap=args.color, aspect='auto', origin='lower', extent=extent, norm=colors.PowerNorm(gamma=0.2)) ax1.set_ylabel('Frequency(Hz)', fontsize=15) ax1.set_xticks([]) ax1.title.set_text('Spectrogram') # Plots song signal amplitude x_amp = np.arange(len(amp)) ax2.plot(x_amp / sr * 1000, amp, color='grey', label='_Hidden label') for i in range(0, len(onsets)-2): ax2.axvline(x=onsets[i] / sr * 1000, color='olivedrab', linestyle='dashed') ax2.axvline(x=offsets[i] / sr * 1000, color='darkslategrey', linestyle='dashed') ax2.axvline(x=onsets[len(onsets)-1] / sr * 1000, color='olivedrab', linestyle='dashed', label='Onset') ax2.axvline(x=offsets[len(onsets)-1] / sr * 1000, color='darkslategrey', linestyle='dashed', label='Offset') ax2.legend() ax2.set_ylabel('Amplitude (V)', fontsize=15) ax2.title.set_text('Selection') plt.xlabel('Time(ms)', fontsize=15) plt.tight_layout() plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'Summary.' + args.format) # Cumulative plot 2 fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(15, 15)) # Plots song signal amplitude x_amp = np.arange(len(amp)) ax1.plot(x_amp / sr * 1000, amp, color='grey') for i in range(0, len(onsets)): ax1.axvline(x=onsets[i] / sr * 1000, color='olivedrab', linestyle='dashed') ax1.axvline(x=offsets[i] / sr * 1000, color='darkslategrey', linestyle='dashed') ax1.set_ylabel('Amplitude (V)') ax1.title.set_text('Syllable selection') # Plot all the pitches #(f, t, spect) = sp.signal.spectrogram(samples, sr, args.window, args.nperseg, noverlap, mode='complex') #ax2.imshow(10 * np.log10(np.square(abs(spect))), origin="lower", aspect="auto", interpolation="none", extent=[0, max(t) * 1000, min(f), max(f)], cmap='inferno') extent = [T_coef[0], T_coef[-1], F_coef[0], 8000] ax2.imshow(Y, cmap=args.color, aspect='auto', origin='lower', extent=extent, norm=colors.PowerNorm(gamma=0.2)) for j in range(0, np.size(onsets)): pitches_all = np.load('pitches_syll_' + str(j) + '.npy') x = np.linspace(onsets[j] / sr * 1000, offsets[j] / sr * 1000 - 25, np.size(pitches_all)) ax2.plot(x, pitches_all, 'o', c=colors_list[j]) ax2.set_ylabel('Frequency(Hz)') ax2.title.set_text('Pitch trajectory') plt.xlabel('Time(ms)') plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'Summary_solo.' + args.format) # Clustering the syllables depending on the features # Duration VS pitch plt.subplots() plt.plot(np.round(dur_syll)/16,mean_pitch, '*') plt.xlabel('Duration(ms)') plt.ylabel('Pitch(Hz)') plt.title('Duration VS pitch') plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'durationVSpitch' + args.format) # Duration VS wiener plt.subplots() plt.plot(np.round(dur_syll)/16,wiener, '*') plt.xlabel('Duration(ms)') plt.ylabel('Wiener entropy(dB)') plt.title('Duration VS Wiener entropy') plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'durationVSwiener.' + args.format) # Wiener VS pitch plt.subplots() plt.plot(wiener,mean_pitch, '*') plt.xlabel('Wiener entropy(dB)') plt.ylabel('Pitch(Hz)') plt.title('Wiener entropy VS pitch') plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'wienerVSpitch.' + args.format) print('Done') def repertoire(songfile, classes, args): """ :param songfile: list of wav files (one per element of the repertoire) :param classes: list of the names of each element of the repertoire :return: a figure with one example per element of the repertoire """ samples_repertoire = [] T_coef_all = [] for s in range(0, np.size(songfile)): y, sr = librosa.load(songfile[s], sr=16000) # cut the silence X = librosa.stft(y, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) Y = np.log(1 + 100 * np.abs(X) ** 2) T_coef = np.arange(X.shape[1]) * args.H / sr * 1000 K = args.N // 2 F_coef = np.arange(K + 1) * sr / args.N samples_repertoire.append(Y) T_coef_all.append(T_coef[-1]) # Plots spectrogram #plt.style.use('dark_background') fig, axs = plt.subplots(nrows=4, ncols=4, figsize=(10, 14), sharey=True) for i in range(0, 4): for j in range(0,4): extent = [0, T_coef_all[4*i + j], 0, 8000] axs[i, j].imshow(samples_repertoire[4*i + j], cmap=args.color, extent = extent, aspect='auto', origin='lower', norm=colors.PowerNorm(gamma=0.2)) axs[i, j].set_title(classes[4*i + j], fontsize=12) axs[i, j].set_xlim(0, 350) axs[i, j].spines['top'].set_color('none') axs[i, j].spines['right'].set_color('none') axs[0, j].set_xlabel('Time (ms)', fontsize=15) axs[i, 3].set_ylabel('Frequency (Hz)', fontsize=15) plt.tight_layout() plt.savefig(args.data_dir + '/' + 'Repertoire.' + args.format) print('Done') def single_syllable_features_from_song(songfile, args): """ VARIABLES: - songfile: list of recordings OUTPUT: - .npy file containing the features stored, one single file for the whole directory """ # inizialization of variables dur_syll = [0] dur_gap = [0] wiener = [0] pitch = [0] for i in range(0,np.size(songfile)): sr, samples = wav.read(songfile[i]) # determine onset and offset of the syllables for this song onsets = cut(samples, sr, args.threshold, args.min_syl_dur, args.min_silent_dur, args.f_cut_min, args.f_cut_max)[0] offsets = cut(samples, sr, args.threshold, args.min_syl_dur, args.min_silent_dur, args.f_cut_min, args.f_cut_max)[1] dur_syll_aux = np.zeros((np.size(onsets),)) dur_gap_aux = np.zeros((np.size(onsets),)) wiener_aux = np.zeros((np.size(onsets),)) pitch_aux = np.zeros((np.size(onsets),)) for j in range(0,np.size(onsets)): # syllable duration dur_syll_aux[j] = offsets[j] - onsets[j] if j<(np.size(onsets)-1): dur_gap_aux[j] = onsets[j+1] - offsets[j] # spectral flatness/wiener entropy wiener_aux[j] = np.mean(librosa.feature.spectral_flatness(samples[onsets[j]:offsets[j]].astype(np.float))) # pitch detection pitches, magnitudes = librosa.core.piptrack(samples[onsets[j]:offsets[j]].astype(np.float), sr=sr, nfft=100, fmin=500, fmax=8000) pitches_all = 0 for interval in range(0,magnitudes.shape[1]): index = magnitudes[:,interval].argmax() pitches_all = np.append(pitches_all,pitches[index,interval]) pitch_aux[j] = np.mean(pitches_all[1::]) dur_syll = np.append(dur_syll, dur_syll_aux) #collect syllable duration for all the i-th recordings dur_gap = np.append(dur_gap, dur_gap_aux) #collect gap duration for all the i-th recordings wiener = np.append(wiener, wiener_aux) #collect wiener entropy value for all the i-th recordings pitch = np.append(pitch, pitch_aux) #collect pitch for all the i-th recordings # save the data data = {'File_name': songfile[0::], 'How_many': np.size(songfile), 'Duration_syll': dur_syll[1::], 'Duration_Gap': dur_gap[1::], 'Wiener_entropy': wiener[1::], 'Pitch':pitch[1::]} np.save(args.data_dir + '/' 'Summary_data_features.npy', data) def single_syllable_features(songfile, syll_name, template, args): """ VARIABLES: - songfile: list of recordings with syllables - template: a comparison template (if given) to compute cross-correlation OUTPUT: - .npy file containing the features stored """ # Count the number of elements in the group if args.dataset_dim == None: how_many = np.size(songfile) elif args.dataset_dim == 0: if args.dataset_dim > np.size(songfile): how_many = np.size(songfile) else: how_many = args.dataset_dim else: songfile = random.sample(songfile, args.dataset_dim) how_many = np.size(songfile) # Feature variables initialization dur_syll = np.zeros((how_many,)) data_list = [] pitches_list = [] mean_pitch = np.zeros((how_many,)) max_pitch = np.zeros((how_many,)) min_pitch = np.zeros((how_many,)) direction_pitch = np.zeros((how_many,)) wiener = np.zeros((how_many,)) for j in range(0,how_many): # Build the dataset: copy selected file in the training dataset directory #shutil.copy(songfile[j], args.data_dir + '/' + args.train_dir) # Read the wave sr, samples = wav.read(songfile[j]) dur_syll[j] = samples.size/16 # Pitch detection pitches, magnitudes = librosa.core.piptrack(samples.astype(np.float), sr=sr, n_fft=100, fmin=500, fmax=8000) pitches_all = 0 for interval in range(0, magnitudes.shape[1]): index = magnitudes[:, interval].argmax() pitches_all = np.append(pitches_all, pitches[index, interval]) pitches_all = pitches_all[np.nonzero(pitches_all)] mean_pitch[j] = np.mean(pitches_all) max_pitch[j] = np.max(pitches_all) min_pitch[j] = np.min(pitches_all) if pitches_all[0] < pitches_all[-1]: direction_pitch[j] = 1 else: direction_pitch[j] = -1 # Spectral flatness (Wiener entropy) wiener[j] = np.mean(librosa.feature.spectral_flatness(samples.astype(np.float))) # Argmax of duration to determine the longer syllable template_size = int(np.max(dur_syll)) # Template construction (adding silence before and after for alignment) if len(template) > 0: template_samples, sr = librosa.load(template[0], sr=16000) if template_samples.size / 16 < template_size: aux_size = template_size - template_samples.size / 16 silence = np.zeros((int(round(aux_size / 2) * 16)), ) aux_template = np.append(silence, template_samples) aux_template = np.append(aux_template, silence) else: aux_template = template_samples silence = np.zeros((template_size,)) new_template = np.append(silence, aux_template) new_template = np.append(new_template, silence) X = librosa.stft(new_template, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) T_coef = np.arange(X.shape[1]) * args.H / sr * 1000 #save to plot spectrogram_template = np.log(1 + 100 * np.abs(X ** 2)) shape_template = spectrogram_template.shape spectrograms = [] spectrograms_envelope = [] cross_correlation = np.zeros((how_many,)) for j in range(0, how_many): data_list.append(songfile[j]) # compute the spectrogram samples_aux, sr = librosa.load(songfile[j], sr=16000) if samples_aux.size / 16 < template_size: aux_size = template_size - samples_aux.size / 16 silence = np.zeros((int(round(aux_size / 2) * 16)),) samples_aux = np.append(silence, samples_aux) samples_aux = np.append(samples_aux, silence) silence = np.zeros((template_size,)) new_template_aux = np.append(silence, samples_aux) new_template_aux = np.append(new_template_aux, silence) if new_template.size > new_template_aux.size: silence = np.zeros((int(round(new_template.size-new_template_aux.size))),) new_template_aux = np.append(new_template_aux, silence) X = librosa.stft(new_template_aux, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) spectrogram_aux = np.log(1 + 100 * np.abs(X ** 2)) if spectrogram_aux.shape[1] == shape_template[1] + 1: spectrogram_aux = spectrogram_aux[:,0:shape_template[1]] fig, ax = plt.subplots() (lag_aux, corr_aux, line, b) = ax.xcorr(spectrogram_template.flatten(), spectrogram_aux.flatten(), normed=True, maxlags=args.n_lags, lw=2) #plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'xcorr_' + syll_name + '_' + str(j) + '.' + args.format) cross_correlation[j] = np.max(corr_aux[1]) index_aux = lag_aux[np.argmax(corr_aux)] if index_aux < 0: spectrogram_new = np.append(np.zeros((-index_aux,)), spectrogram_aux.flatten()[-index_aux::]) spectrograms.append(np.reshape(spectrogram_new, shape_template)) else: spectrogram_new = np.append(spectrogram_aux.flatten()[index_aux::], np.zeros((index_aux,))) spectrograms.append(np.reshape(spectrogram_new, shape_template)) # Envelope based rawsong = samples_aux.astype(float) rawsong = rawsong.flatten() amp = Song_functions.smooth_data(rawsong, sr, freq_cutoffs=(500, 7999)) # Debug to see amplitude range #plt.subplots() #plt.plot(amp) #plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'ampD.' + args.format) #print(songfile[j]) if syll_name == 'N': new_song = rawsong[0:np.where(amp > 0.00001)[0][-1]] silence = np.zeros((new_template.size - np.size(new_song),)) new_song = np.append(silence, new_song) else: new_song = rawsong[np.where(amp > 0.00001)[0][0]::] silence = np.zeros((new_template.size - np.size(new_song),)) new_song = np.append(new_song, silence) X = librosa.stft(new_song, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) spectrograms_envelope.append(np.log(1 + 100 * np.abs(X ** 2))) plt.close('all') mean_spectrogram = np.mean(spectrograms, axis=0) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 14), sharey=True, sharex=True) #extent = [0, np.max(T_coef), 0, 8000] ax.imshow(mean_spectrogram, cmap=args.color, aspect='auto', origin='lower', norm=colors.PowerNorm(gamma=0.2)) ax.set_title(syll_name, fontsize=15) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.set_xlabel('Time (ms)', fontsize=15) ax.set_ylabel('Frequency (Hz)', fontsize=15) plt.tight_layout() #plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'Mean_spectrogram_' +syll_name + '.' + args.format) # Save the data data = {'File_name': syll_name, 'Data_list':data_list, 'List_song': data_list, 'How_many': how_many, 'Duration_syll': dur_syll, 'Mean_pitch': mean_pitch, 'Min_pitch': min_pitch, 'Max_pitch': max_pitch, 'All_pitches': pitches_list, 'Direction': direction_pitch, 'Wiener_entropy': wiener, 'Cross_correlation': cross_correlation, 'Spectrograms': spectrograms, 'T_spectro':T_coef, 'Spectrograms_envelope':spectrograms_envelope} return data def syllable_silence_features(songfile, syll_name, template, args): """ VARIABLES: - songfile: list of recordings with syllables followed by silence up to 1s produced previously using the trained WaveGAN - template: a comparison template (if given) to compute cross-correlation OUTPUT: - .npy file containing the features stored """ # Count the number of elements in the group if args.dataset_dim == None: how_many = np.size(songfile) elif args.dataset_dim == 0: if args.dataset_dim > np.size(songfile): how_many = np.size(songfile) else: how_many = args.dataset_dim else: songfile = random.sample(songfile, args.dataset_dim) how_many = np.size(songfile) # Feature variables initialization dur_syll = np.zeros((how_many,)) data_list = [] pitches_list = [] mean_pitch = np.zeros((how_many,)) max_pitch = np.zeros((how_many,)) min_pitch = np.zeros((how_many,)) direction_pitch = np.zeros((how_many,)) wiener = np.zeros((how_many,)) for j in range(0,how_many): # Read the wave sr, samples = wav.read(songfile[j]) trim = librosa.effects.trim(samples.astype(np.float), top_db=20) samples = trim[0] dur_syll[j] = samples.size/16 # Pitch detection pitches, magnitudes = librosa.core.piptrack(samples, sr=sr, n_fft=100, fmin=500, fmax=8000) pitches_all = 0 for interval in range(0, magnitudes.shape[1]): index = magnitudes[:, interval].argmax() pitches_all = np.append(pitches_all, pitches[index, interval]) pitches_all = pitches_all[np.nonzero(pitches_all)] mean_pitch[j] = np.mean(pitches_all) max_pitch[j] = np.max(pitches_all) min_pitch[j] = np.min(pitches_all) if pitches_all[0] < pitches_all[-1]: direction_pitch[j] = 1 else: direction_pitch[j] = -1 # Spectral flatness (Wiener entropy) wiener[j] = np.mean(librosa.feature.spectral_flatness(samples.astype(np.float))) # Argmax of duration to determine the longer syllable if how_many > 0: template_size = int(np.max(dur_syll)) # Template construction (adding silence before and after for alignment) if len(template) > 0: template_samples, sr = librosa.load(template[0], sr=16000) trim = librosa.effects.trim(template_samples.astype(np.float), top_db=20) template_samples = trim[0] if template_samples.size / 16 < template_size: aux_size = template_size - template_samples.size / 16 silence = np.zeros((int(round(aux_size / 2) * 16)), ) aux_template = np.append(silence, template_samples) aux_template = np.append(aux_template, silence) else: aux_template = template_samples silence = np.zeros((template_size,)) new_template = np.append(silence, aux_template) new_template = np.append(new_template, silence) X = librosa.stft(new_template, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) T_coef = np.arange(X.shape[1]) * args.H / sr * 1000 #save to plot spectrogram_template = np.log(1 + 100 * np.abs(X ** 2)) shape_template = spectrogram_template.shape spectrograms = [] spectrograms_envelope = [] cross_correlation = np.zeros((how_many,)) for j in range(0, how_many): data_list.append(songfile[j]) # compute the spectrogram samples_aux, sr = librosa.load(songfile[j], sr=16000) trim = librosa.effects.trim(samples_aux.astype(np.float), top_db=20) samples_aux = trim[0] if samples_aux.size / 16 < template_size: aux_size = template_size - samples_aux.size / 16 silence = np.zeros((int(round(aux_size / 2) * 16)),) samples_aux = np.append(silence, samples_aux) samples_aux = np.append(samples_aux, silence) silence = np.zeros((template_size,)) new_template_aux = np.append(silence, samples_aux) new_template_aux = np.append(new_template_aux, silence) if new_template.size > new_template_aux.size: silence = np.zeros((int(round(new_template.size-new_template_aux.size))),) new_template_aux = np.append(new_template_aux, silence) X = librosa.stft(new_template_aux, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) spectrogram_aux = np.log(1 + 100 * np.abs(X ** 2)) if spectrogram_aux.shape[1] == shape_template[1] + 1: spectrogram_aux = spectrogram_aux[:,0:shape_template[1]] fig, ax = plt.subplots() (lag_aux, corr_aux, line, b) = ax.xcorr(spectrogram_template.flatten(), spectrogram_aux.flatten(), normed=True, maxlags=args.n_lags, lw=2) #plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'xcorr_' + syll_name + '_' + str(j) + '.' + args.format) cross_correlation[j] = np.max(corr_aux[1]) index_aux = lag_aux[np.argmax(corr_aux)] if index_aux < 0: spectrogram_new = np.append(np.zeros((-index_aux,)), spectrogram_aux.flatten()[-index_aux::]) spectrograms.append(np.reshape(spectrogram_new, shape_template)) else: spectrogram_new = np.append(spectrogram_aux.flatten()[index_aux::], np.zeros((index_aux,))) spectrograms.append(np.reshape(spectrogram_new, shape_template)) # Envelope based rawsong = samples_aux.astype(float) rawsong = rawsong.flatten() amp = Song_functions.smooth_data(rawsong, sr, freq_cutoffs=(500, 7999)) # Debug to see amplitude range #plt.subplots() #plt.plot(amp) #plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'ampD.' + args.format) #print(songfile[j]) if syll_name == 'N': # new_song = rawsong[0:np.where(amp > 0.00001)[0][-1]] # new training new_song = rawsong[np.where(amp > 0.00001)[0][0]::] #PRE dataset silence = np.zeros((new_template.size - np.size(new_song),)) new_song = np.append(silence, new_song) else: new_song = rawsong[np.where(amp > 0.00001)[0][0]::] silence = np.zeros((new_template.size - np.size(new_song),)) new_song = np.append(new_song, silence) X = librosa.stft(new_song, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) spectrograms_envelope.append(np.log(1 + 100 * np.abs(X ** 2))) plt.close('all') else: cross_correlation = np.zeros((1,)) T_coef = 0 spectrograms = np.zeros((8000,1)) spectrograms_envelope = np.zeros((8000,1)) # Save the data data = {'File_name': syll_name, 'Data_list':data_list, 'List_song': data_list, 'How_many': how_many, 'Duration_syll': dur_syll, 'Mean_pitch': mean_pitch, 'Min_pitch': min_pitch, 'Max_pitch': max_pitch, 'All_pitches': pitches_list, 'Direction': direction_pitch, 'Wiener_entropy': wiener, 'Cross_correlation': cross_correlation, 'Spectrograms': spectrograms, 'T_spectro':T_coef, 'Spectrograms_envelope':spectrograms_envelope} return data def lag_corr_training_dataset(songfile, classes, args): import statistics as stat data_syll_list = [] for c in range(0, np.size(classes)): syll_list_aux = [] for i in range(0, np.size(songfile)): if (songfile[i].find('NEW_' + classes[c]) != -1): syll_list_aux.append(songfile[i]) data_syll_list.append(syll_list_aux) cross_corr = [] cross_corr_2 = [] for c in range(0, np.size(classes)): pairs = stat.pairs(range(0, np.size(data_syll_list[c])), range(0, np.size(data_syll_list[c]))) syll_pairs = random.sample(pairs, args.n_template) cross_corr_aux = np.zeros((args.n_template,)) cross_corr_aux_2 = np.zeros((args.n_template,)) cross_corr_aux_3 = np.zeros((args.n_template,)) for j in range(0,args.n_template): cross_corr_aux[j] = stat.lag_cross_corr(args.n_lags, data_syll_list[c][syll_pairs[j][0]], data_syll_list[c][syll_pairs[j][1]], args.nperseg, args.overlap) plt.close('all') sr, samples_1 = wav.read(data_syll_list[c][syll_pairs[j][0]]) sr, samples_2 = wav.read(data_syll_list[c][syll_pairs[j][1]]) freq, times, spectrogram_1 = sp.signal.spectrogram(samples_1, sr, window='hann', nperseg=args.nperseg, noverlap=args.nperseg - args.overlap) freq, times, spectrogram_2 = sp.signal.spectrogram(samples_2, sr, window='hann', nperseg=args.nperseg, noverlap=args.nperseg - args.overlap) fig, ax = plt.subplots() cross_aux = ax.xcorr(spectrogram_1.flatten(), spectrogram_2.flatten(), maxlags=args.n_lags, lw=2) cross_correlation_aux_2[j] = np.max(cross_aux[1]) y, sr = librosa.load(data_syll_list[c][syll_pairs[j][0]], sr=16000) y_2, sr = librosa.load(data_syll_list[c][syll_pairs[j][1]], sr=16000) X = librosa.stft(y, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) spectrogram_aux = np.log(1 + 100 * np.abs(X ** 2)) X_2 = librosa.stft(y_2, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) spectrogram_aux_2 = np.log(1 + 100 * np.abs(X_2 ** 2)) freq_downsample_1 = sp.signal.resample(spectrogram_aux, 60, t=None, axis=0) time_downsample_1 = sp.signal.resample(freq_downsample_1, 120, t=None, axis=1) freq_downsample_2 = sp.signal.resample(spectrogram_aux_2, 60, t=None, axis=0) time_downsample_2 = sp.signal.resample(freq_downsample_2, 120, t=None, axis=1) fig, ax = plt.subplots() (lag_aux, corr_aux, line, b) = ax.xcorr(time_downsample_1.flatten(), time_downsample_2.flatten(), maxlags=args.n_lags, lw=2) #(lag_aux, corr_aux, line, b) = ax.xcorr(spectrogram_aux.flatten(), spectrogram_aux_2.flatten(), maxlags=args.n_lags, lw=2) cross_corr_aux_3[j] = np.max(corr_aux[1]) plt.close('all') print(cross_corr_aux) print(cross_corr_aux_2) print(cross_corr_aux_3) input() cross_corr.append(cross_corr_aux) cross_corr_2.append(cross_corr_aux_2) np.save(args.data_dir + '/' + args.output_dir + '/' + 'Dataset_cross_corr_distribution.npy', cross_corr) np.save(args.data_dir + '/' + args.output_dir + '/' + 'Dataset_cross_corr_distribution_2.npy', cross_corr_2) # Plot for c in range(0, np.size(classes)): plt.subplots() n, x, _ = plt.hist(cross_corr[c,:], 20, color='b', alpha=0) bin_centers = 0.5 * (x[1:] + x[:-1]) plt.plot(bin_centers, n, 'k', alpha=0.5) plt.ylabel('Cross-correlation') plt.title(classes[c], fontsize=15) plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'cross_correlation_class_' + classes[c] + '.' + args.format) plt.subplots() n, x, _ = plt.hist(cross_corr_2[c,:], 20, color='b', alpha=0) bin_centers = 0.5 * (x[1:] + x[:-1]) plt.plot(bin_centers, n, 'k', alpha=0.5) plt.ylabel('Cross-correlation') plt.title(classes[c], fontsize=15) plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'cross_correlation_2_class_' + classes[c] + '.' + args.format) plt.close('all') print('Done') def data_features_analysis_plots(plot_data, args): #import umap #import umap.plot # FEATURES # Initialization of the features how_many = [0] name = ['label'] duration_syll = [0] duration_syll_aux = list() mean_pitch = [0] mean_pitch_aux = list() max_pitch =[0] max_pitch_aux = list() min_pitch = [0] min_pitch_aux = list() wiener = [0] wiener_aux = list() all_spectrograms = [] all_labels = [] mean_spectrogram = [] mean_spectrogram_env = [] mean_cross_dataset = [] T_coef = [] for i in range(0, np.size(plot_data)): load_data = np.load(plot_data[i], allow_pickle = True) #added allow_pickle because of a new error I never found before opening datasets I created and already opened months ago load_data = load_data.item() how_many = np.append(how_many, load_data['How_many']) name = np.append(name, load_data['File_name']) duration_syll_aux.append(np.round(load_data['Duration_syll'])) duration_syll = np.append(duration_syll, duration_syll_aux[i]) mean_pitch_aux.append(load_data['Mean_pitch']) mean_pitch = np.append(mean_pitch, mean_pitch_aux[i]) min_pitch_aux.append(load_data['Min_pitch']) min_pitch = np.append(min_pitch, min_pitch_aux[i]) max_pitch_aux.append(load_data['Max_pitch']) max_pitch = np.append(max_pitch, max_pitch_aux[i]) wiener_aux.append(load_data['Wiener_entropy']) wiener = np.append(wiener, wiener_aux[i]) spectrograms = load_data['Spectrograms'] spectrograms_envelope = load_data['Spectrograms_envelope'] for s in range(0, len(spectrograms)): all_spectrograms.append(spectrograms[s].flatten()) all_labels.append(name[i+1]) cross_corr_dataset = load_data['Cross_correlation'] T_coef.append(np.max(load_data['T_spectro'])) mean_spectrogram.append(np.mean(spectrograms,axis=0)) mean_spectrogram_env.append(np.mean(spectrograms_envelope,axis=0)) mean_cross_dataset.append(np.mean(cross_corr_dataset)) if np.int(np.round(np.size(duration_syll_aux[i])/10))>0: # Duration per type of syllables h, bins = np.histogram(duration_syll_aux[i], bins = np.int(np.round(np.size(duration_syll_aux[i])/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h, width=0.8, color='b', alpha=0.6, label='Syllable Duration') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) ax.set_xlim([0,np.max(duration_syll_aux[i])]) plt.xlabel('Duration(ms)') plt.ylabel('Number of occurences') plt.title(name[i+1]) plt.tight_layout() # to avoid the cut of labels plt.savefig(args.data_dir + '/' + 'Duration_syllable_' + name[i+1] + '.' + args.format) # Pitch per type of syllable # Mean pitch h, bins = np.histogram(mean_pitch_aux[i], bins = np.int(np.round(np.size(mean_pitch_aux[i])/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h, width=0.8, color='b', alpha=0.6, label='Mean pitch') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) ax.set_xlim([0,np.max(mean_pitch_aux[i])]) plt.xlabel('Mean pitch (Hz)') plt.ylabel('Number of occurences') plt.title(name[i+1]) plt.tight_layout() # to avoid the cut of labels plt.savefig(args.data_dir + '/' + 'Mean_pitch_syllable_' + name[i+1] + '.' + args.format) # Min pitch h, bins = np.histogram(min_pitch_aux[i], bins = np.int(np.round(np.size(min_pitch_aux[i])/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h, width=0.8, color='b', alpha=0.6, label='Min pitch') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) ax.set_xlim([0,np.max(min_pitch_aux[i])]) plt.xlabel('Mean pitch (Hz)') plt.ylabel('Number of occurences') plt.title(name[i+1]) plt.tight_layout() # to avoid the cut of labels plt.savefig(args.data_dir + '/' + 'Min_pitch_syllable_' + name[i+1] + '.' + args.format) # Max pitch h, bins = np.histogram(max_pitch_aux[i], bins = np.int(np.round(np.size(max_pitch_aux[i])/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h, width=0.8, color='b', alpha=0.6, label='Max pitch') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) ax.set_xlim([0,np.max(max_pitch_aux[i])]) plt.xlabel('Mean pitch (Hz)') plt.ylabel('Number of occurences') plt.title(name[i+1]) plt.tight_layout() # to avoid the cut of labels plt.savefig(args.data_dir + '/' + 'Max_pitch_syllable_' + name[i+1] + '.' + args.format) # Wiener entropy h, bins = np.histogram(wiener_aux[i], bins = np.int(np.round(np.size(wiener_aux[i])/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h, width=0.001, color='b', alpha=0.6, label='Wiener entropy') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) ax.set_xlim([0,np.max(wiener_aux[i])]) plt.xlabel('Wiener entropy(dB)') plt.ylabel('Number of occurences') plt.title(name[i+1]) plt.tight_layout() # to avoid the cut of labels plt.savefig(args.data_dir + '/' + 'Wiener_entropy_syllable_' + name[i+1] + '.' + args.format) # Cross-correlation plt.subplots() n, x, _ = plt.hist(cross_corr_dataset, 20, color='b', alpha=0) bin_centers = 0.5 * (x[1:] + x[:-1]) plt.plot(bin_centers, n, 'k', alpha=0.5) plt.ylabel('Cross-correlation') plt.title(name[i+1], fontsize=15) plt.savefig(args.data_dir + '/' + 'cross_correlation_class_' + name[i+1] + '.' + args.format) plt.close('all') how_many = how_many[1::] name = name[1::] duration_syll = duration_syll[1::] mean_pitch = mean_pitch[1::] min_pitch = min_pitch[1::] max_pitch = max_pitch[1::] wiener = wiener[1::] # How many syllables per type fig, ax = plt.subplots() ax.bar(name, how_many) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.ylabel('Number of samples', fontsize=15) plt.xlabel('Classes', fontsize=15) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.tight_layout() #plt.savefig(args.data_dir + '/' + 'How_many_syllables.' + args.format) # Cumulative duration h, bins = np.histogram(duration_syll, bins=np.int(np.round(np.size(duration_syll)/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h/np.max(h), width = 0.8, color = 'g', alpha = 0.6) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') #plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) #ax.set_xlim([0,np.max(duration_syll)]) plt.xlabel('Duration(ms)', fontsize=15) plt.ylabel('Probability', fontsize=15) #plt.title('Syllable duration') plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.tight_layout() #to avoid the cut of labels plt.savefig(args.data_dir + '/' + 'Duration_syll_prob.' + args.format) h, bins = np.histogram(duration_syll, bins=np.int(np.round(np.size(duration_syll)/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h, width = 0.8, color = 'b', alpha = 1) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') #plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) #ax.set_xlim([0,np.max(duration_syll)]) plt.xlabel('Duration(ms)', fontsize=15) plt.ylabel('Number of occurences',fontsize=15) plt.xticks(fontsize=15) plt.yticks(fontsize=15) #plt.title('Syllable duration') plt.tight_layout() #to avoid the cut of labels plt.savefig(args.data_dir + '/' +'Duration_syll.' + args.format) # Cumulative pitch # Mean pitch h, bins = np.histogram(mean_pitch, bins=np.int(np.round(np.size(mean_pitch)/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h, width = 0.8, color = 'g', alpha = 0.6, label = 'Pitch') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.set_xlim([0,np.max(mean_pitch)]) plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) plt.xlabel('Mean pitch(Hz)') plt.ylabel('Number of occurences') plt.title('Mean pitch distribution') plt.tight_layout() #to avoid the cut of labels plt.savefig(args.data_dir + '/' + 'Mean_pitch_distribution.' + args.format) # Mean pitch h, bins = np.histogram(min_pitch, bins=np.int(np.round(np.size(min_pitch)/10))) fig, ax = plt.subplots() plt.bar(bins[:-1], h, width = 0.8, color = 'g', alpha = 0.6, label = 'Pitch') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.set_xlim([0,np.max(min_pitch)]) plt.legend(loc='upper right', fontsize=15, ncol=1, shadow=True, fancybox=True) plt.xlabel('Min pitch(Hz)') plt.ylabel('Number of occurences') plt.title('Mean pitch distribution') plt.tight_layout() #to avoid the cut of labels plt.savefig(args.data_dir + '/' + 'Min_pitch_distribution.' + args.format) # Mean pitch h, bins = np.histogram(max_pitch, bins=np.int(np.round(
np.size(max_pitch)
numpy.size
import math import numpy as np import matplotlib.pyplot as plt from matplotlib import ticker orders = [2, 3] fig, axes = plt.subplots(1, len(orders), figsize=(11, 5)) n_cells = 7 # grid will be size (n_cells, n_cells) # desired interpolation coordinate (xi, yi) xi, yi = 3.3, 3.7 def get_start(cc, order): if order % 1 == 0: start = math.floor(cc) - order // 2 else: start = math.floor(cc + 0.5) - order // 2 return start for ax, order in zip(axes, orders): # draw open circles at the locations of pixel centers for n in range(n_cells): ax.plot(np.arange(n_cells), -np.full(n_cells, n), 'ko', fillstyle='none') # draw pixel borders for n in range(n_cells + 1): ax.plot([n - 0.5, n - 0.5], [0.5, -n_cells + .5], 'k-') ax.plot([-0.5, n_cells - .5], [-n + 0.5, -n + 0.5], 'k-') # plot an example coordinate location to interpolate ax.plot([xi], [-yi], 'rx') # plot filled circles for the points that will be involved in the # interpolation startx = get_start(xi, order) starty = get_start(yi, order) xc = np.tile(
np.arange(startx, startx + order + 1)
numpy.arange
import cv2 import os import sys import pcl from math import copysign, log10 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.spatial import ConvexHull import random import math import itertools from sklearn.mixture import GaussianMixture from sklearn.neighbors import KDTree SYMMETRY_MEASURE_CLOUD_NORMALS_TRADEOFF= 0.2 # scaling factor for difference in normals wrt. difference in position for points, # when computing difference between two point clouds. # 0 => Only look at difference between point and its closest point # Higher value => matching normals are more important than point distances SMOOTHNESS_MEASURE_NUMBINS = 8 # Number of bins in histogram. We found 8 to work best quite consistently. NNRADIUS = 0.004 # Used in Local Convexity and Smoothness measure for local neighborhood finding dir_name=os.path.dirname(__file__) image_path = os.path.join(dir_name, "object") def get_image(filename): path=os.path.join(image_path,filename) if "depthcrop" in filename or 'maskcrop' in filename: im = cv2.imread(path,0) else: im = cv2.imread(path) return im def apply_mask(mask,image): i=image.copy() i[mask == 0]=0 return i def depth_to_meter(depth): depth=depth.astype(float) try: return 1/((depth * 4 * -0.0030711016) + 3.3309495161) except: return 0.0 # just return mean of distances from points in cloud1 to their nearest neighbors in cloud2 def cloudAlignmentScoreDense(cloud1, cloud2): tree = KDTree(cloud2) N=cloud1.shape[0] accum=0.0 result = tree.query(cloud1, k=1) for i,(dist, ind) in enumerate(zip(*result)): accum += dist[0] return accum/N def cloudAlignmentScoreDenseWithNormalsNormalized(cloud1, normals1, cloud2, normals2, relweight, dnormalize): tree = KDTree(cloud2) N=cloud1.shape[0] accum=0.0 result = tree.query(cloud1, k=1) for i,(dist, ind) in enumerate(zip(*result)): accum += dist[0] / dnormalize dot = np.dot(normals1[i],normals2[ind[0]]) accum += relweight*(1.0 - dot) return accum/N def calculate_compactness_3d(points): max_length = np.max(points,axis=0)[0] min_length = np.min(points,axis=0)[0] return points.shape[0] / (max(max_length-min_length, 0.0000001)**2) def calculate_symmetry_3d(points_np, normals, relweight=SYMMETRY_MEASURE_CLOUD_NORMALS_TRADEOFF): mins=points_np.min(axis=0) maxes=points_np.max(axis=0) ranges = maxes - mins ranges /= ranges.sum() score=0.0 for i,vector in enumerate(np.array([[-1,1,1],[1,-1,1],[1,1,-1]])): dest=points_np*vector normdest=normals*vector overlap = cloudAlignmentScoreDenseWithNormalsNormalized(points_np, normals, dest, normdest, relweight, ranges[i])\ +cloudAlignmentScoreDenseWithNormalsNormalized(dest, normdest, points_np, normals, relweight, ranges[i]) score += ranges[i]*overlap return -score def calculate_global_convexity_3d(points): hull=ConvexHull(points) overlap= cloudAlignmentScoreDense(points, hull.points[hull.vertices]) return -overlap def calculate_local_convexity_and_smoothness_3d(points, normals, NNradius=NNRADIUS, NUMBINS=SMOOTHNESS_MEASURE_NUMBINS): tree = KDTree(points) N=points.shape[0] score=0.0 Hs=0.0 bins=np.ones(NUMBINS) neighbors = tree.query_radius(points, NNradius) for i,(p1,n1,neighbors_current) in enumerate(zip(points,normals,neighbors)): binsum = NUMBINS n2=(np.random.rand(3)+1)/2 n2=n2-np.dot(n1,n2)*n1 d = np.linalg.norm(n2) n2 /= d n3 = np.cross(n1,n2) dot=0.0 nc=0 for j in neighbors_current: if j==i: continue v = p1-points[j] d = np.linalg.norm(v) v/=d dot = np.dot(n1,v) if dot > 0.0: nc += 1 dot1 = np.dot(n2,v)/d dot2 = np.dot(n3,v)/d theta = ((np.arctan2(dot1, dot2)+np.pi)/2)/np.pi # angle in range 0->1 binid = int((theta-0.001)*NUMBINS) bins[binid] += 1 binsum+=1 score += (1.0*nc)/len(neighbors_current) bins/=binsum H=-(bins*np.log(bins)).sum() if not np.isnan(H): Hs += H return score/N,Hs/N def calculate_local_convexity_3d(points, normals, NNradius=NNRADIUS): tree = KDTree(points) N=points.shape[0] score=0.0 neighbors = tree.query_radius(points, NNradius) for i,(p,normal,neighbors_current) in enumerate(zip(points,normals,neighbors)): dot=0.0 nc=0 for j in neighbors_current: if j==i: continue v = p-points[j] d = np.linalg.norm(v) v/=d dot = np.dot(normal,v) if dot > 0.0: nc += 1 score += (1.0*nc)/len(neighbors_current) return score/N def calculate_smoothness_3d(points, normals, NNradius=NNRADIUS, NUMBINS=SMOOTHNESS_MEASURE_NUMBINS): Hs=0.0 tree = KDTree(points) N=points.shape[0] bins=np.ones(NUMBINS) neighbors = tree.query_radius(points, NNradius) for i, (p1,n1,neighbors_current) in enumerate(zip(points,normals,neighbors)): #print("{:.2f}%".format(i*100/len(points))) binsum = NUMBINS n2=(np.random.rand(3)+1)/2 dot=np.dot(n1,n2) n2=n2-dot*n1 d = np.linalg.norm(n2) n2 /= d n3 = np.cross(n1,n2) for j in neighbors_current: if j==i: continue p2=points[j] v = p1-p2 d = np.linalg.norm(v) v/=d dot1 = np.dot(n2,v)/d dot2 = np.dot(n3,v)/d theta = ((np.arctan2(dot1, dot2)+np.pi)/2)/np.pi # angle in range 0->1 binid = int((theta-0.001)*NUMBINS) bins[binid] += 1 binsum+=1 bins/=binsum H=-(bins*np.log(bins)).sum() if not np.isnan(H): Hs += H return Hs/N # high entropy = good. def pad_image(depth,result_shape=(480,640)): top=int((result_shape[0]-depth.shape[0])/2) bottom=result_shape[0]-top-depth.shape[0] left=int((result_shape[1]-depth.shape[1])/2) right=result_shape[1]-left-depth.shape[1] return np.pad(depth, ((top, bottom), (left, right)), 'constant') def cvtDepthColor2Cloud(depth): cameraMatrix = np.array( [[525., 0., 320.0], [0., 525., 240.0], [0., 0., 1.]]) inv_fx = 1.0 / cameraMatrix[0, 0] inv_fy = 1.0 / cameraMatrix[1, 1] ox = cameraMatrix[0, 2] oy = cameraMatrix[1, 2] rows, cols = depth.shape cloud = np.zeros((depth.size, 3), dtype=np.float32) for y in range(rows): for x in range(cols): x1 = float(x) y1 = float(y) dist = depth[y][x] cloud[y * cols + x][0] = np.float32((x1 - ox) * dist * inv_fx) cloud[y * cols + x][1] = np.float32((y1 - oy) * dist * inv_fy) cloud[y * cols + x][2] = np.float32(dist) return pcl.PointCloud().from_array(cloud) def depth_to_cloud(depth_original): depth=depth_to_meter(depth_original) depth=pad_image(depth) depth_original=pad_image(depth_original) cameraMatrix = np.array( [[525., 0., 320.0], [0., 525., 240.0], [0., 0., 1.]]) inv_fx = 1.0 / cameraMatrix[0, 0] inv_fy = 1.0 / cameraMatrix[1, 1] ox = cameraMatrix[0, 2] oy = cameraMatrix[1, 2] xyz_offset=[0,0,depth.min()] array = [] xy=np.argwhere((depth_original<255) & (depth_original>0)) xy=xy.astype(float) z=depth[np.where((depth_original<255) & (depth_original>0))] z=z.astype(float) a=((xy[:,0]-ox)*z*inv_fx) b=((xy[:,1]-oy)*z*inv_fy) xy[:,0]=b xy[:,1]=a xyz=np.insert(xy, 2, values=z, axis=1) xyz = np.float32(xyz) cloud = pcl.PointCloud() cloud.from_array(xyz) return cloud,xyz def get_cloud_and_normals(depth): point_cloud,cloud = depth_to_cloud(depth) # get points and normals ne = point_cloud.make_NormalEstimation() tree = point_cloud.make_kdtree() ne.set_SearchMethod(tree) ne.set_RadiusSearch(0.05) normals = ne.compute() normals_point = normals.to_array()[:,0:3] return cloud,normals_point def calculate_descriptor(depth): mask=depth.copy() mask[mask>0]=255 descriptors_2d=calculate_descriptors_2d(mask) descriptors_3d=calculate_descriptors_3d(mask,depth) return descriptors_2d+descriptors_3d def calculate_descriptors_3d(mask,depth): cloud,normals=get_cloud_and_normals(depth) compactness_3d=calculate_compactness_3d(cloud) print(compactness_3d) symmetry_3d=calculate_symmetry_3d(cloud, normals) print(symmetry_3d) global_convexity_3d=calculate_global_convexity_3d(cloud) print(global_convexity_3d) local_convexity_3d,smoothness_3d=calculate_local_convexity_and_smoothness_3d(cloud, normals) return [compactness_3d,symmetry_3d,global_convexity_3d,local_convexity_3d,smoothness_3d] def get_roi(image): min_x,min_y,w,h = cv2.boundingRect(image) max_x=min_x+w max_y=min_y+h return image[min_y:max_y,min_x:max_x] def calculate_descriptors_2d(mask): mask_roi=get_roi(mask) compactess_2d=calculate_compactess_2d(mask_roi) symmetry_2d=calculate_symmetry_2d(mask_roi) global_convexity_2d=calculate_global_convexity_2d(mask) histogram, uniqueness_2d=calculate_uniqueness_2d(mask) smoothness_2d=calculate_smoothness_2d(mask,histogram) return [compactess_2d,symmetry_2d,global_convexity_2d,uniqueness_2d,smoothness_2d] def calculate_compactess_2d(mask): pixels_on = cv2.countNonZero(mask) pixels = mask.shape[0] * mask.shape[1] return pixels_on/pixels def calculate_symmetry_2d(mask): symmetries=[] for i in range(2): if i: mask=mask.T half=int(mask.shape[1]/2) first_half = mask[:, 0:half] second_half = mask[:, half+(mask.shape[1] % 2):] second_half = np.flip(second_half, axis=1) symmetry = np.sum(first_half == second_half) symmetries.append(symmetry/first_half.size) return max(symmetries) def euclidean_distance(a,b): return np.linalg.norm(a-b) def calculate_global_convexity_2d(mask): contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) hull = cv2.convexHull(contours[0]) m=mask.copy() cv2.drawContours(m, [hull], -1, 150, 1) contours_pos=np.argwhere(m==150) points=np.argwhere(m==255) result=np.average(np.min(np.linalg.norm(contours_pos - points[:,None], axis=-1),axis=1)) return result def get_angle(v1,v2): angles=np.array([[135,120,90,60,45], [150,135,90,45,30], [180,180,0,0,0], [210,225,270,315,330], [225,240,270,300,315]]) return (angles[v1[0],v1[1]]-angles[v2[0],v2[1]])%180 def entropy(hist): return -sum([i*math.log(i) for i in hist]) def calculate_uniqueness_2d(mask,show_hist=False): hist={} contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) m=cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) cv2.drawContours(m, contours, -1, (0,255,255), 1) t=3 contours=contours[0] l=len(contours) vectors=[contours[(i+2)%l]-contours[(i-2)%l] for i in range(0,l,t)] l=len(vectors) for i in range(l): angle=get_angle(vectors[i][0],vectors[(i+1)%l][0]) if angle in hist.keys(): hist[angle]+=1 else: hist[angle]=1 if show_hist: from collections import Counter num = Counter(hist) x = [] y = [] for k in sorted(hist.keys()): x.append(hist[k]) y.append(k) x_coordinates = np.arange(len(num.keys())) plt.bar(x_coordinates,x) plt.xticks(x_coordinates,y) plt.show() h=[i/l for i in hist.values()] h2=[(k,v) for k,v in hist.items()] return h2,entropy(h) def calculate_smoothness_2d(mask,histogram): X =
np.array(histogram)
numpy.array
""" Training architectures on 2012 ImageNet """ from __future__ import print_function, division import sys import timeit import argparse import numpy as np import torch import tensormonk def parse_args(): parser = argparse.ArgumentParser(description="ImageNet using TensorMONK!") parser.add_argument("-A", "--Architecture", type=str, default="residual50", choices=["residual18", "residual34", "residual50", "residual101", "residual152", "resnext50", "resnext101", "resnext152", "seresidual50", "seresidual101", "seresidual152", "inceptionv4", "mobilev1", "mobilev2", "shuffle1", "shuffle2", "shuffle3", "shuffle4", "shuffle8"]) parser.add_argument("-B", "--BSZ", type=int, default=32) parser.add_argument("-E", "--Epochs", type=int, default=6) parser.add_argument("--optimizer", type=str, default="sgd", choices=["adam", "sgd"]) parser.add_argument("--learningRate", type=float, default=0.06) parser.add_argument("--loss_type", type=str, default="entr", choices=["entr", "smax", "tentr", "tsmax", "lmcl"]) parser.add_argument("--loss_distance", type=str, default="dot", choices=["cosine", "dot"]) parser.add_argument("--default_gpu", type=int, default=0) parser.add_argument("--gpus", type=int, default=1) parser.add_argument("--cpus", type=int, default=6) parser.add_argument("--trainDataPath", type=str, default="./data/ImageNet/train") parser.add_argument("--testDataPath", type=str, default="./data/ImageNet/validation") parser.add_argument("-I", "--ignore_trained", action="store_true") return parser.parse_args() def train(): args = parse_args() tensor_size = (1, 3, 224, 224) file_name = "./models/" + args.Architecture.lower() embedding_net, embedding_net_kwargs = \ tensormonk.architectures.Models(args.Architecture.lower()) train_loader, n_labels = \ tensormonk.data.FolderITTR(args.trainDataPath, args.BSZ, tensor_size, args.cpus, functions=[], random_flip=True) test_loader, n_labels = \ tensormonk.data.FolderITTR(args.testDataPath, args.BSZ, tensor_size, args.cpus, functions=[], random_flip=False) from tensormonk.essentials import MakeModel, SaveModel Model = MakeModel(file_name, tensor_size, n_labels, embedding_net=embedding_net, embedding_net_kwargs=embedding_net_kwargs, loss_net=tensormonk.loss.CategoricalLoss, loss_net_kwargs={"type": args.loss_type, "distance": args.loss_distance}, default_gpu=args.default_gpu, gpus=args.gpus, ignore_trained=args.ignore_trained) params = list(Model.netEmbedding.parameters()) + \ list(Model.netLoss.parameters()) if args.optimizer.lower() == "adam": optimizer = torch.optim.Adam(params) elif args.optimizer.lower() == "sgd": optimizer = torch.optim.SGD(params, lr=args.learningRate) else: raise NotImplementedError # Usual training for _ in range(args.Epochs): timer = timeit.default_timer() Model.netEmbedding.train() Model.netLoss.train() for i, (tensor, targets) in enumerate(train_loader): Model.meterIterations += 1 # forward pass and parameter update Model.netEmbedding.zero_grad() Model.netLoss.zero_grad() features = Model.netEmbedding(tensor) loss, (top1, top5) = Model.netLoss((features, targets)) loss.backward() optimizer.step() # updating all meters Model.meterTop1.append(float(top1.cpu().data.numpy())) Model.meterTop5.append(float(top5.cpu().data.numpy())) Model.meterLoss.append(float(loss.cpu().data.numpy())) Model.meterSpeed.append(int(float(args.BSZ) / (timeit.default_timer()-timer))) timer = timeit.default_timer() print("... {:6d} :: ".format(Model.meterIterations) + "Cost {:2.3f} :: ".format(Model.meterLoss[-1]) + "Top1/Top5 - {:3.2f}/{:3.2f}".format(Model.meterTop1[-1], Model.meterTop5[-1],) + " :: {:4d} I/S ".format(Model.meterSpeed[-1]), end="\r") sys.stdout.flush() # save every epoch and print the average of epoch mean_loss = np.mean(Model.meterLoss[-i:]) mean_top1 = np.mean(Model.meterTop1[-i:]) mean_top5 = np.mean(Model.meterTop5[-i:]) mean_speed = int(np.mean(Model.meterSpeed[-i:])) print("... {:6d} :: ".format(Model.meterIterations) + "Cost {:2.3f} :: ".format(mean_loss) + "Top1/Top5 - {:3.2f}/{:3.2f}".format(mean_top1, mean_top5) + " :: {:4d} I/S ".format(mean_speed)) # save model SaveModel(Model) test_top1, test_top5 = [], [] Model.netEmbedding.eval() Model.netLoss.eval() for i, (tensor, targets) in enumerate(test_loader): Model.netEmbedding.zero_grad() Model.netLoss.zero_grad() features = Model.netEmbedding(tensor) loss, (top1, top5) = Model.netLoss((features, targets)) test_top1.append(float(top1.cpu().data.numpy())) test_top5.append(float(top5.cpu().data.numpy())) print("... Test accuracy - {:3.2f}/{:3.2f} ".format( np.mean(test_top1),
np.mean(test_top5)
numpy.mean
""" Book "Understanding Digital Signal Processing. Ch 5. 181 page """ import numpy as np import matplotlib.pyplot as plt import math from numpy.core.fromnumeric import argmax from scipy.fft import fft, ifft import scipy.io.wavfile as wav import scipy.signal from scipy.signal import get_window from scipy.signal.windows.windows import hann """ 여기서 부터 진행중!!!! 흐름: 필터를 만들자! > 딜레이를 줘서 주파수 반응을 봐보니 끝에 갈무리가 남아! > LPF를 만들고 싶어... > 주파수에서 짤라서 시간도메인으로 역변환해서 시간 도메인에서 필터를 구해보자! > 필터가 정확하게 짤리지 않아 ㅠ.ㅠ... > 윈도우를 사용한다! > 윈도우와 transfer function을 주파수 도메인에서 비교해본다! > 시간도메인에서 평행이동은 주기함수라는 가정하에 주파수 도메인에 변화를 주지 않는다, 위상만 변화할 뿐! --- 그럼 어떤 윈도우와 transfer function 이 있을까? 모든 필터는 디지털에서는 아날로그 필터를 시간도메인 혹은 주파수 영역에서 사용한다. 연산 시간에 따라 주파수 영역에서 필터처리를 할 수 있고 혹은 시간 영역에서 필터처리를 할 수 있다. --- adaptive filter가 measurement에 따라 필터 coefficient를 변화시켜주는 필터를 의미한다. --- frequency domain treatment 1. convolution: frequency domain filter ->ifft, idft -> time filter -> apply 2. fft: signal, filter convert to frequeuncy domain using fft -> multiplication -> fft is usually used above 64 size frame if making convolute == fft -> when you get the fft, zero padding should be because convolute get 2 times length """ from plotter import * samplingFreq = 16 bandwidth = 8 coeff = bandwidth * 2 + 1 K = 7 N = samplingFreq j = complex(0, 1) x = np.arange(10) # DFT def is_pow2(n): return False if n == 0 else (n == 1 or is_pow2(n >> 1)) def iexp(n): return np.complex128(complex(math.cos(n), math.sin(n))) def dft(h): """naive dft""" n = len(h) return [ sum((h[k] * iexp(-2 * math.pi * i * k / n) for k in range(n))) for i in range(n) ] def dftinv(h): """ naive idft(0 ~ N) """ n = len(h) return [ sum((h[k] * iexp(2 * math.pi * i * k / n) for k in range(n))) / n for i in range(n) ] def blackmanWindow_naive(size: int): return np.array( [ 0.42 - 0.5 * np.cos(2 * np.pi * k / (size - 1)) + 0.08 * np.cos(4 * np.pi * k / (size - 1)) for k in range(size) ] ) def blackmanWindow(size: int, sym: bool = False): return scipy.signal.windows.blackman(size, sym=sym) def chebyshevWindow(size: int, sym: bool = False): return scipy.signal.windows.chebwin(size, at=45, sym=sym) def kaiserWindow(size: int, beta: float = 4, sym: bool = False): return scipy.signal.windows.kaiser(size, beta, sym=sym) class TransResponse(object): def __init__(self, name, transferFunc, size, logscale, symmetric, shift): self.name = name self.xaxis = None self.amplitudes = None self.phases = None self.transfunc = transferFunc self.size = size self.logscale = logscale self.symmetric = False self.shift = shift self.calculateTransferResponse() def calculateTransferResponse(self): self.xaxis, self.amplitudes, self.phases = transfer_response( self.transfunc, self.size, logscale=self.logscale, half=self.symmetric, shift=self.shift, ) class FreqResponse(object): def __init__(self, name, transferFunc, size, logScale, symmetric, shift): self.name = name self.xaxis = None self.amplitudes = None self.phases = None self.transfunc = transferFunc self.size = size self.logScale = logScale self.symmetric = symmetric self.shift = shift self.calculateTransferResponse() def calculateFreqResponse(self): self.xaxis, self.amplitudes, self.phases = transfer_response( self.transfunc, self.size, logscale=self.logScale, half=self.symmetric, shift=self.shift, ) if __name__ == "__main__": """ For Frequency Response about filtered wave file """ window_dict = {} rectangle = np.ones(N) / N # samplingFreq = N window_dict["Rectangle"] = rectangle window_dict["Blackman Window"] = rectangle * blackmanWindow(N, sym=False) window_dict["Blackman Window_naive"] = rectangle * blackmanWindow_naive(N) window_dict["Chebyshev Window"] = rectangle * chebyshevWindow(N, sym=False) window_dict["Kaiser Window"] = rectangle * kaiserWindow(N, sym=False) def plot_all(datas: list): for data in datas: print(data) plt.plot(data, ".") plt.grid() plt.show() # Check the alignment # sw(list(window_dict.values())) def zero_padding(h, n: int): assert len(h) % 2 == 0 if len(h) >= n: return h else: transfer = h.copy() n_dft = n - len(h) zero_padding = np.zeros((n_dft) // 2) # bias = transfer[0] # transfer = transfer[1:] transfer = np.append(zero_padding, transfer) transfer = np.append(transfer, zero_padding) # transfer = np.append(bias, transfer) return transfer # for label, data in zip(window_dict.keys(), window_dict.values()): # buf = zero_padding(data, n=512) # buf = np.roll(buf, len(buf)//2) # window_dict[label] = dft(buf) # plot_all(list(window_dict.values())) sr, white_noise = wav.read("./ExampleMusic/White Noise.wav") bit_depth = 0 if white_noise.dtype == "int16": bit_depth = 15 elif white_noise.dtype == "int32": bit_depth = 31 elif white_noise.dtype == "float32": bit_depth = 0 elif white_noise.dtype == "float64": bit_depth = 0 white_noise = white_noise / (2 ** bit_depth) # white_noise = abs(white_noise) # test = np.sin(2 * np.pi * 1000 * np.arange(0, 10 * 44100) / 44100, dtype=np.float32) + np.sin(2 * np.pi * 5000 * np.arange(0, 10 * 44100) / 44100, dtype=np.float32) # white_noise = test frame_size = 1024 num_chunk = len(white_noise) // frame_size fft_white_noise = np.zeros((num_chunk, frame_size), dtype=np.complex128) # hanning = np.array([(0.5 - (0.5 * math.cos((2 * math.pi * i) / (frame_size - 1)))) for i in range(frame_size)],dtype='float64') for idx in range(num_chunk): buf = fft(white_noise[idx * frame_size : (idx + 1) * frame_size], n=frame_size) fft_white_noise[idx] = buf freq = np.arange(2, frame_size // 2 + 2) * sr // frame_size y = fft_white_noise[:, : fft_white_noise.shape[-1] // 2 + 1] # Full fft # freq = np.arange(1, frame_size+1)*sr//frame_size # y = fft_white_noise y =
np.abs(y)
numpy.abs
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Jul 12 11:41:32 2017 @author: <NAME> """ import matplotlib import matplotlib.pyplot as plt import skimage.io as io import numpy as np import time from mayavi import mlab import h5py import scipy.ndimage as ndim import os matplotlib.use('AGG') from mayavi.sources.api import ArraySource from scipy.spatial import ConvexHull as fc import skimage.morphology as morph1 import scipy.ndimage.morphology as morph2 from skimage.morphology import skeletonize_3d as sk3d import scipy.ndimage.filters as filt from sklearn.cluster import DBSCAN import matplotlib import networkx as nx from PIL import Image import itertools as it def visPredict(v): indices=np.where(v>0) x1,x2,x3=indices[0],indices[1],indices[2] d=mlab.pipeline.scalar_scatter(x1,x2,x3) g=mlab.pipeline.glyph(d) def visBatch(v): src = mlab.pipeline.scalar_field(v) mlab.pipeline.iso_surface(src, contours=[1, 0]) def visVolume(v): src = mlab.pipeline.scalar_field(v) mlab.pipeline.volume(src) def getDist(v): l1=[v[n,:,:] for n in range(np.shape(v)[0])] #Z-XY l2=[v[:,n,:] for n in range(np.shape(v)[1])] #X-ZY l3=[v[:,:,n] for n in range(np.shape(v)[2])] #Y-ZX d1=np.array([morph2.distance_transform_edt(l1[i]) for i in range(len(l1))]) d1=d1.transpose((0,1,2)) d2=np.array([morph2.distance_transform_edt(l2[i]) for i in range(len(l2))]) d2=d2.transpose((1,0,2)) d3=np.array([morph2.distance_transform_edt(l3[i]) for i in range(len(l3))]) d3=d3.transpose((1,2,0)) d_=np.maximum(d1,d2);d=np.maximum(d_,d3) return d def getDist(v): l1=[v[n,:,:] for n in range(np.shape(v)[0])] #Z-XY l2=[v[:,n,:] for n in range(np.shape(v)[1])] #X-ZY l3=[v[:,:,n] for n in range(np.shape(v)[2])] #Y-ZX d1=np.array([morph2.distance_transform_edt(l1[i]) for i in range(len(l1))]) d1=d1.transpose((0,1,2)) d2=np.array([morph2.distance_transform_edt(l2[i]) for i in range(len(l2))]) d2=d2.transpose((1,0,2)) d3=np.array([morph2.distance_transform_edt(l3[i]) for i in range(len(l3))]) d3=d3.transpose((1,2,0)) d_=np.maximum(d1,d2);d=np.maximum(d_,d3) return d def getDataset(path, scale): X=[] Y=[] f=h5py.File(path,'r') num_P=np.array(f['numberOfPositive']) num_N=np.array(f['numberOfNegative']) if scale: ind=np.array(range(num_P[scale-1])).astype('int') np.random.shuffle(ind) s=scale for i in ind: d_name=['pos_scale'+str(s)+'_'+str(i)] d_pos=np.array(f[d_name[0]]) X.append(d_pos) Y.append(0) ind=np.array(range(num_N[scale-1])).astype('int') np.random.shuffle(ind) s=scale for i in ind: d_name=['neg_scale'+str(s)+'_'+str(i)] d_neg=np.array(f[d_name[0]]) X.append(d_neg) Y.append(1) else: for s in tqdm(range(len(num_d))): ind=np.array(range(num_d[s])).astype('int') np.random.shuffle(ind) for i in ind: d_name=['pos_scale'+str(s+1)+'_'+str(i), 'neg_scale'+str(s+1)+'_'+str(i)] d_pos=np.array(f[d_name[0]]) d_neg=np.array(f[d_name[1]]) z=np.array(np.shape(d_pos)).astype('float') z=np.divide(np.array([16,32,32]),z) # check if sample has the targeted size if True in [t != 1 for t in z]: d_pos=ndim.zoom(d_pos,z) d_neg=ndim.zoom(d_neg,z) X.append(d_pos);X.append(d_neg) Y.append(0);Y.append(1) f.close() X=np.array(X[:]) Y=np.array(Y[:]) return X, Y #Define a model def getModel(args): model = Sequential() model.add(Convolution3D(32, kernel_dim1=3, kernel_dim2=3, kernel_dim3=3, batch_input_shape=((1,32,32,32,1)), border_mode='same', activation='relu')) model.add(Convolution3D(32, kernel_dim1=3, kernel_dim2=3, kernel_dim3=3, border_mode='same', activation='relu')) model.add(MaxPooling3D(pool_size=(3, 3, 3), border_mode='same')) model.add(Dropout(0.25)) model.add(Convolution3D(64, kernel_dim1=3, kernel_dim2=3, kernel_dim3=3, border_mode='same', activation='relu')) model.add(Convolution3D(64, kernel_dim1=3, kernel_dim2=3, kernel_dim3=3, border_mode='same', activation='relu')) model.add(MaxPooling3D(pool_size=(3, 3, 3), border_mode='same')) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, init='normal', activation='relu')) model.add(Dropout(0.5)) model.add(Dense(args.nb_classes, init='normal')) model.add(Activation('softmax')) return model # creat plots or results def plotHistory(history, result_dir): plt.plot(history.history['acc'], marker='.') plt.plot(history.history['val_acc'], marker='.') plt.title('model accuracy') plt.xlabel('epoch') plt.ylabel('accuracy') plt.grid() plt.legend(['acc', 'val_acc'], loc='lower right') plt.savefig(os.path.join(result_dir, 'model_accuracy.png')) plt.close() plt.plot(history.history['loss'], marker='.') plt.plot(history.history['val_loss'], marker='.') plt.title('model loss') plt.xlabel('epoch') plt.ylabel('loss') plt.grid() plt.legend(['loss', 'val_loss'], loc='upper right') plt.savefig(os.path.join(result_dir, 'model_loss.png')) plt.close() # save results def saveHistory(history, result_dir): loss = history.history['loss'] acc = history.history['acc'] val_loss = history.history['val_loss'] val_acc = history.history['val_acc'] nb_epoch = len(acc) with open(os.path.join(result_dir, 'result.txt'), 'w') as fp: fp.write('epoch\tloss\tacc\tval_loss\tval_acc\n') for i in range(nb_epoch): fp.write('{}\t{}\t{}\t{}\t{}\n'.format( i, loss[i], acc[i], val_loss[i], val_acc[i])) def cameraPosition(scene): scene.scene.camera.position = [-567.41776413974469, 1633.7556647598549, 1363.3615455804083] scene.scene.camera.focal_point = [561.47961291021682, 626.13187551647002, -12.72703501800356] scene.scene.camera.view_angle = 30.0 scene.scene.camera.view_up = [0.47290363159850934, -0.47961203996493962, 0.73914440154925776] scene.scene.camera.clipping_range = [929.45157879168619, 3476.2045332275461] scene.scene.camera.compute_view_plane_normal() scene.scene.render() def addText(module,text,position): text3d=module text3d.text = text text3d.scale=[20,20,20] text3d.position=np.add(position,[0,0,0]) def visStack(v, opacity=.5, color=(1,0,0), mode=''): if mode!='same': mlab.figure(bgcolor=(1,1,1)) s=mlab.get_engine() # Returns the running mayavi engine. scene=s.current_scene # Returns the current scene. scene.scene.disable_render = True # for speed origion=[0,0,0] label= 'Segmentation' A=ArraySource(scalar_data=v) A.origin=np.array(origion) D=s.add_source(A)# add the data to the Mayavi engine #Apply gaussain 3d filter to smooth visualization F=mlab.pipeline.user_defined(D, filter='ImageGaussianSmooth') F.filter.set_standard_deviation(0,0,0) contour = Contour() s.add_filter(contour) smooth = mlab.pipeline.user_defined(contour, filter='SmoothPolyDataFilter') smooth.filter.number_of_iterations = 1 smooth.filter.relaxation_factor = 0 surface=Surface() s.add_module(surface) surface.module_manager.scalar_lut_manager.lut_mode = u'coolwarm' surface.module_manager.scalar_lut_manager.reverse_lut = True surface.actor.property.opacity = opacity surface.actor.mapper.scalar_visibility=False surface.actor.property.color = color #color return surface def readStack(name, l=None, rgb=None): data=np.array(io.MultiImage(name)) if l: if len(np.shape(data))>3: data=(data[0,0:l,:,:,0]) else: data=(data[0:l,:,:]) else: if rgb: data=(data[0,:,:,:,:]) else: if len(np.shape(data))==5: data=(data[0,:,:,:,0]) else: if len(np.shape(data))==4: data=(data[0,:,:,:]) else: data=(data[:]) return data class getSegData: pad=[64,64,64] posBatches=list()#to store positive samples negBatches=list()#to store negative samples nBatches=0.0 thr=[.3, .7] indP=list() indN=list() pSize=[[8,8,16,8,16,8,16],[16,32,32,64,64,128,128],[16,32,32,64,64,128,128]] # pSize=[[16],[32],[32]] def __init__(self,segData): self.Data=segData def process1(self, E_param, AE_param=.01, padding=True): self.E_param=E_param self.AE_param=AE_param if padding: self.Data= np.pad(self.Data, ((self.pad[0],self.pad[0]),(self.pad[1],self.pad[1]),(self.pad[2],self.pad[2])), mode='constant', constant_values = 0) self.segData=self.Data self.d1,self.d2,self.d3=np.shape(self.segData) self.procSeg() def process2(self): self.getSkl() self.getDist() self.getKeys() # indicies indices=np.where(self.sklData>0) self.indSkl=np.array([indices[0],indices[1],indices[2]]).T indices=np.where(self.keysData>0) indices=np.array([indices[0],indices[1],indices[2]]).T self.indKeys=getCluster(indices, eps=1, min_samples=1).astype('int') # self.indKeys=indices ### First Method ### def checkV(self, ind): """ This function returns a batch if it does satisfy the criterion. It operates by masking the batch at the selected index with a sphere at different sizes, once a batch at certain size pass the criterion, the function return it and stop """ i= int(self.distDataF[ind[0],ind[1],ind[2]]*1.5) # batch=self.segData[ind[0]-i:ind[0]+i+1 , ind[1]-i:ind[1]+i+1, ind[2]-i:ind[2]+i+1] # sphere=morph1.ball(i).astype('bool') # v=np.bitwise_and(sphere, batch) batch=self.distDataF[ind[0]-i:ind[0]+i+1 , ind[1]-i:ind[1]+i+1, ind[2]-i:ind[2]+i+1] sphere=morph1.ball(i) v=sphere*batch return v def appendBatch(self, B): """ This function save the extracted batch. """ self.Batches.append(B) def getBatches1(self, outS=[32.0,32.0,32.0]): """ This function extract positive and negative patches from obtained segmenations """ self.Batches=[] count=0 for i in tqdm(range(np.shape(self.indKeys)[0])): idx=self.indKeys[i] B=self.checkV(idx) if B is not None: #fix the size. inS=np.shape(B) B=ndim.zoom(B, (outS[0]/inS[0], outS[1]/inS[1], outS[2]/inS[2]), order=0) # B=morph1.remove_small_objects(B, min_size=512) self.appendBatch(B) count+=1 self.nBatches=count def procSeg(self): """ This funtion perform two stages of morphological processing on the segmente stack. First operation is performed globally and the second one is adaptive. """ #first v=morph1.remove_small_holes(self.segData, min_size=8**3) v=morph1.remove_small_objects(v, min_size=self.E_param*(32**3)) v=morph1.binary_closing(v,morph1.ball(3)) v=morph1.binary_opening(v,morph1.ball(1)) #second (adaptive) #v=self.adaptive_erosion(v, alpha=self.AE_param) v=morph1.remove_small_holes(v, min_size=8**3) v=morph1.remove_small_objects(v, min_size=self.E_param*(32**3)) self.segData=v def adaptive_erosion(self, v, alpha): """ This function perform adaptive erosion based on max. distance transform """ dist_v=getDist(v) # based on 2D sectioning to cal. max dist s=int(np.max(dist_v)) max_v=filt.maximum_filter(dist_v,size=(s,s,s)) max_v=np.square(max_v) out_v=np.divide(dist_v,(max_v+1)) out_v=out_v>alpha out_v=morph1.remove_small_holes(out_v, min_size=512) out_v=morph1.remove_small_objects(out_v, min_size=self.E_param*512) v=morph1.binary_closing(v,morph1.ball(3)) out_v=morph1.binary_opening(out_v,morph1.ball(1)) return out_v def getSkl(self): self.sklData=sk3d(self.segData.astype('int')).astype('bool') def getDist(self): self.distDataF=getDist(self.segData.astype('int')) self.distData=self.distDataF*self.sklData def getKeys(self): sk_=(filt.uniform_filter(self.sklData.astype('float'), size=3)*27).astype('int') self.keysData=sk_>3 def getSmooth(self, sigma=1, mode='same'): d=self.distDataF d=filt.gaussian_filter(d,sigma) s=d*self.sklData m=np.zeros_like(s) indices=np.where(s>0) indices=np.array([indices[0],indices[1],indices[2]]).T # from rows in tuple to columns in np array for i in tqdm(range(np.shape(indices)[0])): idx=indices[i] x0=idx[1] y0=idx[2] z0=idx[0] # radius of the sphere and numbr of point grids l=s[z0,x0,y0] n_p=int(2*l+1) # get the grid for x, y, z x=np.floor(np.linspace(x0-l,x0+l,n_p)) y=np.floor(np.linspace(y0-l,y0+l,n_p)) z=np.floor(np.linspace(z0-l,z0+l,n_p)) # get the meshgrid and build the sphere p1,p2,p3=np.meshgrid(x,y,z); sphere=((p1-x0)**2+(p2-y0)**2+(p3-z0)**2)<=l**2 p11=p1*sphere; p11=np.ndarray.flatten(p11) p22=p2*sphere; p22=np.ndarray.flatten(p22) p33=p3*sphere; p33=np.ndarray.flatten(p33) # set the grid points of the origional data stack that # intersect with the sphere to value 1 p=np.array([p33,p11,p22]).astype('int') p=tuple(p) m[p]=1 if mode =='same': self.segData=m else: self.smoothedSegData=m ### Second Method ### def cvh(self, v): points=np.array(np.where(v>0)).T return np.sum(v)/fc(points).volume def getBatches2(self, ind, thresh=[0,1], c=.75): #initialize batches=[] selec_ind=np.zeros(np.shape(ind)[0]*len(self.pSize[0])) for l,m,n in zip(self.pSize[0],self.pSize[1],self.pSize[2]): print('\n'+'*'*75+'\n'+'Extracting batches at scale: '+'['+str(l)+', '+str(m)+', '+str(n)+']') s_z=int(l/2)# step in z s_x=int(m/2)# step in x s_y=int(n/2)# step in y for i in tqdm(range(np.shape(ind)[0])): z,x,y=ind[i] # check if the patch does not exceed the bounds if ((self.d1-s_z > z >= s_z+1) and (self.d2-s_x > x >= s_x+1) and (self.d3-s_y > y >= s_y+1)): batch=self.segData[z-s_z:z+s_z , x-s_x:x+s_x, y-s_y:y+s_y] # check if the patch is representative if thresh[0]*m*n*l <= np.sum(batch>0) <=thresh[1]*m*n*l: #check if a batch at this index is not added if selec_ind[i]==0: #fix the size if ness. self.wanted_size=s=[16.0,32.0,32.0] if not np.array_equal(s,[l,m,n]): batch=ndim.zoom(batch, (s[0]/l, s[1]/m, s[2]/n), order=0) batches.append(batch)# add the patch to the dataset selec_ind[i]=1 return selec_ind, np.array(batches[:]) class arg(): def __init__(self, batch=1, nb_classes=2, w_path=None): self.batch=batch self.nb_classes=nb_classes # perform DBSCAN clustering fot the output of prediction def getCluster(X, eps=0.05, min_samples=20): #find labels db = DBSCAN(eps=eps, min_samples=min_samples).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in pred labels, ignoring noise if present. n_clusters = len(set(labels)) - (1 if -1 in labels else 0) def computeCentroid(points): x1 = map(lambda p: p[0], points) x2 = map(lambda p: p[1], points) x3 = map(lambda p: p[2], points) centroid = [np.mean(x1), np.mean(x2), np.mean(x3)] return centroid #exclude noise from pred (outliers) ind=np.where(labels >-1) X_=np.array(X[ind]) labels_=np.array(labels[ind]) #calculate centroids points=dict() centroids=dict() for i in range(n_clusters): ind=np.where(labels_ ==i) points[i]=X_[ind] centroids[i]=computeCentroid(points[i]) X=np.vstack((X,np.array(centroids[i]))) labels=np.append(labels,n_clusters+10) nodes=[] for key, value in centroids.iteritems(): temp = [key,value] nodes.append(temp[1]) nodes=np.array(nodes) return nodes #plot scatter points def plot(v): indices=np.where(v>0) x1,x2,x3=indices[0],indices[1],indices[2] d=mlab.pipeline.scalar_scatter(x1,x2,x3) g=mlab.pipeline.glyph(d) # e=mlab.get_engine() # g=e.scenes[0].children[0].children[0].children[0] # g.glyph.glyph.range = np.array([ 0., 1]) # g.glyph.glyph.scale_factor = 0.1 def makeMovie(path): for i in range(360): # Rotate the camera by 10 degrees. e=mlab.get_engine() c=e.current_scene c.scene.camera.azimuth(1) # Resets the camera clipping plane so everything fits and then # renders. # c.scene.reset_zoom() # Save the scene. c.scene.save_png(path+'anim%d.png'%i) #"ffmpeg -f image2 -r 25 -i anim%d.png -vcodec mpeg4 -vb 20M -y movie.mp4" def getGraphfromCGAL(filenameVertices, filenameEdges, FullyCC=True): P1, P2, P11, P22=readCGAL(filenameEdges, filenameVertices) p, intersections, c=getGraph(P1, P2, P11, P22) G=nx.Graph() G.add_nodes_from(range(np.shape(p)[0])) G.add_edges_from(np.ndarray.tolist(c)) for i in range(np.shape(p)[0]): G.node[i]['pos']=p[i,:] G.to_undirected() if FullyCC==True: # connected components graphs=list(nx.connected_component_subgraphs(G)) s=0 ind=0 for idx, i in enumerate(graphs): if len(i)>s: s=len(i); ind=idx G=graphs[ind] G=fixG(G) return G def getGraph(P1, P2, P11, P22): u1=np.unique(P1,axis=0) u2=np.unique(P2,axis=0) P_unique=np.unique(np.vstack([u1,u2]),axis=0) labels=dict() for i in range(len(P_unique)): labels[str(P_unique[i,:])]=i counter=dict() intersect_ind=list() counter1=dict() for i in P1: if str(i) in counter1.keys(): counter1[str(i)]=counter1[str(i)]+1 else: counter1[str(i)]=1 # counter2=dict() for i in P2: if str(i) in counter2.keys(): counter2[str(i)]=counter2[str(i)]+1 else: counter2[str(i)]=1 for i in labels.keys(): if i in counter1.keys(): if counter1[i]>2: intersect_ind.append(labels[i]) else: if counter1[i]==2 and i in counter2.keys(): intersect_ind.append(labels[i]) if i in counter2.keys(): if counter2[i]>2: intersect_ind.append(labels[i]) else: if counter2[i]==2 and i in counter1.keys(): intersect_ind.append(labels[i]) intersect=P_unique[intersect_ind] connections=[] for i in range(len(P1)): start=labels[str(P1[i])] end=labels[str(P2[i])] connections.append((start,end)) return P_unique, intersect, np.array(connections) def readCGAL(filenameEdges, filenameVertices): f_edges = open(filenameEdges, 'r') c_edges=f_edges.readlines() f_verts = open(filenameVertices, 'r') c_verts=f_verts.readlines() def process(c): c=c.rstrip('\n') c=c.split() for i in range(len(c)): c[i]=float(c[i]) return c c_edges=[process(c_edges[i]) for i in range(len(c_edges))] p_edges=np.array(c_edges) P1=p_edges[:,0:3] P2=p_edges[:,3:6] c_verts=[process(c_verts[i]) for i in range(len(c_verts))] p_verts=np.array(c_verts) P11=p_verts[:,0:3] P22=p_verts[:,3:6] return P1, P2, P11, P22 def readOFF(filename): """ Reads vertices and faces from an off file. :param file: path to file to read :type file: str :return: vertices and faces as lists of tuples :rtype: [(float)], [(int)] """ assert os.path.exists(filename) with open(filename, 'r') as fp: lines = fp.readlines() lines = [line.strip() for line in lines] assert lines[0] == 'OFF' parts = lines[1].split(' ') assert len(parts) == 3 num_vertices = int(parts[0]) assert num_vertices > 0 num_faces = int(parts[1]) assert num_faces > 0 if lines[2]=='': K=3 else: K=2 vertices = [] for i in range(num_vertices): try: vertex = lines[K + i].split(' ') vertex = [float(point) for point in vertex] assert len(vertex) == 3 vertices.append(vertex) except: ValueError faces = [] for i in range(num_faces): try: face = lines[K + num_vertices + i].split() face = [int(index) for index in face if index !=''] except: ValueError assert face[0] == len(face) - 1 for index in face: assert index >= 0 and index < num_vertices assert len(face) > 1 faces.append(face[1:4]) return [vertices, faces] def visGraph(p, e, d, radius=.15, color=(0.8,0.8,0), gylph_r=0.5, gylph_c=(1,1,1)): if d: pts=mlab.points3d(p[:,0],p[:,1],p[:,2], d) else: pts=mlab.points3d(p[:,0],p[:,1],p[:,2], scale_factor=gylph_r, color=gylph_c) pts.mlab_source.dataset.lines = e tube = mlab.pipeline.tube(pts, tube_radius=radius) tube.filter.set_input_data(pts.mlab_source.dataset) surface=mlab.pipeline.surface(tube, color=color) if d: tube.filter.vary_radius = 'vary_radius_by_absolute_scalar' surface.actor.mapper.scalar_range = [ 0.0, np.max(d)] surface.actor.mapper.progress = 1.0 surface.actor.mapper.scalar_visibility = True def visG(G, radius=.15, color=(0.8,0.8,0), gylph_r=0.5, gylph_c=(1,1,1), diam=False, jnodes_r=None, jnodes_c=(0,0,1)): nodes=[G.node[i]['pos'] for i in G.nodes()] edges=[[i[0],i[1]] for i in G.edges()] #obtain radius in each node d=None if diam: try: d=[G.node[i]['d'] for i in G.nodes()] except: pass nodes=np.array(nodes).astype('float') # importnat to be float type edges=np.array(edges) visGraph(p=nodes, e=edges, d=d, radius=radius, color=color, gylph_r=gylph_r, gylph_c=gylph_c) if jnodes_r: _, jnodes=findNodes(G, j_only=False) x=[i[0] for i in jnodes] y=[i[1] for i in jnodes] z=[i[2] for i in jnodes] mlab.points3d(x,y,z,scale_factor=jnodes_r, color=jnodes_c) def getBranches_no(intersections): branches=[] points=[] Input=intersections px=np.array([np.inf,np.inf,np.inf]) for i in range(np.shape(intersections)[0]): while px not in points: Input=intersections p1=intersections[i,:] # select a point points.append(p1) # delet it from Input ind_p1=np.where(np.all(Input==p1, axis=1)) Input=np.delete(Input,ind_p1,axis=0) p1.shape=(1,3) # compute ecludien distance of Input from p1 p1_stack=np.repeat(p1, np.shape(Input)[0], axis=0) dist=np.sqrt(np.sum(np.square(Input-p1_stack), axis=1)) # find the ind of point (px) in Input that has the min dist with p1 ind=np.where(dist==np.min(dist)) ind=np.array(ind).ravel() ind=ind[0] px=Input[ind] points.append(px) branches.append([p1.ravel(),px]) return branches def fixG(G): Oldnodes=G.nodes() new=range(len(Oldnodes)) mapping={Oldnodes[i]:new[i] for i in new} G=nx.relabel_nodes(G, mapping) return G def removeEndsG(G): NodesToRemove=[0] while len(NodesToRemove)!=0: NodesToRemove=[] for i in G.nodes_iter(): k=nx.neighbors(G, i) if len(k)==1: NodesToRemove.append(i) G.remove_nodes_from(NodesToRemove) return G def getGraphfromMat(filename): F=h5py.File(filename, 'r') In=F['im2'] items=In.keys() data=dict() for i in items: data[i]=np.array(In[i]) nX=data['nX'] nY=data['nY'] nZ=data['nZ'] scale=data['Hvox'] xx=int(nX*scale[0]) yy=int(nY*scale[1]) zz=int(nZ*scale[2]) # read nodes Pos=data['nodePos_um'].T # read edges Edg=(data['nodeEdges'].T).astype('int') connections=[] for i in range(len(Edg)): connections.append((Edg[i,0]-1,Edg[i,1]-1)) # graphing funtion x,y,z=Pos[:,0].astype('float'), Pos[:,1].astype('float'), Pos[:,2].astype('float') G=nx.Graph() G.add_nodes_from(range(np.shape(Pos)[0])) G.add_edges_from(connections) x=256 y=256 minx=np.min(Pos[:,0]) miny=np.min(Pos[:,1]) minz=np.min(Pos[:,2]) maxx=np.max(Pos[:,0]) maxy=np.max(Pos[:,1]) maxz=np.max(Pos[:,2]) for i in range(np.shape(Pos)[0]): px=512*((Pos[i,0]-minx)/maxx) py=512*((Pos[i,1]-miny)/maxy) pz=512*((Pos[i,2]-minz)/maxz) G.node[i]['pos']=np.array([py,y-(px-y),pz]) return G def createCam(position, focal_point, view_angle, view_up, clipping_range): cam=dict() cam['position']=position cam['focal_point']=focal_point cam['view_angle']=view_angle cam['view_up']= view_up cam['clipping_range']=clipping_range return cam def setCam(cam=None): if cam: e=mlab.get_engine() c=e.current_scene c.scene.camera.position = cam['position'] c.scene.camera.focal_point = cam['focal_point'] c.scene.camera.view_angle = cam['view_angle'] c.scene.camera.view_up = cam['view_up'] c.scene.camera.clipping_range = cam['clipping_range'] c.scene.camera.compute_view_plane_normal() c.scene.render() def getSlicesfromGraph(G, name='graphSlices', mode='slices', image=False): fig=mlab.figure(bgcolor=(0,0,0),size=(512,561)) def setCamera(): e=mlab.get_engine() c=e.current_scene c.scene.camera.azimuth(1) c.scene.camera.position = [255.5, 255.5, -1125] c.scene.camera.focal_point = [255.5, 255.5, 255.0] c.scene.camera.view_angle = 30 c.scene.camera.view_up = [1, 0, 0] c.scene.camera.clipping_range = [0, 3000] c.scene.camera.compute_view_plane_normal() c.scene.render() depth=c.scene.camera.position return c, depth[2] visG(G, radius=2, color=(0,1,0)) if image: scr=mlab.pipeline.scalar_field(stk) imageCut=mlab.pipeline.scalar_cut_plane(scr) imageCut.actor.property.opacity=.2 imageCut.implicit_plane.widget.normal_to_z_axis=True e=mlab.get_engine() gylph= e.scenes[0].children[0].children[0].children[0] gylph.actor.actor.visibility=False surface = e.scenes[0].children[0].children[1].children[0].children[0] surface.actor.actor.visibility=False cut_plane = mlab.pipeline.scalar_cut_plane(surface, plane_orientation='z_axes') cut_plane.implicit_plane.origin = (256, 256, 0) cut_plane.actor.property.color = (1, 1, 1) cut_plane.implicit_plane.widget.enabled = False c,depth=setCamera() slices=[] for i in range(512): cut_plane.implicit_plane.origin = (256, 256, i) c.scene.camera.position = [255.5, 255.5, depth+i] if image: imageCut.implicit_plane.origin = (256, 256, i) s = mlab.screenshot(figure=fig, mode='rgba', antialiased=True) s=ndim.filters.maximum_filter(s[:,:,0]>0,size=(3,3)) #plt.imshow(s) im=Image.fromarray(np.array(s*255, dtype=np.uint8)) if mode=='slices': im.save(name+str(i)+'.png') else: slices.append(np.array(s*255, dtype=np.uint8)) if len(slices)>0: slices=np.array(slices) slices=slices[:,:,:] io.imsave(name,slices) def displayAdj(G): admG=nx.adjacency_matrix(G).toarray() scatterG=np.where(admG==1) x=scatterG[0] y=scatterG[1] plt.figure() plt.scatter(x,y) def reduceG(G, j_only=False): cont=1 idNodes,_=findNodes(G, j_only=j_only) while cont!=0: # NodesToRemove=[] # NodesToConnect=[] cont=0 for i in list(G.nodes_iter()): k=nx.neighbors(G, i) if len(k)==2: if i not in idNodes: G.remove_node(i) G.add_edge(k[0],k[1]) cont=1 #to account for loopy structure #G=fixG(G) return G def visPoints(points, scale_factor=1, color=(1,1,1)): x=[i[0] for i in points] y=[i[1] for i in points] z=[i[2] for i in points] mlab.points3d(x, y, z, scale_factor=scale_factor, color=color) e=mlab.get_engine() def findNodes(G, j_only=False): nodes=[] ind=[] if j_only: for i in G.nodes(): if len(G.neighbors(i))==3: nodes.append(G.node[i]['pos']) ind.append(i) else: for i in G.nodes(): if len(G.neighbors(i))!=2: nodes.append(G.node[i]['pos']) ind.append(i) try: nodes=[i.tolist() for i in nodes] except: pass return ind, nodes def findPoints(G): p=[] for i in range(G.number_of_nodes()): p.append(G.node[i]['pos'].tolist()) return p def findEnds(G): p=[] for i in range(G.number_of_nodes()): if len(G.neighbors(i))==1: p.append(i) return p def prunG(G): """ This function remove branches of length =1. Input: "G": NetworkX undirected graph Output: "G": pruned version of the intput "G" """ j_nodes,_=findNodes(G) nbrs=[] for i in j_nodes: nbrs.append(nx.neighbors(G,i)) for n, nb in zip(j_nodes, nbrs): if len(nb)==1: if nb[0] in j_nodes: G.remove_node(n) G=fixG(G) return G # This does not work !!!!!!! #def prunG(G): # endP=findEnds(G) # crossP,_=findNodes(G) # nodes_to_remove=[] # for i in crossP: # n=G.neighbors(i) # if len(n)>2: # for j in n: # if j in endP: # nodes_to_remove.append(j) # G.remove_nodes_from(nodes_to_remove) # return fixG(G) def rescaleG(G, cube=512): p=findPoints(G) pmin=np.min(p,axis=0) pmax=np.max(p,axis=0) for i in range(G.number_of_nodes()): p_=G.node[i]['pos'] G.node[i]['pos']=512*(p_-pmin)/pmax return G def saveSceneToPNG(name): #save as PNG s = mlab.screenshot( mode='rgba', antialiased=True) im=Image.fromarray(np.array(s*255, dtype=np.uint8)) im.save(name) def decideThresh(v, portion): vals,bins=np.histogram(v,bins=1000) vals=vals.astype(float)/sum(vals) s=0 thresh=0 for idx, i in enumerate(vals): s+=i if s>portion: thresh=bins[idx] break return thresh def getCoreGraph(G, indices): #obtain reduced graphs (with only burifications) Gr=reduceG(G.copy()) # note that Gr is not fixed by fixG nodesGr=Gr.nodes() nbrs=[] #find connections between nodes #connections=[] for i in Gr.nodes(): nbrs_=Gr.neighbors(i) nbrs.append(nbrs_) #connections_=[[i,j] for j in nbrs_] #connections.append(connections_) #find the complete branches(pathes) between nodes pathes=[] for i, j in zip(nodesGr, nbrs): pathes_=[] for nbr in j: pth=nx.shortest_path(G, i, nbr) pth.pop() # to avoid removing the node on the other side of the branch pathes_.append(pth) pathes.append(pathes_) pathes_to_remove=[] for id_i, i in enumerate(nodesGr): if i in indices: pathes_to_remove.append(pathes[id_i]) #find nodes and points on the corresponding branches to be removed nodes_to_remove=list(set([i[j][k] for i in pathes_to_remove for j in range(len(i)) for k in range(len(i[j]))])) for i in nodes_to_remove: G.remove_node(i) for i in G.nodes(): if len(G.neighbors(i))<1: G.remove_node(i) return G def getBranches(G): idNodes,_=findNodes(G) Gr=reduceG(G.copy()) nbrs=[] #find connections between nodes for i in idNodes: nbrs_=Gr.neighbors(i) nbrs.append(nbrs_) #find the complete branches(pathes) between nodes pathes=[] for i, j in zip(idNodes, nbrs): for nbr in j: pth=set(nx.shortest_path(G, i, nbr)) if not pth in pathes: pathes.append(pth) pathes=[list(i) for i in pathes] return pathes # get graph in the middle def getMiddleGraph(G, thr): max_p1=0 max_p2=0 max_p3=0 for i in G.nodes(): if max_p1<G.node[i]['pos'][0]: max_p1=G.node[i]['pos'][0] if max_p2<G.node[i]['pos'][1]: max_p2=G.node[i]['pos'][1] if max_p3<G.node[i]['pos'][2]: max_p3=G.node[i]['pos'][2] for i in G.nodes(): p1,p2,p3=G.node[i]['pos'] if p1>thr and p1<max_p1-thr and p2>thr and p2<max_p2-thr and p3>thr and p3<max_p3-thr: pass else: G.remove_node(i) return fixG(G) def getFullyConnected(G): # connected components graphs=list(nx.connected_component_subgraphs(G)) s=0 ind=0 for idx, i in enumerate(graphs): if len(i)>s: s=len(i); ind=idx G=graphs[ind] G=fixG(G) return G import SimpleITK as sitk def makeMIP(array=None, image_path=None, output_dir=None, output=True): if array is not None: image=sitk.GetImageFromArray(array) if image_path is not None: image = sitk.ReadImage(image_path) basename = os.path.basename(image_path) if not os.path.isdir(output_dir): os.makedirs(output_dir) image_size = image.GetSize() for dim in range(3): projection = sitk.MaximumProjection(image, dim) if image_size[dim] % 2: # odd number voxel = [0, 0, 0] voxel[dim] = (image_size[dim] - 1) / 2 origin = image.TransformIndexToPhysicalPoint(voxel) else: # even voxel1 = np.array([0, 0, 0], int) voxel2 = np.array([0, 0, 0], int) voxel1[dim] = image_size[dim] / 2 - 1 voxel2[dim] = image_size[dim] / 2 point1 = np.array(image.TransformIndexToPhysicalPoint(voxel1.tolist())) point2 = np.array(image.TransformIndexToPhysicalPoint(voxel2.tolist())) origin = np.mean(np.vstack((point1, point2)), 0) projection.SetOrigin(origin) projection.SetDirection(image.GetDirection()) if output_dir: proj_basename = basename.replace('.nii.gz', '_mip_{}.nii.gz'.format(dim)) sitk.WriteImage(projection, os.path.join(output_dir, proj_basename)) if output: return sitk.GetArrayFromImage(projection) def visProG(G, radius=.15, color=(0.8,0.8,0), gylph_r=1, gylph_c=(1,1,1), bound=1, bgcolor=(1,1,1), init=False): # figure = mlab.gcf() # mlab.clf() figure=mlab.figure(bgcolor=bgcolor) figure.scene.disable_render = True def showG(P_unique, connections, radius=.15, color=(0.8,0.8,0), gylph_r=0.5, gylph_c=(1,1,1)): pts=mlab.points3d(P_unique[:,0],P_unique[:,1],P_unique[:,2],scale_factor=gylph_r, color=gylph_c) pts.mlab_source.dataset.lines = np.array(connections) tube = mlab.pipeline.tube(pts, tube_radius=radius) tube.filter.radius_factor = 1. tube.filter.vary_radius = 'vary_radius_by_scalar' tube.filter.set_input_data(pts.mlab_source.dataset) mlab.pipeline.surface(tube, color=color) return pts def inG(G, radius=.15, color=(0.8,0.8,0), gylph_r=0.5, gylph_c=(1,1,1)): nodes=[] for i in range(G.number_of_nodes()): nodes.append(G.node[i]['pos']) edges=[] for i in G.edges_iter(): e=[i[0],i[1]] edges.append(e) nodes=np.array(nodes) edges=np.array(edges) pts=showG(nodes, edges, radius=radius, color=color, gylph_r=gylph_r, gylph_c=gylph_c) return pts g_points=np.array(findPoints(G)) if init: p1,p2,p3=[init[0], init[1], init[2]] else: p1,p2,p3=g_points[1] pts=inG(G, radius=radius, color=color, gylph_r=gylph_r, gylph_c=gylph_c) # outline = mlab.outline(line_width=5) # outline.outline_mode = 'full' # outline.bounds = (p1-bound, p1+bound, # p2-bound, p2+bound, # p3-bound, p3+bound) sphere = mlab.points3d(p1, p2, p3, scale_mode='none', scale_factor=bound, color=(1, 1, 1), opacity=.7) figure.scene.disable_render = False glyph_points = pts.glyph.glyph_source.glyph_source.output.points.to_array() def picker_callback(picker): """ Picker callback: this get called when on pick events. """ if picker.actor in pts.actor.actors: point_id = picker.point_id/glyph_points.shape[0] # If the no points have been selected, we have '-1' if point_id != -1: x, y, z = g_points[point_id] # # Move the outline to the data point. # outline.bounds = (x-bound, x+bound, # y-bound, y+bound, # z-bound, z+bound) sphere.mlab_source.set(x=x,y=y,z=z) print(point_id) print(x,y,z) picker = figure.on_mouse_pick(picker_callback) picker.tolerance = 0.001 def getPropagate2(G, idx, cutoff=10): path=nx.single_source_shortest_path(G, idx, cutoff=cutoff) end_points=[i for i in path.keys()] path_p=[path[i] for i in path.keys()] path_points=[] for i in path_p: try: len(i) for j in i: path_points.append(j) except: path_points.append(i) points= set(path_points).union(set(end_points)) points=list(points) for i in G.nodes(): if i in points: pass else: G.remove_node(i) return fixG(G) def getPropagate(G, idp, cutoff=5): Gc=reduceG(G.copy()) #get other juction nodes through the pathes J=nx.single_source_shortest_path(Gc, idp, cutoff=cutoff) eJ=[i for i in J.keys()] pJ=[J[i] for i in J.keys()] pairJ=[] for i in pJ: l=len(i) if len(i)>1: for idx, j in enumerate(i): if idx<(l-1): pairJ.append([j,i[idx+1]]) #all nodes in the pathes between j nodes pnts=[] for i in pairJ: pnts.append(nx.shortest_path(G,i[0],i[1])) pnts=[i for j in pnts for i in j] pnts=list(set(pnts)) for i in G.nodes(): if i in pnts: pass else: G.remove_node(i) return fixG(G) def readPAJEK(filename): """ Reads a Pajek file storing a Graph following the format used in this mudule. Input: "filename": The full directory to Graph file. """ G_seg=nx.read_pajek(filename) G=nx.Graph() # build geometry for i in range(G_seg.number_of_nodes()): node=G_seg.node[str(i)] # add node n=int(node['id'].encode()) G.add_node(n-1) #add position pos=node['pos'].encode() pos=pos.split(' ') xyz=[] for j in range(len(pos)): try: value=float(pos[j]) xyz.append(value) except: try: value=pos[j].split('[') xyz.append(float(value[1])) except: try: value=pos[j].split(']') xyz.append(float(value[0])) except : pass G.node[i]['pos']=np.array(xyz) # add label try: yORn=node['node'].encode() if yORn=='False': G.node[i]['node']=False else: G.node[i]['node']=True except: pass #build Topology connections_=G_seg.edges() connections=[[int((connections_[i][0]).encode()), int((connections_[i][1]).encode())] for i in range(len(connections_))] G.add_edges_from(connections) return G def fixConnections(G): # find wrong nodes and their positions w_nodes=[] # wrong nodes w_p=[] # position of wrong nodes w_nbrs=[] # wrong neighbors w_pos=[] # position of wrong neigbors for i in G.nodes(): w_nbrs_=G.neighbors(i) if len(w_nbrs_)==4: w_nodes.append(i) w_p.append(G.node[i]['pos']) w_nbrs.append(w_nbrs_) w_pos_=[G.node[j]['pos'] for j in w_nbrs_] w_pos.append(np.array(w_pos_)) # decide which nodes to be connected avoiding the juction ind_nodes=[] # indcies of nodes to avoid junction a=[] ind=[] kk=list(it.combinations([0,1,2,3],2)) for i, j in zip(w_p, w_pos): a_=[] for k in kk: p=[i, j[k[0]], j[k[1]]] a_.append(cycleArea(p)) idx=np.argsort(a_) ind.append(kk[idx[0]]) a.append(a_) for i, j in zip(w_nbrs, ind): ind_nodes.append([ i[j[0]], i[j[1]] ]) # modify_graph for i, j in zip(w_nodes, ind_nodes): G.remove_edge(i,j[0]) G.remove_edge(i,j[1]) G.add_edge(j[0],j[1]) return G def TrianArea(p1, p2, p3): def cal_abc(p1,p2,p3): a=np.linalg.norm(p1-p2) b=np.linalg.norm(p1-p3) c=np.linalg.norm(p2-p3) return a, b, c try: cal_abc(p1,p2,p3) except: p1=np.cross cal_abc(p1,p2,p3) # calculate the sides s = (a + b + c) / 2 # calculate the area area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 return area def cycleArea(corners): n = len(corners) # of corners cross= [0.0,0.0,0.0] for i in range(n): j = (i + 1) % n crss=np.cross(corners[i],corners[j]) cross=cross+crss #nrm+=np.linalg.norm(crss) area = np.linalg.norm(cross) / 2.0 return area def eigV(p): centered_matrix = p - p.mean(axis=1)[:, np.newaxis] cov = np.dot(centered_matrix, centered_matrix.T) eigvals, _ = np.linalg.eig(cov) delta=np.exp(1/(eigvals[0]+eigvals[1]))-1 return delta def angle(a, p1, p2): ap1 = p1 - a ap2 = p2 - a x1,x2,y1,y2,z1,z2=ap1[0],ap2[0],ap1[1],ap2[1],ap1[2],ap2[2] dot=x1*x2+y1*y2+z1*z2 norm1=(x1**2+y1**2+z1**2)**.5 norm2=(x2**2+y2**2+z2**2)**.5 if norm1>0 and norm2>0: cosine_angle = dot/(norm1*norm2) else: cosine_angle = 1 add=0 cosine_angle=round(cosine_angle,5) if cosine_angle <0: add=np.pi/2 cosine_angle+=1 angle = np.arccos(cosine_angle) return np.degrees(angle+add) def isSklNode(node, p, thr): thr1, thr2=thr,180-thr idx=range(np.shape(p)[0]) idx.pop(0) skl_node=True for i in idx: ang=angle(node, p[0], p[i]) if ang>thr1 and ang<thr2: skl_node=False return skl_node def getPropagate_branches(G, idp, cutoff=5): Gc=reduceG(G.copy(), j_only=True) #get other juction nodes through the pathes J=nx.single_source_shortest_path(Gc, idp, cutoff=cutoff) J=[J[i] for i in J.keys()] # get branches at different levels levels=dict() for j in range(cutoff): branches_=[] for i in J: if len(i)>1: try: branches_.append([i[j],i[j+1]]) except: pass branches_=[tuple(i) for i in branches_] branches_=list(set(branches_)) branches_=[list(i) for i in branches_] levels[j]=(branches_) #all nodes in the pathes between pair of j nodes b=dict() for i in levels.keys(): pairJ=levels[i] pnts=[] for j in pairJ: pnts.append(nx.shortest_path(G,j[0],j[1])) b[i]=pnts Graphs=dict()# represent each level as a graph for k in b.keys(): pnts=b[k] pnts=[i for j in pnts for i in j] G_=G.copy() for i in G_.nodes(): if i in pnts: pass else: G_.remove_node(i) G_=fixG(G_) Graphs[k]=G_ return Graphs def visGs(Graphs, radius=.5, bound=5, gylph_r=2): colors=[(0.0, 0.0, 0.0), (0.0, 0.0, 1.0), (0.6470588235294118, 0.16470588235294117, 0.16470588235294117), (0.8705882352941177, 0.7215686274509804, 0.5294117647058824), (0.37254901960784315, 0.6196078431372549, 0.6274509803921569), (1.0, 0.3803921568627451, 0.011764705882352941), (0.23921568627450981, 0.34901960784313724, 0.6705882352941176), (0.5019607843137255, 0.5411764705882353, 0.5294117647058824), (1.0, 0.5490196078431373, 0.0), (0.0, 0.7490196078431373, 1.0)] for i in Graphs.keys(): if i <1: visProG(Graphs[i], radius=radius, color=colors[i], bound=7, gylph_r=gylph_r) else: visG(Graphs[i], radius=radius, color=colors[i], gylph_r=gylph_r) def visMesh(m, color=(1,0,0), opacity=.5, figure=True, axes=False, adjust=False, wire=True): #build pipeline if figure: mlab.figure(bgcolor=(1,1,1)) x,y,z=[i[0] for i in m[0]], [i[1] for i in m[0]], [i[2] for i in m[0]] if adjust: # the next line is to fix the coordinates in the meshes datasets y=max(y)-np.array(y) y=y.tolist() t=[i for i in m[1]] if adjust: mesh=mlab.pipeline.triangular_mesh_source(x,y,z,t) # coordinates are flipped to error in my meshes else: mesh=mlab.pipeline.triangular_mesh_source(x,y,z,t) # coordinates are flipped to error in my meshes mesh.mlab_source.scalars=[1]*len(t) s=mlab.pipeline.surface(mesh) #modify surface #s=mlab.get_engine().scenes[0].children[0].children[0].children[0] s.module_manager.scalar_lut_manager.lut_mode=u'autumn' # colormap if opacity: s.actor.property.opacity = opacity if color: s.actor.mapper.scalar_visibility=False s.actor.property.color = color #color if axes: ax=mlab.axes(color=(0,0,1), line_width=2, ranges=[0,512,0,512,0,660]) if wire: s.actor.property.representation = 'wireframe' def adjustMesh(m, flip=[0,0,0], switch=[0, 0, 0], reverse=[0,0,0]): ''' modify mesh coordinates Input: m: the input mesh flip: parameters used to flip or not the coordinates: [x, y, z]. switch: parameters used to switch or not coordinates: [xy, xz, yz] ''' v=m[0] t=m[1] x, y, z = [i[0] for i in v], [i[1] for i in v], [i[2] for i in v] if flip[0]==1: x=max(x)-np.array(x) x=x.tolist() if flip[1]==1: y=max(y)-np.array(y) y=y.tolist() if flip[2]==1: z=max(z)-np.array(z) z=z.tolist() if reverse[0]==1: x=x[::-1] if reverse[1]==1: y=y[::-1] if reverse[2]==1: z=z[::-1] if switch[0]==1: h=x x=y y=h if switch[1]==1: h=x x=z z=h if switch[2]==1: h=y y=z z=h # rebuild v v=[[i, j, k] for i, j, k in zip(x, y, z)] return [v,t] def sliceG(G, slc=[0,100], flat=True): g=G.copy() p=findPoints(g) p=np.array(p) x, y ,z = p[:,0], p[:,1], p[:,2] index=np.ravel(np.where( np.logical_or((z<slc[0]),(z>slc[1])) )) g.remove_nodes_from(index) g=fixG(g) if flat: for i in g.nodes(): p_=g.node[i]['pos'] g.node[i]['pos']=p_*[1,1,0] return g def adjustGraph(g, flip=[0,0,0], switch=[0,0,0]): ''' modify graph coordinates Input: m: the input mesh flip: parameters used to flip or not the coordinates: [x, y, z]. switch: parameters used to switch or not coordinates: [xy, xz, yz] ''' v=[g.node[i]['pos'] for i in g.nodes()] x, y, z = [i[0] for i in v], [i[1] for i in v], [i[2] for i in v] if flip[0]==1: x=max(x)-
np.array(x)
numpy.array
### import used modules first import scipy.optimize as opt import math from sys import platform import ctypes import struct import numpy as np from pathlib import Path import matplotlib.pyplot as plt import matplotlib.pylab as pylab import cv2 import os from glob import glob from PIL import Image, ImageEnhance import pandas as pd import io import random import string ### 2-D Gaussian function with rotation angle def twoD_Gaussian(xy, amplitude, sigma_x, sigma_y, xo, yo, theta_deg, offset): xo = float(xo) yo = float(yo) theta = theta_deg / 360 * (2 * math.pi) # in rad x = xy[0] y = xy[1] a = (np.cos(theta) ** 2) / (2 * sigma_x ** 2) + (np.sin(theta) ** 2) / (2 * sigma_y ** 2) b = -(np.sin(2 * theta)) / (4 * sigma_x ** 2) + (np.sin(2 * theta)) / (4 * sigma_y ** 2) c = (np.sin(theta) ** 2) / (2 * sigma_x ** 2) + (np.cos(theta) ** 2) / (2 * sigma_y ** 2) g = offset + amplitude * np.exp(- (a * ((x - xo) ** 2) + 2 * b * (x - xo) * (y - yo) + c * ((y - yo) ** 2))) return g.ravel() ### define a class for all glimpse data class BinaryImage: def __init__(self, path_folder, read_mode=1, frame_setread_num=20, frame_start=0, criteria_dist=20, aoi_size=20, frame_read_forcenter=0, N_loc=40, contrast=10, low=40, high=120, blacklevel=30, whitelevel=200): self.random_string = self.__gen_random_code(3) self.path_folder = os.path.abspath(path_folder) self.path_header = os.path.abspath(os.path.join(path_folder, 'header.glimpse')) self.path_header_utf8 = self.path_header.encode('utf8') self.path_header_txt = os.path.abspath(os.path.join(path_folder, 'header.txt')) self.path_data = self.__get_path_data() [self.frames_acquired, self.height, self.width, self.pixeldepth, self.med_fps] = self.getheader() self.data_type, self.size_a_image, self.frame_per_file = self.__getdatainfo() self.read_mode = read_mode self.frame_setread_num = frame_setread_num self.criteria_dist = criteria_dist self.aoi_size = aoi_size self.frame_read_forcenter = frame_read_forcenter self.frame_start = frame_start self.N_loc = N_loc self.contrast = contrast self.low = low self.high = high self.blacklevel = blacklevel self.whitelevel = whitelevel self.offset, self.fileNumber = self.__getoffset() self.cut_image_width = 30 self.readN = self.__readGlimpseN(frame_read_forcenter, N_loc) # N image from i self.image = self.__stackimageN(self.readN) # image used to be localized self.x_fit = np.array([[i for i in range(aoi_size)] for j in range(aoi_size)]).astype(float) self.y_fit = np.array([[j for i in range(aoi_size)] for j in range(aoi_size)]).astype(float) self.background = np.mean(self.image) self.initial_guess = [50., 2., 2., aoi_size/2, aoi_size/2, 0., self.background] self.image_cut = [] ########################################################################### ## main for localization def Localize(self, put_text=True): print('start centering') image = self.image image = self.__enhance_contrast(image, self.contrast) contours = self.getContour(image, self.low, self.high) cX, cY = self.getXY(contours) ## need to sort according to X first and select for i in range(2): cX, cY = self.__sortXY(cX, cY) cX, cY = self.select_XY(cX, cY, self.criteria_dist) cX, cY, amplitude = self.get_accurate_xy(image, cX, cY) cX, cY, amplitude = self.removeblack(cX, cY, amplitude, self.blacklevel) self.bead_number = len(cX) image = self.__drawAOI(image, cX, cY, self.aoi_size, put_text=put_text) self.__show_grayimage(image, save=True) self.cX = cX self.cY = cY self.image = image print('finish centering') bead_radius = self.radius_save.reshape((-1,1)) random_string = self.random_string return bead_radius, random_string ## main for tracking all frames and all beads(cX, cY) def Track_All_Frames(self, selected_aoi=None, IC=False): frames_acquired = self.frames_acquired frame_start = self.frame_start aoi_size = self.aoi_size read_mode = self.read_mode frame_setread_num = self.frame_setread_num frame_read_forcenter = self.frame_read_forcenter initial_guess, initial_guess_beads, N = self.__preparefit_info(read_mode, frame_setread_num, frames_acquired) if selected_aoi == None: cX = self.cX cY = self.cY else: cX = np.array(self.cX[selected_aoi], ndmin=1) cY = np.array(self.cY[selected_aoi], ndmin=1) initial_guess_beads = np.array(initial_guess_beads[selected_aoi], ndmin=2) p0_1 = initial_guess_beads # initialize fitting parameters for each bead tracking_results_list = [] for i in range(N): image = self.__readGlimpse1(frame_start+i) data, p0_2 = self.trackbead(image, cX, cY, aoi_size, frame=i, initial_guess_beads=p0_1,IC=IC) # p0_1 = self.__update_p0(p0_1, p0_2, i) # update fitting initial guess tracking_results_list += data print(f'frame {i}') self.N = N self.initial_guess_beads = p0_1 tracking_results = np.array(tracking_results_list) self.tracking_results = tracking_results self.aoi = [cX, cY] return tracking_results ## main for getting fit-video of an aoi def Get_fitting_video_offline(self, selected_aoi, frame_i, N): tracking_results = self.tracking_results cX, cY = self.aoi x = self.x_fit y = self.y_fit n_fit = len(x) aoi_size = self.aoi_size path_folder = self.path_folder tracking_results_select = self.get_aoi_from_tracking_results(tracking_results, selected_aoi) imageN = self.__readGlimpseN(frame_i, N=N) fourcc = cv2.VideoWriter_fourcc(*'H264') output_movie = cv2.VideoWriter(os.path.abspath(path_folder) + f'/{self.random_string}-fitting2.mp4', fourcc, 5.0, (1200, 800)) i=0 for image, tracking_result_select in zip(imageN, tracking_results_select): image_aoi, intensity = self.__getAOI(image, cY[selected_aoi], cX[selected_aoi], aoi_size) para_fit = tracking_result_select[2:9] data_fitted = twoD_Gaussian((x, y), *para_fit) fig, ax = plt.subplots(1, 1) # ax.imshow(image_aoi, cmap=plt.cm.gray, origin='lower', # extent=(x.min(), x.max(), y.min(), y.max())) ax.imshow(image_aoi) ax.contour(x, y, data_fitted.reshape(n_fit, n_fit), 5, colors='r') plot_img_np = self.get_img_from_fig(fig) plot_img_np = cv2.resize(plot_img_np, (1200, 800)) output_movie.write(plot_img_np) plt.close() print(f'storing frame {i}') i+= 1 self.image_aoi = image_aoi self.ax = ax output_movie.release() ############################################################################### ## get accurate position using Gaussian fit def get_accurate_xy(self, image, cX, cY): aoi_size = self.aoi_size initial_guess_beads = np.array([self.initial_guess] * len(cX)) data, popt_beads = self.trackbead(image, cX, cY, aoi_size, frame=0, initial_guess_beads=initial_guess_beads) amplitude = popt_beads[:, 0] x, y = popt_beads[:, 3], popt_beads[:, 4] self.dx_localization, self.dy_localization = x-aoi_size/2, y-aoi_size/2 self.initial_guess_beads = initial_guess_beads self.amplitude = amplitude cX = cX + self.dx_localization cY = cY + self.dy_localization return cX, cY, amplitude ## tracking position of all beads in a image, get all parameters and frame number def trackbead(self, image, cX, cY, aoi_size, frame, initial_guess_beads, IC=False): bead_number = len(cX) bounds = self.__get_bounds(aoi_size) x, y = self.x_fit, self.y_fit data = [] for j in range(bead_number): image_tofit, intensity = self.__getAOI(image, cY[j], cX[j], aoi_size) initial_guess = self.__get_guess(image_tofit) if IC==True: contrast = 8 image_tofit = ImageEnhance.Contrast(Image.fromarray(image_tofit.astype('uint8'))).enhance(contrast) image_tofit = np.array(image_tofit) try: # popt, pcov = opt.curve_fit(twoD_Gaussian, [x, y], image_tofit.ravel(), initial_guess_beads[j, :], # bounds=bounds) popt, pcov = opt.curve_fit(twoD_Gaussian, [x, y], image_tofit.ravel(), initial_guess, bounds=bounds, method='trf') ss_res = self.__get_residuals(twoD_Gaussian, x, y, image_tofit, popt) ## popt: optimized parameters, pcov: covariance of popt, diagonal terms are variance of parameters # data_fitted = twoD_Gaussian((x, y), *popt) intensity_integral = 2 * math.pi * popt[0] * popt[1] * popt[2] data += [ [frame] + [j] + list(popt) + [intensity] + [intensity_integral] + [ss_res] ] # initial_guess_beads[j] = list(popt) initial_guess_beads[j, :] = popt except RuntimeError: # popt, pcov = opt.curve_fit(twoD_Gaussian, [x, y],image_tofit.ravel(), initial_guess) data += [[frame] + [j] + [0.] * 10] initial_guess_beads[j, :] = np.array(initial_guess) # initial guess for all beads except: data += [[frame] + [j] + [0.] * 10] initial_guess_beads[j, :] = np.array(initial_guess) popt_beads = np.array(initial_guess_beads) return data, popt_beads ### methods for localization ## get egde using frame in file,f def getContour(self, image, low=30, high=90): cut = self.cut_image_width ## get edges using openCV image_cut = np.uint8(image[0 + cut:self.height - cut, 0 + cut:self.width - cut]) edges = cv2.Canny(image_cut, low, high) # cv2.Canny(image, a, b), reject value < a and detect value > b # ret, thresh = cv2.threshold(self.edges, 0, 50, cv2.THRESH_BINARY) # THRESH_BINARY: transform into black/white depending on low/high value contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) self.edges = edges self.contours = contours return contours ## get center point using moment of edge def getXY(self, contours): cut = self.cut_image_width radius, radius_save = [], [] n_contours = len(contours) cX, cY = [], [] saved_contours, perimeters, areas = [], [], [] for i in range(n_contours): c = contours[i] perimeters += [cv2.arcLength(c, True)] areas += [cv2.contourArea(c)] # if (perimeters[-1] <= 0) | (areas[-1] <= 0) | (len(c) < 2): if (perimeters[-1] == 0): continue ## ingore code below radius += [2 * areas[-1] / perimeters[-1]] ## r^2/2r = r/2 M = cv2.moments(c) # if (M['m00'] != 0) & (radius[-1] > 1): if (M['m00'] != 0): radius_save += [radius[-1]] saved_contours += [c] cX += [(M['m10'] / M['m00']) + cut] cY += [(M['m01'] / M['m00']) + cut] self.perimeters = perimeters self.areas = areas self.saved_contours = np.array(saved_contours) cX = np.array(cX) cY = np.array(cY) radius_save = np.array(radius_save) self.radius_save = radius_save return cX, cY ## core for selecting points which are not too close def select_XY(self, cX, cY, criteria): cX1, cY1 = np.array(cX), np.array(cY) n = len(cX1) cX_selected, cY_selected = np.empty(0), np.empty(0) r_selected = np.empty(0) index = [] for i in range(n): x2, y2 = cX1[i], cY1[i] r = np.sqrt(x2**2 + y2**2) c1 = abs(x2-cX_selected) >= criteria c2 = abs(y2-cY_selected) >= criteria c3 = abs(r-r_selected) >= criteria c = np.array([c1 or c2 or c3 for c1,c2,c3 in zip(c1,c2,c3)]) ## get boolean array for outside of criteria distance if all(c) or (i==0): ## collecting centers, every point should qualify cX_selected = np.append(cX_selected, x2) cY_selected = np.append(cY_selected, y2) r = np.sqrt(x2**2 + y2**2) r_selected = np.append(r_selected, r) index += [i] self.radius_save = self.radius_save[index] self.saved_contours = self.saved_contours[index] return cX_selected, cY_selected ## remove beads are too close, choose two image, refer to smaller bead# def removeXY(self, cX, cY, criteria): cX1, cY1 = np.array(cX), np.array(cY) # len of cXr1 is smaller, as ref i_dele = np.empty(0).astype(int) for i in range(len(cX1)): dx = cX1 - cX1[i] dy = cY1 - cY1[i] dr = np.sqrt(dx ** 2 + dy ** 2) if any(dr[dr != 0] <= criteria): i_dele = np.append(i_dele, int(i)) cX = np.delete(cX1, i_dele) cY = np.delete(cY1, i_dele) self.radius_save = np.delete(self.radius_save, i_dele) self.saved_contours = np.delete(self.saved_contours, i_dele) return cX, cY ## get avg intensity of all AOI(20 * 20 pixel) def getintensity(self, image, cX, cY, aoi_size=20): # i: bead number: 1,2,3,...,N half_size = int(aoi_size/2) intensity = [] for i in range(len(cX)): horizontal = int(cY[i]) # width vertical = int(cX[i]) # height intensity += [np.mean(image[horizontal - half_size:(horizontal + half_size), vertical - half_size:(vertical + half_size)])] # [x,y] = [width, height] intensity =
np.array(intensity)
numpy.array
#Copyright (C) 2021 <NAME>, <NAME>, University of California, Berkeley #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../external')) sys.path.append(os.path.join(os.path.dirname(__file__), '../src')) import vtk from vtk.util.numpy_support import vtk_to_numpy, numpy_to_vtk import numpy as np #np.random.seed(42) from vtk_utils.vtk_utils import * from pre_process import * import argparse from datetime import datetime import scipy.sparse as sp import pickle from scipy.sparse.linalg.eigen.arpack import eigsh def build_transform_matrix(image): matrix = np.eye(4) matrix[:-1,:-1] = np.matmul(np.reshape(image.GetDirection(), (3,3)), np.diag(image.GetSpacing())) matrix[:-1,-1] = np.array(image.GetOrigin()) return matrix def map_polydata_coords(poly, displacement, transform, size): coords = vtk_to_numpy(poly.GetPoints().GetData()) coords += displacement coords = np.concatenate((coords,np.ones((coords.shape[0],1))), axis=-1) coords = np.matmul(np.linalg.inv(transform), coords.transpose()).transpose()[:,:3] coords /= np.array(size) return coords def transform_polydata(poly, displacement, transform, size): coords = map_polydata_coords(poly, displacement, transform, size) poly.GetPoints().SetData(numpy_to_vtk(coords)) return poly def get_image_patch(image_py, coords): """ return a patch of the image defined under coords, the coords should be in [0,1]R^3 """ dim_x, dim_y, dim_z = image_py.shape indices = coords * np.array([[dim_x, dim_y, dim_z]]) x1 = np.floor(indices[:,0]).astype(int) y1 = np.floor(indices[:,1]).astype(int) z1 = np.floor(indices[:,2]).astype(int) x2 = np.ceil(indices[:,0]).astype(int) y2 = np.ceil(indices[:,1]).astype(int) z2 = np.ceil(indices[:,2]).astype(int) q11 = image_py[x1, y1, z1] q21 = image_py[x2, y1, z1] q12 = image_py[x1, y2, z1] q22 = image_py[x2, y2, z1] wx = indices[:, 0] - x1 wx2 = x2 - indices[:, 0] lerp_x1 = q21 * wx + q11 * wx2 lerp_x2 = q12 * wx + q22 * wx2 wy = indices[:, 1] - y1 wy2 = y2 - indices[:, 1] lerp_y1 = lerp_x2 * wy + lerp_x1 * wy2 q112 = image_py[x1, y1, z2] q212 = image_py[x2, y1, z2] q122 = image_py[x1, y2, z2] q222 = image_py[x2, y2, z2] lerp_x12 = q212 * wx + q112 * wx2 lerp_x22 = q122 * wx + q222 * wx2 lerp_y12 = lerp_x22 * wy + lerp_x12 * wy2 wz = indices[:, 2] - z1 wz2 = z2 - indices[:,2] lerp_z = lerp_y12 * wz + lerp_y1 * wz2 return lerp_z def make_grid_vtk(ctrl_points, diagonal=True): # assume equal number of control points along each dim num_pts = int(round(len(ctrl_points)**(1/3))) # points grid = vtk.vtkPolyData() vtk_points = vtk.vtkPoints() vtk_points.SetData(numpy_to_vtk(ctrl_points)) grid.SetPoints(vtk_points) # edges lines = vtk.vtkCellArray() for i in range(num_pts): for j in range(num_pts): for k in range(num_pts-1): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append(i*num_pts*num_pts+j*num_pts +k+1) if diagonal: if j<num_pts-1: ids.append(i*num_pts*num_pts+(j+1)*num_pts +k+1) if i < num_pts-1: ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k+1) if i >0: ids.append((i-1)*num_pts*num_pts+(j+1)*num_pts +k+1) if j>0: ids.append(i*num_pts*num_pts+(j-1)*num_pts +k+1) if i < num_pts-1: ids.append((i+1)*num_pts*num_pts+(j-1)*num_pts +k+1) if i >0: ids.append((i-1)*num_pts*num_pts+(j-1)*num_pts +k+1) #if i<num_pts-1: # ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) for i in range(num_pts): for j in range(num_pts-1): for k in range(num_pts): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append(i*num_pts*num_pts+(j+1)*num_pts +k) if diagonal: if i<num_pts-1: ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k) if i>0: ids.append((i-1)*num_pts*num_pts+(j+1)*num_pts +k) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) for i in range(num_pts-1): for j in range(num_pts): for k in range(num_pts): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append((i+1)*num_pts*num_pts+j*num_pts +k) if diagonal: if k<num_pts-1: ids.append((i+1)*num_pts*num_pts+j*num_pts +k+1) if k>0: ids.append((i+1)*num_pts*num_pts+j*num_pts +k-1) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) grid.SetLines(lines) return grid def make_grid(num_pts, bounds, diagonal=True): # compute bounding box of the template min_bound, max_bound = bounds # create control points x = np.linspace(min_bound[0], max_bound[0], num_pts, endpoint=True) y = np.linspace(min_bound[1], max_bound[1], num_pts, endpoint=True) z = np.linspace(min_bound[2], max_bound[2], num_pts, endpoint=True) # create vtk polydata u, v, w = np.meshgrid(x, y, z, indexing='ij') coords = np.column_stack((u.flatten(), v.flatten(), w.flatten())) grid = make_grid_vtk(coords, diagonal) #write_vtk_polydata(grid, os.path.join(os.path.dirname(__file__), 'grid_pts{}.vtk'.format(num_pts))) return grid def load_geometry_from_file(fn, target_node_num): template = load_vtk_mesh(fn) try: region_ids = np.unique(vtk_to_numpy(template.GetCellData().GetArray('Scalars_'))).astype(int) except: region_ids = np.unique(vtk_to_numpy(template.GetCellData().GetArray('RegionId'))).astype(int) print("Unique ids of template mesh: ", region_ids) struct_list = [] node_list = [0] total_node = 0 face_list = [] region_id = [] for i in region_ids: poly_i = thresholdPolyData(template, 'Scalars_', (i, i),'cell') if poly_i.GetNumberOfPoints() == 0: poly_i = thresholdPolyData(template, 'RegionId', (i, i),'cell') num_pts = poly_i.GetNumberOfPoints() rate = max(0., 1. - float(target_node_num)/num_pts) print("Target reduction rate of structure: ", i, target_node_num, num_pts, rate) poly_i = decimation(poly_i, rate) total_node += poly_i.GetNumberOfPoints() node_list.append(total_node) struct_list.append(poly_i) cells = vtk_to_numpy(poly_i.GetPolys().GetData()) cells = cells.reshape(poly_i.GetNumberOfCells(), 4) cells = cells[:,1:] region_id += list(np.ones(poly_i.GetNumberOfCells())*i) face_list.append(cells) template_deci = appendPolyData(struct_list) region_id_vtk = numpy_to_vtk(region_id) region_id_vtk.SetName('Scalars_') template_deci.GetCellData().AddArray(region_id_vtk) return template_deci, node_list, face_list def process_template(template_fn, target_node_num=None, template_im_fn=None, ref_template_fn=None): if target_node_num is None: template = load_vtk_mesh(template_fn) node_list = [template.GetNumberOfPoints()] face_list = vtk_to_numpy(template.GetPolys().GetData()).reshape(template.GetNumberOfCells(), 4)[:, 1:] else: template, node_list, face_list = load_geometry_from_file(template_fn, target_node_num) if template_im_fn is None: coords = vtk_to_numpy(template.GetPoints().GetData()) if ref_template_fn is not None: ref = load_vtk_mesh(ref_template_fn) ref_coords = vtk_to_numpy(ref.GetPoints().GetData()) ref_mean = np.mean(ref_coords, axis=0) coords -= ref_mean ref_coords -= ref_mean ref_nrm = np.max(np.linalg.norm(ref_coords, axis=1)) coords /= ref_nrm * 1.8 ref_coords /= ref_nrm * 1.8 ref_coords += np.array([0.5, 0.5, 0.5]) else: mean = np.mean(coords, axis=0) coords -= mean coords /= np.max(np.linalg.norm(coords, axis=1)) * 1.8 coords += np.array([0.5, 0.5, 0.5]) template.GetPoints().SetData(numpy_to_vtk(coords)) else: SIZE = (128, 128, 128) imgVol_o = sitk.ReadImage(template_im_fn) img_center = np.array(imgVol_o.TransformContinuousIndexToPhysicalPoint(np.array(imgVol_o.GetSize())/2.0)) imgVol = resample_spacing(imgVol_o, template_size=SIZE, order=1)[0] # numpy array img_center2 = np.array(imgVol.TransformContinuousIndexToPhysicalPoint(np.array(imgVol.GetSize())/2.0)) transform = build_transform_matrix(imgVol) template = transform_polydata(template, img_center2-img_center, transform, SIZE) coords = vtk_to_numpy(template.GetPoints().GetData()) #write_vtk_polydata(template, os.path.join(os.path.dirname(__file__), datetime.now().strftime("%m_%d_%Y_%H_%M_%S")+'_template_'+os.path.basename(template_fn))) write_vtk_polydata(template, os.path.join(os.path.dirname(__file__), '../examples/template_with_veins_normalized.vtp')) if ref_template_fn is not None: bounds = (np.min(ref_coords, axis=0), np.max(ref_coords, axis=0)) else: bounds = (np.min(coords, axis=0), np.max(coords, axis=0)) return template, node_list, face_list, bounds from math import factorial def comb(n, k): return factorial(n) / factorial(k) / factorial(n - k) def ffd(ctrl_pts, tmplt_coords, bounds): ''' Ctrl points or d_cntrl points should be in world coordinates Tmple_coords is in world coordinates and will be normalized to grid coordinates ''' min_bound, max_bound = bounds tmplt_coords = tmplt_coords - np.expand_dims(min_bound, axis=0) tmplt_coords /= np.expand_dims(max_bound - min_bound, axis=0) num_pts = int(round(len(ctrl_pts)**(1/3))) # Bernstein tensor B = [] for i in range(num_pts): for j in range(num_pts): for k in range(num_pts): coeff = comb(num_pts-1, k) * comb(num_pts-1, j) * comb(num_pts-1, i) b_list = coeff * ((1 - tmplt_coords[:,0]) ** (num_pts-1 - i)) * (tmplt_coords[:,0] ** i) \ * ((1 - tmplt_coords[:,1]) ** (num_pts-1 - j)) * (tmplt_coords[:,1] ** j)\ * ((1 - tmplt_coords[:,2]) ** (num_pts-1 - k)) * (tmplt_coords[:,2] ** k) B.append(b_list) B = np.stack(B, axis=1) B[B<1e-5] = 0. s_B = sp.csr_matrix(B, copy=True) print("Number of elements in grid matrix: ", len(sparse_to_tuple(s_B)[1])) output = s_B.dot(ctrl_pts) #output = np.matmul(B, ctrl_pts) return output, sparse_to_tuple(s_B) def construct_bspline_volume(ctrl_pts, tmplt_coords, bounds, order=3): min_bound, max_bound = bounds num_pts = int(round(len(ctrl_pts)**(1/3))) # create knot vectors u, v, w = [], [], [] for i in range(num_pts+order+1): coeff = min(max(0, i-order), num_pts-order) u.append(min_bound[0] + coeff*(max_bound[0]-min_bound[0])/(num_pts-order)) v.append(min_bound[1] + coeff*(max_bound[1]-min_bound[1])/(num_pts-order)) w.append(min_bound[2] + coeff*(max_bound[2]-min_bound[2])/(num_pts-order)) #print("knots: ", u) #print("knots: ", v) #print("knots: ", w) return construct_bspline_matrix(ctrl_pts, tmplt_coords, u, v, w, order) def construct_bspline_matrix(ctrl_pts, tmplt_coords, u, v, w, order=3): def _compute_basis(x, t, i, p): if p == 0: b = np.where((x >= t[i]-1e-5) & (x <= t[i+1]+1e-5), 1., 0.) #b = np.where((x >= t[i]) & (x <= t[i+1]), 1., 0.) return b seg_i = t[i+p] - t[i] seg_ip1 = (t[i+p+1] - t[i+1]) if np.isclose(seg_i, 0.): left = np.zeros(x.shape) else: left = (x - t[i])/seg_i * _compute_basis(x, t, i, p-1) if np.isclose(seg_ip1, 0.): right = np.zeros(x.shape) else: right = (t[i+p+1] - x)/(t[i+p+1] - t[i+1]) * _compute_basis(x, t, i+1, p-1) b = left + right return b num_pts = int(round(len(ctrl_pts)**(1/3))) B = [] B = [] for i in range(num_pts): for j in range(num_pts): for k in range(num_pts): basis_u = _compute_basis(tmplt_coords[:,0], u, i, order) basis_v = _compute_basis(tmplt_coords[:,1], v, j, order) basis_w = _compute_basis(tmplt_coords[:,2], w, k, order) b_list = basis_u * basis_v * basis_w B.append(b_list) B = np.stack(B, axis=1) if np.any(np.sum(B, axis=-1)==0): raise RuntimeError("NaN in the B spline matrix!.") #np.set_printoptions(threshold=np.inf) #print(B) B /= np.sum(B, axis=-1, keepdims=True) B[B<1e-5] = 0. B[np.isnan(B)] = 0. #print("Check NaN: ", np.any(np.isnan(B))) #print("Check Inf: ", np.any(np.isinf(B))) #print(B) s_B = sp.csr_matrix(B, copy=True) print("Number of elements in grid matrix: ", len(sparse_to_tuple(s_B)[1])) return s_B def bspline(Basis_matrix, curr_grid, order=3): if type(Basis_matrix)==tuple: Basis_matrix = sp.csr_matrix((Basis_matrix[1], (Basis_matrix[0][:,0], Basis_matrix[0][:,1])), shape=Basis_matrix[-1]) output = Basis_matrix.dot(curr_grid) return output def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def normalize_adj(adj): """Symmetrically normalize adjacency matrix.""" adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj): """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.""" adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) return sparse_to_tuple(adj_normalized) def chebyshev_polynomials(adj, k): """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation).""" print("Calculating Chebyshev polynomials up to order {}...".format(k)) adj_normalized = normalize_adj(adj) laplacian = sp.eye(adj.shape[0]) - adj_normalized largest_eigval, _ = eigsh(laplacian, 1, which='LM') scaled_laplacian = (2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0]) t_k = list() t_k.append(sp.eye(adj.shape[0])) t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap): s_lap = sp.csr_matrix(scaled_lap, copy=True) return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two for i in range(2, k+1): t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian)) return sparse_to_tuple(t_k) def transition_matrix_for_multi_level_grid(grid1, grid2, inverse=False): """ build a matrix B such that grid2 = B grid1 we assume grid2 is denser than grid1 if inverse, we can compute the left inverse (B^TB)^-1B^T """ grid1_min, grid1_max = np.min(grid1, axis=0, keepdims=True), np.max(grid1, axis=0, keepdims=True) grid2_min, grid2_max = np.min(grid2, axis=0, keepdims=True), np.max(grid2, axis=0, keepdims=True) grid2_nrmed = (grid2 - grid2_min)/grid2_max grid1_nrmed = (grid1 - grid1_min)/grid1_max # find steps x_step = np.unique(grid1_nrmed[:, 0]) y_step = np.unique(grid1_nrmed[:, 1]) z_step = np.unique(grid1_nrmed[:, 2]) num_x, num_y, num_z = len(x_step), len(y_step), len(z_step) steps = [x_step[1]-x_step[0], y_step[1]-y_step[0], z_step[1]-z_step[0]] indices = np.round(grid2_nrmed/np.array(steps), decimals=5) B = np.zeros((grid2_nrmed.shape[0], grid1_nrmed.shape[0])) ind_f = np.floor(indices) ind_c = np.ceil(indices) ind_f = np.where(ind_f==ind_c, ind_f-1., ind_f) mask = ind_f<0 ind_f[mask] = 0. ind_c[mask] =1. ind_corners = [ind_f, ind_c] w_f = ind_c - indices w_c = indices - ind_f weight_corners = [w_f, w_c] for i in range(len(ind_corners)): x_comp = ind_corners[i][:,0]*num_y*num_z for j in range(len(ind_corners)): y_comp = ind_corners[j][:,1]*num_z for k in range(len(ind_corners)): z_comp = ind_corners[k][:,2] ind = x_comp + y_comp + z_comp weight = weight_corners[i][:,0]*weight_corners[j][:,1]*weight_corners[k][:,2] B[range(grid2_nrmed.shape[0]), ind.astype(int)] = weight # debug: test = np.sum(np.matmul(B, grid1) - grid2) print("Test error: ", test) if inverse: inv = np.linalg.inv(np.matmul(B.transpose(), B)) B = np.matmul(inv, B.transpose()) test = np.sum(np.matmul(B, grid2) - grid1) print("Inverse test error: ", test) return B else: s_B = sp.csr_matrix(B, copy=True) print("Number of elements in upsample matrix: ", len(sparse_to_tuple(s_B)[1])) return sparse_to_tuple(s_B) def transition_matrix_for_multi_level_grid_gaussion(grid1, grid2): """ build a matrix B such that grid2 = B grid1 we assume grid2 is denser than grid1 if inverse, we can compute the left inverse (B^TB)^-1B^T """ grid1_min, grid1_max = np.min(grid1, axis=0, keepdims=True), np.max(grid1, axis=0, keepdims=True) grid2_min, grid2_max = np.min(grid2, axis=0, keepdims=True), np.max(grid2, axis=0, keepdims=True) grid2_nrmed = (grid2 - grid2_min)/grid2_max grid1_nrmed = (grid1 - grid1_min)/grid1_max # find steps x_step = np.unique(grid2_nrmed[:, 0]) y_step = np.unique(grid2_nrmed[:, 1]) z_step = np.unique(grid2_nrmed[:, 2]) num_x, num_y, num_z = len(x_step), len(y_step), len(z_step) B = np.zeros((grid2.shape[0], grid1.shape[0])) #assum the grid distribution is uniform x_space = np.mean(x_step[1:] - x_step[:-1])/3. y_space = np.mean(y_step[1:] - y_step[:-1])/3. z_space = np.mean(z_step[1:] - z_step[:-1])/3. co_var = np.diag([x_space, y_space, z_space]) inv_co_var = np.linalg.inv(co_var) for i in range(grid2.shape[0]): curr_pt = np.expand_dims(grid2[i, :], axis=0) prob = np.sum(np.matmul(grid1-curr_pt, inv_co_var)*(grid1-curr_pt), axis=-1) B[i,:] = np.squeeze(prob) B = np.exp(-0.5*B)/np.sqrt((2*np.pi)**3*np.linalg.det(co_var)) B = B/np.max(B, axis=-1, keepdims=True) rej = B * np.random.rand(*B.shape) sort_rej = np.argsort(rej, axis=-1) thres = np.expand_dims(rej[range(B.shape[0]), sort_rej[:, -32]], axis=-1) B[np.less(rej, thres)] = 0. B = B/np.sum(B, axis=-1, keepdims=True) print("CHECK min, max: ", np.min(B[B>0.]),
np.mean(B[B>0.])
numpy.mean
import json import os, time from multiprocessing import Process from malib.agents.agent_factory import * from malib.environments import DifferentialGame from malib.environments.fortattack import make_fortattack_env from malib.logger.utils import set_logger from malib.samplers.sampler import SingleSampler, MASampler from malib.trainers import SATrainer, MATrainer from malib.utils.random import set_seed import numpy as np, pickle def svd_sol(A, b): U, sigma, Vt = np.linalg.svd(A) sigma[sigma<1e-10] = 0 sigma_reci = [(1/s if s!=0 else 0) for s in sigma] sigma_reci =
np.diag(sigma_reci)
numpy.diag
import numpy as np import unittest import discretize from discretize.utils import volume_average from numpy.testing import assert_array_equal, assert_allclose class TestVolumeAverage(unittest.TestCase): def test_tensor_to_tensor(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() h1s = [] h2s = [] for i in range(3): print(f"Tensor to Tensor {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) mesh1 = discretize.TensorMesh(h1s) mesh2 = discretize.TensorMesh(h2s) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tree_to_tree(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() h1s = [h1] h2s = [h2] insert_1 = [0.25] insert_2 = [0.75] for i in range(1, 3): print(f"Tree to Tree {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_1.append(0.25) insert_2.append(0.75) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TreeMesh(h2s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tree_to_tensor(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() h1s = [h1] h2s = [h2] insert_1 = [0.25] for i in range(1, 3): print(f"Tree to Tensor {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_1.append(0.25) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TensorMesh(h2s) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tensor_to_tree(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() h1s = [h1] h2s = [h2] insert_2 = [0.75] for i in range(1, 3): print(f"Tensor to Tree {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_2.append(0.75) mesh1 = discretize.TensorMesh(h1s) mesh2 = discretize.TreeMesh(h2s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_errors(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() mesh1D = discretize.TensorMesh([h1]) mesh2D = discretize.TensorMesh([h1, h1]) mesh3D = discretize.TensorMesh([h1, h1, h1]) hr = np.r_[1, 1, 0.5] hz = np.r_[2, 1] meshCyl = discretize.CylMesh([hr, 1, hz], np.r_[0.0, 0.0, 0.0]) mesh2 = discretize.TreeMesh([h2, h2]) mesh2.insert_cells([0.75, 0.75], [4]) with self.assertRaises(TypeError): # Gives a wrong typed object to the function volume_average(mesh1D, h1) with self.assertRaises(NotImplementedError): # Gives a wrong typed mesh volume_average(meshCyl, mesh2) with self.assertRaises(ValueError): # Gives mismatching mesh dimensions volume_average(mesh2D, mesh3D) model1 = np.random.randn(mesh2D.nC) bad_model1 = np.random.randn(3) bad_model2 = np.random.rand(1) # gives input values with incorrect lengths with self.assertRaises(ValueError): volume_average(mesh2D, mesh2, bad_model1) with self.assertRaises(ValueError): volume_average(mesh2D, mesh2, model1, bad_model2) def test_tree_to_tree_same_base(self): h1 = np.random.rand(16) h1 /= h1.sum() h1s = [h1] insert_1 = [0.25] insert_2 = [0.75] for i in range(1, 3): print(f"Tree to Tree {i+1}D: same base", end="") h1s.append(h1) insert_1.append(0.25) insert_2.append(0.75) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TreeMesh(h1s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tree_to_tensor_same_base(self): h1 = np.random.rand(16) h1 /= h1.sum() h1s = [h1] insert_1 = [0.25] for i in range(1, 3): print(f"Tree to Tensor {i+1}D same base: ", end="") h1s.append(h1) insert_1.append(0.25) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TensorMesh(h1s) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tensor_to_tree_same_base(self): h1 = np.random.rand(16) h1 /= h1.sum() h1s = [h1] insert_2 = [0.75] for i in range(1, 3): print(f"Tensor to Tree {i+1}D same base: ", end="") h1s.append(h1) insert_2.append(0.75) mesh1 = discretize.TensorMesh(h1s) mesh2 = discretize.TreeMesh(h1s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tensor_to_tensor_sub(self): h1 = np.ones(32) h2 = np.ones(16) h1s = [] h2s = [] for i in range(3): print(f"Tensor to smaller Tensor {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) mesh1 = discretize.TensorMesh(h1s) mesh2 = discretize.TensorMesh(h2s) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) # get cells in extent of smaller mesh cells = mesh1.gridCC < [16] * (i + 1) if i > 0: cells = np.all(cells, axis=1) vol1 = np.sum(mesh1.vol[cells] * in_put[cells]) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tree_to_tree_sub(self): h1 = np.ones(32) h2 = np.ones(16) h1s = [h1] h2s = [h2] insert_1 = [12] insert_2 = [4] for i in range(1, 3): print(f"Tree to smaller Tree {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_1.append(12) insert_2.append(4) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TreeMesh(h2s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) # get cells in extent of smaller mesh cells = mesh1.gridCC < [16] * (i + 1) if i > 0: cells = np.all(cells, axis=1) vol1 = np.sum(mesh1.vol[cells] * in_put[cells]) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tree_to_tensor_sub(self): h1 = np.ones(32) h2 = np.ones(16) h1s = [h1] insert_1 = [12] h2s = [h2] for i in range(1, 3): print(f"Tree to smaller Tensor {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_1.append(12) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TensorMesh(h2s) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) # get cells in extent of smaller mesh cells = mesh1.gridCC < [16] * (i + 1) if i > 0: cells = np.all(cells, axis=1) vol1 = np.sum(mesh1.vol[cells] * in_put[cells]) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tensor_to_tree_sub(self): h1 = np.ones(32) h2 = np.ones(16) h1s = [h1] h2s = [h2] insert_2 = [4] for i in range(1, 3): print(f"Tensor to smaller Tree {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_2.append(4) mesh1 = discretize.TensorMesh(h1s) mesh2 = discretize.TreeMesh(h2s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put
assert_allclose(out1, out3)
numpy.testing.assert_allclose
import os os.chdir('C:/Users/Martim_Pc/Desktop/DACO_fin') from Unet import Unet import numpy as np import cv2.cv2 as cv2 from skimage.measure import label, regionprops from skimage.transform import downscale_local_mean,hough_ellipse from skimage.filters.rank import entropy, mean from skimage.filters import gabor, gabor_kernel from skimage.morphology import disk, skeletonize, thin from skimage.feature import local_binary_pattern, greycomatrix, greycoprops from skimage.draw import ellipse_perimeter from skimage import data, color, img_as_ubyte from matplotlib import pyplot as plt import pickle import math import time from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.svm import SVC from scipy.ndimage.filters import maximum_filter from scipy.ndimage.morphology import distance_transform_edt def myShowImage(img,name = "from_show_function"): cv2.imshow(name, img) cv2.waitKey(0) # waits until a key is pressed cv2.destroyAllWindows() # destroys the window showing image return def removeBackground(img): maskRed = img[...,0]>30 maskGreen = img[...,1]>30 maskBlue = img[...,2]>30 mask1 = np.logical_or(maskRed,maskGreen) maskFinal = np.logical_or(mask1,maskBlue) zeros = np.zeros(img.shape) zeros[maskFinal] = img[maskFinal] zeros = zeros.astype(np.uint8) img = np.copy(zeros) return img testImages = ['20051020_44982_0100_PP.tif', '20051019_38557_0100_PP.tif', '20051213_62383_0100_PP.tif', 'IDRiD_14.jpg', 'OD0375EY.JPG'] def getVesselsUtils(imgPath): img = cv2.imread(imgPath)#,cv2.CV_8UC1) img = removeBackground(img) scale_percent = 25 # percent of original size width = int(img.shape[1] * scale_percent / 100) height = int(img.shape[0] * scale_percent / 100) dim = (width, height) # resize image resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA) # BGR - blue: 0; green: 1; red: 2 resized = resized.astype(np.uint8) clahe = cv2.createCLAHE(clipLimit=1, tileGridSize=(8, 8)) img_out1 = clahe.apply(resized[...,1]) kernel_ones = np.ones([25,25],np.uint8) bh_1_cv = cv2.morphologyEx(img_out1, cv2.MORPH_BLACKHAT,kernel_ones) int_vs = clahe.apply(bh_1_cv) _,thresh2 = cv2.threshold(int_vs,60,255,cv2.THRESH_BINARY) # thresh2 is vessels segmentation used in OD segmentation labels, _ = label(thresh2, neighbors=8, background = 0, return_num = True) regions = regionprops(labels) for region in regions: value = labels[region['coords'][0][0],region['coords'][0][1]] #circularity = (4*math.pi*region['area']) / (region['perimeter']**2) bboxAreRel = region['area']/region['bbox_area'] if region['area'] < 10 or (bboxAreRel > 0.35): #circularity > 0.3 and removeIndexs = np.where(labels==value) labels[removeIndexs[0],removeIndexs[1]] = 0 labels[labels > 0] = 1 labelsImg = np.multiply(np.array(labels, np.uint8),255) # labelsImg = segmented relevant vessels myShowImage(labelsImg) # get skeleton of image doublT_small = downscale_local_mean(labels,(2,2)) myShowImage(doublT_small) skeleton = skeletonize(doublT_small) skel = skeleton * 1 skel = skel.astype(np.uint8) skel = np.multiply(skel,255) myShowImage(skel) threshAcc = 40 for k in range(1,6): try: #fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 4)) #doublT_small = color.gray2rgb(img_as_ubyte(doublT_small)) tic = time.time() result = hough_ellipse(skeleton, accuracy=20, threshold=threshAcc, min_size=50, max_size=None) # thresh = 30 result.sort(order='accumulator') aSizeResult_Arr = np.array(result['a']) bSizeResult_Arr = np.array(result['b']) aIndex = np.where(aSizeResult_Arr > 0) bIndex = np.where(bSizeResult_Arr > 0) relevantIndexs = np.intersect1d(aIndex,bIndex) axisRelation = np.divide(aSizeResult_Arr[relevantIndexs],bSizeResult_Arr[relevantIndexs]) goodRelationIndexs = np.where(axisRelation<1.5) ellipsLargest = np.max(relevantIndexs[goodRelationIndexs]) toc = time.time() ellapsedTime = toc-tic print(ellapsedTime) best = list(result[ellipsLargest]) yc, xc, a, b = [int(round(x)) for x in best[1:5]] orientation = best[5] #print(best[0]) # Draw the ellipse on the original image cy, cx = ellipse_perimeter(yc, xc, a, b, orientation) # Draw the edge (white) and the resulting ellipse (red) outsideX = np.where(cx>doublT_small.shape[1]) preX = np.where(cx<0) outsideY = np.where(cy>doublT_small.shape[0]) preY = np.where(cy<0) cx[outsideX] = doublT_small.shape[1] cy[outsideY] = doublT_small.shape[0] cx[preX] = 0 cy[preY] = 0 break except: threshAcc = threshAcc - 10 if k == 5: threshAcc = threshAcc + 5 ellipseMask = np.zeros(doublT_small.shape) ellipseMask[abs(cy-1),abs(cx-1)] = 1 elipsResized = cv2.resize(ellipseMask, dsize=dim, interpolation=cv2.INTER_CUBIC) #elipsResized = np.average(elipsResized,axis = 2) # 3 channels -> 1 channel elipsResized[elipsResized>0.5] = 1 elipsResized[elipsResized<1] = 0 elipsResized = thin(elipsResized) elipsResized = elipsResized*1 elipsImage = (elipsResized*255).astype(np.uint8) myShowImage(elipsImage) entr_img = entropy(labelsImg, disk(5)) myShowImage(entr_img) vessels = np.copy(thresh2) ellipse = np.copy(elipsResized) entropyVessels = np.copy(entr_img) return vessels, entropyVessels, ellipse def getDistanceArray(height,width): indices_Arr = np.indices((height,width)).transpose((1,2,0)) centreCoords = np.array([height/2,width/2]) distance_Arr = np.sqrt(np.add(np.power(indices_Arr[...,0]-centreCoords[0],2),np.power(indices_Arr[...,1]-centreCoords[1],2))) normDistance_Arr = distance_Arr / np.max(distance_Arr) normDistanceColumn_Arr = np.squeeze(normDistance_Arr.reshape([1,normDistance_Arr.shape[0]*normDistance_Arr.shape[1]])).T return normDistanceColumn_Arr def reshapeFeature(img,featureSize,normalize=True): feature = np.squeeze(img.reshape([1,featureSize])).T if normalize: feature = (feature-np.average(feature)) / np.std(feature) return feature def newBBcoords(img_pred_Log,test_image): # returns coordinates of the bounding box for the region with the largest area kernel_ones = np.ones([3,3],np.uint8) closing_Log = cv2.morphologyEx(img_pred_Log, cv2.MORPH_CLOSE, kernel_ones) labelsLog, numLog = label(closing_Log, neighbors=8, background = 0, return_num = True) regionsLog = regionprops(labelsLog) areasLog = [region['area'] for region in regionsLog] areasLogArr = np.array(areasLog) maxIndex = np.argmax(areasLogArr) value = labelsLog[regionsLog[maxIndex]['coords'][0][0],regionsLog[maxIndex]['coords'][0][1]] labelsLog[labelsLog != value] = 0 labelsLog[labelsLog == value] = 1 labelsImg = np.multiply(np.array(labelsLog, np.uint8),255) #myShowImage(labelsImg) sizeBoxX = regionsLog[maxIndex]['bbox'][3]-regionsLog[maxIndex]['bbox'][1] sizeBoxY = regionsLog[maxIndex]['bbox'][2]-regionsLog[maxIndex]['bbox'][0] coordsBbox = list(regionsLog[maxIndex]['bbox']) if sizeBoxX <= 0.4 * img_pred_Log.shape[1]: newSizeBoxX = 0.3 / (sizeBoxX / img_pred_Log.shape[1]) coordsBbox[1] = coordsBbox[1] - sizeBoxX*(0.5*(newSizeBoxX-1)) coordsBbox[3] = coordsBbox[3] + sizeBoxX*(0.5*(newSizeBoxX-1)) if sizeBoxY <= 0.4 * img_pred_Log.shape[0]: newSizeBoxY = 0.5 / (sizeBoxY / img_pred_Log.shape[0]) coordsBbox[0] = coordsBbox[0] - sizeBoxY*(0.5*(newSizeBoxY-1)) coordsBbox[2] = coordsBbox[2] + sizeBoxY*(0.5*(newSizeBoxY-1)) if coordsBbox[0] < 0: coordsBbox[0] = 0 if coordsBbox[1] < 0: coordsBbox[1] = 0 if coordsBbox[2] > test_image.shape[0]: coordsBbox[2] = test_image.shape[0] - 1 if coordsBbox[3] > test_image.shape[1]: coordsBbox[3] = test_image.shape[1] - 1 coordsBboxInt = [round(x) for x in coordsBbox] return coordsBboxInt def getLargestAreaEcentroid(img_pred_Log): # returns mask with the regions with the largest area, coords of centroid and radius kernel_ones = np.ones([3,3],np.uint8) closing_Log = cv2.morphologyEx(img_pred_Log, cv2.MORPH_CLOSE, kernel_ones) labelsLog, numLog = label(closing_Log, neighbors=8, background = 0, return_num = True) regionsLog = regionprops(labelsLog) areasLog = [region['area'] for region in regionsLog] areasLogArr = np.array(areasLog) maxIndex = np.argmax(areasLogArr) value = labelsLog[regionsLog[maxIndex]['coords'][0][0],regionsLog[maxIndex]['coords'][0][1]] labelsLog[labelsLog != value] = 0 labelsLog[labelsLog == value] = 1 centreCoords = np.round(regionsLog[maxIndex]['centroid']) centreCoords = centreCoords.astype(np.uint) radius = (regionsLog[maxIndex]['major_axis_length'] + regionsLog[maxIndex]['minor_axis_length']) / 4 colsCoord = [regionsLog[maxIndex]['bbox'][1],regionsLog[maxIndex]['bbox'][3]] labelsArr = np.array(labelsLog) return labelsArr, centreCoords, radius, colsCoord def gaborFilter(img_in): filtered_ims = [] for theta in range(4): theta = theta / 4. * np.pi for sigma in (6, 7): for frequency in (0.06, 0.07): filt_real, _ = gabor(img_in, frequency, theta=theta,sigma_x=sigma, sigma_y=sigma) # _ = imaginary part filtered_ims.append(filt_real) filtered_ims_arr = np.array(filtered_ims) return filtered_ims_arr def getFeature2(greenChannel): filtered_ims_arr = gaborFilter(greenChannel) mean = filtered_ims_arr[0] for k in range(1,16): mean = np.add(mean,filtered_ims_arr[k]) mean = np.divide(mean,16) mean = mean.astype(np.uint8) clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(8, 8)) imgContrasted = clahe.apply(mean) maxVal = np.max(imgContrasted) feature2 = np.multiply(np.divide(imgContrasted,maxVal),255) feature2 = feature2.astype(np.uint8) return feature2 def getFeature3(elipsResized,Od_res,resized): Od_uint8 = np.copy(Od_res.astype(np.uint8)) Od_uint8 = np.divide(Od_uint8,np.max(Od_uint8)).astype(np.uint8) testDistance = distance_transform_edt(1 - Od_uint8) testDistance = np.multiply(testDistance,255/np.max(testDistance)) testDistance = testDistance.astype(np.uint8) distanceToOd = 255-testDistance distanceToOd[distanceToOd >220] = 255 distanceToOd[distanceToOd <=220] = 0 vesselsRelevantLine = np.logical_and(distanceToOd,elipsResized) vesselsRelevantLine = vesselsRelevantLine*1 distanceToVesselLine = distance_transform_edt(1 - vesselsRelevantLine) distanceToVesselLine = np.multiply(distanceToVesselLine,255/np.max(distanceToVesselLine)) distanceToVesselLine = distanceToVesselLine.astype(np.uint8) distanceToVesselLine = 255-distanceToVesselLine distanceToVesselLine[distanceToVesselLine >220] = 255 distanceToVesselLine[distanceToVesselLine <=220] = 0 distanceToVesselLine = np.logical_or(distanceToVesselLine,Od_uint8) greenChannel = np.copy(resized[...,1]) vesselLine_indxs=np.where(distanceToVesselLine!=0) #greenChannel[vesselLine_indxs] = 0 clahe = cv2.createCLAHE(clipLimit=4, tileGridSize=(8, 8)) greenContrasted = clahe.apply(greenChannel) greenContrasted = np.multiply(greenContrasted,255/
np.max(greenContrasted)
numpy.max
import numpy as np import numpy.linalg as la import scipy.interpolate as inter import scipy.optimize as opt from numpy.polynomial.legendre import leggauss import numpy.random as ra from neml.nlsolvers import MaximumIterations, MaximumSubdivisions, newton, scalar_newton class Driver(object): """ Superclass of all drivers, basically just sets up history and reports results. """ def __init__(self, model, verbose = False, rtol = 1.0e-6, atol = 1.0e-10, miter = 25, T_init = 0.0, no_thermal_strain = False): """ Parameters: model: material model to play with verbose: verbose output rtol: relative tolerance, where needed atol: absolute tolerance, where needed miter: maximum iterations, where needed """ self.model = model self.verbose = verbose self.rtol = rtol self.atol = atol self.miter = miter self.nts = no_thermal_strain self.stress_int = [np.zeros((6,))] self.stored_int = [self.model.init_store()] self.T_int = [T_init] self.t_int = [0.0] self.u_int = [0.0] self.p_int = [0.0] @property def stress(self): return np.array(self.stress_int) @property def stored(self): return np.array(self.stored_int) @property def history(self): return self.stored[:,:self.model.nhist] @property def T(self): return np.array(self.T_int) @property def t(self): return np.array(self.t_int) @property def u(self): return np.array(self.u_int) @property def p(self): return np.array(self.p_int) class Driver_sd(Driver): """ Superclass of generic small strain drivers, contains generic step methods. """ def __init__(self, *args, **kwargs): """ Parameters: model: material model to play with verbose: verbose output rtol: relative tolerance, where needed atol: absolute tolerance, where needed miter: maximum iterations, where needed """ super(Driver_sd, self).__init__(*args, **kwargs) self.strain_int = [np.zeros((6,))] self.thermal_strain_int = [np.zeros((6,))] self.mechanical_strain_int = [np.zeros((6,))] def solve_try(self, RJ, x0, extra = []): """ Try several different nonlinear solvers in the hope that at least one will converge Parameters: RJ: function that returns the residual equations and associated Jacobian x0: initial guess extra: list of extra solver functions of the type below """ def s1(x0i): try: x = newton(RJ, x0i, verbose = self.verbose, rtol = self.rtol, atol = self.atol, miter = self.miter) return x, True except Exception: return np.zeros((12,)), False def s2(x0i): try: res = opt.root(RJ, x0i, jac = True, method = 'lm') return res.x, res.success except Exception: return np.zeros((12,)), False def s3(x0i): try: x = newton(RJ, x0i, verbose = self.verbose, rtol = self.rtol, atol = self.atol, miter = self.miter, linesearch = 'backtracking') return x, True except Exception: return np.zeros((12,)), False solvers = [s1,s3] guesses = [x0] + extra success = False for xi in guesses: for solv in solvers: x, success = solv(xi) if success: break if success: break if not success: raise MaximumIterations() return x @property def strain(self): return np.array(self.strain_int) @property def thermal_strain(self): return np.array(self.thermal_strain_int) @property def mechanical_strain(self): return np.array(self.mechanical_strain_int) def update_thermal_strain(self, T_np1): """ Move the thermal strains to the next step Parameters: T_np1: next temperature """ if self.nts: return np.zeros((6,)) else: dT = T_np1 - self.T_int[-1] a_np1 = self.model.alpha(T_np1) a_n = self.model.alpha(self.T_int[-1]) return self.thermal_strain_int[-1] + dT * (a_np1 + a_n) / 2 * np.array([1.0,1,1,0,0,0]) def strain_step(self, e_np1, t_np1, T_np1): """ Take a strain-controlled step Parameters: e_np1: next strain t_np1: next time T_np1: next temperature """ enext = self.update_thermal_strain(T_np1) s_np1, h_np1, A_np1, u_np1, p_np1 = self.model.update_sd(e_np1 - enext, self.mechanical_strain_int[-1], T_np1, self.T_int[-1], t_np1, self.t_int[-1], self.stress_int[-1], self.stored_int[-1], self.u_int[-1], self.p_int[-1]) self.strain_int.append(np.copy(e_np1)) self.mechanical_strain_int.append(e_np1 - enext) self.thermal_strain_int.append(enext) self.stress_int.append(np.copy(s_np1)) self.stored_int.append(np.copy(h_np1)) self.T_int.append(T_np1) self.t_int.append(t_np1) self.u_int.append(u_np1) self.p_int.append(p_np1) def stress_step(self, s_np1, t_np1, T_np1): """ Take a stress-controlled step Parameters: s_np1: next stress t_np1: next time T_np1: next temperature """ enext = self.update_thermal_strain(T_np1) def RJ(e): s, h, A, u, p = self.model.update_sd(e - enext, self.mechanical_strain_int[-1], T_np1, self.T_int[-1], t_np1, self.t_int[-1], self.stress_int[-1], self.stored_int[-1], self.u_int[-1], self.p_int[-1]) R = s - s_np1 return R, A if len(self.strain_int) > 1: inc = self.strain_int[-1] - self.strain_int[-2] extra = [self.strain_int[-1] + inc] else: extra = [] e_np1 = self.solve_try(RJ, self.strain_int[-1], extra = extra) self.strain_step(e_np1, t_np1, T_np1) def erate_step(self, sdir, erate, t_np1, T_np1, einc_guess = None, ainc_guess = None): """ Drive in a given stress direction at a prescribed strain rate, like an actual "stress controlled" experiment. Parameters: sdir: stress direction erate: strain rate (in the direction) t_np1: next time T_np1: next temperature einc_guess: a guess at the strain increment ainc_guess: a guess at the stress increment """ sdir = sdir / la.norm(sdir) dt = t_np1 - self.t_int[-1] enext = self.update_thermal_strain(T_np1) def RJ(x): a = x[0] e_inc = x[1:] s, h, A, u, p = self.model.update_sd(self.strain_int[-1] + e_inc - enext, self.mechanical_strain_int[-1], T_np1, self.T_int[-1], t_np1, self.t_int[-1], self.stress_int[-1], self.stored_int[-1], self.u_int[-1], self.p_int[-1]) R = np.zeros((7,)) J = np.zeros((7,7)) R[:6] = s - (sdir * a + self.stress_int[-1]) R[6] = np.dot(e_inc, sdir) / dt - erate J[:6,0] = -sdir J[:6,1:] = A J[6,0] = 0.0 J[6,1:] = sdir / dt return R, J x0 = np.zeros((7,)) if einc_guess is not None: x0[1:] = einc_guess else: x0[1:] = sdir / 10000.0 if ainc_guess is not None: x0[0] = ainc_guess else: x0[0] = 1.0 x = self.solve_try(RJ, x0) e_np1 = self.strain_int[-1] + x[1:] self.strain_step(e_np1, t_np1, T_np1) return x[1:], x[0] def erate_einc_step(self, sdir, erate, einc, T_np1, **kwargs): """ Similar to erate_step but specify the strain increment instead of the time increment. Parameters: sdir: stress direction erate: strain rate, in stress direction einc: strain increment, in stress direction T_np1: temperature at next time step """ dt = einc / erate return self.erate_step(sdir, erate, self.t_int[-1] + dt, T_np1, **kwargs) def srate_sinc_step(self, sdir, srate, sinc, T_np1): """ Similar to rate_step but specify the stress increment instead of the time increment. Parameters: sdir: stress direction srate: stress rate sinc: stress increment T_np1: temperature at next time step """ if np.allclose(sdir, 0.0): s_np1 = self.stress_int[-1] else: s_np1 = self.stress_int[-1] + sdir / la.norm(sdir) * sinc if np.isclose(srate, 0.0): dt = 0.0 else: dt = np.abs(np.dot(s_np1 - self.stress_int[-1], sdir) / srate) self.stress_step(s_np1, self.t_int[-1] + dt, T_np1) def strain_hold_step(self, i, t_np1, T_np1, q = 1.0, E = -1.0): """ A special, mixed step which holds the strain in index i constant while holding the stress in the other directions to their previous values Parameters: i: index to hold t_np1: next time T_np1: next temperature q: follow up factor E: Young's modulus to use -- must redo interface at some point """ if not np.isclose(q, 1.0) and np.isclose(E, -1.0): raise ValueError("You must supply the Youngs modulus") enext = self.update_thermal_strain(T_np1) oset = sorted(list(set(range(6)) - set([i]))) def RJ(e_np1): s, h, A, u, p = self.model.update_sd(e_np1 - enext, self.mechanical_strain_int[-1], T_np1, self.T_int[-1], t_np1, self.t_int[-1], self.stress_int[-1], self.stored_int[-1], self.u_int[-1], self.p_int[-1]) R = np.zeros((6,)) R[0] = (e_np1[i] - self.strain_int[-1][i] ) + (s[i] - self.stress_int[-1][i]) / E * (q - 1) R[1:] = s[oset] - self.stress_int[-1][oset] J = np.zeros((6,6)) J[0,0] = 1.0 J[0,:] += A[i,:] / E * (q - 1) J[1:,:] = A[oset,:][:] return R, J x0 = np.copy(self.strain_int[-1]) e_np1 = self.solve_try(RJ, x0) self.strain_step(e_np1, t_np1, T_np1) def uniaxial_test(model, erate, T = 300.0, emax = 0.05, nsteps = 250, sdir = np.array([1,0,0,0,0,0]), verbose = False, offset = 0.2/100.0, history = None, tdir = np.array([0,1,0,0,0,0]), rtol = 1e-6, atol = 1e-10, miter = 25): """ Make a uniaxial stress/strain curve Parameters: model: material model erate: strain rate Keyword Args: T: temperature, default 300.0 emax: maximum strain, default 5% nsteps: number of steps to use, default 250 sdir: stress direction, default tension in x verbose: whether to be verbose offset: used to calculate yield stress history: initial model history tdir: transverse direction for Poisson's ratio Returns: dict: results dictionary containing... **Results in dictionary:** ================= ============================================ Name Description ================= ============================================ strain strain in direction stress stress in direction energy_density strain energy density plastic_work plastic dissipation youngs young's modulus of initial curve yield yield stress implied by curve poissons poisson's ratio implied by non-axial strains ================= ============================================ """ e_inc = emax / nsteps driver = Driver_sd(model, verbose = verbose, T_init = T, rtol = rtol, atol = atol, miter = miter) if history is not None: driver.stored_int[0] = history strain = [0.0] stress = [0.0] for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T) else: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) strain = np.array(strain) stress = np.array(stress) # Calculate the yield stress and Young's modulus E = np.abs(stress[1]) / np.abs(strain[1]) nu = -np.dot(driver.strain_int[1], tdir) / np.dot( driver.strain_int[1], sdir) sfn = inter.interp1d(np.abs(strain), np.abs(stress)) tfn = lambda e: E * (e - offset) try: sYe = opt.brentq(lambda e: sfn(e) - tfn(e), 0.0, np.max(strain)) sY = tfn(sYe) except Exception: sY = np.inf return {'strain': strain, 'stress': stress, 'energy_density': np.copy(driver.u), 'plastic_work': np.copy(driver.p), 'youngs': E, 'yield': sY, 'poissons': nu, 'history': driver.stored_int[-1]} def strain_cyclic(model, emax, R, erate, ncycles, T = 300.0, nsteps = 50, sdir = np.array([1,0,0,0,0,0]), hold_time = None, n_hold = 25, verbose = False, check_dmg = False, dtol = 0.75): """ Strain controlled cyclic test. Parameters: emax: maximum strain R: R = emin / emax erate: strain rate to go at ncycles: number of cycles T: temperature, default 300 Keyword Args: nsteps: number of steps per half cycle sdir: stress direction, defaults to x and tension first hold_time: if None don't hold, if scalar then hold symmetrically top/bot if an array specify different hold times for first direction (default tension) and second direction n_hold: number of steps to hold over verbose: whether to be verbose check_dmg: check to see if material damage exceeds dtol, stop the simulation when that happens dtol: damage to stop at Returns: dict: results dictionary containing... **Results in dictionary:** ============= ======================== Name Description ============= ======================== strain: strain in direction stress: stress in direction cycles: list of cycle numbers max: maximum stress per cycle min: minimum stress per cycle mean: mean stress per cycle ============= ======================== """ # Setup driver = Driver_sd(model, verbose = verbose, T_init = T) emin = emax * R if hold_time: if np.isscalar(hold_time): hold_time = [hold_time, hold_time] else: hold_time = [0,0] # Setup results strain = [0.0] stress = [0.0] time = [0.0] cycles = [] smax = [] smin = [] smean = [] ecycle = [] pcycle = [] # First half cycle if verbose: print("Initial half cycle") e_inc = emax / nsteps try: for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T) else: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) except Exception as e: print("Failed to make first half cycle") raise e # Begin cycling for s in range(ncycles): if verbose: print("Cycle %i" % s) try: # Tension hold if hold_time[0] > 0.0: dt = hold_time[0] / n_hold for i in range(n_hold): einc, ainc = driver.erate_step(sdir, 0.0, time[-1] + dt, T, einc_guess = np.zeros((6,)), ainc_guess = -1) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + dt) si = len(driver.strain_int) e_inc = np.abs(emin - emax) / nsteps for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T, einc_guess = -einc, ainc_guess = -ainc) else: einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) # Compression hold if hold_time[1] > 0.0: dt = hold_time[1] / n_hold for i in range(n_hold): einc, ainc = driver.erate_step(sdir, 0.0, time[-1] + dt, T, einc_guess = np.zeros((6,)), ainc_guess = -1) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + dt) e_inc = np.abs(emax - emin) / nsteps for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = -einc, ainc_guess = -ainc) else: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) # Calculate if np.isnan(max(stress[si:])) or np.isnan(min(stress[si:])): break cycles.append(s) smax.append(max(stress[si:])) smin.append(min(stress[si:])) smean.append((smax[-1]+smin[-1])/2) ecycle.append(driver.u_int[-1]) pcycle.append(driver.p_int[-1]) except Exception as e: break # Setup and return return {"strain": np.array(strain), "stress": np.array(stress), "cycles": np.array(cycles, dtype = int), "max": np.array(smax), "min": np.array(smin), "mean": np.array(smean), "energy_density": np.array(ecycle), "plastic_work": np.array(pcycle), "history": driver.stored_int[-1], "time": np.array(time)} def strain_cyclic_extrapolated(model, emax, R, erate, ncycles, T = 300.0, nsteps = 50, sdir = np.array([1,0,0,0,0,0]), hold_time = None, n_hold = 25, verbose = False, check_dmg = False, dtol = 0.75, min_cycle=3, unit_extrapolate = 10, jump_delta_N=10, allowable_jump_stress=5.0): """ Strain controlled cyclic test extrapolation. Extra Keyword Args: min_cycle minimum cycles to start the extrapolation process unit_extrapolate number of cycles to perform single cycle extrapolation jump_delta_N number of cycles to jump allowable_jump_stress extrapolate when stress jump is within this limit Returns: dict: results dictionary containing... **Results in dictionary:** ============= ======================== Name Description ============= ======================== cycles: list of cycle numbers max: maximum stress per cycle min: minimum stress per cycle ============= ======================== """ # Setup driver = Driver_sd(model, verbose = verbose, T_init = T) emin = emax * R if hold_time: if np.isscalar(hold_time): hold_time = [hold_time, hold_time] else: hold_time = [0,0] # Setup results strain = [0.0] stress = [0.0] time = [0.0] cycles = [] smax = [] smin = [] smean = [] ecycle = [] pcycle = [] # First half cycle if verbose: print("Initial half cycle") e_inc = emax / nsteps try: for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T) else: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) except Exception as e: print("Failed to make first half cycle") raise e s = 0 # steps in one cycle if (hold_time[0] > 0) and (hold_time[1] == 0): steps = 2*nsteps + n_hold elif (hold_time[1] > 0) and (hold_time[0] == 0): steps = 2*nsteps + n_hold elif (hold_time[0] > 0) and (hold_time[1] > 0): steps = 2*nsteps + 2*n_hold else: steps = 2*nsteps extrapolate = False while s < ncycles: if verbose: print("Cycle %i" % s) if check_dmg: if driver.stored_int[-1][0] > dtol: print("Damage check exceeded") break if (s >= min_cycle) and (extrapolate == True): # No extrapolation before min_cycle if (s <= unit_extrapolate): # single cycle jump for first unit_extrapolate cycles delta_N = 1 else: delta_N = jump_delta_N # specified cycles to jump n = len(driver.stored_int) # extrapolating history pos_hist_last_last = driver.stored_int[n - 1 - steps] pos_hist_last = driver.stored_int[n-1] dN_1 = cycles[-1] - cycles[-2] pos_extrapolated_history = pos_hist_last + (pos_hist_last - pos_hist_last_last)*delta_N/dN_1 # extrapolating smax smax_last_last = smax[-2] smax_last = smax[-1] extrapolated_smax = smax_last + (smax_last - smax_last_last)*delta_N/dN_1 # extrapolating smax smin_last_last = smin[-2] smin_last = smin[-1] extrapolated_smin = smin_last + (smin_last - smin_last_last)*delta_N/dN_1 # criteria for extrapolation pos_stress_last_last = driver.stress_int[n - 1 - 2*steps] pos_stress_last = driver.stress_int[n-1] pos_extrapolated_stress = pos_stress_last + (pos_stress_last - pos_stress_last_last)*delta_N/dN_1 stress_jump = pos_extrapolated_stress[0] - pos_stress_last[0] if np.fabs(stress_jump) <= allowable_jump_stress: s = s + delta_N if s > ncycles: break driver.stored_int.append(pos_extrapolated_history) driver.stress_int.append(pos_extrapolated_stress) smax.append(extrapolated_smax) smin.append(extrapolated_smin) cycles.append(s) extrapolate = False else: extrapolate = False else: try: if hold_time[0] > 0.0: dt = hold_time[0] / n_hold for i in range(n_hold): einc, ainc = driver.erate_step(sdir, 0.0, time[-1] + dt, T, einc_guess = np.zeros((6,)), ainc_guess = -1) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + dt) si = len(driver.strain_int) e_inc = np.abs(emin - emax) / nsteps for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T, einc_guess = -einc, ainc_guess = -ainc) else: einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) # Compression hold if hold_time[1] > 0.0: dt = hold_time[1] / n_hold for i in range(n_hold): einc, ainc = driver.erate_step(sdir, 0.0, time[-1] + dt, T, einc_guess = np.zeros((6,)), ainc_guess = -1) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + dt) e_inc = np.abs(emax - emin) / nsteps for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = -einc, ainc_guess = -ainc) else: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) # Calculate if np.isnan(max(stress[si:])) or np.isnan(min(stress[si:])): break s += 1 cycles.append(s) smax.append(max(stress[si:])) smin.append(min(stress[si:])) smean.append((smax[-1]+smin[-1])/2) ecycle.append(driver.u_int[-1]) pcycle.append(driver.p_int[-1]) extrapolate = True except Exception as e: break # Setup and return return {"cycles": np.array(cycles, dtype = int), "max": np.array(smax), "min": np.array(smin),"time": np.array(time)} def strain_cyclic_followup(model, emax, R, erate, ncycles, q = 1.0, T = 300.0, nsteps = 50, sind = 0, hold_time = None, n_hold = 25, verbose = False, check_dmg = False, dtol = 0.75, logspace = False): """ Strain controlled cyclic test with follow up. This is a "fallback" to the old version that does things by index so that I can use the index-based hold routine with follow up Parameters: emax: maximum strain R: R = emin / emax erate: strain rate to go at ncycles: number of cycles Keyword Args: q: follow up factor T: temperature, default 300 nsteps: number of steps per half cycle sind: index to pull on hold_time: if None don't hold, if scalar then hold symmetrically top/bot if an array specify different hold times for first direction (default tension) and second direction n_hold: number of steps to hold over verbose: whether to be verbose check_dmg: check to see if damage exceeds a threshold dtol: damage threshold logspace: logspace the hold time steps (instead of linspace) Returns: dict: dictionary of results... **Results in dictionary** ========= ======================== Name Description ========= ======================== strain strain in direction stress stress in direction cycles list of cycle numbers max maximum stress per cycle min minimum stress per cycle mean mean stress per cycle ========= ======================== """ # Setup sdir = np.zeros((6,)) sdir[sind] = 1.0 res = uniaxial_test(model, erate, T = T, emax = 1.0e-4, nsteps = 2) E = res['youngs'] driver = Driver_sd(model, verbose = verbose, T_init = T) emin = emax * R if hold_time: if np.isscalar(hold_time): hold_time = [hold_time, hold_time] else: hold_time = [0,0] # Setup results strain = [0.0] stress = [0.0] time = [0.0] cycles = [] smax = [] smin = [] smean = [] ecycle = [] pcycle = [] # First half cycle if verbose: print("Initial half cycle") e_inc = emax / nsteps try: for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T) else: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) except Exception as e: print("Failed to make first half cycle") raise e # Begin cycling for s in range(ncycles): if verbose: print("Cycle %i" % s) try: # Tension hold if hold_time[0] > 0.0: if logspace: dts = np.diff(np.logspace(0, np.log10(hold_time[0]), n_hold+1)) else: dts = np.diff(np.linspace(0,hold_time[0],n_hold+1)) #dt = hold_time[0] / n_hold for i, dt in enumerate(dts): driver.strain_hold_step(sind, time[-1] + dt, T, q = q, E = E) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + dt) si = len(driver.strain_int) e_inc = np.abs(emin - emax) / nsteps for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T, einc_guess = np.zeros((6,)), ainc_guess = -1) else: einc, ainc = driver.erate_einc_step(-sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) # Compression hold if hold_time[1] > 0.0: if logspace: dts = np.diff(np.logspace(0, np.log10(hold_time[1]), n_hold+1)) else: dts = np.diff(np.linspace(0,hold_time[1],n_hold+1)) for i, dt in enumerate(dts): driver.strain_hold_step(sind, time[-1] + dt, T, q = q, E = E) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + dt) e_inc = np.abs(emax - emin) / nsteps for i in range(nsteps): if i == 0: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = np.zeros((6,)), ainc_guess = 1.0) else: einc, ainc = driver.erate_einc_step(sdir, erate, e_inc, T, einc_guess = einc, ainc_guess = ainc) if check_dmg: if driver.stored_int[-1][0] > dtol: raise Exception("Damage check exceeded") strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) time.append(time[-1] + e_inc / erate) # Calculate if np.isnan(max(stress[si:])) or np.isnan(min(stress[si:])): break cycles.append(s) smax.append(max(stress[si:])) smin.append(min(stress[si:])) smean.append((smax[-1]+smin[-1])/2) ecycle.append(driver.u_int[-1]) pcycle.append(driver.p_int[-1]) except Exception as e: break # Setup and return return {"strain": np.array(strain), "stress": np.array(stress), "cycles": np.array(cycles, dtype = int), "max": np.array(smax), "min": np.array(smin), "mean": np.array(smean), "energy_density": np.array(ecycle), "plastic_work": np.array(pcycle), "history": driver.stored_int[-1], "time": np.array(time)} def stress_cyclic(model, smax, R, srate, ncycles, T = 300.0, nsteps = 50, sdir = np.array([1,0,0,0,0,0]), hold_time = None, n_hold = 10, verbose = False, etol = 0.1): """ Stress controlled cyclic test. Parameters: emax: maximum stress R: R = smin / smax erate: strain rate to go at ncycles: number of cycles Keyword Args: T: temperature, default 300 nsteps: number of steps per half cycle sdir: stress direction, defaults to x and tension first hold_time: if None don't hold, if scalar then hold symmetrically top/bot if an array specify different hold times for first direction (default tension) and second direction n_hold: number of steps to hold over verbose: whether to be verbose etol: stop if the strain increment exceeds this threshold Returns: dict: dictionary of results **Results in dictionary:** ============= ======================== Name Description ============= ======================== strain strain in direction stress stress in direction cycles list of cycle numbers max maximum strain per cycle min minimum strain per cycle mean mean strain per cycle ============= ======================== """ # Setup driver = Driver_sd(model, verbose = verbose, T_init = T) smin = smax * R if hold_time: if np.isscalar(hold_time): hold_time = [hold_time, hold_time] # Setup results strain = [0.0] stress = [0.0] cycles = [] emax = [] emin = [] emean = [] ecycle = [] pcycle = [] # First half cycle s_inc = smax / nsteps if verbose: print("First half cycle") for i in range(nsteps): driver.srate_sinc_step(sdir, srate, s_inc, T) strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) # Begin cycling for s in range(ncycles): quit = False if verbose: print("Cycle %i" % s) si = len(driver.strain_int) # Hold, if requested if hold_time and (hold_time[0] > 0.0): ht = hold_time[0] dt = ht / n_hold for i in range(n_hold): try: driver.stress_step(driver.stress_int[-1], driver.t_int[-1] + dt, T) except: quit = True break if la.norm(driver.strain_int[-1] - driver.strain_int[-2]) > etol: quit = True break strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) if quit: break s_inc = (smin - smax) / nsteps for i in range(nsteps): try: driver.srate_sinc_step(sdir, srate, s_inc, T) except: quit = True break if la.norm(driver.strain_int[-1] - driver.strain_int[-2]) > etol: quit = True break strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) if quit: break # Hold, if requested if hold_time and (hold_time[1] > 0.0): ht = hold_time[1] dt = ht / n_hold for i in range(n_hold): try: driver.stress_step(driver.stress_int[-1], driver.t_int[-1] + dt, T) except: quit = True break if la.norm(driver.strain_int[-1] - driver.strain_int[-2]) > etol: quit = True break strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) if quit: break s_inc = (smax - smin) / nsteps for i in range(nsteps): try: driver.srate_sinc_step(sdir, srate, s_inc, T) except: quit = True break if la.norm(driver.strain_int[-1] - driver.strain_int[-2]) > etol: quit = True break strain.append(np.dot(driver.strain_int[-1], sdir)) stress.append(np.dot(driver.stress_int[-1], sdir)) if quit: break # Calculate cycles.append(s) emax.append(max(strain[si:])) emin.append(min(strain[si:])) emean.append((emax[-1]+emin[-1])/2) ecycle.append(driver.u_int[-1]) pcycle.append(driver.p_int[-1]) # Setup and return return {"strain": np.array(strain), "stress": np.array(stress), "cycles": np.array(cycles, dtype = int), "max": np.array(emax), "min": np.array(emin), "mean": np.array(emean), "energy_density": np.array(ecycle), "plastic_work": np.array(pcycle), "time": np.array(driver.t_int)} def stress_relaxation(model, emax, erate, hold, T = 300.0, nsteps = 250, nsteps_up = 50, index = 0, tc = 1.0, verbose = False, logspace = False, q = 1.0): """ Simulate a stress relaxation test. Parameters: model: material model emax : maximum strain to attain erate: strain rate to take getting there hold: hold time Keyword Args: T: temperature nsteps: number of steps to relax over nsteps_up: number of steps to take getting up to stress index: direction to pull in, default x tension tc: 1.0 for tension -1.0 for compression verbose: whether to be verbose logspace: log space the relaxation timesteps q: follow up factor Results: dict: dictionary of results **Results in dictionary:** ============== ====================== Name Description ============== ====================== time time strain strain stress stress rtime relaxation time rrate stress relaxation rate ============== ====================== """ # Setup driver = Driver_sd(model, verbose = verbose, T_init = T) time = [0] strain = [0] stress = [0] res = uniaxial_test(model, erate, T = T, emax = 1.0e-4, nsteps = 2) E = res['youngs'] # Ramp up if verbose: print("Ramp up") sdir = np.zeros((6,)) sdir[index] = tc einc = emax / nsteps_up for i in range(nsteps_up): if i == 0: eincg, ainc = driver.erate_einc_step(sdir, erate, einc, T) else: eincg, ainc = driver.erate_einc_step(sdir, erate, einc, T, einc_guess = eincg, ainc_guess = ainc) time.append(driver.t[-1]) strain.append(np.dot(driver.strain_int[-1],sdir)) stress.append(np.dot(driver.stress_int[-1],sdir)) ri = len(driver.strain_int) if verbose: print("Hold") if logspace: ts = np.logspace(0, np.log10(hold), num = nsteps+1) dts = np.diff(ts) else: dt = hold / nsteps dts = [dt] * nsteps for i, dt in enumerate(dts): driver.strain_hold_step(index, driver.t_int[-1] + dt, T, q = q, E = E) time.append(driver.t_int[-1]) strain.append(np.dot(driver.strain_int[-1],sdir)) stress.append(np.dot(driver.stress_int[-1],sdir)) time = np.array(time) strain = np.array(strain) stress = np.array(stress) rrate = -np.diff(stress[ri:]) / np.diff(time[ri:]) return {'time': np.copy(time), 'strain': np.copy(strain), 'stress': np.copy(stress), 'rtime': np.copy(time[ri:-1] - time[ri]), 'rrate': np.copy(rrate), 'rstress': np.copy(stress[ri:-1]), 'rstrain': np.copy(strain[ri:-1])} def creep(model, smax, srate, hold, T = 300.0, nsteps = 250, nsteps_up = 150, sdir = np.array([1,0,0,0,0,0]), verbose = False, logspace = False, history = None, elimit = 1.0, check_dmg = False, dtol = 0.75): """ Simulate a creep test Parameters: model: material model smax: stress to attain srate: stress rate to take getting there hold: total hold time Keyword Args: T: temperature nsteps: number of steps over relaxation period nsteps_up: number of steps to get to stress value sdir: stress direction, defaults to x-tension verbose: whether to be verbose logspace: if true logspace the time steps history: use damaged material check_dmg: check damage as a break condition dtol: damage to define failure at Returns: dict: results dictionary """ # Setup driver = Driver_sd(model, verbose = verbose, T_init = T) if history is not None: driver.stored_int[0] = history time = [0] strain = [0] stress = [0] # Ramp up sinc = float(smax) / nsteps_up for i in range(nsteps_up): driver.srate_sinc_step(sdir, srate, sinc, T) time.append(driver.t[-1]) strain.append(np.dot(driver.strain_int[-1],sdir)) stress.append(np.dot(driver.stress_int[-1],sdir)) ri = len(driver.strain_int) t0 = time[-1] if logspace: ts = np.logspace(0, np.log10(hold), num = nsteps) + t0 else: ts = np.linspace(0,hold, num = nsteps) + t0 failed = False for t in ts: # You can exceed the creep life of the sample doing this... # Need to allow a non-convergent result to break try: driver.stress_step(driver.stress_int[-1], t, T) except: failed = True break if np.any(np.isnan(driver.strain_int[-1])): failed = True break if np.any(np.abs(driver.strain_int[-1]) > elimit): failed = True break ed = np.dot(driver.strain_int[-1],sdir) if ed < strain[-1]: failed = True break if check_dmg: if driver.stored_int[-1][0] > dtol: failed = True break time.append(t) strain.append(ed) stress.append(np.dot(driver.stress_int[-1],sdir)) time = np.array(time) strain =
np.array(strain)
numpy.array
import numpy as np import matplotlib.pyplot as plt from PIL import Image from PIL import ImageDraw from PIL import ImageFont import scipy import scipy.stats import cv2 import os import emnist_helpers def save_metadata(metadata, contour_path, batch_id): # Converts metadata (list of lists) into an nparray, and then saves metadata_path = os.path.join(contour_path, 'metadata') if not os.path.exists(metadata_path): os.makedirs(metadata_path) metadata_fn = str(batch_id) + '.npy' np.save(os.path.join(metadata_path,metadata_fn), metadata) # Accumulate metadata def accumulate_meta(array, im_subpath, seg_sub_path, im_filename, nimg, image_category, letter_img_indices): # NEW VERSION array += [[im_subpath, seg_sub_path, im_filename, nimg, image_category] + letter_img_indices] return array # Accumulate metadata def accumulate_meta_segment(array, im_subpath, seg_sub_path, im_filename, nimg, letter_img_indices): # NEW VERSION array += [[im_subpath, seg_sub_path, im_filename, nimg] + letter_img_indices] return array def crop_center(img,cropx,cropy): y,x = img.shape startx = x//2-(cropx//2) starty = y//2-(cropy//2) return img[starty:starty+cropy,startx:startx+cropx] def translate_coord(coord, orientation, dist, allow_float=False): y_displacement = float(dist)*np.sin(orientation) x_displacement = float(dist)*np.cos(orientation) if allow_float is True: new_coord = [coord[0]+y_displacement, coord[1]+x_displacement] else: new_coord = [int(np.ceil(coord[0] + y_displacement)), int(np.ceil(coord[1] + x_displacement))] return new_coord def get_availability_notouch(im, com_on_im, radius, canvas_size, existing_canvas=None, existing_deg=None, min_separation_deg=45, min_separation_px=15): if (min_separation_deg>180): return ValueError('min_separation_deg should be leq than 180') # Filter available positions to prevent overlap if existing_canvas is not None: print('placing second letter') im_inverted = im[::-1,::-1] com_on_im_inverted = [im.shape[0]-com_on_im[0]-1, im.shape[1]-com_on_im[1]-1] h_offset = com_on_im[0]-com_on_im_inverted[0] w_offset = com_on_im[1]-com_on_im_inverted[1] pad_thickness = ((np.maximum(h_offset, 0) + min_separation_px, np.maximum(-h_offset, 0) + min_separation_px), (np.maximum(w_offset, 0) + min_separation_px, np.maximum(-w_offset, 0) + min_separation_px)) im_inverted_padded = \ np.pad(im_inverted, pad_thickness, 'constant', constant_values=((0,0), (0,0))).astype(np.bool) im_inverted_dilated = scipy.ndimage.morphology.binary_dilation(im_inverted_padded, iterations=min_separation_px) occupation_mask = cv2.dilate(existing_canvas.astype(np.uint8), im_inverted_dilated.astype(np.uint8)).astype(np.bool) # print('positive = ' + str(np.sum(occupation_mask.astype(np.int)[:]))) # print('negative = ' + str(np.sum(1 - occupation_mask.astype(np.int)[:]))) else: print('placing first letter') occupation_mask = np.zeros((canvas_size[0], canvas_size[1])).astype(np.bool) # Filter available positions to ensure angular dist between COMs availability_mask = np.zeros((canvas_size[0], canvas_size[1])) canvase_center = [canvas_size[0]/2, canvas_size[1]/2] if existing_deg is not None: degs = [x for x in range(360) if np.abs(existing_deg-x)] else: degs = [x for x in range(360)] for deg in degs: coord = translate_coord(canvase_center, deg*np.pi/180, radius, allow_float=False) availability_mask[coord[0], coord[1]] = not occupation_mask[coord[0], coord[1]] # Filter available positions to prevent overflow of obj window availability_mask[:com_on_im[0]+1, :] = False availability_mask[-(im.shape[0] - com_on_im[0])-1:, :] = False availability_mask[:, :com_on_im[1]+1] = False availability_mask[:, -(im.shape[1] - com_on_im[1])-1:] = False # if existing_canvas is not None: # plt.subplot(141);plt.imshow(im) # plt.subplot(142);plt.imshow(existing_canvas.astype(np.uint8)) # plt.subplot(143);plt.imshow(occupation_mask) # plt.subplot(144);plt.imshow(availability_mask.astype(np.uint8)) # plt.show() return availability_mask def place_on_canvas(im, com_in_im, canvas_size, com_in_canvas): canvas = np.zeros((canvas_size[0], canvas_size[1])) hrange = [com_in_canvas[0] - com_in_im[0], com_in_canvas[0] + (im.shape[0] - com_in_im[0])] wrange = [com_in_canvas[1] - com_in_im[1], com_in_canvas[1] + (im.shape[1] - com_in_im[1])] # if canvas[hrange[0]:hrange[1], wrange[0]:wrange[1]].shape != im.shape: # import ipdb # ipdb.set_trace() canvas[hrange[0]:hrange[1], wrange[0]:wrange[1]] = im return canvas def gauss_mask(shape=(10,10),sigma=4): m,n = [(ss-1.)/2. for ss in shape] y,x = np.ogrid[-m:m+1,-n:n+1] h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) ) h[ h < np.finfo(h.dtype).eps*h.max() ] = 0 sumh = h.sum() if sumh != 0: h /= sumh return h def obj_exclusive_mask(master_canvas, dilate_others=0, obj_idx=0, dynamic_range=255.): temp_master_canvas = master_canvas.copy()*dynamic_range/
np.max(master_canvas)
numpy.max
#%% import pickle import matplotlib.pyplot as plt from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) import numpy as np from itertools import product import seaborn as sns ### MAIN HYPERPARAMS ### slots = 1 shifts = 6 alg_name = ['L2N','L2F'] ######################## #%% def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def get_fte_bte(err, single_err): bte = [[] for i in range(10)] te = [[] for i in range(10)] fte = [] for i in range(10): for j in range(i,10): #print(err[j][i],j,i) bte[i].append(err[i][i]/err[j][i]) te[i].append(single_err[i]/err[j][i]) for i in range(10): fte.append(single_err[i]/err[i][i]) return fte,bte,te def calc_mean_bte_(btes,task_num=10,reps=6): mean_bte = [[] for i in range(task_num)] for j in range(task_num): tmp = 0 for i in range(reps): tmp +=
np.array(btes[i][j])
numpy.array
from ...utils import gradient_diffusion import numpy as np import skimage.morphology as mp from skimage import measure as ms def gvf_tracking(I, Mask, K=1000, Diffusions=10, Mu=5, Lambda=5, Iterations=10, dT=0.05): """ Performs gradient-field tracking to segment smoothed images of cell nuclei. Takes as input a smoothed intensity or Laplacian-of-Gaussian filtered image and a foreground mask, and groups pixels by tracking them to mutual gradient sinks. Typically requires merging of sinks (seeds) as a post processing steps. Parameters ---------- I : array_like Smoothed intensity or log-filtered response where nuclei regions have larger intensity values than background. Mask : array_like Binary mask where foreground objects have value 1, and background objects have value 0. Used to restrict influence of background vectors on diffusion process and to reduce tracking computations. K : float Number of steps to check for tracking cycle. Default value = 1000. Mu : float Weight parmeter from Navier-Stokes diffusion - weights divergence and Laplacian terms. Default value = 5. Lambda : float Weight parameter from Navier-Stokes diffusion - used to weight divergence. Default value = 5. Iterations : float Number of time-steps to use in Navier-Stokes diffusion. Default value = 10. dT : float Timestep to be used in Navier-Stokes diffusion. Default value = 0.05. Returns ------- Segmentation : array_like Label image where positive values correspond to foreground pixels that share mutual sinks. Sinks : array_like N x 2 array containing the (x,y) locations of the tracking sinks. Each row is an (x,y) pair - in that order. See Also -------- histomicstk.utils.gradient_diffusion, histomicstk.segmentation.label.shuffle References ---------- .. [#] G. Li et al "3D cell nuclei segmentation based on gradient flow tracking" in BMC Cell Biology,vol.40,no.8, 2007. """ # get image shape M = I.shape[0] N = I.shape[1] # calculate gradient dy, dx = np.gradient(I) # diffusion iterations if Diffusions > 0: dx, dy = gradient_diffusion(dx, dy, Mask, Mu, Lambda, Diffusions, dT) # normalize to unit magnitude Mag = ((dx**2 + dy**2)**0.5 + np.finfo(float).eps) dy = dy / Mag dx = dx / Mag # define mask to track pixels that are mapped to a sink Mapped = np.zeros(I.shape) # define label image Segmentation = np.zeros(I.shape) # initialize lists of sinks Sinks = [] # define coordinates for foreground pixels (Mask == 1) i, j = np.nonzero(Mask) # track pixels for index, (x, y) in enumerate(zip(j, i)): # initialize angle, trajectory length, novel flag, and allocation count phi = 0 points = 1 novel = 1 alloc = 1 # initialize trajectory Trajectory = np.zeros((K, 2)) Trajectory[0, 0] = x Trajectory[0, 1] = y # track while angle defined by successive steps is < np.pi / 2 while(phi < np.pi / 2): # calculate step xStep = round_float(dx[Trajectory[points-1, 1], Trajectory[points-1, 0]]) yStep = round_float(dy[Trajectory[points-1, 1], Trajectory[points-1, 0]]) # check image edge if ((Trajectory[points-1, 0] + xStep < 0) or (Trajectory[points-1, 0] + xStep > N-1) or (Trajectory[points-1, 1] + yStep < 0) or (Trajectory[points-1, 1] + yStep > M-1)): break # add new point to trajectory list if points < K: # buffer is not overrun Trajectory[points, 0] = Trajectory[points-1, 0] + xStep Trajectory[points, 1] = Trajectory[points-1, 1] + yStep else: # buffer overrun # check for cycle cycle = detect_cycle(Trajectory, points) if cycle == points: # no cycle, simple overflow. grow buffer. # copy and reallocate temp = Trajectory Trajectory = np.zeros((K*alloc, 2)) Trajectory[K*(alloc-1):K*alloc, ] = temp alloc += 1 # add new point Trajectory[points, 0] = Trajectory[points-1, 0] + xStep Trajectory[points, 1] = Trajectory[points-1, 1] + yStep else: # overflow due to cycle, terminate tracking points = cycle # check mapping if Mapped[Trajectory[points, 1], Trajectory[points, 0]] == 1: novel = 0 phi = np.pi elif Mask[Trajectory[points, 1], Trajectory[points, 0]] == 0: phi = np.pi else: phi = np.arccos(dy[Trajectory[points-1, 1], Trajectory[points-1, 0]] * dy[Trajectory[points, 1], Trajectory[points, 0]] + dx[Trajectory[points-1, 1], Trajectory[points-1, 0]] * dx[Trajectory[points, 1], Trajectory[points, 0]]) # increment trajectory length counter points += 1 # determine if sink is novel if novel == 1: # record sinks Sinks.append(Trajectory[points-1, ]) # add trajectory to label image with new sink value, add mapping for j in range(points): Segmentation[Trajectory[j, 1], Trajectory[j, 0]] = len(Sinks) Mapped[Trajectory[j, 1], Trajectory[j, 0]] = 1 else: # add trajectory to label image with sink value of final point for j in range(points): Segmentation[Trajectory[j, 1], Trajectory[j, 0]] = \ Segmentation[Trajectory[points-1, 1], Trajectory[points-1, 0]] # convert Sinks to numpy array Sinks = np.asarray(Sinks) return Segmentation, Sinks def merge_sinks(Label, Sinks, Radius=5): """ Merges attraction basins obtained from gradient flow tracking using sink locations. Parameters ---------- Segmentation : array_like Label image where positive values correspond to foreground pixels that share mutual sinks. Sinks : array_like N x 2 array containing the (x,y) locations of the tracking sinks. Each row is an (x,y) pair - in that order. Radius : float Radius used to merge sinks. Sinks closer than this radius to one another will have their regions of attraction merged. Default value = 5. Returns ------- Merged : array_like Label image where attraction regions are merged. """ # build seed image SeedImage = np.zeros(Label.shape) for i in range(Sinks.shape[0]): SeedImage[Sinks[i, 1], Sinks[i, 0]] = i+1 # dilate sink image Dilated = mp.binary_dilation(SeedImage, mp.disk(Radius)) # generate new labels for merged seeds, define memberships Labels = ms.label(Dilated) New = Labels[Sinks[:, 1].astype(np.int), Sinks[:, 0].astype(np.int)] # get unique list of seed clusters Unique = np.arange(1, New.max()+1) # generate new seed list Merged = np.zeros(Label.shape) # get pixel list for each sink object Props = ms.regionprops(Label.astype(np.int)) # fill in new values for i in Unique: Indices = np.nonzero(New == i)[0] for j in Indices: Coords = Props[j].coords Merged[Coords[:, 0], Coords[:, 1]] = i return Merged def detect_cycle(Trajectory, points): # initialize trajectory length length = 0 # identify trajectory bounding box xMin = np.min(Trajectory[0:points, 0]) xMax = np.max(Trajectory[0:points, 0]) xRange = xMax - xMin + 1 yMin = np.min(Trajectory[0:points, 1]) yMax = np.max(Trajectory[0:points, 1]) yRange = yMax - yMin + 1 # fill in trajectory map Map =
np.zeros((yRange, xRange))
numpy.zeros
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import datetime as dt from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import csv import os.path from download import download import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability import distributions as tfd def define_model(info: dict, level: str = "stock"): """ Define and return graphical model. Parameters ---------- info: dict Data information. level: str Level of the model; possible candidates are "stock", "industry", "sector" and "market". """ tt = info['tt'] order_scale = info['order_scale'] order = len(order_scale) - 1 num_sectors = info['num_sectors'] sec2ind_id = info['sector_industries_id'] ind_id = info['industries_id'] available_levels = ["market", "sector", "industry", "stock"] if level not in available_levels: raise Exception("Selected level is unknown. Please provide one of the following levels: {}.".format(available_levels)) m = [tfd.Normal(loc=tf.zeros([1, order + 1]), scale=4 * order_scale), # phi_m tfd.Normal(loc=0, scale=4)] # psi_m if level != "market": m += [lambda psi_m, phi_m: tfd.Normal(loc=tf.repeat(phi_m, num_sectors, axis=0), scale=2 * order_scale), # phi_s lambda phi_s, psi_m: tfd.Normal(loc=psi_m, scale=2 * tf.ones([num_sectors, 1]))] # psi_s if level != "sector": sec2ind_id = info['sector_industries_id'] m += [lambda psi_s, phi_s: tfd.Normal(loc=tf.gather(phi_s, sec2ind_id, axis=0), scale=order_scale), # phi_i lambda phi_i, psi_s: tfd.Normal(loc=tf.gather(psi_s, sec2ind_id, axis=0), scale=1)] # psi_ii if level != "industry": ind_id = info['industries_id'] m += [lambda psi_i, phi_i: tfd.Normal(loc=tf.gather(phi_i, ind_id, axis=0), scale=0.5 * order_scale), # phi lambda phi, psi_i: tfd.Normal(loc=tf.gather(psi_i, ind_id, axis=0), scale=0.5)] # psi if level == "market": m += [lambda psi_m, phi_m: tfd.Normal(loc=tf.tensordot(phi_m, tt, axes=1), scale=tf.math.softplus(psi_m))] # y if level == "sector": m += [lambda psi_s, phi_s: tfd.Normal(loc=tf.tensordot(phi_s, tt, axes=1), scale=tf.math.softplus(psi_s))] # y if level == "industry": m += [lambda psi_i, phi_i: tfd.Normal(loc=tf.tensordot(phi_i, tt, axes=1), scale=tf.math.softplus(psi_i))] # y if level == "stock": m += [lambda psi, phi: tfd.Normal(loc=tf.tensordot(phi, tt, axes=1), scale=tf.math.softplus(psi))] # y return tfd.JointDistributionSequentialAutoBatched(m) def training(logp: np.array, info: dict, learning_rate: float = 0.01, num_steps: int = 20000, plot_losses: bool = False): """ It performs sequential optimization over the model parameters via Adam optimizer, training at different levels to provide sensible initial solutions at finer levels. Parameters ---------- logp: np.array Log-price at stock-level. info: dict Data information. learning_rate: float Adam's fixed learning rate. num_steps: int Adam's fixed number of iterations. plot_losses: bool If True, a losses decay plot is saved in the current directory. Returns ------- It returns trained parameters. """ optimizer = tf.optimizers.Adam(learning_rate=learning_rate) num_steps_l = int(np.ceil(num_steps // 4)) # market model = define_model(info, "market") phi_m, psi_m = (tf.Variable(tf.zeros_like(model.sample()[:2][i])) for i in range(2)) loss_m = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, logp.mean(0, keepdims=1)]), optimizer=optimizer, num_steps=num_steps_l) # sector model = define_model(info, "sector") phi_m, psi_m = tf.constant(phi_m), tf.constant(psi_m) phi_s, psi_s = (tf.Variable(tf.zeros_like(model.sample()[2:4][i])) for i in range(2)) logp_s = np.array([logp[np.where(np.array(info['sectors_id']) == k)[0]].mean(0) for k in range(info['num_sectors'])]) loss_s = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, logp_s]), optimizer=optimizer, num_steps=num_steps_l) # industry model = define_model(info, "industry") phi_s, psi_s = tf.constant(phi_s), tf.constant(psi_s) phi_i, psi_i = (tf.Variable(tf.zeros_like(model.sample()[4:6][i])) for i in range(2)) logp_i = np.array([logp[np.where(np.array(info['industries_id']) == k)[0]].mean(0) for k in range(info['num_industries'])]) loss_i = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, logp_i]), optimizer=optimizer, num_steps=num_steps_l) # stock model = define_model(info, "stock") phi_i, psi_i = tf.constant(phi_i), tf.constant(psi_i) phi, psi = (tf.Variable(tf.zeros_like(model.sample()[6:8][i])) for i in range(2)) loss = tfp.math.minimize(lambda: -model.log_prob([phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi, logp]), optimizer=optimizer, num_steps=num_steps_l) if plot_losses: fig_name = 'losses_decay.png' fig = plt.figure(figsize=(20, 3)) plt.subplot(141) plt.title("market-level", fontsize=12) plt.plot(loss_m) plt.subplot(142) plt.title("sector-level", fontsize=12) plt.plot(loss_s) plt.subplot(143) plt.title("industry-level", fontsize=12) plt.plot(loss_i) plt.subplot(144) plt.title("stock-level", fontsize=12) plt.plot(loss) plt.legend(["loss decay"], fontsize=12, loc="upper right") plt.xlabel("iteration", fontsize=12) fig.savefig(fig_name, dpi=fig.dpi) print('Losses decay plot has been saved in this directory as {}.'.format(fig_name)) return phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi def softplus(x: np.array): """ It is a function from real to positive numbers Parameters ---------- x: np.array Real value. """ return np.log(1 + np.exp(x)) def order_selection(logp: np.array, info: dict, orders: np.array = np.arange(1, 14), horizon: int = 5): """ It is a function from real to positive numbers Parameters ---------- logp: np.array Log-prices at stock-level. info: dict Data information. orders: np.array Array of candidate orders. horizon: int Number of days to evaluate prediction. """ print("\nModel selection in progress. This can take a few minutes...") t = logp[:, :-horizon].shape[1] min_loss = np.inf count = 0 for i, order in enumerate(orders): info['tt'] = (np.linspace(1 / t, 1, t) ** np.arange(order + 1).reshape(-1, 1)).astype('float32') info['order_scale'] = np.linspace(1 / (order + 1), 1, order + 1)[::-1].astype('float32')[None, :] # training the model phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi = training(logp[:, :-horizon], info) # construct loss tt_pred = ((1 + (np.arange(1, 1 + horizon) / t)) ** np.arange(order + 1).reshape(-1, 1)).astype('float32') logp_pred = np.dot(phi.numpy(), tt_pred) std_logp_pred = softplus(psi.numpy()) scores = (logp_pred - logp[:, -horizon:]) / std_logp_pred loss = np.abs(np.mean(scores ** 2) - 1) print("Loss value for backtested polynomial model of order {}: {}.".format(order, loss)) if i > 0 and loss > min_loss: count += 1 else: min_loss = loss min_order = order count = 0 if count == 3: break print("Model selection completed. Volatile will use a polynomial model of degree {}.".format(min_order)) return min_order if __name__ == '__main__': cli = ArgumentParser('Volatile: your day-to-day trading companion.', formatter_class=ArgumentDefaultsHelpFormatter) cli.add_argument('-s', '--symbols', type=str, nargs='+', help='List of symbols.') cli.add_argument('--save-table', action='store_true', help='Save prediction table in csv format.') cli.add_argument('--no-plots', action='store_true', help='Plot estimates with their uncertainty over time.') cli.add_argument('--plot-losses', action='store_true', help='Plot loss function decay over training iterations.') args = cli.parse_args() today = dt.date.today().strftime("%Y-%m-%d") print('\nDownloading all available closing prices in the last year...') if args.symbols is None: with open("symbols_list.txt", "r") as my_file: args.symbols = my_file.readlines()[0].split(" ") data = download(args.symbols) tickers = data["tickers"] num_stocks, t = data['logp'].shape # find unique names of sectors usectors = np.unique(data['sectors']) num_sectors = len(usectors) # provide sector IDs at stock-level sectors_id = [np.where(usectors == sector)[0][0] for sector in data['sectors']] # find unique names of industries and store indices uindustries, industries_idx = np.unique(data['industries'], return_index=True) num_industries = len(uindustries) # provide industry IDs at stock-level industries_id = [np.where(uindustries == industry)[0][0] for industry in data['industries']] # provide sector IDs at industry-level sector_industries_id = np.array(sectors_id)[industries_idx].tolist() # place relevant information in dictionary info = dict(num_sectors=num_sectors, num_industries=num_industries, sector_industries_id=sector_industries_id, industries_id=industries_id, sectors_id=sectors_id) # how many days to look ahead when comparing the current price against a prediction horizon = 5 # order of the polynomial order = order_selection(data['logp'], info) print("\nTraining the model...") # times corresponding to trading dates in the data info['tt'] = (np.linspace(1 / t, 1, t) ** np.arange(order + 1).reshape(-1, 1)).astype('float32') # reweighing factors for parameters corresponding to different orders of the polynomial info['order_scale'] = np.linspace(1 / (order + 1), 1, order + 1)[::-1].astype('float32')[None, :] # training the model phi_m, psi_m, phi_s, psi_s, phi_i, psi_i, phi, psi = training(data['logp'], info, plot_losses=args.plot_losses) # calculate stock-level estimators of log-prices logp_est = np.dot(phi.numpy(), info['tt']) std_logp_est = softplus(psi.numpy()) # calculate stock-level estimators of prices p_est = np.exp(logp_est + std_logp_est ** 2 / 2) std_p_est = np.sqrt(np.exp(2 * logp_est + std_logp_est ** 2) * (np.exp(std_logp_est ** 2) - 1)) # calculate stock-level predictions of log-prices tt_pred = ((1 + (np.arange(1 + horizon) / t)) ** np.arange(order + 1).reshape(-1, 1)).astype('float32') logp_pred = np.dot(phi.numpy(), tt_pred) std_logp_pred = softplus(psi.numpy()) # calculate stock-level prediction of prices p_pred = np.exp(logp_pred + std_logp_pred ** 2 / 2) std_p_pred = np.sqrt(np.exp(2 * logp_pred + std_logp_pred ** 2) * (np.exp(std_logp_pred ** 2) - 1)) # calculate industry-level estimators of log-prices logp_ind_est = np.dot(phi_i.numpy(), info['tt']) std_logp_ind_est = softplus(psi_i.numpy()) # calculate industry-level estimators of prices p_ind_est = np.exp(logp_ind_est + std_logp_ind_est ** 2 / 2) std_p_ind_est = np.sqrt(np.exp(2 * logp_ind_est + std_logp_ind_est ** 2) * (np.exp(std_logp_ind_est ** 2) - 1)) # calculate sector-level estimators of log-prices logp_sec_est = np.dot(phi_s.numpy(), info['tt']) std_logp_sec_est = softplus(psi_s.numpy()) # calculate sector-level estimators of prices p_sec_est = np.exp(logp_sec_est + std_logp_sec_est ** 2 / 2) std_p_sec_est = np.sqrt(np.exp(2 * logp_sec_est + std_logp_sec_est ** 2) * (np.exp(std_logp_sec_est ** 2) - 1)) # calculate market-level estimators of log-prices logp_mkt_est = np.dot(phi_m.numpy(), info['tt']) std_logp_mkt_est = softplus(psi_m.numpy()) # calculate market-level estimators of prices p_mkt_est = np.exp(logp_mkt_est + std_logp_mkt_est ** 2 / 2) std_p_mkt_est = np.sqrt(np.exp(2 * logp_mkt_est + std_logp_mkt_est ** 2) * (np.exp(std_logp_mkt_est ** 2) - 1)) print("Training completed.") # calculate score scores = ((logp_pred[:, horizon] - data["logp"][:, -1]) / std_logp_pred.squeeze()) # rank according to score rank = np.argsort(scores)[::-1] ranked_tickers = np.array(tickers)[rank] ranked_scores = scores[rank] ranked_p = np.exp(data["logp"])[rank] ranked_p_est = p_est[rank] ranked_std_p_est = std_p_est[rank] ranked_p_pred = p_pred[rank] ranked_std_p_pred = std_p_pred[rank] # stock thresholds st = {"HIGHLY BELOW TREND": 3, "BELOW TREND": 2, "ALONG TREND": 0, "ABOVE TREND": -2, "HIGHLY ABOVE TREND": -3} # stock information si = {"HIGHLY BELOW TREND": np.where(ranked_scores > st["HIGHLY BELOW TREND"])[0], "BELOW TREND": np.where((ranked_scores <= st["HIGHLY BELOW TREND"]) & (ranked_scores > st["BELOW TREND"]))[0], "ALONG TREND": np.where((ranked_scores <= st["BELOW TREND"]) & (ranked_scores > st["ABOVE TREND"]))[0], "ABOVE TREND": np.where((ranked_scores <= st["ABOVE TREND"]) & (ranked_scores > st["HIGHLY ABOVE TREND"]))[0], "HIGHLY ABOVE TREND": np.where(ranked_scores <= st["HIGHLY ABOVE TREND"])[0]} si = {k: v[0] for k, v in si.items() if len(v) > 0} # rate all stocks ranked_rating = np.array(list(si.keys())).repeat(list(np.diff(list(si.values()))) + [num_stocks - list(si.values())[-1]]).tolist() if not args.no_plots: ## information for plotting # find unique names of sectors usectors = np.unique(data['sectors']) num_sectors = len(usectors) # determine which sectors were not available to avoid plotting NA_sectors = np.where(np.array([sec[:2] for sec in usectors]) == "NA")[0] num_NA_sectors = len(NA_sectors) # provide sector IDs at stock-level sectors_id = [np.where(usectors == sector)[0][0] for sector in data['sectors']] # find unique names of industries and store indices uindustries = np.unique(data['industries']) num_industries = len(uindustries) # determine which industries were not available to avoid plotting NA_industries = np.where(np.array([ind[:2] for ind in uindustries]) == "NA")[0] num_NA_industries = len(NA_industries) # provide industry IDs at stock-level industries_id = [np.where(uindustries == industry)[0][0] for industry in data['industries']] # ranked volume at stock level ranked_volume = data["volume"][rank] print('\nPlotting market estimation...') fig = plt.figure(figsize=(10,3)) left_mkt_est = np.maximum(0, p_mkt_est - 2 * std_p_mkt_est) right_mkt_est = p_mkt_est + 2 * std_p_mkt_est plt.title("Market", fontsize=15) l1 = plt.plot(data["dates"], np.exp(data['logp'].mean(0)), label="avg. price", color="C0") l2 = plt.plot(data["dates"], p_mkt_est[0], label="trend", color="C1") l3 = plt.fill_between(data["dates"], left_mkt_est[0], right_mkt_est[0], alpha=0.2, label="+/- 2 st. dev.", color="C0") plt.ylabel("avg. price", fontsize=12) plt.twinx() l4 = plt.bar(data["dates"], ranked_volume.mean(0), width=1, color='g', alpha=0.2, label='avg. volume') plt.ylabel("avg. volume", fontsize=12) ll = l1 + l2 + [l3] + [l4] labels = [l.get_label() for l in ll] plt.legend(ll, labels, loc="upper left") fig_name = 'market_estimation.png' fig.savefig(fig_name, dpi=fig.dpi) print('Market estimation plot has been saved to {}/{}.'.format(os.getcwd(), fig_name)) num_columns = 3 print('\nPlotting sector estimation...') left_sec_est = np.maximum(0, p_sec_est - 2 * std_p_sec_est) right_sec_est = p_sec_est + 2 * std_p_sec_est fig = plt.figure(figsize=(20, max(num_sectors - num_NA_sectors, 5))) j = 0 for i in range(num_sectors): if i not in NA_sectors: j += 1 plt.subplot(int(np.ceil((num_sectors - num_NA_sectors) / num_columns)), num_columns, j) plt.title(usectors[i], fontsize=15) idx_sectors = np.where(np.array(sectors_id) == i)[0] l1 = plt.plot(data["dates"], np.exp(data['logp'][idx_sectors].reshape(-1, t).mean(0)), label="avg. price", color="C0") l2 = plt.plot(data["dates"], p_sec_est[i], label="trend", color="C1") l3 = plt.fill_between(data["dates"], left_sec_est[i], right_sec_est[i], alpha=0.2, label="+/- 2 st. dev.", color="C0") plt.ylabel("avg. price", fontsize=12) plt.xticks(rotation=45) plt.twinx() l4 = plt.bar(data["dates"], data['volume'][np.where(np.array(sectors_id) == i)[0]].reshape(-1, t).mean(0), width=1, color='g', alpha=0.2, label='avg. volume') plt.ylabel("avg. volume", fontsize=12) ll = l1 + l2 + [l3] + [l4] labels = [l.get_label() for l in ll] plt.legend(ll, labels, loc="upper left") plt.tight_layout() fig_name = 'sector_estimation.png' fig.savefig(fig_name, dpi=fig.dpi) print('Sector estimation plot has been saved to {}/{}.'.format(os.getcwd(), fig_name)) print('\nPlotting industry estimation...') left_ind_est = np.maximum(0, p_ind_est - 2 * std_p_ind_est) right_ind_est = p_ind_est + 2 * std_p_ind_est fig = plt.figure(figsize=(20, max(num_industries - num_NA_industries, 5))) j = 0 for i in range(num_industries): if i not in NA_industries: j += 1 plt.subplot(int(np.ceil((num_industries - num_NA_industries) / num_columns)), num_columns, j) plt.title(uindustries[i], fontsize=15) idx_industries = np.where(
np.array(industries_id)
numpy.array
# Copyright (c) 2022 ETH Zurich, <NAME> # MIT License # Load modules import os import numpy as np from shapely.geometry import shape, box import fiona from scipy.spatial import cKDTree import pygeos import time from skimage.measure import find_contours # Load required functions import functions_cy ############################################################################### def get_GSHHS_coastlines(dom, path_GSHHG, path_temp): """Get relevant GSHHS coastline data. Get relevant GSHHS coastline data for rectangular latitude/longitude domain. Parameters ---------- dom : dict Specifications of rectangular latitude/longitude domain ('lat_min', 'lat_max', 'lon_min', 'lon_max') path_GSHHG: str Path to folder of GSHHS data with shapefile 'GSHHS_f_L1.shp' path_temp: str Path to temporary directory in which bounding boxes for coastline polygons are cached Returns ------- poly_coastlines : list Relevant coastline polygons as Shapely polygons Notes ----- Source of GSHHS data: https://www.soest.hawaii.edu/pwessel/gshhg/""" # Check arguments keys_req = ("lon_min", "lon_max", "lat_min", "lat_max") if not set(keys_req).issubset(set(dom.keys())): raise ValueError("one or multiple key(s) are missing in 'dom'") if (dom["lon_min"] >= dom["lon_max"])\ or (dom["lat_min"] >= dom["lat_max"]): raise ValueError("invalid domain extent") if not os.path.isfile(path_GSHHG + "GSHHS_f_L1.shp"): raise ValueError("file 'GSHHS_f_L1.shp' not found in provided " + "path for GSHHG data") if not os.path.isdir(path_temp): raise ValueError("temporary directory does not exist") t_beg_func = time.time() # Compute and save bounding boxes of coastlines polygons file_bbc = path_temp + "Bounding_boxes_coastlines.npy" if not os.path.isfile(file_bbc): t_beg = time.time() ds = fiona.open(path_GSHHG + "GSHHS_f_L1.shp") bounds = np.empty((len(ds), 4), dtype=np.float32) for idx, var in enumerate(ds): bounds[idx, :] = shape(var["geometry"]).bounds # (lon_min, lat_min, lon_max, lat_max) ds.close() np.save(file_bbc, bounds) print("Bounding boxes for coastline polygons computed " + "(%.2f" % (time.time() - t_beg) + " s)") # Find relevant polygons for domain bounds = np.load(file_bbc) geoms = pygeos.box(bounds[:, 0], bounds[:, 1], bounds[:, 2], bounds[:, 3]) tree = pygeos.STRtree(geoms) quer_rang = [dom["lon_min"], dom["lat_min"], dom["lon_max"], dom["lat_max"]] ind = tree.query(pygeos.box(*quer_rang)) # Load relevant polygons ds = fiona.open(path_GSHHG + "GSHHS_f_L1.shp") poly_all = [shape(ds[int(i)]["geometry"]) for i in ind] ds.close() print("Number of polygons: " + str(len(poly_all))) # Crop polygons (if necessary) quer_rang_s = box(*quer_rang) poly_coastlines = [] for i in poly_all: if quer_rang_s.contains(i): poly_coastlines.append(i) elif quer_rang_s.intersects(i): poly_coastlines.append(quer_rang_s.intersection(i)) print("Run time: %.2f" % (time.time() - t_beg_func) + " s") return poly_coastlines ############################################################################### def coastline_contours(lon, lat, mask_bin): """Compute coastline contours. Compute coastline contours from binary land-sea mask. Parameters ---------- lon : ndarray of double Array (1-dimensional) with geographic longitude [degree] lat: ndarray of double Array (1-dimensional) with geographic latitude [degree] mask_bin: str Array (2-dimensional) with binary land-sea mask (0: water, 1: land) Returns ------- contours_latlon : list List with contour lines in latitude/longitude coordinates [degree]""" # Check arguments if (lat.ndim != 1) or (lon.ndim != 1): raise ValueError("Input coordinates arrays must be 1-dimensional") if (mask_bin.shape[0] != len(lat)) or (mask_bin.shape[1] != len(lon)): raise ValueError("Input data has inconsistent dimension length(s)") if (mask_bin.dtype != "uint8") or (len(np.unique(mask_bin)) != 2) \ or (not np.all(np.unique(mask_bin) == [0, 1])): raise ValueError("'mask_bin' must be of type 'uint8' and may " + "only contain 0 and 1") t_beg_func = time.time() # Compute contour lines contours = find_contours(mask_bin, 0.5, fully_connected="high") # Get latitude/longitude coordinates of contours lon_ind = np.linspace(lon[0], lon[-1], len(lon) * 2 - 1) lat_ind = np.linspace(lat[0], lat[-1], len(lat) * 2 - 1) contours_latlon = [] for i in contours: pts_latlon = np.empty(i.shape, dtype=np.float64) pts_latlon[:, 0] = lon_ind[(i[:, 1] * 2).astype(np.int32)] pts_latlon[:, 1] = lat_ind[(i[:, 0] * 2).astype(np.int32)] contours_latlon.append(pts_latlon) print("Run time: %.2f" % (time.time() - t_beg_func) + " s") return contours_latlon ############################################################################### def coastline_distance(x_ecef, y_ecef, z_ecef, mask_land, pts_ecef): """Compute minimal chord distance. Compute minimal chord distance between all water grid cells (centre) and the coastline. Parameters ---------- x_ecef : ndarray of double Array (two-dimensional) with ECEF x-coordinates [metre] y_ecef : ndarray of double Array (two-dimensional) with ECEF y-coordinates [metre] z_ecef : ndarray of double Array (two-dimensional) with ECEF z-coordinates [metre] mask_land: ndarray of bool Array (two-dimensional) with land mask pts_ecef: ndarray of double Array (two-dimensional) with ECEF coordinates of coastline vertices (number of vertices, x/y/z) [metre] Returns ------- dist_chord : ndarray of double Array (2-dimensional) minimal chord distance between grid cells and coastline [metre]""" # Check arguments if x_ecef.shape != mask_land.shape: raise ValueError("Input data has inconsistent dimension length(s)") if mask_land.dtype != "bool": raise ValueError("'mask_land' must be a boolean mask") t_beg_func = time.time() # Build k-d tree tree = cKDTree(pts_ecef) # Query k-d tree pts_quer = np.vstack((x_ecef[~mask_land], y_ecef[~mask_land], z_ecef[~mask_land])).transpose() dist_quer, idx = tree.query(pts_quer, k=1, workers=-1) # Save distances in two-dimensional array dist_chord = np.empty(x_ecef.shape, dtype=np.float64) dist_chord.fill(np.nan) dist_chord[~mask_land] = dist_quer # [m] print("Run time: %.2f" % (time.time() - t_beg_func) + " s") return dist_chord ############################################################################### def coastline_buffer(x_ecef, y_ecef, z_ecef, mask_land, pts_ecef, lat, dist_thr, dem_res, ellps, block_size=(5 * 2 + 1)): """Compute mask according to coastline buffer. Compute mask according to coastline buffer. Grid cells, whose minimal chord distance from the coastline is longer than 'dist_thr', are masked. Parameters ---------- x_ecef : ndarray of double Array (two-dimensional) with ECEF x-coordinates [metre] y_ecef : ndarray of double Array (two-dimensional) with ECEF y-coordinates [metre] z_ecef : ndarray of double Array (two-dimensional) with ECEF z-coordinates [metre] mask_land: ndarray of bool Array (two-dimensional) with land mask pts_ecef: ndarray of double Array (two-dimensional) with ECEF coordinates of coastline vertices (number of vertices, x/y/z) [metre] lat: ndarray of double Array (1-dimensional) with geographic latitude [degree] dist_thr: double Threshold for minimal distance from coastline [metre] dem_res: double Spatial resolution of digital elevation model [degree] ellps : str Earth's surface approximation (sphere, GRS80 or WGS84) block_size: int Block size of grid cells that are processed together. Returns ------- mask_buffer : ndarray of bool Array (2-dimensional) with grid cells that are located outside of the coastline buffer [metre]""" # Check arguments if (x_ecef.shape != mask_land.shape) or (x_ecef.shape[0] != len(lat)): raise ValueError("Input data has inconsistent dimension length(s)") if mask_land.dtype != "bool": raise ValueError("'mask_land' must be a boolean mask") if ellps not in ("sphere", "WGS84", "GRS80"): raise ValueError("invalid value for 'ellps'") if block_size % 2 != 1: raise ValueError("Integer value for 'block_size' must be uneven") t_beg_func = time.time() # Compute maximal chord length for block (-> diagonal at equator) # lat_ini = 0.0 # equator lat_ini = np.maximum(np.abs(lat).min() - 1.0, 0.0) lon_max = np.array([[0.0, 0.0 + dem_res * int((block_size - 1) / 2)]], dtype=np.float64).reshape(1, 2) lat_max = np.array([[lat_ini, lat_ini + dem_res * int((block_size - 1) / 2)]], dtype=np.float64).reshape(1, 2) h_max = np.zeros(lon_max.shape, dtype=np.float32) coord_ecef = functions_cy.lonlat2ecef(lon_max, lat_max, h_max, ellps=ellps) chord_max = np.sqrt(np.diff(coord_ecef[0])[0][0] ** 2 + np.diff(coord_ecef[1])[0][0] ** 2 +
np.diff(coord_ecef[2])
numpy.diff
import numpy as np from numpy.testing import TestCase, run_module_suite, assert_raises, \ assert_almost_equal, assert_array_almost_equal, assert_equal, \ assert_ from scipy.special import sinc from scipy.signal import kaiser_beta, kaiser_atten, kaiserord, \ firwin, firwin2, freqz, remez def test_kaiser_beta(): b = kaiser_beta(58.7) assert_almost_equal(b, 0.1102 * 50.0) b = kaiser_beta(22.0) assert_almost_equal(b, 0.5842 + 0.07886) b = kaiser_beta(21.0) assert_equal(b, 0.0) b = kaiser_beta(10.0) assert_equal(b, 0.0) def test_kaiser_atten(): a = kaiser_atten(1, 1.0) assert_equal(a, 7.95) a = kaiser_atten(2, 1/np.pi)
assert_equal(a, 2.285 + 7.95)
numpy.testing.assert_equal
import numpy as np import scipy as sp from scipy import sparse from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from scipy import signal from random import gauss #import hdf5storage import h5py import timeit import time #from sympy.solvers.solveset import nonlinsolve #from sympy.core.symbol import symbols #from sympy import exp from scipy import stats import os from .analysis import * opj = os.path.join #written for python 3.6 #################################################################################################### #################################################################################################### ####GRAPH SIMULATIONS #################################################################################################### #################################################################################################### #################################################################################################### #testing any time-evolution propagator defined by a kernel on the graph #################################################################################################### def graph_propagator_test(u_0, Time, Delta_t, kernel_param, Graph_Kernel, a=1, b=1, c=1, sigma_noise=0, one_dim=False, syn=0, gridsize=1000, h=0.01, GF_domain=False, eigvals=None, eigvecs=None, Visual=False, SaveActivity=False, Filepath=' ', NSim=0): if one_dim==True: s,U = one_dim_Laplacian_eigenvalues(gridsize, h, syn, vecs=True) else: s=eigvals U=eigvecs #note that s is a vector of eigenvalues, not the diagonal matrix of eigenvalues #s_matrix=sp.sparse.diags(s).toarray() if Graph_Kernel!='Damped Wave': kernel_gf = GraphKernel(s,kernel_param, type=Graph_Kernel) if GF_domain == False: kernel_matrix=sp.sparse.diags(kernel_gf).toarray() Laplacian_based_propagator = np.dot(U, np.dot(kernel_matrix, U.T)) else: kernel_gf, kernel_gf_prime=GraphKernel(s,kernel_param, type=Graph_Kernel, a=a, b=b, c=c, prime=True) if GF_domain == False: Laplacian_based_propagator = np.dot(U, np.dot(sp.sparse.diags(kernel_gf).toarray(), U.T)) Laplacian_based_propagator_prime = np.dot(U, np.dot(sp.sparse.diags(kernel_gf_prime).toarray(), U.T)) Timesteps = int(round(Time/Delta_t)) u_Delta_t = np.zeros_like(u_0) u_prime = np.zeros_like(u_0) if SaveActivity==True or GF_domain == True: u_total = np.zeros((len(u_0),Timesteps)) if Visual==True and GF_domain == False: plt.ion() fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlim(0, len(u_0)) #ax.set_ylim(0, 11) #line2, = ax.plot(np.arange(len(I_0)), I_0, 'b-') #line1, = ax.plot(np.arange(len(E_0)), E_0, 'r-') ax.plot(u_0, 'b-') fig.canvas.draw() for i in range(Timesteps): if sigma_noise!=0: Noise = sigma_noise * np.array([gauss(0.0, 1.0) for k in range(len(u_0))]) else: Noise = 0 if SaveActivity==True or GF_domain == True: u_total[:,i]=np.copy(u_0) if i%10 == 0: print(i) #impulse response # if i==500: # E_Delta_t[600:650]=0.9*np.ones(50) # I_Delta_t[580:620]=0.9*np.ones(40) if Graph_Kernel!='Damped Wave': if GF_domain == False: u_Delta_t = np.dot(Laplacian_based_propagator,u_0)+np.sqrt(Delta_t)*Noise else: u_Delta_t = kernel_gf * u_0 + np.sqrt(Delta_t)*Noise else: if GF_domain == False: u_Delta_t = np.dot(Laplacian_based_propagator,u_0)+np.dot(Laplacian_based_propagator_prime,u_prime)+np.sqrt(Delta_t)*Noise u_prime=(u_Delta_t-u_0)/kernel_param else: u_Delta_t = kernel_gf * u_0 + kernel_gf_prime * u_prime + np.sqrt(Delta_t)*Noise u_prime=(u_Delta_t-u_0)/kernel_param if Visual==True and i%5 == 0 and GF_domain == False: time.sleep(0.03) ax.clear() ax.set_xlim(0, len(u_0)) #ax.set_ylim(-0.05,0.1) #line2.set_ydata(I_Delta_t) #line1.set_ydata(E_Delta_t) ax.plot(u_Delta_t, 'b-') fig.canvas.draw() fig.canvas.flush_events() u_0 = np.copy(u_Delta_t) if SaveActivity==True: if Filepath==' ': if one_dim==True: filepath = 'G:/Macbook Stuff/Simulation Results/1D '+Graph_Kernel+' Kernel Test t=%.f/'%(kernel_param) else: filepath = 'G:/Macbook Stuff/Simulation Results/'+Graph_Kernel+' Kernel Test t=%.f/'%(kernel_param) else: filepath=Filepath if not os.path.exists(filepath): os.makedirs(filepath) with h5py.File(filepath+"%d# Sim Activity.h5"%(NSim)) as hf: if "Activity" not in list(hf.keys()): hf.create_dataset("Activity", data=u_total) else: print("Warning: overwriting results of a previous simulation.") del hf["Activity"] hf.create_dataset("Activity", data=u_total) if GF_domain == False: return u_Delta_t else: return u_total #################################################################################################### #################################################################################################### ################################################################## ##GRAPH STOCHASTIC <NAME> ################################################################## #compute the four diffusion operators beforehand def graph_WCM_propagators(alpha_EE=1, alpha_IE=1, alpha_EI=1, alpha_II=1, sigma_EE=10, sigma_IE=10, sigma_EI=10, sigma_II=10, D=1, Graph_Kernel='Gaussian', one_dim=False, syn=0, gridsize=1000, h=0.01, eigvals=None, eigvecs=None): t_EE = (0.5*sigma_EE**2)/D t_IE = (0.5*sigma_IE**2)/D t_EI = (0.5*sigma_EI**2)/D t_II = (0.5*sigma_II**2)/D ForceParallel=True if one_dim==True: s,U = one_dim_Laplacian_eigenvalues(gridsize, h, syn, vecs=True) V=U.T else: s=eigvals U=eigvecs V=eigvecs.T if ForceParallel==True: diag_prop_EE = alpha_EE * GraphKernel(s, t_EE, Graph_Kernel) diag_prop_IE = alpha_IE * GraphKernel(s, t_IE, Graph_Kernel) diag_prop_EI = alpha_EI * GraphKernel(s, t_EI, Graph_Kernel) diag_prop_II = alpha_II * GraphKernel(s, t_II, Graph_Kernel) mask_EE = np.flatnonzero(diag_prop_EE) mask_IE = np.flatnonzero(diag_prop_IE) mask_EI = np.flatnonzero(diag_prop_EI) mask_II = np.flatnonzero(diag_prop_II) EE_skip = diag_prop_EE[mask_EE] IE_skip = diag_prop_IE[mask_IE] EI_skip = diag_prop_EI[mask_EI] II_skip = diag_prop_II[mask_II] prop_EEV = EE_skip[:,None] * V[mask_EE,:] prop_IEV = IE_skip[:,None] * V[mask_IE,:] prop_EIV = EI_skip[:,None] * V[mask_EI,:] prop_IIV = II_skip[:,None] * V[mask_II,:] propagator_EE = transpose_parallel_dot(V[mask_EE,:], prop_EEV) #np.dot(U, np.dot(s_exp_matrix_EE,V)) propagator_IE = transpose_parallel_dot(V[mask_IE,:], prop_IEV) propagator_EI = transpose_parallel_dot(V[mask_EI,:], prop_EIV) propagator_II = transpose_parallel_dot(V[mask_II,:], prop_IIV) else: diag_prop_EE = sp.sparse.diags(alpha_EE * GraphKernel(s, t_EE, Graph_Kernel)).toarray() diag_prop_IE = sp.sparse.diags(alpha_IE * GraphKernel(s, t_IE, Graph_Kernel)).toarray() diag_prop_EI = sp.sparse.diags(alpha_EI * GraphKernel(s, t_EI, Graph_Kernel)).toarray() diag_prop_II = sp.sparse.diags(alpha_II * GraphKernel(s, t_II, Graph_Kernel)).toarray() propagator_EE = np.dot(U, np.dot(diag_prop_EE,V)) propagator_IE = np.dot(U, np.dot(diag_prop_IE,V)) propagator_EI = np.dot(U, np.dot(diag_prop_EI,V)) propagator_II = np.dot(U, np.dot(diag_prop_II,V)) return propagator_EE.astype('float64'), propagator_IE.astype('float64'), propagator_EI.astype('float64'), propagator_II.astype('float64') #@jit(nopython=True, parallel=True) def transpose_parallel_dot(A, B): return np.dot(A.T, B) #@jit(nopython=True, parallel=True) def GWCM_Loop(E_0, I_0, Delta_t, propagator_EE, propagator_IE, propagator_EI, propagator_II, d_e, d_i, P, Q, tau_e, tau_i, Noise_E, Noise_I): time_E = Delta_t/tau_e time_I = Delta_t/tau_i #print(I_0.dtype) E_Delta_t = E_0 + time_E*(-d_e*E_0 + 1/(1+np.exp(-np.dot(propagator_EE,np.float64(E_0)) + np.dot(propagator_IE,np.float64(I_0)) - P)))+ Noise_E*np.sqrt(Delta_t)/tau_e I_Delta_t = I_0 + time_I*(-d_i*I_0 + 1/(1+np.exp(-np.dot(propagator_EI,np.float64(E_0)) + np.dot(propagator_II,np.float64(I_0)) - Q)))+ Noise_I*np.sqrt(Delta_t)/tau_i #print(E_Delta_t.shape) return E_Delta_t, I_Delta_t #Wilson Cowan model def Graph_Wilson_Cowan_Model(Ess, Iss, Time, Delta_t, alpha_EE=1, alpha_IE=1, alpha_EI=1, alpha_II=1, sigma_EE=10, sigma_IE=10, sigma_EI=10, sigma_II=10, D=1, d_e=1, d_i=1, P=0, Q=0, tau_e=1, tau_i=1, sigma_noise_e=1, sigma_noise_i=1, Graph_Kernel='Gaussian', one_dim=False, syn=0, gridsize=1000, h=0.01, eigvals=None, eigvecs=None, Visual=False, SaveActivity=False, Filepath=' ', NSim=0): propagator_EE, propagator_IE, propagator_EI, propagator_II = graph_WCM_propagators( alpha_EE, alpha_IE, alpha_EI, alpha_II, sigma_EE, sigma_IE, sigma_EI, sigma_II, D, Graph_Kernel, one_dim, syn, gridsize, h, eigvals,eigvecs) if one_dim==True: E_0=Ess*np.ones(gridsize, dtype='float64') I_0=Iss*np.ones(gridsize, dtype='float64') else: E_0=Ess*np.ones(len(eigvals), dtype='float64') I_0=Iss*np.ones(len(eigvals), dtype='float64') E_Delta_t = np.zeros_like(E_0) I_Delta_t = np.zeros_like(I_0) Timesteps = int(round(Time/Delta_t)) E_total = np.zeros((len(E_0),Timesteps-1000), dtype='float32') if Visual==True: plt.ion() fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlim(0, len(E_0)) ax.set_ylim(0, 1) #line2, = ax.plot(np.arange(len(I_0)), I_0, 'b-') #line1, = ax.plot(np.arange(len(E_0)), E_0, 'r-') ax.plot(I_0, 'b-') ax.plot(E_0, 'r-') fig.canvas.draw() numerical_SS = True if numerical_SS == True: Ess_numerical=[] Iss_numerical=[] for i in range(Timesteps): if sigma_noise_e!=0 or sigma_noise_i!=0: Noise_E = (sigma_noise_e * np.array([gauss(0.0, 1.0) for k in range(len(E_0))])).astype('float64') Noise_I = (sigma_noise_i * np.array([gauss(0.0, 1.0) for k in range(len(I_0))])).astype('float64') else: Noise_E = 0 Noise_I = 0 #it turns out that the alphas ARE important, ie. at least manually, i cant get oscillations if i set them to one #simply manipulating the sigmas doesnt appear to be enough for oscillations. analysis or systematic numerics would solve this #impulse response # if i==500: # E_Delta_t[600:650]=0.9*np.ones(50) # I_Delta_t[580:620]=0.9*np.ones(40) E_Delta_t, I_Delta_t = GWCM_Loop(E_0, I_0, Delta_t, propagator_EE, propagator_IE, propagator_EI, propagator_II, d_e, d_i, P, Q, tau_e, tau_i, Noise_E, Noise_I) if i>=1000: E_total[:,i-1000]=np.copy(E_Delta_t).astype('float32') if numerical_SS == True: Ess_numerical.append(np.mean(E_Delta_t)) Iss_numerical.append(np.mean(I_Delta_t)) if i%10 == 0: print(i) if Visual==True: ax.clear() ax.set_ylim(Ess-sigma_noise_e, Ess+sigma_noise_e) #line2.set_ydata(I_Delta_t) #line1.set_ydata(E_Delta_t) ax.plot(I_Delta_t, 'b-') ax.plot(E_Delta_t, 'r-') fig.canvas.draw() fig.canvas.flush_events() E_0 = np.copy(E_Delta_t) I_0 = np.copy(I_Delta_t) #print(E_0.shape) #print(str(E_0[10])+" "+str(I_0[20])) if SaveActivity==True: if Filepath==' ': filepath = 'G:/Macbook Stuff/Results/'+Graph_Kernel+' Kernel/aEE=%.3f aIE=%.3f aEI=%.3f aII=%.3f dE=%.3f dI=%.3f ' %(alpha_EE,alpha_IE,alpha_EI,alpha_II,d_e,d_i) filepath += 'P=%.3f Q=%.3f sEE=%.3f sIE=%.3f sEI=%.3f sII=%.3f D=%.3f tE=%.3f tI=%.3f/'%(P,Q,sigma_EE,sigma_IE,sigma_EI,sigma_II,D,tau_e,tau_i) else: filepath=Filepath if not os.path.exists(filepath): os.makedirs(filepath) #make DAT files with sim-only parameters (delta t, time, etc) with h5py.File(filepath+"Activity E0=%.5f Sim #%d.h5"%(Ess, NSim)) as hf: if "Activity" not in list(hf.keys()): hf.create_dataset("Activity", data=E_total) else: print("Warning: overwriting results of a previous simulation.") del hf["Activity"] hf.create_dataset("Activity", data=E_total) if numerical_SS==True: print(np.mean(np.array(Ess_numerical))) print(np.mean(np.array(Iss_numerical))) return E_total ################################################################################# # # LINEARIZED MODEL # ################################################################################## def Linearized_GLDomain_Wilson_Cowan_Model(Ess, Iss, Time, Delta_t, alpha_EE=1, alpha_IE=1, alpha_EI=1, alpha_II=1, sigma_EE=10, sigma_IE=10, sigma_EI=10, sigma_II=10, D=1, d_e=1, d_i=1, P=0, Q=0, tau_e=1, tau_i=1, sigma_noise_e=1, sigma_noise_i=1, Graph_Kernel='Gaussian', one_dim=False, syn=0, gridsize=1000, h=0.01, eigvals=None, eigvecs=None, Visual=False, SaveActivity=False, Filepath=' ', NSim=0): t_EE = (0.5*sigma_EE**2)/D t_IE = (0.5*sigma_IE**2)/D t_EI = (0.5*sigma_EI**2)/D t_II = (0.5*sigma_II**2)/D a = d_e*Ess*(1-d_e*Ess) b = d_i*Iss*(1-d_i*Iss) #eigenvectors are used for plotting purposes only. if one_dim==True: s, U = one_dim_Laplacian_eigenvalues(gridsize, h, syn, vecs=True) else: s=eigvals U=eigvecs #fluctuations about the steady state beta_E_0 = np.zeros(len(s), dtype='float64') beta_I_0 = np.zeros(len(s), dtype='float64') prop_EE = (alpha_EE * GraphKernel(s, t_EE, Graph_Kernel)).astype('float64') prop_IE = (alpha_IE * GraphKernel(s, t_IE, Graph_Kernel)).astype('float64') prop_EI = (alpha_EI * GraphKernel(s, t_EI, Graph_Kernel)).astype('float64') prop_II = (alpha_II * GraphKernel(s, t_II, Graph_Kernel)).astype('float64') beta_E_Delta_t = np.zeros_like(beta_E_0) beta_I_Delta_t = np.zeros_like(beta_I_0) Timesteps = int(round(Time/Delta_t)) time_E = Delta_t/tau_e time_I = Delta_t/tau_i beta_E_total = np.zeros((len(beta_E_0),Timesteps-1000), dtype='float32') if Visual==True: plt.ion() fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlim(0, len(beta_E_0)) #ax.set_ylim(0, 1) #line2, = ax.plot(np.arange(len(I_0)), I_0, 'b-') #line1, = ax.plot(np.arange(len(E_0)), E_0, 'r-') ax.plot(np.dot(U,beta_I_0), 'b-') ax.plot(np.dot(U,beta_E_0), 'r-') fig.canvas.draw() for i in range(Timesteps): if sigma_noise_e!=0 or sigma_noise_i!=0: Noise_E = (sigma_noise_e * np.array([gauss(0.0, 1.0) for k in range(len(beta_E_0))])).astype('float64') Noise_I = (sigma_noise_i * np.array([gauss(0.0, 1.0) for k in range(len(beta_I_0))])).astype('float64') else: Noise_E = 0 Noise_I = 0 beta_E_Delta_t = beta_E_0 + time_E*((-d_e+a*prop_EE)*beta_E_0 - a*prop_IE*beta_I_0) + Noise_E*
np.sqrt(Delta_t)
numpy.sqrt
from __future__ import division, print_function import numpy as np from cudf.dataframe import columnops from librmm_cffi import librmm as rmm import cudf.bindings.copying as cpp_copying def test_gather_single_col(): col = columnops.as_column(np.arange(100), dtype=np.int32) gather_map = np.array([0, 1, 2, 3, 5, 8, 13, 21], dtype=np.int32) device_gather_map = rmm.to_device(gather_map) out = cpp_copying.apply_gather_column(col, device_gather_map) np.testing.assert_array_equal(out.to_array(), gather_map) def test_gather_cols(): cols = [columnops.as_column(np.arange(10), dtype=np.int32), columnops.as_column(np.arange(0.0, 2.0, 0.2), dtype=np.float32)] gather_map = np.array([0, 1, 2, 3, 5, 8], dtype=np.int32) expected = np.array(gather_map * 0.2, dtype=np.float32) device_gather_map = rmm.to_device(gather_map) out = cpp_copying.apply_gather(cols, device_gather_map) np.testing.assert_array_equal(out[0].to_array(), gather_map) np.testing.assert_array_almost_equal(out[1].to_array(), expected) def test_scatter_single_col(): col = columnops.as_column(np.arange(2.0, 0.0, -0.2), dtype=np.float32) col_out = columnops.as_column(np.arange(0.0, 100.0, 1.0), dtype=np.float32) scatter_map =
np.arange(10, 0, -1)
numpy.arange
from __future__ import absolute_import from __future__ import division from builtins import str from builtins import range from past.utils import old_div import proteus import numpy as np from math import fabs import os from proteus import cfemIntegrals, Quadrature, Norms, Comm from proteus.NonlinearSolvers import NonlinearEquation from proteus.FemTools import (DOFBoundaryConditions, FluxBoundaryConditions, C0_AffineLinearOnSimplexWithNodalBasis) from proteus.Comm import globalMax from proteus.Profiling import memory from proteus.Profiling import logEvent as log from proteus.Transport import OneLevelTransport from proteus.TransportCoefficients import TC_base from proteus.SubgridError import SGE_base from proteus.ShockCapturing import ShockCapturing_base from . import cNCLS3P from . import cArgumentsDict class SubgridError(proteus.SubgridError.SGE_base): def __init__(self, coefficients, nd): proteus.SubgridError.SGE_base.__init__(self, coefficients, nd, False) def initializeElementQuadrature(self, mesh, t, cq): for ci in range(self.nc): cq[('dH_sge', ci, ci)] = cq[('dH', ci, ci)] def calculateSubgridError(self, q): pass def updateSubgridErrorHistory(self, initializationPhase=False): pass class ShockCapturing(proteus.ShockCapturing.ShockCapturing_base): def __init__( self, coefficients, nd, shockCapturingFactor=0.25, lag=True, nStepsToDelay=None): proteus.ShockCapturing.ShockCapturing_base.__init__( self, coefficients, nd, shockCapturingFactor, lag) self.nStepsToDelay = nStepsToDelay self.nSteps = 0 if self.lag: log("NCLS3P.ShockCapturing: lagging requested but must lag the first step; switching lagging off and delaying") self.nStepsToDelay = 1 self.lag = False def initializeElementQuadrature(self, mesh, t, cq): self.mesh = mesh self.numDiff = [] self.numDiff_last = [] for ci in range(self.nc): self.numDiff.append(cq[('numDiff', ci, ci)]) self.numDiff_last.append(cq[('numDiff', ci, ci)]) def updateShockCapturingHistory(self): self.nSteps += 1 if self.lag: for ci in range(self.nc): self.numDiff_last[ci][:] = self.numDiff[ci] if self.lag == False and self.nStepsToDelay is not None and self.nSteps > self.nStepsToDelay: log("NCLS3P.ShockCapturing: switched to lagged shock capturing") self.lag = True self.numDiff_last = [] for ci in range(self.nc): self.numDiff_last.append(self.numDiff[ci].copy()) log("NCLS3P: max numDiff %e" % (globalMax(self.numDiff_last[0].max()),)) class NumericalFlux( proteus.NumericalFlux.HamiltonJacobi_DiagonalLesaintRaviart): def __init__(self, vt, getPointwiseBoundaryConditions, getAdvectiveFluxBoundaryConditions, getDiffusiveFluxBoundaryConditions): proteus.NumericalFlux.HamiltonJacobi_DiagonalLesaintRaviart.__init__( self, vt, getPointwiseBoundaryConditions, getAdvectiveFluxBoundaryConditions, getDiffusiveFluxBoundaryConditions) class Coefficients(proteus.TransportCoefficients.TC_base): from proteus.ctransportCoefficients import ncLevelSetCoefficientsEvaluate def __init__(self, V_model=0, RD_model=None, ME_model=1, checkMass=True, epsFact=1.5, useMetrics=0.0, sc_uref=1.0, sc_beta=1.0, waterline_interval=-1, movingDomain=False, PURE_BDF=False, EXPLICIT_METHOD=False, outputQuantDOFs=False): self.EXPLICIT_METHOD=EXPLICIT_METHOD self.outputQuantDOFs=outputQuantDOFs self.PURE_BDF=PURE_BDF self.movingDomain = movingDomain self.useMetrics = useMetrics self.epsFact = epsFact self.variableNames = ['phi'] nc = 1 mass = {0: {0: 'linear'}} hamiltonian = {0: {0: 'linear'}} advection = {} diffusion = {} potential = {} reaction = {} TC_base.__init__(self, nc, mass, advection, diffusion, potential, reaction, hamiltonian, ['phi'], movingDomain=movingDomain) self.flowModelIndex = V_model self.modelIndex = ME_model self.RD_modelIndex = RD_model self.checkMass = checkMass self.sc_uref = sc_uref self.sc_beta = sc_beta self.waterline_interval = waterline_interval def attachModels(self, modelList): # the level set model self.model = modelList[self.modelIndex] # the velocity if self.flowModelIndex >= 0: self.flowModel = modelList[self.flowModelIndex] self.q_v = modelList[self.flowModelIndex].q[('velocity', 0)] self.ebqe_v = modelList[self.flowModelIndex].ebqe[('velocity', 0)] if ('velocity', 0) in modelList[self.flowModelIndex].ebq: self.ebq_v = modelList[ self.flowModelIndex].ebq[ ('velocity', 0)] else: self.ebq_v = None if ('u', 0) not in self.model.ebq and ('u', 0) in self.flowModel.ebq: self.model.ebq[('u', 0)] = np.zeros( self.flowModel.ebq[('u', 0)].shape, 'd') self.model.ebq[('grad(u)', 0)] = np.zeros( self.flowModel.ebq[('grad(u)', 0)].shape, 'd') if ('v', 1) in self.flowModel.ebq: self.model.u[0].getValuesTrace( self.flowModel.ebq[ ('v', 1)], self.model.ebq[ ('u', 0)]) self.model.u[0].getGradientValuesTrace( self.flowModel.ebq[ ('grad(v)', 1)], self.model.ebq[ ('grad(u)', 0)]) if self.RD_modelIndex is not None: self.rdModel = modelList[self.RD_modelIndex] self.rdModel_ebqe = self.rdModel.ebqe[('u',0)] else: self.rdModel = None self.rdModel_ebqe = np.copy(self.model.ebqe[('u',0)]) def initializeElementQuadrature(self, t, cq): if self.flowModelIndex is None: self.q_v = np.zeros(cq[('grad(u)', 0)].shape, 'd') def initializeElementBoundaryQuadrature(self, t, cebq, cebq_global): if self.flowModelIndex is None: self.ebq_v = np.zeros(cebq[('grad(u)', 0)].shape, 'd') def initializeGlobalExteriorElementBoundaryQuadrature(self, t, cebqe): if self.flowModelIndex is None: self.ebqe_v = np.zeros(cebqe[('grad(u)', 0)].shape, 'd') def preStep(self, t, firstStep=False): # BOUNDARY CONDITION FROM re-distancing model if self.rdModel is None: self.rdModel_ebqe[:] = self.model.ebqe[('u',0)] # Restart flags for stages of taylor galerkin self.model.stage = 1 self.model.auxTaylorGalerkinFlag = 1 # SAVE OLD SOLUTION # self.model.u_dof_old[:] = self.model.u[0].dof # COMPUTE NEW VELOCITY (if given by user) # if self.model.hasVelocityFieldAsFunction: self.model.updateVelocityFieldAsFunction() # if self.checkMass: # self.m_pre = Norms.scalarSmoothedHeavisideDomainIntegral(self.epsFact, # self.model.mesh.elementDiametersArray, # self.model.q['dV'], # self.model.q[('m',0)], # self.model.mesh.nElements_owned) # log("Phase 0 mass before NCLS3P step = %12.5e" % (self.m_pre,),level=2) # self.m_last = Norms.scalarSmoothedHeavisideDomainIntegral(self.epsFact, # self.model.mesh.elementDiametersArray, # self.model.q['dV'], # self.model.timeIntegration.m_last[0], # self.model.mesh.nElements_owned) # log("Phase 0 mass before NCLS3P step (m_last) = %12.5e" % (self.m_last,),level=2) # #cek todo why is this here # if self.flowModelIndex >= 0 and self.flowModel.ebq.has_key(('v',1)): # self.model.u[0].getValuesTrace(self.flowModel.ebq[('v',1)],self.model.ebq[('u',0)]) # self.model.u[0].getGradientValuesTrace(self.flowModel.ebq[('grad(v)',1)],self.model.ebq[('grad(u)',0)]) copyInstructions = {} return copyInstructions def postStep(self, t, firstStep=False): self.model.q['dV_last'][:] = self.model.q['dV'] # if self.checkMass: # self.m_post = Norms.scalarSmoothedHeavisideDomainIntegral(self.epsFact, # self.model.mesh.elementDiametersArray, # self.model.q['dV'], # self.model.q[('u',0)], # self.model.mesh.nElements_owned) # log("Phase 0 mass after NCLS3P step = %12.5e" % (self.m_post,),level=2) # #need a flux here not a velocity # self.fluxIntegral = Norms.fluxDomainBoundaryIntegralFromVector(self.flowModel.ebqe['dS'], # self.flowModel.ebqe[('velocity',0)], # self.flowModel.ebqe['n'], # self.model.mesh) # log("Flux integral = %12.5e" % (self.fluxIntegral,),level=2) # log("Phase 0 mass conservation after NCLS3P step = %12.5e" % (self.m_post - self.m_last + self.model.timeIntegration.dt*self.fluxIntegral,),level=2) # self.lsGlobalMass = self.m_post # self.fluxGlobal = self.fluxIntegral*self.model.timeIntegration.dt # self.totalFluxGlobal += self.fluxGlobal # self.lsGlobalMassArray.append(self.lsGlobalMass) # self.lsGlobalMassErrorArray.append(self.lsGlobalMass - self.lsGlobalMassArray[0] + self.totalFluxGlobal) # self.fluxArray.append(self.fluxIntegral) # self.timeArray.append(self.model.timeIntegration.t) # if self.flowModelIndex >= 0 and self.flowModel.ebq.has_key(('v',1)): # self.model.u[0].getValuesTrace(self.flowModel.ebq[('v',1)],self.model.ebq[('u',0)]) # self.model.u[0].getGradientValuesTrace(self.flowModel.ebq[('grad(v)',1)],self.model.ebq[('grad(u)',0)]) copyInstructions = {} return copyInstructions def updateToMovingDomain(self, t, c): # in a moving domain simulation the velocity coming in is already for # the moving domain pass def evaluate(self, t, c): v = None if c[('dH', 0, 0)].shape == self.q_v.shape: v = self.q_v elif c[('dH', 0, 0)].shape == self.ebqe_v.shape: v = self.ebqe_v elif self.ebq_v is not None and c[('dH', 0, 0)].shape == self.ebq_v.shape: v = self.ebq_v else: raise RuntimeError("don't have v for NC Level set of shape = " + \ repr(c[('dH', 0, 0)].shape)) if v is not None: self.ncLevelSetCoefficientsEvaluate(v, c[('u', 0)], c[('grad(u)', 0)], c[('m', 0)], c[('dm', 0, 0)], c[('H', 0)], c[('dH', 0, 0)]) class LevelModel(OneLevelTransport): nCalls = 0 def __init__(self, uDict, phiDict, testSpaceDict, matType, dofBoundaryConditionsDict, dofBoundaryConditionsSetterDict, coefficients, elementQuadrature, elementBoundaryQuadrature, fluxBoundaryConditionsDict=None, advectiveFluxBoundaryConditionsSetterDict=None, diffusiveFluxBoundaryConditionsSetterDictDict=None, stressTraceBoundaryConditionsSetterDict=None, stabilization=None, shockCapturing=None, conservativeFluxDict=None, numericalFluxType=None, TimeIntegrationClass=None, massLumping=False, reactionLumping=False, options=None, name='defaultName', reuse_trial_and_test_quadrature=True, sd=True, movingDomain=False, bdyNullSpace=False): self.bdyNullSpace = bdyNullSpace # # set the objects describing the method and boundary conditions # self.movingDomain = movingDomain self.tLast_mesh = None # self.name = name self.sd = sd self.Hess = False self.lowmem = True self.timeTerm = True # allow turning off the time derivative # self.lowmem=False self.testIsTrial = True self.phiTrialIsTrial = True self.u = uDict self.ua = {} # analytical solutions self.phi = phiDict self.dphi = {} self.matType = matType # mwf try to reuse test and trial information across components if # spaces are the same self.reuse_test_trial_quadrature = reuse_trial_and_test_quadrature # True#False if self.reuse_test_trial_quadrature: for ci in range(1, coefficients.nc): assert self.u[ci].femSpace.__class__.__name__ == self.u[ 0].femSpace.__class__.__name__, "to reuse_test_trial_quad all femSpaces must be the same!" self.u_dof_old = None # Simplicial Mesh # assume the same mesh for all components for now self.mesh = self.u[0].femSpace.mesh self.testSpace = testSpaceDict self.dirichletConditions = dofBoundaryConditionsDict # explicit Dirichlet conditions for now, no Dirichlet BC constraints self.dirichletNodeSetList = None self.coefficients = coefficients self.coefficients.initializeMesh(self.mesh) self.nc = self.coefficients.nc self.stabilization = stabilization self.shockCapturing = shockCapturing # no velocity post-processing for now self.conservativeFlux = conservativeFluxDict self.fluxBoundaryConditions = fluxBoundaryConditionsDict self.advectiveFluxBoundaryConditionsSetterDict = advectiveFluxBoundaryConditionsSetterDict self.diffusiveFluxBoundaryConditionsSetterDictDict = diffusiveFluxBoundaryConditionsSetterDictDict # determine whether the stabilization term is nonlinear self.stabilizationIsNonlinear = False # cek come back if self.stabilization is not None: for ci in range(self.nc): if ci in coefficients.mass: for flag in list(coefficients.mass[ci].values()): if flag == 'nonlinear': self.stabilizationIsNonlinear = True if ci in coefficients.advection: for flag in list(coefficients.advection[ci].values()): if flag == 'nonlinear': self.stabilizationIsNonlinear = True if ci in coefficients.diffusion: for diffusionDict in list(coefficients.diffusion[ci].values()): for flag in list(diffusionDict.values()): if flag != 'constant': self.stabilizationIsNonlinear = True if ci in coefficients.potential: for flag in list(coefficients.potential[ci].values()): if flag == 'nonlinear': self.stabilizationIsNonlinear = True if ci in coefficients.reaction: for flag in list(coefficients.reaction[ci].values()): if flag == 'nonlinear': self.stabilizationIsNonlinear = True if ci in coefficients.hamiltonian: for flag in list(coefficients.hamiltonian[ci].values()): if flag == 'nonlinear': self.stabilizationIsNonlinear = True # determine if we need element boundary storage self.elementBoundaryIntegrals = {} for ci in range(self.nc): self.elementBoundaryIntegrals[ci] = ( (self.conservativeFlux is not None) or ( numericalFluxType is not None) or ( self.fluxBoundaryConditions[ci] == 'outFlow') or ( self.fluxBoundaryConditions[ci] == 'mixedFlow') or ( self.fluxBoundaryConditions[ci] == 'setFlow')) # # calculate some dimensions # # assume same space dim for all variables self.nSpace_global = self.u[0].femSpace.nSpace_global self.nDOF_trial_element = [ u_j.femSpace.max_nDOF_element for u_j in list(self.u.values())] self.nDOF_phi_trial_element = [ phi_k.femSpace.max_nDOF_element for phi_k in list(self.phi.values())] self.n_phi_ip_element = [ phi_k.femSpace.referenceFiniteElement.interpolationConditions.nQuadraturePoints for phi_k in list(self.phi.values())] self.nDOF_test_element = [ femSpace.max_nDOF_element for femSpace in list(self.testSpace.values())] self.nFreeDOF_global = [ dc.nFreeDOF_global for dc in list(self.dirichletConditions.values())] self.nVDOF_element = sum(self.nDOF_trial_element) self.nFreeVDOF_global = sum(self.nFreeDOF_global) # NonlinearEquation.__init__(self, self.nFreeVDOF_global) # # build the quadrature point dictionaries from the input (this # is just for convenience so that the input doesn't have to be # complete) # elementQuadratureDict = {} elemQuadIsDict = isinstance(elementQuadrature, dict) if elemQuadIsDict: # set terms manually for I in self.coefficients.elementIntegralKeys: if I in elementQuadrature: elementQuadratureDict[I] = elementQuadrature[I] else: elementQuadratureDict[I] = elementQuadrature['default'] else: for I in self.coefficients.elementIntegralKeys: elementQuadratureDict[I] = elementQuadrature if self.stabilization is not None: for I in self.coefficients.elementIntegralKeys: if elemQuadIsDict: if I in elementQuadrature: elementQuadratureDict[ ('stab',) + I[1:]] = elementQuadrature[I] else: elementQuadratureDict[ ('stab',) + I[1:]] = elementQuadrature['default'] else: elementQuadratureDict[ ('stab',) + I[1:]] = elementQuadrature if self.shockCapturing is not None: for ci in self.shockCapturing.components: if elemQuadIsDict: if ('numDiff', ci, ci) in elementQuadrature: elementQuadratureDict[('numDiff', ci, ci)] = elementQuadrature[ ('numDiff', ci, ci)] else: elementQuadratureDict[('numDiff', ci, ci)] = elementQuadrature[ 'default'] else: elementQuadratureDict[ ('numDiff', ci, ci)] = elementQuadrature if massLumping: for ci in list(self.coefficients.mass.keys()): elementQuadratureDict[('m', ci)] = Quadrature.SimplexLobattoQuadrature( self.nSpace_global, 1) for I in self.coefficients.elementIntegralKeys: elementQuadratureDict[ ('stab',) + I[1:]] = Quadrature.SimplexLobattoQuadrature(self.nSpace_global, 1) if reactionLumping: for ci in list(self.coefficients.mass.keys()): elementQuadratureDict[('r', ci)] = Quadrature.SimplexLobattoQuadrature( self.nSpace_global, 1) for I in self.coefficients.elementIntegralKeys: elementQuadratureDict[ ('stab',) + I[1:]] = Quadrature.SimplexLobattoQuadrature(self.nSpace_global, 1) elementBoundaryQuadratureDict = {} if isinstance(elementBoundaryQuadrature, dict): # set terms manually for I in self.coefficients.elementBoundaryIntegralKeys: if I in elementBoundaryQuadrature: elementBoundaryQuadratureDict[ I] = elementBoundaryQuadrature[I] else: elementBoundaryQuadratureDict[ I] = elementBoundaryQuadrature['default'] else: for I in self.coefficients.elementBoundaryIntegralKeys: elementBoundaryQuadratureDict[I] = elementBoundaryQuadrature # # find the union of all element quadrature points and # build a quadrature rule for each integral that has a # weight at each point in the union # mwf include tag telling me which indices are which quadrature rule? (self.elementQuadraturePoints, self.elementQuadratureWeights, self.elementQuadratureRuleIndeces) = Quadrature.buildUnion(elementQuadratureDict) self.nQuadraturePoints_element = self.elementQuadraturePoints.shape[0] self.nQuadraturePoints_global = self.nQuadraturePoints_element * \ self.mesh.nElements_global # # Repeat the same thing for the element boundary quadrature # (self.elementBoundaryQuadraturePoints, self.elementBoundaryQuadratureWeights, self.elementBoundaryQuadratureRuleIndeces) = Quadrature.buildUnion(elementBoundaryQuadratureDict) self.nElementBoundaryQuadraturePoints_elementBoundary = self.elementBoundaryQuadraturePoints.shape[ 0] self.nElementBoundaryQuadraturePoints_global = ( self.mesh.nElements_global * self.mesh.nElementBoundaries_element * self.nElementBoundaryQuadraturePoints_elementBoundary) # if isinstance(self.u[0].femSpace,C0_AffineLinearOnSimplexWithNodalBasis): # print self.nQuadraturePoints_element # if self.nSpace_global == 3: # assert(self.nQuadraturePoints_element == 5) # elif self.nSpace_global == 2: # assert(self.nQuadraturePoints_element == 6) # elif self.nSpace_global == 1: # assert(self.nQuadraturePoints_element == 3) # # print self.nElementBoundaryQuadraturePoints_elementBoundary # if self.nSpace_global == 3: # assert(self.nElementBoundaryQuadraturePoints_elementBoundary == 4) # elif self.nSpace_global == 2: # assert(self.nElementBoundaryQuadraturePoints_elementBoundary == 4) # elif self.nSpace_global == 1: # assert(self.nElementBoundaryQuadraturePoints_elementBoundary == 1) # # simplified allocations for test==trial and also check if space is mixed or not # self.q = {} self.ebq = {} self.ebq_global = {} self.ebqe = {} self.phi_ip = {} # mesh self.q['x'] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element, 3), 'd') self.ebqe['x'] = np.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary, 3), 'd') self.q[('dV_u', 0)] = (old_div(1.0, self.mesh.nElements_global)) * \ np.ones((self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[('u', 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[ ('grad(u)', 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element, self.nSpace_global), 'd') self.q[('m_last', 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[('mt', 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q['dV'] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q['dV_last'] = -1000 * \ np.ones((self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') # np.zeros((self.mesh.nElements_global,self.nQuadraturePoints_element),'d') self.q[('m_tmp', 0)] = self.q[('u', 0)] # np.zeros((self.mesh.nElements_global,self.nQuadraturePoints_element),'d') self.q[('m', 0)] = self.q[('u', 0)] # cek todo for NCLS3P we really don't need dH because it's just q_v # from the flow model self.q[('dH', 0, 0)] = np.zeros((self.mesh.nElements_global, self.nQuadraturePoints_element, self.nSpace_global), 'd') self.q[ ('dH_sge', 0, 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element, self.nSpace_global), 'd') self.q[('cfl', 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[('numDiff', 0, 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.ebqe[ ('u', 0)] = np.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary), 'd') self.ebqe[ ('grad(u)', 0)] = np.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary, self.nSpace_global), 'd') # mwf for running as standalone self.ebqe[ ('dH', 0, 0)] = np.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary, self.nSpace_global), 'd') self.q[('dm', 0, 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.q[('H', 0)] = np.zeros( (self.mesh.nElements_global, self.nQuadraturePoints_element), 'd') self.points_elementBoundaryQuadrature = set() self.scalars_elementBoundaryQuadrature = set( [('u', ci) for ci in range(self.nc)]) self.vectors_elementBoundaryQuadrature = set() self.tensors_elementBoundaryQuadrature = set() # # allocate residual and Jacobian storage # self.inflowBoundaryBC = {} self.inflowBoundaryBC_values = {} self.inflowFlux = {} for cj in range(self.nc): self.inflowBoundaryBC[cj] = np.zeros( (self.mesh.nExteriorElementBoundaries_global,), 'i') self.inflowBoundaryBC_values[cj] = np.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nDOF_trial_element[cj]), 'd') self.inflowFlux[cj] = np.zeros( (self.mesh.nExteriorElementBoundaries_global, self.nElementBoundaryQuadraturePoints_elementBoundary), 'd') self.internalNodes = set(range(self.mesh.nNodes_global)) # identify the internal nodes this is ought to be in mesh # \todo move this to mesh for ebNE in range(self.mesh.nExteriorElementBoundaries_global): ebN = self.mesh.exteriorElementBoundariesArray[ebNE] eN_global = self.mesh.elementBoundaryElementsArray[ebN, 0] ebN_element = self.mesh.elementBoundaryLocalElementBoundariesArray[ ebN, 0] for i in range(self.mesh.nNodes_element): if i != ebN_element: I = self.mesh.elementNodesArray[eN_global, i] self.internalNodes -= set([I]) self.nNodes_internal = len(self.internalNodes) self.internalNodesArray = np.zeros((self.nNodes_internal,), 'i') for nI, n in enumerate(self.internalNodes): self.internalNodesArray[nI] = n # del self.internalNodes self.internalNodes = None log("Updating local to global mappings", 2) self.updateLocal2Global() log("Building time integration object", 2) log(memory("inflowBC, internalNodes,updateLocal2Global", "OneLevelTransport"), level=4) # mwf for interpolating subgrid error for gradients etc if self.stabilization and self.stabilization.usesGradientStabilization: self.timeIntegration = TimeIntegrationClass( self, integrateInterpolationPoints=True) else: self.timeIntegration = TimeIntegrationClass(self) if options is not None: self.timeIntegration.setFromOptions(options) log(memory("TimeIntegration", "OneLevelTransport"), level=4) log("Calculating numerical quadrature formulas", 2) self.calculateQuadrature() self.setupFieldStrides() comm = Comm.get() self.comm = comm if comm.size() > 1: assert numericalFluxType is not None and numericalFluxType.useWeakDirichletConditions, "You must use a numerical flux to apply weak boundary conditions for parallel runs" log(memory("stride+offset", "OneLevelTransport"), level=4) if numericalFluxType is not None: if options is None or options.periodicDirichletConditions is None: self.numericalFlux = numericalFluxType( self, dofBoundaryConditionsSetterDict, advectiveFluxBoundaryConditionsSetterDict, diffusiveFluxBoundaryConditionsSetterDictDict) else: self.numericalFlux = numericalFluxType( self, dofBoundaryConditionsSetterDict, advectiveFluxBoundaryConditionsSetterDict, diffusiveFluxBoundaryConditionsSetterDictDict, options.periodicDirichletConditions) else: self.numericalFlux = None # set penalty terms # cek todo move into numerical flux initialization if 'penalty' in self.ebq_global: for ebN in range(self.mesh.nElementBoundaries_global): for k in range( self.nElementBoundaryQuadraturePoints_elementBoundary): self.ebq_global['penalty'][ebN, k] = old_div(self.numericalFlux.penalty_constant, ( self.mesh.elementBoundaryDiametersArray[ebN]**self.numericalFlux.penalty_power)) # penalty term # cek move to Numerical flux initialization if 'penalty' in self.ebqe: for ebNE in range(self.mesh.nExteriorElementBoundaries_global): ebN = self.mesh.exteriorElementBoundariesArray[ebNE] for k in range( self.nElementBoundaryQuadraturePoints_elementBoundary): self.ebqe['penalty'][ebNE, k] = old_div(self.numericalFlux.penalty_constant, \ self.mesh.elementBoundaryDiametersArray[ebN]**self.numericalFlux.penalty_power) log(memory("numericalFlux", "OneLevelTransport"), level=4) self.elementEffectiveDiametersArray = self.mesh.elementInnerDiametersArray # use post processing tools to get conservative fluxes, None by default from proteus import PostProcessingTools self.velocityPostProcessor = PostProcessingTools.VelocityPostProcessingChooser( self) log(memory("velocity postprocessor", "OneLevelTransport"), level=4) # helper for writing out data storage from proteus import Archiver self.elementQuadratureDictionaryWriter = Archiver.XdmfWriter() self.elementBoundaryQuadratureDictionaryWriter = Archiver.XdmfWriter() self.exteriorElementBoundaryQuadratureDictionaryWriter = Archiver.XdmfWriter() # TODO get rid of this # for ci,fbcObject in self.fluxBoundaryConditionsObjectsDict.iteritems(): # self.ebqe[('advectiveFlux_bc_flag',ci)] = np.zeros(self.ebqe[('advectiveFlux_bc',ci)].shape,'i') # for t,g in fbcObject.advectiveFluxBoundaryConditionsDict.iteritems(): # if self.coefficients.advection.has_key(ci): # self.ebqe[('advectiveFlux_bc',ci)][t[0],t[1]] = g(self.ebqe[('x')][t[0],t[1]],self.timeIntegration.t) # self.ebqe[('advectiveFlux_bc_flag',ci)][t[0],t[1]] = 1 if hasattr(self.numericalFlux, 'setDirichletValues'): self.numericalFlux.setDirichletValues(self.ebqe) if not hasattr(self.numericalFlux, 'isDOFBoundary'): self.numericalFlux.isDOFBoundary = { 0: np.zeros(self.ebqe[('u', 0)].shape, 'i')} if not hasattr(self.numericalFlux, 'ebqe'): self.numericalFlux.ebqe = { ('u', 0): np.zeros(self.ebqe[('u', 0)].shape, 'd')} # TODO how to handle redistancing calls for # calculateCoefficients,calculateElementResidual etc self.globalResidualDummy = None compKernelFlag = 0 self.ncls3p = cNCLS3P.newNCLS3P( self.nSpace_global, self.nQuadraturePoints_element, self.u[0].femSpace.elementMaps.localFunctionSpace.dim, self.u[0].femSpace.referenceFiniteElement.localFunctionSpace.dim, self.testSpace[0].referenceFiniteElement.localFunctionSpace.dim, self.nElementBoundaryQuadraturePoints_elementBoundary, compKernelFlag) self.forceStrongConditions = False if self.forceStrongConditions: self.dirichletConditionsForceDOF = DOFBoundaryConditions( self.u[0].femSpace, dofBoundaryConditionsSetterDict[0], weakDirichletConditions=False) if self.movingDomain: self.MOVING_DOMAIN = 1.0 else: self.MOVING_DOMAIN = 0.0 if self.mesh.nodeVelocityArray is None: self.mesh.nodeVelocityArray = np.zeros( self.mesh.nodeArray.shape, 'd') self.waterline_calls = 0 self.waterline_prints = 0 # mql. Allow the user to provide functions to define the velocity field self.hasVelocityFieldAsFunction = False if ('velocityField') in dir(options): self.velocityField = options.velocityField self.hasVelocityFieldAsFunction = True # interface locator self.cell_interface_locator = np.zeros(self.mesh.nElements_global,'d') self.interface_locator =
np.zeros(self.u[0].dof.shape,'d')
numpy.zeros
### MDP Value Iteration and Policy Iteration import numpy as np import gym import time from lake_envs import * np.set_printoptions(precision=3) """ For policy_evaluation, policy_improvement, policy_iteration and value_iteration, the parameters P, nS, nA, gamma are defined as follows: P: nested dictionary| From gym.core.Environment For each pair of states in [1, nS] and actions in [1, nA], P[state][action] is a tuple of the form (probability, nextstate, reward, terminal) where - probability: float the probability of transitioning from "state" to "nextstate" with "action" - nextstate: int denotes the state we transition to (in range [0, nS - 1]) - reward: int either 0 or 1, the reward for transitioning from "state" to "nextstate" with "action" - terminal: bool True when "nextstate" is a terminal state (hole or goal), False otherwise nS: int number of states in the environment nA: int number of actions in the environment gamma: float Discount factor. Number in range [0, 1) """ def policy_evaluation(P, nS, nA, policy, gamma=0.9, tol=1e-3): """Evaluate the value function from a given policy. Parameters ---------- P, nS, nA, gamma: defined at beginning of file policy: np.array[nS] The policy to evaluate. Maps states to actions. tol: float Terminate policy evaluation when max |value_function(s) - prev_value_function(s)| < tol Returns ------- value_function: np.ndarray[nS] The value function of the given policy, where value_function[s] is the value of state s """ value_function = np.zeros(nS) ############################ # YOUR IMPLEMENTATION HERE # n_iter = 0 while True: prev_value_function = np.copy(value_function) for s in range(nS): action = policy[s] temp_v = 0 ### Stochastic 에서 확률적으로 같은 action을 하더라도 다른 state로 넘어가는 경우가 있음#### for state_action_pair in P[s][action]: prob, next_state, reward, terminal = state_action_pair # print(prob, next_state, reward, terminal) stochastic_v = prob * (reward + gamma * prev_value_function[next_state]) temp_v += stochastic_v value_function[s] = temp_v n_iter +=1 diff = np.max(np.abs(value_function - prev_value_function)) print(diff) if diff < tol: break; ############################ return value_function def policy_improvement(P, nS, nA, value_from_policy, policy, gamma=0.9): """Given the value function from policy improve the policy. Parameters ---------- P, nS, nA, gamma: defined at beginning of file value_from_policy: np.ndarray The value calculated from the policy policy: np.array The previous policy. Returns ------- new_policy: np.ndarray[nS] An array of integers. Each integer is the optimal action to take in that state according to the environment dynamics and the given value function. """ new_policy = np.zeros(nS, dtype='int') ############################ # YOUR IMPLEMENTATION HERE # for s in range(nS): q_max = 0 q_list = np.array([]) for a in range(nA): temp_q = 0 for state_action_pair in P[s][a]: prob, next_state, reward, terminal = state_action_pair stochastic_q = prob * (reward + gamma * value_from_policy[next_state]) temp_q += stochastic_q q_list = np.append(q_list, temp_q) q_max = np.argmax(q_list) new_policy[s] = q_max # print(new_policy) ############################ return new_policy def policy_iteration(P, nS, nA, gamma=0.9, tol=10e-3): """Runs policy iteration. You should call the policy_evaluation() and policy_improvement() methods to implement this method. Parameters ---------- P, nS, nA, gamma: defined at beginning of file tol: float tol parameter used in policy_evaluation() Returns: ---------- value_function: np.ndarray[nS] policy: np.ndarray[nS] """ n_iter = 0 value_function = np.zeros(nS) policy = np.zeros(nS, dtype=int) ###########################YOUR IMPLEMENTATION HERE # prev_value_function = np.copy(value_function) while True : prev_value_function = policy_evaluation(P, nS, nA, policy) policy = policy_improvement(P, nS, nA, prev_value_function, policy) value_function = policy_evaluation(P, nS, nA, policy) if
np.sum(value_function - prev_value_function)
numpy.sum
import numpy import sys def local_energy_generic(h1e, eri, G, ecore=0.0, Ghalf=None): r"""Calculate local for generic two-body hamiltonian. This uses the full form for the two-electron integrals. For testing purposes only. Parameters ---------- system : :class:`hubbard` System information for the hubbard model. G : :class:`numpy.ndarray` Walker's "green's function" Returns ------- (E, T, V): tuple Local, kinetic and potential energies. """ e1 = (numpy.einsum('ij,ij->', h1e[0], G[0]) + numpy.einsum('ij,ij->', h1e[1], G[1])) euu = 0.5*(numpy.einsum('prqs,pr,qs->', eri, G[0], G[0]) - numpy.einsum('prqs,ps,qr->', eri, G[0], G[0])) edd = 0.5*(numpy.einsum('prqs,pr,qs->', eri, G[1], G[1]) - numpy.einsum('prqs,ps,qr->', eri, G[1], G[1])) eud = 0.5*numpy.einsum('prqs,pr,qs->', eri, G[0], G[1]) edu = 0.5*numpy.einsum('prqs,pr,qs->', eri, G[1], G[0]) e2 = euu + edd + eud + edu return (e1+e2+ecore, e1+ecore, e2) def local_energy_generic_pno(system, G, Ghalf=None, eri=None, C0=None,\ ecoul0 = None, exxa0 = None, exxb0 = None, UVT=None): na = system.nup nb = system.ndown M = system.nbasis UVT_aa = UVT[0] UVT_bb = UVT[1] UVT_ab = UVT[2] Ga, Gb = Ghalf[0], Ghalf[1] # Element wise multiplication. e1b = numpy.sum(system.H1[0]*G[0]) + numpy.sum(system.H1[1]*G[1]) eJaa = 0.0 eKaa = 0.0 if (len(C0.shape) == 3): CT = C0[0,:,:].T else: CT = C0[:,:].T GTa = CT[:na,:] # hard-coded to do single slater GTb = CT[na:,:] # hard-coded to do single slater for (i,j),(U,VT) in zip(system.ij_list_aa, UVT_aa): if (i == j): c = 0.5 else: c = 1.0 theta_i = Ga[i,:] theta_j = Ga[j,:] thetaT_i = GTa[i,:] thetaT_j = GTa[j,:] thetaU = numpy.einsum("p,pk->k", theta_i,U) thetaV = numpy.einsum("p,kp->k", theta_j,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_i,U) thetaTV = numpy.einsum("p,kp->k", thetaT_j,VT) eJaa += c * (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) thetaU = numpy.einsum("p,pk->k", theta_j,U) thetaV = numpy.einsum("p,kp->k", theta_i,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_j,U) thetaTV = numpy.einsum("p,kp->k", thetaT_i,VT) eKaa -= c * (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) eJbb = 0.0 eKbb = 0.0 for (i,j),(U,VT) in zip(system.ij_list_bb, UVT_bb): if (i == j): c = 0.5 else: c = 1.0 theta_i = Gb[i,:] theta_j = Gb[j,:] thetaT_i = GTb[i,:] thetaT_j = GTb[j,:] thetaU = numpy.einsum("p,pk->k", theta_i,U) thetaV = numpy.einsum("p,kp->k", theta_j,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_i,U) thetaTV = numpy.einsum("p,kp->k", thetaT_j,VT) eJbb += c * (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) thetaU = numpy.einsum("p,pk->k", theta_j,U) thetaV = numpy.einsum("p,kp->k", theta_i,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_j,U) thetaTV = numpy.einsum("p,kp->k", thetaT_i,VT) eKbb -= c * (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) eJab = 0.0 for (i,j),(U,VT) in zip(system.ij_list_ab, UVT_ab): theta_i = Ga[i,:] theta_j = Gb[j,:] thetaT_i = GTa[i,:] thetaT_j = GTb[j,:] thetaU = numpy.einsum("p,pk->k", theta_i,U) thetaV = numpy.einsum("p,kp->k", theta_j,VT) thetaTU = numpy.einsum("p,pk->k", thetaT_i,U) thetaTV = numpy.einsum("p,kp->k", thetaT_j,VT) eJab += (numpy.dot(thetaU, thetaV) - numpy.dot(thetaTU, thetaTV)) e2b = 0.5*(ecoul0 - exxa0 - exxb0) + eJaa + eJbb + eJab + eKaa + eKbb return (e1b + e2b + system.ecore, e1b + system.ecore, e2b) def local_energy_generic_opt(system, G, Ghalf=None, eri=None): na = system.nup nb = system.ndown M = system.nbasis vipjq_aa = eri[0,:na**2*M**2].reshape((na,M,na,M)) vipjq_bb = eri[0,na**2*M**2:na**2*M**2+nb**2*M**2].reshape((nb,M,nb,M)) vipjq_ab = eri[0,na**2*M**2+nb**2*M**2:].reshape((na,M,nb,M)) Ga, Gb = Ghalf[0], Ghalf[1] # Element wise multiplication. e1b = numpy.sum(system.H1[0]*G[0]) + numpy.sum(system.H1[1]*G[1]) # Coulomb eJaa = 0.5 * numpy.einsum("irjs,ir,js", vipjq_aa, Ga, Ga) eJbb = 0.5 * numpy.einsum("irjs,ir,js", vipjq_bb, Gb, Gb) eJab = numpy.einsum("irjs,ir,js", vipjq_ab, Ga, Gb) eKaa = -0.5 * numpy.einsum("irjs,is,jr", vipjq_aa, Ga, Ga) eKbb = -0.5 * numpy.einsum("irjs,is,jr", vipjq_bb, Gb, Gb) e2b = eJaa + eJbb + eJab + eKaa + eKbb return (e1b + e2b + system.ecore, e1b + system.ecore, e2b) def local_energy_generic_cholesky_opt(system, G, Ghalf, rchol): r"""Calculate local for generic two-body hamiltonian. This uses the cholesky decomposed two-electron integrals. Parameters ---------- system : :class:`hubbard` System information for the hubbard model. G : :class:`numpy.ndarray` Walker's "green's function" Returns ------- (E, T, V): tuple Local, kinetic and potential energies. """ #import cProfile #pr = cProfile.Profile() #pr.enable() # Element wise multiplication. e1b = numpy.sum(system.H1[0]*G[0]) + numpy.sum(system.H1[1]*G[1]) nalpha, nbeta = system.nup, system.ndown nbasis = system.nbasis if rchol is not None: naux = rchol.shape[1] Ga, Gb = Ghalf[0], Ghalf[1] Xa = rchol[:nalpha*nbasis].T.dot(Ga.ravel()) Xb = rchol[nalpha*nbasis:].T.dot(Gb.ravel()) ecoul = numpy.dot(Xa,Xa) ecoul += numpy.dot(Xb,Xb) ecoul += 2*numpy.dot(Xa,Xb) rchol_a, rchol_b = rchol[:nalpha*nbasis], rchol[nalpha*nbasis:] # T_{abn} = \sum_k Theta_{ak} LL_{ak,n} # LL_{ak,n} = \sum_i L_{ik,n} A^*_{ia} # rchol_a = rchol_a.reshape((nalpha,nbasis, naux)) # rchol_b = rchol_b.reshape((nbeta,nbasis, naux)) # Ta = numpy.tensordot(Ga, rchol_a, axes=((1),(1))) # exxa = numpy.tensordot(Ta, Ta, axes=((0,1,2),(1,0,2))) # Tb = numpy.tensordot(Gb, rchol_b, axes=((1),(1))) # exxb = numpy.tensordot(Tb, Tb, axes=((0,1,2),(1,0,2))) rchol_a = rchol_a.T rchol_b = rchol_b.T Ta = numpy.zeros((naux, nalpha, nalpha), dtype=rchol_a.dtype) Tb = numpy.zeros((naux, nbeta, nbeta), dtype=rchol_b.dtype) GaT = Ga.T GbT = Gb.T for x in range(naux): rmi_a = rchol_a[x].reshape((nalpha,nbasis)) Ta[x] = rmi_a.dot(GaT) rmi_b = rchol_b[x].reshape((nbeta,nbasis)) Tb[x] = rmi_b.dot(GbT) exxa = numpy.tensordot(Ta, Ta, axes=((0,1,2),(0,2,1))) exxb = numpy.tensordot(Tb, Tb, axes=((0,1,2),(0,2,1))) exx = exxa + exxb e2b = 0.5 * (ecoul - exx) #pr.disable() #pr.print_stats(sort='tottime') return (e1b + e2b + system.ecore, e1b + system.ecore, e2b) # def local_energy_generic_cholesky_opt_stochastic(system, G, nsamples, Ghalf=None, rchol=None): # r"""Calculate local for generic two-body hamiltonian. # This uses the cholesky decomposed two-electron integrals. # Parameters # ---------- # system : :class:`hubbard` # System information for the hubbard model. # G : :class:`numpy.ndarray` # Walker's "green's function" # Returns # ------- # (E, T, V): tuple # Local, kinetic and potential energies. # """ # # Element wise multiplication. # e1b = numpy.sum(system.H1[0]*G[0]) + numpy.sum(system.H1[1]*G[1]) # if rchol is None: # rchol = system.rchol_vecs # nalpha, nbeta= system.nup, system.ndown # nbasis = system.nbasis # Ga, Gb = Ghalf[0], Ghalf[1] # Xa = rchol[0].T.dot(Ga.ravel()) # Xb = rchol[1].T.dot(Gb.ravel()) # ecoul = numpy.dot(Xa,Xa) # ecoul += numpy.dot(Xb,Xb) # ecoul += 2*numpy.dot(Xa,Xb) # # O(ON s) # # Xa = numpy.tensordot(ra, Ga, axes=((0,1),(0,1))) # # Xb = numpy.tensordot(rb, Gb, axes=((0,1),(0,1))) # # ecoul = numpy.dot(Xa,Xa) # # ecoul += numpy.dot(Xb,Xb) # # ecoul += 2*numpy.dot(Xa,Xb) # naux = rchol[0].shape[-1] # theta = numpy.zeros((naux,nsamples), dtype=numpy.int64) # for i in range(nsamples): # theta[:,i] = (2*numpy.random.randint(0,2,size=(naux))-1) # if system.sparse: # rchol_a, rchol_b = [rchol[0].toarray(), rchol[1].toarray()] # else: # rchol_a, rchol_b = rchol[0], rchol[1] # rchol_a = rchol_a.reshape((nalpha,nbasis, naux)) # rchol_b = rchol_b.reshape((nbeta,nbasis, naux)) # # ra = numpy.tensordot(rchol_a, theta, axes=((2),(0))) * numpy.sqrt(1.0/nsamples) # # rb = numpy.tensordot(rchol_b, theta, axes=((2),(0))) * numpy.sqrt(1.0/nsamples) # ra = numpy.einsum("ipX,Xs->ips",rchol_a, theta, optimize=True) * numpy.sqrt(1.0/nsamples) # rb = numpy.einsum("ipX,Xs->ips",rchol_b, theta, optimize=True) * numpy.sqrt(1.0/nsamples) # Gra = numpy.einsum("kq,lqx->lkx", Ga, ra, optimize=True) # Grb = numpy.einsum("kq,lqx->lkx", Gb, rb, optimize=True) # # Gra = numpy.tensordot(Ga, ra, axes=((1),(1))).transpose(1,0,2) # # Grb = numpy.tensordot(Gb, rb, axes=((1),(1))).transpose(1,0,2) # exxa = numpy.tensordot(Gra, Gra, axes=((0,1,2),(1,0,2))) # exxb = numpy.tensordot(Grb, Grb, axes=((0,1,2),(1,0,2))) # exx = exxa + exxb # e2b = 0.5 * (ecoul - exx) # return (e1b + e2b + system.ecore, e1b + system.ecore, e2b) def local_energy_generic_cholesky_opt_stochastic(system, G, nsamples, Ghalf=None, rchol=None, C0=None,\ ecoul0 = None, exxa0 = None, exxb0 = None): r"""Calculate local for generic two-body hamiltonian. This uses the cholesky decomposed two-electron integrals. Parameters ---------- system : :class:`hubbard` System information for the hubbard model. G : :class:`numpy.ndarray` Walker's "green's function" Returns ------- (E, T, V): tuple Local, kinetic and potential energies. """ #import cProfile #pr = cProfile.Profile() #pr.enable() if (type(C0) == numpy.ndarray): control = True else: control = False # Element wise multiplication. e1b = numpy.sum(system.H1[0]*G[0]) + numpy.sum(system.H1[1]*G[1]) if rchol is None: rchol = system.rchol_vecs nalpha, nbeta= system.nup, system.ndown nbasis = system.nbasis Ga, Gb = Ghalf[0], Ghalf[1] Xa = rchol[0].T.dot(Ga.ravel()) Xb = rchol[1].T.dot(Gb.ravel()) ecoul = numpy.dot(Xa,Xa) ecoul += numpy.dot(Xb,Xb) ecoul += 2*numpy.dot(Xa,Xb) if system.sparse: rchol_a, rchol_b = [rchol[0].toarray(), rchol[1].toarray()] else: rchol_a, rchol_b = rchol[0], rchol[1] # T_{abn} = \sum_k Theta_{ak} LL_{ak,n} # LL_{ak,n} = \sum_i L_{ik,n} A^*_{ia} naux = rchol_a.shape[-1] theta = numpy.zeros((naux,nsamples), dtype=numpy.int64) for i in range(nsamples): theta[:,i] = (2*numpy.random.randint(0,2,size=(naux))-1) if (control): ra = rchol_a.dot(theta).T * numpy.sqrt(1.0/nsamples) rb = rchol_b.dot(theta).T * numpy.sqrt(1.0/nsamples) Ta0 = numpy.zeros((nsamples, nalpha, nalpha), dtype=rchol_a.dtype) Tb0 = numpy.zeros((nsamples, nbeta, nbeta), dtype=rchol_b.dtype) Ta = numpy.zeros((nsamples, nalpha, nalpha), dtype=rchol_a.dtype) Tb = numpy.zeros((nsamples, nbeta, nbeta), dtype=rchol_b.dtype) G0aT = C0[:,:system.nup] G0bT = C0[:,system.nup:] GaT = Ga.T GbT = Gb.T for x in range(nsamples): rmi_a = ra[x].reshape((nalpha,nbasis)) rmi_b = rb[x].reshape((nbeta,nbasis)) Ta0[x] = rmi_a.dot(G0aT) Tb0[x] = rmi_b.dot(G0bT) Ta[x] = rmi_a.dot(GaT) Tb[x] = rmi_b.dot(GbT) exxa_hf = numpy.tensordot(Ta0, Ta0, axes=((0,1,2),(0,2,1))) exxb_hf =
numpy.tensordot(Tb0, Tb0, axes=((0,1,2),(0,2,1)))
numpy.tensordot
""" Contents: flatten: a function to flatten lists of lists. retrieve_tess_lcdata: given lcfiles (spoc/cdips) get dict of time/flux/err. _subset_cut: slice/trim LC to transit windows. get_model_transit: given parameters, evaluate LC model. _get_fitted_data_dict: get params and model LCs from ModelFitter object. _get_fitted_data_dict_alltransit: ditto, for "alltransit" model. _estimate_mode: get mode of unimodal pdf given samples, via gaussian KDE. get_wasp4_lightcurve: used for module testing. _given_mag_get_flux """ import os, collections import numpy as np, pandas as pd from collections import OrderedDict from astropy.io import fits from betty.paths import TESTDATADIR from astrobase.services.identifiers import simbad_to_tic from astrobase.services.tesslightcurves import get_two_minute_spoc_lightcurves # sensible default keys to use for light curve retrieval LCKEYDICT = { 'spoc': {'time': 'TIME', 'flux': 'PDCSAP_FLUX', 'flux_err': 'PDCSAP_FLUX_ERR', 'qual': 'QUALITY'}, 'cdips': {'time': 'TMID_BJD', 'flux': 'IRM1', 'flux_err': 'IRE1', 'qual': 'IRQ1'} } def flatten(l): for el in l: if ( isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)) ): yield from flatten(el) else: yield el def retrieve_tess_lcdata(lcfiles, provenance=None, merge_sectors=1, simple_clean=1): """ retrieve_tess_lcdata: Given a list of files pointing to TESS light-curves (single-sector, or multi-sector), collect them, and return requested data keys. Kwargs: provenance: string. Can be 'spoc' or 'cdips'. merge_sectors: bool/int. Whether or not to merge multisectors. If false and multiple lcfiles are passed, raises error. simple_clean: whether to apply quick-hack cleaning diagnostics (e.g., "all non-zero quality flags removed"). Returns: lcdict: has keys `d['time'], d['flux'], d['flux_err'], d['qual'], d['texp']` """ allowed_provenances = ['spoc', 'cdips'] if provenance not in allowed_provenances: raise NotImplementedError if len(lcfiles) > 1 and not merge_sectors: raise NotImplementedError # retrieve time, flux, flux_err, and quality flags from fits files getkeydict = LCKEYDICT[provenance] getkeys = list(getkeydict.values()) d = {} for l in lcfiles: d[l] = {} hdul = fits.open(l) for k,v in getkeydict.items(): d[l][k] = hdul[1].data[v] hdul.close() # merge across sectors _d = {} for k,v in getkeydict.items(): vec = np.hstack([ d[l][k] for l in lcfiles ]) if k == 'flux' or k == 'flux_err': # stitch absolute flux levels by median-dividing (before cleaning, # which will remove nans anyway) vec = np.hstack([ d[l][k]/np.nanmedian(d[l]['flux']) for l in lcfiles ]) _d[k] = vec if not simple_clean: raise NotImplementedError( 'you probably want to apply simple_clean ' 'else you will have NaNs and bad quality flags.' ) sel = ( np.isfinite(_d['time']) & np.isfinite(_d['flux']) & np.isfinite(_d['flux_err']) & np.isfinite(_d['qual']) ) if provenance == 'spoc': sel &= (_d['qual'] == 0) elif provenance == 'cdips': raise NotImplementedError('need to apply cdips quality flags') #FIXME FIXME divding.. _f = _d['flux'][sel] outd = { 'time': _d['time'][sel], 'flux': _f/np.nanmedian(_f), 'flux_err': _d['flux_err'][sel]/np.nanmedian(_f), 'qual': _d['qual'][sel], 'texp': np.nanmedian(np.diff(_d['time'][sel])) } return outd def get_model_transit(paramd, time_eval, t_exp=2/(60*24)): """ you know the paramters, and just want to evaluate the median lightcurve. """ import exoplanet as xo period = paramd['period'] t0 = paramd['t0'] try: r = paramd['ror'] except KeyError: r = np.exp(paramd['log_ror']) b = paramd['b'] u0 = paramd['u[0]'] u1 = paramd['u[1]'] r_star = paramd['r_star'] logg_star = paramd['logg_star'] try: mean = paramd['mean'] except KeyError: mean_key = [k for k in list(paramd.keys()) if 'mean' in k] assert len(mean_key) == 1 mean_key = mean_key[0] mean = paramd[mean_key] # factor * 10**logg / r_star = rho factor = 5.141596357654149e-05 rho_star = factor*10**logg_star / r_star orbit = xo.orbits.KeplerianOrbit( period=period, t0=t0, b=b, rho_star=rho_star ) u = [u0, u1] mu_transit = xo.LimbDarkLightCurve(u).get_light_curve( orbit=orbit, r=r, t=time_eval, texp=t_exp ).T.flatten() return mu_transit.eval() + mean def _get_fitted_data_dict(m, summdf): instrkeys = [k for k in m.priordict.keys() if '_mean' in k] if len(instrkeys) > 1: msg = 'Expected 1 instrument for this fit.' raise NotImplementedError(msg) instr = instrkeys[0].split('_')[0] _m = m.data[instr] d = { 'x_obs': _m[0], 'y_obs': _m[1], 'y_orb': None, # NOTE: "detrended" beforehand 'y_resid': None, # for now. 'y_mod': None, # for now [could be MAP, if MAP were good] 'y_err': _m[2] } params = ['period', 't0', 'log_ror', 'b', 'u[0]', 'u[1]', f'{instr}_mean', 'r_star', 'logg_star'] paramd = {k:summdf.loc[k, 'median'] for k in params} y_mod_median = get_model_transit( paramd, d['x_obs'], t_exp=np.nanmedian(np.diff(d['x_obs'])) ) d['y_mod'] = y_mod_median d['y_resid'] = d['y_obs']-y_mod_median return d, params, paramd def _get_fitted_data_dict_alltransit(m, summdf): d = OrderedDict() for name in m.data.keys(): d[name] = {} d[name]['x_obs'] = m.data[name][0] d[name]['y_obs'] = m.data[name][1] d[name]['y_err'] = m.data[name][2] params = ['period', 't0', 'log_ror', 'b', 'u[0]', 'u[1]', 'r_star', 'logg_star', f'{name}_mean'] paramd = {k : summdf.loc[k, 'median'] for k in params} y_mod_median = get_model_transit( paramd, d[name]['x_obs'], t_exp=np.nanmedian(np.diff(d[name]['x_obs'])) ) d[name]['y_mod'] = y_mod_median d[name]['y_resid'] = d[name]['y_obs'] - y_mod_median d[name]['params'] = params # merge all the available LC data d['all'] = {} _p = ['x_obs', 'y_obs', 'y_err', 'y_mod'] for p in _p: d['all'][p] = np.hstack([d[f'{k}'][p] for k in d.keys() if '_' in k or 'tess' in k]) return d def _get_fitted_data_dict_allindivtransit(m, summdf, bestfitmeans='median'): """ args: bestfitmeans: "map", "median", "mean, "mode"; depending on which you think will produce the better fitting model. """ d = OrderedDict() for name in m.data.keys(): d[name] = {} d[name]['x_obs'] = m.data[name][0] # d[name]['y_obs'] = m.data[name][1] d[name]['y_err'] = m.data[name][2] params = ['period', 't0', 'log_ror', 'b', 'u[0]', 'u[1]', 'r_star', 'logg_star', f'{name}_mean', f'{name}_a1', f'{name}_a2'] _tmid = np.nanmedian(m.data[name][0]) t_exp = np.nanmedian(
np.diff(m.data[name][0])
numpy.diff
# -*- coding: utf-8 -*- # Copyright 2020 PyePAL authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing the PAL base class""" # pylint:disable=protected-access import numpy as np import pytest from pyepal.models.gpr import build_coregionalized_model from pyepal.pal.pal_base import PALBase from pyepal.pal.pal_coregionalized import PALCoregionalized def test_pal_base(make_random_dataset): """Testing basic functionality of the PAL base class""" palinstance = PALBase(make_random_dataset[0], ["model"], 3) assert palinstance.number_discarded_points == 0 assert palinstance.number_pareto_optimal_points == 0 assert palinstance.number_unclassified_points == 100 assert palinstance.number_sampled_points == 0 assert palinstance.number_design_points == 100 assert palinstance.should_cross_validate() assert len(palinstance.discarded_points) == 0 assert len(palinstance.pareto_optimal_points) == 0 assert len(palinstance.unclassified_points) == 100 with pytest.raises(ValueError): palinstance.hyperrectangle_sizes # pylint:disable=pointless-statement assert ( str(palinstance) == "pyepal at iteration 1. \ 0 Pareto optimal points, \ 0 discarded points, \ 100 unclassified points." ) assert palinstance._should_optimize_hyperparameters() assert not palinstance._has_train_set with pytest.raises(ValueError): palinstance.sample() assert palinstance.y.shape == (100, 3) assert not palinstance.uses_fixed_epsilon palinstance = PALBase(make_random_dataset[0], ["model"], 3, ranges=[1, 1, 1]) assert palinstance.uses_fixed_epsilon def test_reset_classification(make_random_dataset): """Make sure the reset of the reclassification status works as expected.""" X, _ = make_random_dataset # pylint: disable=invalid-name palinstance = PALBase(X, ["model"], 3) lows = np.zeros((100, 3)) highs = np.zeros((100, 3)) means = np.full((100, 3), 1) palinstance._means = means palinstance.std = np.full((100, 3), 0.1) pareto_optimal = np.array([False] * 98 + [True, True]) sampled = np.array([[False] * 3, [False] * 3, [False] * 3, [False] * 3]) unclassified = np.array([True] * 98 + [False, False]) palinstance.rectangle_lows = lows palinstance.rectangle_ups = highs palinstance.sampled = sampled palinstance.pareto_optimal = pareto_optimal palinstance.unclassified = unclassified palinstance._reset_classification() assert palinstance.number_unclassified_points == len(X) assert palinstance.number_pareto_optimal_points == 0 assert palinstance.number_discarded_points == 0 def test_update_train_set(make_random_dataset): """Check if the update of the training set works""" X, y = make_random_dataset # pylint:disable=invalid-name palinstance = PALBase(X, ["model"], 3) assert not palinstance._has_train_set assert palinstance.sampled.sum() == 0 palinstance.update_train_set(np.array([0]), y[0, :].reshape(-1, 3)) assert palinstance.sampled_indices == np.array([0]) assert palinstance.number_sampled_points == 1 assert (palinstance.y[0] == y[0, :]).all() def test_means_property(binh_korn_points): """based on #185 and example in https://deepnote.com/project/ Pyepal-mirrored-results-Yeuc095QRE6ToMXFtwFjnA/ %2Fbinh_korn_goals_issue.ipynb/#00012-ebf692a0-f995-4e25-98b6-8d34a7db7f54""" x, points = binh_korn_points # pylint:disable=invalid-name np.random.seed(10) points[:, 0] = -points[:, 0] model = build_coregionalized_model(x, points) palinstance = PALCoregionalized( x, [model], 2, goals=["min", "max"], epsilon=[0.5, 0.5], restarts=3 ) indices = np.array([0, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99]) palinstance.update_train_set(indices, points[indices]) palinstance.run_one_step() assert np.all(palinstance.means[:, 0] >= 0) def test_means_property2(binh_korn_points): """based on #185 and example in https://deepnote.com/project/ Pyepal-mirrored-results-Yeuc095QRE6ToMXFtwFjnA/ %2Fbinh_korn_goals_issue.ipynb/#00012-ebf692a0-f995-4e25-98b6-8d34a7db7f54""" x, points = binh_korn_points # pylint:disable=invalid-name points = -points np.random.seed(10) model = build_coregionalized_model(x, points) palinstance = PALCoregionalized( x, [model], 2, goals=["min", "min"], epsilon=[0.5, 0.5], restarts=3 ) indices = np.array([0, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99]) palinstance.update_train_set(indices, points[indices]) palinstance.run_one_step() assert np.all(palinstance.means[:, 0] >= 0) assert np.all(palinstance.means[:, 1] >= 0) def test_augment_design_space(make_random_dataset): """Testing the basic functionality of the augmentation method Does NOT test the re-classification step, which needs a model""" X, _ = make_random_dataset # pylint: disable=invalid-name X_augmented = np.vstack([X, X]) # pylint: disable=invalid-name palinstance = PALBase(X, ["model"], 3) # Iteration count to low with pytest.raises(ValueError): palinstance.augment_design_space(X_augmented) palinstance.iteration = 2 # Incorrect shape with pytest.raises(AssertionError): palinstance.augment_design_space(X_augmented[:, 2]) with pytest.raises(ValueError): palinstance.augment_design_space(X_augmented[:, :2]) # Mock that we already ran that lows = np.zeros((100, 3)) highs = np.zeros((100, 3)) means = np.full((100, 3), 1) palinstance._means = means palinstance.std = np.full((100, 3), 0.1) pareto_optimal = np.array([False] * 98 + [True, True]) sampled = np.array([[False] * 3, [False] * 3, [False] * 3, [False] * 3]) unclassified = np.array([True] * 98 + [False, False]) palinstance.rectangle_lows = lows palinstance.rectangle_ups = highs palinstance.sampled = sampled palinstance.pareto_optimal = pareto_optimal palinstance.unclassified = unclassified # As we do not have a model, we cannot test the classification palinstance.augment_design_space(X_augmented, clean_classify=False) assert palinstance.number_discarded_points == 0 assert palinstance.number_pareto_optimal_points == 2 assert palinstance.number_unclassified_points == 298 assert palinstance.number_sampled_points == 0 assert palinstance.number_design_points == 300 assert len(palinstance.means) == 300 assert len(palinstance.std) == 300 def test_beta_update(make_random_dataset): """testing that the beta update works""" X, _ = make_random_dataset # pylint:disable=invalid-name palinstance = PALBase(X, ["model"], 3) assert palinstance.beta is None palinstance._update_beta() assert palinstance.beta is not None assert palinstance.beta == 1 / 9 * 2 * np.log( 3 * 100 * np.square(np.pi) * np.square(2) / (6 * 0.05) ) def test_turn_to_maximization(make_random_dataset): """Test that flipping the sign for minimization problems works""" X, y = make_random_dataset # pylint:disable=invalid-name palinstance = PALBase(X, ["model"], 3) palinstance.update_train_set(np.array([0]), y[0, :].reshape(-1, 3)) assert (palinstance.y[0] == y[0, :]).all() assert (palinstance._y[0] == y[0, :]).all() palinstance = PALBase(X, ["model"], 3, goals=[1, 1, -1]) palinstance.update_train_set(np.array([0]), y[0, :].reshape(-1, 3)) assert (palinstance.y[0] == y[0, :] * np.array([1, 1, -1])).all() assert (palinstance._y[0] == y[0, :]).all() def test_sample(make_random_dataset): """Test the sampling""" X, _ = make_random_dataset # pylint:disable=invalid-name palinstance = PALBase(X, ["model"], 4) lows = np.array( [ [0.0, 0.0, 0.0, 0.0], [-1.0, -1.0, -1.0, -1.0], [-2.0, -2.0, -2.0, -2.0], [2.0, 2.0, 2.0, 2.0], ] ) highs = np.array( [ [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [2.0, 2.0, 2.0, 2.0], ] ) means = np.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]) palinstance._means = means pareto_optimal = np.array([False, False, True, True]) sampled = np.array([[False] * 4, [False] * 4, [False] * 4, [False] * 4]) unclassified = np.array([True, True, False, False]) palinstance.rectangle_lows = lows palinstance.rectangle_ups = highs palinstance.sampled = sampled palinstance.pareto_optimal = pareto_optimal palinstance.unclassified = unclassified sampled_idx = palinstance.sample() assert sampled_idx == 2 pareto_optimal = np.array([False, False, True, True]) sampled = np.array([[False] * 4, [False] * 4, [False] * 4, [False] * 4]) unclassified = np.array([True, True, False, False]) palinstance.sampled = sampled palinstance.pareto_optimal = pareto_optimal palinstance.unclassified = unclassified sampled_idx = palinstance.sample() assert sampled_idx == 2 pareto_optimal = np.array([False, False, True, True]) sampled = np.array([[False] * 4, [False] * 4, [True] * 4, [False] * 4]) unclassified = np.array([True, True, False, False]) palinstance.sampled = sampled palinstance.pareto_optimal = pareto_optimal palinstance.unclassified = unclassified sampled_idx = palinstance.sample() assert sampled_idx == 1 pareto_optimal = np.array([False, False, False, True]) sampled = np.array([[False] * 4, [False] * 4, [True] * 4, [False] * 4]) unclassified = np.array([True, True, False, False]) palinstance.sampled = sampled palinstance.pareto_optimal = pareto_optimal palinstance.unclassified = unclassified sampled_idx = palinstance.sample() assert sampled_idx == 1 def test__update_hyperrectangles(make_random_dataset): """Testing if the updating of the hyperrectangles works as expected. As above, the core functionality is tested in for the function with the logic. Here, we're more interested in seeing how it works with the class object """ X, _ = make_random_dataset # pylint:disable=invalid-name palinstance = PALBase(X, ["model"], 4, beta_scale=1) palinstance._means = np.array([[0, 0, 1, 0], [0, 0, 0, 1]]) palinstance.std = np.array([[0, 0, 0, 0], [1, 0, 0, 0]]) with pytest.raises(TypeError): # Beta is not defined palinstance._update_hyperrectangles() palinstance._update_beta() palinstance._update_hyperrectangles() assert palinstance.rectangle_lows is not None assert palinstance.rectangle_ups is not None assert palinstance.rectangle_lows[0][0] == 0 assert palinstance.rectangle_ups[0][0] == 0 assert palinstance.rectangle_lows[0][2] == 1 assert palinstance.rectangle_ups[0][2] == 1 assert palinstance.rectangle_lows[1][0] < -1 assert palinstance.rectangle_ups[1][0] > 1 assert len(palinstance.hyperrectangle_sizes) == len(palinstance._means) def test_orchestration_run_one_step(make_random_dataset): """Test if the orchestration works. In the base class it should raise an error as without prediction function we cannot do anything """ X, y = make_random_dataset # pylint:disable=invalid-name palinstance = PALBase(X, ["model"], 3, beta_scale=1) sample_idx = np.array([1, 2, 3, 4]) palinstance.update_train_set(sample_idx, y[sample_idx]) with pytest.raises(NotImplementedError): _ = palinstance.run_one_step() def test__replace_by_measurements(make_random_dataset): """Test that replacing the mean/std by the measured ones works""" X, y = make_random_dataset # pylint:disable=invalid-name palinstance = PALBase(X, ["model"], 3, beta_scale=1) assert palinstance.measurement_uncertainty.sum() == 0 sample_idx = np.array([1, 2, 3, 4]) palinstance.update_train_set(sample_idx, y[sample_idx], y[sample_idx]) palinstance._means = palinstance.measurement_uncertainty palinstance.std = palinstance.measurement_uncertainty palinstance._replace_by_measurements() assert (palinstance.y == palinstance.std).all() def test__update_coef_var_mask(make_random_dataset): """Test that the coefficient of variation mask works as expected""" X, _ = make_random_dataset # pylint:disable=invalid-name palinstance = PALBase(X[:2], ["model"], 3, beta_scale=1) palinstance._means = np.array([[1, 1, 1, 1], [1, 1, 1, 1]]) palinstance.std = np.array([[0, 0, 0, 0], [3, 1, 1, 1]]) assert (palinstance.coef_var_mask ==
np.array([True, True])
numpy.array
from polymuse import rnn, dutils, dataset, dataset2 as d2, enc_deco from polymuse.losses import rmsecat import tensorflow as tf import numpy, random """ rnn_player -- capable of playing/generating the music output as octave/time encoded representation These also includes two most important functions : * shift: * add_flatroll: """ def rmsecat(depth): def rmsecat_(y_true, y_pred): a = [] h_ = None for i in range(depth * 2): h__ = categorical_crossentropy(y_true[:, i : i + 16], y_pred[ :, i : i + 16]) if h_ is None: h_ = tf.square(h__) else: h_ += tf.square(h__) a = (tf.sqrt(h_) / (2 * depth)) return a return rmsecat_ def rsingle_note_stateful_play(model_note, ini_ip, y_expected_note = None, bs = 32, ip_memory = None, predict_instances = 250): """stateful player Arguments: model_note {keras.Sequential} -- [description] ini_ip {numpy.ndarray} -- input initiater, shape (note_instances, ip_memory, depth, tuple(enc)), enc = (2, 16) Keyword Arguments: y_expected_note {numpy.ndarray} -- [description] (default: {None}) ip_memory {int} -- [description] (default: {None}) predict_instances {int} -- [description] (default: {250}) Returns: [numpy.ndarray] -- [description] """ model_note = rnn.load(model_note) if type(model_note) == str else model_note ip_memory = ip_memory if ip_memory else ini_ip.shape[1] depth = ini_ip.shape[2] enc = ini_ip.shape[3:] r1 = random.randint(0, ini_ip.shape[0]) inp = numpy.zeros((bs, ip_memory, depth) + enc) print("iin inin : ", inp.shape) print(r1) ini = numpy.array(ini_ip) bs_ = ini.shape[0] print("iin iniiiiiiiii : ", ini.shape) inp[bs - (bs_ - r1):] = ini[r1: r1+bs] print('inp note shape : ', inp.shape) notes_shape = (1, predict_instances) + inp.shape[2:] predict_instances = (predict_instances // bs) * bs mem = inp.shape[1] notes = numpy.zeros(notes_shape) print(bs, "--bs") print("notes : ", notes.shape) for tm in range(0, predict_instances, bs): y = rnn.predict(model_note, inp) for j in range(bs): for i in range(y.shape[1]): # ocn, freqn = dutils.sample(y[j, i, 0], temperature= 3), dutils.sample(y[j, i, 1], temperature= 3) ocn, freqn = numpy.argmax(y[j, i, 0]), dutils.sample(y[j, i, 1], temperature= 3) y[j, i] = dutils.arg_oct_max(ocn, freqn, size = 16) # y[j, i] = dutils.arg_octave_max(y[j, i]) notes[0, tm : tm + bs] = y #Note Value inp = shift(inp, axis= 1) add_flatroll(inp, y) pass return notes def rnote_track_stateful_player(mnote, ini= None, expected_note= None, TM = 8, bs = 32, ip_memory = 32, DEPTH = 1, predict_instances = 400): model_note = rnn.load(model_note) if type(model_note) == str else model_note ip_memory = ip_memory if ip_memory else ini.shape[1] depth = ini.shape[2] enc = ini.shape[3:] r1 = random.randint(0, ini.shape[0]) inp = numpy.zeros((bs, ip_memory, depth) + enc) print("iin inin : ", inp.shape) print(r1) ini = numpy.array(ini_ip) bs_ = ini.shape[0] print("iin iniiiiiiiii : ", ini.shape) inp[bs - (bs_ - r1):] = ini[r1: r1+bs] print('inp note shape : ', inp.shape) notes_shape = (1, predict_instances) + inp.shape[2:] predict_instances = (predict_instances // bs) * bs mem = inp.shape[1] notes = numpy.zeros(notes_shape) print(bs, "--bs") print("notes : ", notes.shape)# notes[0, :mem, :] = inp #initiating the start k = 0 for tm in range(0, predict_instances): # print("loop", tm) if k >= inp.shape[0] and inp.shape[0] != 1: k = random.randint(0, inp.shape[0] - 1) if inp.shape[0] == 0: k = 0 print('inp : ', inp[k].shape, "k : ", k) inp_ = numpy.reshape(inp[k:k+1], (1, ip_memory, -1)) y = rnn.predict_b(model_note, inp_) y = numpy.reshape(y, (1, DEPTH, 2, 16)) y_len = numpy.zeros((1, 64)) y_len[ :, TM] = 1 for j in range(bs): # print('y : ', y, y.shape) for i in range(y.shape[1]): # ocn, freqn = dutils.sample(y[j, i, 0], temperature= 3), dutils.sample(y[j, i, 1], temperature= 3) ocn, freqn = numpy.argmax(y[j, i, 0]), dutils.sample(y[j, i, 1], temperature= 3) y[j, i] = dutils.arg_oct_max(ocn, freqn, size = 16) # y[j, i] = dutils.arg_octave_max(y[j, i]) notes[0, tm : tm + bs] = y # time[0, tm : tm + bs] = y_len k += 1 pass return enc_deco.octave_to_sFlat(notes) def rsingle_note_time_play(model_note, model_time, ini_ip, ini_ip_tm, y_expected_note = None, y_expected_time = None, ip_memory = None, predict_instances = 250): model_note = rnn.load(model_note) if type(model_note) == str else model_note model_time = rnn.load(model_time) if type(model_time) == str else model_time ip_memory = ip_memory if ip_memory else ini_ip.shape[0] inp = numpy.array([ini_ip]) # inp = numpy.array(ini_ip) inp_tm = numpy.array([ini_ip_tm]) print("inp time shape : ", inp_tm.shape) print('inp note shape : ', inp.shape) notes_shape = (1, predict_instances) + inp.shape[2:] time_shape = (1, predict_instances) + inp_tm.shape[2:] # notes_shape.extend(inp.shape[2:]) # time_shape.extend(inp_tm.shape[2:]) bs = inp.shape[0] predict_instances = (predict_instances // bs) * bs mem = inp.shape[1] notes = numpy.zeros(notes_shape) time = numpy.zeros(time_shape) print(bs, "--bs") print("notes, time : ", notes.shape, time.shape) # notes[0, :mem, :] = inp #initiating the start for tm in range(0, predict_instances): # print("loop", tm) y = rnn.predict_b(model_note, inp) y_len = rnn.predict_b(model_time, inp_tm) # print(y.shape, " --------------") if 95 < tm < 150 : # print("inp tm : ", inp_tm) # print("time : ", time[0, :10]) # print("shape : ", y.shape) # print("Expected y_len NOTE: ", y_expected_note[tm + 1]) # print("y_len : ", dutils.arg_octave_max(y[0, 0])) # print("+=================================================================+") # print("Expected y_len : ", y_expected_time[tm + 1]) # print("y_len -- : ", y_len[0]) # print("y_len : ", dutils.arg_max(y_len[0])) # print("ynum argmax : ", numpy.argmax(y_len[0])) pass for j in range(bs): y_len[j] = dutils.arg_max(y_len[j]) for j in range(bs): for i in range(y.shape[1]): y[j, i] = dutils.arg_octave_max(y[j, i]) notes[0, tm : tm + bs] = y time[0, tm : tm + bs] = y_len #Note Value inp = shift(inp, axis= 1) add_flatroll(inp, y) #Time Length inp_tm = shift(inp_tm, axis=1) add_flatroll(inp_tm, y_len) pass return notes, time def rsingle_note_time_play(model_note, model_time, ini_ip, ini_ip_tm, y_expected_note = None, y_expected_time = None, ip_memory = None, predict_instances = 250): model_note = rnn.load(model_note) if type(model_note) == str else model_note model_time = rnn.load(model_time) if type(model_time) == str else model_time ip_memory = ip_memory if ip_memory else ini_ip.shape[0] inp = numpy.array([ini_ip]) # inp = numpy.array(ini_ip) # inp_tm = numpy.array([ini_ip_tm]) print("inp time shape : ", inp_tm.shape) print('inp note shape : ', inp.shape) notes_shape = (1, predict_instances) + inp.shape[2:] time_shape = (1, predict_instances) + inp_tm.shape[2:] notes_shape.extend(inp.shape[2:]) time_shape.extend(inp_tm.shape[2:]) bs = inp.shape[0] predict_instances = (predict_instances // bs) * bs mem = inp.shape[1] notes = numpy.zeros(notes_shape) time = numpy.zeros(time_shape) print(bs, "--bs") print("notes, time : ", notes.shape, time.shape) # notes[0, :mem, :] = inp #initiating the start for tm in range(0, predict_instances): # print("loop", tm) y = rnn.predict_b(model_note, inp) y_len = rnn.predict_b(model_time, inp_tm) # print(y.shape, " --------------") for j in range(bs): y_len[j] = dutils.arg_max(y_len[j]) for j in range(bs): for i in range(y.shape[1]): y[j, i] = dutils.arg_octave_max(y[j, i]) notes[0, tm : tm + bs] = y time[0, tm : tm + bs] = y_len #Note Value inp = shift(inp, axis= 1) add_flatroll(inp, y) #Time Length inp_tm = shift(inp_tm, axis=1) add_flatroll(inp_tm, y_len) pass return notes, time def rsing_note_time_play(model_note, model_time, ini_ip, ini_ip_tm, y_expected_note = None, y_expected_time = None, ip_memory = None, predict_instances = 250): model_note = rnn.load(model_note) if type(model_note) == str else model_note model_time = rnn.load(model_time) if type(model_time) == str else model_time ip_memory = ip_memory if ip_memory else ini_ip.shape[0] inp = numpy.array([ini_ip]) inp_tm = numpy.array([ini_ip_tm]) print("inp time shape : ", inp_tm.shape) print('inp note shape : ', inp.shape) notes_shape = (1, predict_instances) + inp.shape[2:] time_shape = (1, predict_instances) + inp_tm.shape[2:] # notes_shape.extend(inp.shape[2:]) # time_shape.extend(inp_tm.shape[2:]) mem = inp.shape[1] notes = numpy.zeros(notes_shape) time = numpy.zeros(time_shape) print("notes, time : ", notes.shape, time.shape) # notes[0, :mem, :] = inp #initiating the start for tm in range(predict_instances): # print("loop", tm) y = rnn.predict_b(model_note, inp) y_len = rnn.predict_b(model_time, inp_tm) # print(y.shape, y_len.shape) if 95 < tm < 150 : # print(y.shape, y_len.shape) pass y_len[0] = dutils.arg_max(y_len[0]) for i in range(y.shape[1]): # ocn, freqn = dutils.sample(y[j, i, 0], temperature= 3), dutils.sample(y[j, i, 1], temperature= 3) ocn, freqn = numpy.argmax(y[j, i, 0]), dutils.sample(y[j, i, 1], temperature= 3) y[j, i] = dutils.arg_oct_max(ocn, freqn, size = 16) # y[0, i] = dutils.arg_octave_max(y[0, i]) notes[0, tm] = y[0] time[0, tm] = y_len[0] #Note Value inp = shift(inp, axis= 1) add_flatroll(inp, y) #Time Length inp_tm = shift(inp_tm, axis=1) add_flatroll(inp_tm, y_len) pass return notes, time def rnn_dense_player(models, ini, ip_memory = None, predict_instances= 400): #works on tick #models = (model_n_rnn, model_t_rnn, drum_n_rnn, drum_t_rnn, drum_dense_1, drum_dense_2) #ini = (ini_ip, ini_ip_tm, inp_drm_ip, inp_drm_tm) # pinao note, piano time, drum note, drum time model_note, model_time, drum_note, drum_time, dense_1, dense_2 = models tick = 0 delt = 32 ini_ip, ini_t, ini_drm_ip, ini_drm_t = numpy.array([ini[0]]), numpy.array([ini[1]]), numpy.array([ini[2]]), numpy.array([ini[3]]) muse_op_piano_n = numpy.zeros((1, 4 * predict_instances) + ini_ip.shape[2:]) muse_op_piano_t = numpy.zeros((1, 4 * predict_instances) + ini_t.shape[2:]) muse_op_drum_n = numpy.zeros((1, 4 * predict_instances) + ini_drm_ip.shape[2:]) print(ini_ip.shape, ini_t.shape, ini_drm_ip.shape, ini_drm_t.shape, "-- ini_ip, ini_tm, inp_drm_ip, inp_drm_tm") print(muse_op_piano_n.shape, muse_op_piano_t.shape, "-- muse_op_piano_n, muse_op_piano_t") TIME = predict_instances * 4 ticker = [0, 0] tm, dtm = 0, 0 while tick < TIME: if ticker[0] >= 0: y = rnn.predict_b(model_note, ini_ip) y_len = rnn.predict_b(model_time, ini_t) y_len[0] = dutils.arg_max(y_len[0]) for i in range(y.shape[1]): y[0, i] = dutils.arg_octave_max(y[0, i]) muse_op_piano_n[0, tm] = y[0] muse_op_piano_t[0, tm] = y_len[0] #Note Value inp = shift(ini_ip, axis= 1) add_flatroll(ini_ip, y) #Time Length inp_tm = shift(ini_t, axis=1) add_flatroll(ini_t, y_len) ticker[0] = dutils.tm(y_len[0]) tm += 1 if ticker[1] >=0 : #write here code y = rnn.predict_b(drum_note, ini_drm_ip) for i in range(y.shape[1]): y[0, i] = dutils.arg_octave_max(y[0, i]) muse_op_drum_n[0, dtm] = y[0] # print(y.shape, "y . .. ") y_ =
numpy.zeros((3, 2, 16))
numpy.zeros
import numpy as np from matplotlib import pyplot as plt # Set up figures look and feel import style_figs # %% # Our data-generating process def f(t): return 1.2 * t ** 2 + .1 * t ** 3 - .4 * t ** 5 - .5 * t ** 9 N_SAMPLES = 50 rng = np.random.RandomState(0) x = 2 * rng.rand(N_SAMPLES) - 1 y = f(x) + .4 * rng.normal(size=N_SAMPLES) plt.figure() plt.scatter(x, y, s=20, color='k') style_figs.no_axis() plt.subplots_adjust(top=.96) plt.xlim(-1.1, 1.1) plt.ylim(-.74, 2.1) plt.savefig('polynomial_overfit_0.svg', facecolor='none', edgecolor='none') # %% # Our model (polynomial regression) from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression # %% # Fit model with various complexity in the polynomial degree plt.figure() plt.scatter(x, y, s=20, color='k') t = np.linspace(-1, 1, 100) for d in (1, 2, 5, 9): model = make_pipeline(PolynomialFeatures(degree=d), LinearRegression()) model.fit(x.reshape(-1, 1), y) plt.plot(t, model.predict(t.reshape(-1, 1)), label='Degree %d' % d) style_figs.no_axis() plt.legend(loc='upper center', borderaxespad=0, borderpad=0) plt.subplots_adjust(top=.96) plt.ylim(-.74, 2.1) plt.savefig('polynomial_overfit_%d.svg' % d, facecolor='none', edgecolor='none') plt.plot(t, f(t), 'k--', label='Truth') style_figs.no_axis() plt.legend(loc='upper center', borderaxespad=0, borderpad=0) plt.ylim(-.74, 2.1) plt.subplots_adjust(top=.96) plt.savefig('polynomial_overfit.svg', facecolor='none', edgecolor='none') # %% # A figure with the true model and the estimated one plt.figure(figsize=[.5 * 6.4, .5 * 4.8]) plt.scatter(x, y, s=20, color='k') plt.plot(t, model.predict(t.reshape(-1, 1)), color='C3', label='$\hat{f}$') plt.plot(t, f(t), 'k--', label='$f^{\star}$') style_figs.no_axis() plt.legend(loc='upper center', borderaxespad=0, borderpad=0, labelspacing=.2, fontsize=26) plt.subplots_adjust(top=.96) plt.savefig('polynomial_overfit_simple.svg', facecolor='none', edgecolor='none') # %% # A figure with the true model and the estimated one plt.figure(figsize=[.5 * 6.4, .5 * 4.8]) plt.scatter(x, y, s=20, color='k') plt.plot(t, model.predict(t.reshape(-1, 1)), color='C3', label='$\hat{f}$') plt.plot(t, f(t), 'k--', label='$f^{\star}$') style_figs.no_axis() plt.legend(loc='upper center', borderaxespad=0, borderpad=0, labelspacing=.2, fontsize=26) plt.subplots_adjust(top=.96) # More detailed legend plt.savefig('polynomial_overfit_simple_legend.svg', facecolor='none', edgecolor='none') # %% # Assymptotic settings rng = np.random.RandomState(0) x = 2 * rng.rand(10 * N_SAMPLES) - 1 y = f(x) + .4 * rng.normal(size=10 * N_SAMPLES) model = make_pipeline(PolynomialFeatures(degree=1), LinearRegression()) model.fit(x.reshape(-1, 1), y) plt.figure(figsize=[.5 * 6.4, .5 * 4.8]) plt.scatter(x, y, s=20, color='k', alpha=.3) plt.plot(t, model.predict(t.reshape(-1, 1)), color='C0', label='$\hat{f} \\approx f^{\star}$') plt.plot(t, f(t), 'k--', label='$g$') style_figs.no_axis() plt.legend(loc='upper center', borderaxespad=0, borderpad=0, labelspacing=.2, fontsize=26) plt.subplots_adjust(top=.96) plt.savefig('polynomial_overfit_assymptotic.svg', facecolor='none', edgecolor='none') # %% # Validation curves from sklearn import model_selection plt.figure() param_range = np.arange(1, 20) train_scores, test_scores = model_selection.validation_curve( model, x[::2].reshape((-1, 1)), y[::2], param_name='polynomialfeatures__degree', param_range=param_range, cv=model_selection.ShuffleSplit(n_splits=20)) plt.plot(param_range, -np.mean(test_scores, axis=1), 'k', label='Generalization error') plt.plot(param_range, -np.mean(train_scores, axis=1), 'k--', label='Training error') ax = plt.gca() for s in ('top', 'right'): ax.spines[s].set_visible(False) plt.ylim(ymax=.05) plt.legend(loc='center') plt.yticks(()) plt.ylabel('Error') plt.xlabel('Polynomial degree') plt.subplots_adjust(left=.07, bottom=.18, top=.99, right=.99) plt.savefig('polynomial_validation_curve.svg', facecolor='none', edgecolor='none') # %% # Learning curves rng = np.random.RandomState(0) x = 2 * rng.rand(100 * N_SAMPLES) - 1 y = f(x) + .4 * rng.normal(size=100 * N_SAMPLES) X = x.reshape((-1, 1)) np.random.seed(42) plt.figure() def savefig(name): " Ajust layout, and then save" ax = plt.gca() for s in ('top', 'right'): ax.spines[s].set_visible(False) plt.ylim(-.65, .15) plt.xlim(train_sizes.min(), train_sizes.max()) plt.xticks((100, 1000), ('100', '1000'), size=13) plt.yticks(()) plt.ylabel('Error') plt.xlabel('Number of samples') plt.subplots_adjust(left=.07, bottom=.16, top=.99, right=.99) plt.savefig(name, edgecolor='none', facecolor='none') # Degree 9 model = make_pipeline(PolynomialFeatures(degree=9), LinearRegression()) train_sizes, train_scores, test_scores = model_selection.learning_curve( model, X, y, cv=model_selection.ShuffleSplit(n_splits=20), train_sizes=np.logspace(-2.5, -.3, 30)) test_plot = plt.semilogx(train_sizes, -np.mean(test_scores, axis=1), label='9', color='C3') savefig('polynomial_learning_curve_0.svg') train_plot = plt.semilogx(train_sizes, -
np.mean(train_scores, axis=1)
numpy.mean
import numpy as np import torch import gym import time import os import json from copy import deepcopy from functools import partial from mrl.import_all import * from mrl.configs.make_continuous_agents import * from mrl.utils.misc import batch_block_diag from envs.customfetch.custom_fetch import DisentangledFetchPushEnv,\ DisentangledFetchSlideEnv, DisentangledFetchPickAndPlaceEnv, SlideNEnv, PushNEnv from gym.wrappers import TimeLimit from experiments.coda.coda_generic import get_true_abstract_mask_spriteworld, batch_get_heuristic_mask_fetchpush from experiments.coda.coda_module import CodaBuffer from experiments.coda.sandy_module import CodaAttentionBasedMask, SimpleStackedAttn config = best_slide_config() config.alg = 'ddpg' import multiprocessing as mp def make_disentangled_fetch_env(envstr): if 'push' in envstr.lower(): env = lambda: TimeLimit(DisentangledFetchPushEnv(), 50) eval_env = env dummy_env = gym.make('FetchPush-v1') elif 'pick' in envstr.lower(): env = lambda: TimeLimit(DisentangledFetchPickAndPlaceEnv(), 50) eval_env = env dummy_env = gym.make('FetchPickAndPlace-v1') elif 'slide' in envstr.lower(): env = lambda: TimeLimit(DisentangledFetchSlideEnv(), 50) eval_env = lambda: TimeLimit(DisentangledFetchSlideEnv(), 50) dummy_env = DisentangledFetchSlideEnv() I = np.concatenate((np.zeros(10), np.ones(12))).astype(np.int64) J = np.arange(22, dtype=np.int64) state_dims = (I, J) return env, eval_env, dummy_env, state_dims def main(args): if args.num_envs is None: import multiprocessing as mp args.num_envs = max(mp.cpu_count() - 1, 1) # hard code num_eval envs... args.num_eval_envs = args.num_envs merge_args_into_config(args, config) config.min_experience_to_train_coda_attn = args.min_experience_to_train_coda_attn if config.gamma < 1.: config.clip_target_range = (np.round(-(1 / (1 - config.gamma)), 2), 0.) if config.gamma == 1: config.clip_target_range = (np.round(-args.env_max_step - 5, 2), 0.) config.agent_name = make_agent_name(config, [ 'envstr', 'alg', 'her', 'relabel_type', 'seed', 'tb', 'max_coda_ratio', 'coda_every', 'coda_source_pairs', 'batch_size', 'optimize_every' ], prefix=args.prefix) # 5. Setup / add basic modules to the config config.update( dict(trainer=StandardTrain(), evaluation=EpisodicEval(), policy=ActorPolicy(), logger=Logger(), state_normalizer=Normalizer(MeanStdNormalizer()), replay=OnlineHERBuffer(), action_noise=ContinuousActionNoise(GaussianProcess, std=ConstantSchedule(args.action_noise)), algorithm=DDPG())) torch.set_num_threads(min(4, args.num_envs)) torch.set_num_interop_threads(min(4, args.num_envs)) if gym.envs.registry.env_specs.get(args.envstr) is not None: args.env = args.envstr dummy_env_config = None reward_fn = None elif 'disentangled' in args.envstr.lower(): args.env, args.eval_env, dummy_env, state_dims = make_disentangled_fetch_env(args.envstr) config.slot_state_dims = [np.arange(10)] + [10 + 12 * i + np.arange(12) for i in range(1)] config.slot_action_dims = None dummy_env_config = None reward_fn = lambda s, a, ns, g: dummy_env.compute_reward(ns[:, 10:13], g, None)[:, None] elif 'slide' in args.envstr.lower(): n = int(args.envstr.lower().replace('slide', '')) args.env = lambda: SlideNEnv(n=n, distance_threshold=args.train_dt) args.eval_env = lambda: SlideNEnv(n=n) dummy_env_config = None dummy_env = SlideNEnv(n=n) reward_fn = lambda s, a, ns, g: dummy_env.compute_reward(ns[:, dummy_env.ag_dims], g, None)[:, None] config.slot_state_dims = dummy_env.disentangled_idxs config.slot_action_dims = None config.slot_goal_dims = dummy_env.disentangled_goal_idxs if args.relabel_type == 'online_attn': model = SimpleStackedAttn(10 + 12 * n + 4, 10 + 12 * n, num_attn_blocks=2, num_hidden_layers=2, num_hidden_units=128, num_heads=5) config.mask_module = CodaAttentionBasedMask(model=model, optimize_every=2, batch_size=512) elif 'push' in args.envstr.lower(): n = int(args.envstr.lower().replace('push', '')) args.env = lambda: PushNEnv(n=n, distance_threshold=args.train_dt) args.eval_env = lambda: PushNEnv(n=n) dummy_env_config = None dummy_env = PushNEnv(n=n) reward_fn = lambda s, a, ns, g: dummy_env.compute_reward(ns[:, dummy_env.ag_dims], g, None)[:, None] config.slot_state_dims = dummy_env.disentangled_idxs config.slot_goal_dims = dummy_env.disentangled_goal_idxs else: raise NotImplementedError if type(args.env) is str: env = lambda: gym.make(args.env) else: env = args.env config.module_train_env = EnvModule(env, num_envs=config.num_envs, seed=config.seed) config.module_eval_env = EnvModule(env, num_envs=config.num_eval_envs, name='eval_env', seed=config.seed + 1138) e = config.module_eval_env if config.slot_based_state and hasattr(config, 'slot_state_dims'): e.state_dim = len(config.slot_state_dims[0]) config.actor = PytorchModel( 'actor', lambda: Actor(FCBody(e.state_dim + e.goal_dim, args.layers, nn.LayerNorm), e.action_dim, e.max_action)) config.critic = PytorchModel( 'critic', lambda: Critic(FCBody(e.state_dim + e.goal_dim + e.action_dim, args.layers, nn.LayerNorm), 1)) if e.goal_env: config.never_done = True # NOTE: This is important in the standard Goal environments, which are never done # add Coda buffer if using Coda if args.relabel_type is not None: del config.replay config.module_replay = CodaBuffer(max_coda_ratio=args.max_coda_ratio, make_coda_data_every=args.coda_every, num_coda_source_transitions=20000, num_coda_source_pairs=args.coda_source_pairs, coda_samples_per_pair=args.coda_samples_per_pair, coda_buffer_size=args.coda_buffer_size, add_bad_dcs=args.add_bad_dcs, coda_on_goal_components=args.coda_on_goal_components, spriteworld_config=dummy_env_config, reward_fn=reward_fn, num_procs=min(args.num_envs, 4)) agent = mrl.config_to_agent(config) # set up get_coda_mask function if args.relabel_type is not None: if args.relabel_type == 'ground_truth': agent.get_coda_mask = get_true_abstract_mask_spriteworld elif args.relabel_type == 'push_heuristic': agent.get_coda_mask = batch_get_heuristic_mask_fetchpush elif args.relabel_type == 'online_attn': agent.get_coda_mask = partial(agent.coda_attention_model.get_mask, THRESH=args.thresh) else: raise NotImplementedError() if args.checkpoint_dir is not None: # If a checkpoint has been initialized load it. if os.path.exists(os.path.join(args.checkpoint_dir, 'INITIALIZED')): agent.load_from_checkpoint(args.checkpoint_dir) if args.visualize_trained_agent: print("Loading agent at epoch {}".format(0)) agent.load('checkpoint') agent.eval_mode() env = agent.eval_env state = env.reset() for _ in range(1000000): env.render() time.sleep(0.02) action = agent.policy(state) state, reward, done, info = env.step(action) env.render() print(reward[0]) else: if args.save_embeddings: s1_buff = agent.replay_buffer.buffer.BUFF.buffer_state s2_buff = agent.replay_buffer.buffer.BUFF.buffer_next_state s1_coda = agent.replay_buffer.coda_buffer.items['state'] s2_coda = agent.replay_buffer.coda_buffer.items['next_state'] num_eps = max(args.num_eval_envs * 3, 10) res = np.mean(agent.eval(num_episodes=num_eps).rewards) agent.logger.log_color(f'Initial test reward ({num_eps} eps):', '{:.2f}'.format(res)) for epoch in range(int(args.max_steps // args.epoch_len)): t = time.time() agent.train(num_steps=args.epoch_len) # VIZUALIZE GOALS if args.save_embeddings: idxs = np.random.choice(len(s1_buff), size=min(len(s1_buff), 1000), replace=False) last_idxs = np.arange(max(0, len(s1_buff) - args.epoch_len), len(s1_buff)) rands1 = s1_buff.get_batch(idxs) rands1 = np.concatenate((rands1[:, 0, :3], rands1[:, 1, 10:13]), 1) agent.logger.add_embedding('rand_s1s', rands1) rands1 = s2_buff.get_batch(idxs) rands1 = np.concatenate((rands1[:, 0, :3], rands1[:, 1, 10:13]), 1) agent.logger.add_embedding('rand_s2s', rands1) rands1 = s1_coda.get_batch(idxs) rands1 =
np.concatenate((rands1[:, 0, :3], rands1[:, 1, 10:13]), 1)
numpy.concatenate
#!/usr/bin/env python # coding: utf-8 """ run consensus analysis to identify overall pattern analysis method developed by <NAME> and <NAME> """ import os import sys import argparse import glob import numpy import nibabel import nilearn.plotting import nilearn.input_data import matplotlib.pyplot as plt from statsmodels.stats.multitest import multipletests from narps import Narps, hypnums, hypotheses from narps import NarpsDirs # noqa, flake8 issue from utils import log_to_file, t_corr def run_ttests(narps, logfile, overwrite=True): masker = nilearn.input_data.NiftiMasker( mask_img=narps.dirs.MNI_mask) results_dir = narps.dirs.dirs['consensus'] func_name = sys._getframe().f_code.co_name log_to_file( logfile, '%s' % func_name) if not os.path.exists(results_dir): os.mkdir(results_dir) for hyp in hypnums: if not overwrite and os.path.exists(os.path.join( results_dir, 'hypo%d_1-fdr.nii.gz' % hyp)): print('using existing results') continue print('running consensus analysis for hypothesis', hyp) maps = glob.glob(os.path.join( narps.dirs.dirs['output'], 'zstat/*/hypo%d_unthresh.nii.gz' % hyp)) maps.sort() data = masker.fit_transform(maps) # get estimated mean, variance, and correlation for t_corr img_mean = numpy.mean(data) img_var = numpy.mean(numpy.var(data, 1)) cc = numpy.corrcoef(data) log_to_file( logfile, 'mean = %f, var = %f, mean_cc = %f' % (img_mean, img_var, numpy.mean(cc[numpy.triu_indices_from(cc, 1)]))) # perform t-test tvals, pvals = t_corr(data, res_mean=img_mean, res_var=img_var, Q=cc) # move back into image format timg = masker.inverse_transform(tvals) timg.to_filename(os.path.join(results_dir, 'hypo%d_t.nii.gz' % hyp)) pimg = masker.inverse_transform(1-pvals) pimg.to_filename(os.path.join(results_dir, 'hypo%d_1-p.nii.gz' % hyp)) fdr_results = multipletests(pvals[0, :], 0.05, 'fdr_tsbh') log_to_file( logfile, "%d voxels significant at FDR corrected p<.05" % numpy.sum(fdr_results[0])) fdrimg = masker.inverse_transform(1 - fdr_results[1]) fdrimg.to_filename(os.path.join( results_dir, 'hypo%d_1-fdr.nii.gz' % hyp)) # compute tau^2 per Tom's notes in CorrelatedMetaNotes.html def tau(data, Q): n = data.shape[0] R = numpy.eye(n) - numpy.ones((n, 1)).dot(numpy.ones((1, n)))/n sampvar_est = numpy.trace(R.dot(Q)) tau2 = numpy.zeros(data.shape[1]) for i in range(data.shape[1]): Y = data[:, i] tau2[i] = (1/sampvar_est)*Y.T.dot(R).dot(Y) return(numpy.sqrt(tau2)) tau_est = tau(data, cc) tauimg = masker.inverse_transform(tau_est) tauimg.to_filename(os.path.join( results_dir, 'hypo%d_tau.nii.gz' % hyp)) def mk_figures(narps, logfile, thresh=0.95): func_name = sys._getframe().f_code.co_name log_to_file( logfile, '%s' % func_name) masker = nilearn.input_data.NiftiMasker( mask_img=narps.dirs.MNI_mask) fig, ax = plt.subplots(7, 1, figsize=(12, 24)) cut_coords = [-24, -10, 4, 18, 32, 52, 64] for i, hyp in enumerate(hypnums): pmap = os.path.join( narps.dirs.dirs['consensus'], 'hypo%d_1-fdr.nii.gz' % hyp) tmap = os.path.join( narps.dirs.dirs['consensus'], 'hypo%d_t.nii.gz' % hyp) pimg = nibabel.load(pmap) timg = nibabel.load(tmap) pdata = pimg.get_fdata() tdata = timg.get_fdata()[:, :, :, 0] threshdata = (pdata > thresh)*tdata threshimg = nibabel.Nifti1Image(threshdata, affine=timg.affine) nilearn.plotting.plot_stat_map( threshimg, threshold=0.1, display_mode="z", colorbar=True, title='hyp %d:' % hyp+hypotheses[hyp], vmax=8, cmap='jet', cut_coords=cut_coords, axes=ax[i]) plt.savefig(os.path.join( narps.dirs.dirs['figures'], 'consensus_map.pdf'), bbox_inches='tight') plt.close(fig) # create tau figures fig, ax = plt.subplots(7, 1, figsize=(12, 24)) tauhist = {} for i, hyp in enumerate(hypnums): taumap = os.path.join( narps.dirs.dirs['consensus'], 'hypo%d_tau.nii.gz' % hyp) tauimg = nibabel.load(taumap) taudata = masker.fit_transform(tauimg) log_to_file( logfile, 'hyp %d: median tau %0.3f, max tau %0.3f' % (hyp, numpy.median(taudata), numpy.max(taudata))) tauhist[i] = numpy.histogram( taudata, bins=
numpy.arange(0, 5, 0.01)
numpy.arange
#!/usr/bin/env python3 """Plots data associated with Elastica simulations Used to reproduce various figures and renderings (in-part) from the paper: Modeling and simulation of complex dynamic musculoskeletal architectures Nature Communications, 2019 """ __license__ = "MIT License, see LICENSE for details" __copyright__ = "Copyright (C) 2019 MattiaLab" # System imports import argparse import os import sys from itertools import tee import matplotlib.style as mplstyle # import numpy as np # from matplotlib import pyplot as plt # from matplotlib.colors import to_rgb from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d from mpl_toolkits.mplot3d.art3d import Line3DCollection # from scipy.linalg import norm # # set the backend first # import matplotlib # isort:skip # matplotlib.use("TkAgg") # isort:skip # from matplotlib.collections import LineCollection # # Turned off because slow # plt.rcParams['text.usetex'] = 'True' # plt.rcParams['font.serif'] = 'Fira Sans' plt.rcParams["font.size"] = 14 plt.rcParams["axes.labelsize"] = 14 plt.rcParams["axes.labelweight"] = "bold" plt.rcParams["axes.titlesize"] = 16 plt.rcParams["xtick.labelsize"] = 12 plt.rcParams["ytick.labelsize"] = 12 mplstyle.use("seaborn-whitegrid") # plt.rc('grid', color='#397939', linewidth=1, linestyle='--') def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." first, second = tee(iterable) next(second, None) return zip(first, second) def set_axes_equal(axis, data=None): """Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). Credits: https://stackoverflow.com/a/50664367 """ if data is None: limits = np.array([axis.get_xlim3d(), axis.get_ylim3d(), axis.get_zlim3d()]) else: limits = np.array( [ [data[0, :].min(), data[0, :].max()], [data[1, :].min(), data[1, :].max()], [data[2, :].min(), data[2, :].max()], ] ) origin = np.mean(limits, axis=1) radius = 0.5 * np.max(np.abs(limits[:, 1] - limits[:, 0])) axis.set_xlim3d([origin[0] - radius, origin[0] + radius]) axis.set_ylim3d([origin[1] - radius, origin[1] + radius]) axis.set_zlim3d([origin[2] - radius, origin[2] + radius]) def detect_files(input_folder, prefix, suffix): """ Detect all files in the input folder """ if not os.path.isdir(input_folder): raise FileNotFoundError("{} is not a valid folder".format(input_folder)) # Finds all files input_folder/prefix*.suffix import re # matches prefix__ (bignumber).suffix exp = r"{prefix}[\s_]*(\d*){meta}{suffix}".format( prefix=prefix, meta="\\", suffix=suffix ) compiled_regexp = re.compile(exp) matched_files = [f for f in os.listdir(input_folder) if compiled_regexp.search(f)] matched_files.sort() # Extract the filenumber as an integer try: file_tags = [int(compiled_regexp.match(f).group(1)) for f in matched_files] except ValueError: file_tags = [] # Put the full address matched_files = [os.path.join(input_folder, f) for f in matched_files] # returns matched files and matched file numbers as strings return matched_files, file_tags class Arrow3D(FancyArrowPatch): """3D Arrow plot for drawing vector, from https://stackoverflow.com/a/22867877""" def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) FancyArrowPatch.draw(self, renderer) class CustomFormatter( argparse.RawDescriptionHelpFormatter, argparse.ArgumentDefaultsHelpFormatter ): pass class FigProperties: # pylint: disable=R0903 width = 900 height = 600 dpi = 100 @staticmethod def figsize(): return ( FigProperties.width / float(FigProperties.dpi), FigProperties.height / float(FigProperties.dpi), ) class DummyPlotter: """ Placeholder when we need to skip plotting """ # pylint: disable=R0913 def __init__( self, input_folder, output_folder, save_file, force_flag, display_flag ): pass def process(self): pass def plot(self, axis, data, color=(31 / 255, 119 / 255, 180 / 255)): pass def animate(self): pass class ThreeDimensionalPlotter: """ Base class for all three-dimensional plotting """ def __init__( self, input_folder, output_folder, save_file, force_flag, display_flag ): """ Figure attributes """ self.fig = plt.figure(figsize=FigProperties.figsize()) self.ax = self.fig.add_subplot(111, projection="3d") self.ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) self.ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) self.ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) self.ax.grid(True) self.ax.set_xlabel("X") self.ax.set_ylabel("Y") self.ax.set_zlabel("Z") """ Save file attributes """ self.output_folder = output_folder self.savefile_name, self.savefile_ext = os.path.splitext(save_file) self.display_flag = display_flag # Assume its a png if no extension given by default if not self.savefile_ext: self.savefile_ext = ".png" """ Source file attributes and search """ # Guaranteed to be sorted ntypes_files = len(self.file_metadata) # Get a collection (list of lists) to store all the source files src_file_collection = [[] for i in range(ntypes_files)] src_filetag_collection = [[] for i in range(ntypes_files)] for index, (prefix, suffix, _) in enumerate(self.file_metadata): src_file_collection[index], src_filetag_collection[index] = detect_files( input_folder, prefix, suffix ) for i, j in pairwise(range(ntypes_files)): # These lists are ordered and the default comparison should be fine assert ( src_filetag_collection[i] == src_filetag_collection[j] ), "Numbers don't match up" # All collectinos are the same, pop only the last one src_filetags = src_filetag_collection.pop() tgt_files, tgt_filetags = detect_files( self.output_folder, self.savefile_name, self.savefile_ext ) # print(input_folder, src_files, src_filetags) # print(output_folder, tgt_files, tgt_filetags) # If uses forces to clear all images, process all files if force_flag: self.files_to_be_processed = src_file_collection self.filetags_to_be_processed = src_filetags # Else, rewrite files that only need to be updated else: if len(tgt_filetags) > len(src_filetags): # if more targets already, then there's something fishy # act as if the force_flag is set self.files_to_be_processed = src_file_collection self.filetags_to_be_processed = src_filetags else: # Calculate difference between the filetags in src and tgt # if tgt is not empty # # Get indices of sort list, see https://stackoverflow.com/a/6423325 # sort_src_indices = sorted(range(len(src_filetags)) # ,key=src_filetags.__getitem__) # sort_srctags = [src_filetags[i] for i in sort_src_indices] # sort_tgttags = sorted(tgt_filetags) def index(a, x): """Locate the leftmost value exactly equal to x in a sorted list See https://docs.python.org/3.7/library/bisect.html """ import bisect i = bisect.bisect_left(a, x) if i != len(a) and a[i] == x: return i return -1 # If tgttags is empty, default to -1 # else what is the next element beyond the last target tag? src_index = ( -1 if not tgt_filetags else index(src_filetags, tgt_filetags[-1]) ) # print(src_index) self.files_to_be_processed = [ sublist[src_index + 1 :] for sublist in src_file_collection ] self.filetags_to_be_processed = src_filetags[src_index + 1 :] # print(self.files_to_be_processed, self.filetags_to_be_processed) def process(self): """ Loads all data, plots them and stores them into appropriately named figures. """ # Load color metadata first as list of rgb tuples colors = [color for (_, _, color) in self.file_metadata] if self.display_flag: # Turn on interactive mode to persist figure plt.ion() # Show figure after persist plt.show() # From list of list (f) and list (g), get [f[i][0],f[i][1]] and g[i] for *src_file_names, src_file_tag in zip( *(self.files_to_be_processed), self.filetags_to_be_processed ): for i_seq, (src_file, color) in enumerate(zip(src_file_names, colors)): # Defaults loads to (ndata, 4) rather than (4,ndata) data = np.loadtxt(src_file).T self.plot(self.ax, data, color, i_seq) # self.ax.set_title("test at {}".format(src_file_tag)) self.fig.canvas.draw() if self.display_flag: plt.pause(0.001) # last column is source files # src_file_tag = src_file_info[-1] filename = "{name}_{tag:05d}{ext}".format( name=self.savefile_name, tag=src_file_tag, ext=self.savefile_ext ) # tight bounding box here screws up the video self.fig.savefig( os.path.join(self.output_folder, filename), dpi=FigProperties.dpi ) # # Show only the last drawn figure to the user # plt.show() def plot(self, ax, data, color=(31 / 255, 119 / 255, 180 / 255), i_seq=None): """ Plots 3D data """ # https://stackoverflow.com/a/34486703 # Plot centerline if len(ax.lines) > i_seq: ax.lines[i_seq]._verts3d = data[:3, :] # 0,1,2 else: ax.plot( data[0, :], data[1, :], data[2, :], color=color, marker="o", markersize=data[3, 0] * 0.2, # set marker based on radius linewidth=2.0, ) pts_data, wire_data = calculate_cylinders(data) # Now plot wireframes # Each one adds two, so sequencing should reflect that if len(ax.collections) > 2 * i_seq: # First do pts_data ax.collections[2 * i_seq]._segments3d = convert_to_collection(pts_data) # Then do wire_data ax.collections[2 * i_seq + 1]._segments3d = convert_to_collection(wire_data) else: # first instance # transparency metadata = {"colors": color + (0.5,), "linewidth": 1.0} # ax.add_collection3d(convert_to_collection(pts_data, **metadata)) ax.add_collection3d( Line3DCollection(convert_to_collection(pts_data), **metadata) ) # transparency metadata = {"colors": color + (0.3,), "linewidth": 0.5} ax.add_collection3d( Line3DCollection(convert_to_collection(wire_data), **metadata) ) # def plot(self, ax, data, color=(31 / 255, 119 / 255, 180 / 255), i_seq=None): # """ Plots 3D data # """ # # https://stackoverflow.com/a/34486703 # # Plot centerline # if ax.lines: # for line in ax.lines: # line._verts3d = data[:-1, :] # else: # ax.plot( # data[0, :], # data[1, :], # data[2, :], # color=color, # marker="o", # linewidth=3.0, # ) # pts_data, wire_data = calculate_cylinders(data) # # Now plot wireframes # if ax.collections: # # First do pts_data # ax.collections[0]._segments3d = convert_to_collection(pts_data) # # Then do wire_data # ax.collections[1]._segments3d = convert_to_collection(wire_data) # else: # # first instance # # transparency # metadata = {"colors": color + (1.0,), "linewidth": 2.0} # # ax.add_collection3d(convert_to_collection(pts_data, **metadata)) # ax.add_collection3d( # Line3DCollection(convert_to_collection(pts_data), **metadata) # ) # # # Add data to scatter # # ax.scatter(data[:, 0], # # data[:, 1], # # data[:, 2], # # color=colors[0], # # marker="o") # # transparency # metadata = {"colors": color + (0.5,), "linewidth": 1.5} # ax.add_collection3d( # Line3DCollection(convert_to_collection(wire_data), **metadata) # ) def animate(self): """ Animates using ffmpeg the figures created by savefig """ import subprocess # Test if ffmpeg present, else stop processing ret_code = subprocess.call(["which", "ffmpeg"]) if ret_code != 0: raise OSError("ffmpeg not found. Aborting now.") else: filenames = "{frame}_%05d{ext}".format( frame=os.path.join(self.output_folder, self.savefile_name), ext=self.savefile_ext, ) # ffmpeg has its own glob matching facility subprocess.call( [ "ffmpeg", "-y", # overwrites files "-i", filenames, "-framerate", "30", "-crf", "24", "-pix_fmt", "yuv420p", "output_video.mp4", ] ) def convert_to_collection(in_data, **kwargs): """ Converts a (3,*) np array into a MPL LineCollection """ ndims = in_data.shape[0] if ndims == 3: points = np.array([in_data[0], in_data[1], in_data[2]]).T.reshape(-1, 1, 3) segs = np.concatenate([points[:-1], points[1:]], axis=1) # return Line3DCollection(segs, **kwargs) elif ndims == 2: points = np.array([in_data[0], in_data[1]]).T.reshape(-1, 1, 2) segs = np.concatenate([points[:-1], points[1:]], axis=1) # return LineCollection(segs, **kwargs) else: raise IndexError("Dimensions incorrect!") return segs def calculate_cylinders(in_data): """ Calculates the cylinder coordinates given the centerline in_data : (n_dim + 1, N) in size, last dimension for radius """ # print(in_data.shape) # Split dimensions and radius data = in_data[:-2, :] # Last one is time now discounted radius_data = in_data[-2, :-1] n_dim = data.shape[0] # Governing parameters n_pts = data.shape[1] n_axial = 2 n_theta = 20 n_wireframe_skip = 5 n_wireframe_skip = n_wireframe_skip if n_wireframe_skip < n_theta else 1 """ 1. Calculate tangent """ tan = np.diff(data) # normalize mag_tan = norm(tan, ord=2, axis=0) tan /= mag_tan """ 2. Calculate normal and binormal """ # Guess for binormal, fair enough to assume in z binormal = np.array([0.0, 0.5, 0.5]) binormal /= norm(binormal) # prepare to broadcast it to 2D binormal = binormal[:, np.newaxis] # make vector perpendicular to v normal = np.cross(tan, np.tile(binormal, (1, n_pts - 1)), axisa=0, axisb=0, axisc=0) # normalize mag_n = norm(normal, ord=2, axis=0) normal /= mag_n # make unit vector perpendicular to v and n1 binormal = np.cross(tan, normal, axisa=0, axisb=0, axisc=0) # Stack normal and binormal together for (2,ndim,N-1) directors = np.vstack((binormal[np.newaxis, :, :], normal[np.newaxis, :, :])) """ 3. Parametrize angles and centerline """ # surface ranges over t from 0 to length of axis caxis = np.linspace(0.0, 1.0, n_axial) # polar angle varies from 0 to 2*pi theta = np.linspace(0, 2 * np.pi, n_theta) """ 4. Direct them""" # Idea here is to direct the centerline in the tangent direction # and direct the cross section in the norm-binorm direction # and then take a linear combination of both at every cross section # scale t up according to mag_tan, to give (n_axial, N-1) array # t = t.reshape(n_axial, 1) * mag_tan.reshape(1, -1) caxis =
np.einsum("i,j->ij", caxis, mag_tan)
numpy.einsum
import numpy as np def fnmtf(X, k, l, num_iter=100, norm=False, orthogonal_strategy=False): m, n = X.shape U = np.random.rand(m, k) S = np.random.rand(k, l) V = np.random.rand(n, l) error_best = np.inf error = error_best if norm: X = Normalizer().fit_transform(X) for _ in xrange(num_iter): S = np.linalg.pinv(U.T.dot(U)).dot(U.T).dot(X).dot(V).dot(np.linalg.pinv(V.T.dot(V))) # solve subproblem to update V U_tilde = U.dot(S) V_new = np.zeros(n*l).reshape(n, l) for j in xrange(n): errors = np.zeros(l) for col_clust_ind in xrange(l): errors[col_clust_ind] = ((X[:][:, j] - U_tilde[:][:, col_clust_ind])**2).sum() ind = np.argmin(errors) V_new[j][ind] = 1 V = V_new if orthogonal_strategy: while np.linalg.det(V.T.dot(V)) <= 0: if np.isnan(np.sum(V)): break erros = (X - U.dot(S).dot(V.T)) ** 2 erros = np.sum(erros.dot(V), axis=0) / np.sum(V, axis=0) erros[np.where(np.sum(V, axis=0) <= 1)] = -np.inf quantidade = np.sum(V, axis=0) indexMin = np.argmin(quantidade) indexMax = np.argmax(erros) indexes = np.nonzero(V[:, indexMax])[0] end = len(indexes) indexes_p = np.random.permutation(end) V[indexes[indexes_p[0:np.floor(end/2.0)]], indexMax] = 0.0 V[indexes[indexes_p[0:np.floor(end/2.0)]], indexMin] = 1.0 # solve subproblem to update U V_tilde = S.dot(V.T) U_new = np.zeros(m*k).reshape(m, k) for i in xrange(m): errors = np.zeros(k) for row_clust_ind in xrange(k): errors[row_clust_ind] = ((X[i][:] - V_tilde[row_clust_ind][:])**2).sum() ind = np.argmin(errors) U_new[i][ind] = 1 U = U_new if orthogonal_strategy: while np.linalg.det(U.T.dot(U)) <= 0: if np.isnan( np.sum(U) ): break erros = (X - U.dot(V_tilde)) ** 2 erros = np.sum(U.T.dot(erros), axis=1) / np.sum(U, axis=0) erros[np.where(np.sum(U, axis=0) <= 1)] = -np.inf quantidade =
np.sum(U, axis=0)
numpy.sum
import tensorflow as tf import numpy as np import cv2 import argparse from sklearn.utils import shuffle snr = 10 def generate_sigma(target): return 10 ** (-snr / 20.0) * np.sqrt(np.mean(np.sum(np.square(np.reshape(target, (np.shape(target)[0], -1))), -1))) def denoise(target): noise_sigma = generate_sigma(target) noise = np.random.normal(loc=0, scale=noise_sigma, size=np.shape(target))/np.sqrt(np.prod(np.shape(target)[1:])) noisy = target + noise return noisy def data_normalization(x): x = x.astype('float32') x = x - (x.max() + x.min())/2 x /= (x.max()) return x def Dataset_preprocessing(dataset = 'MNIST', batch_size = 64): if dataset == 'mnist': nch = 1 r = 32 (train_images, _), (test_images, _) = tf.keras.datasets.mnist.load_data() elif dataset == 'noisy_mnist': (train_images, _), (test_images, _) = tf.keras.datasets.mnist.load_data() r = 32 nch = 1 elif dataset == 'fmnist': (train_images, _), (test_images, _) = tf.keras.datasets.fashion_mnist.load_data() r = 32 nch = 1 elif dataset == 'cifar10': (train_images, _), (test_images, _) = tf.keras.datasets.cifar10.load_data() r = 32 nch = 3 elif dataset == 'svhn': train_images, test_images = svhn() nch = 3 r = 32 elif dataset == 'celeba': celeba = np.load('/kaggle/working/celeb.npy') celeba = shuffle(celeba) train_images, test_images = np.split(celeba, [80000], axis=0) nch = 3 r = 32 elif dataset == 'imagenet': imagenet = np.load('/raid/Amir/Projects/datasets/Tiny_imagenet.npy') imagenet = shuffle(imagenet) train_images, test_images = np.split(imagenet, [80000], axis=0) nch = 3 r = 64 elif dataset == 'rheo': rheo = np.load('/raid/Amir/Projects/datasets/rheology.npy') rheo = shuffle(rheo) train_images, test_images = np.split(rheo, [1500], axis=0) nch = 3 r = 64 elif dataset == 'chest': chest = np.load('/raid/Amir/Projects/datasets/X_ray_dataset_128.npy')[:100000,:,:,0:1] chest = shuffle(chest) print(np.shape(chest)) train_images, test_images =
np.split(chest, [80000], axis=0)
numpy.split
# -*- coding: utf-8 -*- """ Created on Fri Apr 12 16:25:57 2019 @author: <NAME> """ import numpy as np import nibabel as nib import os import time from eslearn.model_evaluator import ModelEvaluator from eslearn.utils.lc_niiProcessor import NiiProcessor from eslearn.base import BaseMachineLearning from eslearn.machine_learning.classfication._base_classificaition import BaseClassification, PipelineSearch_ class ClassificationXiaowei(BaseMachineLearning, PipelineSearch_): """ Training model on given training data. Then apply this mode to another testing data. Last, evaluate the performance If you encounter any problem, please contact <EMAIL> """ def __init__(self, # ===================================================================== patients_path=r'D:\workstation_b\xiaowei\TOLC_20200811\training\BD_label1', # 训练组病人 hc_path=r'D:\workstation_b\xiaowei\TOLC_20200811\training\MDD_label0', # 训练组正常人 val_path=r'D:\workstation_b\xiaowei\TOLC_20200811\mix6', # 验证集数据 val_label=r'D:\workstation_b\xiaowei\TOLC_20200811\mix6_label.txt', # 验证数据的label文件 suffix='.nii', mask=r'D:\workstation_b\xiaowei\TOLC3\dFC\TRA\MDD\StdzFC_ROI1_01367_resting7000.nii', k=3, save_directory = r'D:\workstation_b\xiaowei\TOLC_20200811' # ===================================================================== ): super(BaseMachineLearning, self).__init__() super(PipelineSearch_, self).__init__() self.search_strategy = 'grid' self.n_jobs = 2 self.k=k self.verbose=False self.patients_path=patients_path self.hc_path=hc_path self.val_path=val_path self.val_label=val_label self.suffix=suffix self.mask=mask self.save_directory = save_directory print("SvcForGivenTrAndTe initiated") def _load_data_infolder(self): """load training data and validation data and generate label for training data""" print("loading...") # train data data1, _ = NiiProcessor().read_multi_nii(self.patients_path, self.suffix) data1 = np.squeeze(np.array([np.array(data1).reshape(1,-1) for data1 in data1])) data2,_ = NiiProcessor().read_multi_nii(self.hc_path, self.suffix) data2 = np.squeeze(np.array([np.array(data2).reshape(1,-1) for data2 in data2])) data = np.vstack([data1,data2]) # validation data data_validation, self.name_val = NiiProcessor().read_multi_nii(self.val_path, self.suffix) data_validation = np.squeeze(np.array([np.array(data_validation).reshape(1,-1) for data_validation in data_validation])) # data in mask mask, self.mask_obj = NiiProcessor().read_sigle_nii(self.mask) self.mask_orig = mask>=0.1 self.mask_1d =
np.array(self.mask_orig)
numpy.array
# Copyright (c) 2003-2019 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import treecorr import os import coord import fitsio from test_helper import get_script_name, do_pickle, assert_raises, CaptureLog, timer from test_helper import is_ccw, is_ccw_3d @timer def test_log_binning(): import math # Test some basic properties of the base class def check_arrays(nnn): np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.ubin_size * nnn.nubins, nnn.max_u-nnn.min_u) np.testing.assert_almost_equal(nnn.vbin_size * nnn.nvbins, nnn.max_v-nnn.min_v) #print('logr = ',nnn.logr1d) np.testing.assert_equal(nnn.logr1d.shape, (nnn.nbins,) ) np.testing.assert_almost_equal(nnn.logr1d[0], math.log(nnn.min_sep) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr1d[-1], math.log(nnn.max_sep) - 0.5*nnn.bin_size) np.testing.assert_equal(nnn.logr.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.logr[:,0,0], nnn.logr1d) np.testing.assert_almost_equal(nnn.logr[:,-1,-1], nnn.logr1d) assert len(nnn.logr) == nnn.nbins #print('u = ',nnn.u1d) np.testing.assert_equal(nnn.u1d.shape, (nnn.nubins,) ) np.testing.assert_almost_equal(nnn.u1d[0], nnn.min_u + 0.5*nnn.ubin_size) np.testing.assert_almost_equal(nnn.u1d[-1], nnn.max_u - 0.5*nnn.ubin_size) np.testing.assert_equal(nnn.u.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.u[0,:,0], nnn.u1d) np.testing.assert_almost_equal(nnn.u[-1,:,-1], nnn.u1d) #print('v = ',nnn.v1d) np.testing.assert_equal(nnn.v1d.shape, (2*nnn.nvbins,) ) np.testing.assert_almost_equal(nnn.v1d[0], -nnn.max_v + 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[-1], nnn.max_v - 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[nnn.nvbins], nnn.min_v + 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[nnn.nvbins-1], -nnn.min_v - 0.5*nnn.vbin_size) np.testing.assert_equal(nnn.v.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.v[0,0,:], nnn.v1d) np.testing.assert_almost_equal(nnn.v[-1,-1,:], nnn.v1d) def check_defaultuv(nnn): assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == np.ceil(1./nnn.ubin_size) assert nnn.min_v == 0. assert nnn.max_v == 1. assert nnn.nvbins == np.ceil(1./nnn.vbin_size) # Check the different ways to set up the binning: # Omit bin_size nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, bin_type='LogRUV') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify min, max, n for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, min_u=0.2, max_u=0.9, nubins=12, min_v=0., max_v=0.2, nvbins=2) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 assert nnn.min_u == 0.2 assert nnn.max_u == 0.9 assert nnn.nubins == 12 assert nnn.min_v == 0. assert nnn.max_v == 0.2 assert nnn.nvbins == 2 check_arrays(nnn) # Omit min_sep nnn = treecorr.NNNCorrelation(max_sep=20, nbins=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify max, n, bs for u,v too. nnn = treecorr.NNNCorrelation(max_sep=20, nbins=20, bin_size=0.1, max_u=0.9, nubins=3, ubin_size=0.05, max_v=0.4, nvbins=4, vbin_size=0.05) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.max_sep == 20. assert nnn.nbins == 20 assert np.isclose(nnn.ubin_size, 0.05) assert np.isclose(nnn.min_u, 0.75) assert nnn.max_u == 0.9 assert nnn.nubins == 3 assert np.isclose(nnn.vbin_size, 0.05) assert np.isclose(nnn.min_v, 0.2) assert nnn.max_v == 0.4 assert nnn.nvbins == 4 check_arrays(nnn) # Omit max_sep nnn = treecorr.NNNCorrelation(min_sep=5, nbins=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.min_sep == 5. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify min, n, bs for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, nbins=20, bin_size=0.1, min_u=0.7, nubins=4, ubin_size=0.05, min_v=0.2, nvbins=4, vbin_size=0.05) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.bin_size == 0.1 assert nnn.nbins == 20 assert nnn.min_u == 0.7 assert np.isclose(nnn.ubin_size, 0.05) assert nnn.nubins == 4 assert nnn.min_v == 0.2 assert nnn.max_v == 0.4 assert np.isclose(nnn.vbin_size, 0.05) assert nnn.nvbins == 4 check_arrays(nnn) # Omit nbins nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. check_defaultuv(nnn) check_arrays(nnn) # Specify min, max, bs for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=0.1, max_v=0.3, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.bin_size <= 0.1 assert nnn.min_u == 0.2 assert nnn.max_u == 0.9 assert nnn.nubins == 24 assert np.isclose(nnn.ubin_size, 0.7/24) assert nnn.min_v == 0.1 assert nnn.max_v == 0.3 assert nnn.nvbins == 3 assert np.isclose(nnn.vbin_size, 0.2/3) check_arrays(nnn) # If only one of min/max v are set, respect that nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, min_u=0.2, ubin_size=0.03, min_v=0.2, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_u == 0.2 assert nnn.max_u == 1. assert nnn.nubins == 27 assert np.isclose(nnn.ubin_size, 0.8/27) assert nnn.min_v == 0.2 assert nnn.max_v == 1. assert nnn.nvbins == 12 assert np.isclose(nnn.vbin_size, 0.8/12) check_arrays(nnn) nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, max_u=0.2, ubin_size=0.03, max_v=0.2, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_u == 0. assert nnn.max_u == 0.2 assert nnn.nubins == 7 assert np.isclose(nnn.ubin_size, 0.2/7) assert nnn.min_v == 0. assert nnn.max_v == 0.2 assert nnn.nvbins == 3 assert np.isclose(nnn.vbin_size, 0.2/3) check_arrays(nnn) # If only vbin_size is set for v, automatically figure out others. # (And if necessary adjust the bin_size down a bit.) nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, ubin_size=0.3, vbin_size=0.3) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == 4 assert
np.isclose(nnn.ubin_size, 0.25)
numpy.isclose
''' Generate uv position map of 300W_LP. ''' import os, sys import numpy as np import scipy.io as sio import random as ran from skimage.transform import SimilarityTransform from skimage import io, util import skimage.transform from time import time import cv2 import matplotlib.pyplot as plt sys.path.append('..') import face3d from face3d import mesh from face3d.morphable_model import MorphabelModel def process_uv(uv_coords, uv_h = 256, uv_w = 256): uv_coords[:,0] = uv_coords[:,0]*(uv_w - 1) uv_coords[:,1] = uv_coords[:,1]*(uv_h - 1) uv_coords[:,1] = uv_h - uv_coords[:,1] - 1 uv_coords = np.hstack((uv_coords, np.zeros((uv_coords.shape[0], 1)))) # add z return uv_coords def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255; [h, w, c] = image.shape; info = sio.loadmat(mat_path); pose_para = info['Pose_Para'].T.astype(np.float32); shape_para = info['Shape_Para'].astype(np.float32); exp_para = info['Exp_Para'].astype(np.float32); # 2. generate mesh; # generate shape vertices = bfm.generate_vertices(shape_para, exp_para); # transform mesh s = pose_para[-1, 0]; angles = pose_para[:3, 0]; t = pose_para[3:6, 0]; transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]); DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]); tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS); # transform face position(image vertices) along with 2d facial image angle = np.random.rand() * 90 - 45; rows, cols = image.shape[0], image.shape[1]; # rotation around center center = np.array((cols, rows)) / 2. - 0.5; tform1 = SimilarityTransform(translation=center); tform2 = SimilarityTransform(rotation=
np.deg2rad(angle)
numpy.deg2rad
import numpy as np from .representations import * ########### I/O UTILITIES ############## def fix_pyscf_l1(fock, frame, orbs): """ pyscf stores l=1 terms in a xyz order, corresponding to (m=1, 0, -1). this converts into a canonical form where m is sorted as (-1, 0,1) """ idx = [] iorb = 0; atoms = list(frame.symbols) for atype in atoms: cur=() for ia, a in enumerate(orbs[atype]): n,l,m = a if (n,l) != cur: if l == 1: idx += [iorb+1, iorb+2, iorb] else: idx += range(iorb, iorb+2*l+1) iorb += 2*l+1 cur = (n,l) return fock[idx][:,idx] ########### HAMILTONIAN MANIPULATION ########### def lowdin_orthogonalize(fock, s): """ lowdin orthogonalization of a fock matrix computing the square root of the overlap matrix """ eva, eve = np.linalg.eigh(s) sm12 = eve @ np.diag(1.0/np.sqrt(eva)) @ eve.T return sm12 @ fock @ sm12 ########## ORBITAL INDEXING ############## def orbs_base(orbs): # converts list of orbitals into an index to access different sub-blocks norbs = 0 io_base = {} el_dict = {} for el in orbs.keys(): io_base[el] = norbs cur_a = () for na, la, ma in orbs[el]: if cur_a == (na,la): continue cur_a = (na, la) el_dict[(na+io_base[el], la)] = el norbs+=1 return io_base, el_dict ############ matrix/block manipulations ############### def matrix_to_blocks(fock, frame, orbs): """ splits an atomic orbital matrix to (uncoupled momentum) orbital blocks. """ # maps atom types to different n indices io_base, _ = orbs_base(orbs) # prepares storage diaglist = {} offdlist_p = {} offdlist_m = {} heterolist = {} # creates storage. these are the blocks of the matrix we'll have to fill up later lorbs = [] for el_a in orbs.keys(): for ia, a in enumerate(orbs[el_a]): na, la, ma = a na += io_base[el_a] # adds element offset for el_b in orbs.keys(): for ib, b in enumerate(orbs[el_b]): nb, lb, mb = b nb += io_base[el_b] # adds element offset if ( (nb>na or (nb==na and lb>=la)) and not (na,la,nb,lb) in lorbs ): orb = (na,la,nb,lb) lorbs.append(orb) if el_a == el_b: diaglist[orb] = [] offdlist_p[orb] = [] offdlist_m[orb] = [] else: heterolist[orb] = [] # reads in and partitions into blocks ki = 0 nat = len(frame.numbers) for i in range(nat): el_a = frame.symbols[i] cur_a = () for ia, oa in enumerate(orbs[el_a]): na, la, ma = oa na += io_base[el_a] # we read the Hamiltonian in blocks if (cur_a == (na,la)): continue cur_a = (na,la) kj = 0 for j in range(nat): el_b = frame.symbols[j] cur_b = () for ib, ob in enumerate(orbs[el_b]): nb, lb, mb = ob nb += io_base[el_b] # adds element offset if (cur_b == (nb,lb)): continue # only read at the beginning of each m block cur_b = (nb,lb) if (nb<na or (nb==na and lb<la)): continue orb = (na,la,nb,lb) blockij = fock[ki+ia:ki+ia+2*la+1, kj+ib:kj+ib+2*lb+1] if (i==j): diaglist[orb].append(blockij) elif (i<j and el_a == el_b): blockji= fock[kj+ia:kj+ia+2*la+1, ki+ib:ki+ib+2*lb+1] offdlist_p[orb].append((blockij+blockji)/np.sqrt(2)) offdlist_m[orb].append((blockij-blockji)/np.sqrt(2)) elif(el_a != el_b): heterolist[orb].append(blockij) kj += len(orbs[el_b]) ki += len(orbs[el_a]) # stores as ndarray for more flexible indexing for orb in lorbs: for d in [diaglist, offdlist_p, offdlist_m, heterolist]: if orb in d: d[orb] = np.asarray(d[orb]) return dict( diag=diaglist, offd_p=offdlist_p, offd_m=offdlist_m, hete=heterolist) def matrix_to_ij_indices(fock, frame, orbs): """ Creates indices to the atoms involved in each block """ # maps atom types to different n indices io_base, _ = orbs_base(orbs) # prepares storage diaglist = {} offdlist_p = {} offdlist_m = {} heterolist = {} # creates storage. these are the blocks of the matrix we'll have to fill up later lorbs = [] for el_a in orbs.keys(): for ia, a in enumerate(orbs[el_a]): na, la, ma = a na += io_base[el_a] # adds element offset for el_b in orbs.keys(): for ib, b in enumerate(orbs[el_b]): nb, lb, mb = b nb += io_base[el_b] # adds element offset if ( (nb>na or (nb==na and lb>=la)) and not (na,la,nb,lb) in lorbs ): orb = (na,la,nb,lb) lorbs.append(orb) if el_a == el_b: diaglist[orb] = [] offdlist_p[orb] = [] offdlist_m[orb] = [] else: heterolist[orb] = [] # reads in and partitions into blocks ki = 0 nat = len(frame.numbers) for i in range(nat): el_a = frame.symbols[i] cur_a = () for ia, oa in enumerate(orbs[el_a]): na, la, ma = oa na += io_base[el_a] # we read the Hamiltonian in blocks if (cur_a == (na,la)): continue cur_a = (na,la) kj = 0 for j in range(nat): el_b = frame.symbols[j] cur_b = () for ib, ob in enumerate(orbs[el_b]): nb, lb, mb = ob nb += io_base[el_b] # adds element offset if (cur_b == (nb,lb)): continue # only read at the beginning of each m block cur_b = (nb,lb) if (nb<na or (nb==na and lb<la)): continue orb = (na,la,nb,lb) blockij = (i,j) if (i==j): diaglist[orb].append(blockij) elif (i<j and el_a == el_b): offdlist_p[orb].append(blockij) offdlist_m[orb].append(blockij) elif(el_a != el_b): heterolist[orb].append(blockij) kj += len(orbs[el_b]) ki += len(orbs[el_a]) # stores as ndarray for more flexible indexing for orb in lorbs: for d in [diaglist, offdlist_p, offdlist_m, heterolist]: if orb in d: d[orb] = np.asarray(d[orb]) return dict( diag=diaglist, offd_p=offdlist_p, offd_m=offdlist_m, hete=heterolist) def blocks_to_matrix(blocks, frame, orbs): """ assembles (uncoupled momentum) orbital blocks into a matrix form NB - the l terms are stored in canonical order, m=-l..l """ io_base, _ = orbs_base(orbs) norbs = 0 for el in list(frame.symbols): norbs+= len(orbs[el]) nat = len(list(frame.symbols)) unfock = np.zeros((norbs, norbs)) bidx = {} for k in blocks.keys(): bidx[k] = {} for bk in blocks[k].keys(): bidx[k][bk] = 0 cur_a = () ki = 0 nat = len(frame.numbers) for i in range(nat): el_a = frame.symbols[i] cur_a = () for ia, oa in enumerate(orbs[el_a]): na, la, ma = oa na += io_base[el_a] # we read the Hamiltonian in blocks if (cur_a == (na,la)): continue cur_a = (na,la) kj = 0 for j in range(nat): el_b = frame.symbols[j] cur_b = () for ib, ob in enumerate(orbs[el_b]): nb, lb, mb = ob nb += io_base[el_b] # adds element offset if (cur_b == (nb,lb)): continue # only read at the beginning of each m block cur_b = (nb,lb) if (nb<na or (nb==na and lb<la)): continue orb = (na,la,nb,lb) if (i==j): blockij = blocks['diag'][orb][bidx['diag'][orb]] unfock[ki+ia:ki+ia+2*la+1, kj+ib:kj+ib+2*lb+1] = blockij unfock[ki+ib:ki+ib+2*lb+1, kj+ia:kj+ia+2*la+1] = blockij.T bidx['diag'][orb] += 1 elif (el_a == el_b and i<j): blockij = ( ( blocks['offd_p'][orb][bidx['offd_p'][orb]] if orb in blocks['offd_p'] else 0) + ( blocks['offd_m'][orb][bidx['offd_m'][orb]] if orb in blocks['offd_m'] else 0) )/np.sqrt(2) blockji = ( ( blocks['offd_p'][orb][bidx['offd_p'][orb]] if orb in blocks['offd_p'] else 0) - ( blocks['offd_m'][orb][bidx['offd_m'][orb]] if orb in blocks['offd_m'] else 0) )/np.sqrt(2) unfock[ki+ia:ki+ia+2*la+1, kj+ib:kj+ib+2*lb+1] = blockij unfock[kj+ib:kj+ib+2*lb+1, ki+ia:ki+ia+2*la+1] = blockij.T unfock[kj+ia:kj+ia+2*la+1, ki+ib:ki+ib+2*lb+1] = blockji unfock[ki+ib:ki+ib+2*lb+1, kj+ia:kj+ia+2*la+1] = blockji.T if orb in bidx['offd_p']: bidx['offd_p'][orb] += 1 if orb in bidx['offd_m']: bidx['offd_m'][orb] += 1 elif (el_a != el_b): blockij = blocks['hete'][orb][bidx['hete'][orb]] unfock[ki+ia:ki+ia+2*la+1, kj+ib:kj+ib+2*lb+1] = blockij unfock[kj+ib:kj+ib+2*lb+1, ki+ia:ki+ia+2*la+1] = blockij.T bidx['hete'][orb] += 1 kj += len(orbs[el_b]) ki += len(orbs[el_a]) return unfock def couple_blocks(dcoef, cg): """ converts coefficients (fock matrix blocks) from uncoupled to coupled form """ dccoef = {} for dk in dcoef.keys(): dccoef[dk] = {} for k in dcoef[dk].keys(): n1, l1, n2, l2 = k if len(dcoef[dk][k]) > 0: # computes the coupled representation coupled = [ next(iter(cg.couple(el).values())) for el in dcoef[dk][k] ] # creates the dictionary dccoef[dk][k] = {} for L in coupled[0].keys(): # skips blocks that are zero because of symmetry if (n1==n2 and l1==l2 and ( ( (dk=="diag" or dk=="offd_p") and (l1+l2+L)%2==1) or (dk=="offd_m" and (l1+l2+L)%2==0) ) ) : continue dccoef[dk][k][L] = np.asarray([el[L] for el in coupled]) return dccoef def decouple_blocks(dccoef, cg): """ converts coefficients (fock matrix blocks) from coupled to uncoupled form """ dcoef = {} for dk in dccoef.keys(): dcoef[dk] = {} for k in dccoef[dk].keys(): decoup = [] if len(dccoef[dk][k])==0: continue nitems = len( list(dccoef[dk][k].values())[0]) for i in range(nitems): coupled = {(k[1], k[3]): {}} for L in dccoef[dk][k].keys(): coupled[(k[1], k[3])][L] = dccoef[dk][k][L][i] decoup.append(cg.decouple(coupled)) dcoef[dk][k] = np.asarray(decoup) return dcoef def matrix_list_to_blocks(focks, frames, orbs, cg, progress = (lambda x: x)): """ Computes coupled-momemtum blocks of the matrices for a bunch of frames, collecting all the learning targets in a single list. Also returns indices that allows extracting the blocks from each matrix. """ blocks = couple_blocks(matrix_to_blocks(focks[0], frames[0], orbs), cg) slices = [{}] for k in blocks.keys(): slices[0][k] = {} for orb in blocks[k]: if len(blocks[k][orb]) == 0: slices[0][k][orb] = slice(0, 0) continue L0 = list(blocks[k][orb].keys())[0] slices[0][k][orb] = slice(0, len(blocks[k][orb][L0])) for ifr in progress(range(1,len(frames))): fc = couple_blocks(matrix_to_blocks(focks[ifr], frames[ifr], orbs), cg) slices.append({}) for k in fc.keys(): slices[-1][k] = {} for orb in fc[k]: if len(fc[k][orb]) == 0: slices[-1][k][orb] = slice(0, 0) continue L0 = list(fc[k][orb].keys())[0] if not orb in blocks[k]: # extend the blocks if more orbital combinations appear blocks[k][orb] = fc[k][orb] slices[-1][k][orb] = slice(0, len(blocks[k][orb][L0])) else: slices[-1][k][orb] = slice(len(blocks[k][orb][L0]), len(blocks[k][orb][L0])+len(fc[k][orb][L0]) ) for L in fc[k][orb]: blocks[k][orb][L] = np.vstack([blocks[k][orb][L], fc[k][orb][L] ] ) return blocks, slices def get_block_idx(frame_idx, slices): """ returns a dictionary with the indices associated with the hamiltonians of the frames in frame_idx """ idx_slices = { k:{} for k in slices[0].keys() } for i in frame_idx: for k in slices[i].keys(): for b in slices[i][k].keys(): if not b in idx_slices[k]: idx_slices[k][b] = [] idx_slices[k][b] += list(range( slices[i][k][b].start, slices[i][k][b].stop)) return idx_slices def coupled_block_slice(dccoef, slices): dcoef = {} for dk in dccoef.keys(): dcoef[dk] = {} for orb in dccoef[dk].keys(): if type(slices) is dict: if orb in slices[dk]: sl = slices[dk][orb] else: continue else: sl = slices dcoef[dk][orb] = {} for L in dccoef[dk][orb]: dcoef[dk][orb][L] = dccoef[dk][orb][L][sl] return dcoef def blocks_to_matrix_list(blocks, frames, slices, orbs, cg): """ Transforms coupled-momentum blocks to a list of fock matrices. """ focks = [] ntot = 0 for ifr in range(len(slices)): dec = decouple_blocks(coupled_block_slice(blocks, slices[ifr]), cg) focks.append(blocks_to_matrix(dec, frames[ifr], orbs)) return focks def block_to_feat_index(tblock, kblock, lblock, orbs): obase = orbs_base(orbs) if tblock != "hete": fblock = (obase[1][kblock[0:2]], lblock, (1-2*(kblock[1]%2))*(1-2*(kblock[3]%2))*(1-2*(lblock%2)) ) else: fblock = (obase[1][kblock[0:2]], obase[1][kblock[2:4]], lblock, (1-2*(kblock[1]%2))*(1-2*(kblock[3]%2))*(1-2*(lblock%2))) return fblock def merge_features(lblocks, axis=0, lowmem=False): """ Takes a list of block dictionaries and consolidates into a single list """ # first we create block structure rblocks = {} for block in lblocks: for k in block: if not k in rblocks: rblocks[k] = {} else: for b in block[k]: if not b in rblocks[k] or len(rblocks[k][b])==0: rblocks[k][b] = [] # and then we fill it for k in rblocks: for b in rblocks[k]: nbl = [] for block in lblocks: if len(block[k][b])>0: nbl.append(block[k][b]) if lowmem: # free memory associated with the constituent blocks to save memory as we accumulate the merged array block[k][b] = 0 if len(nbl)>0: rblocks[k][b] = np.concatenate(nbl, axis=axis) return rblocks def normalize_features(block, norm=1): """ Takes a list of block dictionaries and normalize them (in place)""" for k in block: for b in block[k]: nrm = np.sqrt((block[k][b].reshape((block[k][b].shape[0],-1))**2).sum(axis=1).mean(axis=0)) if nrm > 0.0: block[k][b] *= norm/nrm ############### Error stats ######################### def hamiltonian_mse(fock1, fock2, scale=1.0): """ Average element-wise error between Hamiltonians. Normalized so that in the asymptotic limit (large system size, sparse Hamiltonian) the error is independent on system size """ return ((fock1 - fock2)**2).flatten().sum() * scale def hamiltonian_mse_blocks(blocks1, blocks2, scale=1.0): """ Average element-wise error between Hamiltonians in block form. Defined so that the sum over blocks equals the overall MSE in the matrix form. """ mse = {} nel = 0 for k in blocks1.keys(): mse[k] = {} for b in blocks1[k]: na, la, nb, lb = b mse[k][b] = 0 for l in blocks1[k][b]: mse[k][b] += ((blocks1[k][b][l] - blocks2[k][b][l]).flatten()**2).sum() if (nb!=na or lb!=la): mse[k][b]*=2.0 # multiplicity mse[k][b]*=scale return mse ############### SAPH generation ######################### def compute_saph(fock, over, frame, orbs, sel_types, n_core, orthogonality_threshold=1e-8): """ Computes symmetry-adapted projected Hamiltonian by projecting the key molecular orbitals onto a smaller basis than the full Hamiltonian basis. Assumes to be given the non-orthogonal Hamiltonian and the overlap matrix """ # first solves the non-orthogonal eigenvalue problem to get the target eigenvalues and eigenvectors l, U = sp.linalg.eigh(fock, over) # finds the selected basis indices for the given frame sel_basis = [] sel_k = 0 tot_core = 0 for s in frame.symbols: sel_basis.append(np.asarray(sel_types[s], dtype=int) + sel_k) tot_core += n_core[s] sel_k += len(orbs[s]) sel_basis = np.concatenate(sel_basis) # first guess at MO selection - drop core states and pick the size # of the selected basis plus some buffer which we use to sort out # orthogonality problems sel_mo = np.arange(tot_core, tot_core + len(sel_basis) + 8) # these are the coefficients projected on the selected basis V = (over[sel_basis] @ U[:, sel_mo]) u, s, vt = sp.linalg.svd(V, full_matrices=False) # determines the relevant symmetry-adapted subspace ovt = vt.copy() osel_mo = [] # strategy is that we do Gram-Schmidt orthogonalization without renormalizing. # when a MO cannot be described because it is fully linearly dependent on # already selected MOs, it skips for k in range(vt.shape[1]): if (ovt[:, k]@ovt[:, k]) < orthogonality_threshold: continue osel_mo.append(sel_mo[k]) ovt[:, k] /= np.sqrt(ovt[:, k]@ovt[:, k]) for j in range(k+1,vt.shape[1]): ovt[:, j] -= ovt[:, k] * (ovt[:, j]@ovt[:, k]) sel_mo = np.asarray(osel_mo[:len(sel_basis)], dtype=int) # now we use the selected MOs to build a SAPH matrix with the same eigenvalues # as the original one V = (over[sel_basis] @ U[:, sel_mo]) u, s, vt = sp.linalg.svd(V) o_V = u @ vt return [email protected](l[sel_mo])@o_V.T ############## Features for Hamiltonian learning ############ def compute_hamiltonian_representations(frames, orbs, hypers, lmax, nu, cg, scale=1, select_feats = None, half_hete = True, mp_feats = False, rhoi_pca = None, rho2i_pca = None, rhoij_rho2i_pca = None, rhoij_pca = None, verbose = False ): """ Computes the full set of features needed to learn matrix elements up to lmax. Options are fluid, but here are some that need an explanation: select_feats = dict(type=["diag", "offd_m", "offd_p", "hete"], block = ('el1', ['el2',] L, pi) ) does the minimal amount of calculation to evaluate the selected block. other terms might be computed as well if they come for free. """ spex = SphericalExpansion(**hypers) rhoi = compute_rhoi(frames, spex, hypers) # compresses further the spherical expansion features across species if rhoi_pca is not None: rhoi = apply_rhoi_pca(rhoi, rhoi_pca) # makes sure that the spex used for the pair terms uses adaptive species hypers_ij = deepcopy(hypers) hypers_ij["expansion_by_species_method"] = "structure wise" spex_ij = SphericalExpansion(**hypers_ij) tnat = 0 els = list(orbs.keys()) nel = len(els) # prepare storage elL = list(itertools.product(els,range(lmax+1),[-1,1])) hetL = [ (els[i1], els[i2], L, pi) for i1 in range(nel) for i2 in range((i1+1 if half_hete else 0), nel) for L in range(lmax+1) for pi in [-1,1] ] feats = dict(diag = { L: [] for L in elL }, offd_p = { L: [] for L in elL }, offd_m = { L: [] for L in elL }, hete = { L: [] for L in hetL },) if rhoij_rho2i_pca is None and rho2i_pca is not None: rhoij_rho2i_pca = rho2i_pca #before = tracemalloc.take_snapshot() for f in frames: fnat = len(f.numbers) frhoi = rhoi[tnat:tnat+fnat]*scale fgij = compute_gij(f, spex_ij, hypers_ij)*scale if (select_feats is None or select_feats["type"]!="diag") and nu == 2: if mp_feats: # note we abuse rhoij_rho2i_pca to fetch the rho1ijp pca compressor rhonui, prhonui = compute_all_rho1ijp_lambda(frhoi, fgij, cg, rhoij_rho2i_pca) else: rhonui, prhonui = compute_all_rho2i_lambda(frhoi, cg, rhoij_rho2i_pca) else: rhonui, prhonui = frhoi, None crhoi = None for L in range(lmax+1): if select_feats is not None and L>0 and select_feats["block"][-2] != L: continue if nu==0: lrhonui, lprhonui = np.ones((fnat, 1, 2*L+1)), np.ones((1)) elif nu==1: lrhonui, lprhonui = compute_rho1i_lambda(frhoi, L, cg) else: lrhonui, lprhonui = compute_rho2i_lambda(frhoi, L, cg) if rho2i_pca is not None: lrhonui, lprhonui = apply_rho2i_pca(lrhonui, lprhonui, rho2i_pca) if select_feats is None or select_feats["type"]!="diag": if nu==0: lrhoij, prhoij = compute_rho0ij_lambda(rhonui, fgij, L, cg, prhonui) elif nu==1: if mp_feats: lrhoij, prhoij = compute_rho1ijp_lambda(rhonui, fgij, L, cg, prhonui) else: lrhoij, prhoij = compute_rho1ij_lambda(rhonui, fgij, L, cg, prhonui) else: if mp_feats: lrhoij, prhoij = compute_rho11ijp_lambda(frhoi, rhonui, L, cg, prhonui) else: lrhoij, prhoij = compute_rho2ij_lambda(rhonui, fgij, L, cg, prhonui) if rhoij_pca is not None: lrhoij, prhoij = apply_rhoij_pca(lrhoij, prhoij, rhoij_pca) crhoi, pcrhoi = contract_rhoij(lrhoij, prhoij, f.symbols, els) for i, el in enumerate(els): iel = np.where(f.symbols==el)[0] if len(iel) == 0: continue if select_feats is not None and el != select_feats["block"][0]: continue for pi in [-1,1]: wherepi = np.where(lprhonui==pi)[0] if len(wherepi)==0: # add a vector of zeros feats['diag'][(el, L, pi)].append(np.zeros(shape=(len(iel), 1, 2*L+1))) continue feats['diag'][(el, L, pi)].append(lrhonui[...,wherepi,:][iel].reshape((len(iel), -1, 2*L+1) ) ) if crhoi is not None: wherepi = np.where(pcrhoi==pi)[0] if len(wherepi)==0: continue feats['diag'][(el, L, pi)][-1] = np.concatenate([ feats['diag'][(el, L, pi)][-1], crhoi[...,wherepi,:][iel].reshape( (len(iel), -1, 2*L+1) ) ], axis=-2) if select_feats is not None and select_feats["type"]=="diag": continue triu = np.triu_indices(len(iel), 1) ij_up = (iel[triu[0]],iel[triu[1]]) # ij indices, i>j ij_lw = (ij_up[1], ij_up[0]) # ij indices, i<j lrhoij_p = (lrhoij[ij_up] + lrhoij[ij_lw])/np.sqrt(2) lrhoij_m = (lrhoij[ij_up] - lrhoij[ij_lw])/np.sqrt(2) for pi in [-1,1]: if len(ij_up[0])==0: continue wherepi = np.where(prhoij==pi)[0]; if len(wherepi)==0: feats['offd_p'][(el, L, pi)].append( np.zeros((lrhoij_p.shape[0], 1, 2*L+1)) ) feats['offd_m'][(el, L, pi)].append( np.zeros((lrhoij_p.shape[0], 1, 2*L+1)) ) continue feats['offd_p'][(el, L, pi)].append(lrhoij_p[...,wherepi,:].reshape(lrhoij_p.shape[0], -1, 2*L+1)) feats['offd_m'][(el, L, pi)].append(lrhoij_m[...,wherepi,:].reshape(lrhoij_m.shape[0], -1, 2*L+1)) if select_feats is not None and select_feats["type"]!="hete": continue for elb in els[i+1:]: ielb = np.where(f.symbols==elb)[0] if len(ielb) == 0: continue if select_feats is not None and elb != select_feats["block"][1]: continue # combines rho_ij and rho_ji lrhoij_het = lrhoij[iel][:,ielb] lrhoij_het_rev =
np.swapaxes(lrhoij[ielb][:,iel],1,0)
numpy.swapaxes
# -*- coding: utf-8 -*- """ Created on Sat May 22 16:47:59 2021 @author: leyuan reference: https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter06/windy_grid_world.py """ import time import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from tqdm import tqdm WORLD_HEIGHT = 7 WORLD_WIDTH = 10 # wind strength for each column WIND = [0, 0, 0, 1, 1, 1, 2, 2, 1, 0] # possible actions UP = 0 DOWN = 1 LEFT = 2 RIGHT = 3 ACTIONS = [UP, DOWN, LEFT, RIGHT] # probability for exploration EPSILON = 0.1 # Sarsa step size ALPHA = 0.5 # reward for each step REWARD = -1.0 # start and goal position of the world, origin on top left corner,[height, width] START = [3, 0] GOAL = [3, 7] def step(state, action): ''' 注意,这里的风力指的是出发位置的风力,比如是从一个风力为1的地方往左走了一步, 那么结果会比正常的向上多一步,而不管新到达的列的风力是多少 ''' i, j = state if action == UP: return [max(i - 1 - WIND[j], 0), j] elif action == DOWN: return [max(min(i + 1 - WIND[j], WORLD_HEIGHT - 1), 0), j] elif action == LEFT: return [max(i - WIND[j], 0), max(j - 1, 0)] elif action == RIGHT: return [max(i - WIND[j], 0), min(j + 1, WORLD_WIDTH - 1)] else: assert False, "action must be 'UP', 'DOWN', 'LEFT', 'RIGHT'." # play for an episode def episode(q_val): # track the total time steps in this episode timesteps = 0 # initialization state = START # choose an action based on the epsilon-greedy algorithm if np.random.binomial(1, EPSILON) == 1: action = np.random.choice(ACTIONS) else: values = q_val[state[0], state[1], :] action = np.random.choice(np.where(values == np.max(values))[0]) #keep going until get to the goal state while state != GOAL: next_state = step(state, action) if np.random.binomial(1, EPSILON) == 1: next_action = np.random.choice(ACTIONS) else: values = q_val[next_state[0], next_state[1], :] next_action = np.random.choice(np.where(values == np.max(values))[0]) # Sarsa update q_val[state[0], state[1], action] += \ ALPHA * (REWARD + q_val[next_state[0], next_state[1], next_action] - q_val[state[0], state[1], action]) state = next_state action = next_action timesteps += 1 return timesteps def figure_6_3(): ''' 书中的展示方式很奇怪,图片的纵轴是episode,横轴是每个episode所用step的累积求和,因为越到后面, 策略会逐渐收敛到最优,所以每一个episode所用的步数就会逐渐下降并稳定在一个值,所以整个曲线表现出来就是 斜率逐渐上升,其实横过来看就是增长趋于平缓,但是就是挺奇怪的 ''' q_value = np.zeros((WORLD_HEIGHT, WORLD_WIDTH, len(ACTIONS))) episode_limit = 170 steps = [] ep = 0 while ep < episode_limit: steps.append(episode(q_value)) ep += 1 steps =
np.cumsum(steps)
numpy.cumsum
__doc__ = "a module that houses the priors for our inferences" __author__ = "<EMAIL>" #------------------------------------------------- import numpy as np import healpy as hp ### non-standard libraries from gpr_isotropy.utils import (TWOPI, LOG2PI) #------------------------------------------------- class RoPrior(object): """ general class representing a prior """ _allowed_params = sorted([]) def __init__(self, nside, **params): self._nside = nside self._npix = hp.nside2npix(nside) self.params = params ### automatically checks that these are the correct params @property def nside(self): return self._nside @property def npix(self): return self._npix @property def params(self): return self._params @params.setter def params(self, new_params): assert sorted(new_params.keys())==sorted(self._allowed_params), 'new parameters do not match allowed_params=%s'%(' '.join(self._allowed_params)) self._params = new_params def __call__(self, *args): return 0. #------------------------------------------------- ### priors for Ro class PosSemiDef(RoPrior): """ require Ro to be positive semi-definite (each element must be >= 0) """ def __call__(self, Ro): return 0. if np.all(Ro>=0) else -np.infty class LogNorm(RoPrior): """ log-normal prior for Ro, each direction separately assumes len(Ro) = len(mean) = len(stdv) but can also handle cases where mean is a float, int or var is a float, int in which case it applies the same prior to all directions """ _allowed_params = sorted(['mean', 'var']) def __init__(self, nside, **params): RoPrior.__init__(self, nside, **params) mean = self.params['mean'] var = self.params['var'] assert len(mean)==self._npix or isinstance(mean, (float, int)), 'bad shape for mean' if isinstance(var, (float, int)): self._norm = 0.5*N*
np.log(twopi)
numpy.log
#!/usr/bin/env python # pipescaler/core/misc.py # # Copyright (C) 2020-2021 <NAME> # All rights reserved. # # This software may be modified and distributed under the terms of the # BSD license. from __future__ import annotations from os import listdir from os.path import basename, splitext from typing import List, Optional, Set, Tuple, Union import numpy as np from PIL import Image from scipy.ndimage import convolve from pipescaler.common import DirectoryNotFoundError, NotAFileError, validate_input_path from pipescaler.core.exceptions import UnsupportedImageModeError def remove_palette_from_image(image: Image.Image): palette = np.reshape(image.getpalette(), (-1, 3)) non_grayscale_colors = set( np.where( np.logical_or( palette[:, 0] != palette[:, 1], palette[:, 1] != palette[:, 2] ) )[0] ) if "transparency" in image.info: datum =
np.array(image)
numpy.array
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """CSR sparse matrix tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import sparse from tensorflow.core.framework import tensor_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import map_fn from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging CPU = "/device:CPU:0" GPU = "/device:GPU:0" def dense_to_csr_sparse_matrix(dense): dense_t = ops.convert_to_tensor(dense) locs = array_ops.stop_gradient(array_ops.where(math_ops.abs(dense_t) > 0)) return sparse_csr_matrix_ops.dense_to_csr_sparse_matrix(dense_t, locs) def _swap(a, i, j): a[i], a[j] = a[j], a[i] def twist_matrix(matrix, permutation_indices): """Permute the rows and columns of a 2D or (batched) 3D Tensor.""" # Shuffle the rows and columns with the same permutation. if matrix.shape.ndims == 2: # Invert the permutation since `tf.gather` and `tf.gather_nd` need the # mapping from each index `i` to the index that maps to `i`. permutation_indices_inv = array_ops.invert_permutation(permutation_indices) matrix = array_ops.gather(matrix, permutation_indices_inv, axis=0) matrix = array_ops.gather(matrix, permutation_indices_inv, axis=1) elif matrix.shape.ndims == 3: permutation_indices_inv = map_fn.map_fn(array_ops.invert_permutation, permutation_indices) # For 3D Tensors, it's easy to shuffle the rows but not the columns. We # permute the rows, transpose, permute the rows again, and transpose back. batch_size = matrix.shape[0] batch_indices = array_ops.broadcast_to( math_ops.range(batch_size)[:, None], permutation_indices.shape) for _ in range(2): matrix = array_ops.gather_nd( matrix, array_ops.stack([batch_indices, permutation_indices_inv], axis=-1)) # Transpose the matrix, or equivalently, swap dimensions 1 and 2. matrix = array_ops.transpose(matrix, perm=[0, 2, 1]) else: raise ValueError("Input matrix must have rank 2 or 3. Got: {}".format( matrix.shape.ndims)) return matrix class CSRSparseMatrixOpsTest(test.TestCase): @classmethod def setUpClass(cls): # pylint: disable=g-missing-super-call cls._gpu_available = test_util.is_gpu_available() # TODO(ebrevdo): This will work once we find a way to get rendezvous # working for CSRSparseMatrix and can remove the HostMemory # annotations for the other ops. @test_util.run_in_graph_and_eager_modes def DISABLEDtestFromProto(self): if not self._gpu_available: return a_indices = np.array([[0, 0], [2, 3]]) a_values = np.asarray([1.0, 5.0], dtype=np.float32) a_dense_shape = np.asarray([5, 6], dtype=np.int64) a_sparse_mat = sparse.coo_matrix((a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_csr_mat = a_sparse_mat.tocsr() a_col_inds = a_csr_mat.indices a_row_ptrs = a_csr_mat.indptr # Format of SparseMatrix: # type_name == "tensorflow::CSRSparseMatrix" # metadata == b (validated) # tensors == [dense_shape, row_ptrs, col_indices, values] dense_shape_proto = tensor_util.make_tensor_proto(a_dense_shape) row_ptrs_proto = tensor_util.make_tensor_proto(a_row_ptrs) col_inds_proto = tensor_util.make_tensor_proto(a_col_inds) values_proto = tensor_util.make_tensor_proto(a_values) variant_tensor_data = tensor_pb2.VariantTensorDataProto( type_name="tensorflow::CSRSparseMatrix", metadata=np.asarray(True).tobytes(), tensors=[ dense_shape_proto, row_ptrs_proto, col_inds_proto, values_proto ]) tensor_proto = tensor_pb2.TensorProto( dtype=dtypes.variant.as_datatype_enum, tensor_shape=tensor_shape.TensorShape([]).as_proto()) tensor_proto.variant_val.extend([variant_tensor_data]) a_sm = constant_op.constant(tensor_proto) a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( a_sm, type=dtypes.float32) self.evaluate(a_rt) @test_util.run_in_graph_and_eager_modes def testSparseTensorConversion(self): a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]]) a_values = [1.0, 5.0, -1.0, -2.0] a_dense_shape = [5, 6] a_sparse_mat = sparse.coo_matrix((a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_csr_mat = a_sparse_mat.tocsr() # Convert 2D SparseTensor to CSR Matrix a_st = sparse_tensor.SparseTensor(a_indices, a_values, a_dense_shape) a_st = math_ops.cast(a_st, dtypes.float32) a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( a_st.indices, a_st.values, a_st.dense_shape) # Get row indices and columns for batch 0. a_sm_row_ptrs, a_sm_col_inds, a_sm_values = ( sparse_csr_matrix_ops.csr_sparse_matrix_components( a_sm, 0, type=a_st.dtype)) a_sm_row_ptrs_values, a_sm_col_inds_values, a_sm_values_values = ( self.evaluate((a_sm_row_ptrs, a_sm_col_inds, a_sm_values))) self.assertAllEqual(a_csr_mat.indices, a_sm_col_inds_values) self.assertAllEqual(a_csr_mat.indptr, a_sm_row_ptrs_values) self.assertAllClose(a_values, a_sm_values_values) # Convert CSR Matrix to 2D SparseTensor a_st_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_sparse_tensor( a_sm, type=a_st.dtype) a_st_rt_value = self.evaluate(a_st_rt) self.assertAllEqual(a_indices, a_st_rt_value.indices) self.assertAllClose(a_values, a_st_rt_value.values) self.assertAllEqual(a_dense_shape, a_st_rt_value.dense_shape) # TODO(b/139491352): Add handle_data propagation to array_ops.identity. @test_util.run_deprecated_v1 def testCSRSparseMatrixResourceVariable(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] a_mats = sparsify(np.random.randn(*dense_shape)).astype(np.float32) a_sm = dense_to_csr_sparse_matrix(a_mats) with ops.device("/gpu:0"): v = variable_scope.get_variable("sm", initializer=a_sm, use_resource=True) v_id = array_ops.identity(v) self.assertEqual( sparse_csr_matrix_ops.dense_shape_and_type(v_id).shape, a_mats.shape) a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( v, type=dtypes.float32) v_reassign = state_ops.assign(v, v_id).op with self.assertRaisesOpError("Error while reading resource variable sm"): self.evaluate(a_rt) self.evaluate(v.initializer) a_rt_value = self.evaluate(a_rt) self.assertAllClose(a_mats, a_rt_value) self.evaluate(v_reassign) a_rt_reassigned_value = self.evaluate(a_rt) self.assertAllClose(a_mats, a_rt_reassigned_value) @test_util.run_in_graph_and_eager_modes def testBatchSparseTensorConversion(self): a_indices = np.array([[0, 0, 0], [0, 2, 3], [2, 0, 1]]) a_values = [1.0, 5.0, 6.0] a_dense_shape = [3, 5, 6] a_sparse_mats = [ sparse.coo_matrix(([1.0, 5.0], ([0, 2], [0, 3])), shape=a_dense_shape[1:]), sparse.coo_matrix(([], ([], [])), shape=a_dense_shape[1:]), sparse.coo_matrix(([6.0], ([0], [1])), shape=a_dense_shape[1:]) ] a_csr_mats = [m.tocsr() for m in a_sparse_mats] # Convert 3D SparseTensor to CSR Matrix a_st = sparse_tensor.SparseTensor(a_indices, a_values, a_dense_shape) a_st = math_ops.cast(a_st, dtypes.float32) a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( a_st.indices, a_st.values, a_st.dense_shape) # Get row indices and columns for batches. a_sm_components = [ sparse_csr_matrix_ops.csr_sparse_matrix_components( a_sm, i, type=a_st.dtype) for i in range(3) ] a_sm_values = self.evaluate(a_sm_components) for i, (a_sm_val, a_csr_mat) in enumerate(zip(a_sm_values, a_csr_mats)): tf_logging.info("Comparing batch %d" % i) self.assertAllEqual(a_csr_mat.indptr, a_sm_val.row_ptrs) self.assertAllEqual(a_csr_mat.indices, a_sm_val.col_inds) self.assertAllClose(a_csr_mat.data, a_sm_val.values) # Convert CSR batched Matrix to 3D SparseTensor a_st_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_sparse_tensor( a_sm, type=a_st.dtype) a_st_rt_value = self.evaluate(a_st_rt) self.assertAllEqual(a_indices, a_st_rt_value.indices) self.assertAllClose(a_values, a_st_rt_value.values) self.assertAllEqual(a_dense_shape, a_st_rt_value.dense_shape) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseTensorConversion(self): # Test two sets of conversions to check behavior of the ops in a # concurrent environment (parallel executions of the ST -> SM ops). sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] mats = [ sparsify(np.random.randn(*dense_shape)).astype(np.float32) for _ in range(2) ] csr_mats = [list(map(sparse.csr_matrix, mat)) for mat in mats] mats_t = [ops.convert_to_tensor(mat) for mat in mats] mats_locs = [array_ops.where(mat_t > 0) for mat_t in mats_t] sparse_tensors = list() for mat_t, mat_loc in zip(mats_t, mats_locs): sparse_tensors.append( sparse_tensor.SparseTensor(mat_loc, array_ops.gather_nd(mat_t, mat_loc), dense_shape)) sparse_matrices = [ sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( st.indices, st.values, st.dense_shape) for st in sparse_tensors ] sm_nnz = [ sparse_csr_matrix_ops.sparse_matrix_nnz(sm) for sm in sparse_matrices ] # Get row indices and columns for batches. sm_components = list() for sm in sparse_matrices: sm_components.append([ sparse_csr_matrix_ops.csr_sparse_matrix_components( sm, i, type=dtypes.float32) for i in range(dense_shape[0]) ]) sm_nnz_values, sm_values = self.evaluate((sm_nnz, sm_components)) for i, (sm_values_i, csr_mats_i) in enumerate(zip(sm_values, csr_mats)): for b, (sm_val, csr_mat) in enumerate(zip(sm_values_i, csr_mats_i)): tf_logging.info("Comparing matrix %d batch %d" % (i, b)) self.assertEqual(csr_mat.nnz, sm_nnz_values[i][b]) self.assertAllEqual(csr_mat.indptr, sm_val.row_ptrs) self.assertAllEqual(csr_mat.indices, sm_val.col_inds) self.assertAllClose(csr_mat.data, sm_val.values) # Convert CSR batched Matrix to 3D SparseTensor st_rt = [ sparse_csr_matrix_ops.csr_sparse_matrix_to_sparse_tensor( sm, type=dtypes.float32) for sm in sparse_matrices ] st_values, st_rt_values = self.evaluate((sparse_tensors, st_rt)) for (st_value, st_rt_value) in zip(st_values, st_rt_values): self.assertAllEqual(st_value.indices, st_rt_value.indices) self.assertAllClose(st_value.values, st_rt_value.values) self.assertAllEqual(dense_shape, st_rt_value.dense_shape) @test_util.run_in_graph_and_eager_modes def testDenseConversion(self): a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]]) a_values = np.array([1.0, 5.0, -1.0, -2.0]).astype(np.float32) a_dense_shape = [5, 6] a_sparse_mat = sparse.coo_matrix((a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_csr_mat = a_sparse_mat.tocsr() a_dense = a_sparse_mat.todense() # Convert 2D SparseTensor to CSR Matrix a_sm = dense_to_csr_sparse_matrix(a_dense) # Get row indices and columns for batch 0. a_sm_row_ptrs, a_sm_col_inds, a_sm_values = ( sparse_csr_matrix_ops.csr_sparse_matrix_components( a_sm, 0, type=dtypes.float32)) a_sm_row_ptrs_values, a_sm_col_inds_values, a_sm_values_values = ( self.evaluate((a_sm_row_ptrs, a_sm_col_inds, a_sm_values))) self.assertAllEqual(a_csr_mat.indices, a_sm_col_inds_values) self.assertAllEqual(a_csr_mat.indptr, a_sm_row_ptrs_values) self.assertAllClose(a_values, a_sm_values_values) # Convert CSR Matrix to 2D dense matrix a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( a_sm, dtypes.float32) a_rt_value = self.evaluate(a_rt) self.assertAllEqual(a_dense, a_rt_value) @test_util.run_in_graph_and_eager_modes def testBatchDenseConversion(self): a_dense_shape = [4, 5, 6] a_sparse_mats = [ sparse.coo_matrix(([1.0, 5.0], ([0, 2], [0, 3])), shape=a_dense_shape[1:]), sparse.coo_matrix(([], ([], [])), shape=a_dense_shape[1:]), sparse.coo_matrix(([6.0], ([0], [1])), shape=a_dense_shape[1:]), sparse.coo_matrix(([], ([], [])), shape=a_dense_shape[1:]), ] a_csr_mats = [m.tocsr() for m in a_sparse_mats] a_dense = np.asarray([m.todense() for m in a_sparse_mats], dtype=np.float32) # Convert 3D SparseTensor to CSR Matrix a_sm = dense_to_csr_sparse_matrix(a_dense) # Get row indices and columns for batches. a_sm_components = [ sparse_csr_matrix_ops.csr_sparse_matrix_components( a_sm, i, type=dtypes.float32) for i in range(3) ] a_sm_values = self.evaluate(a_sm_components) for i, (a_sm_val, a_csr_mat) in enumerate(zip(a_sm_values, a_csr_mats)): tf_logging.info("Comparing batch %d" % i) self.assertAllEqual(a_csr_mat.indptr, a_sm_val.row_ptrs) self.assertAllEqual(a_csr_mat.indices, a_sm_val.col_inds) self.assertAllClose(a_csr_mat.data, a_sm_val.values) # Convert CSR batched Matrix to 3D SparseTensor a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( a_sm, type=dtypes.float32) a_rt_value = self.evaluate(a_rt) self.assertAllEqual(a_dense, a_rt_value) @test_util.run_in_graph_and_eager_modes def testLargeBatchDenseConversion(self): # Test two sets of conversions to check behavior of the ops in a # concurrent environment (parallel executions of the ST -> SM # ops). sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] mats = [ sparsify(np.random.randn(*dense_shape)).astype(np.float32) for _ in range(2) ] csr_mats = [[sparse.csr_matrix(m) for m in mat] for mat in mats] mats_t = [ops.convert_to_tensor(mat) for mat in mats] mats_locs = [array_ops.where(mat_t > 0) for mat_t in mats_t] sparse_matrices = [ sparse_csr_matrix_ops.dense_to_csr_sparse_matrix(mat, mat_loc) for (mat, mat_loc) in zip(mats_t, mats_locs) ] sm_nnz = [ sparse_csr_matrix_ops.sparse_matrix_nnz(sm) for sm in sparse_matrices ] # Get row indices and columns for batches. sm_components = [] for sm in sparse_matrices: sm_components.append([ sparse_csr_matrix_ops.csr_sparse_matrix_components( sm, i, type=dtypes.float32) for i in range(dense_shape[0]) ]) sm_nnz_values, sm_values = self.evaluate((sm_nnz, sm_components)) for i, (sm_values_i, csr_mats_i) in enumerate(zip(sm_values, csr_mats)): for b, (sm_val, csr_mat) in enumerate(zip(sm_values_i, csr_mats_i)): tf_logging.info("Comparing matrix %d batch %d" % (i, b)) self.assertEqual(csr_mat.nnz, sm_nnz_values[i][b]) self.assertAllEqual(csr_mat.indptr, sm_val.row_ptrs) self.assertAllEqual(csr_mat.indices, sm_val.col_inds) self.assertAllClose(csr_mat.data, sm_val.values) # Convert CSR batched Matrix to 3D dense tensor sm_rt = [ sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( sm, type=dtypes.float32) for sm in sparse_matrices ] sm_rt_values = self.evaluate(sm_rt) for (mat, sm_rt_value) in zip(mats, sm_rt_values): self.assertAllEqual(mat, sm_rt_value) @test_util.run_in_graph_and_eager_modes def testSparseMatrixAdd(self): if not self._gpu_available: return if test.is_built_with_rocm(): self.skipTest("sparse-matrix-add op not supported on ROCm") a_indices = np.array([[0, 0], [2, 3]]) a_values = np.array([1.0, 5.0]).astype(np.float32) a_dense_shape = [5, 6] a_sparse_mat = sparse.coo_matrix((a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() b_indices = np.array([[1, 0], [1, 4], [2, 3], [4, 1]]) b_values = np.array([1.0, 0.5, -5.0, 2.0]).astype(np.float32) b_dense_shape = [5, 6] b_sparse_mat = sparse.coo_matrix((b_values, (b_indices[:, 0], b_indices[:, 1])), shape=b_dense_shape) b_dense = b_sparse_mat.todense() for (alpha, beta) in [(1.0, 1.0), (1.0, -1.0), (0.25, 0.5)]: a_sum_b_sparse_mat = alpha * a_sparse_mat + beta * b_sparse_mat # Convert 2D SparseTensor to CSR Matrix a_sm = dense_to_csr_sparse_matrix(a_dense) b_sm = dense_to_csr_sparse_matrix(b_dense) alpha = np.float32(alpha) beta = np.float32(beta) c_sm = sparse_csr_matrix_ops.sparse_matrix_add( a_sm, b_sm, alpha=alpha, beta=beta) c_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_sm, dtypes.float32) c_dense_value = self.evaluate(c_dense) self.assertAllClose(a_sum_b_sparse_mat.todense(), c_dense_value) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixAdd(self): if not self._gpu_available: return if test.is_built_with_rocm(): self.skipTest("sparse-matrix-add op not supported on ROCm") sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] a_mats = sparsify(np.random.randn(*dense_shape)).astype(np.float32) b_mats = sparsify(np.random.randn(*dense_shape)).astype(np.float32) for (alpha, beta) in [(1.0, 1.0), (1.0, -1.0), (0.25, 0.5)]: tf_logging.info("testLargeBatchSparseMatrixAdd, comparing " "alpha, beta (%d, %d)" % (alpha, beta)) a_sm = dense_to_csr_sparse_matrix(a_mats) b_sm = dense_to_csr_sparse_matrix(b_mats) alpha = np.float32(alpha) beta = np.float32(beta) c_sm = sparse_csr_matrix_ops.sparse_matrix_add( a_sm, b_sm, alpha=alpha, beta=beta) c_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_sm, dtypes.float32) c_dense_value = self.evaluate(c_dense) self.assertAllClose(c_dense_value, alpha * a_mats + beta * b_mats) @test_util.run_in_graph_and_eager_modes def testSparseMatrixMatMul(self): for shapes in [[(5, 6), (6, 1)], [(5, 6), (6, 2)]]: a_indices = np.array([[0, 0], [2, 3]]) a_values = np.array([1.0, 5.0]).astype(np.float32) a_dense_shape = shapes[0] a_sparse_mat = sparse.coo_matrix((a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() # Will multiply sparse a (shape=shapes[0]) by dense b (shape=shapes[1]). b = np.random.randn(*shapes[1]).astype(np.float32) a_sm = dense_to_csr_sparse_matrix(a_dense) c = sparse_csr_matrix_ops.sparse_matrix_mat_mul(a=a_sm, b=b) c_value = self.evaluate(c) expected_c_value = a_sparse_mat.dot(b) self.assertAllClose(expected_c_value, c_value) @test_util.run_in_graph_and_eager_modes def testSparseMatrixMatMulConjugateOutput(self): for shapes in [[(5, 6), (6, 1)], [(5, 6), (6, 2)]]: a_indices = np.array([[0, 0], [2, 3]]) a_values = np.array([1.0 + 1.j, 5.0 - 2.j]).astype(np.complex64) a_dense_shape = shapes[0] a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() # Will multiply sparse a (shape=shapes[0]) by dense b (shape=shapes[1]). b = np.random.randn(*shapes[1]).astype(np.complex64) a_sm = dense_to_csr_sparse_matrix(a_dense) c = sparse_csr_matrix_ops.sparse_matrix_mat_mul( a=a_sm, b=b, conjugate_output=True) c_value = self.evaluate(c) expected_c_value = self.evaluate( math_ops.conj(test_util.matmul_without_tf32(a_dense, b))) self.assertAllClose(expected_c_value, c_value) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixMatMul(self): dtypes_to_test = [np.float32, np.complex64] sparsify = lambda m: m * (m > 0) for dtype in dtypes_to_test: for (transpose_a, transpose_b) in ((False, False), (False, True), (True, False), (True, True)): for (adjoint_a, adjoint_b) in ((False, False), (False, True), (True, False), (True, True)): if (transpose_a and adjoint_a) or (transpose_b and adjoint_b): continue for shapes in [[[53, 127, 65], [53, 65, 1]], [[53, 127, 1], [53, 1, 65]], [[53, 127, 65], [53, 65, 127]]]: a_dense_shape = shapes[0] b_dense_shape = shapes[1] if transpose_a or adjoint_a: _swap(a_dense_shape, -2, -1) if transpose_b or adjoint_b: _swap(b_dense_shape, -2, -1) a_mats = sparsify( (np.random.randn(*a_dense_shape) + 1.j * np.random.randn(*a_dense_shape))).astype(dtype) b_mats = (np.random.randn(*b_dense_shape) + 1.j * np.random.randn(*b_dense_shape)).astype(dtype) tf_logging.info( "testLargeBatchSparseMatrixMatMul transpose_a %s transpose_b " "%s adjoint_a %s adjoint_b %s" % (transpose_a, transpose_b, adjoint_a, adjoint_b)) a_sm = dense_to_csr_sparse_matrix(a_mats) c_t = sparse_csr_matrix_ops.sparse_matrix_mat_mul( a_sm, b_mats, transpose_output=False, conjugate_output=False, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b) c_dense_t = test_util.matmul_without_tf32( a_mats, b_mats, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b) self.assertAllEqual(c_dense_t.shape, c_t.shape) c_t_value, c_dense_t_value = self.evaluate((c_t, c_dense_t)) self.assertAllClose( c_t_value, c_dense_t_value, rtol=1e-6, atol=2e-5) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixMatMulTransposed(self): dtypes_to_test = [np.float32] if not test.is_built_with_rocm(): # complex types is not supported on the ROCm platform dtypes_to_test += [np.complex64] if test.is_built_with_rocm(): # TODO(rocm): fix this # This test is currently failing on the ROCm platform # Ren-enable it once the fix is available self.skipTest("hipSPARSE all failure on the ROCm platform") sparsify = lambda m: m * (m > 0) for dtype in dtypes_to_test: for (transpose_a, transpose_b) in ((False, False), (False, True), (True, False), (True, True)): for (adjoint_a, adjoint_b) in ((False, False), (False, True), (True, False), (True, True)): if (transpose_a and adjoint_a) or (transpose_b and adjoint_b): continue for shapes in [[[53, 127, 65], [53, 65, 1]], [[53, 127, 1], [53, 1, 65]], [[53, 127, 65], [53, 65, 127]]]: a_dense_shape = shapes[0] b_dense_shape = shapes[1] if transpose_a or adjoint_a: _swap(a_dense_shape, -2, -1) if transpose_b or adjoint_b: _swap(b_dense_shape, -2, -1) a_mats = sparsify( (np.random.randn(*a_dense_shape) + 1.j * np.random.randn(*a_dense_shape))).astype(dtype) b_mats = (np.random.randn(*b_dense_shape) + 1.j * np.random.randn(*b_dense_shape)).astype(dtype) tf_logging.info( "testLargeBatchSparseMatrixMatMul transpose_a %s transpose_b " "%s adjoint_a %s adjoint_b %s" % (transpose_a, transpose_b, adjoint_a, adjoint_b)) a_sm = dense_to_csr_sparse_matrix(a_mats) c_t = sparse_csr_matrix_ops.sparse_matrix_mat_mul( a_sm, b_mats, transpose_output=True, conjugate_output=False, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b) # Example: t(adj(a) . b) = t(b) . conj(a) c_dense_t = test_util.matmul_without_tf32( math_ops.conj(b_mats) if adjoint_b else b_mats, math_ops.conj(a_mats) if adjoint_a else a_mats, transpose_a=not (transpose_b or adjoint_b), transpose_b=not (transpose_a or adjoint_a), adjoint_a=False, adjoint_b=False) self.assertAllEqual(c_t.shape, c_dense_t.shape) c_t_value, c_dense_t_value = self.evaluate((c_t, c_dense_t)) self.assertAllClose( c_t_value, c_dense_t_value, rtol=1e-6, atol=2e-5) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixMatMulConjugate(self): if test.is_built_with_rocm(): # complex types are not yet supported on the ROCm platform self.skipTest("complex type not supported on ROCm") sparsify = lambda m: m * (m > 0) a_dense_shape = [53, 65, 127] b_dense_shape = [53, 127, 67] a_mats = sparsify( (np.random.randn(*a_dense_shape) + 1.j * np.random.randn(*a_dense_shape))).astype(np.complex64) b_mats = (np.random.randn(*b_dense_shape) + 1.j * np.random.randn(*b_dense_shape)).astype(np.complex64) a_sm = dense_to_csr_sparse_matrix(a_mats) c_t = sparse_csr_matrix_ops.sparse_matrix_mat_mul( a_sm, b_mats, conjugate_output=True) c_dense_t = math_ops.conj(test_util.matmul_without_tf32(a_mats, b_mats)) self.assertAllEqual(c_t.shape, c_dense_t.shape) c_t_value, c_dense_t_value = self.evaluate((c_t, c_dense_t)) self.assertAllClose(c_t_value, c_dense_t_value, atol=1e-5, rtol=1e-5) @test_util.run_in_graph_and_eager_modes def testSparseMatrixSparseMatMul(self): a_indices = np.array([[0, 0], [2, 3]]) a_values = np.array([1.0, 5.0]).astype(np.float32) a_dense_shape = [5, 6] a_sparse_mat = sparse.coo_matrix((a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() b_indices = np.array([[0, 0], [3, 0], [3, 1]]) b_values = np.array([2.0, 7.0, 8.0]).astype(np.float32) b_dense_shape = [6, 7] b_sparse_mat = sparse.coo_matrix((b_values, (b_indices[:, 0], b_indices[:, 1])), shape=b_dense_shape) b_dense = b_sparse_mat.todense() a_sm = dense_to_csr_sparse_matrix(a_dense) b_sm = dense_to_csr_sparse_matrix(b_dense) c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul( a=a_sm, b=b_sm, type=dtypes.float32) c_sm_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_sm, dtypes.float32) c_sm_dense_value = self.evaluate(c_sm_dense) expected_c_value = a_sparse_mat.dot(b_sparse_mat).todense() self.assertAllClose(expected_c_value, c_sm_dense_value) @test_util.run_in_graph_and_eager_modes def testSparseMatrixSparseMatMul_NumericZerosNotPruned(self): # Tests that numeric zeros appearing from the sparse-sparse matrix # multiplication are not pruned from the sparse structural a_indices =
np.array([[0, 0], [0, 2]])
numpy.array
from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt from scipy.integrate import trapz import multiprocessing as mp import h5py def airy_func(wavelength, cos_th, d, F): Q = (2. * F / np.pi)**2 airy = 1.0 / (1.0 + Q * np.sin(np.pi * 2.e6 * d * cos_th / wavelength)**2) return airy def doppler_calc(w0, mu, temp, v): sigma = w0 * 3.2765e-5 * np.sqrt(temp / mu) w = w0 * (1.0 - 3.336e-9 * v) print(w, sigma, w0, mu, temp, v) return sigma, w def gaussian(wavelength, w, sigma, amp=1.): norm = 1. / (sigma * np.sqrt(2.*np.pi)) exp = np.exp(-0.5 * (wavelength-w)**2 / sigma**2) return amp * norm * exp def lorentzian(wavelength, w, gamma, amp=1.): A = (amp * 0.5 * gamma) / np.pi return A / ((wavelength - w)**2 + (0.5 * gamma)**2) def forward_model(r, L, d, F, w0, mu, amp, temp, v, nlambda=1024, sm_ang=False, nprocs=6): sm_ang = False # you are never coming back! if type(w0) in [list, tuple]: if not all([type(x) in [list,tuple] for x in [mu, amp, temp, v]]): raise ValueError('need to have a list for all spec params') if not all([len(x) == len(w0) for x in [mu, amp, temp, v]]): raise ValueError('spec params are not all the same length') sigma = [] w = [] for i,ww in enumerate(w0): s, l = doppler_calc(ww, mu[i], temp[i], v[i]) sigma.append(s) w.append(l) if nprocs > 1: wavelength = np.linspace(min(w) - 10.*max(sigma), max(w) + 10.*max(sigma), nlambda) else: wavelength = np.linspace(min(w) - 10.*max(sigma), max(w) + 10.*max(sigma), nlambda)[:,np.newaxis] spec = 0.0 for idx,ww in enumerate(w): spec += gaussian(wavelength, ww, sigma[idx], amp[idx]) else: if not all([type(x) not in [list,tuple] for x in [mu, amp, temp, v]]): raise ValueError('need to have a list or not for all spec params') sigma, w = doppler_calc(w0, mu, temp, v) if nprocs > 1: wavelength =
np.linspace(w - 10.*sigma, w + 10.*sigma, nlambda)
numpy.linspace
# coding: utf8 import torch import numpy as np import os import warnings import pandas as pd from time import time import wandb from clinicadl.tools.deep_learning.utils import timeSince from clinicadl.tools.deep_learning.iotools import check_and_clean from clinicadl.tools.deep_learning import EarlyStopping, save_checkpoint from sklearn import metrics ##################### # CNN train / test # ##################### def train(model, train_loader, valid_loader, criterion, optimizer, resume, log_dir, model_dir, options, fi=None, cnn_index=None, num_cnn=None, train_begin_time=None, lr_scheduler=None): """ Function used to train a CNN. The best model and checkpoint will be found in the 'best_model_dir' of options.output_dir. Args: model: (Module) CNN to be trained train_loader: (DataLoader) wrapper of the training dataset valid_loader: (DataLoader) wrapper of the validation dataset criterion: (loss) function to calculate the loss optimizer: (torch.optim) optimizer linked to model parameters resume: (bool) if True, a begun job is resumed log_dir: (str) path to the folder containing the logs model_dir: (str) path to the folder containing the models weights and biases options: (Namespace) ensemble of other options given to the main script. """ from tensorboardX import SummaryWriter from time import time import wandb if not resume: check_and_clean(model_dir) check_and_clean(log_dir) # Create writers writer_train = SummaryWriter(os.path.join(log_dir, 'train')) writer_valid = SummaryWriter(os.path.join(log_dir, 'validation')) # Initialize variables best_valid_accuracy = 0.0 best_valid_loss = np.inf epoch = options.beginning_epoch model.train() # set the module to training mode early_stopping = EarlyStopping('min', min_delta=options.tolerance, patience=options.patience) mean_loss_valid = None while epoch < options.epochs and not early_stopping.step(mean_loss_valid): if fi is not None and options.n_splits is not None: print("[%s]: At (%d/%d) fold (%d/%d) epoch." % ( timeSince(train_begin_time), fi, options.n_splits, epoch, options.epochs)) else: print("[%s]: At (%d/%d) epoch." % (timeSince(train_begin_time), epoch, options.epochs)) model.zero_grad() evaluation_flag = True step_flag = True tend = time() total_time = 0 num_steps = len(train_loader) for i, data in enumerate(train_loader, 0): t0 = time() total_time = total_time + t0 - tend if options.gpu: device = torch.device("cuda:{}".format(options.device)) imgs, labels, participant_id, session_id = data['image'].to(device), data['label'].to(device), data[ 'participant_id'], data['session_id'] if options.model == 'ROI_GCN': all_image = data['all_image'].to(device) else: imgs, labels, participant_id, session_id = data['image'], data['label'], data['participant_id'], data[ 'session_id'] if options.model == 'ROI_GCN': all_image = data['all_image'] if options.model == 'ROI_GCN': # roi_image = data['roi_image'].to(device) train_output = model(imgs, all_image, label_list=labels, id=participant_id, session=session_id, fi=fi, epoch=epoch) elif 'gcn' in options.model: # roi_image = data['roi_image'].to(device) train_output = model(imgs, label_list=labels, id=participant_id, session=session_id, fi=fi, epoch=epoch) else: train_output = model(imgs) # train_output = model(imgs) _, predict_batch = train_output.topk(1) loss = criterion(train_output, labels) # Back propagation loss.backward() # Clips gradient if options.clip_grad: grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), options.clip_grad) else: grad_norm = get_grad_norm(model.parameters()) # for name, param in model.named_parameters(): # if param.requires_grad: # if param.grad is not None: # pass # # print("{}, gradient: {}".format(name, param.grad.mean())) # else: # print("{} has not gradient".format(name)) # del imgs, labels if (i + 1) % options.accumulation_steps == 0: step_flag = False optimizer.step() optimizer.zero_grad() lr_scheduler.step_update(epoch * num_steps + i) wandb.log({'grad_norm': grad_norm}) del loss # Evaluate the model only when no gradients are accumulated if options.evaluation_steps != 0 and (i + 1) % options.evaluation_steps == 0: evaluation_flag = False print('Iteration %d' % i) _, results_train = test(model, train_loader, options.gpu, criterion, device_index=options.device, train_begin_time=train_begin_time) mean_loss_train = results_train["total_loss"] / (len(train_loader) * train_loader.batch_size) _, results_valid = test(model, valid_loader, options.gpu, criterion, device_index=options.device, train_begin_time=train_begin_time) mean_loss_valid = results_valid["total_loss"] / (len(valid_loader) * valid_loader.batch_size) model.train() global_step = i + epoch * len(train_loader) if cnn_index is None: writer_train.add_scalar('balanced_accuracy', results_train["balanced_accuracy"], global_step) writer_train.add_scalar('loss', mean_loss_train, global_step) writer_valid.add_scalar('balanced_accuracy', results_valid["balanced_accuracy"], global_step) writer_valid.add_scalar('loss', mean_loss_valid, global_step) wandb.log( {'train_balanced_accuracy': results_train["balanced_accuracy"], 'train_loss': mean_loss_train, 'valid_balanced_accuracy': results_valid["balanced_accuracy"], 'valid_loss': mean_loss_valid, 'global_step': global_step}) print("[%s]: %s level training accuracy is %f at the end of iteration %d - fake mri count: %d" % (timeSince(train_begin_time), options.mode, results_train["balanced_accuracy"], i, data['num_fake_mri'])) print("[%s]: %s level validation accuracy is %f at the end of iteration %d - fake mri count: %d" % (timeSince(train_begin_time), options.mode, results_valid["balanced_accuracy"], i, data['num_fake_mri'])) else: writer_train.add_scalar('{}_model_balanced_accuracy'.format(cnn_index), results_train["balanced_accuracy"], global_step) writer_train.add_scalar('{}_model_loss'.format(cnn_index), mean_loss_train, global_step) writer_valid.add_scalar('{}_model_balanced_accuracy'.format(cnn_index), results_valid["balanced_accuracy"], global_step) writer_valid.add_scalar('{}_model_loss'.format(cnn_index), mean_loss_valid, global_step) wandb.log( {'{}_model_train_balanced_accuracy'.format(cnn_index): results_train["balanced_accuracy"], '{}_model_train_loss'.format(cnn_index): mean_loss_train, '{}_model_valid_balanced_accuracy'.format(cnn_index): results_valid["balanced_accuracy"], '{}_model_valid_loss'.format(cnn_index): mean_loss_valid, 'global_step': global_step}) print( "[{}]: ({}/{}) model {} level training accuracy is {} at the end of iteration {}-fake mri count:{}" .format(timeSince(train_begin_time), cnn_index, num_cnn, options.mode, results_train["balanced_accuracy"], i, data['num_fake_mri'])) print( "[{}]: ({}/{}) model {} level validation accuracy is {} at the end of iteration {}-fake mri count:{}" .format(timeSince(train_begin_time), cnn_index, num_cnn, options.mode, results_valid["balanced_accuracy"], i, data['num_fake_mri'])) tend = time() print('[{}]: Mean time per batch loading (train):'.format(timeSince(train_begin_time)), total_time / len(train_loader) * train_loader.batch_size) learn_rate = optimizer.param_groups[0]['lr'] print('lr:{}'.format(learn_rate)) wandb.log({'lr': learn_rate}) # If no step has been performed, raise Exception if step_flag: raise Exception('The model has not been updated once in the epoch. The accumulation step may be too large.') # If no evaluation has been performed, warn the user elif evaluation_flag and options.evaluation_steps != 0: warnings.warn('Your evaluation steps are too big compared to the size of the dataset.' 'The model is evaluated only once at the end of the epoch') # Always test the results and save them once at the end of the epoch model.zero_grad() print('[%s]: Last checkpoint at the end of the epoch %d' % (timeSince(train_begin_time), epoch)) _, results_train = test(model, train_loader, options.gpu, criterion, device_index=options.device, train_begin_time=train_begin_time, model_options=options) mean_loss_train = results_train["total_loss"] / (len(train_loader) * train_loader.batch_size) _, results_valid = test(model, valid_loader, options.gpu, criterion, device_index=options.device, train_begin_time=train_begin_time, model_options=options) mean_loss_valid = results_valid["total_loss"] / (len(valid_loader) * valid_loader.batch_size) model.train() global_step = (epoch + 1) * len(train_loader) if cnn_index is None: writer_train.add_scalar('balanced_accuracy', results_train["balanced_accuracy"], global_step) writer_train.add_scalar('loss', mean_loss_train, global_step) writer_valid.add_scalar('balanced_accuracy', results_valid["balanced_accuracy"], global_step) writer_valid.add_scalar('loss', mean_loss_valid, global_step) wandb.log( {'train_balanced_accuracy': results_train["balanced_accuracy"], 'train_loss': mean_loss_train, 'valid_balanced_accuracy': results_valid["balanced_accuracy"], 'valid_loss': mean_loss_valid, 'global_step': global_step}) print("[%s]: %s level training accuracy is %f at the end of iteration %d" % (timeSince(train_begin_time), options.mode, results_train["balanced_accuracy"], i)) print("[%s]: %s level validation accuracy is %f at the end of iteration %d" % (timeSince(train_begin_time), options.mode, results_valid["balanced_accuracy"], i)) else: writer_train.add_scalar('{}_model_balanced_accuracy'.format(cnn_index), results_train["balanced_accuracy"], global_step) writer_train.add_scalar('{}_model_loss'.format(cnn_index), mean_loss_train, global_step) writer_valid.add_scalar('{}_model_balanced_accuracy'.format(cnn_index), results_valid["balanced_accuracy"], global_step) writer_valid.add_scalar('{}_model_loss'.format(cnn_index), mean_loss_valid, global_step) wandb.log( {'{}_model_train_balanced_accuracy'.format(cnn_index): results_train["balanced_accuracy"], '{}_model_train_loss'.format(cnn_index): mean_loss_train, '{}_model_valid_balanced_accuracy'.format(cnn_index): results_valid["balanced_accuracy"], '{}_model_valid_loss'.format(cnn_index): mean_loss_valid, 'global_step': global_step}) print("[%s]: %s model %s level training accuracy is %f at the end of iteration %d" % (timeSince(train_begin_time), cnn_index, options.mode, results_train["balanced_accuracy"], i)) print("[%s]: %s model %s level validation accuracy is %f at the end of iteration %d" % (timeSince(train_begin_time), cnn_index, options.mode, results_valid["balanced_accuracy"], i)) accuracy_is_best = results_valid["balanced_accuracy"] > best_valid_accuracy loss_is_best = mean_loss_valid < best_valid_loss best_valid_accuracy = max(results_valid["balanced_accuracy"], best_valid_accuracy) best_valid_loss = min(mean_loss_valid, best_valid_loss) save_checkpoint({'model': model.state_dict(), 'epoch': epoch, 'valid_loss': mean_loss_valid, 'valid_acc': results_valid["balanced_accuracy"]}, accuracy_is_best, loss_is_best, model_dir) # Save optimizer state_dict to be able to reload save_checkpoint({'optimizer': optimizer.state_dict(), 'epoch': epoch, 'name': options.optimizer, }, False, False, model_dir, filename='optimizer.pth.tar') epoch += 1 os.remove(os.path.join(model_dir, "optimizer.pth.tar")) os.remove(os.path.join(model_dir, "checkpoint.pth.tar")) def evaluate_prediction(y, y_pred): """ Evaluates different metrics based on the list of true labels and predicted labels. Args: y: (list) true labels y_pred: (list) corresponding predictions Returns: (dict) ensemble of metrics """ # print(max(y)) if max(y) == 2: true_class_0 = np.sum((y_pred == 0) & (y == 0)) true_class_1 = np.sum((y_pred == 1) & (y == 1)) true_class_2 = np.sum((y_pred == 2) & (y == 2)) false_class_0 = np.sum((y_pred != 0) & (y == 0)) false_class_1 = np.sum((y_pred != 1) & (y == 1)) false_class_2 = np.sum((y_pred != 2) & (y == 2)) right_class_0 = true_class_0 / (true_class_0 + false_class_0) right_class_1 = true_class_1 / (true_class_1 + false_class_1) right_class_2 = true_class_2 / (true_class_2 + false_class_2) balanced_accuracy = (right_class_0 + right_class_1 + right_class_2) / 3 accuracy = metrics.accuracy_score(y, y_pred) f1_score = metrics.f1_score(y, y_pred, average='micro') recall = metrics.recall_score(y, y_pred, average='micro') precision = metrics.precision_score(y, y_pred, average='micro') # print('y:{}'.format(y)) # print('y_pred:{}'.format(y_pred)) # print('y:{}'.format(y.shape)) # print('y_pred:{}'.format(y_pred.shape)) # roc_auc = metrics.roc_auc_score(y, y_pred, average='micro', multi_class='ovr') sensitivity = recall specificity = 0.0 ppv = precision npv = 0.0 else: true_positive = np.sum((y_pred == 1) & (y == 1)) true_negative = np.sum((y_pred == 0) & (y == 0)) false_positive =
np.sum((y_pred == 1) & (y == 0))
numpy.sum
"""Bonus Brush Module This file contains a widget class that allows the user to design their own brush. Usage: To use this module, import it and instantiate is as you wish: from Paint4Brains.GUI.BonusBrush import BonusBrush brush = BonusBrush() It then has to be made visible using: brush.setVisible(True) """ from PyQt5.QtWidgets import QVBoxLayout, QHBoxLayout, QLabel, QLineEdit, QPushButton, QWidget, QSizePolicy from PyQt5.QtCore import Qt, QSize from PyQt5 import QtGui from PyQt5.QtGui import QIcon import numpy as np import pyqtgraph as pg import sys import os dot = np.array([[1]]).astype(np.int8) eraser =
np.array([[-1]])
numpy.array
import sys sys.path.append('..') from neml import interpolate, solvers, models, elasticity, ri_flow, hardening, surfaces, visco_flow, general_flow, creep from common import * import unittest import numpy as np import numpy.linalg as la class CommonMatModel(object): """ Tests that could be applied to all material models """ def test_tangent_proportional_strain(self): t_n = 0.0 strain_n = np.zeros((6,)) stress_n = np.zeros((6,)) hist_n = self.model.init_store() u_n = 0.0 p_n = 0.0 for i,m in enumerate(np.linspace(0,1,self.nsteps)): t_np1 = self.tfinal * m strain_np1 = self.efinal * m stress_np1, hist_np1, A_np1, u_np1, p_np1 = self.model.update_sd( strain_np1, strain_n, self.T, self.T, t_np1, t_n, stress_n, hist_n, u_n, p_n) dfn = lambda e: self.model.update_sd(e, strain_n, self.T, self.T, t_np1, t_n, stress_n, hist_n, u_n, p_n)[0] num_A = differentiate(dfn, strain_np1, eps = 1.0e-9) if not np.allclose(num_A, A_np1, rtol = 1e-3, atol = 1e-1): print(A_np1) print(num_A) self.assertTrue(np.allclose(num_A, A_np1, rtol = 1.0e-3, atol = 1.0e-1)) strain_n = strain_np1 stress_n = stress_np1 hist_n = hist_np1 u_n = u_np1 p_n = p_np1 def test_elastic_proportional_strain(self): t_n = 0.0 strain_n = np.zeros((6,)) stress_n = np.zeros((6,)) hist_n = self.model.init_store() u_n = 0.0 p_n = 0.0 for i,m in enumerate(np.linspace(0,1,self.nsteps)): t_np1 = self.tfinal * m strain_np1 = self.efinal * m stress_np1, hist_np1, A_np1, u_np1, p_np1 = self.model.update_sd( strain_np1, strain_n, self.T, self.T, t_np1, t_n, stress_n, hist_n, u_n, p_n) estrain = self.model.elastic_strains(stress_np1, self.T, hist_np1) S = self.elastic.S(self.T) estrain_num = np.dot(S, stress_np1) self.assertTrue(np.allclose(estrain, estrain_num)) strain_n = strain_np1 stress_n = stress_np1 hist_n = hist_np1 u_n = u_np1 p_n = p_np1 class TestLinearElastic(CommonMatModel, unittest.TestCase): """ Linear elasticity, as a benchmark """ def setUp(self): self.hist0 = np.array([]) self.E = 92000.0 self.nu = 0.3 self.mu = self.E/(2*(1+self.nu)) self.K = self.E/(3*(1-2*self.nu)) self.elastic = elasticity.IsotropicLinearElasticModel(self.mu, "shear", self.K, "bulk") self.model = models.SmallStrainElasticity(self.elastic) self.efinal = np.array([0.1,-0.05,0.02,-0.03,0.1,-0.15]) self.tfinal = 10.0 self.T = 300.0 self.nsteps = 10 class CommonJacobian(object): """ Common jacobian tests """ def gen_strain(self): return np.array([0.01,-0.01,0.02,0.03,-0.005,0.01]) def gen_T(self): return 500.0 def gen_time(self): return 1.25 def gen_start_strain(self): return np.zeros((6,)) def gen_start_time(self): return 0.0 def gen_start_stress(self): return np.zeros((6,)) def test_jacobian(self): e_np1 = self.gen_strain() T_np1 = self.gen_T() h_n = self.gen_hist() t_np1 = self.gen_time() ts = self.model.make_trial_state(e_np1, self.gen_start_strain(), T_np1, T_np1, t_np1, self.gen_start_time(), self.gen_start_stress(), h_n) x = self.gen_x() R, J = self.model.RJ(x, ts) dfn = lambda y: self.model.RJ(y, ts)[0] nJ = differentiate(dfn, x) self.assertTrue(np.allclose(J, nJ, rtol = 1.0e-3, atol = 1e-1)) class TestPerfectPlasticity(unittest.TestCase, CommonMatModel, CommonJacobian): """ Test J2 perfect plasticity """ def setUp(self): self.hist0 = np.zeros((0,)) self.E = 92000.0 self.nu = 0.3 self.mu = self.E/(2*(1+self.nu)) self.K = self.E/(3*(1-2*self.nu)) self.s0 = 180.0 self.elastic = elasticity.IsotropicLinearElasticModel(self.mu, "shear", self.K, "bulk") surface = surfaces.IsoJ2() self.model = models.SmallStrainPerfectPlasticity(self.elastic, surface, self.s0) self.efinal = np.array([0.1,-0.05,0.02,-0.03,0.1,-0.15]) self.tfinal = 10.0 self.T = 300.0 self.nsteps = 10 def test_properties(self): self.assertTrue(np.isclose(self.model.ys(self.T), self.s0)) def gen_hist(self): return np.zeros((0,)) def gen_x(self): return np.array([50.0,100.0,-25.0,150.0,200.0,-50.0] + list([0.25])) class TestRIAPlasticityCombinedLinearLinear(unittest.TestCase, CommonMatModel, CommonJacobian): """ Test combined isotropic/kinematic hardening with linear rules """ def setUp(self): self.hist0 = np.zeros((13,)) self.E = 92000.0 self.nu = 0.3 self.mu = self.E/(2*(1+self.nu)) self.K = self.E/(3*(1-2*self.nu)) self.s0 = 180.0 self.Kp = 1000.0 self.H = 1000.0 self.elastic = elasticity.IsotropicLinearElasticModel(self.mu, "shear", self.K, "bulk") surface = surfaces.IsoKinJ2() iso = hardening.LinearIsotropicHardeningRule(self.s0, self.Kp) kin = hardening.LinearKinematicHardeningRule(self.H) hrule = hardening.CombinedHardeningRule(iso, kin) flow = ri_flow.RateIndependentAssociativeFlow(surface, hrule) self.model = models.SmallStrainRateIndependentPlasticity(self.elastic, flow) self.efinal = np.array([0.1,-0.05,0.02,-0.03,0.1,-0.15]) self.tfinal = 10.0 self.T = 300.0 self.nsteps = 10 def gen_hist(self): h = np.array(range(1,14)) / 15.0 h[:6] = make_dev(h[:6]) h[7:] = make_dev(h[7:]) return h def gen_x(self): return np.array(list(self.gen_hist()) + list([0.25])) class TestRIAPlasticityJ2Linear(unittest.TestCase, CommonMatModel, CommonJacobian): """ Test the rate-independent plasticity algorithm with a linearly isotropically hardening yield surface. """ def setUp(self): self.hist0 = np.zeros((7,)) self.E = 92000.0 self.nu = 0.3 self.mu = self.E/(2*(1+self.nu)) self.K = self.E/(3*(1-2*self.nu)) self.s0 = 180.0 self.Kp = self.E / 100 self.elastic = elasticity.IsotropicLinearElasticModel(self.mu, "shear", self.K, "bulk") surface = surfaces.IsoJ2() hrule = hardening.LinearIsotropicHardeningRule(self.s0, self.Kp) flow = ri_flow.RateIndependentAssociativeFlow(surface, hrule) self.model = models.SmallStrainRateIndependentPlasticity(self.elastic, flow) self.efinal = np.array([0.1,-0.05,0.02,-0.03,0.1,-0.15]) self.tfinal = 10.0 self.T = 300.0 self.nsteps = 10 def gen_hist(self): return np.array(range(1,8)) / 8.0 def gen_x(self): return np.array(range(1,9)) / 9.0 class TestRIAPlasticityJ2Voce(unittest.TestCase, CommonMatModel, CommonJacobian): """ Test the rate-independent plasticity algorithm with a Voce isotropically hardening yield surface. """ def setUp(self): self.hist0 = np.zeros((7,)) self.E = 92000.0 self.nu = 0.3 self.mu = self.E/(2*(1+self.nu)) self.K = self.E/(3*(1-2*self.nu)) self.s0 = 180.0 self.R = 150.0 self.d = 10.0 self.elastic = elasticity.IsotropicLinearElasticModel(self.mu, "shear", self.K, "bulk") surface = surfaces.IsoJ2() hrule = hardening.VoceIsotropicHardeningRule(self.s0, self.R, self.d) flow = ri_flow.RateIndependentAssociativeFlow(surface, hrule) self.model = models.SmallStrainRateIndependentPlasticity(self.elastic, flow) self.efinal = np.array([0.1,-0.05,0.02,-0.03,0.1,-0.15]) self.tfinal = 10.0 self.T = 300.0 self.nsteps = 10 def gen_hist(self): return np.array(range(1,8)) / 8.0 def gen_x(self): return np.array(range(1,9)) / 9.0 class TestRIChabocheLinear(unittest.TestCase, CommonMatModel, CommonJacobian): """ Test Chaboche with linear isotropic hardening """ def setUp(self): self.hist0 = np.zeros((13,)) self.E = 92000.0 self.nu = 0.3 self.mu = self.E/(2*(1+self.nu)) self.K = self.E/(3*(1-2*self.nu)) self.s0 = 180.0 self.Kp = 1000.0 self.n = 2 self.cs = [10.0, 2.0] self.rs = [5.0, 1.0] self.gmodels = [hardening.ConstantGamma(g) for g in self.rs] self.As = [0.0] * self.n self.ns = [1.0] * self.n self.elastic = elasticity.IsotropicLinearElasticModel(self.mu, "shear", self.K, "bulk") surface = surfaces.IsoKinJ2() iso = hardening.LinearIsotropicHardeningRule(self.s0, self.Kp) hmodel = hardening.Chaboche(iso, self.cs, self.gmodels, self.As, self.ns) flow = ri_flow.RateIndependentNonAssociativeHardening(surface, hmodel) self.model = models.SmallStrainRateIndependentPlasticity(self.elastic, flow) self.efinal = np.array([0.1,-0.05,0.02,-0.03,0.1,-0.15]) self.tfinal = 10.0 self.T = 300.0 self.nsteps = 30 def gen_hist(self): h = np.array(range(1,6+1+6*self.n+1)) / (8*self.n) h[:6] = make_dev(h[:6]) for i in range(self.n): h[7+i*6:7+(i+1)*6] = make_dev(h[7+i*6:7+(i+1)*6]) return h def gen_x(self): return np.array(list(self.gen_hist()) + [0.1]) # Something funny with the Jacobian here class TestCreepPlasticityJ2LinearPowerLaw(unittest.TestCase, CommonMatModel): """ Test the combined creep/plasticity algorithm with J2 plasticity with isotropic hardening and power law creep """ def setUp(self): self.hist0 = np.zeros((13,)) self.A = 1.85e-10 self.n = 2.5 self.smodel = creep.PowerLawCreep(self.A, self.n) self.cmodel = creep.J2CreepModel(self.smodel) self.E = 150000.0 self.nu = 0.3 self.sY = 200.0 self.H = self.E / 50.0 self.elastic = elasticity.IsotropicLinearElasticModel(self.E, "youngs", self.nu, "poissons") self.surface = surfaces.IsoJ2() self.iso = hardening.LinearIsotropicHardeningRule(self.sY, self.H) self.flow = ri_flow.RateIndependentAssociativeFlow(self.surface, self.iso) self.pmodel = models.SmallStrainRateIndependentPlasticity(self.elastic, self.flow) self.model = models.SmallStrainCreepPlasticity(self.elastic, self.pmodel, self.cmodel) self.efinal = np.array([0.1,-0.05,0.02,-0.03,0.1,-0.15]) self.tfinal = 10.0 self.T = 300.0 self.nsteps = 10 def gen_hist(self): return np.array(range(1,7) + [1.0] + range(1,7)) / 7.0 def gen_x(self): return np.array(range(1,7)) / 7.0 def gen_start_stress(self): return np.zeros((6,)) + 100.0 def gen_start_strain(self): return np.zeros((6,)) + 0.01 class TestCreepPlasticityPerfect(unittest.TestCase, CommonMatModel): """ Test the combined creep/plasticity algorithm with J2 plasticity with perfect plasticity """ def setUp(self): self.hist0 =
np.zeros((6,))
numpy.zeros
from __future__ import print_function, division, absolute_import import copy as copylib import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import imgaug as ia import imgaug.augmenters as iaa from imgaug.testutils import reseed import imgaug.random as iarandom NP_VERSION = np.__version__ IS_NP_117_OR_HIGHER = ( NP_VERSION.startswith("2.") or NP_VERSION.startswith("1.25") or NP_VERSION.startswith("1.24") or NP_VERSION.startswith("1.23") or NP_VERSION.startswith("1.22") or NP_VERSION.startswith("1.21") or NP_VERSION.startswith("1.20") or NP_VERSION.startswith("1.19") or NP_VERSION.startswith("1.18") or NP_VERSION.startswith("1.17") ) class _Base(unittest.TestCase): def setUp(self): reseed() class TestConstants(_Base): def test_supports_new_np_rng_style_is_true(self): assert iarandom.SUPPORTS_NEW_NP_RNG_STYLE is IS_NP_117_OR_HIGHER def test_global_rng(self): iarandom.get_global_rng() # creates global RNG upon first call assert iarandom.GLOBAL_RNG is not None class TestRNG(_Base): @mock.patch("imgaug.random.normalize_generator_") def test___init___calls_normalize_mocked(self, mock_norm): _ = iarandom.RNG(0) mock_norm.assert_called_once_with(0) def test___init___with_rng(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(rng1) assert rng2.generator is rng1.generator @mock.patch("imgaug.random.get_generator_state") def test_state_getter_mocked(self, mock_get): mock_get.return_value = "mock" rng = iarandom.RNG(0) result = rng.state assert result == "mock" mock_get.assert_called_once_with(rng.generator) @mock.patch("imgaug.random.RNG.set_state_") def test_state_setter_mocked(self, mock_set): rng = iarandom.RNG(0) state = {"foo"} rng.state = state mock_set.assert_called_once_with(state) @mock.patch("imgaug.random.set_generator_state_") def test_set_state__mocked(self, mock_set): rng = iarandom.RNG(0) state = {"foo"} result = rng.set_state_(state) assert result is rng mock_set.assert_called_once_with(rng.generator, state) @mock.patch("imgaug.random.set_generator_state_") def test_use_state_of__mocked(self, mock_set): rng1 = iarandom.RNG(0) rng2 = mock.MagicMock() state = {"foo"} rng2.state = state result = rng1.use_state_of_(rng2) assert result == rng1 mock_set.assert_called_once_with(rng1.generator, state) @mock.patch("imgaug.random.get_global_rng") def test_is_global__is_global__rng_mocked(self, mock_get): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(rng1.generator) mock_get.return_value = rng2 assert rng1.is_global_rng() is True @mock.patch("imgaug.random.get_global_rng") def test_is_global_rng__is_not_global__mocked(self, mock_get): rng1 = iarandom.RNG(0) # different instance with same state/seed should still be viewed as # different by the method rng2 = iarandom.RNG(0) mock_get.return_value = rng2 assert rng1.is_global_rng() is False @mock.patch("imgaug.random.get_global_rng") def test_equals_global_rng__is_global__mocked(self, mock_get): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(0) mock_get.return_value = rng2 assert rng1.equals_global_rng() is True @mock.patch("imgaug.random.get_global_rng") def test_equals_global_rng__is_not_global__mocked(self, mock_get): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(1) mock_get.return_value = rng2 assert rng1.equals_global_rng() is False @mock.patch("imgaug.random.generate_seed_") def test_generate_seed__mocked(self, mock_gen): rng = iarandom.RNG(0) mock_gen.return_value = -1 seed = rng.generate_seed_() assert seed == -1 mock_gen.assert_called_once_with(rng.generator) @mock.patch("imgaug.random.generate_seeds_") def test_generate_seeds__mocked(self, mock_gen): rng = iarandom.RNG(0) mock_gen.return_value = [-1, -2] seeds = rng.generate_seeds_(2) assert seeds == [-1, -2] mock_gen.assert_called_once_with(rng.generator, 2) @mock.patch("imgaug.random.reset_generator_cache_") def test_reset_cache__mocked(self, mock_reset): rng = iarandom.RNG(0) result = rng.reset_cache_() assert result is rng mock_reset.assert_called_once_with(rng.generator) @mock.patch("imgaug.random.derive_generators_") def test_derive_rng__mocked(self, mock_derive): gen = iarandom.convert_seed_to_generator(0) mock_derive.return_value = [gen] rng = iarandom.RNG(0) result = rng.derive_rng_() assert result.generator is gen mock_derive.assert_called_once_with(rng.generator, 1) @mock.patch("imgaug.random.derive_generators_") def test_derive_rngs__mocked(self, mock_derive): gen1 = iarandom.convert_seed_to_generator(0) gen2 = iarandom.convert_seed_to_generator(1) mock_derive.return_value = [gen1, gen2] rng = iarandom.RNG(0) result = rng.derive_rngs_(2) assert result[0].generator is gen1 assert result[1].generator is gen2 mock_derive.assert_called_once_with(rng.generator, 2) @mock.patch("imgaug.random.is_generator_equal_to") def test_equals_mocked(self, mock_equal): mock_equal.return_value = "foo" rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(1) result = rng1.equals(rng2) assert result == "foo" mock_equal.assert_called_once_with(rng1.generator, rng2.generator) def test_equals_identical_generators(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(rng1) assert rng1.equals(rng2) def test_equals_with_similar_generators(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(0) assert rng1.equals(rng2) def test_equals_with_different_generators(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(1) assert not rng1.equals(rng2) def test_equals_with_advanced_generator(self): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(0) rng2.advance_() assert not rng1.equals(rng2) @mock.patch("imgaug.random.advance_generator_") def test_advance__mocked(self, mock_advance): rng = iarandom.RNG(0) result = rng.advance_() assert result is rng mock_advance.assert_called_once_with(rng.generator) @mock.patch("imgaug.random.copy_generator") def test_copy_mocked(self, mock_copy): rng1 = iarandom.RNG(0) rng2 = iarandom.RNG(1) mock_copy.return_value = rng2.generator result = rng1.copy() assert result.generator is rng2.generator mock_copy.assert_called_once_with(rng1.generator) @mock.patch("imgaug.random.RNG.copy") @mock.patch("imgaug.random.RNG.is_global_rng") def test_copy_unless_global_rng__is_global__mocked(self, mock_is_global, mock_copy): rng = iarandom.RNG(0) mock_is_global.return_value = True mock_copy.return_value = "foo" result = rng.copy_unless_global_rng() assert result is rng mock_is_global.assert_called_once_with() assert mock_copy.call_count == 0 @mock.patch("imgaug.random.RNG.copy") @mock.patch("imgaug.random.RNG.is_global_rng") def test_copy_unless_global_rng__is_not_global__mocked(self, mock_is_global, mock_copy): rng = iarandom.RNG(0) mock_is_global.return_value = False mock_copy.return_value = "foo" result = rng.copy_unless_global_rng() assert result is "foo" mock_is_global.assert_called_once_with() mock_copy.assert_called_once_with() def test_duplicate(self): rng = iarandom.RNG(0) rngs = rng.duplicate(1) assert rngs == [rng] def test_duplicate_two_entries(self): rng = iarandom.RNG(0) rngs = rng.duplicate(2) assert rngs == [rng, rng] @mock.patch("imgaug.random.create_fully_random_generator") def test_create_fully_random_mocked(self, mock_create): gen = iarandom.convert_seed_to_generator(0) mock_create.return_value = gen rng = iarandom.RNG.create_fully_random() mock_create.assert_called_once_with() assert rng.generator is gen @mock.patch("imgaug.random.derive_generators_") def test_create_pseudo_random__mocked(self, mock_get): rng_glob = iarandom.get_global_rng() rng = iarandom.RNG(0) mock_get.return_value = [rng.generator] result = iarandom.RNG.create_pseudo_random_() assert result.generator is rng.generator mock_get.assert_called_once_with(rng_glob.generator, 1) @mock.patch("imgaug.random.polyfill_integers") def test_integers_mocked(self, mock_func): mock_func.return_value = "foo" rng = iarandom.RNG(0) result = rng.integers(low=0, high=1, size=(1,), dtype="int64", endpoint=True) assert result == "foo" mock_func.assert_called_once_with( rng.generator, low=0, high=1, size=(1,), dtype="int64", endpoint=True) @mock.patch("imgaug.random.polyfill_random") def test_random_mocked(self, mock_func): mock_func.return_value = "foo" rng = iarandom.RNG(0) out = np.zeros((1,), dtype="float64") result = rng.random(size=(1,), dtype="float64", out=out) assert result == "foo" mock_func.assert_called_once_with( rng.generator, size=(1,), dtype="float64", out=out) # TODO below test for generator methods are all just mock-based, add # non-mocked versions def test_choice_mocked(self): self._test_sampling_func("choice", a=[1, 2, 3], size=(1,), replace=False, p=[0.1, 0.2, 0.7]) def test_bytes_mocked(self): self._test_sampling_func("bytes", length=[10]) def test_shuffle_mocked(self): mock_gen = mock.MagicMock() rng = iarandom.RNG(0) rng.generator = mock_gen rng.shuffle([1, 2, 3]) mock_gen.shuffle.assert_called_once_with([1, 2, 3]) def test_permutation_mocked(self): mock_gen = mock.MagicMock() rng = iarandom.RNG(0) rng.generator = mock_gen mock_gen.permutation.return_value = "foo" result = rng.permutation([1, 2, 3]) assert result == "foo" mock_gen.permutation.assert_called_once_with([1, 2, 3]) def test_beta_mocked(self): self._test_sampling_func("beta", a=1.0, b=2.0, size=(1,)) def test_binomial_mocked(self): self._test_sampling_func("binomial", n=10, p=0.1, size=(1,)) def test_chisquare_mocked(self): self._test_sampling_func("chisquare", df=2, size=(1,)) def test_dirichlet_mocked(self): self._test_sampling_func("dirichlet", alpha=0.1, size=(1,)) def test_exponential_mocked(self): self._test_sampling_func("exponential", scale=1.1, size=(1,)) def test_f_mocked(self): self._test_sampling_func("f", dfnum=1, dfden=2, size=(1,)) def test_gamma_mocked(self): self._test_sampling_func("gamma", shape=1, scale=1.2, size=(1,)) def test_geometric_mocked(self): self._test_sampling_func("geometric", p=0.5, size=(1,)) def test_gumbel_mocked(self): self._test_sampling_func("gumbel", loc=0.1, scale=1.1, size=(1,)) def test_hypergeometric_mocked(self): self._test_sampling_func("hypergeometric", ngood=2, nbad=4, nsample=6, size=(1,)) def test_laplace_mocked(self): self._test_sampling_func("laplace", loc=0.5, scale=1.5, size=(1,)) def test_logistic_mocked(self): self._test_sampling_func("logistic", loc=0.5, scale=1.5, size=(1,)) def test_lognormal_mocked(self): self._test_sampling_func("lognormal", mean=0.5, sigma=1.5, size=(1,)) def test_logseries_mocked(self): self._test_sampling_func("logseries", p=0.5, size=(1,)) def test_multinomial_mocked(self): self._test_sampling_func("multinomial", n=5, pvals=0.5, size=(1,)) def test_multivariate_normal_mocked(self): self._test_sampling_func("multivariate_normal", mean=0.5, cov=1.0, size=(1,), check_valid="foo", tol=1e-2) def test_negative_binomial_mocked(self): self._test_sampling_func("negative_binomial", n=10, p=0.5, size=(1,)) def test_noncentral_chisquare_mocked(self): self._test_sampling_func("noncentral_chisquare", df=0.5, nonc=1.0, size=(1,)) def test_noncentral_f_mocked(self): self._test_sampling_func("noncentral_f", dfnum=0.5, dfden=1.5, nonc=2.0, size=(1,)) def test_normal_mocked(self): self._test_sampling_func("normal", loc=0.5, scale=1.0, size=(1,)) def test_pareto_mocked(self): self._test_sampling_func("pareto", a=0.5, size=(1,)) def test_poisson_mocked(self): self._test_sampling_func("poisson", lam=1.5, size=(1,)) def test_power_mocked(self): self._test_sampling_func("power", a=0.5, size=(1,)) def test_rayleigh_mocked(self): self._test_sampling_func("rayleigh", scale=1.5, size=(1,)) def test_standard_cauchy_mocked(self): self._test_sampling_func("standard_cauchy", size=(1,)) def test_standard_exponential_np117_mocked(self): fname = "standard_exponential" arr = np.zeros((1,), dtype="float16") args = [] kwargs = {"size": (1,), "dtype": "float16", "method": "foo", "out": arr} mock_gen = mock.MagicMock() getattr(mock_gen, fname).return_value = "foo" rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = True result = getattr(rng, fname)(*args, **kwargs) assert result == "foo" getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs) def test_standard_exponential_np116_mocked(self): fname = "standard_exponential" arr_out = np.zeros((1,), dtype="float16") arr_result = np.ones((1,), dtype="float16") def _side_effect(x): return arr_result args = [] kwargs = {"size": (1,), "dtype": "float16", "method": "foo", "out": arr_out} kwargs_subcall = {"size": (1,)} mock_gen = mock.MagicMock() mock_gen.astype.side_effect = _side_effect getattr(mock_gen, fname).return_value = mock_gen rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = False result = getattr(rng, fname)(*args, **kwargs) getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs_subcall) mock_gen.astype.assert_called_once_with("float16") assert np.allclose(result, arr_result) assert np.allclose(arr_out, arr_result) def test_standard_gamma_np117_mocked(self): fname = "standard_gamma" arr = np.zeros((1,), dtype="float16") args = [] kwargs = {"shape": 1.0, "size": (1,), "dtype": "float16", "out": arr} mock_gen = mock.MagicMock() getattr(mock_gen, fname).return_value = "foo" rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = True result = getattr(rng, fname)(*args, **kwargs) assert result == "foo" getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs) def test_standard_gamma_np116_mocked(self): fname = "standard_gamma" arr_out = np.zeros((1,), dtype="float16") arr_result = np.ones((1,), dtype="float16") def _side_effect(x): return arr_result args = [] kwargs = {"shape": 1.0, "size": (1,), "dtype": "float16", "out": arr_out} kwargs_subcall = {"shape": 1.0, "size": (1,)} mock_gen = mock.MagicMock() mock_gen.astype.side_effect = _side_effect getattr(mock_gen, fname).return_value = mock_gen rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = False result = getattr(rng, fname)(*args, **kwargs) getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs_subcall) mock_gen.astype.assert_called_once_with("float16") assert np.allclose(result, arr_result) assert np.allclose(arr_out, arr_result) def test_standard_normal_np117_mocked(self): fname = "standard_normal" arr = np.zeros((1,), dtype="float16") args = [] kwargs = {"size": (1,), "dtype": "float16", "out": arr} mock_gen = mock.MagicMock() getattr(mock_gen, fname).return_value = "foo" rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = True result = getattr(rng, fname)(*args, **kwargs) assert result == "foo" getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs) def test_standard_normal_np116_mocked(self): fname = "standard_normal" arr_out = np.zeros((1,), dtype="float16") arr_result = np.ones((1,), dtype="float16") def _side_effect(x): return arr_result args = [] kwargs = {"size": (1,), "dtype": "float16", "out": arr_out} kwargs_subcall = {"size": (1,)} mock_gen = mock.MagicMock() mock_gen.astype.side_effect = _side_effect getattr(mock_gen, fname).return_value = mock_gen rng = iarandom.RNG(0) rng.generator = mock_gen rng._is_new_rng_style = False result = getattr(rng, fname)(*args, **kwargs) getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs_subcall) mock_gen.astype.assert_called_once_with("float16") assert np.allclose(result, arr_result) assert np.allclose(arr_out, arr_result) def test_standard_t_mocked(self): self._test_sampling_func("standard_t", df=1.5, size=(1,)) def test_triangular_mocked(self): self._test_sampling_func("triangular", left=1.0, mode=1.5, right=2.0, size=(1,)) def test_uniform_mocked(self): self._test_sampling_func("uniform", low=0.5, high=1.5, size=(1,)) def test_vonmises_mocked(self): self._test_sampling_func("vonmises", mu=1.0, kappa=1.5, size=(1,)) def test_wald_mocked(self): self._test_sampling_func("wald", mean=0.5, scale=1.0, size=(1,)) def test_weibull_mocked(self): self._test_sampling_func("weibull", a=1.0, size=(1,)) def test_zipf_mocked(self): self._test_sampling_func("zipf", a=1.0, size=(1,)) @classmethod def _test_sampling_func(cls, fname, *args, **kwargs): mock_gen = mock.MagicMock() getattr(mock_gen, fname).return_value = "foo" rng = iarandom.RNG(0) rng.generator = mock_gen result = getattr(rng, fname)(*args, **kwargs) assert result == "foo" getattr(mock_gen, fname).assert_called_once_with(*args, **kwargs) # # outdated methods from RandomState # def test_rand_mocked(self): self._test_sampling_func_alias("rand", "random", 1, 2, 3) def test_randint_mocked(self): self._test_sampling_func_alias("randint", "integers", 0, 100) def randn(self): self._test_sampling_func_alias("randn", "standard_normal", 1, 2, 3) def random_integers(self): self._test_sampling_func_alias("random_integers", "integers", 1, 2) def random_sample(self): self._test_sampling_func_alias("random_sample", "uniform", (1, 2, 3)) def tomaxint(self): self._test_sampling_func_alias("tomaxint", "integers", (1, 2, 3)) def test_rand(self): result = iarandom.RNG(0).rand(10, 20, 3) assert result.dtype.name == "float32" assert result.shape == (10, 20, 3) assert np.all(result >= 0.0) assert np.all(result <= 1.0) assert np.any(result > 0.0) assert np.any(result < 1.0) def test_randint(self): result = iarandom.RNG(0).randint(10, 100, size=(10, 20, 3)) assert result.dtype.name == "int32" assert result.shape == (10, 20, 3) assert np.all(result >= 10) assert np.all(result <= 99) assert np.any(result > 10) assert np.any(result < 99) def test_randn(self): result = iarandom.RNG(0).randn(10, 50, 3) assert result.dtype.name == "float32" assert result.shape == (10, 50, 3) assert np.any(result > 0.5) assert np.any(result < -0.5) assert np.average(np.logical_or(result < 2.0, result > -2.0)) > 0.5 def test_random_integers(self): result = iarandom.RNG(0).random_integers(10, 100, size=(10, 20, 3)) assert result.dtype.name == "int32" assert result.shape == (10, 20, 3) assert np.all(result >= 10) assert np.all(result <= 100) assert np.any(result > 10) assert np.any(result < 100) def test_random_integers__no_high(self): result = iarandom.RNG(0).random_integers(100, size=(10, 20, 3)) assert result.dtype.name == "int32" assert result.shape == (10, 20, 3) assert np.all(result >= 1) assert np.all(result <= 100) assert np.any(result > 1) assert np.any(result < 100) def test_random_sample(self): result = iarandom.RNG(0).random_sample((10, 20, 3)) assert result.dtype.name == "float64" assert result.shape == (10, 20, 3) assert np.all(result >= 0.0) assert np.all(result <= 1.0) assert np.any(result > 0.0) assert np.any(result < 1.0) def test_tomaxint(self): result = iarandom.RNG(0).tomaxint((10, 200, 3)) assert result.dtype.name == "int32" assert result.shape == (10, 200, 3) assert np.all(result >= 0) assert np.any(result > 10000) @classmethod def _test_sampling_func_alias(cls, fname_alias, fname_subcall, *args, **kwargs): rng = iarandom.RNG(0) mock_func = mock.Mock() mock_func.return_value = "foo" setattr(rng, fname_subcall, mock_func) result = getattr(rng, fname_alias)(*args, **kwargs) assert result == "foo" assert mock_func.call_count == 1 class Test_supports_new_numpy_rng_style(_Base): def test_call(self): assert iarandom.supports_new_numpy_rng_style() is IS_NP_117_OR_HIGHER class Test_get_global_rng(_Base): def test_call(self): iarandom.seed(0) rng = iarandom.get_global_rng() expected = iarandom.RNG(0) assert rng is not None assert rng.equals(expected) class Test_seed(_Base): @mock.patch("imgaug.random._seed_np117_") @mock.patch("imgaug.random._seed_np116_") def test_mocked_call(self, mock_np116, mock_np117): iarandom.seed(1) if IS_NP_117_OR_HIGHER: mock_np117.assert_called_once_with(1) assert mock_np116.call_count == 0 else: mock_np116.assert_called_once_with(1) assert mock_np117.call_count == 0 def test_integrationtest(self): iarandom.seed(1) assert iarandom.GLOBAL_RNG.equals(iarandom.RNG(1)) def test_seed_affects_augmenters_created_after_its_call(self): image = np.full((50, 50, 3), 128, dtype=np.uint8) images_aug = [] for _ in np.arange(5): iarandom.seed(100) aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True) images_aug.append(aug(image=image)) # assert all images identical for other_image_aug in images_aug[1:]: assert np.array_equal(images_aug[0], other_image_aug) # but different seed must lead to different image iarandom.seed(101) aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True) image_aug = aug(image=image) assert not np.array_equal(images_aug[0], image_aug) def test_seed_affects_augmenters_created_before_its_call(self): image = np.full((50, 50, 3), 128, dtype=np.uint8) images_aug = [] for _ in np.arange(5): aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True) iarandom.seed(100) images_aug.append(aug(image=image)) # assert all images identical for other_image_aug in images_aug[1:]: assert np.array_equal(images_aug[0], other_image_aug) # but different seed must lead to different image aug = iaa.AdditiveGaussianNoise(scale=50, per_channel=True) iarandom.seed(101) image_aug = aug(image=image) assert not np.array_equal(images_aug[0], image_aug) class Test_normalize_generator(_Base): @mock.patch("imgaug.random.normalize_generator_") def test_mocked_call(self, mock_subfunc): mock_subfunc.return_value = "foo" inputs = ["bar"] result = iarandom.normalize_generator(inputs) assert mock_subfunc.call_count == 1 assert mock_subfunc.call_args[0][0] is not inputs assert mock_subfunc.call_args[0][0] == inputs assert result == "foo" class Test_normalize_generator_(_Base): @mock.patch("imgaug.random._normalize_generator_np117_") @mock.patch("imgaug.random._normalize_generator_np116_") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" result = iarandom.normalize_generator_(None) if IS_NP_117_OR_HIGHER: assert result == "np117" mock_np117.assert_called_once_with(None) assert mock_np116.call_count == 0 else: assert result == "np116" mock_np116.assert_called_once_with(None) assert mock_np117.call_count == 0 def test_called_with_none(self): result = iarandom.normalize_generator_(None) assert result is iarandom.get_global_rng().generator @unittest.skipIf(not IS_NP_117_OR_HIGHER, "SeedSequence does not exist in numpy <=1.16") def test_called_with_seed_sequence(self): seedseq = np.random.SeedSequence(0) result = iarandom.normalize_generator_(seedseq) expected = np.random.Generator( iarandom.BIT_GENERATOR(np.random.SeedSequence(0))) assert iarandom.is_generator_equal_to(result, expected) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "BitGenerator does not exist in numpy <=1.16") def test_called_with_bit_generator(self): bgen = iarandom.BIT_GENERATOR(np.random.SeedSequence(0)) result = iarandom.normalize_generator_(bgen) assert result.bit_generator is bgen @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Generator does not exist in numpy <=1.16") def test_called_with_generator(self): gen = np.random.Generator( iarandom.BIT_GENERATOR(np.random.SeedSequence(0)) ) result = iarandom.normalize_generator_(gen) assert result is gen def test_called_with_random_state(self): rs = np.random.RandomState(0) result = iarandom.normalize_generator_(rs) if IS_NP_117_OR_HIGHER: seed = iarandom.generate_seed_(np.random.RandomState(0)) expected = iarandom.convert_seed_to_generator(seed) assert iarandom.is_generator_equal_to(result, expected) else: assert result is rs def test_called_int(self): seed = 0 result = iarandom.normalize_generator_(seed) expected = iarandom.convert_seed_to_generator(seed) assert iarandom.is_generator_equal_to(result, expected) class Test_convert_seed_to_generator(_Base): @mock.patch("imgaug.random._convert_seed_to_generator_np117") @mock.patch("imgaug.random._convert_seed_to_generator_np116") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" result = iarandom.convert_seed_to_generator(1) if IS_NP_117_OR_HIGHER: assert result == "np117" mock_np117.assert_called_once_with(1) assert mock_np116.call_count == 0 else: assert result == "np116" mock_np116.assert_called_once_with(1) assert mock_np117.call_count == 0 def test_call(self): gen = iarandom.convert_seed_to_generator(1) if IS_NP_117_OR_HIGHER: expected = np.random.Generator( iarandom.BIT_GENERATOR(np.random.SeedSequence(1))) assert iarandom.is_generator_equal_to(gen, expected) else: expected = np.random.RandomState(1) assert iarandom.is_generator_equal_to(gen, expected) class Test_convert_seed_sequence_to_generator(_Base): @unittest.skipIf(not IS_NP_117_OR_HIGHER, "SeedSequence does not exist in numpy <=1.16") def test_call(self): seedseq = np.random.SeedSequence(1) gen = iarandom.convert_seed_sequence_to_generator(seedseq) expected = np.random.Generator( iarandom.BIT_GENERATOR(np.random.SeedSequence(1))) assert iarandom.is_generator_equal_to(gen, expected) class Test_create_pseudo_random_generator_(_Base): def test_call(self): global_gen = copylib.deepcopy(iarandom.get_global_rng().generator) gen = iarandom.create_pseudo_random_generator_() expected = iarandom.convert_seed_to_generator( iarandom.generate_seed_(global_gen)) assert iarandom.is_generator_equal_to(gen, expected) class Test_create_fully_random_generator(_Base): @mock.patch("imgaug.random._create_fully_random_generator_np117") @mock.patch("imgaug.random._create_fully_random_generator_np116") def test_mocked_call(self, mock_np116, mock_np117): mock_np116.return_value = "np116" mock_np117.return_value = "np117" result = iarandom.create_fully_random_generator() if IS_NP_117_OR_HIGHER: assert result == "np117" mock_np117.assert_called_once_with() assert mock_np116.call_count == 0 else: assert result == "np116" mock_np116.assert_called_once_with() assert mock_np117.call_count == 0 @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") def test_np117_mocked(self): dummy_bitgen = np.random.SFC64(1) with mock.patch("numpy.random.SFC64") as mock_bitgen: mock_bitgen.return_value = dummy_bitgen result = iarandom._create_fully_random_generator_np117() assert mock_bitgen.call_count == 1 assert iarandom.is_generator_equal_to( result, np.random.Generator(dummy_bitgen)) def test_np116_mocked(self): dummy_rs = np.random.RandomState(1) with mock.patch("numpy.random.RandomState") as mock_rs: mock_rs.return_value = dummy_rs result = iarandom._create_fully_random_generator_np116() assert mock_rs.call_count == 1 assert iarandom.is_generator_equal_to(result, np.random.RandomState(1)) class Test_generate_seed_(_Base): @mock.patch("imgaug.random.generate_seeds_") def test_mocked_call(self, mock_seeds): gen = iarandom.convert_seed_to_generator(0) _ = iarandom.generate_seed_(gen) mock_seeds.assert_called_once_with(gen, 1) class Test_generate_seeds_(_Base): @mock.patch("imgaug.random.polyfill_integers") def test_mocked_call(self, mock_integers): gen = iarandom.convert_seed_to_generator(0) _ = iarandom.generate_seeds_(gen, 10) mock_integers.assert_called_once_with( gen, iarandom.SEED_MIN_VALUE, iarandom.SEED_MAX_VALUE, size=(10,)) def test_call(self): gen = iarandom.convert_seed_to_generator(0) seeds = iarandom.generate_seeds_(gen, 2) assert len(seeds) == 2 assert ia.is_np_array(seeds) assert seeds.dtype.name == "int32" class Test_copy_generator(_Base): @mock.patch("imgaug.random._copy_generator_np116") def test_mocked_call_with_random_state(self, mock_np116): mock_np116.return_value = "np116" gen = np.random.RandomState(1) gen_copy = iarandom.copy_generator(gen) assert gen_copy == "np116" mock_np116.assert_called_once_with(gen) @unittest.skipIf(not IS_NP_117_OR_HIGHER, "Function uses classes from numpy 1.17+") @mock.patch("imgaug.random._copy_generator_np117") def test_mocked_call_with_generator(self, mock_np117): mock_np117.return_value = "np117" gen = np.random.Generator(iarandom.BIT_GENERATOR(1)) gen_copy = iarandom.copy_generator(gen) assert gen_copy == "np117" mock_np117.assert_called_once_with(gen) def test_call_with_random_state(self): gen =
np.random.RandomState(1)
numpy.random.RandomState
# encoding=utf8 import os import numpy as np import FukuML.Utility as utility import FukuML.SupportVectorMachine as svm import FukuML.LogisticRegression as logistic_regression import FukuML.MLBase as ml class ProbabilisticSVM(ml.Learner): def __init__(self): """init""" self.status = 'empty' self.train_X = [] self.train_Y = [] self.W = [] self.data_num = 0 self.data_demension = 0 self.test_X = [] self.test_Y = [] self.feature_transform_mode = '' self.feature_transform_degree = 1 self.feed_mode = 'batch' self.step_eta = 0.126 self.updates = 2000 self.svm_kernel = 'soft_gaussian_kernel' self.gamma = 1 self.C = 0.1 self.svm_processor = '' self.logistic_processor = '' def load_train_data(self, input_data_file=''): self.status = 'load_train_data' if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/logistic_regression_train.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.train_X, self.train_Y self.train_X, self.train_Y = utility.DatasetLoader.load(input_data_file) return self.train_X, self.train_Y def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/logistic_regression_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y def set_param(self, feed_mode='batch', step_eta=0.126, updates=2000, C=0.1): self.feed_mode = feed_mode self.step_eta = step_eta self.updates = updates self.C = C return self.feed_mode, self.step_eta, self.updates, self.C def init_W(self, mode='normal'): if (self.status != 'load_train_data') and (self.status != 'train'): print("Please load train data first.") return self.W self.status = 'init' self.data_num = len(self.train_Y) self.data_demension = len(self.train_X[0]) self.W = np.zeros(self.data_demension) return self.W def score_function(self, x, W): svm_process_x = self.svm_score(x) svm_process_x = [1] + [svm_process_x] score = self.logistic_processor.theta(np.inner(svm_process_x, self.logistic_processor.W)) return score def error_function(self, x, y, W): svm_process_x = self.svm_score(x) svm_process_x = [1] + [svm_process_x] error = np.log(1 + np.exp((-1) * y *
np.inner(svm_process_x, self.logistic_processor.W)
numpy.inner
from model import Multi_Model import pickle from PIL import Image import re import os from torchvision.transforms.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import BertModel, BertConfig, BertTokenizer, AdamW, get_cosine_schedule_with_warmup from tqdm import tqdm import torch.nn as nn from torch.autograd import Variable, Function from torch.utils.data import Dataset, DataLoader import torch.nn.functional as F import numpy as np import warnings from torch import LongTensor import torch import time from sklearn.metrics import accuracy_score, classification_report,recall_score warnings.filterwarnings('ignore') class Config(): def __init__(self): self.batch_size = 64 self.epochs = 5 self.bert_path = "./bert_model/" self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class FakeNewsDataset(Dataset): def __init__(self,input_three,event,image,label) : self.event = LongTensor(list(event)) self.image = torch.FloatTensor([np.array(i) for i in image]) self.label = LongTensor(list(label)) self.input_three = list() self.input_three.append( LongTensor(input_three[0])) self.input_three.append(LongTensor(input_three[1])) self.input_three.append(LongTensor(input_three[2])) def __len__(self): return len(self.label) def __getitem__(self,idx): return self.input_three[0][idx],self.input_three[1][idx],self.input_three[2][idx],self.image[idx],self.event[idx],self.label[idx] def readImage(filepath_list): """读取所有图片""" #if os.path.exists('./pickles/'): # return pickle.load(open('./pickles/images.pkl','rb')) image_list = dict() data_transforms = Compose(transforms=[ Resize(256), CenterCrop(224), ToTensor(), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) for path in list(filepath_list): for i, filename in enumerate(os.listdir(path)): try: im = Image.open(os.path.join(path, filename)).convert('RGB') im = data_transforms(im) image_list[filename.split('/')[-1].split('.')[0].lower()] = im except Exception as e: print("[-] Error {} when handling {}".format(e, filename)) # print("[+] Length of `image_list`: {}".format(len(image_list))) pickle.dump(image_list,open("./pickles/images.pkl","wb")) print("dump successful") return image_list def cleanSST(string): string = re.sub(u"[,。 :,.;|-“”——_/nbsp+&;@、《》~()())#O!:【】]", "", string) return string.strip().lower() def load_id(path): result = {} for p in path: id = pickle.load(open(p,'rb')) print(len(id)) result = dict(id,**result) print(len(result)) return result def load_text_image(): result_path ='./pickles/four_data.pkl' if os.path.exists('./pickles/'): return pickle.load(open(result_path,'rb')) text = [] image = [] event = [] label = [] text_list = ['./weibo/tweets/test_nonrumor.txt','./weibo/tweets/test_rumor.txt', './weibo/tweets/train_nonrumor.txt','./weibo/tweets/train_rumor.txt'] image_list = ['./weibo/rumor_images/','./weibo/nonrumor_images/'] post_id_path = ['./weibo/train_id.pickle','./weibo/test_id.pickle','./weibo/validate_id.pickle'] all_id = load_id(post_id_path) #all_images = readImage(image_list) #{id:image} #print('read images ok') for index,filename in enumerate(text_list): print(index,' text read ok') with open(filename, 'r',encoding='utf-8') as f: for i, line in tqdm(enumerate(f)): #event : load post id and transform it to event if i %3 == 0 : post_id = str(line).split('|')[0] if post_id in all_id.keys(): event.append(all_id[post_id]) allowed = True else: allowed = False #image : only capture the first image which is in weibo dataset if i %3 == 1 and allowed: image.append(line.strip()) '''for image_id in line.strip().split('|'): image_id = image_id.split("/")[-1].split(".")[0] if image_id in all_images: image.append(all_images[image_id]) break''' #text : just remove special chacters and strip,do not tokenize if i%3 ==2 and allowed: text.append(cleanSST(line)) #label if (index+1) % 2 == 1: # non-rumor -> 0 y = 0 else: # rumor -> 1 y = 1 label.append(y) allowed = False print('read all features ok') print(len(text),len(event),len(image),len(label)) pickle.dump([text,image , event ,label ],open(result_path,'wb')) return text , image,event ,label def imageurl_image(images): all_images = pickle.load(open('./pickles/images.pkl','rb')) image = [] mask = [] for line in images : flag = 0 for image_id in line.strip().split('|'): #print(image_id) image_id = image_id.split("/")[-1].split(".")[0] #print(image_id) if image_id in all_images: image.append(all_images[image_id]) flag = 1 break mask.append(flag) #else: #print(line,image_id,'not find') print("preprocess images pk :",len(image)) return mask,image def filter(l,mask): result = [] for index,i in enumerate(l): if mask[index]: result.append(i) return result def token_text(text): max_len = 50 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 初始化分词器 input_ids, input_masks, input_types, = [], [], [] for line in text : encode_dict = tokenizer.encode_plus(text=line, max_length=max_len, padding='max_length', truncation=True) #dec:https://www.cnblogs.com/douzujun/p/13572694.html input_ids.append(encode_dict['input_ids']) input_types.append(encode_dict['token_type_ids']) input_masks.append(encode_dict['attention_mask']) return [input_ids,input_types,input_masks] def get_parameter_number(model): # 打印模型参数量 total_num = sum(p.numel() for p in model.parameters()) trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) return 'Total parameters: {}, Trainable parameters: {}'.format(total_num, trainable_num) def evaluate(multi_model,vali_dataloader,device): multi_model.eval() val_true, val_pred = [], [] with torch.no_grad(): for index,(batch_text0,batch_text1,batch_text2,batch_image,batch_event,batch_label) in enumerate(vali_dataloader): batch_text0 = batch_text0.to(device) batch_text1 = batch_text1.to(device) batch_text2 = batch_text2.to(device) batch_image = batch_image.to(device) batch_event = batch_event.to(device) batch_label = batch_label.to(device) y_pred = multi_model(batch_text0,batch_text1,batch_text2,batch_image) y_pred = torch.argmax(y_pred, dim=1).detach().cpu().numpy().tolist() val_pred.extend(y_pred) val_true.extend(batch_label.squeeze().cpu().numpy().tolist()) return accuracy_score(val_true, val_pred) #返回accuracy def predict(): config = Config() data_transforms = Compose(transforms=[ Resize(256), CenterCrop(224), ToTensor(), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') text = input("fake news:") image_path = input("image path:") multi_model = Multi_Model(config.bert_path) multi_model.load_state_dict(torch.load('best_multi_bert_model.pth')) im = Image.open(image_path).convert('RGB') im = data_transforms(im) # 该文件夹下存放三个文件('vocab.txt', 'pytorch_model.bin', 'config.json') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') input_ids, input_masks, input_types, = [], [], [] encode_dict = tokenizer.encode_plus(text=cleanSST(text), max_length=50, padding='max_length', truncation=True) input_ids.append(encode_dict['input_ids']) input_types.append(encode_dict['token_type_ids']) input_masks.append(encode_dict['attention_mask']) label_pred = multi_model(LongTensor(input_ids),LongTensor(input_types),LongTensor(input_masks),[np.array(im)]) y_pred = torch.argmax(label_pred, dim=1).detach().cpu().numpy().tolist() print(y_pred) train_acc_vector = [] vali_acc_vector = [] def train_val_test(): #train , test , validate config = Config() text , image,event ,label = pickle.load(open("./pickles/all_data.pkl",'rb')) train_len = int(0.6 * len(label)) test_len = int(0.2*len(label) ) validate_len = len(label) - train_len - test_len print("train:{} test:{} validate:{}".format(train_len,test_len,validate_len)) print("fake news:{} Real news:{}".format(sum(label),len(label)-sum(label))) text = np.array(text) image = np.array(image) event = np.array(event) label = np.array(label) idxes = np.arange(len(label)) np.random.seed(2019) # 固定种子 np.random.shuffle(idxes) print("load dataset") train_dataset = FakeNewsDataset(np.array([text[0][idxes[:train_len]],text[1][idxes[:train_len]],text[2][idxes[:train_len]]]), event[idxes[:train_len]],image[[idxes[:train_len]]],label[idxes[:train_len]]) pickle.dump(train_dataset,open('./pickles/train_dataset.pkl','wb')) test_dataset = FakeNewsDataset(
np.array([text[0][idxes[train_len:test_len+train_len]],text[1][idxes[train_len:test_len+train_len]],text[2][idxes[train_len:test_len+train_len]]])
numpy.array
import numpy as np import csv import cv2 from keras.models import Sequential from keras.layers import Dense, Flatten def load_data(): lines = [] with open('Data/driving_log.csv') as csvfile: reader = csv.reader(csvfile) for line in reader: lines.append(line) images = [] measurements = [] for line in lines: source_path = line[0] filename = source_path.split('/')[-1] current_path = 'Data/IMG/'+filename image = cv2.imread(current_path) images.append(image) measurement = float(line[3]) measurements.append(measurement) X_train = np.array(images) y_train =
np.array(measurements)
numpy.array
#!/usr/bin/env python3 import rospy from humanoid_league_msgs.msg import \ ObstacleInImageArray, BallInImageArray, \ GoalPostInImageArray from geometry_msgs.msg import Point, PolygonStamped from sensor_msgs.msg import Image from cv_bridge import CvBridge import numpy as np import math import cv2 import yaml import os import sys import signal import time import pickle class Evaluation(object): def __init__(self): """ Describes the evaluation of a single class on a single image """ self.received_message = False # boolean signaling whether a message of the type was received self.pixel_mask_rates = None self.duration = None class ImageMeasurement(object): def __init__(self, image_data, eval_classes): """ Describes the evaluation of a single image. It stores the annotations, Evaluation (see Evaluation class) for each class in the image. """ self.evaluations = dict() self.image_data = image_data for eval_class in eval_classes: self.evaluations[eval_class] = Evaluation() def serialize(self): return { 'evaluations': { 'classes': {eval_class: vars(self.evaluations[eval_class]) for eval_class in self.evaluations.keys() if self.evaluations[eval_class].received_message}, 'max_latency': self.get_max_duration(), }, 'image_data': self.image_data, } def get_max_duration(self): # returns the maximal duration a measurement in the image took max_duration = 0 for evaluation in self.evaluations.values(): if evaluation.duration is not None and evaluation.duration > max_duration: max_duration = evaluation.duration return max_duration class Evaluator(object): def __init__(self): self._set_sim_time_param() rospy.init_node("bitbots_vision_evaluator") self._set_sim_time_param() self._evaluated_classes = list() # Subscribe to all vision outputs self._ball_sub = None if rospy.get_param("~listen_balls", False): rospy.loginfo('listening for balls in image...') self._evaluated_classes.append('ball') self._ball_sub = rospy.Subscriber(rospy.get_param("~balls_topic", "balls_in_image"), BallInImageArray, self._balls_callback, queue_size=1, tcp_nodelay=True) self._line_sub = None if rospy.get_param("~listen_lines", False): rospy.loginfo('listening for lines in image...') self._evaluated_classes.append('line') self._line_sub = rospy.Subscriber(rospy.get_param("~lines_topic", "line_mask_in_image"), Image, self._lines_callback, queue_size=1, tcp_nodelay=True) self._obstacle_sub = None if rospy.get_param("~listen_obstacles", False): rospy.loginfo('listening for obstacles in image...') self._evaluated_classes.append('robot_red') self._evaluated_classes.append('robot_blue') self._evaluated_classes.append('obstacle') self._obstacle_sub = rospy.Subscriber(rospy.get_param("~obstacles_topic", "obstacles_in_image"), ObstacleInImageArray, self._obstacles_callback, queue_size=1, tcp_nodelay=True) self._goalpost_sub = None if rospy.get_param("~listen_goalposts", False): rospy.loginfo('listening for goalposts in image...') self._evaluated_classes.append('goalpost') self._goalpost_sub = rospy.Subscriber(rospy.get_param("~goalpost_topic", "goal_posts_in_image"), GoalPostInImageArray, self._goalpost_callback, queue_size=1, tcp_nodelay=True) self._field_boundary_sub = None if rospy.get_param("~listen_field_boundary", False): rospy.loginfo('listening for field_boundary in image...') self._evaluated_classes.append('field edge') self._field_boundary_sub = rospy.Subscriber(rospy.get_param("~field_boundary_topic", "field_boundary_in_image"), PolygonStamped, self._field_boundary_callback, queue_size=1, tcp_nodelay=True) # make image publisher self._image_pub = rospy.Publisher( rospy.get_param("~image_publish_topic", "image_raw"), Image, queue_size=1, latch=True) # Get parameters self._loop_images = rospy.get_param("~loop_images", False) self._image_path = rospy.get_param("~folder_path") self._line_thickness = rospy.get_param("~line_thickness") # Enfore wall clock self._set_sim_time_param() self.bridge = CvBridge() # Stores the messurement envs (ImageMeasurement) containing labels and metris for each image () self._measurements = dict() # Stop-Stuff self._stop = False # stop flag to handle kills signal.signal(signal.SIGINT, self._kill_callback) signal.signal(signal.SIGTERM, self._kill_callback) # Read label YAML file self._label_filename = rospy.get_param('~label_file_name') rospy.loginfo('Reading label-file \"{}\"...'.format(self._label_filename)) # Read labels (sort out usw.) self._images = self._read_labels(self._label_filename) rospy.loginfo('Done reading label-file.') # An unforgivable curse to differ between robot colors based on blurred/concealed/... self._classify_robots() # Filter and format labels rospy.loginfo('Validating labels of {} images...'.format(len(self._images))) self._images = self._analyze_labels(self._images) rospy.loginfo('Labels of {} images are valid'.format(len(self._images))) # Init image counter and set the image send time self._current_image_counter = 0 self._image_send_time = rospy.Time.now() self._image_count = len(self._images) # number of images (important for loop stuff) self._image_shape = None # tuple (height, width) self._label_shape = None # tuple (height, width) # A lock which checks if there is eval processing done at the moment self._lock = 0 # A time which checks for updates and serves the images if all classes arrived or # if a timeout is raised self._react_timer = rospy.Timer(rospy.Duration(0.2), self._react_callback) # Send first image self._send_image() rospy.spin() def _kill_callback(self, a, b): # the rest of the process is handled in the send_image method self._stop = True def _react_callback(self, event): # Executes any kind of stop if self._stop: rospy.loginfo('Stopping the evaluator.') # stop timer self._react_timer.shutdown() # write measurements to file self._write_measurements_to_file() # stop the spinner rospy.signal_shutdown('killed.') sys.exit(0) # Is raised if we didnt process a image in 2 Seconds. # This is the case if we havent got all responses and therefore are not sending the new image for 2 Seconds timeout = (rospy.Time.now() - self._image_send_time).to_sec() > 2.0 if timeout: rospy.logwarn("Stoped waiting for responses. Maybe some detections are lost") # Check if the timeout is due or if all desired responses have been collected and processed. # It also skips if a lock is present if (self._recieved_all_messages_for_image(self._current_image_counter) or timeout) and not self._lock: # Increse image counter self._current_image_counter += 1 # Reset timeout timer self._image_send_time = rospy.Time.now() # Send image self._send_image() def _get_image_name(self): """ Returns the name of the currently processed image """ return self._images[self._current_image_counter]['name'] def _get_current_labels(self): """ Returns the annotations of the currently processed image """ return self._images[self._current_image_counter]['annotations'] def _send_image(self): """ Sends an Image to the Vision """ # handle stop at end of image list if self._current_image_counter >= self._image_count: # iterated through all images rospy.loginfo('iterated through all images.') self._stop = True return # Get image name/id name = self._get_image_name() rospy.loginfo(f"Process image '{name}''") # Read image file imgpath = os.path.join(self._image_path, name) image = cv2.imread(imgpath) if image is None: rospy.logwarn('Could not open image {} at path {}'.format(name, self._image_path)) return # Setting label size as used by the imagetagger before we do the resizeing if self._label_shape is None: self._label_shape = image.shape[:-1] # Set the resized image size as expected by the vision if self._image_shape is None: self._image_shape = np.array(( rospy.get_param("~image_resolution_y"), rospy.get_param("~image_resolution_x"))) # resize the image image = cv2.resize(image, tuple(
np.flip(self._image_shape)
numpy.flip
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins import * # NOQA import math import os import pickle import unittest from copy import deepcopy import warnings import numpy as np import numpy.ma as ma from obspy import Stream, Trace, UTCDateTime, __version__, read, read_inventory from obspy.core import Stats from obspy.core.compatibility import mock from obspy.core.util.testing import ImageComparison from obspy.io.xseed import Parser class TraceTestCase(unittest.TestCase): """ Test suite for obspy.core.trace.Trace. """ @staticmethod def __remove_processing(tr): """ Removes all processing information in the trace object. Useful for testing. """ if "processing" not in tr.stats: return del tr.stats.processing def test_init(self): """ Tests the __init__ method of the Trace class. """ # NumPy ndarray tr = Trace(data=np.arange(4)) self.assertEqual(len(tr), 4) # NumPy masked array data = np.ma.array([0, 1, 2, 3], mask=[True, True, False, False]) tr = Trace(data=data) self.assertEqual(len(tr), 4) # other data types will raise self.assertRaises(ValueError, Trace, data=[0, 1, 2, 3]) self.assertRaises(ValueError, Trace, data=(0, 1, 2, 3)) self.assertRaises(ValueError, Trace, data='1234') def test_setattr(self): """ Tests the __setattr__ method of the Trace class. """ # NumPy ndarray tr = Trace() tr.data = np.arange(4) self.assertEqual(len(tr), 4) # NumPy masked array tr = Trace() tr.data = np.ma.array([0, 1, 2, 3], mask=[True, True, False, False]) self.assertEqual(len(tr), 4) # other data types will raise tr = Trace() self.assertRaises(ValueError, tr.__setattr__, 'data', [0, 1, 2, 3]) self.assertRaises(ValueError, tr.__setattr__, 'data', (0, 1, 2, 3)) self.assertRaises(ValueError, tr.__setattr__, 'data', '1234') def test_len(self): """ Tests the __len__ and count methods of the Trace class. """ trace = Trace(data=np.arange(1000)) self.assertEqual(len(trace), 1000) self.assertEqual(trace.count(), 1000) def test_mul(self): """ Tests the __mul__ method of the Trace class. """ tr = Trace(data=np.arange(10)) st = tr * 5 self.assertEqual(len(st), 5) # you may only multiply using an integer self.assertRaises(TypeError, tr.__mul__, 2.5) self.assertRaises(TypeError, tr.__mul__, '1234') def test_div(self): """ Tests the __div__ method of the Trace class. """ tr = Trace(data=np.arange(1000)) st = tr / 5 self.assertEqual(len(st), 5) self.assertEqual(len(st[0]), 200) # you may only multiply using an integer self.assertRaises(TypeError, tr.__div__, 2.5) self.assertRaises(TypeError, tr.__div__, '1234') def test_ltrim(self): """ Tests the ltrim method of the Trace class. """ # set up trace = Trace(data=np.arange(1000)) start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) trace.stats.starttime = start trace.stats.sampling_rate = 200.0 end = UTCDateTime(2000, 1, 1, 0, 0, 4, 995000) # verify trace.verify() # UTCDateTime/int/float required self.assertRaises(TypeError, trace._ltrim, '1234') self.assertRaises(TypeError, trace._ltrim, [1, 2, 3, 4]) # ltrim 100 samples tr = deepcopy(trace) tr._ltrim(0.5) tr.verify() np.testing.assert_array_equal(tr.data[0:5], np.array([100, 101, 102, 103, 104])) self.assertEqual(len(tr.data), 900) self.assertEqual(tr.stats.npts, 900) self.assertEqual(tr.stats.sampling_rate, 200.0) self.assertEqual(tr.stats.starttime, start + 0.5) self.assertEqual(tr.stats.endtime, end) # ltrim 202 samples tr = deepcopy(trace) tr._ltrim(1.010) tr.verify() np.testing.assert_array_equal(tr.data[0:5], np.array([202, 203, 204, 205, 206])) self.assertEqual(len(tr.data), 798) self.assertEqual(tr.stats.npts, 798) self.assertEqual(tr.stats.sampling_rate, 200.0) self.assertEqual(tr.stats.starttime, start + 1.010) self.assertEqual(tr.stats.endtime, end) # ltrim to UTCDateTime tr = deepcopy(trace) tr._ltrim(UTCDateTime(2000, 1, 1, 0, 0, 1, 10000)) tr.verify() np.testing.assert_array_equal(tr.data[0:5], np.array([202, 203, 204, 205, 206])) self.assertEqual(len(tr.data), 798) self.assertEqual(tr.stats.npts, 798) self.assertEqual(tr.stats.sampling_rate, 200.0) self.assertEqual(tr.stats.starttime, start + 1.010) self.assertEqual(tr.stats.endtime, end) # some sanity checks # negative start time as datetime tr = deepcopy(trace) tr._ltrim(start - 1, pad=True) tr.verify() self.assertEqual(tr.stats.starttime, start - 1) np.testing.assert_array_equal(trace.data, tr.data[200:]) self.assertEqual(tr.stats.endtime, trace.stats.endtime) # negative start time as integer tr = deepcopy(trace) tr._ltrim(-100, pad=True) tr.verify() self.assertEqual(tr.stats.starttime, start - 100) delta = 100 * trace.stats.sampling_rate np.testing.assert_array_equal(trace.data, tr.data[int(delta):]) self.assertEqual(tr.stats.endtime, trace.stats.endtime) # start time > end time tr = deepcopy(trace) tr._ltrim(trace.stats.endtime + 100) tr.verify() self.assertEqual(tr.stats.starttime, trace.stats.endtime + 100) np.testing.assert_array_equal(tr.data, np.empty(0)) self.assertEqual(tr.stats.endtime, tr.stats.starttime) # start time == end time tr = deepcopy(trace) tr._ltrim(5) tr.verify() self.assertEqual(tr.stats.starttime, trace.stats.starttime + 5) np.testing.assert_array_equal(tr.data, np.empty(0)) self.assertEqual(tr.stats.endtime, tr.stats.starttime) # start time == end time tr = deepcopy(trace) tr._ltrim(5.1) tr.verify() self.assertEqual(tr.stats.starttime, trace.stats.starttime + 5.1) np.testing.assert_array_equal(tr.data, np.empty(0)) self.assertEqual(tr.stats.endtime, tr.stats.starttime) def test_rtrim(self): """ Tests the rtrim method of the Trace class. """ # set up trace = Trace(data=np.arange(1000)) start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) trace.stats.starttime = start trace.stats.sampling_rate = 200.0 end = UTCDateTime(2000, 1, 1, 0, 0, 4, 995000) trace.verify() # UTCDateTime/int/float required self.assertRaises(TypeError, trace._rtrim, '1234') self.assertRaises(TypeError, trace._rtrim, [1, 2, 3, 4]) # rtrim 100 samples tr = deepcopy(trace) tr._rtrim(0.5) tr.verify() np.testing.assert_array_equal(tr.data[-5:], np.array([895, 896, 897, 898, 899])) self.assertEqual(len(tr.data), 900) self.assertEqual(tr.stats.npts, 900) self.assertEqual(tr.stats.sampling_rate, 200.0) self.assertEqual(tr.stats.starttime, start) self.assertEqual(tr.stats.endtime, end - 0.5) # rtrim 202 samples tr = deepcopy(trace) tr._rtrim(1.010) tr.verify() np.testing.assert_array_equal(tr.data[-5:], np.array([793, 794, 795, 796, 797])) self.assertEqual(len(tr.data), 798) self.assertEqual(tr.stats.npts, 798) self.assertEqual(tr.stats.sampling_rate, 200.0) self.assertEqual(tr.stats.starttime, start) self.assertEqual(tr.stats.endtime, end - 1.010) # rtrim 1 minute via UTCDateTime tr = deepcopy(trace) tr._rtrim(UTCDateTime(2000, 1, 1, 0, 0, 3, 985000)) tr.verify() np.testing.assert_array_equal(tr.data[-5:], np.array([793, 794, 795, 796, 797])) self.assertEqual(len(tr.data), 798) self.assertEqual(tr.stats.npts, 798) self.assertEqual(tr.stats.sampling_rate, 200.0) self.assertEqual(tr.stats.starttime, start) self.assertEqual(tr.stats.endtime, end - 1.010) # some sanity checks # negative end time tr = deepcopy(trace) t = UTCDateTime(1999, 12, 31) tr._rtrim(t) tr.verify() self.assertEqual(tr.stats.endtime, t) np.testing.assert_array_equal(tr.data, np.empty(0)) # negative end time with given seconds tr = deepcopy(trace) tr._rtrim(100) tr.verify() self.assertEqual(tr.stats.endtime, trace.stats.endtime - 100) np.testing.assert_array_equal(tr.data, np.empty(0)) self.assertEqual(tr.stats.endtime, tr.stats.starttime) # end time > start time tr = deepcopy(trace) t = UTCDateTime(2001) tr._rtrim(t) tr.verify() self.assertEqual(tr.stats.endtime, t) np.testing.assert_array_equal(tr.data, np.empty(0)) self.assertEqual(tr.stats.endtime, tr.stats.starttime) # end time > start time given seconds tr = deepcopy(trace) tr._rtrim(5.1) tr.verify() delta = int(math.floor(round(5.1 * trace.stats.sampling_rate, 7))) endtime = trace.stats.starttime + trace.stats.delta * \ (trace.stats.npts - delta - 1) self.assertEqual(tr.stats.endtime, endtime) np.testing.assert_array_equal(tr.data, np.empty(0)) # end time == start time # returns one sample! tr = deepcopy(trace) tr._rtrim(4.995) tr.verify() np.testing.assert_array_equal(tr.data, np.array([0])) self.assertEqual(len(tr.data), 1) self.assertEqual(tr.stats.npts, 1) self.assertEqual(tr.stats.sampling_rate, 200.0) self.assertEqual(tr.stats.starttime, start) self.assertEqual(tr.stats.endtime, start) def test_rtrim_with_padding(self): """ Tests the _rtrim() method of the Trace class with padding. It has already been tested in the two sided trimming tests. This is just to have an explicit test. Also tests issue #429. """ # set up trace = Trace(data=np.arange(10)) start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) trace.stats.starttime = start trace.stats.sampling_rate = 1.0 trace.verify() # Pad with no fill_value will mask the additional values. tr = trace.copy() end = tr.stats.endtime tr._rtrim(end + 10, pad=True) self.assertEqual(tr.stats.endtime, trace.stats.endtime + 10) np.testing.assert_array_equal(tr.data[0:10], np.arange(10)) # Check that the first couple of entries are not masked. self.assertFalse(tr.data[0:10].mask.any()) # All the other entries should be masked. self.assertTrue(tr.data[10:].mask.all()) # Pad with fill_value. tr = trace.copy() end = tr.stats.endtime tr._rtrim(end + 10, pad=True, fill_value=-33) self.assertEqual(tr.stats.endtime, trace.stats.endtime + 10) # The first ten entries should not have changed. np.testing.assert_array_equal(tr.data[0:10], np.arange(10)) # The rest should be filled with the fill_value. np.testing.assert_array_equal(tr.data[10:], np.ones(10) * -33) def test_trim(self): """ Tests the trim method of the Trace class. """ # set up trace = Trace(data=np.arange(1001)) start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) trace.stats.starttime = start trace.stats.sampling_rate = 200.0 end = UTCDateTime(2000, 1, 1, 0, 0, 5, 0) trace.verify() # rtrim 100 samples trace.trim(0.5, 0.5) trace.verify() np.testing.assert_array_equal(trace.data[-5:], np.array([896, 897, 898, 899, 900])) np.testing.assert_array_equal(trace.data[:5], np.array([100, 101, 102, 103, 104])) self.assertEqual(len(trace.data), 801) self.assertEqual(trace.stats.npts, 801) self.assertEqual(trace.stats.sampling_rate, 200.0) self.assertEqual(trace.stats.starttime, start + 0.5) self.assertEqual(trace.stats.endtime, end - 0.5) # start time should be before end time self.assertRaises(ValueError, trace.trim, end, start) def test_trim_all_does_not_change_dtype(self): """ If a Trace is completely trimmed, e.g. no data samples are remaining, the dtype should remain unchanged. A trace with no data samples is not really senseful but the dtype should not be changed anyways. """ # Choose non native dtype. tr = Trace(np.arange(100, dtype=np.int16)) tr.trim(UTCDateTime(10000), UTCDateTime(20000)) # Assert the result. self.assertEqual(len(tr.data), 0) self.assertEqual(tr.data.dtype, np.int16) def test_add_trace_with_gap(self): """ Tests __add__ method of the Trace class. """ # set up tr1 = Trace(data=np.arange(1000)) tr1.stats.sampling_rate = 200 start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) tr1.stats.starttime = start tr2 = Trace(data=np.arange(0, 1000)[::-1]) tr2.stats.sampling_rate = 200 tr2.stats.starttime = start + 10 # verify tr1.verify() tr2.verify() # add trace = tr1 + tr2 # stats self.assertEqual(trace.stats.starttime, start) self.assertEqual(trace.stats.endtime, start + 14.995) self.assertEqual(trace.stats.sampling_rate, 200) self.assertEqual(trace.stats.npts, 3000) # data self.assertEqual(len(trace), 3000) self.assertEqual(trace[0], 0) self.assertEqual(trace[999], 999) self.assertTrue(ma.is_masked(trace[1000])) self.assertTrue(ma.is_masked(trace[1999])) self.assertEqual(trace[2000], 999) self.assertEqual(trace[2999], 0) # verify trace.verify() def test_add_trace_with_overlap(self): """ Tests __add__ method of the Trace class. """ # set up tr1 = Trace(data=np.arange(1000)) tr1.stats.sampling_rate = 200 start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) tr1.stats.starttime = start tr2 = Trace(data=np.arange(0, 1000)[::-1]) tr2.stats.sampling_rate = 200 tr2.stats.starttime = start + 4 # add trace = tr1 + tr2 # stats self.assertEqual(trace.stats.starttime, start) self.assertEqual(trace.stats.endtime, start + 8.995) self.assertEqual(trace.stats.sampling_rate, 200) self.assertEqual(trace.stats.npts, 1800) # data self.assertEqual(len(trace), 1800) self.assertEqual(trace[0], 0) self.assertEqual(trace[799], 799) self.assertTrue(trace[800].mask) self.assertTrue(trace[999].mask) self.assertEqual(trace[1000], 799) self.assertEqual(trace[1799], 0) # verify trace.verify() def test_add_same_trace(self): """ Tests __add__ method of the Trace class. """ # set up tr1 = Trace(data=np.arange(1001)) # add trace = tr1 + tr1 # should return exact the same values self.assertEqual(trace.stats, tr1.stats) np.testing.assert_array_equal(trace.data, tr1.data) # verify trace.verify() def test_add_trace_within_trace(self): """ Tests __add__ method of the Trace class. """ # set up tr1 = Trace(data=np.arange(1001)) tr1.stats.sampling_rate = 200 start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) tr1.stats.starttime = start tr2 = Trace(data=np.arange(201)) tr2.stats.sampling_rate = 200 tr2.stats.starttime = start + 1 # add trace = tr1 + tr2 # should return exact the same values like trace 1 self.assertEqual(trace.stats, tr1.stats) mask = np.zeros(len(tr1)).astype(np.bool_) mask[200:401] = True np.testing.assert_array_equal(trace.data.mask, mask) np.testing.assert_array_equal(trace.data.data[:200], tr1.data[:200]) np.testing.assert_array_equal(trace.data.data[401:], tr1.data[401:]) # add the other way around trace = tr2 + tr1 # should return exact the same values like trace 1 self.assertEqual(trace.stats, tr1.stats) np.testing.assert_array_equal(trace.data.mask, mask) np.testing.assert_array_equal(trace.data.data[:200], tr1.data[:200]) np.testing.assert_array_equal(trace.data.data[401:], tr1.data[401:]) # verify trace.verify() def test_add_gap_and_overlap(self): """ Test order of merging traces. """ # set up tr1 = Trace(data=np.arange(1000)) tr1.stats.sampling_rate = 200 start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) tr1.stats.starttime = start tr2 = Trace(data=np.arange(1000)[::-1]) tr2.stats.sampling_rate = 200 tr2.stats.starttime = start + 4 tr3 = Trace(data=np.arange(1000)[::-1]) tr3.stats.sampling_rate = 200 tr3.stats.starttime = start + 12 # overlap overlap = tr1 + tr2 self.assertEqual(len(overlap), 1800) mask = np.zeros(1800).astype(np.bool_) mask[800:1000] = True np.testing.assert_array_equal(overlap.data.mask, mask) np.testing.assert_array_equal(overlap.data.data[:800], tr1.data[:800]) np.testing.assert_array_equal(overlap.data.data[1000:], tr2.data[200:]) # overlap + gap overlap_gap = overlap + tr3 self.assertEqual(len(overlap_gap), 3400) mask = np.zeros(3400).astype(np.bool_) mask[800:1000] = True mask[1800:2400] = True np.testing.assert_array_equal(overlap_gap.data.mask, mask) np.testing.assert_array_equal(overlap_gap.data.data[:800], tr1.data[:800]) np.testing.assert_array_equal(overlap_gap.data.data[1000:1800], tr2.data[200:]) np.testing.assert_array_equal(overlap_gap.data.data[2400:], tr3.data) # gap gap = tr2 + tr3 self.assertEqual(len(gap), 2600) mask = np.zeros(2600).astype(np.bool_) mask[1000:1600] = True np.testing.assert_array_equal(gap.data.mask, mask) np.testing.assert_array_equal(gap.data.data[:1000], tr2.data) np.testing.assert_array_equal(gap.data.data[1600:], tr3.data) def test_add_into_gap(self): """ Test __add__ method of the Trace class Adding a trace that fits perfectly into gap in a trace """ my_array = np.arange(6, dtype=np.int32) stats = Stats() stats.network = 'VI' stats['starttime'] = UTCDateTime(2009, 8, 5, 0, 0, 0) stats['npts'] = 0 stats['station'] = 'IKJA' stats['channel'] = 'EHZ' stats['sampling_rate'] = 1 bigtrace = Trace(data=np.array([], dtype=np.int32), header=stats) bigtrace_sort = bigtrace.copy() stats['npts'] = len(my_array) my_trace = Trace(data=my_array, header=stats) stats['npts'] = 2 trace1 = Trace(data=my_array[0:2].copy(), header=stats) stats['starttime'] = UTCDateTime(2009, 8, 5, 0, 0, 2) trace2 = Trace(data=my_array[2:4].copy(), header=stats) stats['starttime'] = UTCDateTime(2009, 8, 5, 0, 0, 4) trace3 = Trace(data=my_array[4:6].copy(), header=stats) tr1 = bigtrace tr2 = bigtrace_sort for method in [0, 1]: # Random bigtrace = tr1.copy() bigtrace = bigtrace.__add__(trace1, method=method) bigtrace = bigtrace.__add__(trace3, method=method) bigtrace = bigtrace.__add__(trace2, method=method) # Sorted bigtrace_sort = tr2.copy() bigtrace_sort = bigtrace_sort.__add__(trace1, method=method) bigtrace_sort = bigtrace_sort.__add__(trace2, method=method) bigtrace_sort = bigtrace_sort.__add__(trace3, method=method) for tr in (bigtrace, bigtrace_sort): self.assertTrue(isinstance(tr, Trace)) self.assertFalse(isinstance(tr.data, np.ma.masked_array)) self.assertTrue((bigtrace_sort.data == my_array).all()) fail_pattern = "\n\tExpected %s\n\tbut got %s" failinfo = fail_pattern % (my_trace, bigtrace_sort) failinfo += fail_pattern % (my_trace.data, bigtrace_sort.data) self.assertEqual(bigtrace_sort, my_trace, failinfo) failinfo = fail_pattern % (my_array, bigtrace.data) self.assertTrue((bigtrace.data == my_array).all(), failinfo) failinfo = fail_pattern % (my_trace, bigtrace) failinfo += fail_pattern % (my_trace.data, bigtrace.data) self.assertEqual(bigtrace, my_trace, failinfo) for array_ in (bigtrace.data, bigtrace_sort.data): failinfo = fail_pattern % (my_array.dtype, array_.dtype) self.assertEqual(my_array.dtype, array_.dtype, failinfo) def test_slice(self): """ Tests the slicing of trace objects. """ tr = Trace(data=np.arange(10, dtype=np.int32)) mempos = tr.data.ctypes.data t = tr.stats.starttime tr1 = tr.slice(t + 2, t + 8) tr1.data[0] = 10 self.assertEqual(tr.data[2], 10) self.assertEqual(tr.data.ctypes.data, mempos) self.assertEqual(tr.data[2:9].ctypes.data, tr1.data.ctypes.data) self.assertEqual(tr1.data.ctypes.data - 8, mempos) # Test the processing information for the slicing. The sliced trace # should have a processing information showing that it has been # trimmed. The original trace should have nothing. tr = Trace(data=np.arange(10, dtype=np.int32)) tr2 = tr.slice(tr.stats.starttime) self.assertNotIn("processing", tr.stats) self.assertIn("processing", tr2.stats) self.assertIn("trim", tr2.stats.processing[0]) def test_slice_no_starttime_or_endtime(self): """ Tests the slicing of trace objects with no start time or end time provided. Compares results against the equivalent trim() operation """ tr_orig = Trace(data=np.arange(10, dtype=np.int32)) tr = tr_orig.copy() # two time points outside the trace and two inside t1 = tr.stats.starttime - 2 t2 = tr.stats.starttime + 2 t3 = tr.stats.endtime - 3 t4 = tr.stats.endtime + 2 # test 1: only removing data at left side tr_trim = tr_orig.copy() tr_trim.trim(starttime=t2) self.assertEqual(tr_trim, tr.slice(starttime=t2)) tr2 = tr.slice(starttime=t2, endtime=t4) self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) # test 2: only removing data at right side tr_trim = tr_orig.copy() tr_trim.trim(endtime=t3) self.assertEqual(tr_trim, tr.slice(endtime=t3)) tr2 = tr.slice(starttime=t1, endtime=t3) self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) # test 3: not removing data at all tr_trim = tr_orig.copy() tr_trim.trim(starttime=t1, endtime=t4) tr2 = tr.slice() self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) tr2 = tr.slice(starttime=t1) self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) tr2 = tr.slice(endtime=t4) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) tr2 = tr.slice(starttime=t1, endtime=t4) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) tr_trim.trim() tr2 = tr.slice() self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) tr2 = tr.slice(starttime=t1) self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) tr2 = tr.slice(endtime=t4) self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) tr2 = tr.slice(starttime=t1, endtime=t4) self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) # test 4: removing data at left and right side tr_trim = tr_orig.copy() tr_trim.trim(starttime=t2, endtime=t3) self.assertEqual(tr_trim, tr.slice(t2, t3)) self.assertEqual(tr_trim, tr.slice(starttime=t2, endtime=t3)) # test 5: no data left after operation tr_trim = tr_orig.copy() tr_trim.trim(starttime=t4) tr2 = tr.slice(starttime=t4) self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) tr2 = tr.slice(starttime=t4, endtime=t4 + 1) self.__remove_processing(tr_trim) self.__remove_processing(tr2) self.assertEqual(tr_trim, tr2) def test_slice_nearest_sample(self): """ Tests slicing with the nearest sample flag set to on or off. """ tr = Trace(data=np.arange(6)) # Samples at: # 0 10 20 30 40 50 tr.stats.sampling_rate = 0.1 # Nearest sample flag defaults to true. tr2 = tr.slice(UTCDateTime(4), UTCDateTime(44)) self.assertEqual(tr2.stats.starttime, UTCDateTime(0)) self.assertEqual(tr2.stats.endtime, UTCDateTime(40)) tr2 = tr.slice(UTCDateTime(8), UTCDateTime(48)) self.assertEqual(tr2.stats.starttime, UTCDateTime(10)) self.assertEqual(tr2.stats.endtime, UTCDateTime(50)) # Setting it to False changes the returned values. tr2 = tr.slice(UTCDateTime(4), UTCDateTime(44), nearest_sample=False) self.assertEqual(tr2.stats.starttime, UTCDateTime(10)) self.assertEqual(tr2.stats.endtime, UTCDateTime(40)) tr2 = tr.slice(UTCDateTime(8), UTCDateTime(48), nearest_sample=False) self.assertEqual(tr2.stats.starttime, UTCDateTime(10)) self.assertEqual(tr2.stats.endtime, UTCDateTime(40)) def test_trim_floating_point(self): """ Tests the slicing of trace objects. """ # Create test array that allows for easy testing. tr = Trace(data=np.arange(11)) org_stats = deepcopy(tr.stats) org_data = deepcopy(tr.data) # Save memory position of array. mem_pos = tr.data.ctypes.data # Just some sanity tests. self.assertEqual(tr.stats.starttime, UTCDateTime(0)) self.assertEqual(tr.stats.endtime, UTCDateTime(10)) # Create temp trace object used for testing. st = tr.stats.starttime # This is supposed to include the start and end times and should # therefore cut right at 2 and 8. temp = deepcopy(tr) temp.trim(st + 2.1, st + 7.1) # Should be identical. temp2 = deepcopy(tr) temp2.trim(st + 2.0, st + 8.0) self.assertEqual(temp.stats.starttime, UTCDateTime(2)) self.assertEqual(temp.stats.endtime, UTCDateTime(7)) self.assertEqual(temp.stats.npts, 6) self.assertEqual(temp2.stats.npts, 7) # self.assertEqual(temp.stats, temp2.stats) np.testing.assert_array_equal(temp.data, temp2.data[:-1]) # Create test array that allows for easy testing. # Check if the data is the same. self.assertNotEqual(temp.data.ctypes.data, tr.data[2:9].ctypes.data) np.testing.assert_array_equal(tr.data[2:8], temp.data) # Using out of bounds times should not do anything but create # a copy of the stats. temp = deepcopy(tr) temp.trim(st - 2.5, st + 200) # The start and end times should not change. self.assertEqual(temp.stats.starttime, UTCDateTime(0)) self.assertEqual(temp.stats.endtime, UTCDateTime(10)) self.assertEqual(temp.stats.npts, 11) # Alter the new stats to make sure the old one stays intact. temp.stats.starttime = UTCDateTime(1000) self.assertEqual(org_stats, tr.stats) # Check if the data address is not the same, that is it is a copy self.assertNotEqual(temp.data.ctypes.data, tr.data.ctypes.data) np.testing.assert_array_equal(tr.data, temp.data) # Make sure the original Trace object did not change. np.testing.assert_array_equal(tr.data, org_data) self.assertEqual(tr.data.ctypes.data, mem_pos) self.assertEqual(tr.stats, org_stats) # Use more complicated times and sampling rate. tr = Trace(data=np.arange(111)) tr.stats.starttime = UTCDateTime(111.11111) tr.stats.sampling_rate = 50.0 org_stats = deepcopy(tr.stats) org_data = deepcopy(tr.data) # Save memory position of array. mem_pos = tr.data.ctypes.data # Create temp trace object used for testing. temp = deepcopy(tr) temp.trim(UTCDateTime(111.22222), UTCDateTime(112.99999), nearest_sample=False) # Should again be identical. XXX NOT! temp2 = deepcopy(tr) temp2.trim(UTCDateTime(111.21111), UTCDateTime(113.01111), nearest_sample=False) np.testing.assert_array_equal(temp.data, temp2.data[1:-1]) # Check stuff. self.assertEqual(temp.stats.starttime, UTCDateTime(111.23111)) self.assertEqual(temp.stats.endtime, UTCDateTime(112.991110)) # Check if the data is the same. temp = deepcopy(tr) temp.trim(UTCDateTime(0), UTCDateTime(1000 * 1000)) self.assertNotEqual(temp.data.ctypes.data, tr.data.ctypes.data) # starttime must be in conformance with sampling rate t = UTCDateTime(111.11111) self.assertEqual(temp.stats.starttime, t) delta = int((tr.stats.starttime - t) * tr.stats.sampling_rate + .5) np.testing.assert_array_equal(tr.data, temp.data[delta:delta + 111]) # Make sure the original Trace object did not change. np.testing.assert_array_equal(tr.data, org_data) self.assertEqual(tr.data.ctypes.data, mem_pos) self.assertEqual(tr.stats, org_stats) def test_trim_floating_point_with_padding_1(self): """ Tests the slicing of trace objects with the use of the padding option. """ # Create test array that allows for easy testing. tr = Trace(data=np.arange(11)) org_stats = deepcopy(tr.stats) org_data = deepcopy(tr.data) # Save memory position of array. mem_pos = tr.data.ctypes.data # Just some sanity tests. self.assertEqual(tr.stats.starttime, UTCDateTime(0)) self.assertEqual(tr.stats.endtime, UTCDateTime(10)) # Create temp trace object used for testing. st = tr.stats.starttime # Using out of bounds times should not do anything but create # a copy of the stats. temp = deepcopy(tr) temp.trim(st - 2.5, st + 200, pad=True) self.assertEqual(temp.stats.starttime.timestamp, -2.0) self.assertEqual(temp.stats.endtime.timestamp, 200) self.assertEqual(temp.stats.npts, 203) mask = np.zeros(203).astype(np.bool_) mask[:2] = True mask[13:] = True np.testing.assert_array_equal(temp.data.mask, mask) # Alter the new stats to make sure the old one stays intact. temp.stats.starttime = UTCDateTime(1000) self.assertEqual(org_stats, tr.stats) # Check if the data address is not the same, that is it is a copy self.assertNotEqual(temp.data.ctypes.data, tr.data.ctypes.data) np.testing.assert_array_equal(tr.data, temp.data[2:13]) # Make sure the original Trace object did not change. np.testing.assert_array_equal(tr.data, org_data) self.assertEqual(tr.data.ctypes.data, mem_pos) self.assertEqual(tr.stats, org_stats) def test_trim_floating_point_with_padding_2(self): """ Use more complicated times and sampling rate. """ tr = Trace(data=np.arange(111)) tr.stats.starttime = UTCDateTime(111.11111) tr.stats.sampling_rate = 50.0 org_stats = deepcopy(tr.stats) org_data = deepcopy(tr.data) # Save memory position of array. mem_pos = tr.data.ctypes.data # Create temp trace object used for testing. temp = deepcopy(tr) temp.trim(UTCDateTime(111.22222), UTCDateTime(112.99999), nearest_sample=False) # Should again be identical.#XXX not temp2 = deepcopy(tr) temp2.trim(UTCDateTime(111.21111), UTCDateTime(113.01111), nearest_sample=False) np.testing.assert_array_equal(temp.data, temp2.data[1:-1]) # Check stuff. self.assertEqual(temp.stats.starttime, UTCDateTime(111.23111)) self.assertEqual(temp.stats.endtime, UTCDateTime(112.991110)) # Check if the data is the same. temp = deepcopy(tr) temp.trim(UTCDateTime(0), UTCDateTime(1000 * 1000), pad=True) self.assertNotEqual(temp.data.ctypes.data, tr.data.ctypes.data) # starttime must be in conformance with sampling rate t = UTCDateTime(1969, 12, 31, 23, 59, 59, 991110) self.assertEqual(temp.stats.starttime, t) delta = int((tr.stats.starttime - t) * tr.stats.sampling_rate + .5) np.testing.assert_array_equal(tr.data, temp.data[delta:delta + 111]) # Make sure the original Trace object did not change. np.testing.assert_array_equal(tr.data, org_data) self.assertEqual(tr.data.ctypes.data, mem_pos) self.assertEqual(tr.stats, org_stats) def test_add_sanity(self): """ Test sanity checks in __add__ method of the Trace object. """ tr = Trace(data=np.arange(10)) # you may only add a Trace object self.assertRaises(TypeError, tr.__add__, 1234) self.assertRaises(TypeError, tr.__add__, '1234') self.assertRaises(TypeError, tr.__add__, [1, 2, 3, 4]) # trace id tr2 = Trace() tr2.stats.station = 'TEST' self.assertRaises(TypeError, tr.__add__, tr2) # sample rate tr2 = Trace() tr2.stats.sampling_rate = 20 self.assertRaises(TypeError, tr.__add__, tr2) # calibration factor tr2 = Trace() tr2.stats.calib = 20 self.assertRaises(TypeError, tr.__add__, tr2) # data type tr2 = Trace() tr2.data = np.arange(10, dtype=np.float32) self.assertRaises(TypeError, tr.__add__, tr2) def test_add_overlaps_default_method(self): """ Test __add__ method of the Trace object. """ # 1 # overlapping trace with differing data # Trace 1: 0000000 # Trace 2: 1111111 tr1 = Trace(data=np.zeros(7)) tr2 = Trace(data=np.ones(7)) tr2.stats.starttime = tr1.stats.starttime + 5 # 1 + 2 : 00000--11111 tr = tr1 + tr2 self.assertTrue(isinstance(tr.data, np.ma.masked_array)) self.assertEqual(tr.data.tolist(), [0, 0, 0, 0, 0, None, None, 1, 1, 1, 1, 1]) # 2 + 1 : 00000--11111 tr = tr2 + tr1 self.assertTrue(isinstance(tr.data, np.ma.masked_array)) self.assertEqual(tr.data.tolist(), [0, 0, 0, 0, 0, None, None, 1, 1, 1, 1, 1]) # 2 # overlapping trace with same data # Trace 1: 0000000 # Trace 2: 0000000 tr1 = Trace(data=np.zeros(7)) tr2 = Trace(data=np.zeros(7)) tr2.stats.starttime = tr1.stats.starttime + 5 # 1 + 2 : 000000000000 tr = tr1 + tr2 self.assertTrue(isinstance(tr.data, np.ndarray)) np.testing.assert_array_equal(tr.data, np.zeros(12)) # 2 + 1 : 000000000000 tr = tr2 + tr1 self.assertTrue(isinstance(tr.data, np.ndarray)) np.testing.assert_array_equal(tr.data, np.zeros(12)) # 3 # contained trace with same data # Trace 1: 1111111111 # Trace 2: 11 tr1 = Trace(data=np.ones(10)) tr2 = Trace(data=np.ones(2)) tr2.stats.starttime = tr1.stats.starttime + 5 # 1 + 2 : 1111111111 tr = tr1 + tr2 self.assertTrue(isinstance(tr.data, np.ndarray)) np.testing.assert_array_equal(tr.data, np.ones(10)) # 2 + 1 : 1111111111 tr = tr2 + tr1 self.assertTrue(isinstance(tr.data, np.ndarray)) np.testing.assert_array_equal(tr.data, np.ones(10)) # 4 # contained trace with differing data # Trace 1: 0000000000 # Trace 2: 11 tr1 = Trace(data=np.zeros(10)) tr2 = Trace(data=np.ones(2)) tr2.stats.starttime = tr1.stats.starttime + 5 # 1 + 2 : 00000--000 tr = tr1 + tr2 self.assertTrue(isinstance(tr.data, np.ma.masked_array)) self.assertEqual(tr.data.tolist(), [0, 0, 0, 0, 0, None, None, 0, 0, 0]) # 2 + 1 : 00000--000 tr = tr2 + tr1 self.assertTrue(isinstance(tr.data, np.ma.masked_array)) self.assertEqual(tr.data.tolist(), [0, 0, 0, 0, 0, None, None, 0, 0, 0]) # 5 # completely contained trace with same data until end # Trace 1: 1111111111 # Trace 2: 1111111111 tr1 = Trace(data=np.ones(10)) tr2 = Trace(data=np.ones(10)) # 1 + 2 : 1111111111 tr = tr1 + tr2 self.assertTrue(isinstance(tr.data, np.ndarray)) np.testing.assert_array_equal(tr.data, np.ones(10)) # 6 # completely contained trace with differing data # Trace 1: 0000000000 # Trace 2: 1111111111 tr1 = Trace(data=np.zeros(10)) tr2 = Trace(data=np.ones(10)) # 1 + 2 : ---------- tr = tr1 + tr2 self.assertTrue(isinstance(tr.data, np.ma.masked_array)) self.assertEqual(tr.data.tolist(), [None] * 10) def test_add_with_different_sampling_rates(self): """ Test __add__ method of the Trace object. """ # 1 - different sampling rates for the same channel should fail tr1 = Trace(data=np.zeros(5)) tr1.stats.sampling_rate = 200 tr2 = Trace(data=np.zeros(5)) tr2.stats.sampling_rate = 50 self.assertRaises(TypeError, tr1.__add__, tr2) self.assertRaises(TypeError, tr2.__add__, tr1) # 2 - different sampling rates for the different channels works tr1 = Trace(data=np.zeros(5)) tr1.stats.sampling_rate = 200 tr1.stats.channel = 'EHE' tr2 = Trace(data=np.zeros(5)) tr2.stats.sampling_rate = 50 tr2.stats.channel = 'EHZ' tr3 = Trace(data=np.zeros(5)) tr3.stats.sampling_rate = 200 tr3.stats.channel = 'EHE' tr4 = Trace(data=np.zeros(5)) tr4.stats.sampling_rate = 50 tr4.stats.channel = 'EHZ' # same sampling rate and ids should not fail tr1 + tr3 tr3 + tr1 tr2 + tr4 tr4 + tr2 def test_add_with_different_datatypes_or_id(self): """ Test __add__ method of the Trace object. """ # 1 - different data types for the same channel should fail tr1 = Trace(data=np.zeros(5, dtype=np.int32)) tr2 = Trace(data=np.zeros(5, dtype=np.float32)) self.assertRaises(TypeError, tr1.__add__, tr2) self.assertRaises(TypeError, tr2.__add__, tr1) # 2 - different sampling rates for the different channels works tr1 = Trace(data=np.zeros(5, dtype=np.int32)) tr1.stats.channel = 'EHE' tr2 = Trace(data=np.zeros(5, dtype=np.float32)) tr2.stats.channel = 'EHZ' tr3 = Trace(data=np.zeros(5, dtype=np.int32)) tr3.stats.channel = 'EHE' tr4 = Trace(data=np.zeros(5, dtype=np.float32)) tr4.stats.channel = 'EHZ' # same data types and ids should not fail tr1 + tr3 tr3 + tr1 tr2 + tr4 tr4 + tr2 # adding traces with different ids should raise self.assertRaises(TypeError, tr1.__add__, tr2) self.assertRaises(TypeError, tr3.__add__, tr4) self.assertRaises(TypeError, tr2.__add__, tr1) self.assertRaises(TypeError, tr4.__add__, tr3) def test_comparisons(self): """ Tests all rich comparison operators (==, !=, <, <=, >, >=) The latter four are not implemented due to ambiguous meaning and bounce an error. """ # create test traces tr0 = Trace(np.arange(3)) tr1 = Trace(np.arange(3)) tr2 = Trace(np.arange(3), {'station': 'X'}) tr3 = Trace(np.arange(3), {'processing': ["filter:lowpass:{'freq': 10}"]}) tr4 = Trace(np.arange(5)) tr5 = Trace(np.arange(5), {'station': 'X'}) tr6 = Trace(np.arange(5), {'processing': ["filter:lowpass:{'freq': 10}"]}) tr7 = Trace(np.array([1, 1, 1])) # tests that should raise a NotImplementedError (i.e. <=, <, >=, >) self.assertRaises(NotImplementedError, tr1.__lt__, tr1) self.assertRaises(NotImplementedError, tr1.__le__, tr1) self.assertRaises(NotImplementedError, tr1.__gt__, tr1) self.assertRaises(NotImplementedError, tr1.__ge__, tr1) self.assertRaises(NotImplementedError, tr1.__lt__, tr2) self.assertRaises(NotImplementedError, tr1.__le__, tr2) self.assertRaises(NotImplementedError, tr1.__gt__, tr2) self.assertRaises(NotImplementedError, tr1.__ge__, tr2) # normal tests self.assertEqual(tr0 == tr0, True) self.assertEqual(tr0 == tr1, True) self.assertEqual(tr0 == tr2, False) self.assertEqual(tr0 == tr3, False) self.assertEqual(tr0 == tr4, False) self.assertEqual(tr0 == tr5, False) self.assertEqual(tr0 == tr6, False) self.assertEqual(tr0 == tr7, False) self.assertEqual(tr5 == tr0, False) self.assertEqual(tr5 == tr1, False) self.assertEqual(tr5 == tr2, False) self.assertEqual(tr5 == tr3, False) self.assertEqual(tr5 == tr4, False) self.assertEqual(tr5 == tr5, True) self.assertEqual(tr5 == tr6, False) self.assertEqual(tr3 == tr6, False) self.assertEqual(tr0 != tr0, False) self.assertEqual(tr0 != tr1, False) self.assertEqual(tr0 != tr2, True) self.assertEqual(tr0 != tr3, True) self.assertEqual(tr0 != tr4, True) self.assertEqual(tr0 != tr5, True) self.assertEqual(tr0 != tr6, True) self.assertEqual(tr0 != tr7, True) self.assertEqual(tr5 != tr0, True) self.assertEqual(tr5 != tr1, True) self.assertEqual(tr5 != tr2, True) self.assertEqual(tr5 != tr3, True) self.assertEqual(tr5 != tr4, True) self.assertEqual(tr5 != tr5, False) self.assertEqual(tr5 != tr6, True) self.assertEqual(tr3 != tr6, True) # some weirder tests against non-Trace objects for object in [0, 1, 0.0, 1.0, "", "test", True, False, [], [tr0], set(), set(tr0), {}, {"test": "test"}, [], None, ]: self.assertEqual(tr0 == object, False) self.assertEqual(tr0 != object, True) def test_nearest_sample(self): """ This test case shows that the libmseed is actually flooring the starttime to the next sample value, regardless if it is the nearest sample. The flag nearest_sample=True tries to avoids this and rounds it to the next actual possible sample point. """ # set up trace = Trace(data=np.empty(10000)) trace.stats.starttime = UTCDateTime("2010-06-20T20:19:40.000000Z") trace.stats.sampling_rate = 200.0 # ltrim tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.494999Z") tr._ltrim(t - 3, nearest_sample=True) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.starttime, UTCDateTime("2010-06-20T20:19:48.495000Z")) # Lots of tests follow that thoroughly check the cutting behavior # using nearest_sample=True/False # rtrim tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.494999Z") tr._rtrim(t + 7, nearest_sample=True) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.endtime, UTCDateTime("2010-06-20T20:19:58.495000Z")) tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.495000Z") tr._rtrim(t + 7, nearest_sample=True) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.endtime, UTCDateTime("2010-06-20T20:19:58.495000Z")) tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.495111Z") tr._rtrim(t + 7, nearest_sample=True) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.endtime, UTCDateTime("2010-06-20T20:19:58.495000Z")) tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.497501Z") tr._rtrim(t + 7, nearest_sample=True) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.endtime, UTCDateTime("2010-06-20T20:19:58.500000Z")) # rtrim tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.494999Z") tr._rtrim(t + 7, nearest_sample=False) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.endtime, UTCDateTime("2010-06-20T20:19:58.490000Z")) tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.495000Z") tr._rtrim(t + 7, nearest_sample=False) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.endtime, UTCDateTime("2010-06-20T20:19:58.495000Z")) tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.495111Z") tr._rtrim(t + 7, nearest_sample=False) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.endtime, UTCDateTime("2010-06-20T20:19:58.495000Z")) tr = deepcopy(trace) t = UTCDateTime("2010-06-20T20:19:51.497500Z") tr._rtrim(t + 7, nearest_sample=False) # see that it is actually rounded to the next sample point self.assertEqual(tr.stats.endtime, UTCDateTime("2010-06-20T20:19:58.495000Z")) def test_masked_array_to_string(self): """ Masked arrays should be marked using __str__. """ st = read() overlaptrace = st[0].copy() overlaptrace.stats.starttime += 1 st.append(overlaptrace) st.merge() out = st[0].__str__() self.assertTrue(out.endswith('(masked)')) def test_detrend(self): """ Test detrend method of trace """ t = np.arange(10) data = 0.1 * t + 1. tr = Trace(data=data.copy()) tr.detrend(type='simple') np.testing.assert_array_almost_equal(tr.data, np.zeros(10)) tr.data = data.copy() tr.detrend(type='linear') np.testing.assert_array_almost_equal(tr.data, np.zeros(10)) data = np.zeros(10) data[3:7] = 1. tr.data = data.copy() tr.detrend(type='simple') np.testing.assert_almost_equal(tr.data[0], 0.) np.testing.assert_almost_equal(tr.data[-1], 0.) tr.data = data.copy() tr.detrend(type='linear') np.testing.assert_almost_equal(tr.data[0], -0.4) np.testing.assert_almost_equal(tr.data[-1], -0.4) def test_differentiate(self): """ Test differentiation method of trace """ t = np.linspace(0., 1., 11) data = 0.1 * t + 1. tr = Trace(data=data) tr.stats.delta = 0.1 tr.differentiate(method='gradient') np.testing.assert_array_almost_equal(tr.data, np.ones(11) * 0.1) def test_integrate(self): """ Test integration method of trace """ data = np.ones(101) * 0.01 tr = Trace(data=data) tr.stats.delta = 0.1 tr.integrate() # Assert time and length of resulting array. self.assertEqual(tr.stats.starttime, UTCDateTime(0)) self.assertEqual(tr.stats.npts, 101) np.testing.assert_array_almost_equal( tr.data, np.concatenate([[0.0], np.cumsum(data)[:-1] * 0.1])) def test_issue_317(self): """ Tests times after breaking a stream into parts and merging it again. """ # create a sample trace org_trace = Trace(data=np.arange(22487)) org_trace.stats.starttime = UTCDateTime() org_trace.stats.sampling_rate = 0.999998927116 num_pakets = 10 # break org_trace into set of contiguous packet data traces = [] packet_length = int(np.size(org_trace.data) / num_pakets) delta_time = org_trace.stats.delta tstart = org_trace.stats.starttime tend = tstart + delta_time * float(packet_length - 1) for i in range(num_pakets): tr = Trace(org_trace.data, org_trace.stats) tr = tr.slice(tstart, tend) traces.append(tr) tstart = tr.stats.endtime + delta_time tend = tstart + delta_time * float(packet_length - 1) # reconstruct original trace by adding together packet traces sum_trace = traces[0].copy() npts = traces[0].stats.npts for i in range(1, len(traces)): sum_trace = sum_trace.__add__(traces[i].copy(), method=0, interpolation_samples=0, fill_value='latest', sanity_checks=True) # check npts self.assertEqual(traces[i].stats.npts, npts) self.assertEqual(sum_trace.stats.npts, (i + 1) * npts) # check data np.testing.assert_array_equal(traces[i].data, np.arange(i * npts, (i + 1) * npts)) np.testing.assert_array_equal(sum_trace.data, np.arange(0, (i + 1) * npts)) # check delta self.assertEqual(traces[i].stats.delta, org_trace.stats.delta) self.assertEqual(sum_trace.stats.delta, org_trace.stats.delta) # check sampling rates self.assertAlmostEqual(traces[i].stats.sampling_rate, org_trace.stats.sampling_rate) self.assertAlmostEqual(sum_trace.stats.sampling_rate, org_trace.stats.sampling_rate) # check end times self.assertEqual(traces[i].stats.endtime, sum_trace.stats.endtime) def test_verify(self): """ Tests verify method. """ # empty Trace tr = Trace() tr.verify() # Trace with a single sample (issue #357) tr = Trace(data=np.array([1])) tr.verify() # example Trace tr = read()[0] tr.verify() def test_percent_in_str(self): """ Tests if __str__ method is working with percent sign (%). """ tr = Trace() tr.stats.station = '%t3u' self.assertTrue(tr.__str__().startswith(".%t3u.. | 1970")) def test_taper(self): """ Test taper method of trace """ data = np.ones(10) tr = Trace(data=data) tr.taper(max_percentage=0.05, type='cosine') for i in range(len(data)): self.assertLessEqual(tr.data[i], 1.) self.assertGreaterEqual(tr.data[i], 0.) def test_taper_onesided(self): """ Test onesided taper method of trace """ data = np.ones(11) tr = Trace(data=data) # overlong taper - raises UserWarning - ignoring with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", UserWarning) tr.taper(max_percentage=None, side="left") self.assertEqual(len(w), 1) self.assertEqual(w[0].category, UserWarning) self.assertTrue(tr.data[:5].sum() < 5.) self.assertEqual(tr.data[6:].sum(), 5.) data = np.ones(11) tr = Trace(data=data) # overlong taper - raises UserWarning - ignoring with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", UserWarning) tr.taper(max_percentage=None, side="right") self.assertEqual(len(w), 1) self.assertEqual(w[0].category, UserWarning) self.assertEqual(tr.data[:5].sum(), 5.) self.assertTrue(tr.data[6:].sum() < 5.) def test_taper_length(self): npts = 11 type_ = "hann" data = np.ones(npts) tr = Trace(data=data, header={'sampling': 1.}) # test an overlong taper request, still works but raises UserWarning with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", UserWarning) tr.taper(max_percentage=0.7, max_length=int(npts / 2) + 1) self.assertEqual(len(w), 1) self.assertEqual(w[0].category, UserWarning) data = np.ones(npts) tr = Trace(data=data, header={'sampling': 1.}) # first 3 samples get tapered tr.taper(max_percentage=None, type=type_, side="left", max_length=3) # last 5 samples get tapered tr.taper(max_percentage=0.5, type=type_, side="right", max_length=None) self.assertTrue(np.all(tr.data[:3] < 1.)) self.assertTrue(np.all(tr.data[3:6] == 1.)) self.assertTrue(np.all(tr.data[6:] < 1.)) data = np.ones(npts) tr = Trace(data=data, header={'sampling': 1.}) # first 3 samples get tapered tr.taper(max_percentage=0.5, type=type_, side="left", max_length=3) # last 3 samples get tapered tr.taper(max_percentage=0.3, type=type_, side="right", max_length=5) self.assertTrue(np.all(tr.data[:3] < 1.)) self.assertTrue(np.all(tr.data[3:8] == 1.)) self.assertTrue(np.all(tr.data[8:] < 1.)) def test_times(self): """ Test if the correct times array is returned for normal traces and traces with gaps. """ tr = Trace(data=np.ones(100)) tr.stats.sampling_rate = 20 delta = tr.stats.delta start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) tr.stats.starttime = start tm = tr.times() self.assertAlmostEqual(tm[-1], tr.stats.endtime - tr.stats.starttime) tr.data = np.ma.ones(100) tr.data[30:40] = np.ma.masked tm = tr.times() self.assertTrue(np.alltrue(tr.data.mask == tm.mask)) # test relative with reftime tr.data = np.ones(100) shift = 9.5 reftime = start - shift got = tr.times(reftime=reftime) self.assertEqual(len(got), tr.stats.npts) expected = np.arange(shift, shift + 4.5 * delta, delta) np.testing.assert_allclose(got[:5], expected, rtol=1e-8) # test other options got = tr.times("utcdatetime") expected = np.array([ UTCDateTime(2000, 1, 1, 0, 0), UTCDateTime(2000, 1, 1, 0, 0, 0, 50000), UTCDateTime(2000, 1, 1, 0, 0, 0, 100000), UTCDateTime(2000, 1, 1, 0, 0, 0, 150000), UTCDateTime(2000, 1, 1, 0, 0, 0, 200000)], dtype=UTCDateTime) self.assertTrue(isinstance(got[0], UTCDateTime)) np.testing.assert_allclose( [t_.timestamp for t_ in got[:5]], [t_.timestamp for t_ in expected], rtol=1e-17) got = tr.times("timestamp") expected = np.arange(0, 4.5 * delta, delta) + 946684800.0 np.testing.assert_allclose(got[:5], expected, rtol=1e-17) got = tr.times("matplotlib") expected = np.array([ 730120.00000000000000000000, 730120.00000057870056480169, 730120.00000115740112960339, 730120.00000173610169440508, 730120.00000231480225920677]) np.testing.assert_allclose(got[:5], expected, rtol=1e-17) def test_modulo_operation(self): """ Method for testing the modulo operation. Mainly tests part not covered by the doctests. """ tr = Trace(data=np.arange(25)) # Wrong type raises. self.assertRaises(TypeError, tr.__mod__, 5.0) self.assertRaises(TypeError, tr.__mod__, "123") # Needs to be a positive integer. self.assertRaises(ValueError, tr.__mod__, 0) self.assertRaises(ValueError, tr.__mod__, -11) # If num is more then the number of samples, a copy will be returned. st = tr % 500 self.assertEqual(tr, st[0]) self.assertEqual(len(st), 1) self.assertFalse(tr.data is st[0].data) def test_plot(self): """ Tests plot method if matplotlib is installed """ tr = Trace(data=np.arange(25)) tr.plot(show=False) def test_spectrogram(self): """ Tests spectrogram method if matplotlib is installed """ tr = Trace(data=np.arange(25)) tr.stats.sampling_rate = 20 tr.spectrogram(show=False) def test_raise_masked(self): """ Tests that detrend() raises in case of a masked array. (see #498) """ x = np.arange(10) x = np.ma.masked_inside(x, 3, 4) tr = Trace(x) self.assertRaises(NotImplementedError, tr.detrend) def test_split(self): """ Tests split method of the Trace class. """ # set up tr1 = Trace(data=np.arange(1000)) tr1.stats.sampling_rate = 200 start = UTCDateTime(2000, 1, 1, 0, 0, 0, 0) tr1.stats.starttime = start tr2 = Trace(data=np.arange(0, 1000)[::-1]) tr2.stats.sampling_rate = 200 tr2.stats.starttime = start + 10 # add will create new trace with masked array trace = tr1 + tr2 self.assertTrue(isinstance(trace.data, np.ma.masked_array)) # split self.assertTrue(isinstance(trace, Trace)) st = trace.split() self.assertTrue(isinstance(st, Stream)) self.assertEqual(len(st[0]), 1000) self.assertEqual(len(st[1]), 1000) # check if have no masked arrays self.assertFalse(isinstance(st[0].data, np.ma.masked_array)) self.assertFalse(isinstance(st[1].data, np.ma.masked_array)) def test_split_empty_masked_array(self): """ Test split method with a masked array without any data. """ tr = Trace(data=np.ma.masked_all(100)) self.assertTrue(isinstance(tr.data, np.ma.masked_array)) self.assertTrue(isinstance(tr, Trace)) st = tr.split() self.assertTrue(isinstance(st, Stream)) self.assertEqual(len(st), 0) def test_split_masked_array_without_actually_masked_values(self): """ Tests splitting a masked array without actually masked data. """ # First non masked. tr = Trace(data=np.arange(100)) st = tr.copy().split() self.assertEqual(len(st), 1) self.assertEqual(tr, st[0]) self.assertFalse(isinstance(st[0].data, np.ma.masked_array)) # Now the same thing but with an initially masked array but no # masked values. tr = Trace(data=np.ma.arange(100)) self.assertFalse(tr.data.mask) st = tr.copy().split() self.assertEqual(len(st), 1) self.assertEqual(tr, st[0]) self.assertFalse(isinstance(st[0].data, np.ma.masked_array)) def test_simulate_evalresp(self): """ Tests that trace.simulate calls evalresp with the correct network, station, location and channel information. """ tr = read()[0] # Wrap in try/except as it of course will fail because the mocked # function returns None. try: with mock.patch("obspy.signal.invsim.evalresp") as patch: tr.simulate(seedresp={"filename": "RESP.dummy", "units": "VEL", "date": tr.stats.starttime}) except Exception: pass self.assertEqual(patch.call_count, 1) _, kwargs = patch.call_args # Make sure that every item of the trace is passed to the evalresp # function. for key in ["network", "station", "location", "channel"]: self.assertEqual( kwargs[key if key != "location" else "locid"], tr.stats[key], msg="'%s' did not get passed on to evalresp" % key) def test_issue_540(self): """ Trim with pad=True and given fill value should not return a masked NumPy array. """ # fill_value = None tr = read()[0] self.assertEqual(len(tr), 3000) tr.trim(starttime=tr.stats.starttime - 0.01, endtime=tr.stats.endtime + 0.01, pad=True, fill_value=None) self.assertEqual(len(tr), 3002) self.assertTrue(isinstance(tr.data, np.ma.masked_array)) self.assertIs(tr.data[0], np.ma.masked) self.assertTrue(tr.data[1] is not np.ma.masked) self.assertTrue(tr.data[-2] is not np.ma.masked) self.assertIs(tr.data[-1], np.ma.masked) # fill_value = 999 tr = read()[0] self.assertEqual(len(tr), 3000) tr.trim(starttime=tr.stats.starttime - 0.01, endtime=tr.stats.endtime + 0.01, pad=True, fill_value=999) self.assertEqual(len(tr), 3002) self.assertFalse(isinstance(tr.data, np.ma.masked_array)) self.assertEqual(tr.data[0], 999) self.assertEqual(tr.data[-1], 999) # given fill_value but actually no padding at all tr = read()[0] self.assertEqual(len(tr), 3000) tr.trim(starttime=tr.stats.starttime, endtime=tr.stats.endtime, pad=True, fill_value=-999) self.assertEqual(len(tr), 3000) self.assertFalse(isinstance(tr.data, np.ma.masked_array)) def test_resample(self): """ Tests the resampling of traces. """ tr = read()[0] self.assertEqual(tr.stats.sampling_rate, 100.0) self.assertEqual(tr.stats.npts, 3000) tr_2 = tr.copy().resample(sampling_rate=50.0) self.assertEqual(tr_2.stats.endtime, tr.stats.endtime - 1.0 / 100.0) self.assertEqual(tr_2.stats.sampling_rate, 50.0) self.assertEqual(tr_2.stats.starttime, tr.stats.starttime) tr_3 = tr.copy().resample(sampling_rate=10.0) self.assertEqual(tr_3.stats.endtime, tr.stats.endtime - 9.0 / 100.0) self.assertEqual(tr_3.stats.sampling_rate, 10.0) self.assertEqual(tr_3.stats.starttime, tr.stats.starttime) tr_4 = tr.copy() tr_4.data = np.require(tr_4.data, dtype=tr_4.data.dtype.newbyteorder('>')) tr_4 = tr_4.resample(sampling_rate=10.0) self.assertEqual(tr_4.stats.endtime, tr.stats.endtime - 9.0 / 100.0) self.assertEqual(tr_4.stats.sampling_rate, 10.0) self.assertEqual(tr_4.stats.starttime, tr.stats.starttime) def test_method_chaining(self): """ Tests that method chaining works for all methods on the Trace object where it is sensible. """ # This essentially just checks that the methods are chainable. The # methods are tested elsewhere and a full test would be a lot of work # with questionable return. tr = read()[0] temp_tr = tr.trim(tr.stats.starttime + 1)\ .verify()\ .filter("lowpass", freq=2.0)\ .simulate(paz_remove={'poles': [-0.037004 + 0.037016j, -0.037004 - 0.037016j, -251.33 + 0j], 'zeros': [0j, 0j], 'gain': 60077000.0, 'sensitivity': 2516778400.0})\ .trigger(type="zdetect", nsta=20)\ .decimate(factor=2, no_filter=True)\ .resample(tr.stats.sampling_rate / 2.0)\ .differentiate()\ .integrate()\ .detrend()\ .taper(max_percentage=0.05, type='cosine')\ .normalize() self.assertIs(temp_tr, tr) self.assertTrue(isinstance(tr, Trace)) self.assertGreater(tr.stats.npts, 0) # Use the processing chain to check the results. The trim() methods # does not have an entry in the processing chain. pr = tr.stats.processing self.assertIn("trim", pr[0]) self.assertTrue("filter" in pr[1] and "lowpass" in pr[1]) self.assertIn("simulate", pr[2]) self.assertIn("trigger", pr[3]) self.assertIn("decimate", pr[4]) self.assertIn("resample", pr[5]) self.assertIn("differentiate", pr[6]) self.assertIn("integrate", pr[7]) self.assertIn("detrend", pr[8]) self.assertIn("taper", pr[9]) self.assertIn("normalize", pr[10]) def test_skip_empty_trace(self): tr = read()[0] t = tr.stats.endtime + 10 tr.trim(t, t + 10) tr.detrend() tr.resample(400) tr.differentiate() tr.integrate() tr.taper(max_percentage=0.1) def test_issue_695(self): x = np.zeros(12) data = [x.reshape((12, 1)), x.reshape((1, 12)), x.reshape((2, 6)), x.reshape((6, 2)), x.reshape((2, 2, 3)), x.reshape((1, 2, 2, 3)), x[0][()], # 0-dim array ] for d in data: self.assertRaises(ValueError, Trace, data=d) def test_remove_response(self): """ Test remove_response() method against simulate() with equivalent parameters to check response removal from Response object read from StationXML against pure evalresp providing an external RESP file. """ tr1 = read()[0] tr2 = tr1.copy() # deconvolve from dataless with simulate() via Parser from # dataless/RESP parser = Parser("/path/to/dataless.seed.BW_RJOB") tr1.simulate(seedresp={"filename": parser, "units": "VEL"}, water_level=60, pre_filt=(0.1, 0.5, 30, 50), sacsim=True, pitsasim=False) # deconvolve from StationXML with remove_response() tr2.remove_response(pre_filt=(0.1, 0.5, 30, 50)) np.testing.assert_array_almost_equal(tr1.data, tr2.data) def test_remove_polynomial_response(self): """ """ from obspy import read_inventory path = os.path.dirname(__file__) # blockette 62, stage 0 tr = read()[0] tr.stats.network = 'IU' tr.stats.station = 'ANTO' tr.stats.location = '30' tr.stats.channel = 'LDO' tr.stats.starttime = UTCDateTime("2010-07-23T00:00:00") # remove response del tr.stats.response filename = os.path.join(path, 'data', 'stationxml_IU.ANTO.30.LDO.xml') inv = read_inventory(filename, format='StationXML') tr.attach_response(inv) tr.remove_response() # blockette 62, stage 1 + blockette 58, stage 2 tr = read()[0] tr.stats.network = 'BK' tr.stats.station = 'CMB' tr.stats.location = '' tr.stats.channel = 'LKS' tr.stats.starttime = UTCDateTime("2004-06-16T00:00:00") # remove response del tr.stats.response filename = os.path.join(path, 'data', 'stationxml_BK.CMB.__.LKS.xml') inv = read_inventory(filename, format='StationXML') tr.attach_response(inv) # raises UserWarning: Stage gain not defined - ignoring with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", UserWarning) tr.remove_response() self.assertEqual(len(w), 1) self.assertEqual(w[0].category, UserWarning) def test_processing_info_remove_response_and_sensitivity(self): """ Tests adding processing info for remove_response() and remove_sensitivity(). See #1247. """ # remove_sensitivity() with response object attached to the trace. tr = read()[0] self.assertNotIn("processing", tr.stats) tr.remove_sensitivity() self.assertIn("processing", tr.stats) self.assertEqual(len(tr.stats.processing), 1) self.assertTrue(tr.stats.processing[0].endswith( "remove_sensitivity(inventory=None)")) # With passed inventory object. tr = read()[0] self.assertNotIn("processing", tr.stats) tr.remove_sensitivity(inventory=read_inventory()) self.assertIn("processing", tr.stats) self.assertEqual(len(tr.stats.processing), 1) self.assertIn("remove_sensitivity(inventory=<obspy.core.inventory." "inventory.Inventory object ", tr.stats.processing[0]) # remove_response() tr = read()[0] self.assertNotIn("processing", tr.stats) tr.remove_response() self.assertIn("processing", tr.stats) self.assertEqual(len(tr.stats.processing), 1) self.assertIn("remove_response(", tr.stats.processing[0]) self.assertIn("inventory=None", tr.stats.processing[0]) # With passed inventory object. tr = read()[0] self.assertNotIn("processing", tr.stats) tr.remove_response(inventory=read_inventory()) self.assertIn("processing", tr.stats) self.assertEqual(len(tr.stats.processing), 1) self.assertIn("remove_response(", tr.stats.processing[0]) self.assertIn("inventory=<obspy.core.inventory.inventory.Inventory " "object", tr.stats.processing[0]) def test_processing_information(self): """ Test case for the automatic processing information. """ tr = read()[0] trimming_starttime = tr.stats.starttime + 1 tr.trim(trimming_starttime) tr.filter("lowpass", freq=2.0) tr.simulate(paz_remove={ 'poles': [-0.037004 + 0.037016j, -0.037004 - 0.037016j, -251.33 + 0j], 'zeros': [0j, 0j], 'gain': 60077000.0, 'sensitivity': 2516778400.0}) tr.trigger(type="zdetect", nsta=20) tr.decimate(factor=2, no_filter=True) tr.resample(tr.stats.sampling_rate / 2.0) tr.differentiate() tr.integrate() tr.detrend() tr.taper(max_percentage=0.05, type='cosine') tr.normalize() pr = tr.stats.processing self.assertIn("trim", pr[0]) self.assertEqual( "ObsPy %s: trim(endtime=None::fill_value=None::" "nearest_sample=True::pad=False::starttime=%s)" % ( __version__, repr(trimming_starttime)), pr[0]) self.assertIn("filter", pr[1]) self.assertIn("simulate", pr[2]) self.assertIn("trigger", pr[3]) self.assertIn("decimate", pr[4]) self.assertIn("resample", pr[5]) self.assertIn("differentiate", pr[6]) self.assertIn("integrate", pr[7]) self.assertIn("detrend", pr[8]) self.assertIn("taper", pr[9]) self.assertIn("normalize", pr[10]) def test_no_processing_info_for_failed_operations(self): """ If an operation fails, no processing information should be attached to the Trace object. """ # create test Trace tr = Trace(data=np.arange(20)) self.assertFalse("processing" in tr.stats) # This decimation by a factor of 7 in this case would change the # end time of the time series. Therefore it fails. self.assertRaises(ValueError, tr.decimate, 7, strict_length=True) # No processing should be applied yet. self.assertFalse("processing" in tr.stats) # Test the same but this time with an already existing processing # information. tr = Trace(data=
np.arange(20)
numpy.arange
import numpy as np from topocalc.gradient import gradient_d8 from topocalc.horizon import horizon def d2r(a): """Angle to radians Arguments: a {float} -- angle in degrees Returns: v {float} -- angle in radians """ v = a * np.pi / 180 v = round(v, 6) # just for testing at the moment return v def viewf(dem, spacing, nangles=72, sin_slope=None, aspect=None): """ Calculate the sky view factor of a dem. The sky view factor from equation 7b from Dozier and Frew 1990 .. math:: V_d \approx \frac{1}{2\pi} \int_{0}^{2\pi}\left [ cos(S) sin^2{H_\phi} + sin(S)cos(\phi-A) \times \left ( H_\phi - sin(H_\phi) cos(H_\phi) \right )\right ] d\phi terrain configuration factor (tvf) is defined as: (1 + cos(slope))/2 - sky view factor Based on the paper Dozier and Frew, 1990 and modified from the Image Processing Workbench code base (Frew, 1990). The Python version of sky view factor will be an almost exact replication of the IPW command `viewf` minus rounding errors from type and linear quantization. Args: dem: numpy array for the DEM spacing: grid spacing of the DEM nangles: number of angles to estimate the horizon, defaults to 72 angles sin_slope: optional, will calculate if not provided sin(slope) with range from 0 to 1 aspect: optional, will calculate if not provided Aspect as radians from south (aspect 0 is toward the south) with range from -pi to pi, with negative values to the west and positive values to the east. Returns: svf: sky view factor tcf: terrain configuration factor """ # noqa if dem.ndim != 2: raise ValueError('viewf input of dem is not a 2D array') if nangles < 16: raise ValueError('viewf number of angles should be 16 or greater') if sin_slope is not None: if np.max(sin_slope) > 1: raise ValueError('slope must be sin(slope) with range from 0 to 1') # calculate the gradient if not provided # The slope is returned as radians so convert to sin(S) if sin_slope is None: slope, aspect = gradient_d8( dem, dx=spacing, dy=spacing, aspect_rad=True) sin_slope = np.sin(slope) # -180 is North angles =
np.linspace(-180, 180, num=nangles, endpoint=False)
numpy.linspace
import numpy as np import copy from scipy.special import expit, softmax from common.wbf_postprocess import weighted_boxes_fusion def yolo_decode(prediction, anchors, num_classes, input_dims, scale_x_y=None, use_softmax=False): '''Decode final layer features to bounding box parameters.''' batch_size = np.shape(prediction)[0] num_anchors = len(anchors) grid_size = np.shape(prediction)[1:3] #check if stride on height & width are same assert input_dims[0]//grid_size[0] == input_dims[1]//grid_size[1], 'model stride mismatch.' stride = input_dims[0] // grid_size[0] prediction = np.reshape(prediction, (batch_size, grid_size[0] * grid_size[1] * num_anchors, num_classes + 5)) ################################ # generate x_y_offset grid map grid_y = np.arange(grid_size[0]) grid_x = np.arange(grid_size[1]) x_offset, y_offset = np.meshgrid(grid_x, grid_y) x_offset = np.reshape(x_offset, (-1, 1)) y_offset = np.reshape(y_offset, (-1, 1)) x_y_offset = np.concatenate((x_offset, y_offset), axis=1) x_y_offset = np.tile(x_y_offset, (1, num_anchors)) x_y_offset = np.reshape(x_y_offset, (-1, 2)) x_y_offset = np.expand_dims(x_y_offset, 0) ################################ # Log space transform of the height and width anchors = np.tile(anchors, (grid_size[0] * grid_size[1], 1)) anchors = np.expand_dims(anchors, 0) box_xy = (expit(prediction[..., :2]) + x_y_offset) / np.array(grid_size)[::-1] box_wh = (np.exp(prediction[..., 2:4]) * anchors) / np.array(input_dims)[::-1] # Sigmoid objectness scores objectness = expit(prediction[..., 4]) # p_o (objectness score) objectness = np.expand_dims(objectness, -1) # To make the same number of values for axis 0 and 1 if use_softmax: # Softmax class scores class_scores = softmax(prediction[..., 5:], axis=-1) else: # Sigmoid class scores class_scores = expit(prediction[..., 5:]) return np.concatenate([box_xy, box_wh, objectness, class_scores], axis=2) def yolo_correct_boxes(predictions, img_shape, model_image_size): '''rescale predicition boxes back to original image shape''' box_xy = predictions[..., :2] box_wh = predictions[..., 2:4] objectness = np.expand_dims(predictions[..., 4], -1) class_scores = predictions[..., 5:] # model_image_size & image_shape should be (height, width) format model_image_size = np.array(model_image_size, dtype='float32') image_shape = np.array(img_shape, dtype='float32') height, width = image_shape new_shape = np.round(image_shape * np.min(model_image_size/image_shape)) offset = (model_image_size-new_shape)/2./model_image_size scale = model_image_size/new_shape # reverse offset/scale to match (w,h) order offset = offset[..., ::-1] scale = scale[..., ::-1] box_xy = (box_xy - offset) * scale box_wh *= scale # Convert centoids to top left coordinates box_xy -= box_wh / 2 # Scale boxes back to original image shape. image_wh = image_shape[..., ::-1] box_xy *= image_wh box_wh *= image_wh return np.concatenate([box_xy, box_wh, objectness, class_scores], axis=2) def yolo_handle_predictions(predictions, image_shape, max_boxes=100, confidence=0.1, iou_threshold=0.4, use_cluster_nms=False, use_wbf=False): boxes = predictions[:, :, :4] box_confidences = np.expand_dims(predictions[:, :, 4], -1) box_class_probs = predictions[:, :, 5:] # filter boxes with confidence threshold box_scores = box_confidences * box_class_probs box_classes = np.argmax(box_scores, axis=-1) box_class_scores = np.max(box_scores, axis=-1) pos = np.where(box_class_scores >= confidence) boxes = boxes[pos] classes = box_classes[pos] scores = box_class_scores[pos] if use_cluster_nms: # use Fast/Cluster NMS for boxes postprocess n_boxes, n_classes, n_scores = fast_cluster_nms_boxes(boxes, classes, scores, iou_threshold, confidence=confidence) elif use_wbf: # use Weighted-Boxes-Fusion for boxes postprocess n_boxes, n_classes, n_scores = weighted_boxes_fusion([boxes], [classes], [scores], image_shape, weights=None, iou_thr=iou_threshold) else: # Boxes, Classes and Scores returned from NMS n_boxes, n_classes, n_scores = nms_boxes(boxes, classes, scores, iou_threshold, confidence=confidence) if n_boxes: boxes = np.concatenate(n_boxes) classes = np.concatenate(n_classes).astype('int32') scores = np.concatenate(n_scores) boxes, classes, scores = filter_boxes(boxes, classes, scores, max_boxes) return boxes, classes, scores else: return [], [], [] def box_iou(boxes): """ Calculate IoU value of 1st box with other boxes of a box array Parameters ---------- boxes: bbox numpy array, shape=(N, 4), xywh x,y are top left coordinates Returns ------- iou: numpy array, shape=(N-1,) IoU value of boxes[1:] with boxes[0] """ # get box coordinate and area x = boxes[:, 0] y = boxes[:, 1] w = boxes[:, 2] h = boxes[:, 3] areas = w * h # check IoU inter_xmin = np.maximum(x[1:], x[0]) inter_ymin = np.maximum(y[1:], y[0]) inter_xmax = np.minimum(x[1:] + w[1:], x[0] + w[0]) inter_ymax = np.minimum(y[1:] + h[1:], y[0] + h[0]) inter_w = np.maximum(0.0, inter_xmax - inter_xmin + 1) inter_h = np.maximum(0.0, inter_ymax - inter_ymin + 1) inter = inter_w * inter_h iou = inter / (areas[1:] + areas[0] - inter) return iou def box_diou(boxes): """ Calculate DIoU value of 1st box with other boxes of a box array Reference Paper: "Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression" https://arxiv.org/abs/1911.08287 Parameters ---------- boxes: bbox numpy array, shape=(N, 4), xywh x,y are top left coordinates Returns ------- diou: numpy array, shape=(N-1,) IoU value of boxes[1:] with boxes[0] """ # get box coordinate and area x = boxes[:, 0] y = boxes[:, 1] w = boxes[:, 2] h = boxes[:, 3] areas = w * h # check IoU inter_xmin = np.maximum(x[1:], x[0]) inter_ymin = np.maximum(y[1:], y[0]) inter_xmax = np.minimum(x[1:] + w[1:], x[0] + w[0]) inter_ymax = np.minimum(y[1:] + h[1:], y[0] + h[0]) inter_w = np.maximum(0.0, inter_xmax - inter_xmin + 1) inter_h = np.maximum(0.0, inter_ymax - inter_ymin + 1) inter = inter_w * inter_h iou = inter / (areas[1:] + areas[0] - inter) # box center distance x_center = x + w/2 y_center = y + h/2 center_distance = np.power(x_center[1:] - x_center[0], 2) + np.power(y_center[1:] - y_center[0], 2) # get enclosed area enclose_xmin = np.minimum(x[1:], x[0]) enclose_ymin = np.minimum(y[1:], y[0]) enclose_xmax = np.maximum(x[1:] + w[1:], x[0] + w[0]) enclose_ymax = np.maximum(x[1:] + w[1:], x[0] + w[0]) enclose_w = np.maximum(0.0, enclose_xmax - enclose_xmin + 1) enclose_h = np.maximum(0.0, enclose_ymax - enclose_ymin + 1) # get enclosed diagonal distance enclose_diagonal = np.power(enclose_w, 2) + np.power(enclose_h, 2) # calculate DIoU, add epsilon in denominator to avoid dividing by 0 diou = iou - 1.0 * (center_distance) / (enclose_diagonal + np.finfo(float).eps) return diou def nms_boxes(boxes, classes, scores, iou_threshold, confidence=0.1, use_diou=True, is_soft=False, use_exp=False, sigma=0.5): nboxes, nclasses, nscores = [], [], [] for c in set(classes): # handle data for one class inds = np.where(classes == c) b = boxes[inds] c = classes[inds] s = scores[inds] # make a data copy to avoid breaking # during nms operation b_nms = copy.deepcopy(b) c_nms = copy.deepcopy(c) s_nms = copy.deepcopy(s) while len(s_nms) > 0: # pick the max box and store, here # we also use copy to persist result i = np.argmax(s_nms, axis=-1) nboxes.append(copy.deepcopy(b_nms[i])) nclasses.append(copy.deepcopy(c_nms[i])) nscores.append(copy.deepcopy(s_nms[i])) # swap the max line and first line b_nms[[i,0],:] = b_nms[[0,i],:] c_nms[[i,0]] = c_nms[[0,i]] s_nms[[i,0]] = s_nms[[0,i]] if use_diou: iou = box_diou(b_nms) #iou = box_diou_matrix(b_nms, b_nms)[0][1:] else: iou = box_iou(b_nms) #iou = box_iou_matrix(b_nms, b_nms)[0][1:] # drop the last line since it has been record b_nms = b_nms[1:] c_nms = c_nms[1:] s_nms = s_nms[1:] if is_soft: # Soft-NMS if use_exp: # score refresh formula: # score = score * exp(-(iou^2)/sigma) s_nms = s_nms * np.exp(-(iou * iou) / sigma) else: # score refresh formula: # score = score * (1 - iou) if iou > threshold depress_mask = np.where(iou > iou_threshold)[0] s_nms[depress_mask] = s_nms[depress_mask]*(1-iou[depress_mask]) keep_mask = np.where(s_nms >= confidence)[0] else: # normal Hard-NMS keep_mask = np.where(iou <= iou_threshold)[0] # keep needed box for next loop b_nms = b_nms[keep_mask] c_nms = c_nms[keep_mask] s_nms = s_nms[keep_mask] # reformat result for output nboxes = [np.array(nboxes)] nclasses = [np.array(nclasses)] nscores = [np.array(nscores)] return nboxes, nclasses, nscores def box_iou_matrix(boxes1, boxes2): """ Calculate IoU matrix for two box array. Both sets of boxes are expected to be in (x, y, w, h) format. Reference implementation: https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py Arguments: boxes1 (np.array[N, 4]) boxes2 (np.array[M, 4]) Returns: iou (np.array[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def box_area(box): # box = 4xN return box[2] * box[3] area1 = box_area(boxes1.T) area2 = box_area(boxes2.T) inter_min = np.maximum(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] inter_max = np.minimum(boxes1[:, None, :2]+boxes1[:, None, 2:], boxes2[:, :2]+boxes2[:, 2:]) # [N,M,2] inter = np.maximum(inter_max - inter_min, 0).prod(axis=-1) # [N,M] iou = inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) return iou def box_diou_matrix(boxes1, boxes2): """ Calculate DIoU matrix for two box array. Both sets of boxes are expected to be in (x, y, w, h) format. Arguments: boxes1 (np.array[N, 4]) boxes2 (np.array[M, 4]) Returns: diou (np.array[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ iou = box_iou_matrix(boxes1, boxes2) # box center distance center_distance = (boxes1[:, None, :2]+boxes1[:, None, 2:]/2) - (boxes2[:, :2]+boxes2[:, 2:]/2) # [N,M,2] center_distance = np.power(center_distance[..., 0], 2) + np.power(center_distance[..., 1], 2) # [N,M] # get enclosed area enclose_min = np.minimum(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] enclose_max = np.maximum(boxes1[:, None, :2]+boxes1[:, None, 2:], boxes2[:, :2]+boxes2[:, 2:]) # [N,M,2] enclose_wh = np.maximum(enclose_max - enclose_min, 0) # [N,M,2] enclose_wh = np.maximum(enclose_max - enclose_min, 0) # [N,M,2] # get enclosed diagonal distance matrix enclose_diagonal = np.power(enclose_wh[..., 0], 2) + np.power(enclose_wh[..., 1], 2) # [N,M] # calculate DIoU, add epsilon in denominator to avoid dividing by 0 diou = iou - 1.0 * np.true_divide(center_distance, enclose_diagonal + np.finfo(float).eps) return diou def fast_cluster_nms_boxes(boxes, classes, scores, iou_threshold, confidence=0.1, use_cluster=True, use_diou=True, use_weighted=True, use_matrix_nms=False, use_spm=False): """ Fast NMS/Cluster NMS/Matrix NMS bbox post process Reference Paper: 1. "YOLACT: Real-time Instance Segmentation" https://arxiv.org/abs/1904.02689 2. "Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation" https://arxiv.org/abs/2005.03572 3. "SOLOv2: Dynamic, Faster and Stronger" https://arxiv.org/abs/2003.10152 4. Blogpost on zhihu: https://zhuanlan.zhihu.com/p/157900024 Parameters ---------- boxes: bbox numpy array, shape=(N, 4), xywh x,y are top left coordinates classes: bbox class index numpy array, shape=(N, 1) scores: bbox score numpy array, shape=(N, 1) iou_threshold: Returns ------- nboxes: NMSed bbox numpy array, shape=(N, 4), xywh x,y are top left coordinates nclasses: NMSed bbox class index numpy array, shape=(N, 1) nscores: NMSed bbox score numpy array, shape=(N, 1) """ nboxes, nclasses, nscores = [], [], [] for c in set(classes): # handle data for one class inds = np.where(classes == c) b = boxes[inds] c = classes[inds] s = scores[inds] # make a data copy to avoid breaking # during nms operation b_nms = copy.deepcopy(b) c_nms = copy.deepcopy(c) s_nms = copy.deepcopy(s) # ascend sort boxes according to scores sorted_indices = np.argsort(s_nms) sorted_indices = sorted_indices[::-1] b_nms = b_nms[sorted_indices] c_nms = c_nms[sorted_indices] s_nms = s_nms[sorted_indices] # number of boxes for one class num_boxes = b_nms.shape[0] # get IoU/DIoU matrix (upper triangular matrix) if use_diou: iou_matrix = box_diou_matrix(b_nms, b_nms) else: iou_matrix = box_iou_matrix(b_nms, b_nms) iou_matrix = np.triu(iou_matrix, k=1) max_iou = np.max(iou_matrix, axis=0) updated_iou_matrix = copy.deepcopy(iou_matrix) # Cluster loop if use_cluster: for i in range(200): prev_iou_matrix = copy.deepcopy(updated_iou_matrix) max_iou = np.max(prev_iou_matrix, axis=0) keep_diag = np.diag((max_iou < iou_threshold).astype(np.float32)) updated_iou_matrix = np.dot(keep_diag, iou_matrix) if (prev_iou_matrix == updated_iou_matrix).all(): break if use_matrix_nms: # Matrix NMS max_iou_expand = np.tile(max_iou, (num_boxes, 1)).T #(num_boxes)x(num_boxes) def get_decay_factor(method='gauss', sigma=0.5): if method == 'gauss': # gaussian decay decay_factor = np.exp(-(iou_matrix**2 - max_iou_expand**2) / sigma) else: # linear decay decay_factor = (1 - iou_matrix) / (1 - max_iou_expand) # decay factor: 1xN decay_factor = np.min(decay_factor, axis=0) # clamp decay factor to <= 1 decay_factor = np.minimum(decay_factor, 1.0) return decay_factor # decay factor for box score decay_factor = get_decay_factor() # apply decay factor to punish box score, # and filter box with confidence threshold s_matrix_decay = s_nms * decay_factor keep_mask = s_matrix_decay >= confidence elif use_spm: # apply SPM(Score Penalty Mechanism) if use_diou: # TODO: Cluster SPM distance NMS couldn't achieve good result, may need to double check # currently we fallback to normal SPM # # Reference: # https://github.com/Zzh-tju/CIoU/blob/master/layers/functions/detection.py # https://zhuanlan.zhihu.com/p/157900024 #diou_matrix = box_diou_matrix(b_nms, b_nms) #flag = (updated_iou_matrix >= 0).astype(np.float32) #penalty_coef = np.prod(np.minimum(np.exp(-(updated_iou_matrix**2)/0.2) + diou_matrix*((updated_iou_matrix>0).astype(np.float32)), flag), axis=0) penalty_coef = np.prod(np.exp(-(updated_iou_matrix**2)/0.2), axis=0) else: penalty_coef = np.prod(np.exp(-(updated_iou_matrix**2)/0.2), axis=0) s_spm = penalty_coef * s_nms keep_mask = s_spm >= confidence else: # filter low score box with iou_threshold keep_mask = max_iou < iou_threshold if use_weighted: # generate weights matrix with box score and final IoU matrix weights = (updated_iou_matrix*(updated_iou_matrix>iou_threshold).astype(np.float32) + np.eye(num_boxes)) * (s_nms.reshape((1, num_boxes))) # convert box format to (xmin,ymin,xmax,ymax) for weighted average, # and expand to NxN array xmin_expand = np.tile(b_nms[:,0], (num_boxes, 1)) #(num_boxes)x(num_boxes) ymin_expand = np.tile(b_nms[:,1], (num_boxes, 1)) #(num_boxes)x(num_boxes) xmax_expand = np.tile(b_nms[:,0]+b_nms[:,2], (num_boxes, 1)) #(num_boxes)x(num_boxes) ymax_expand = np.tile(b_nms[:,1]+b_nms[:,3], (num_boxes, 1)) #(num_boxes)x(num_boxes) # apply weighted average to all the candidate boxes weightsum = weights.sum(axis=1) xmin_expand = np.true_divide((xmin_expand*weights).sum(axis=1), weightsum) ymin_expand = np.true_divide((ymin_expand*weights).sum(axis=1), weightsum) xmax_expand = np.true_divide((xmax_expand*weights).sum(axis=1), weightsum) ymax_expand = np.true_divide((ymax_expand*weights).sum(axis=1), weightsum) # stack the weighted average boxes and convert back to (x,y,w,h) b_nms = np.stack([xmin_expand, ymin_expand, xmax_expand-xmin_expand, ymax_expand-ymin_expand], axis=1) # keep NMSed boxes b_nms = b_nms[keep_mask] c_nms = c_nms[keep_mask] s_nms = s_nms[keep_mask] # merge NMSed boxes to final result if len(nboxes) == 0: nboxes = np.asarray(copy.deepcopy(b_nms)) nclasses = np.asarray(copy.deepcopy(c_nms)) nscores = np.asarray(copy.deepcopy(s_nms)) else: nboxes = np.append(nboxes, copy.deepcopy(b_nms), axis=0) nclasses = np.append(nclasses, copy.deepcopy(c_nms), axis=0) nscores = np.append(nscores, copy.deepcopy(s_nms), axis=0) # reformat result for output nboxes = [np.array(nboxes)] nclasses = [
np.array(nclasses)
numpy.array
#!/usr/bin/env python import numpy as np import sys import os Res31 = {'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L', 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R', 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y', 'ASX': 'N', 'GLX': 'Q', 'UNK': 'X', 'INI': 'K', 'AAR': 'R', 'ACE': 'X', 'ACY': 'G', 'AEI': 'T', 'AGM': 'R', 'ASQ': 'D', 'AYA': 'A', 'BHD': 'D', 'CAS': 'C', 'CAY': 'C', 'CEA': 'C', 'CGU': 'E', 'CME': 'C', 'CMT': 'C', 'CSB': 'C', 'CSD': 'C', 'CSE': 'C', 'CSO': 'C', 'CSP': 'C', 'CSS': 'C', 'CSW': 'C', 'CSX': 'C', 'CXM': 'M', 'CYG': 'C', 'CYM': 'C', 'DOH': 'D', 'EHP': 'F', 'FME': 'M', 'FTR': 'W', 'GL3': 'G', 'H2P': 'H', 'HIC': 'H', 'HIP': 'H', 'HTR': 'W', 'HYP': 'P', 'KCX': 'K', 'LLP': 'K', 'LLY': 'K', 'LYZ': 'K', 'M3L': 'K', 'MEN': 'N', 'MGN': 'Q', 'MHO': 'M', 'MHS': 'H', 'MIS': 'S', 'MLY': 'K', 'MLZ': 'K', 'MSE': 'M', 'NEP': 'H', 'NPH': 'C', 'OCS': 'C', 'OCY': 'C', 'OMT': 'M', 'OPR': 'R', 'PAQ': 'Y', 'PCA': 'Q', 'PHD': 'D', 'PRS': 'P', 'PTH': 'Y', 'PYX': 'C', 'SEP': 'S', 'SMC': 'C', 'SME': 'M', 'SNC': 'C', 'SNN': 'D', 'SVA': 'S', 'TPO': 'T', 'TPQ': 'Y', 'TRF': 'W', 'TRN': 'W', 'TRO': 'W', 'TYI': 'Y', 'TYN': 'Y', 'TYQ': 'Y', 'TYS': 'Y', 'TYY': 'Y', 'YOF': 'Y', 'FOR': 'X', '---': '-', 'PTR': 'Y', 'LCX': 'K', 'SEC': 'D', 'MCL': 'K', 'LDH': 'K'} Res20 = ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'GLY', 'HIS', 'ILE', 'LEU', 'LYS', 'MET', 'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL'] Res13 = {'A': 'ALA', 'R': 'ARG', 'N': 'ASN', 'D': 'ASP', 'C': 'CYS', 'Q': 'GLN', 'E': 'GLU', 'G': 'GLY', 'H': 'HIS', 'I': 'ILE', 'L': 'LEU', 'K': 'LYS', 'M': 'MET', 'F': 'PHE', 'P': 'PRO', 'S': 'SER', 'T': 'THR', 'W': 'TRP', 'Y': 'TYR', 'V': 'VAL', 'X': 'UNK'} seqcode1 = "-ARNDCQEGHILKMFPSTWYVX" code_dict = {'-': 0, 'A': 1, 'R': 2, 'N': 3, 'D': 4, 'C': 5, 'Q': 6, 'E': 7, 'G': 8, 'H': 9, 'I': 10, 'L': 11, 'K': 12, 'M': 13, 'F': 14, 'P': 15, 'S': 16, 'T': 17, 'W': 18, 'Y': 19, 'V': 20, 'X': 21} Ntype = 21 # Secondary Structure COIL = ['S', 'T', ' ', '_'] # ' ' == '_' HELIX = ['H', 'G', 'I'] STRAND = ['E', 'B'] SS8toSS3 = {'S': 'C', 'T': 'C', ' ': 'C', '_': 'C', 'H': 'H', 'G': 'H', 'I': 'H', 'E': 'E', 'B': 'E'} # Solvent Accessibility MAXACC = {'X': 180, 'A': 115, 'R': 225, 'N': 160, 'D': 150, 'C': 135, 'Q': 180, 'E': 190, 'G': 75, 'H': 195, 'I': 175, 'L': 170, 'K': 200, 'M': 185, 'F': 210, 'P': 145, 'S': 115, 'T': 140, 'W': 255, 'Y': 230, 'V': 155, 'B': 155, 'Z': 185} THR3 = [0.09, 0.36] # Amino Acid hydrophobicity # ref http://stevegallik.org/cellbiologyolm_Ex02_P03.html # Eisenberg and Weiss; Dngleman; Kyte and Doolittle; Hoop and Woods; Janin AA_hydrophobicity = { 'I': [0.73, 3.1, 4.5, -1.8, 0.7], 'F': [0.61, 3.7, 2.8, -2.5, 0.5], 'V': [0.54, 2.6, 4.2, -1.5, 0.6], 'L': [0.53, 2.8, 3.8, -1.8, 0.5], 'W': [0.37, 1.9, -0.9, -3.4, 0.3], 'M': [0.26, 3.4, 1.9, -1.3, 0.4], 'A': [0.25, 1.6, 1.8, -0.5, 0.3], 'G': [0.16, 1.0, -0.4, 0.0, 0.3], 'C': [0.04, 2.0, 2.5, -1.0, 0.9], 'Y': [0.02, -0.7, -1.3, -2.3, -0.4], 'P': [-0.07, -0.2, -1.6, 0.0, -0.3], 'T': [-0.18, 1.2, -0.7, -0.4, -0.2], 'S': [-0.26, 0.6, -0.8, 0.3, -0.1], 'H': [-0.40, -3.0, -3.2, -0.5, -0.1], 'E': [-0.62, -8.2, -3.5, 3.0, -0.7], 'N': [-0.64, -4.8, -3.5, 0.2, -0.5], 'Q': [-0.69, -4.1, -3.5, 0.2, -0.7], 'D': [-0.72, -9.2, -3.5, 3.0, -0.6], 'K': [-1.10, -8.8, -3.9, 3.0, -1.8], 'R': [-1.80, -12.3, -4.5, 3.0, -1.4], 'X': [0.0, 0.0, 0.0, 0.0, 0.0] } # Amino Acid charge -1, 0, 1 AA_charge = { 'A': 0, 'V': 0, 'I': 0, 'L': 0, 'M': 0, 'F': 0, 'Y': 0, 'W': 0, 'C': 0, 'G': 0, 'P': 0, 'S': 0, 'T': 0, 'N': 0, 'Q': 0, 'D': -1, 'E': -1, 'R': 1, 'H': 1, 'K': 1, 'X': 0 } # SS: C, H, E SS3_dict = {'C': 0, 'H': 1, 'E': 2} SS8_dict = {'S': 0, 'T': 1, ' ': 2, '_': 2, 'H': 3, 'G': 4, 'I': 5, 'E': 6, 'B': 7} # SA: B, I, E SA3_dict = {'B': 0, 'I': 1, 'E': 2} def set_ss3(ss): # if ss in COIL : # return 'C' # elif ss in HELIX : # return 'H' # elif ss in STRAND: # return 'E' return SS8toSS3[ss] def set_sa3(rsa): if rsa < THR3[0]: return 'B' elif rsa < THR3[1]: return 'I' else: return 'E' def creator(q, data, Nproc): for d in data: idx = d[0] da = d[1] q.put((idx, da)) for i in range(0, Nproc): q.put('DONE') def read_fasta(file_name): fp = open(file_name) lines = fp.readlines() fp.close() seq = "" check = 0 for line in lines: if line.startswith(">"): if check == 1: break check = 0 continue seq += line.strip() return seq def read_msa0(file_name, Nres): fp = open(file_name) lines = fp.readlines() fp.close() msa = list() msa2 = list() pasinfo = list() Npasinfo = 0 for line in lines: if line[0] == ">": mm2 = np.zeros(Nres, dtype=int) lis = line.strip().split("/") inifin = lis[1] inifin_list = inifin.strip().split(",") pcheck = 0 for inifin2 in inifin_list: inifin3 = inifin2.strip().split("-") ini = int(inifin3[0]) fin = int(inifin3[1]) if ((ini > 20) or (fin < Nres-20)): pcheck = 1 for i in range(ini-1, fin): mm2[i] = 1 msa2 += [mm2] pasinfo += [pcheck] Npasinfo += 1 continue else: mm = np.zeros(Nres, dtype=int) for i in range(0, Nres): cc = line[i] if cc not in code_dict: j = 21 else: j = code_dict[cc] mm[i] = j msa += [mm] msa = np.concatenate([msa]) msa2 = np.concatenate([msa2]) pasinfo = np.array(pasinfo) return msa, msa2, pasinfo def read_msa(file_name, Nres): fp = open(file_name) lines = fp.readlines() fp.close() Npasinfo = 0 Nmsa = 0 PAS = np.zeros([Nres, Nres], dtype=np.float32) # Nsig[i][0]: left_gap &right_gap # Nsig[i][1]: left_gap # Nsig[i][2]: right_gap Nsig = np.zeros([Nres, 3], dtype=np.long) for line in lines: if line[0] == ">": Nmsa += 1 lis = line.strip().split("/") inifin = lis[1] inifin_list = inifin.strip().split(",") # pcheck = 0 for inifin2 in inifin_list: inifin3 = inifin2.strip().split("-") ini = int(inifin3[0]) fin = int(inifin3[1]) # if ((ini > 20) or (fin < Nres-20)): # pcheck = 1 PAS[ini-1:fin, ini-1:fin] += 1 Npasinfo += 1 Nsig[ini-1][0] += 1 Nsig[fin-1][0] += 1 Nsig[ini-1][1] += 1 Nsig[fin-1][2] += 1 if Npasinfo != 0: PAS = PAS/Npasinfo return PAS, Nsig, Npasinfo, Nmsa def cal_sig(Nsig, Nres, Nmsa): Nsite5 = np.zeros([Nres, 3], np.long) Nsig5 = np.zeros([Nres, 3], np.long) psig5 = np.zeros([Nres, 3], np.float32) msig5 = np.zeros([Nres, 3], np.float32) fsite5 = np.zeros([Nres, 3], np.float32) if Nmsa < 1: return fsite5, psig5, msig5 for i in range(0, Nres): ini = i - 5 fin = i + 5 if(ini < 0): ini = 0 if(fin > Nres-1): fin = Nres-1 Nsig5[i][1] = Nsig[ini:fin+1, 1].sum() Nsig5[i][2] = Nsig[ini:fin+1, 2].sum() Nsig5[i][0] = Nsig5[i][1] + Nsig5[i][2] Nsite5[i][1] = Nsig[ini:fin+1, 1].astype(np.bool).sum() Nsite5[i][2] = Nsig[ini:fin+1, 2].astype(np.bool).sum() Nsite5[i][0] = Nsite5[i][1] + Nsite5[i][2] fsite5[:, 1:3] = Nsite5[:, 1:3] / 11.0 fsite5[:, 0] = Nsite5[:, 0] / 22.0 ggap = 20 * Nres // 100 if (ggap < 20): ggap = 20 if ggap > 100: ggap = 100 ini = ggap fin = Nres - ggap max_sig5 = Nsig5[ini:fin].max(axis=0) for k in range(0, 3): if max_sig5[k] == 0: max_sig5[k] = Nsig5[:, k].max() psig5[:, 1:3] = Nsig5[:, 1:3] / float(Nmsa) psig5[:, 0] = Nsig5[:, 0] / (2.0 * float(Nmsa)) msig5[:, 0] = Nsig5[:, 0] / float(max_sig5[0]) msig5[:, 1] = Nsig5[:, 1] / float(max_sig5[1]) msig5[:, 2] = Nsig5[:, 2] / float(max_sig5[2]) psig5 = psig5.clip(-1.0, 1.0) msig5 = msig5.clip(-1.0, 1.0) return fsite5, psig5, msig5 def read_ck2(file_name): fp = open(file_name) lines = fp.readlines() fp.close() Nres = int(lines[0].strip()) # seq = lines[1].strip() Nat = 20 profile = np.zeros([Nres, Nat], dtype=np.float32) for i, line in enumerate(lines[2:]): lis = line.strip().split() for j in range(Nat): profile[i][j] = float(lis[j]) return profile def read_ccmpred(file_name, Nres): fp = open(file_name) lines = fp.readlines() fp.close() ccmpred = np.zeros([Nres, Nres], dtype=np.float32) for i, line in enumerate(lines): lis = line.strip().split() for j, ll in enumerate(lis): ccmpred[i][j] = ll for i in range(Nres): for j in range(i, i+12): if j < Nres: ccmpred[i][j] = 0.0 ccmpred[j][i] = 0.0 return ccmpred def cal_ccm_cut(ccmpred, Nres): sum1 = 0 sum2 = 0 Nedge = 0 for i in range(Nres): for j in range(i+12, Nres): Nedge += 1 sum1 += ccmpred[i][j] sum2 += pow(ccmpred[j][i], 2) avg1 = sum1/Nedge avg2 = sum2/Nedge dd = avg2-pow(avg1, 2) stddev = np.sqrt(dd) ccm_cut = avg1+2*stddev return ccm_cut def cal_ccm_community(ccmpred, ccm_cut, Nres): community = np.zeros([Nres], dtype=np.float32) community0 = np.zeros([Nres], dtype=np.float32) sum_con = 0 for i in range(Nres): for j in range(i+1, Nres): if ccmpred[i][j] >= ccm_cut: sum_con += ccmpred[i][j] M = sum_con if M == 0.0: return community0 ddd1 = 0 ddd2 = M dm1 = 0 dm2 = 2*M for k in range(Nres): dd1 = 0 dd2 = 0 dd0 = 0 for i in range(0, k): if(ccmpred[k][i] >= ccm_cut): dd1 += ccmpred[k][i] dd0 += ccmpred[k][i] for i in range(k+1, Nres): if(ccmpred[k][i] >= ccm_cut): dd2 += ccmpred[k][i] dd0 += ccmpred[k][i] ddd1 += dd1 ddd2 -= dd2 dm1 += dd0 dm2 -= dd0 community1 = ddd1/M+ddd2/M community2 = pow(dm1/(2*M), 2)+pow(dm2/(2*M), 2) community[k] = community1-community2 for i in range(Nres): if i == 0: community0[i] = community[i]/2.0 continue community0[i] = (community[i-1]+community[i])/2.0 return community0 def write_pas(out_file, PAS, Nres): fp = open(out_file, "w") for i in range(Nres): for j in range(Nres): line_out = "%4d %4d %6.4f\n" % (i+1, j+1, PAS[i][j]) fp.write(line_out) fp.close() def cal_pas_sum(PAS, Nres): PASsumN = np.zeros(Nres, dtype=np.float32) PASsumC = np.zeros(Nres, dtype=np.float32) PASdiag = np.zeros(Nres, dtype=np.float32) for i in range(0, Nres): PASsumN[i] += PAS[i, :i+1].sum()/(i+1) PASsumC[i] += PAS[i, i+1:].sum()/(Nres-i) PASdiag[i] = PAS[i, i] return PASsumN, PASsumC, PASdiag def write_pas_sum(out_file, PASsumN, PASsumC, PASdiag, Nres): fp = open(out_file, "w") for i in range(Nres): line_out = "%4d %6.4f %6.4f %6.4f\n" % ( i+1, PASsumN[i], PASsumC[i], PASdiag[i]) fp.write(line_out) fp.close() def write_ccm(out_file, ccmpred, Nres, ccm_cut): fp = open(out_file, "w") for i in range(Nres): for j in range(Nres): if ccmpred[i][j] >= ccm_cut: line_out = "%4d %4d %6.4f\n" % (i+1, j+1, ccmpred[i][j]) else: line_out = "%4d %4d %6.4f\n" % (i+1, j+1, 0.0) fp.write(line_out) fp.close() return def write_community(out_file, community, Nres): fp = open(out_file, "w") for i in range(Nres): line_out = "%4d %6.4f\n" % (i+1, community[i]) fp.write(line_out) fp.close() return def read_pdb(pdb_file): n_file = open(pdb_file) lines = n_file.readlines() n_file.close() chain = dict() old_chain_id = "" for line in lines: if line[:6] == 'ATOM ': chain_id = line[21] if chain_id != old_chain_id: CA_dict = dict() CB_dict = dict() res_dict = dict() atom_dict = dict() atom_map = dict() old_chain_id = chain_id chain[chain_id] = dict() idx = 0 chain[chain_id]['CA_dict'] = CA_dict chain[chain_id]['CB_dict'] = CB_dict chain[chain_id]['res_dict'] = res_dict chain[chain_id]['atom_dict'] = atom_dict chain[chain_id]['atom_map'] = atom_map chain[chain_id]['seq'] = "" iseq = line[22:27].strip() atom = line[12:16].strip() res = line[17:20] coor = np.array([float(line[30:38]), float( line[38:46]), float(line[46:54])]) if iseq not in res_dict: res_dict[iseq] = res chain[chain_id]['seq'] += Res31[res] idx += 1 atom_map[idx] = iseq if res not in Res20: print(iseq, res) if iseq not in atom_dict: atom_dict[iseq] = [line] else: atom_dict[iseq] += [line] if atom == "CA": CA_dict[iseq] = coor if res != "GLY": if atom == "CB": CB_dict[iseq] = coor elif atom == "CA": CB_dict[iseq] = coor return chain def read_amap(amap_file): map_dict = dict() map_dict2 = dict() fa_map = dict() fp = open(amap_file) lines = fp.readlines() fp.close() for line in lines: line_arr = line.split() fa_map[int(line_arr[0])] = line_arr[1] map_dict[int(line_arr[0])] = (line_arr[6], line_arr[2]) if line_arr[6] == "-": continue map_dict2[line_arr[6]] = int(line_arr[0]) return map_dict, map_dict2, fa_map def gen_mask(map_dict, Nres): keys = sorted(map_dict.keys()) mask = np.ones([Nres], dtype=np.float32) for i in keys: j0 = map_dict[i][1] # j = map_dict[i][0] if j0 == "-": ini = i-2 if ini < 0: ini = 0 fin = i+1 mask[ini:fin] = 0 mask =
np.array(mask, dtype=np.float32)
numpy.array
# -*- coding: utf-8 -*- """ Created on Wed Apr 17 16:20:02 2019 @author: lmassoul032513 """ import pytest import pandas as pd import numpy as np from copy import deepcopy from sklearn.utils import check_random_state from aikit.datasets.datasets import load_dataset, DatasetEnum from aikit.enums import TypeOfProblem, TypeOfVariables, StepCategories from aikit.ml_machine.ml_machine import ( AutoMlConfig, JobConfig, RandomModelGenerator, AutoMlResultReader, MlJobManager, MlJobRunner, _create_all_combinations, random_list_generator, ) from aikit.ml_machine.model_graph import convert_graph_to_code from aikit.model_definition import sklearn_model_from_param from aikit.ml_machine.ml_machine_guider import AutoMlModelGuider from aikit.ml_machine.data_persister import FolderDataPersister from aikit.tools.graph_helper import get_terminal_nodes def loader(num_only=False): if num_only: np.random.seed(123) dfX = pd.DataFrame(np.random.randn(100, 10), columns=["COL_%d" % d for d in range(10)]) y = 1 * (np.random.randn(100) > 0) return dfX, y else: dfX, y, _, _, _ = load_dataset(DatasetEnum.titanic) return dfX, y def get_automl_config(num_only): dfX, y = loader(num_only) auto_ml_config = AutoMlConfig(dfX, y) auto_ml_config.guess_everything() return dfX, y, auto_ml_config def test_AutoMlConfig_raise_if_wrong_nb_oberservations(): dfX = pd.DataFrame({"a": [0, 1, 2, 3, 4, 5], "b": [0, 10, 20, 30, 40, 50]}) y = np.array([0, 0, 0, 1, 1, 1]) auto_ml_config = AutoMlConfig(dfX, y[0:3]) with pytest.raises(ValueError): auto_ml_config.guess_everything() # raise because y doesn't have the correct number of observations def test_AutoMlConfig_raise_multioutput(): dfX = pd.DataFrame({"a": [0, 1, 2, 3, 4, 5], "b": [0, 10, 20, 30, 40, 50]}) y =
np.array([0, 0, 0, 1, 1, 1])
numpy.array
import numpy as np from scipy.stats import gengamma import os as os from random import sample from abc import ABC, abstractmethod from YGRW.data_interp import JumpDistFromAngle, AngleFromAngle from math import sqrt CUR_DIR = os.path.dirname(__file__) DATA_DIR = os.path.join(CUR_DIR, "data") deg = np.pi / 180 # ------------------------ # Abstract classes # ------------------------ class Stepper(ABC): """ Abstract class which implements generate_step and generate_bound_step methods for subsequent steppers to work off of. """ def __init__(self): pass @abstractmethod def generate_step(self, *args, **kwargs): raise NotImplementedError def generate_bound_step(self, *args, **kwargs): """ If a child class does not have this method defined, call child class' generate step method. """ return self.generate_step(*args, **kwargs) class AngleStepper(ABC): """ Abstract class for generating an angle of a step- used to complement steppers like UniformSteps which yield a step length but not a direction. Generates an angle for a successive step defined with respect to the previous step along [-180, 180] where clockwise is positive and counterclockwise is negative. In other words, an angle of 0 would correspond to no change in angle, +- 90 degrees correspond to right and left respectively, and -180 and 180 are both antiparallel to the previous angle. """ def __init__(self): pass @abstractmethod def generate_angle(self, *args, **kwargs): raise NotImplementedError # ------------------------ # Specific Stepper classes # ------------------------ class FBMSteps(Stepper): def __init__( self, step_batchsize: int = 200, gamma: float = 0.00375, alpha: float = 0.448, bound_gamma: float = 0.00075, bound_alpha: float = 0.373, dt: float = 1, boundstepper: Stepper = None, ): """ Stepper which generates steps consistent with Fractional Brownian Motion (i.e. correlated Gaussian noise with no driving force in the overdamped limit). Based on the algorithm of <NAME> and <NAME>, SIAM J. Sci. Comput., 18(4), 1088–1107. https://doi.org/10.1137/S1064827592240555 Parameters ---------- step_batchsize: Number of steps of random correlated noise to generate. gamma: scales the stepsizes during 'unbound' diffusion (in nucleoplasm, or near periphery but unbounded) alpha: controls degree of correlation / anti-correlation during 'unbound' diffusion bound_gamma: scales the stepsizes during 'bound' diffusion (when in 'bound zone' near periphery and bound state begins) bound_alpha: controls degree of correlation / anti-correlation during 'bound' diffusion dt: constant time-step boundstepper: Can allow for a seperate stepper to be used for 'bound' diffusion """ self.gamma = gamma self.alpha = alpha self.bound_gamma = bound_gamma self.bound_alpha = bound_alpha self.dt = dt self.cur_step = 0 self.real_step = 0 self.step_batchsize = step_batchsize (self.pre_x, self.pre_y) = self.generate_correlated_noise() self.boundstepper = boundstepper # preprocess hurst exponent for movement regimens H = self.alpha / 2 bound_H = self.bound_alpha / 2 # preprocess msd normalization for movement regimens self.norm_msd = sqrt(2 * self.gamma) * self.dt ** H self.bound_norm_msd = sqrt(2 * self.bound_gamma) * self.dt ** bound_H super().__init__() def generate_step(self, *args, **kwargs): # If the trajectory exhausts the generated steps, regenerate if self.cur_step >= self.step_batchsize: adj_batchsize = self.step_batchsize - self.real_step if adj_batchsize <= 0: adj_batchsize = self.step_batchsize self.regenerate_correlated_noise() # normalize noise to the expected MSD dx = self.norm_msd * self.pre_x[self.cur_step] dy = self.norm_msd * self.pre_y[self.cur_step] self.real_step += 1 self.cur_step += 1 return np.array([dx, dy]) def generate_bound_step(self, *args, **kwargs): if self.boundstepper == None: if self.cur_step >= self.step_batchsize: adj_batchsize = self.step_batchsize - self.real_step if adj_batchsize <= 0: adj_batchsize = self.step_batchsize self.regenerate_correlated_noise() # normalize noise to the expected bound MSD dx = self.bound_norm_msd * self.pre_x[self.cur_step] dy = self.bound_norm_msd * self.pre_y[self.cur_step] # When a different bound stepper is called, it will be employed here else: (dx, dy) = self.boundstepper.generate_bound_step() self.real_step += 1 self.cur_step += 1 return np.array([dx, dy]) def generate_correlated_noise( self, steps: int = None, fle_random_seed: int = None, ): """ Generates a series of correlated noise values. Based on the implementation by <NAME> in <NAME>, <NAME>, <NAME>, and <NAME>, Cell 158, 339–352, 2014 https://doi.org/10.1016/j.cell.2014.05.036 Which is based on the algorithm of <NAME> and <NAME>, SIAM J. Sci. Comput., 18(4), 1088–1107. https://doi.org/10.1137/S1064827592240555 Parameters ---------- steps: number of time steps dt gamma alpha: Correlation parameter. 1 is no correlation, [1,2] is positive correlation, (0,1) is anticorrelation. Returns ------- """ if steps is None: steps = self.step_batchsize # Compute correlation vector R. pre_r = np.zeros(shape=(steps + 1)) pre_r[0] = 1.0 for k in range(1, steps + 1): fd_addition = ( (k + 1) ** self.alpha - 2 * (k ** self.alpha) + (k - 1) ** self.alpha ) / 2 pre_r[k] = fd_addition nrel = len(pre_r) r = np.zeros(2 * nrel - 2) r[:nrel] = pre_r reverse_r = np.flip(pre_r) r[nrel - 1 :] = reverse_r[:-1] # Fourier transform pre-computed values earlier # Corresponds to step a on page 1091 of Dietrich & Newsam, s = np.real(np.fft.fft(r)) / (2 * steps) strans = np.lib.scimath.sqrt(s) if fle_random_seed: np.random.seed(fle_random_seed) # Generate randomly distributed points in the complex plane (step b) randnorm_complex = np.random.normal(size=(2 * steps)) + 1j * np.random.normal( size=(2 * steps) ) # Compute FFT: (step c), second_fft_x = np.fft.fft(np.multiply(strans, randnorm_complex)) randnorm_complex = np.random.normal(size=(2 * steps)) + 1j * np.random.normal( size=(2 * steps) ) second_fft_y = np.fft.fft(np.multiply(strans, randnorm_complex)) # Scale results for final use. # Hurst exponent # H = self.alpha / 2 # bound_H = self.bound_alpha / 2 # Length scale for process # norm_msd = sqrt(2 * self.gamma) * self.dt ** H # bound_norm_msd = sqrt(2 * self.bound_gamma) * self.dt ** bound_H # If gamma is ordinarily in m^2/s, # to convert to m^2/ s^alpha, # multiply by 1 s / s^alpha, # 1 s / # Store correlated noise values. Step d. # x_sreps = norm_msd * np.real(second_fft_x[0:steps]) # y_steps = norm_msd * np.real(second_fft_y[0:steps]) # bound_x_steps = bound_norm_msd * np.real(second_fft_x[0:steps]) # bound_y_steps = bound_norm_msd * np.real(second_fft_y[0:steps]) x_noise = np.real(second_fft_x[0:steps]) y_noise = np.real(second_fft_y[0:steps]) return x_noise, y_noise def regenerate_correlated_noise(self, batch_size: int = None): """ If the number of steps in the current batch have been exhausted, or an external circumstance dictates the generation of new noise, this produces a new set of correlated noise. Assigns noise 'in-place' as class attribute. Please note that this causes the previous noise correlations to be 'forgotten' and so the new noise batch will not contain any correlations with the previous batch- it is, in effect, a completely new noise source. Parameters ---------- batch_size: Number of steps in correlated noise to generate Returns ------- """ if batch_size is None: # Adjusts batch size of generation temp_batch_size = self.step_batchsize - self.real_step # Sometimes batches become too small for fft if temp_batch_size < 100: temp_batch_size = 100 batch_size = temp_batch_size (self.pre_x, self.pre_y) = self.generate_correlated_noise(steps=batch_size) self.cur_step = 0 class UniformSteps(Stepper): def __init__(self, lower: float = -1, upper: float = 1): self.lower = lower self.upper = upper super().__init__() def generate_step(self, prev_step=None, prev_angle=None): return np.random.uniform(self.lower, self.upper, size=2) def generate_bound_step(self, prev_step=None, prev_angle=None): return np.random.uniform(self.lower, self.upper, size=2) class GaussianSteps(Stepper): def __init__(self, mu: float = 0, sig: float = 1): self.mu = mu self.sig = sig super().__init__() def generate_step(self, prev_step=None, prev_angle=None): return np.random.normal(loc=self.mu, scale=self.sig, size=2) def generate_bound_step(self, prev_step=None, prev_angle=None): return np.random.normal(loc=self.mu, scale=self.sig / 2, size=2) class GaussianDragSteps(Stepper): def __init__( self, mu: float = 0, sig: float = 1, bound_mu: float = None, bound_sig: float = None, spring_constant: float = -0.5, ): """ Stepper which generates steps in a uniform direction with a 'drag' that will apply (spring constant)*(the previous step) returning to the previous direction on top of a uniformly drawn angle and step size. Should be a negative number ranging from [-1,0] to yield an anticorrelated random walk; if positive, will yield a 'persistent random walk' that will cause the previous step to be *added* to the next step. Parameters ---------- shape rate bound_shape bound_rate spring_constant """ self.mu = mu self.sig = sig self.spring_constant = spring_constant self.bound_mu = bound_mu or mu self.bound_sig = bound_sig or sig super().__init__() def generate_step(self, prev_step=None, prev_angle=None): x_drag, y_drag = compute_drag(prev_step, self.spring_constant) x_step, y_step = np.random.normal(loc=self.mu, scale=self.sig, size=2) return np.array((x_step + x_drag, y_step + y_drag)) def generate_bound_step(self, prev_step=None, prev_angle=None): x_drag, y_drag = compute_drag(prev_step, self.spring_constant) x_step, y_step = np.random.normal(loc=self.mu, scale=self.sig, size=2) return np.array((x_step + x_drag, y_step + y_drag)) class GammaSteps(Stepper): def __init__( self, shape: float = 3, rate: float = 45, bound_shape: float = 2.7, bound_rate: float = 72, ): self.shape = shape self.scale = 1 / rate self.bound_shape = bound_shape or shape self.bound_scale = 1 / bound_rate or 1 / rate super().__init__() def generate_step(self, prev_step=None, prev_angle=None): # TODO incorporate anglestepper magnitude = np.random.gamma(shape=self.shape, scale=self.scale, size=1) angle = np.random.uniform(low=-180, high=180, size=1) x_step = np.cos(angle * deg) * magnitude y_step = np.sin(angle * deg) * magnitude return np.array((x_step, y_step)) def generate_bound_step(self, prev_step=None, prev_angle=None): magnitude = np.random.gamma( shape=self.bound_shape, scale=self.bound_scale, size=1 ) angle = np.random.uniform(low=-180, high=180, size=1) x_step = np.cos(angle * deg) * magnitude y_step =
np.sin(angle * deg)
numpy.sin
import json import tensorflow as tf import tensorflow.compat.v1 as tf1 from tensorflow.keras import initializers import numpy as np from mpi4py import MPI from gpt2_keras.builder.gpt2parallelize import GPT2, MultiLayerPerceptron from gpt2_keras.builder import original_gpt2 from gpt2_keras.builder.builderParallel import build # from .builder.builder import build from gpt2_keras.encoder import get_encoder from preprocess_test import preprocess import pickle import time print("import success") comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() batch_size = 1 word_embedding = 768 max_seq_length = 500 num_decoder = 12 DECODER_TAG = 1000 ZSLICE_TAG = 10000 # !!!!!!!!! UNCOMMENT BELOW WHEN RUNNING ON AWS print(size) assert size >= 12 # Let us program for the case where each core can get at least one MLP layer each # (There are 12 MLPs in GPT-2) start_time = time.time() try: if rank == 0: # If this is the master, start building the GPT2 model with open("./models/124M/hparams.json") as f: config = json.load(f) model_dir = "./models/" model_name = "124M" enc = get_encoder(model_name, model_dir) gpt2= build(config, "./models/124M/model.ckpt", name='gpt2') corpus = preprocess( filepath="../data/target_texts/the_circular_ruins_lines.txt", model_dir="./models/", model_name="124M") # print(corpus) # Once the build is complete, take all the MLPs in the Decoder blocks embedding_layer = gpt2.layers[0] transformer_model = gpt2.layers[1] #print("length of the layers:", len(transformer_model.layers)) # 13, including the normalization layer MLPs = [] # list of MLP layers( to be precise, their config dicts) in all decoder blocks ATTNs = [] for decoderblock in transformer_model.layers[:-1]: # The last layer is the Layer Normalization #point-to-point communication ser = tf.keras.layers.serialize(decoderblock.mlp) # print(ser) MLPs.append(ser) ATTNs.append(decoderblock.attention) # Broadcast all the MLPs to everyone (much more efficient than simple copy of the entire Transformer) comm.bcast(MLPs, root=0) # The MLPs are broadcast from rank=0 # for worker_num, MLP in enumerate(MLPs): # The last layer is the Layer Normalization # #point-to-point communication # #Send # continue_forward = True # comm.isend(MLPs[worker_num], dest=worker_num+1, tag=worker_num+1) #Start doing forward runs # For simplicity, let's train for the case where 1 line = 1 instance of a batch """ partition_size = len(corpus) // 3 corpuss = [ corpus[:partition_size], corpus[partition_size: partition_size*2], corpus[partition_size*2:] ] """ epochs = 10 tf1.keras.backend.set_floatx('float64') for ith_epoch in range(epochs): # for corp in corpuss: embedded = embedding_layer(corpus) for i in range(num_decoder): # prev_decoder_output = None if i ==0: A1 = ATTNs[i](embedded) # print(A1.shape) # (104, 500, 768) == (batch, max_seq, embed_size) #Evenly Send out partintioned Z matrix to ALL THE WORKERS. That is, each worker gets max_seq(=500) / size Z1 = embedded + A1 # print(Z1.shape) # (104, 500, 768) == (batch, max_seq, embed_size) Z1 = transformer_model.layers[0].mlp.layer_norm(Z1) print(
np.array(Z1)
numpy.array
import sys import os import glob import numpy as np import re import xarray as xr import datetime as dt from itertools import product from multiprocessing import Pool, cpu_count, current_process from classified_cset.utils import LoopTimer class Groupby: # note: adapted from https://github.com/esantorella/hdfe. MIT license required upon publication def __init__(self, keys): self.keys, self.keys_as_int = np.unique(keys, return_inverse = True) self.n_keys = max(self.keys_as_int) + 1 self.set_indices() def set_indices(self): self.indices = [[] for i in range(self.n_keys)] for i, k in enumerate(self.keys_as_int): self.indices[k].append(i) self.indices = [np.array(elt) for elt in self.indices] def apply(self, function, vector, broadcast=False): if broadcast: result = np.zeros(len(vector)) for idx in self.indices: result[idx] = function(vector[idx]) else: result = np.zeros(self.n_keys) for k, idx in enumerate(self.indices): result[k] = function(vector[idx]) return result def read_file(f): data = xr.open_dataset(f) year = data.time_vars.isel(yr_day_utc=0).values day = data.time_vars.isel(yr_day_utc=1).values utc = data.time_vars.isel(yr_day_utc=2).values total_secs = (utc*3600) secs = total_secs//1 msecs = 1000*total_secs%1 dtime = np.datetime64(f'{
np.median(year)
numpy.median
import numpy as np from sklearn.utils import murmurhash3_32 # Number feature. class NumEmbedMatrix(object): def __init__(self, size=20000, dim=5, bound=0.1): self.matrix = None self.dim = dim self.size = size self.bound = bound def create(self, seed=6): if self.matrix is None: np.random.seed(seed) self.matrix = np.random.uniform(-self.bound, self.bound, (self.size, self.dim)) def clean(self): self.matrix = None def get_embedding(self, token, seed=6): max_length = 5 if self.matrix is None: self.create(seed) if len(token) <= max_length and token.isdigit(): hash_index = murmurhash3_32(token, positive=True) % self.size return self.matrix[hash_index] else: return np.zeros(self.dim) GlobalNumEmbedding = NumEmbedMatrix() # encode a list of tokens def encode_num_in_ltokens(tokens): array_list = [] for token in tokens: array_list.append(GlobalNumEmbedding.get_embedding(token)) # assert len(array_list) == len(tokens) num_encoding =
np.stack(array_list, axis=0)
numpy.stack
from numpy import concatenate, zeros from scipy.linalg import toeplitz import matplotlib.pyplot as plt import torch import torch.nn as nn from numpy import concatenate, zeros from scipy.linalg import toeplitz import torch from torch import nn import numpy as np import matplotlib as mat mat.use("TkAgg") import matplotlib.pyplot as plt import time from torch.autograd import Variable import cv2 torch.manual_seed(1) # reproducible hidden_siz = 50 hidden_lay = 1 LR = 0.02 # learning rate class LSNN(nn.Module): def __init__(self): super(LSNN, self).__init__() self.lstm = nn.LSTM( input_size=5, hidden_size=hidden_siz, num_layers=hidden_lay, batch_first=True, ) self.hidden = (torch.autograd.Variable(torch.zeros(hidden_lay, 1, hidden_siz)),torch.autograd.Variable(torch.zeros(hidden_lay, 1, hidden_siz))) self.out = nn.Linear(hidden_siz, 1) def forward(self,x): # x (batch, time_step, input_size) # h_state (n_layers, batch, hidden_size) # r_out (batch, time_step, output_size) r_out,self.hidden= self.lstm(x,self.hidden) self.hidden=(Variable(self.hidden[0]),Variable(self.hidden[1])) outs = [] for time_step in range(r_out.size(1)): outs.append(self.out(r_out[:, time_step, :])) return torch.stack(outs, dim=1) lstmNN = LSNN() optimizer = torch.optim.Adam(lstmNN.parameters(), lr=LR) # optimize all rnn parameters loss_func = nn.MSELoss() loss_list = [] prediction_list = [] for step in range(80-6): steps = np.linspace(0, 100, 100, dtype=np.float32) if step == 0: x_np = toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.], zeros(97)]))[step: 5, :] y_np = toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.], zeros(97)]))[5:6, :] else: x_np = concatenate([ toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.], zeros(97)]))[step: step+4, :], prediction.view(1,100).data.numpy()]) y_np = toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.],
zeros(97)
numpy.zeros
# coding: utf-8 import sys import os import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D __all__ = ['Ackley','Sphere','Rosenbrock','Beale','GoldsteinPrice','Booth', 'BukinN6','Matyas','LeviN13','ThreeHumpCamel','Easom','Eggholder', 'McCormick','SchafferN2','SchafferN4','StyblinskiTang','DeJongsF1', 'DeJongsF2','DeJongsF3','DeJongsF4','DeJongsF5','Ellipsoid','KTablet', 'FiveWellPotential','WeightedSphere','HyperEllipsodic', 'SumOfDifferentPower','Griewank','Michalewicz','Perm','Rastrigin', 'Schwefel','SixHumpCamel','Shuberts','XinSheYang','Zakharov'] __oneArgument__ = ['Beale','GoldsteinPrice','Booth','BukinN6','Matyas','LeviN13', 'ThreeHumpCamel','Easom','Eggholder','McCormick','SchafferN2', 'SchafferN4','DeJongsF3','DeJongsF4','DeJongsF5', 'FiveWellPotential','SixHumpCamel','Shuberts'] __twoArgument__ = ['Ackley','Sphere','Rosenbrock','StyblinskiTang','DeJongsF1', 'DeJongsF2','Ellipsoid','KTablet','WeightedSphere', 'HyperEllipsodic','SumOfDifferentPower','Griewank', 'Michalewicz','Rastrigin','Schwefel','XinSheYang','Zakharov'] __threeArgument__ = ['Perm'] ##### Basic function ##### class OptimalBasic: def __init__(self, variable_num): self.variable_num = variable_num self.max_search_range = np.array([0]*self.variable_num) self.min_search_range = np.array([0]*self.variable_num) self.optimal_solution = np.array([0]*self.variable_num) self.global_optimum_solution = 0 self.plot_place = 0.25 self.func_name = '' self.save_dir = os.path.dirname(os.path.abspath(__file__))+'\\img\\' if(os.path.isdir(self.save_dir) == False): os.mkdir(self.save_dir) def get_global_optimum_solution(self): return self.global_optimum_solution def get_optimal_solution(self): return self.optimal_solution def get_search_range(self): return [self.max_search_range, self.min_search_range] def get_func_val(self, variables): return -1 def plot(self): x = np.arange(self.min_search_range[0],self.max_search_range[0], self.plot_place, dtype=np.float32) y = np.arange(self.min_search_range[1],self.max_search_range[1], self.plot_place, dtype=np.float32) X, Y = np.meshgrid(x,y) Z = [] for xy_list in zip(X,Y): z = [] for xy_input in zip(xy_list[0],xy_list[1]): tmp = list(xy_input) tmp.extend(list(self.optimal_solution[0:self.variable_num-2])) z.append(self.get_func_val(np.array(tmp))) Z.append(z) Z = np.array(Z) fig = plt.figure() ax = Axes3D(fig) ax.plot_wireframe(X,Y,Z) plt.show() def save_fig(self): x = np.arange(self.min_search_range[0],self.max_search_range[0], self.plot_place, dtype=np.float32) y = np.arange(self.min_search_range[1],self.max_search_range[1], self.plot_place, dtype=np.float32) X, Y = np.meshgrid(x,y) Z = [] for xy_list in zip(X,Y): z = [] for xy_input in zip(xy_list[0],xy_list[1]): tmp = list(xy_input) tmp.extend(list(self.optimal_solution[0:self.variable_num-2])) z.append(self.get_func_val(np.array(tmp))) Z.append(z) Z = np.array(Z) fig = plt.figure() ax = Axes3D(fig) ax.plot_wireframe(X,Y,Z) plt.savefig(self.save_dir+self.func_name+'.png') plt.close() ##### Optimization benchmark function group ##### ##### Class Ackley function ##### class Ackley(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([32.768]*self.variable_num) self.min_search_range = np.array([-32.768]*self.variable_num) self.optimal_solution = np.array([0]*self.variable_num) self.global_optimum_solution = 0 self.func_name = 'Ackley' def get_func_val(self, variables): tmp1 = 20.-20.*np.exp(-0.2*np.sqrt(1./self.variable_num*np.sum(np.square(variables)))) tmp2 = np.e-np.exp(1./self.variable_num*np.sum(np.cos(variables*2.*np.pi))) return tmp1+tmp2 ##### Class Sphere function ##### class Sphere(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([1000]*self.variable_num) # nearly inf self.min_search_range = np.array([-1000]*self.variable_num) # nearly inf self.optimal_solution = np.array([1]*self.variable_num) self.global_optimum_solution = 0 self.plot_place = 10 self.func_name = 'Sphere' def get_func_val(self, variables): return np.sum(np.square(variables)) ##### Class Rosenbrock function ##### class Rosenbrock(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([5]*self.variable_num) self.min_search_range = np.array([-5]*self.variable_num) self.optimal_solution = np.array([1]*self.variable_num) self.global_optimum_solution = 0 self.plot_place = 0.25 self.func_name = 'Rosenbrock' def get_func_val(self, variables): f = 0 for i in range(self.variable_num-1): f += 100*np.power(variables[i+1]-np.power(variables[i],2),2)+np.power(variables[i]-1,2) return f ##### Class Beale function ##### class Beale(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([4.5]*self.variable_num) self.min_search_range = np.array([-4.5]*self.variable_num) self.optimal_solution = np.array([3.,0.5]) self.global_optimum_solution = 0 self.plot_place = 0.25 self.func_name = 'Beale' def get_func_val(self, variables): tmp1 = np.power(1.5 - variables[0] + variables[0] * variables[1],2) tmp2 = np.power(2.25 - variables[0] + variables[0] * np.power(variables[1],2),2) tmp3 = np.power(2.625 - variables[0] + variables[0] * np.power(variables[1],3),2) return tmp1+tmp2+tmp3 ##### Class Goldstein-Price function ##### class GoldsteinPrice(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([2.]*self.variable_num) self.min_search_range = np.array([-2.]*self.variable_num) self.optimal_solution = np.array([0.,-1.]) self.global_optimum_solution = 3 self.plot_place = 0.25 self.func_name = 'GoldsteinPrice' def get_func_val(self, variables): tmp1 = (1+np.power(variables[0]+variables[1]+1,2)*(19-14*variables[0]+3*np.power(variables[0],2)-14*variables[1]+6*variables[0]*variables[1]+3*np.power(variables[1],2))) tmp2 = (30+(np.power(2*variables[0]-3*variables[1],2)*(18-32*variables[0]+12*np.power(variables[0],2)+48*variables[1]-36*variables[0]*variables[1]+27*np.power(variables[1],2)))) return tmp1*tmp2 ##### Class Booth function ##### class Booth(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([10.]*self.variable_num) self.min_search_range = np.array([-10.]*self.variable_num) self.optimal_solution = np.array([1.,-3.]) self.global_optimum_solution = 0 self.func_name = 'Booth' def get_func_val(self, variables): tmp1 = np.power(variables[0]+2*variables[1]-7,2) tmp2 = np.power(2*variables[0]+variables[1]-5,2) return tmp1+tmp2 ##### Class Bukin function N.6 ##### class BukinN6(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([-5.,3.]) self.min_search_range = np.array([-15.,-3.]) self.optimal_solution = np.array([-10.,1.]) self.global_optimum_solution = 0 self.func_name = 'BukinN6' def get_func_val(self, variables): tmp1 = 100*np.sqrt(np.absolute(variables[1]-0.01*np.power(variables[1],2))) tmp2 = 0.01*np.absolute(variables[0]+10) return tmp1+tmp2 ##### Class Matyas function ##### class Matyas(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([10.]*self.variable_num) self.min_search_range = np.array([-10.]*self.variable_num) self.optimal_solution = np.array([0.,0.]) self.global_optimum_solution = 0 self.func_name = 'Matyas' def get_func_val(self, variables): tmp1 = 0.26*(np.power(variables[0],2)+np.power(variables[1],2)) tmp2 = 0.48*variables[0]*variables[1] return tmp1-tmp2 ##### Class Levi function N.13 ##### class LeviN13(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([10.]*self.variable_num) self.min_search_range = np.array([-10.]*self.variable_num) self.optimal_solution = np.array([1.,1.]) self.global_optimum_solution = 0 self.func_name = 'LeviN13' def get_func_val(self, variables): tmp1 = np.power(np.sin(3*np.pi*variables[0]),2) tmp2 = np.power(variables[0]-1,2)*(1+np.power(np.sin(3*np.pi*variables[1]),2)) tmp3 = np.power(variables[1]-1,2)*(1+np.power(np.sin(2*np.pi*variables[1]),2)) return tmp1+tmp2+tmp3 ##### Class Three-hump camel function ##### class ThreeHumpCamel(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([5.]*self.variable_num) self.min_search_range = np.array([-5.]*self.variable_num) self.optimal_solution = np.array([0.,0.]) self.global_optimum_solution = 0 self.func_name = 'ThreeHumpCamel' def get_func_val(self, variables): return 2*np.power(variables[0],2)-1.05*np.power(variables[0],4)+np.power(variables[0],6)/6+variables[0]*variables[1]+np.power(variables[1],2) ##### Class Easom function ##### class Easom(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([100.]*self.variable_num) self.min_search_range = np.array([-100.]*self.variable_num) self.optimal_solution = np.array([np.pi,np.pi]) self.global_optimum_solution = -1 self.plot_place = 10 self.func_name = 'Easom' def get_func_val(self, variables): return -1.0*np.cos(variables[0])*np.cos(variables[1])*np.exp(-(np.power(variables[0]-np.pi,2)+np.power(variables[1]-np.pi,2))) ##### Class Eggholder function ##### class Eggholder(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([512.]*self.variable_num) self.min_search_range = np.array([-512.]*self.variable_num) self.optimal_solution = np.array([512.,404.2319]) self.global_optimum_solution = -959.6407 self.plot_place = 5 self.func_name = 'Eggholder' def get_func_val(self, variables): tmp1 = -(variables[1]+47)*np.sin(np.sqrt(np.absolute(variables[1]+variables[0]/2+47))) tmp2 = -variables[0]*np.sin(np.sqrt(np.absolute(variables[0]-(variables[1]+47)))) return tmp1+tmp2 ##### Class McCormick function ##### class McCormick(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([4.]*self.variable_num) self.min_search_range = np.array([-1.5,-3.]) self.optimal_solution = np.array([-0.54719,-1.54719]) self.global_optimum_solution = -1.9133 self.func_name = 'McCormick' def get_func_val(self, variables): tmp1 = np.sin(variables[0]+variables[1])+np.power(variables[0]-variables[1],2) tmp2 = -1.5*variables[0]+2.5*variables[1]+1 return tmp1+tmp2 ##### Class Schaffer function N.2 ##### class SchafferN2(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([100.]*self.variable_num) self.min_search_range = np.array([-100]*self.variable_num) self.optimal_solution = np.array([0.,0.]) self.global_optimum_solution = 0 self.plot_place = 10 self.func_name = 'SchafferN2' def get_func_val(self, variables): tmp1 = np.power(np.sin(np.power(variables[0],2)-np.power(variables[1],2)),2)-0.5 tmp2 = np.power(1+0.001*(np.power(variables[0],2)+np.power(variables[1],2)),2) return 0.5+tmp1/tmp2 ##### Class Schaffer function N.4 ##### class SchafferN4(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([100.]*self.variable_num) self.min_search_range = np.array([-100]*self.variable_num) self.optimal_solution = np.array([0.,1.25313]) self.global_optimum_solution = 0 self.plot_place = 10 self.func_name = 'SchafferN4' def get_func_val(self, variables): tmp1 = np.power(np.cos(np.sin(np.absolute(np.power(variables[0],2)-np.power(variables[1],2)))),2)-0.5 tmp2 = np.power(1+0.001*(np.power(variables[0],2)+np.power(variables[1],2)),2) return 0.5+tmp1/tmp2 ##### Class Styblinski-Tang function ##### class StyblinskiTang(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.]*self.variable_num) self.min_search_range = np.array([-5.]*self.variable_num) self.optimal_solution = np.array([-2.903534]*self.variable_num) self.global_optimum_solution = -39.166165*self.variable_num self.func_name = 'StyblinskiTang' def get_func_val(self, variables): tmp1 = 0 for i in range(self.variable_num): tmp1 += np.power(variables[i],4)-16*np.power(variables[i],2)+5*variables[i] return tmp1/2 ##### Class De Jong's function F1 ##### class DeJongsF1(Sphere): def __init__(self,variable_num): super().__init__(variable_num) self.func_name = 'DeJongsF1' ##### Class De Jong's function F2 ##### class DeJongsF2(Rosenbrock): def __init__(self,variable_num): super().__init__(variable_num) self.func_name = 'DeJongsF2' ##### Class De Jong's function F3 ##### class DeJongsF3(OptimalBasic): def __init__(self): super().__init__(5) self.max_search_range = np.array([5.12]*self.variable_num) self.min_search_range = np.array([-5.12]*self.variable_num) self.optimal_solution = np.array([-5.12]*self.variable_num) self.global_optimum_solution = 0 self.func_name = 'DeJongsF3' def get_func_val(self, variables): tmp1 = 0 for i in range(self.variable_num): tmp1 += np.floor(variables[i]) return tmp1 ##### Class De Jong's function F4 ##### class DeJongsF4(OptimalBasic): def __init__(self): super().__init__(30) self.max_search_range = np.array([1.28]*self.variable_num) self.min_search_range = np.array([-1.28]*self.variable_num) self.optimal_solution = np.array([0.]*self.variable_num) self.global_optimum_solution = np.random.normal(0,1) self.func_name = 'DeJongsF4' def get_func_val(self, variables): tmp1 = 0 for i in range(self.variable_num): tmp1 += (i+1)*np.power(variables[i],4) return tmp1 + np.random.normal(0, 1) ##### Class De Jong's function F5 ##### class DeJongsF5(OptimalBasic): def __init__(self): super().__init__(25) self.max_search_range = np.array([65.536]*self.variable_num) self.min_search_range = np.array([-65.536]*self.variable_num) self.optimal_solution = np.array([-32.32]*self.variable_num) self.global_optimum_solution = 1. self.plot_place = 1.5 self.func_name = 'DeJongsF5' def get_func_val(self, variables): A = np.zeros([2,25]) a = [-32,16,0,16,32] A[0,:] = np.tile(a,(1,5)) tmp = [] for x in a: tmp_list = [x]*5 tmp.extend(tmp_list) A[1,:] = tmp sum = 0 for i in range(self.variable_num): a1i = A[0,i] a2i = A[1,i] term1 = i term2 = np.power(variables[0]-a1i,6) term3 = np.power(variables[1]-a2i,6) new = 1/(term1+term2+term3) sum += new return 1/(0.002+sum) ##### Class Ellipsoid function ##### class Ellipsoid(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.12]*self.variable_num) self.min_search_range = np.array([-5.12]*self.variable_num) self.optimal_solution = np.array([0.]*self.variable_num) self.global_optimum_solution = 0. self.func_name = 'Ellipsoid' def get_func_val(self, variables): tmp = 0 for i in range(self.variable_num): tmp += np.power(np.power(1000,i/(self.variable_num-1))*variables[i],2) return tmp ##### Class k-tablet function ##### class KTablet(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.12]*self.variable_num) self.min_search_range = np.array([-5.12]*self.variable_num) self.optimal_solution = np.array([0.]*self.variable_num) self.global_optimum_solution = 0. self.func_name = 'KTablet' def get_func_val(self, variables): tmp = 0 k = int(self.variable_num/4) for i in range(k): tmp += variables[i] for i in range(k,self.variable_num): tmp += np.power(100*variables[i],2) return tmp ##### Class Five-well potential function ##### # Not yet checked to do working properly class FiveWellPotential(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([20.]*self.variable_num) self.min_search_range = np.array([-20.]*self.variable_num) self.optimal_solution = np.array([4.92,-9.89]) self.global_optimum_solution = -1.4616 self.plot_place = 1 self.func_name = 'FiveWellPotential' def get_func_val(self, variables): tmp1 = [] tmp1.append(1-1/(1+0.05*np.power(np.power(variables[0],2)+(variables[1]-10),2))) tmp1.append(-1/(1+0.05*(np.power(variables[0]-10,2)+np.power(variables[1],2)))) tmp1.append(-1/(1+0.03*(np.power(variables[0]+10,2)+np.power(variables[1],2)))) tmp1.append(-1/(1+0.05*(np.power(variables[0]-5,2)+np.power(variables[1]+10,2)))) tmp1.append(-1/(1+0.1*(np.power(variables[0]+5,2)+np.power(variables[1]+10,2)))) tmp1_sum = 0 for x in tmp1: tmp1_sum += x tmp2 = 1+0.0001*np.power((np.power(variables[0],2)+np.power(variables[1],2)),1.2) return tmp1_sum*tmp2 ##### Class Weighted Sphere function or hyper ellipsodic function ##### class WeightedSphere(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.12]*self.variable_num) self.min_search_range = np.array([-5.12]*self.variable_num) self.optimal_solution = np.array([0.]*self.variable_num) self.global_optimum_solution = 0. self.func_name = 'WeightedSphere' def get_func_val(self, variables): tmp = 0 for i in range(self.variable_num): tmp += (i+1)*np.power(variables[i],2) return tmp class HyperEllipsodic(WeightedSphere): def __init__(self,variable_num): super().__init__(variable_num) self.func_name = 'HyperEllipsodic' ##### Class Sum of different power function ##### class SumOfDifferentPower(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([1.]*self.variable_num) self.min_search_range = np.array([-1.]*self.variable_num) self.optimal_solution = np.array([0.]*self.variable_num) self.global_optimum_solution = 0. self.func_name = 'SumOfDifferentPower' def get_func_val(self, variables): tmp = 0 for i in range(self.variable_num): tmp += np.power(np.absolute(variables[i]),i+2) return tmp ##### Class Griewank function ##### class Griewank(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([600.]*self.variable_num) self.min_search_range = np.array([-600.]*self.variable_num) self.optimal_solution = np.array([0.]*self.variable_num) self.global_optimum_solution = 0. self.plot_place = 10. self.func_name = 'Griewank' def get_func_val(self, variables): tmp1 = 0 tmp2 = 1 for i in range(self.variable_num): tmp1 += np.power(variables[i],2) tmp2 = tmp2*np.cos(variables[i]/np.sqrt(i+1)) return tmp1/4000-tmp2 ##### Class Michalewicz function ##### class Michalewicz(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([np.pi]*self.variable_num) self.min_search_range = np.array([0.]*self.variable_num) self.optimal_solution = np.array([0.]*self.variable_num) self.global_optimum_solution = -1.8013 # In case of variable_num == 2 self.plot_place = 0.1 self.func_name = 'Michalewicz' def get_func_val(self, variables): m = 10 tmp1 = 0 for i in range(self.variable_num): tmp1 += np.sin(variables[i])*np.power(np.sin((i+1)*np.power(variables[i],2)/np.pi),2*m) return -tmp1 ##### Class Perm function ##### class Perm(OptimalBasic): def __init__(self,variable_num,beta): super().__init__(variable_num) self.beta = beta self.max_search_range = np.array([1.]*self.variable_num) self.min_search_range = np.array([-1.]*self.variable_num) tmp = [] for i in range(self.variable_num): tmp.append(1/(i+1)) self.optimal_solution = np.array(tmp) self.global_optimum_solution = 0. self.plot_place = 0.1 self.func_name = 'Perm' def get_func_val(self, variables): tmp1 = 0 tmp2 = 0 for j in range(self.variable_num): for i in range(self.variable_num): tmp1 += (i+1+self.beta)*(np.power(variables[i],j+1)-np.power(1/(i+1),j+1)) tmp2 += np.power(tmp1,2) tmp1 = 0 return tmp2 ##### Class Rastrigin function ##### class Rastrigin(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.12]*self.variable_num) self.min_search_range = np.array([-5.12]*self.variable_num) self.optimal_solution = np.array([0.]*self.variable_num) self.global_optimum_solution = 0. self.func_name = 'Rastrigin' def get_func_val(self, variables): tmp1 = 10 * self.variable_num tmp2 = 0 for i in range(self.variable_num): tmp2 += np.power(variables[i],2)-10*np.cos(2*np.pi*variables[i]) return tmp1+tmp2 ##### Class Schwefel function ##### class Schwefel(OptimalBasic): def __init__(self,variable_num): super().__init__(variable_num) self.max_search_range = np.array([500.]*self.variable_num) self.min_search_range = np.array([-500.]*self.variable_num) self.optimal_solution = np.array([420.9687]*self.variable_num) self.global_optimum_solution = -418.9829 self.plot_place = 10. self.func_name = 'Schwefel' def get_func_val(self, variables): tmp = 0 for i in range(self.variable_num): tmp += variables[i]*np.sin(np.sqrt(np.absolute(variables[i]))) return -tmp ##### Class Six-hump camel function ##### class SixHumpCamel(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([3.,2.]) self.min_search_range = np.array([-3.,-2.]) self.optimal_solution = np.array([-0.0898,0.7126]) self.global_optimum_solution = -1.0316 self.func_name = 'SixHumpCamel' def get_func_val(self, variables): return 4-2.1*np.power(variables[0],2)+1/3*
np.power(variables[0],4)
numpy.power
# -*- coding: utf-8 -*- """ Copyright (c) 2020, University of Southampton All rights reserved. Licensed under the BSD 3-Clause License. See LICENSE.md file in the project root for full license information. """ import matplotlib.pyplot as plt import numpy as np from numba import njit from scipy import optimize @njit def exp_curve(x: np.ndarray, a: float, b: float, c: float) -> np.ndarray: """Compute exponent value with respect to a distance value Parameters ----------- x : np.ndarray distance value a : float coefficient b : float coefficient c : float coefficient Returns -------- np.ndarray """ return a * np.exp(b * x) + c @njit def residual_exp_curve(params: np.ndarray, x: np.ndarray, y: np.ndarray): """Compute residuals with respect to init params Parameters ----------- params : numpy.ndarray array of init params x : numpy.ndarray array of distance values y : numpy.ndarray array of intensity values Returns -------- numpy.ndarray residual """ residual = exp_curve(x, params[0], params[1], params[2]) - y return residual # compute attenuation correction parameters through regression def curve_fitting( altitudes: np.ndarray, intensities: np.ndarray ) -> np.ndarray: """Compute attenuation coefficients with respect to distance values Parameters ----------- altitudes : list list of distance values intensities : list list of intensity values Returns -------- numpy.ndarray parameters """ altitudes = altitudes[np.isfinite(altitudes)] intensities = intensities[
np.isfinite(intensities)
numpy.isfinite
import numpy as np import scipy.spatial.distance as ssd from shapely.geometry.polygon import Polygon from shapely.ops import nearest_points import gym from gym import spaces from gym.utils import seeding from traffic.constants import * class Car: def __init__(self, idx, length, width, color, max_accel, max_speed, max_rotation, expose_level): self._idx = idx self._length = length self._width = width self._color = color self._arr_color = (0.8, 0.8, 0.8) self._max_accel = max_accel self._max_speed = max_speed self._max_rotation = max_rotation self._expose_level = expose_level self._position = None self._velocity = None self._rotation = None self._action = None self.seed() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def observation_space(self, cars, road, include_x=False): if include_x: high = [ np.inf, np.inf, self._max_speed, self._max_speed ] # px, py,vx,vy else: high = [np.inf, self._max_speed, self._max_speed] # py, vx, vy for car in cars: if car is self: continue high += [np.inf, np.inf, self._max_speed, self._max_speed] # relatvie px1,py,vx,vy high = np.array(high) low = -high return spaces.Box(low=low, high=high, dtype=np.float32) def action_space(self): return spaces.Box(low=-self._max_accel, high=self._max_accel, shape=(2,), dtype=np.float32) @property def length(self): return self._length @property def width(self): return self._width @property def position(self): assert self._position is not None return self._position @property def velocity(self): assert self._velocity is not None return self._velocity @property def rotation(self): assert self._rotation is not None return self._rotation @property def heading(self): assert self._velocity is not None return np.arctan2(self._velocity[1],self._velocity[0]) def set_position(self, x_2): assert x_2.shape == (2,) self._position = np.array(x_2) return self._position def set_velocity(self, v_2): assert v_2.shape == (2,) self._velocity = np.array(v_2) speed = np.linalg.norm(self._velocity) if speed > self._max_speed: self._velocity = self._velocity / speed * self._max_speed return self._velocity def set_rotation(self, rotation): self._rotation = rotation return self._rotation def observe(self, cars, road, include_x=False): if include_x: ob = self.position else: ob = np.array(self.position[1]) ob =
np.append(ob, self.velocity)
numpy.append
# -*- coding: UTF-8 -*- from ZUI_MDP_solution import * from unittest import TestCase import itertools as it import numpy as np import numpy.testing as nptest # Taken from http://www.neuraldump.net/2017/06/how-to-suppress-python-unittest-warnings/. def ignore_warnings(test_func): def do_test(self, *args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore") test_func(self, *args, **kwargs) return do_test class TestGridWorld2x2(TestCase): rtol = 1e-4 # relative tolerance for comparing two floats def setUp(self): self.gw = GridWorld.get_world('2x2') def test_is_obstacle_at(self): self.assertFalse(self.gw._is_obstacle([0, 0])) self.assertFalse(self.gw._is_obstacle([0, 1])) self.assertFalse(self.gw._is_obstacle([1, 0])) self.assertFalse(self.gw._is_obstacle([1, 1])) def test_is_on_grid_true(self): self.assertTrue(self.gw._is_on_grid([0, 0]),msg='The point [{},{}] should be on the grid.'.format(0, 0)) self.assertTrue(self.gw._is_on_grid([1, 1]), msg='The point [{},{}] should be on the grid.'.format(1, 1)) def test_is_on_grid_false(self): for point in ([-1,0], [-2,-2], [2,0], [0,2], [5,5], [0,-1]): self.assertFalse(self.gw._is_on_grid(point),msg='The point [{}] should not be on the grid.'.format(point)) def test_transition_proba(self): true_transition_proba = np.load('./test_data/test_gw_2x2_transition_proba.npy') nptest.assert_allclose(self.gw.transition_proba,true_transition_proba,rtol=self.rtol) def test_Q_from_V_zeros(self): V = np.zeros((self.gw.n_states + 1,)) desired_Q = np.array([[-0.04, -0.04, -0.04, -0.04], [1., 1., 1., 1.], [-0.04, -0.04, -0.04, -0.04], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) nptest.assert_allclose(self.gw.Q_from_V(V=V), desired_Q, rtol=self.rtol) def test_Q_from_V_ones(self): V = np.ones((self.gw.n_states + 1,)) desired_Q = np.array([[0.96, 0.96, 0.96, 0.96], [2., 2., 2., 2.], [0.96, 0.96, 0.96, 0.96], [0., 0., 0., 0.], [1., 1., 1., 1.]]) nptest.assert_allclose(self.gw.Q_from_V(V=V), desired_Q, rtol=self.rtol) def test_Q_from_V_init(self): V = np.max(self.gw.rewards,axis=1) desired_Q = np.array([[0.024, 0.752, 0.024, -0.08], [1., 1., 1., 1.], [-0.176, -0.848, -0.176, -0.08], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) nptest.assert_allclose(self.gw.Q_from_V(V=V), desired_Q, rtol=self.rtol) def test_Q2V_single(self): desired_V = np.array([0.752, 1., -0.08, -1., 0.]) Q = np.array([[0.024, 0.752, 0.024, -0.08], [1., 1., 1., 1.], [-0.176, -0.848, -0.176, -0.08], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2V(self): desired_V = np.array([0.752, 1., -0.08, -1., 0.]) Q = np.array([[0.024, 0.752, 0.024, -0.08], [1., 1., 1., 1.], [-0.176, -0.848, -0.176, -0.08], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2Vbypolicy(self): desired_V = np.array([0.9178081, 1., 0.66027364, -1., 0., ]) Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) policy = np.array([1, 0, 0, 0, 0], dtype=int) actual_V = self.gw.Q2Vbypolicy(Q,policy) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2Vbypolicy should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2policy(self): Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) desired_policy = np.array([1, 0, 0, 0, 0], dtype=int) actual_policy = self.gw.Q2policy(Q) self.assertEqual(actual_policy.shape, (self.gw.n_states + 1,), msg='Q2policy should return array policy of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_policy.shape)) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) @ignore_warnings def test_value_iteration_single_iter(self): actual_Q = self.gw.value_iteration(max_iter=1) desired_Q = np.array([[0.024, 0.752, 0.024, -0.08], [1., 1., 1., 1.], [-0.176, -0.848, -0.176, -0.08], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) desired_Q_shape = (self.gw.n_states + 1,self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Value_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_value_iteration(self): desired_Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) actual_Q = self.gw.value_iteration() nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_policy_iteration_policy_only(self): actual_policy = self.gw.Q2policy(self.gw.policy_iteration()) desired_Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) desired_policy = self.gw.Q2policy(desired_Q) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) def test_policy_iteration(self): actual_Q = self.gw.policy_iteration() desired_Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Policy_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) class TestGridWorld3x3(TestCase): rtol = 1e-3 # relative tolerance for comparing two floats def setUp(self): self.gw = GridWorld.get_world('3x3') def test_is_obstacle_at(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): self.assertFalse(self.gw._is_obstacle([i, j]), msg='No obstacle should be at [{},{}].'.format(i,j)) def test_is_on_grid_true(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): self.assertTrue(self.gw._is_on_grid([i, j]),msg='The point [{},{}] should be on the grid.'.format(i, j)) def test_is_on_grid_false(self): for point in ([-1,0], [-2,-2], [3,0], [0,3], [5,5], [0,-1]): self.assertFalse(self.gw._is_on_grid(point),msg='The point [{}] should not be on the grid.'.format(point)) def test_transition_proba(self): true_transition_proba = np.load('./test_data/test_gw_3x3_transition_proba.npy') nptest.assert_allclose(self.gw.transition_proba,true_transition_proba,rtol=self.rtol) def test_Q2V_single(self): desired_V = np.load('./test_data/test_gw_3x3_V_single_iter.npy') Q = np.load('./test_data/test_gw_3x3_Q_single_iter.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2V(self): desired_V = np.load('./test_data/test_gw_3x3_V.npy') Q = np.load('./test_data/test_gw_3x3_Q.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2Vbypolicy(self): desired_V = np.load('./test_data/test_gw_3x3_V.npy') Q = np.load('./test_data/test_gw_3x3_Q.npy') policy = np.array([1, 1, 0, 0, 3, 0, 0, 3, 2, 0],dtype=int) actual_V = self.gw.Q2Vbypolicy(Q, policy) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2Vbypolicy should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2policy(self): Q = np.load('./test_data/test_gw_3x3_Q.npy') desired_policy = np.array([1, 1, 0, 0, 3, 0, 0, 3, 2, 0],dtype=int) actual_policy = self.gw.Q2policy(Q) self.assertEqual(actual_policy.shape, (self.gw.n_states + 1,), msg='Q2policy should return array policy of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_policy.shape)) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) @ignore_warnings def test_value_iteration_single_iter(self): actual_Q = self.gw.value_iteration(max_iter=1) desired_Q = np.load('./test_data/test_gw_3x3_Q_single_iter.npy') desired_Q_shape = (self.gw.n_states + 1,self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Value_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_value_iteration(self): desired_Q = np.load('./test_data/test_gw_3x3_Q.npy') desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) actual_Q = self.gw.value_iteration() nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_policy_iteration_policy_only(self): actual_policy = self.gw.Q2policy(self.gw.policy_iteration()) desired_Q = np.load('./test_data/test_gw_3x3_Q.npy') desired_policy = self.gw.Q2policy(desired_Q) #actual_policy = self.gw.Q2policy(actual_Q) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) def test_policy_iteration(self): actual_Q = self.gw.policy_iteration() desired_Q = np.load('./test_data/test_gw_3x3_Q.npy') desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Policy_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) class TestGridWorld3x4(TestCase): rtol = 1e-3 # relative tolerance for comparing two floats def setUp(self): self.gw = GridWorld.get_world('3x4') def test_is_obstacle_at(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): if i == 1 and j == 1: continue self.assertFalse(self.gw._is_obstacle([i, j]), msg='No obstacle should be at [{},{}].'.format(i,j)) self.assertTrue(self.gw._is_obstacle([1, 1]), msg='An obstacle should be at [{},{}].'.format(1, 1)) def test_is_on_grid_true(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): self.assertTrue(self.gw._is_on_grid([i, j]),msg='The point [{},{}] should be on the grid.'.format(i, j)) def test_is_on_grid_false(self): for point in ([-1,0], [-2,-2], [3,0], [0,4], [5,5], [0,-1]): self.assertFalse(self.gw._is_on_grid(point),msg='The point [{}] should not be on the grid.'.format(point)) def test_transition_proba(self): true_transition_proba = np.load('./test_data/test_gw_3x4_transition_proba.npy') nptest.assert_allclose(self.gw.transition_proba,true_transition_proba,rtol=self.rtol) def test_Q2V_single(self): desired_V = np.load('./test_data/test_gw_3x4_V_single_iter.npy') Q = np.load('./test_data/test_gw_3x4_Q_single_iter.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2V(self): desired_V = np.load('./test_data/test_gw_3x4_V.npy') Q = np.load('./test_data/test_gw_3x4_Q.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2policy(self): Q = np.load('./test_data/test_gw_3x4_Q.npy') desired_policy = np.array([1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0],dtype=int) actual_policy = self.gw.Q2policy(Q) self.assertEqual(actual_policy.shape, (self.gw.n_states + 1,), msg='Q2policy should return array policy of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_policy.shape)) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) def test_Q2Vbypolicy(self): desired_V = np.load('./test_data/test_gw_3x4_V.npy') Q = np.load('./test_data/test_gw_3x4_Q.npy') policy = np.array([1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0],dtype=int) actual_V = self.gw.Q2Vbypolicy(Q, policy) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2Vbypolicy should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) @ignore_warnings def test_value_iteration_single_iter(self): actual_Q = self.gw.value_iteration(max_iter=1) desired_Q = np.load('./test_data/test_gw_3x4_Q_single_iter.npy') desired_Q_shape = (self.gw.n_states + 1,self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Value_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_value_iteration(self): desired_Q = np.load('./test_data/test_gw_3x4_Q.npy') desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) actual_Q = self.gw.value_iteration() nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_policy_iteration_policy_only(self): actual_policy = self.gw.Q2policy(self.gw.policy_iteration()) desired_Q = np.load('./test_data/test_gw_3x4_Q.npy') desired_policy = self.gw.Q2policy(desired_Q) #actual_policy = self.gw.Q2policy(actual_Q) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) def test_policy_iteration(self): actual_Q = self.gw.policy_iteration() desired_Q = np.load('./test_data/test_gw_3x4_Q.npy') desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Policy_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) class TestGridWorld4x4(TestCase): rtol = 1e-3 # relative tolerance for comparing two floats atol = 1e-08 # absolute tolerance for comparing two floats def setUp(self): self.gw = GridWorld.get_world('4x4') def test_is_obstacle_at(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): if (i,j) in [(1,1),(2,2)]: continue self.assertFalse(self.gw._is_obstacle([i, j]), msg='No obstacle should be at [{},{}].'.format(i,j)) self.assertTrue(self.gw._is_obstacle([1, 1]), msg='An obstacle should be at [{},{}].'.format(1, 1)) def test_is_on_grid_true(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): self.assertTrue(self.gw._is_on_grid([i, j]),msg='The point [{},{}] should be on the grid.'.format(i, j)) def test_is_on_grid_false(self): for point in ([-1,0], [-2,-2], [4,0], [0,4], [5,5], [0,-1]): self.assertFalse(self.gw._is_on_grid(point),msg='The point [{}] should not be on the grid.'.format(point)) def test_transition_proba(self): true_transition_proba = np.load('./test_data/test_gw_4x4_transition_proba.npy') nptest.assert_allclose(self.gw.transition_proba,true_transition_proba,rtol=self.rtol, atol=self.atol) def test_Q2V_single(self): desired_V = np.load('./test_data/test_gw_4x4_V_single_iter.npy') Q = np.load('./test_data/test_gw_4x4_Q_single_iter.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol, atol=self.atol) def test_Q2V(self): desired_V = np.load('./test_data/test_gw_4x4_V.npy') Q = np.load('./test_data/test_gw_4x4_Q.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol, atol=self.atol) def test_Q2Vbypolicy(self): desired_V = np.load('./test_data/test_gw_4x4_V.npy') Q = np.load('./test_data/test_gw_4x4_Q.npy') policy = np.load('./test_data/test_gw_4x4_policy.npy') actual_V = self.gw.Q2Vbypolicy(Q, policy) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2Vbypolicy should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol, atol=self.atol) def test_Q2policy(self): Q = np.load('./test_data/test_gw_4x4_Q.npy') desired_policy = np.load('./test_data/test_gw_4x4_policy.npy') actual_policy = self.gw.Q2policy(Q) self.assertEqual(actual_policy.shape, (self.gw.n_states + 1,), msg='Q2policy should return array policy of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_policy.shape)) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) @ignore_warnings def test_value_iteration_single_iter(self): actual_Q = self.gw.value_iteration(max_iter=1) desired_Q = np.load('./test_data/test_gw_4x4_Q_single_iter.npy') desired_Q_shape = (self.gw.n_states + 1,self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Value_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol, atol=self.atol) def test_value_iteration(self): desired_Q = np.load('./test_data/test_gw_4x4_Q.npy') desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) actual_Q = self.gw.value_iteration() nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol, atol=self.atol) def test_policy_iteration_policy_only(self): actual_policy = self.gw.Q2policy(self.gw.policy_iteration()) desired_Q = np.load('./test_data/test_gw_4x4_Q.npy') desired_policy = self.gw.Q2policy(desired_Q) #actual_policy = self.gw.Q2policy(actual_Q) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol, atol=self.atol) def test_policy_iteration(self): actual_Q = self.gw.policy_iteration() desired_Q = np.load('./test_data/test_gw_4x4_Q.npy') desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Policy_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol, atol=self.atol) class TestGridWorld5x5(TestCase): rtol = 1e-4 # relative tolerance for comparing two floats atol = 1e-08 # absolute tolerance for comparing two floats def setUp(self): self.gw = GridWorld.get_world('5x5') def test_is_obstacle_at(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): if (i,j) in [(1,0), (1,1), (2,2)]: continue self.assertFalse(self.gw._is_obstacle([i, j]), msg='No obstacle should be at [{},{}].'.format(i,j)) self.assertTrue(self.gw._is_obstacle([1, 1]), msg='An obstacle should be at [{},{}].'.format(1, 1)) def test_is_on_grid_true(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): self.assertTrue(self.gw._is_on_grid([i, j]),msg='The point [{},{}] should be on the grid.'.format(i, j)) def test_is_on_grid_false(self): for point in ([-1,0], [-2,-2], [5,0], [0,5], [5,5], [0,-1]): self.assertFalse(self.gw._is_on_grid(point),msg='The point [{}] should not be on the grid.'.format(point)) def test_transition_proba(self): true_transition_proba = np.load('./test_data/test_gw_5x5_transition_proba.npy') nptest.assert_allclose(self.gw.transition_proba,true_transition_proba,rtol=self.rtol, atol=self.atol) def test_Q2V_single(self): desired_V = np.load('./test_data/test_gw_5x5_V_single_iter.npy') Q = np.load('./test_data/test_gw_5x5_Q_single_iter.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol, atol=self.atol) def test_Q2V(self): desired_V = np.load('./test_data/test_gw_5x5_V.npy') Q = np.load('./test_data/test_gw_5x5_Q.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q)
nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol, atol=self.atol)
numpy.testing.assert_allclose
import scipy import numpy as np import scipy.interpolate as interp import scipy.ndimage.filters as filt import matplotlib.pyplot as plt def flag_outliers(signal, thresh_stdv=4, buffer=10, visualize=False): """ Flag outliers based on median abs deviation. Returns two arrays of indices. The first gives the indices to be deleted. The second gives the indices of locations in the new signal which will potentially have discontinuities due to fluroescence reset. Parameter: signal: thresh_stdv: threshold standard deviation buffer: visualize: whether to visualize flagged outliers Return: del_idx: disc_idx: """ # z-score to locate outliers keep_idx = abs(signal - np.median(signal)) < thresh_stdv * np.std(signal) # minimum filter removes pixels within buffer distance of outliers keep_idx = filt.minimum_filter(keep_idx, size=2 * buffer + 1) # Plot flagged outliers -- hacky so may break if params unreasonable if visualize: fig = plt.figure(figsize=(16, 4)) trans_idx = np.argwhere(filt.convolve1d(keep_idx, np.array([1, -1]))) for idx in range(len(trans_idx)): if idx == 0: plt_idx = np.arange(0, trans_idx[idx]) else: plt_idx = np.arange(trans_idx[idx - 1], trans_idx[idx]) color = 'b' if keep_idx[trans_idx[idx] - 1] else 'r' plt.plot(plt_idx, signal[plt_idx], color) if trans_idx[-1] < len(signal): plt_idx = np.arange(trans_idx[idx], len(signal)) color = 'b' if keep_idx[len(signal) - 1] else 'r' plt.plot(plt_idx, signal[plt_idx], color) plt.plot(np.arange(len(signal)), (np.ones(len(signal)) * np.median(signal)) - (thresh_stdv * np.std(signal)), 'g') plt.plot(np.arange(len(signal)), (np.ones(len(signal)) * np.median(signal)) + (thresh_stdv * np.std(signal)), 'g') plt.title('Outliers Flagged For Removal & Threshold') plt.show() # List of indices to be deleted del_idx = np.argwhere(~keep_idx) # list of indices where samples were cutout (possible discontinuities) disc_idx = np.argwhere(filt.convolve1d( keep_idx, np.array([1, -1]))[keep_idx]) return del_idx, disc_idx def _get_knots(stim, k=3, followup=100, spacing=250): """ Parameter: stim: k: followup: spacing: Return: """ # Locate transition indices trans_idx = np.argwhere(filt.convolve1d(stim > 0, np.array([1, -1]))) # Repeat knots and add transition extras knots = np.append(np.append(np.zeros(k + 1), np.sort(np.append(np.repeat(trans_idx, k), trans_idx + followup))), np.ones(k + 1) * len(stim)).astype('int') # add regularly spaced extra knots between transitions extras =
np.empty(0)
numpy.empty
import numpy as np EPS = 1e-8 def create_initrho(K): ''' Make vector rho that implies E[beta] is nearly uniform. Returns -------- rho : 1D array, size K Each entry rho[k] >= 0. Post Condition ------- E[leftover mass] = r E[beta_k] \approx (1-r)/K where r is a small amount of remaining/leftover mass ''' remMass = np.minimum(0.1, 1.0 / (K * K)) # delta = 0, -1 + r, -2 + 2r, ... delta = (-1 + remMass) * np.arange(0, K, 1, dtype=np.float) rho = (1 - remMass) / (K + delta) return rho def create_initomega(K, nDoc, gamma): ''' Make initial guess for omega. ''' return (nDoc / K + gamma) * np.ones(K) def forceRhoInBounds(rho, EPS=EPS): ''' Verify every entry of rho (and beta) are within [EPS, 1-EPS] Leads to numerical stability. Returns ------- rho : 1D array, size K Each entry satisfies: EPS <= rho[k] <= 1-EPS. ''' rho = np.maximum(np.minimum(rho, 1.0 - EPS), EPS) beta = rho2beta_active(rho) didFix = 0 badMask = beta < EPS if np.any(beta < EPS): beta[badMask] = 1.01 * EPS addedMass = np.sum(badMask) * 1.01 * EPS beta[np.logical_not(badMask)] *= (1 - addedMass) didFix = 1 if (1.0 -
np.sum(beta)
numpy.sum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 29 18:33:36 2021 @author: peter """ from pathlib import Path import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt from vsd_cancer.functions import stats_functions as statsf import f.plotting_functions as pf import matplotlib.cm import matplotlib.gridspec as gridspec import matplotlib as mpl import scipy.ndimage as ndimage def make_figures(initial_df, save_dir, figure_dir, filetype=".png", redo_stats=False): figsave = Path(figure_dir, "ttx_figure") if not figsave.is_dir(): figsave.mkdir() plot_TTX_pre_post(save_dir, figsave, filetype, redo_stats) plot_TTX_washout(save_dir, figsave, filetype, redo_stats) plot_pre_post_ttx_traces(initial_df, save_dir, figsave, filetype) def plot_pre_post_ttx_traces(initial_df, save_dir, figsave, filetype): def get_most_active_traces(num_traces, df, trial_save, trial_string): tcs = np.load(Path(trial_save, f"{trial_string}_all_tcs.npy")) event_dict = np.load( Path(trial_save, f"{trial_string}_event_properties.npy"), allow_pickle=True ).item() idx = 0 events = event_dict["events"][idx] keep = [x for x in np.arange(tcs.shape[0])] # sort by event amounts sort_order = np.array( [ np.sum(np.abs(events["event_props"][x][:, -1])) if x in events.keys() else 0 for x in range(tcs.shape[0]) ] ) tcs = tcs[keep, :] sort_order = np.argsort(sort_order[keep])[::-1] tcs = tcs[sort_order, :] so = np.array(keep)[sort_order] tcs = ndimage.gaussian_filter(tcs[:num_traces, ...], (0, 3)) so = so[:num_traces] return tcs, so df = pd.read_csv(initial_df) ncells = 10 T = 0.2 trial_strings = [ "cancer_20201216_slip1_area2_long_acq_long_acq_blue_0.0296_green_0.0765_heated_to_37_1", "cancer_20201216_slip1_area3_long_acq_long_acq_blue_0.0296_green_0.0765_heated_to_37_with_TTX_1", ] tcs = [] for t in trial_strings: print(df[df.trial_string == t].stage) tcs.append( get_most_active_traces(ncells, df, Path(save_dir, "ratio_stacks", t), t)[0] ) fig, ax = plt.subplots(ncols=2) ax[0].plot(np.arange(tcs[0].shape[1]) * T, tcs[0].T + np.arange(ncells) / 20, "k") ax[1].sharey(ax[0]) ax[1].plot(np.arange(tcs[1].shape[1]) * T, tcs[1].T + np.arange(ncells) / 20, "k") pf.plot_scalebar(ax[0], 0, 0.95, 100, 0.02) ax[0].axis("off") ax[1].axis("off") fig.savefig( Path(figsave, "example_traces", f"example_traces{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) def plot_TTX_pre_post(save_dir, figsave, filetype, redo_stats): df = pd.read_csv(Path(save_dir, "all_events_df.csv")) df["exp_stage"] = df.expt + "_" + df.stage use = [ x for x in np.unique(df["exp_stage"]) if "TTX" in x and "washout_washout" not in x ] ttx = [1, 10] log = [True, False] only_neg = [True, False] histtype = ["bar", "step"] ttx = [1, 10] log = [True] only_neg = [False] histtype = ["bar"] for t in ttx: for l in log: for n in only_neg: for h in histtype: fig = plot_events_TTX( df, use, TTX_level=t, log=l, only_neg=n, histtype=h ) fig.savefig( Path( figsave, "pre_post", str(t), f"TTX_{t}um_histograms_{h}_log_{l}_onlyneg_{n}{filetype}", ), bbox_inches="tight", dpi=300, transparent=True, ) df2 = pd.read_csv(Path(save_dir, "TTX_active_df_by_cell.csv")) T = 0.2 df2["exp_stage"] = df2.expt + "_" + df2.stage df2["day_slip"] = df2.day.astype(str) + "_" + df2.slip.astype(str) df2["neg_event_rate"] = (df2["n_neg_events"]) / (df2["obs_length"] * T) df2["neg_integ_rate"] = ( -1 * (df2["neg_integrated_events"]) / (df2["obs_length"] * T) ) use2 = [x for x in np.unique(df2["exp_stage"]) if "washout" not in x] plot_TTX_summary( df2, use2, figsave, filetype, redo_stats=redo_stats, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=True, ) plot_TTX_summary( df2, use2, figsave, filetype, redo_stats=False, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=False, ) # plot_TTX_summary(df2,use2,figsave,filetype,redo_stats = redo_stats,key = 'neg_integ_rate', function = np.mean,function_name = 'np.mean',scale = 3, density = True) # plot_TTX_summary(df2,use2,figsave,filetype,redo_stats = False,key = 'neg_integ_rate', function = np.mean,function_name = 'np.mean',scale = 3, density = False) def plot_TTX_washout(save_dir, figsave, filetype, redo_stats): df = pd.read_csv(Path(save_dir, "all_events_df.csv")) df["exp_stage"] = df.expt + "_" + df.stage use = [x for x in np.unique(df["exp_stage"]) if "TTX" in x and "washout" in x] log = [True, False] only_neg = [True, False] histtype = ["bar", "step"] log = [True] only_neg = [False] histtype = ["bar"] for l in log: for n in only_neg: for h in histtype: fig = plot_events_TTX_washout(df, use, log=l, only_neg=n, histtype=h) fig.savefig( Path( figsave, "washout", f"TTX_washout_histograms_{h}_log_{l}_onlyneg_{n}{filetype}", ), bbox_inches="tight", dpi=300, transparent=True, ) # now plot the mean and bootstrapped cis df2 = pd.read_csv(Path(save_dir, "TTX_active_df_by_cell.csv")) T = 0.2 df2["exp_stage"] = df2.expt + "_" + df2.stage df2["neg_event_rate"] = (df2["n_neg_events"]) / (df2["obs_length"] * T) df2["day_slip"] = df2.day.astype(str) + "_" + df2.slip.astype(str) df2["neg_integ_rate"] = ( -1 * (df2["neg_integrated_events"]) / (df2["obs_length"] * T) ) use2 = [x for x in np.unique(df2["exp_stage"]) if "washout" in x] plot_washout_summary( df2, use2, figsave, filetype, redo_stats=redo_stats, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=True, ) plot_washout_summary( df2, use2, figsave, filetype, redo_stats=False, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=False, ) # plot_washout_summary(df2,use2,figsave,filetype,redo_stats = redo_stats,key = 'neg_integ_rate', function = np.mean,function_name = 'np.mean',scale = 3, density = True) # plot_washout_summary(df2,use2,figsave,filetype,redo_stats = False,key = 'neg_integ_rate', function = np.mean,function_name = 'np.mean',scale = 3, density = False) def plot_washout_summary( df, use, figsave, filetype, redo_stats=True, num_resamplings=10**6, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=True, ): dfn = df.copy() use_bool = np.array([np.any(x in use) for x in dfn.exp_stage]) dfn = dfn[use_bool] pre = dfn[dfn.stage == "pre"][key].to_numpy() post = dfn[dfn.stage == "post"][key].to_numpy() wash = dfn[dfn.stage == "washout"][key].to_numpy() ppre = dfn[dfn.stage == "pre"][[key, "day_slip"]] ppost = dfn[dfn.stage == "post"][[key, "day_slip"]] wwash = dfn[dfn.stage == "washout"][[key, "day_slip"]] bins = np.histogram(np.concatenate((pre, post, wash)) * 10**3, bins=10)[1] fig, axarr = plt.subplots(nrows=3) c = 0.05 axarr[0].hist( pre * 10**scale, bins=bins, log=True, density=density, label="pre TTX", color=(c, c, c), ) axarr[1].hist( post * 10**scale, bins=bins, log=True, density=density, label="post 10 uM TTX", color=(c, c, c), ) axarr[2].hist( wash * 10**scale, bins=bins, log=True, density=density, label="washout", color=(c, c, c), ) axarr[0].sharey(axarr[1]) axarr[2].sharey(axarr[1]) for idx, a in enumerate(axarr): if not density: a.set_ylim([0.6, 10**4.5]) a.set_yticks(10 ** np.arange(0, 4, 3)) a.legend(frameon=False, loc=(0.4, 0.4), fontsize=16) pf.set_all_fontsize(a, 16) if idx != 2: a.set_xticklabels([]) if not density: axarr[1].set_ylabel("Number of cells") else: axarr[1].set_ylabel("Proportion of cells") if key == "neg_event_rate": axarr[-1].set_xlabel("Negative event rate " + "(1000 cells$^{-1}$ s$^{-1}$)") elif key == "neg_integ_rate": axarr[-1].set_xlabel( f"Integrated event rate per {10**scale} cells " + "(%$\cdot$s / s)" ) else: raise ValueError("wrong key") fig.savefig( Path( figsave, "summary", f"TTX_washout_compare_density_{density}_{key}{filetype}" ), bbox_inches="tight", dpi=300, transparent=True, ) if redo_stats: p_pre_post, _, f1 = statsf.bootstrap_test( pre, post, function=function, plot=True, num_resamplings=num_resamplings, names=["Pre TTX", "Post TTX"], ) p_pre_wash, _, f2 = statsf.bootstrap_test_2sided( wash, pre, function=function, plot=True, num_resamplings=num_resamplings, names=["Pre TTX", "washout"], ) p_wash_post, _, f3 = statsf.bootstrap_test( wash, post, function=function, plot=True, num_resamplings=num_resamplings, names=["Washout", "Post TTX"], ) f1.savefig( Path( figsave, "summary", "bootstrap", f"bootstrap_pre_post_{key}{filetype}" ), bbox_inches="tight", dpi=300, transparent=True, ) f2.savefig( Path( figsave, "summary", "bootstrap", f"bootstrap_wash_pre_{key}{filetype}" ), bbox_inches="tight", dpi=300, transparent=True, ) f3.savefig( Path( figsave, "summary", "bootstrap", f"bootstrap_wash_post_{key}{filetype}" ), bbox_inches="tight", dpi=300, transparent=True, ) with open( Path(figsave, "summary", f"statistical_test_results_washout_{key}.txt"), "w" ) as f: f.write(f"{datetime.datetime.now()}\n") f.write( f"Testing significance of second less than first for function {function_name}\n" ) f.write(f"N cells pre: {len(pre)}\n") f.write(f"N cells post: {len(post)}\n") f.write(f"N cells wash: {len(wash)}\n") f.write(f'N slips pre: {len(np.unique(ppre["day_slip"]))}\n') f.write(f'N slips post: {len(np.unique(ppost["day_slip"]))}\n') f.write(f'N slips wash: {len(np.unique(wwash["day_slip"]))}\n') f.write(f"Pre mean rate: {np.mean(pre)}\n") f.write(f"Post mean rate: {np.mean(post)}\n") f.write(f"Wash mean rate: {np.mean(wash)}\n") f.write(f"Num resamples: {num_resamplings}\n") f.write(f"p pre-post {p_pre_post}\n") f.write(f"p pre-wash (2 sided) {p_pre_wash}\n") f.write(f"p wash-post {p_wash_post}\n") def plot_TTX_summary( df, use, figsave, filetype, redo_stats=True, num_resamplings=10**6, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=True, ): dfn = df.copy() use_bool = np.array([np.any(x in use) for x in dfn.exp_stage]) dfn = dfn[use_bool] pre_10 = dfn[dfn.exp_stage == "TTX_10um_pre"][key].to_numpy() post_10 = dfn[dfn.exp_stage == "TTX_10um_post"][key].to_numpy() pre_1 = dfn[dfn.exp_stage == "TTX_1um_pre"][key].to_numpy() post_1 = dfn[dfn.exp_stage == "TTX_1um_post"][key].to_numpy() ppre_10 = dfn[dfn.exp_stage == "TTX_10um_pre"][[key, "day_slip"]] ppost_10 = dfn[dfn.exp_stage == "TTX_10um_post"][[key, "day_slip"]] ppre_1 = dfn[dfn.exp_stage == "TTX_1um_pre"][[key, "day_slip"]] ppost_1 = dfn[dfn.exp_stage == "TTX_1um_post"][[key, "day_slip"]] bins_10 = np.histogram(np.concatenate((pre_10, post_10)) * 10**3, bins=10)[1] bins_1 = np.histogram(np.concatenate((pre_1, post_1)) * 10**3, bins=10)[1] fig_10, axarr_10 = plt.subplots(nrows=2) c = 0.05 axarr_10[0].hist( pre_10 * 10**scale, bins=bins_10, log=True, density=density, label="pre TTX", color=(c, c, c), ) axarr_10[1].hist( post_10 * 10**scale, bins=bins_10, log=True, density=density, label="post 10 uM TTX", color=(c, c, c), ) axarr_10[0].sharey(axarr_10[1]) for idx, a in enumerate(axarr_10): if not density: a.set_ylim([0.6, 10**4.5]) a.set_yticks(10 ** np.arange(0, 4, 3)) a.legend(frameon=False, loc=(0.4, 0.4), fontsize=16) pf.set_all_fontsize(a, 16) if idx != 1: a.set_xticklabels([]) if not density: axarr_10[1].set_ylabel("Number of cells") else: axarr_10[1].set_ylabel("Proportion of cells") if key == "neg_event_rate": axarr_10[-1].set_xlabel("Negative event rate " + "(1000 cells$^{-1}$ s$^{-1}$)") elif key == "neg_integ_rate": axarr_10[-1].set_xlabel( f"Integrated event rate per {10**scale} cells " + "(%$\cdot$s / s)" ) else: raise ValueError("wrong key") fig_10.savefig( Path(figsave, "summary", f"TTX_10um_compare_density_{density}_{key}{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) if redo_stats: p_pre_post_10, _, f1 = statsf.bootstrap_test( pre_10, post_10, function=function, plot=True, num_resamplings=num_resamplings, names=["Pre TTX", "Post 10 uM TTX"], ) f1.savefig( Path(figsave, "summary", "bootstrap", f"bootstrap_pre_10_{key}{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) with open( Path(figsave, "summary", f"statistical_test_results_10uM_{key}.txt"), "w" ) as f: f.write(f"{datetime.datetime.now()}\n") f.write( f"Testing significance of second less than first for function {function_name}\n" ) f.write(f"N cells pre: {len(pre_10)}\n") f.write(f"N cells post: {len(post_10)}\n") f.write(f'N slips pre: {len(np.unique(ppre_10["day_slip"]))}\n') f.write(f'N slips post: {len(np.unique(ppost_10["day_slip"]))}\n') f.write(f"Pre mean rate: {np.mean(pre_10)}\n") f.write(f"Post mean rate: {np.mean(post_10)}\n") print("Hello") f.write(f"Num resamples: {num_resamplings}\n") f.write(f"p pre-post {p_pre_post_10}\n") fig_1, axarr_1 = plt.subplots(nrows=2) c = 0.05 axarr_1[0].hist( pre_1 * 10**scale, bins=bins_1, log=True, density=density, label="pre TTX", color=(c, c, c), ) axarr_1[1].hist( post_1 * 10**scale, bins=bins_1, log=True, density=density, label="post 1 uM TTX", color=(c, c, c), ) axarr_1[0].sharey(axarr_1[1]) for idx, a in enumerate(axarr_1): if not density: a.set_ylim([0.6, 10**4.5]) a.set_yticks(10 ** np.arange(0, 4, 3)) a.legend(frameon=False, loc=(0.4, 0.4), fontsize=16) pf.set_all_fontsize(a, 16) if idx != 1: a.set_xticklabels([]) if not density: axarr_1[1].set_ylabel("Number of cells") else: axarr_1[1].set_ylabel("Proportion of cells") if key == "neg_event_rate": axarr_1[-1].set_xlabel("Negative event rate " + "(1000 cells$^{-1}$ s$^{-1}$)") elif key == "neg_integ_rate": axarr_1[-1].set_xlabel( f"Integrated event rate per {10**scale} cells " + "(%$\cdot$s / s)" ) else: raise ValueError("wrong key") fig_1.savefig( Path(figsave, "summary", f"TTX_1um_compare_density_{density}_{key}{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) if redo_stats: p_pre_post_1, _, f1 = statsf.bootstrap_test( pre_1, post_1, function=function, plot=True, num_resamplings=num_resamplings, names=["Pre TTX", "Post 1 uM TTX"], ) f1.savefig( Path(figsave, "summary", "bootstrap", f"bootstrap_pre_1_{key}{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) with open( Path(figsave, "summary", f"statistical_test_results_1uM_{key}.txt"), "w" ) as f: f.write(f"{datetime.datetime.now()}\n") f.write( f"Testing significance of second less than first for function {function_name}\n" ) f.write(f"N cells pre: {len(pre_1)}\n") f.write(f"N cells post: {len(post_1)}\n") f.write(f'N slips pre: {len(np.unique(ppre_1["day_slip"]))}\n') f.write(f'N slips post: {len(np.unique(ppost_1["day_slip"]))}\n') f.write(f"Pre mean rate: {np.mean(pre_1)}\n") f.write(f"Post mean rate: {np.mean(post_1)}\n") f.write(f"Num resamples: {num_resamplings}\n") f.write(f"p pre-post {p_pre_post_1}\n") def plot_events_TTX( df, use, TTX_level=1, log=True, upper_lim=6.6, lower_lim=0, T=0.2, nbins=20, only_neg=True, histtype="bar", ): dfn = df.copy() use = [x for x in use if f"{TTX_level}um" in x] use_bool = np.array([np.any(x in use) for x in dfn.exp_stage]) dfn = dfn[use_bool] too_big = np.abs(dfn.event_amplitude) > upper_lim / 100 too_small = np.abs(dfn.event_amplitude) < lower_lim / 100 dfn = dfn[np.logical_not(np.logical_or(too_big, too_small))] if only_neg: dfn = dfn[dfn["event_amplitude"] < 0] length_bins = np.histogram(dfn["event_length"] * T, bins=nbins)[1] if only_neg: amp_bins = np.histogram(np.abs(dfn["event_amplitude"]) * 100, bins=nbins)[1] else: amp_bins =
np.histogram(dfn["event_amplitude"] * 100, bins=nbins)
numpy.histogram
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 16 17:34:28 2020 @author: pmbpanther """ import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad, nquad from numpy.testing import assert_almost_equal from inspect import signature π = np.pi oo = np.inf class Wavefunction(object): """ Class for 6.S079 Quantum Circuits, designed to work with and perform simple manipulations of wavefunctions, e.g. add, subtract, divide, multiply. """ def __init__(self, wfunc, ndim = None): """ Initializes an instance of the Wavefunction class, given a function object. wfunc must return a complex NumPy value. FIXME, slight concern what if someone calls Wavefunction(lambda *x: foobar(*x)) """ self.ψ = wfunc self.ndim = ndim if not ndim: self.ndim = len(signature(wfunc).parameters) def __call__(self, *args): """ This code permits the wavefunction class to be callable >>> ψ = Wavefunction(lambda x: np.exp(-x**2)) >>> print(ψ(0)) 1.0 >>> print(ψ.ψ(0)) 1.0 """ return self.ψ(*args) @classmethod def init_gaussian(cls, *args) -> "Wavefunction object based on Gaussian": """ Factory method that initializes a properly normalized Gaussian wavefunction. *args is a list of tuples. Each tuple contains (Xo, σ) for one of the dimensions along which the gaussian is to be defined >>> wf1 = Wavefunction.init_gaussian((0,1)) >>> print(wf1(0)) (0.6316187777460647+0j) >>> wf1 = Wavefunction.init_gaussian((0,1), (1,2)) >>> print(wf1(0,1)) (0.28209479177387814+0j) """ def result(*xs): return_val = 1 for x, arg in zip(xs,args): Xo, σ = arg return_val *= np.exp(-(x - Xo)**2/(4*σ**2))/(2*π*σ**2)**0.25 return return_val + 0j return cls(result, len(args)) @classmethod def init_plane_wave(cls, *args) -> "Wavefunction object based on plane wave": """ Factory method that initializes a plane wave """ def result(*x): return_val = 1 for i, arg in enumerate(args): Xo, λ = arg return_val *= np.exp(1j*(x[i]-Xo)*2*π/λ) return return_val return cls(result, len(args)) @classmethod def init_interp(cls, vec): raise NotImplementedError def __add__(self, wf2): """ Note, the result is in general not normalized. >>> wf1 = Wavefunction.init_gaussian((0,1)) >>> wf2 = Wavefunction.init_gaussian((1,2)) >>> wf3 = wf1 + wf2 >>> wf3(0) (1.0511812443492508+0j) >>> wf1(0) + wf2(0) (1.0511812443492508+0j) """ return self.__class__(lambda *x: self(*x) + wf2(*x)) def __sub__(self, wf2): return self.__class__(lambda *x: self(*x) - wf2(*x)) def __mul__(self, arg2): """ Multiply wavefunction by a complex value coefficient """ # FIXME, I think the first case should never happen if isinstance(arg2, self.__class__): return self.__class__(lambda *x: self(*x) * arg2(*x)) else: return self.__class__(lambda *x: arg2 * self(*x)) def __rmul__(self, arg2): """ Multiply wavefunction by another wavefunction or a complex value """ return self.__class__(lambda *x: arg2 * self(*x)) def __truediv__(self, arg2): """ Divide wavefunction by another wavefunction or a complex value """ if not isinstance(arg2, self.__class__): return self.__class__(lambda *x: self(*x) / arg2) else: return self.__class__(lambda *x: self(*x) / arg2(*x)) def __abs__(self): """ Calculate absolute value of wavefunction >>> abs(Wavefunction.init_gaussian((0,1))) 0.9999999999999997 If for some reason the user wishes to normalize over a finite region (E.g. because the function is not integrable, or periodic boundary conditions are in effect over a finite range, the limits can be provided as a tuple. """ func = lambda *x: np.real(self(*x))**2 - np.imag(self(*x))**2 limits = [(-oo, oo) for _ in range(self.ndim)] return nquad(func, limits)[0] def normalize(self): # FIXME """ Function returns a normalized wavefunction given an input of a non-normalized wavefunction. It is needed whenever wavefunctions are added. >>> wf = Wavefunction.init_gaussian((0,1)) + Wavefunction.init_gaussian((0,1)) >>> abs(wf.normalize()) 0.9999999999999999 """ return self.__class__(self.ψ, self.ndim)/np.sqrt(abs(self)) def vectorize(self, *args): """ Assigns the internal variable vec to be equal to the Wavefunction's ψ, broadcasted over an array, startingat x_min and ending at x_max, with N total points. Each dimension is spec'd in an (xmin, xmax, N) tuple """ # make arrays array_list = [] for x_min, x_max, N in args: array_list.append(np.linspace(x_min, x_max, N)) X = np.meshgrid(*array_list) self.mat = self(*X) self.ranges = args self.vec = self.mat.copy().flatten() return self.vec def visualize1D(self, **kwargs): """ plot_wavefunction:: plot a one-dimensional wavefunction. This is intended to be a utility function, so that, for example, one can quickly plot something as part of another routine. It can also be used to simply plot a static wavefunction. Not implemented: use it to update artists for an animation or another graphic setting that is already constructed. self: wavefunction to be plotted, can be a func or a vector range: tuple with min-max to be plotted N: number of plotpoints method: cartesian, polar, pdf, or 3d """ x_min, x_max = kwargs["x_range"] xs = np.linspace(x_min, x_max, kwargs["N"]) x_label = kwargs["x_label"] method = kwargs["method"] # be flexible about accepting self either as a function or a vector try: ψs = self(xs) except: raise NotImplementedError if method == "cartesian": plt.plot(xs, np.abs(ψs), label="|ψ|") plt.plot(xs, np.real(ψs), label="real part") plt.plot(xs, np.imag(ψs), label="imaginary part") plt.legend(loc='upper right') plt.xlabel(x_label) plt.ylabel("Amplitude") plt.title("Wavefunction") return plt.gcf() if method == "polar": # or equivalently, one can look at magnitude and phase fig, (ax1, ax2) = plt.subplots(2) fig.suptitle('Polar plot') ax1.plot(xs, np.abs(ψs), label="magnitude") ax1.set(ylabel="|ψ|") ax2.plot(xs, np.angle(ψs), label="phase") ax2.set(xlabel=x_label, ylabel="∠ψ") return plt.gcf() if method == "pdf": plt.plot(xs,
np.abs(ψs)
numpy.abs
import os import time import math import random import numpy as np import h5py import matplotlib.pyplot as plt import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F from torch import optim from torch.autograd import Variable from pytorch3d.io import save_ply, save_obj, load_objs_as_meshes, load_obj, load_ply from pytorch3d.structures import Meshes from pytorch3d.renderer import ( look_at_view_transform, FoVPerspectiveCameras, PointLights, DirectionalLights, Materials, RasterizationSettings, MeshRenderer, MeshRasterizer, SoftPhongShader, TexturesUV, Textures, TexturesVertex ) import cv2 import mcubes from typing import List from ..preprocessing.utils import shapenet_cam_params from .ShapeNetRendering import ShapeNetRendering from .utils import * from .modelSVR import IM_SVR class IM_SVR_DD(IM_SVR): def __init__(self, config): super().__init__(config) self.shapenet_cam_params = shapenet_cam_params def load_data(self, config): ''' Overrides base class method in order to only load data required for deep dreaming. :param config: :return: ''' # get config values z_base = int(config.interpol_z1) z_target = int(config.interpol_z2) self.crop_edge = self.view_size - self.crop_size data_hdf5_name = self.data_dir + '/' + self.dataset_load + '.hdf5' if os.path.exists(data_hdf5_name): data_dict = h5py.File(data_hdf5_name, 'r') offset_x = int(self.crop_edge / 2) offset_y = int(self.crop_edge / 2) # reshape to NCHW # get the shape of the first two cropped pictures cropped_shape = np.reshape( data_dict['pixels'][0:2, :, offset_y:offset_y + self.crop_size, offset_x:offset_x + self.crop_size], [-1, self.view_num, 1, self.crop_size, self.crop_size]).shape self.data_pixels = np.empty(shape=cropped_shape) # now grab only the data that is needed. This must be done iteratively or hdf5 can throw and error # (selection indices must be of increasing order only) for ind, z in enumerate([z_base, z_target]): self.data_pixels[ind, ...] = np.reshape( data_dict['pixels'][z, :, offset_y:offset_y + self.crop_size, offset_x:offset_x + self.crop_size], [self.view_num, 1, self.crop_size, self.crop_size]) else: print("error: cannot load " + data_hdf5_name) exit(0) def get_activation(self, output_list): ''' A wrapper function to establish the forward hook :param out: :return: ''' def hook(model, input, output): output_list[0] = output return hook def get_zvec(self, z_num): if z_num < len(self.data_pixels): batch_view = self.data_pixels[z_num:z_num + 1, self.test_idx].astype(np.float32) / 255.0 batch_view = torch.from_numpy(batch_view) batch_view = batch_view.to(self.device) z_vec_, _ = self.im_network(batch_view, None, None, is_training=False) z_vec = z_vec_.detach().cpu().numpy() return (z_vec) else: print("z_num not a valid number") def interpolate_z(self, config): ''' A method to create the meshes from latent z vectors linearly interpolated between two vectors. :param config: :return: ''' # TODO: uncomment load data super().load_data(config=config) # TODO: load previous checkpoint self.load_checkpoint() z1 = int(config.interpol_z1) z2 = int(config.interpol_z2) interpol_steps = int(config.interpol_steps) result_base_directory = config.interpol_directory self.result_dir_name = 'interpol_' + str(z1) + '_' + str(z2) self.result_dir = result_base_directory + '/' + self.result_dir_name print(self.result_dir) # Create output directory if not os.path.isdir(self.result_dir): os.mkdir(self.result_dir) print('creating directory ' + self.result_dir) # get the z vectors via forward pass through encoder z1_vec = self.get_zvec(z1) print(z1_vec) z2_vec = self.get_zvec(z2) print(z2_vec) # compute linear interpolation between vectors fraction = np.linspace(0, 1, interpol_steps) interpolated_z = np.multiply.outer(np.ones_like(fraction), z1_vec) + np.multiply.outer(fraction, z2_vec - z1_vec) interpolated_z = interpolated_z.astype(np.float64) self.out_filenames = [] for z_index in np.arange(interpol_steps): self.out_filenames.append(self.result_dir + "/" + "out_{:.2f}.ply".format(fraction[z_index])) for z_index in np.arange(interpol_steps): start_time = time.time() model_z = interpolated_z[z_index:z_index + 1].astype(np.float64) # print('current latent vector:') # print(model_z.shape) model_z = torch.from_numpy(model_z).float() model_z = model_z.to(self.device) self.im_network.eval() model_float = self.z2voxel(model_z) vertices, triangles = mcubes.marching_cubes(model_float, self.sampling_threshold) vertices = (vertices.astype(np.float32) - 0.5) / self.real_size - 0.5 # vertices = self.optimize_mesh(vertices,model_z) write_ply_triangle(self.result_dir + "/" + "out_{:.2f}.ply".format(fraction[z_index]), vertices, triangles) end_time = time.time() - start_time print("computed interpolation {} in {} seconds".format(z_index, end_time)) def create_saved_images(self, images, name): num_images = int(images.shape[0]) cols = 3 rows = -int(-num_images // cols) # convert back to grayscale rescale_images = images print(images.max()) print(images.min()) fig, axs = plt.subplots(nrows=rows, ncols=cols, sharex='all', sharey='all', figsize=(cols * 2, rows * 2), gridspec_kw={'wspace': 0, 'hspace': 0} ) for ax, im in zip(axs.flatten(), range(num_images)): ax.imshow(rescale_images[im, 0, :, :], cmap='gray', vmin=0, vmax=1) ax.axis('off') plt.savefig(self.result_dir + '/' + name) # output shape as ply def create_model_mesh(self, batch_view, num, config): # TODO: uncomment load checkpoint # load previous checkpoint self.load_checkpoint() self.im_network.eval() model_z, _ = self.im_network(batch_view, None, None, is_training=False) model_float = self.z2voxel(model_z) print('model_float shape') print(model_float.shape) # This transform nescessary to accomodate coordinate transform induced in marching cubes model_float = np.flip(np.transpose(model_float, (2, 1, 0)), 0) vertices, triangles = mcubes.marching_cubes(model_float, self.sampling_threshold) vertices = (vertices.astype(np.float32) - 0.5) / self.real_size - 0.5 # vertices = self.optimize_mesh(vertices,model_z) full_path = self.result_dir + "/" + str(num) + "_vox.ply" write_ply_triangle(full_path, vertices, triangles) print("created .ply for image {}".format(num)) return full_path def cv2_image_transform(self, img): ''' Basic image transform used as input to IM_SVR :param img: :return: ''' ''' imgo = img[:, :, :3] * 255 imgo = cv2.cvtColor(imgo, cv2.COLOR_BGR2GRAY) imga = (img[:, :, 3]) img_out = imgo * imga + 255.0 * (1 - imga) img_out = np.round(img_out).astype(np.uint8) ''' img[:, :, :3] = img[:, :, :3] * 255 img_out = cv2.cvtColor(img[:, :, :], cv2.COLOR_BGRA2GRAY) / 255 # img_out = np.round(img_out).astype(np.uint8) # print(img_out.shape) img_out = cv2.resize(img_out, dsize=(128, 128)) img_out = img_out[np.newaxis, :, :].astype(np.float32) return img_out def annealing_view(self, ply_path): # param_num = self.test_idx param_num = 7 # get image transform R, T = look_at_view_transform( dist=shapenet_cam_params["distance"][param_num] * 3, elev=shapenet_cam_params["elevation"][param_num], azim=shapenet_cam_params["azimuth"][param_num]) cameras = FoVPerspectiveCameras(device=self.device, R=R, T=T, fov=shapenet_cam_params["field_of_view"][param_num] ) raster_settings = RasterizationSettings( image_size=128, blur_radius=0.0, faces_per_pixel=1, ) lights = PointLights(device=self.device, location=[[0.0, 0.0, -3.0]]) renderer = MeshRenderer( rasterizer=MeshRasterizer( cameras=cameras, raster_settings=raster_settings ), shader=SoftPhongShader( device=self.device, cameras=cameras, lights=lights ) ) verts = [] faces = [] verts_rgb = [] titles = [] vert, face = load_ply(ply_path) verts.append(vert.to(self.device)) faces.append(face.to(self.device)) verts_rgb.append(torch.ones_like(vert).to(self.device)) textures = Textures(verts_rgb=verts_rgb) interpol_mesh = Meshes(verts, faces, textures) image = renderer(interpol_mesh).cpu().numpy() print(image.shape) reformatted_image = self.cv2_image_transform(image[0]) print(reformatted_image.min()) out = torch.from_numpy(reformatted_image).unsqueeze(0).type(torch.float32).to(self.device) # print(out) return out def annealing_view_pytorch3d(self, ply_paths: List[str]): verts = [] faces = [] verts_rgb = [] for ply_path in ply_paths: vert, face = load_ply(ply_path) verts.append(vert.to(self.device)) faces.append(face.to(self.device)) verts_rgb.append(torch.ones_like(vert).to(self.device)) # verts_rgb.append(torch.rand(size=vert.size()).to(self.device)) textures = Textures(verts_rgb=verts_rgb) interpol_mesh = Meshes(verts, faces, textures) # print(interpol_mesh.isempty()) # print(interpol_mesh.num_verts_per_mesh()) image = self.shapenet_render.render(model_ids=[0], meshes=interpol_mesh, device=self.device ).cpu().numpy() # print(image.shape) reformatted_image = self.cv2_image_transform(image[0]) out = torch.from_numpy(reformatted_image).unsqueeze(0).type(torch.float32).to(self.device) return out def latent_gradient(self, base_batch_view, target_batch_view, step, config): style_activation = self.style_activation.clone() # zero gradients self.im_network.zero_grad() # re-register forward hook on each forward pass. # self.target_layer.register_forward_hook(self.get_activation(self.target_activation)) z_vec_, _ = self.im_network(base_batch_view, None, None, is_training=False) base_activation = self.target_activation[0] # compute best feature maps features, width, height = style_activation.shape style_activation = style_activation.view(features, -1) comp_base_activation = base_activation.squeeze().view(features, -1) # Matrix of best matching feature maps. A = torch.matmul(torch.transpose(comp_base_activation, 0, 1), style_activation) # A = comp_base_activation.T.dot(style_activation) loss = comp_base_activation[:, torch.argmax(A, 1)].view(features, width, height).detach() # run the graph in reverse base_activation.backward(loss.unsqueeze(0)) return base_batch_view.grad def deep_dream(self, config): # TODO: uncomment load data super().load_data(config) # TODO: uncomment checkpoint load # load previous checkpoint self.load_checkpoint() # get config values z_base = int(config.interpol_z1) base_im_num = int(config.z1_im_view) z_target = int(config.interpol_z2) target_im_num = int(config.z1_im_view) # instantiate camera rendering class self.shapenet_render = ShapeNetRendering(model_nums=[z_base, z_target], R2N2_dir=config.R2N2_dir, model_views=[[base_im_num], [target_im_num]], splitfile=config.splitfile ) # set the dreaming rate and boundary size self.dream_rate = config.dream_rate annealing_step = config.annealing_rate # Set up forward hook to pull values self.layer_num = config.layer_num # list index includes as zero entry the generator module itself. # 2 layers up front should not be used num_model_layers = len(list(self.im_network.img_encoder.named_children())) - 2 if self.layer_num < 2 or self.layer_num >= num_model_layers: print('Layer number is too large: select layer numbers from 2 to {}'.format(num_model_layers)) exit(0) # Get target layer # self.target_layer = list(list(self.im_network.img_encoder.children())[self.layer_num].children())[-1] self.target_layer = list(self.im_network.img_encoder.children())[self.layer_num] self.target_activation = [None] # register forward hook self.target_layer.register_forward_hook(self.get_activation(self.target_activation)) interpol_steps = int(config.interpol_steps) result_base_directory = config.interpol_directory result_dir_name = 'DeepDream_SVR' + str(z_base) + '_' + str(z_target) + '_layer_' + str(self.layer_num) self.result_dir = result_base_directory + '/' + result_dir_name # Create output directory # TODO: re-create directory if not os.path.isdir(self.result_dir): os.mkdir(self.result_dir) print('creating directory ' + self.result_dir) # store images num_images = interpol_steps // annealing_step annealing_images =
np.empty(shape=(num_images + 2, 1, 128, 128))
numpy.empty
from __future__ import print_function import numpy as np import math import random import time import sys import operator import os from numpy import zeros, newaxis import re #import matplotlib.pyplot as plt import glob #import skimage #import skimage.io #import scipy.io as scp from sklearn.utils import shuffle from util.Generate_pm_pa import * from util.UAV_subfunctions import * from util.Extract_Patch import * from util.Detect_Patch import * from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.externals import joblib #import pandas import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K from keras.models import load_model from keras.callbacks import ReduceLROnPlateau,EarlyStopping, ModelCheckpoint from keras.models import load_model videoPath = './Data/' app_model_path = './models/max500_1_10_threelayers/' app_model_path_track = './models/Appearance_OriImage/' mvmodel_path = './models/motion/' bimodel_path = './models/Adaboost/' bimodel_path_track = './models/Adaboost_track/' #defult is 15, 2 trackwinS =15 video_savePath_features = './Experiment_Results/Final/Video/' if not os.path.exists(video_savePath_features): print ("path doesn't exist. trying to make") os.makedirs(video_savePath_features) video_savePath_Detection = './Experiment_Results/Final/txt/' if not os.path.exists(video_savePath_Detection): print ("path doesn't exist. trying to make") os.makedirs(video_savePath_Detection) par = [] par.append([0.001,40]) index= list(range(50)) print(index) from sklearn.utils import shuffle index = shuffle(index, random_state=42) print("complete shuffling") print(index) maxD=4 for ind in range(1,2): appmodel=load_model(app_model_path+str(ind)+'.h5') appmodel.summary() appmodel_track=load_model(app_model_path_track+str(ind)+'.h5') appmodel_track.summary() mvmodel = load_model(mvmodel_path+str(ind)+'.h5') mvmodel.summary() combinemodel = joblib.load(bimodel_path+'fold'+str(ind)+'.pkl') combinemodel_track = joblib.load(bimodel_path_track+'fold'+str(ind)+'.pkl') a = 0.001 b = 50 #test_ind = index[10*(ind-1):10*(ind-1)+10] test_ind = index[10*(ind-1):10*(ind-1)+1] objNo = 0 dtNo = 0 htNo = 0 allFA = 0 for i in test_ind: all_params = dict(videoName = str(i+1), downrightx = 350, upleftx = 0, downrighty = 780, uplefty = 510, fileName = 'supervised_SVM_'+str(i), debug = 1, qualityini = 0.005,#np.float32(sys.argv[4]),#1.5#, K = 1,# number of previous frames before Xt-1 MaxCorns = 600,#np.int16(sys.argv[5]),#200,#600/(resizeFactor*resizeFactor), mindist1 = 25,#np.int16(sys.argv[6]),#15, quality = a,#np.float32(sys.argv[7]),#0.001 #, maxcorners = 1000,#np.int16(sys.argv[8]),#100,#/(resizeFactor*resizeFactor), mindist = b,#15,#np.int16(sys.argv[9]),#1, use_ransac = True, track_len = 10,# track_len: maximum number of points recorded in the track lamda = 0,#taking average if bidirectional error detect_interval = 6, ) print ('Video:',all_params['videoName']) videoName = all_params['videoName'] uplefty = all_params['uplefty'] downrighty = all_params['downrighty'] upleftx = all_params['upleftx'] downrightx = all_params['downrightx'] fileName = all_params['fileName'] debug = all_params['debug'] K = all_params['K'] qualityini = all_params['qualityini'] MaxCorns = all_params['MaxCorns'] mindist1 = all_params['mindist1'] use_ransac = all_params['use_ransac'] track_len = all_params['track_len'] lamda = all_params['lamda'] quality = all_params['quality'] maxcorners = all_params['maxcorners'] mindist = all_params['mindist'] detect_interval = all_params['detect_interval'] ## parameter for feature detection(original image) and tracking[for background subtraction] feature_params = dict( maxCorners = MaxCorns, qualityLevel = qualityini, minDistance = mindist1, blockSize = 5 ) ## parameter for feature tracking(original image) lk_params = dict( winSize = (19, 19), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 20, 0.03)) ## parameter for feature detection(error image) and tracking[for feature extraction and tracking] print (maxcorners, quality, mindist) feature_params_track = dict( maxCorners = 500, qualityLevel = quality/20.0, minDistance = mindist, blockSize = 9 ) feature_params_track_oriImg = feature_params_track lk_params_track = dict( winSize = (19, 19), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 30, 0.03), minEigThreshold=1e-4) lk_params_track_ori = dict( winSize = (25, 25), maxLevel = 3, flags = cv2.OPTFLOW_USE_INITIAL_FLOW, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 30, 0.03), minEigThreshold=1e-4) feature_params_Detect = dict( maxCorners = 10, qualityLevel = 0.00000015, minDistance = 0, blockSize = 3 ) #cam_gt=cv2.VideoCapture(videoPath+ 'shor_clip_gtVideo/uav_Video_'+videoName+'_gt.mov') print(videoName) cam=cv2.VideoCapture(videoPath+ 'Videos/Clip_'+videoName+'.mov') gt_text = open(videoPath+ 'Annotation_update_180925/Video_'+videoName+'_gt.txt',"r") f_txt = open(video_savePath_Detection+ videoName+'_dt.txt','w') # read in one frame in order to obtain the video size frameidx = 1 color=cam.read()[1] color_gt=color.copy()#cam_gt.read()[1] prepreFrame = np.float32(cv2.cvtColor(color, cv2.COLOR_RGB2GRAY)) h,w,channel = color.shape groundtruth = gt_text.readline() outputFeature = "time_layer: "+ str(frameidx)+" detections: " f_txt.write(outputFeature+"\n") fourcc = cv2.VideoWriter_fourcc(*'mp4v') FPS = cam.get(cv2.CAP_PROP_FPS) video_PosPatch = cv2.VideoWriter(video_savePath_features+videoName+'.mov', fourcc,FPS,(w,h)) # initialize feature points pImg = None #initialize H_back H_back = None # read in Xt-1 color=cam.read()[1] color_gt =color.copy()#cam_gt.read()[1] groundtruth = gt_text.readline() frameidx+=1 outputFeature = "time_layer: "+ str(frameidx)+" detections: " #f_txt.write(outputFeature+"\n") Xtminus1 = np.float32(cv2.cvtColor(color, cv2.COLOR_RGB2GRAY)) # blocks is 1 except for the pitot tube region(0) blocks = np.ones((h,w), dtype='float32') #blocks[uplefty:downrighty,upleftx:downrightx ] = 0 # parameter for groundtruth dilation dt_d = 4 radius = 10 Dotft = [] Patchft=[] maxPatchId = 0 while True: #print(frameidx) ##############Start Detection Part############ ######Background Subtraction ################# print('frameID:', frameidx) gray = Xtminus1.copy() # read in current frame Xt future_color = cam.read()[1] if future_color is None: frameidx+=1 outputFeature = "time_layer: "+ str(frameidx)+" detections: " f_txt.write(outputFeature) break frameidx+=1 Xt = np.float32(cv2.cvtColor(future_color, cv2.COLOR_RGB2GRAY)) ## generate groundtruth mask gt_split = groundtruth.split() length = len(gt_split) gt_index = 3 gt_mask = np.zeros_like(Xt) gt_ft_maske = np.zeros_like(Xt) bbox_index = 0 centers = [] color_gt = color.copy() while gt_index< length: bbox_index+=1 uplefty = gt_split[gt_index] uplefty = int(uplefty[1:-1]) upleftx = gt_split[gt_index+1] upleftx = int(upleftx[0:-1]) downrighty = gt_split[gt_index+2] downrighty = int(downrighty[0:-1]) downrightx = gt_split[gt_index+3] downrightx = int(downrightx[0:-2]) downrighty = np.min([downrighty+dt_d, h-1]) downrightx = np.min([downrightx+dt_d, w-1]) uplefty = np.max([uplefty-dt_d,0]) upleftx = np.max([upleftx-dt_d,0]) cv2.rectangle(color_gt,(np.int16(upleftx),np.int16(uplefty)),(np.int16(downrightx),np.int16(downrighty)), (255,0,0),1) gt_mask[uplefty:downrighty, upleftx:downrightx] = bbox_index#255 gt_ft_maske[uplefty:downrighty, upleftx:downrightx] = 255 centers.append([(upleftx+downrightx)/2,(uplefty+downrighty)/2]) gt_index += 4 oriImage = color_gt.copy() oriImage_1 = color_gt.copy() # extract feature points for previous frame gray = Xt-1. By using maskOut function, only keep features outside the pitot tube area if pImg is None or frameidx % track_len == 0: pImg = cv2.goodFeaturesToTrack(
np.uint8(gray)
numpy.uint8
# -*- coding:utf-8 -*- import json import os import numpy as np import random import config import re import functools # from bert_serving.client import BertClient class file_data_loader: def __next__(self): raise NotImplementedError def next(self): return self.__next__() def next_batch(self, batch_size): raise NotImplementedError class cmp(): def __init__(self, x): self.x = x def __lt__(self, other): a_key = self.x['head']['id'] + '#' + self.x['tail']['id'] + '#' + self.x['relation'] b_key = other.x['head']['id'] + '#' + other.x['tail']['id'] + '#' + other.x['relation'] if (a_key > b_key): return False elif (a_key == b_key): return False else: return True class json_file_data_loader(file_data_loader): # 以instance作为最小单位 MODE_INSTANCE = 0 # 以bag为最小单位,每个bag中实体对相同,一般用于test(因为不知道relation) MODE_ENTPAIR_BAG = 1 # 以bag为最小单位,每个bag中实体对和关系相同,一般用于train MODE_RELFACT_BAG = 2 def _load_processed_file(self, dataset): # train or test name_prefix = '.'.join(self.file_name.split('/')[-1].split('.')[:-1]) word_vec_name_prefix = '.'.join(self.word_vec_file_name.split('/')[-1].split('.')[:-1]) processed_data_dir = '_processed_data' if not os.path.isdir(processed_data_dir): return False word_npy_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_word.npy') pos1_npy_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_pos1.npy') pos2_npy_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_pos2.npy') rel_npy_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_rel.npy') rel_npy_file_name2 = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_rel2.npy') rel_npy_file_name3 = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_rel3.npy') mask_npy_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_mask.npy') length_npy_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_length.npy') entpair2scope_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_entpair2scope.json') relfact2scope_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_relfact2scope.json') word_vec_mat_file_name = os.path.join(processed_data_dir, dataset + "_" + word_vec_name_prefix + '_mat.npy') word2id_file_name = os.path.join(processed_data_dir, dataset + "_" + word_vec_name_prefix + '_word2id.json') id2word_file_name = os.path.join(processed_data_dir, dataset + "_" + word_vec_name_prefix + '_id2word.json') entity1_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_entity1.npy') entity2_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_entity2.npy') sentence_file_name = os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_sentence.txt') if not os.path.exists(word_npy_file_name) or \ not os.path.exists(pos1_npy_file_name) or \ not os.path.exists(pos2_npy_file_name) or \ not os.path.exists(rel_npy_file_name) or \ not os.path.exists(mask_npy_file_name) or \ not os.path.exists(length_npy_file_name) or \ not os.path.exists(entpair2scope_file_name) or \ not os.path.exists(relfact2scope_file_name) or \ not os.path.exists(word_vec_mat_file_name) or \ not os.path.exists(word2id_file_name) or \ not os.path.exists(entity1_file_name) or \ not os.path.exists(entity2_file_name) or \ not os.path.exists(sentence_file_name) or \ not os.path.exists(id2word_file_name): return False print("Loading pre-processing files...") self.data_word = np.load(word_npy_file_name) self.data_pos1 = np.load(pos1_npy_file_name) self.data_pos2 = np.load(pos2_npy_file_name) self.data_rel = np.load(rel_npy_file_name) self.data_rel2 = np.load(rel_npy_file_name2) self.data_rel3 = np.load(rel_npy_file_name3) self.data_mask = np.load(mask_npy_file_name) self.data_length = np.load(length_npy_file_name) with open(entpair2scope_file_name, 'r', encoding='utf8') as fr: self.entpair2scope = json.load(fr) with open(relfact2scope_file_name, 'r', encoding='utf8') as fr: self.relfact2scope = json.load(fr) self.word_vec_mat = np.load(word_vec_mat_file_name) print("word vec" + str(len(self.word_vec_mat))) with open(word2id_file_name, 'r', encoding='utf8') as fr: self.word2id = json.load(fr) with open(id2word_file_name, 'r', encoding='utf8') as fr: self.id2word = json.load(fr) self.data_entity1 = np.load(entity1_file_name) self.data_entity2 = np.load(entity2_file_name) if (self.data_word.shape[1] != config.model.max_length): print("Pre-processing ata is expired, Reprocessing") return False with open(sentence_file_name, 'r', encoding='utf8') as fr: self.data_sentence = [] for line in fr: self.data_sentence.append(line) print('Finish loading') return True def __init__(self, file_name, word_vec_file_name, rel2id_file_name, rel2id_file_name2, rel2id_file_name3, deepwalk_file_name, rel_rel2_filename, rel_rel3_filename, entity2id_file_name, mid_file_name, entity_type_file_name, mode, shuffle, sen_num_bag='all', max_length=config.model.max_length, case_sensitive=False, batch_size=config.model.batch_size): ''' :param file_name: 数据路径 :param word_vec_file_name: 词向量路径 :param rel2id_file_name: relation to id 路径 :param mode: 组织数据的模式,有3种方式:MODE_INSTANCE , MODE_ENTPAIR_BAG,MODE_RELFACT_BAG :param shuffle: 是否shuffle数据 :param max_length: 规定句子的最长长度 :param batch_size: 定义batch_size ''' # self.bc = BertClient(check_length=False) self.sen_num_bag = sen_num_bag self.file_name = file_name self.word_vec_file_name = word_vec_file_name self.rel2id_file_name = rel2id_file_name self.mode = mode self.shuffle = shuffle self.max_length = max_length self.batch_size = batch_size with open(rel2id_file_name, 'r') as fr: self.rel2id = json.load(fr) if rel2id_file_name2 is not None: with open(rel2id_file_name2, 'r') as fr: self.rel2id2 = json.load(fr) if rel2id_file_name3 is not None: with open(rel2id_file_name3, 'r') as fr: self.rel2id3 = json.load(fr) dataset = file_name.split("/")[-2] print("dataset: " + dataset) deepwalk_dict = {} max_num = 0 with open(deepwalk_file_name, 'r', encoding='utf8') as fr: num, dim = fr.readline().split() print("%s entities, %s dim" % (num, dim)) while (True): line = fr.readline() if (not line): break index = line.find(' ') e_id = line[0:index] vec = line[index:-1].strip().split() deepwalk_dict[int(e_id)] = list(vec) max_num = max(int(e_id), max_num) # self.deepwalk_mat = np.ones((max_num+1,int(dim)),dtype=np.float32) self.deepwalk_mat = np.random.rand(max_num + 1, int(dim)).astype(np.float32) with open(rel_rel2_filename, 'r', encoding='utf8') as fr: self.rel_rel2 = json.load(fr) with open(rel_rel3_filename, 'r', encoding='utf8') as fr: self.rel_rel3 = json.load(fr) for id, e_id in enumerate(deepwalk_dict): vec = deepwalk_dict[e_id] self.deepwalk_mat[int(e_id), :] = vec with open(entity2id_file_name, 'r', encoding='utf8') as fr: self.entity2id = json.load(fr) with open(entity_type_file_name, 'r', encoding='utf8') as fr: self.entity_type = json.load(fr) with open(mid_file_name, 'r', encoding='utf8') as fr: self.mid2id = json.load(fr) self.entity_type_id = {} for mid in self.entity_type: type_list = self.entity_type[mid] for type in type_list: if self.entity_type_id.get(type) is None: self.entity_type_id[type] = len(self.entity_type_id) print(self.entity_type_id) print(len(self.entity_type_id)) self.entityid_type = {} for mid in self.entity_type: for type in self.entity_type[mid]: if self.mid2id.get(mid) is not None: if self.entityid_type.get(self.mid2id[mid]) is None: self.entityid_type[self.mid2id[mid]] = [self.entity_type_id[type]] else: self.entityid_type[self.mid2id[mid]].append(self.entity_type_id[type]) if (not self._load_processed_file(dataset)): if file_name is None or not os.path.isfile(file_name): raise Exception("[ERROR] Data file doesn't exist") if word_vec_file_name is None or not os.path.isfile(word_vec_file_name): raise Exception("[ERROR] word2vec file doesn't exist") if rel2id_file_name is None or not os.path.isfile(rel2id_file_name): raise Exception("[ERROR] word2vec file doesn't exist") # load file print("log4 Hierarchical att fine-tune dropout 0.1") print("Loading data file...") with open(self.file_name, 'r', encoding='utf8') as fr: self.ori_data = json.load(fr) print("Finish loading") # Eliminate case sensitive if not case_sensitive: print("Elimiating case sensitive problem...") for i in range(len(self.ori_data)): self.ori_data[i]['sentence'] = self.ori_data[i]['sentence'].lower() self.ori_data[i]['head']['word'] = self.ori_data[i]['head']['word'].lower() self.ori_data[i]['tail']['word'] = self.ori_data[i]['tail']['word'].lower() print("Finish eliminating") print("Loading word vector file...") with open(self.word_vec_file_name, 'r', encoding='utf8') as fr: self.ori_word_vec = json.load(fr) print("Finish loading") # sort data by entities and relations print("sort data") # self.ori_data.sort(key = cmp) def compare_by_entities_and_relations(a, b): a_key = a['head']['id'] + '#' + a['tail']['id'] + '#' + a['relation'] b_key = b['head']['id'] + '#' + b['tail']['id'] + '#' + b['relation'] if a_key > b_key: return 1 elif a_key == b_key: return 0 else: return -1 self.ori_data.sort(key=functools.cmp_to_key(compare_by_entities_and_relations)) print('Finish sorting') # pre-processing word vec self.word2id = {} self.id2word = {} self.word_vec_tot = len(self.ori_word_vec) UNK = self.word_vec_tot BLANK = self.word_vec_tot + 1 self.word2id['UNK'] = UNK self.word2id['BLANK'] = BLANK self.word_vec_dim = len(self.ori_word_vec[0]['vec']) print("Got {} words of {} dims".format(self.word_vec_tot, self.word_vec_dim)) print("Building word vector matrix and mapping...") self.word_vec_mat = np.zeros((self.word_vec_tot, self.word_vec_dim), dtype=np.float32) for cur_id, word in enumerate(self.ori_word_vec): w = word['word'] if not case_sensitive: w = w.lower() self.word2id[w] = cur_id self.id2word[cur_id] = w self.word_vec_mat[cur_id, :] = word['vec'] self.word2id['UNK'] = UNK self.id2word[UNK] = 'UNK' self.word2id['BLANK'] = BLANK self.id2word[BLANK] = 'BLANK' print("Finish building") # Pre-processing print("Pre-processing data...") self.instance_tot = len(self.ori_data) self.entpair2scope = {} # (head,tail) -> scope self.relfact2scope = {} # (head,tail,rel) -> scope self.data_word = np.zeros((self.instance_tot, self.max_length), dtype=np.int32) self.data_pos1 = np.zeros((self.instance_tot, self.max_length), dtype=np.int32) self.data_pos2 = np.zeros((self.instance_tot, self.max_length), dtype=np.int32) self.data_rel = np.zeros((self.instance_tot), dtype=np.int32) self.data_rel2 = np.zeros((self.instance_tot), dtype=np.int32) self.data_rel3 = np.zeros((self.instance_tot), dtype=np.int32) self.data_mask = np.zeros((self.instance_tot, self.max_length), dtype=np.int32) self.data_length = np.zeros((self.instance_tot), dtype=np.int32) self.data_entity1 = np.zeros((self.instance_tot), dtype=np.int32) self.data_entity2 = np.zeros((self.instance_tot), dtype=np.int32) # bc = BertClient() last_entpair = '' last_entpair_pos = -1 last_relfact = '' last_relfact_pos = -1 dirty_data_number = 0 self.data_sentence = [] pattern = re.compile(r'\s') for i in range(self.instance_tot): ins = self.ori_data[i] dataset = file_name.split("/")[-2] self.data_sentence.append(ins['sentence'].strip()) if (ins['relation'] in self.rel2id): self.data_rel[i] = self.rel2id[ins['relation']] items = ins['relation'].split('/') if len(items) == 1: rel_layer2 = ins['relation'] rel_layer3 = ins['relation'] else: rel_layer2 = '/' + items[1] + '/' + items[2] rel_layer3 = '/' + items[1] self.data_rel2[i] = self.rel2id2[rel_layer2] self.data_rel3[i] = self.rel2id3[rel_layer3] else: self.data_rel[i] = self.rel2id['NA'] self.data_rel2[i] = self.rel2id2['NA'] self.data_rel3[i] = self.rel2id3['NA'] sentence = ' '.join(ins['sentence'].split()) head = ins['head']['word'] tail = ins['tail']['word'] cur_entpair = ins['head']['id'] + '#' + ins['tail']['id'] cur_relfact = ins['head']['id'] + '#' + ins['tail']['id'] + '#' + ins['relation'] if (cur_entpair != last_entpair): if (last_entpair != ''): self.entpair2scope[last_entpair] = [last_entpair_pos, i] last_entpair = cur_entpair last_entpair_pos = i if (cur_relfact != last_relfact): if (last_relfact != ''): self.relfact2scope[last_relfact] = [last_relfact_pos, i] last_relfact = cur_relfact last_relfact_pos = i # position p1 = None p2 = None p1 = sentence.find(' ' + head + ' ') p2 = sentence.find(' ' + tail + ' ') # 如果是首 尾 if (p1 == -1): if (sentence[:len(head) + 1] == head + " "): p1 = 0 elif (sentence[-len(head) - 1:] == " " + head): p1 = len(sentence) - len(head) else: p1 = 0 else: p1 += 1 if (p2 == -1): if (sentence[:len(tail) + 1] == tail + " "): p2 = 0 elif (sentence[-len(tail) - 1:] == " " + tail): p2 = len(sentence) - len(tail) else: p2 = 0 else: p2 += 1 words = sentence.split() cur_ref_data_word = self.data_word[i] cur_pos = 0 pos1 = -1 pos2 = -1 for j, word in enumerate(words): # print(cur_pos,ins['sentence'][cur_pos]) if (j < max_length): if word in self.word2id: cur_ref_data_word[j] = self.word2id[word] else: cur_ref_data_word[j] = UNK if cur_pos == p1: pos1 = j p1 = -1 if cur_pos == p2: pos2 = j p2 = -1 cur_pos += len(word) + 1 for k in range(len(words), max_length): cur_ref_data_word[k] = BLANK self.data_length[i] = min(len(words), max_length) if (pos1 == -1 or pos2 == -1): raise Exception( "[ERROR] Position error, index = {}, sentence = {}, head = {}, tail = {}".format(i, sentence, head, tail)) pos1 = min(pos1, max_length - 1) pos2 = min(pos2, max_length - 1) pos_min = min(pos1, pos2) pos_max = max(pos1, pos2) for j in range(max_length): self.data_pos1[i][j] = j - pos1 + max_length self.data_pos2[i][j] = j - pos2 + max_length if (j >= self.data_length[i]): self.data_mask[i][j] = 0 elif j <= pos_min: self.data_mask[i][j] = 1 elif j <= pos_max: self.data_mask[i][j] = 2 else: self.data_mask[i][j] = 3 entity1 = ins['head']['word'].strip().lower() entity2 = ins['tail']['word'].strip().lower() self.data_entity1[i] = len(self.entity2id) if self.entity2id.get(entity1) is not None: self.data_entity1[i] = self.entity2id[entity1] self.data_entity2[i] = len(self.entity2id) if self.entity2id.get(entity2) is not None: self.data_entity2[i] = self.entity2id[entity2] if last_entpair != '': self.entpair2scope[last_entpair] = [last_entpair_pos, self.instance_tot] if last_relfact != '': self.relfact2scope[last_relfact] = [last_relfact_pos, self.instance_tot] print("Finish pre-processing") print("Storing preprocessing file...") # train or test name_prefix = '.'.join(self.file_name.split('/')[-1].split('.')[:-1]) word_vec_name_prefix = '.'.join(self.word_vec_file_name.split('/')[-1].split('.')[:-1]) processed_data_dir = '_processed_data' if not os.path.isdir(processed_data_dir): os.mkdir(processed_data_dir) print("discards data number ", dirty_data_number) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_word.npy'), self.data_word) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_pos1.npy'), self.data_pos1) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_pos2.npy'), self.data_pos2) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_rel.npy'), self.data_rel) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_rel2.npy'), self.data_rel2) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_rel3.npy'), self.data_rel3) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_mask.npy'), self.data_mask) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_length.npy'), self.data_length) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_entity1.npy'), self.data_entity1) np.save(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_entity2.npy'), self.data_entity2) with open(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_entpair2scope.json'), 'w', encoding='utf8') as fw: json.dump(self.entpair2scope, fw, ensure_ascii=False) with open(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_relfact2scope.json'), 'w', encoding='utf8') as fw: json.dump(self.relfact2scope, fw, ensure_ascii=False) np.save(os.path.join(processed_data_dir, dataset + "_" + word_vec_name_prefix + '_mat.npy'), self.word_vec_mat) with open(os.path.join(processed_data_dir, dataset + "_" + word_vec_name_prefix + '_word2id.json'), 'w', encoding='utf8') as fw: json.dump(self.word2id, fw, ensure_ascii=False) with open(os.path.join(processed_data_dir, dataset + "_" + word_vec_name_prefix + '_id2word.json'), 'w', encoding='utf8') as fw: json.dump(self.id2word, fw, ensure_ascii=False) with open(os.path.join(processed_data_dir, dataset + "_" + name_prefix + '_sentence.txt'), 'w', encoding='utf8') as fw: for line in self.data_sentence: fw.write(line + '\n') print("Finish storing") self.instance_tot = self.data_word.shape[0] self.entpair_tot = len(self.entpair2scope) self.relfact_tot = 0 # relfact数, 除了 relation 关系 relation_fact = {} for key in self.relfact2scope: if (key[-2:] != 'NA'): self.relfact_tot += 1 rel = key.strip().split('#')[-1] if relation_fact.get(rel) is not None: relation_fact[rel] += 1 else: relation_fact[rel] = 1 with open('relation_fact.json', 'w', encoding='utf8') as fw: json.dump(relation_fact, fw) self.rel_tot = len(self.rel2id) self.rel_tot2 = len(self.rel2id2) self.rel_tot3 = len(self.rel2id3) if self.mode == self.MODE_INSTANCE: self.order = list(range(self.instance_tot)) elif self.mode == self.MODE_ENTPAIR_BAG: self.order = list(range(len(self.entpair2scope))) self.scope_name = [] self.scope = [] for key, value in self.entpair2scope.items(): self.scope_name.append(key) self.scope.append(value) elif self.mode == self.MODE_RELFACT_BAG: self.order = list(range(len(self.relfact2scope))) self.scope_name = [] self.scope = [] for key, value in self.relfact2scope.items(): self.scope_name.append(key) self.scope.append(value) else: raise Exception("[ERROR] Invalid mode") print("len order", len(self.order)) self.idx = 0 if (self.shuffle): random.shuffle(self.order) print("Total entity pair:%d" % (len(self.entpair2scope))) print("Total relation fact:%d" % (len(self.relfact2scope))) print("Total instance:%d" % (self.instance_tot)) def __iter__(self): return self def __next__(self): return self.next_batch(self.batch_size) def next_batch(self, batch_size): if self.mode != self.MODE_INSTANCE: if self.idx >= len(self.order): self.idx = 0 if self.shuffle: random.shuffle(self.order) raise StopIteration else: if self.idx >= self.instance_tot: self.idx = 0 if self.shuffle: random.shuffle(self.order) raise StopIteration batch_data = {} if self.mode == self.MODE_INSTANCE: idx0 = self.idx idx1 = min(self.instance_tot, self.idx + batch_size) self.idx = idx1 batch_data['word'] = self.data_word[idx0:idx1] batch_data['pos1'] = self.data_pos1[idx0:idx1] batch_data['pos2'] = self.data_pos2[idx0:idx1] batch_data['rel'] = self.data_rel[idx0:idx1] batch_data['rel2'] = self.data_rel2[idx0:idx1] batch_data['rel3'] = self.data_rel3[idx0:idx1] batch_data['mask'] = self.data_mask[idx0:idx1] batch_data['length'] = self.data_length[idx0:idx1] batch_data['scope'] = np.stack([list(range(batch_size)), list(range(1, batch_size + 1))], axis=1) batch_data['entity1'] = self.data_entity1[idx0:idx1] batch_data['entity2'] = self.data_entity2[idx0:idx1] batch_data['idx'] = [(i, i) for i in range(idx0, idx1)] batch_data['ins_rel'] = self.data_rel[idx0:idx1] batch_data['ins_rel2'] = self.data_rel2[idx0:idx1] batch_data['ins_rel3'] = self.data_rel3[idx0:idx1] if idx1 - idx0 < batch_size: padding = batch_size - (idx1 - idx0) batch_data['word'] = np.concatenate( [batch_data['word'], np.zeros((padding, self.data_word.shape[-1]), dtype=np.int32)]) batch_data['pos1'] = np.concatenate( [batch_data['pos1'], np.zeros((padding, self.data_pos1.shape[-1]), dtype=np.int32)]) batch_data['pos2'] = np.concatenate( [batch_data['pos2'], np.zeros((padding, self.data_pos2.shape[-1]), dtype=np.int32)]) batch_data['mask'] = np.concatenate( [batch_data['mask'], np.zeros((padding, self.data_mask.shape[-1]), dtype=np.int32)]) batch_data['rel'] = np.concatenate([batch_data['rel'], np.zeros((padding), dtype=np.int32)]) batch_data['rel2'] = np.concatenate([batch_data['rel2'], np.zeros((padding), dtype=np.int32)]) batch_data['rel3'] = np.concatenate([batch_data['rel3'], np.zeros((padding), dtype=np.int32)]) batch_data['length'] = np.concatenate([batch_data['length'], np.zeros((padding), dtype=np.int32)]) batch_data['entity1'] = np.concatenate([batch_data['entity1'], np.zeros((padding), dtype=np.int32)]) batch_data['entity2'] = np.concatenate([batch_data['entity2'], np.zeros((padding), dtype=np.int32)]) batch_data['idx'] = batch_data['idx'] + [(1, -1) for i in range(padding)] batch_data['ins_rel'] = np.concatenate([batch_data['ins_rel'], np.zeros((padding), dtype=np.int32)]) batch_data['ins_rel2'] = np.concatenate([batch_data['ins_rel2'], np.zeros((padding), dtype=np.int32)]) batch_data['ins_rel3'] = np.concatenate([batch_data['ins_rel3'], np.zeros((padding), dtype=np.int32)]) elif self.mode == self.MODE_ENTPAIR_BAG or self.mode == self.MODE_RELFACT_BAG: least_bag_sentence_num = None if self.sen_num_bag == 'all': least_bag_sentence_num = 0 else: least_bag_sentence_num = 2 idx0 = self.idx idx1 = self.idx + batch_size if idx1 > len(self.order): idx1 = len(self.order) _word = [] _pos1 = [] _pos2 = [] _mask = [] _rel = [] _rel2 = [] _rel3 = [] _ins_rel = [] _ins_rel2 = [] _ins_rel3 = [] _multi_rel = [] _multi_rel2 = [] _multi_rel3 = [] _entpair = [] _length = [] _scope = [] _entity1 = [] _entity2 = [] _idx = [] _sentence = [] _bc_embedding = [] cur_pos = 0 cnt = 0 true_index = idx0 for i in range(idx0, len(self.order)): if self.scope[self.order[i]][1] - self.scope[self.order[i]][0] < least_bag_sentence_num: continue indx = [j for j in range(self.scope[self.order[i]][0], self.scope[self.order[i]][1])] random.shuffle(indx) _word.append(self.data_word[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _pos1.append(self.data_pos1[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _pos2.append(self.data_pos2[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _mask.append(self.data_mask[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _rel.append(self.data_rel[self.scope[self.order[i]][0]]) _rel2.append(self.data_rel2[self.scope[self.order[i]][0]]) _rel3.append(self.data_rel3[self.scope[self.order[i]][0]]) _ins_rel.append(self.data_rel[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _ins_rel2.append(self.data_rel2[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _ins_rel3.append(self.data_rel3[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _length.append(self.data_length[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) bag_size = self.scope[self.order[i]][1] - self.scope[self.order[i]][0] _scope.append([cur_pos, cur_pos + bag_size]) _entity1.append(self.data_entity1[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _entity2.append(self.data_entity2[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]]) _idx.append((self.scope[self.order[i]][0], self.scope[self.order[i]][1])) _sentence = _sentence + self.data_sentence[self.scope[self.order[i]][0]:self.scope[self.order[i]][1]] cur_pos = cur_pos + bag_size if self.mode == self.MODE_ENTPAIR_BAG: _one_multi_rel = np.zeros((self.rel_tot), dtype=np.int32) _one_multi_rel2 = np.zeros((self.rel_tot2), dtype=np.int32) _one_multi_rel3 = np.zeros((self.rel_tot3), dtype=np.int32) for j in range(self.scope[self.order[i]][0], self.scope[self.order[i]][1]): _one_multi_rel[self.data_rel[j]] = 1 _one_multi_rel2[self.data_rel2[j]] = 1 _one_multi_rel3[self.data_rel3[j]] = 1 _multi_rel.append(_one_multi_rel) _multi_rel2.append(_one_multi_rel2) _multi_rel3.append(_one_multi_rel3) _entpair.append(self.scope_name[self.order[i]]) cnt += 1 true_index = i if cnt == batch_size: break for i in range(batch_size - cnt): _word.append(np.zeros((1, self.data_word.shape[-1]), dtype=np.int32)) _pos1.append(np.zeros((1, self.data_pos1.shape[-1]), dtype=np.int32)) _pos2.append(np.zeros((1, self.data_pos2.shape[-1]), dtype=np.int32)) _mask.append(np.zeros((1, self.data_mask.shape[-1]), dtype=np.int32)) _rel.append(0) _rel2.append(0) _rel3.append(0) _ins_rel.append(np.zeros((1), dtype=np.int32)) _ins_rel2.append(np.zeros((1), dtype=np.int32)) _ins_rel3.append(np.zeros((1), dtype=np.int32)) _length.append(np.zeros((1), dtype=np.int32)) _scope.append([cur_pos, cur_pos + 1]) _entity1.append(np.zeros((1), dtype=np.int32)) _entity2.append(np.zeros((1), dtype=np.int32)) _sentence.append(["None"]) _idx.append((1, -1)) cur_pos += 1 if self.mode == self.MODE_ENTPAIR_BAG: _multi_rel.append(np.zeros((self.rel_tot), dtype=np.int32)) _multi_rel2.append(np.zeros((self.rel_tot2), dtype=np.int32)) _multi_rel3.append(np.zeros((self.rel_tot3), dtype=np.int32)) _entpair.append('None#None') self.idx = true_index + 1 batch_data['word'] = np.concatenate(_word) batch_data['pos1'] = np.concatenate(_pos1) batch_data['pos2'] = np.concatenate(_pos2) batch_data['mask'] = np.concatenate(_mask) batch_data['rel'] = np.stack(_rel) batch_data['rel2'] = np.stack(_rel2) batch_data['rel3'] = np.stack(_rel3) batch_data['ins_rel'] = np.concatenate(_ins_rel) batch_data['ins_rel2'] = np.concatenate(_ins_rel2) batch_data['ins_rel3'] = np.concatenate(_ins_rel3) if self.mode == self.MODE_ENTPAIR_BAG: batch_data['multi_rel'] =
np.stack(_multi_rel)
numpy.stack
# Copyright (c) 2014, <NAME>. # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from scipy.special import wofz from .kern import Kern from ...core.parameterization import Param from ...core.parameterization.transformations import Logexp from ...util.caching import Cache_this class EQ_ODE2(Kern): """ Covariance function for second order differential equation driven by an exponentiated quadratic covariance. This outputs of this kernel have the form .. math:: \frac{\text{d}^2y_j(t)}{\text{d}^2t} + C_j\frac{\text{d}y_j(t)}{\text{d}t} + B_jy_j(t) = \sum_{i=1}^R w_{j,i} u_i(t) where :math:`R` is the rank of the system, :math:`w_{j,i}` is the sensitivity of the :math:`j`th output to the :math:`i`th latent function, :math:`d_j` is the decay rate of the :math:`j`th output and :math:`f_i(t)` and :math:`g_i(t)` are independent latent Gaussian processes goverened by an exponentiated quadratic covariance. :param output_dim: number of outputs driven by latent function. :type output_dim: int :param W: sensitivities of each output to the latent driving function. :type W: ndarray (output_dim x rank). :param rank: If rank is greater than 1 then there are assumed to be a total of rank latent forces independently driving the system, each with identical covariance. :type rank: int :param C: damper constant for the second order system. :type C: array of length output_dim. :param B: spring constant for the second order system. :type B: array of length output_dim. """ #This code will only work for the sparseGP model, due to limitations in models for this kernel def __init__(self, input_dim=2, output_dim=1, rank=1, W=None, lengthscale=None, C=None, B=None, active_dims=None, name='eq_ode2'): #input_dim should be 1, but kern._slice_X is not returning index information required to evaluate kernels assert input_dim == 2, "only defined for 1 input dims" super(EQ_ODE2, self).__init__(input_dim=input_dim, active_dims=active_dims, name=name) self.rank = rank self.output_dim = output_dim if lengthscale is None: lengthscale = .5+np.random.rand(self.rank) else: lengthscale = np.asarray(lengthscale) assert lengthscale.size in [1, self.rank], "Bad number of lengthscales" if lengthscale.size != self.rank: lengthscale = np.ones(self.input_dim)*lengthscale if W is None: #W = 0.5*np.random.randn(self.output_dim, self.rank)/np.sqrt(self.rank) W = np.ones((self.output_dim, self.rank)) else: assert W.shape == (self.output_dim, self.rank) if C is None: C = np.ones(self.output_dim) if B is None: B = np.ones(self.output_dim) self.C = Param('C', C, Logexp()) self.B = Param('B', B, Logexp()) self.lengthscale = Param('lengthscale', lengthscale, Logexp()) self.W = Param('W', W) self.link_parameters(self.lengthscale, self.C, self.B, self.W) @Cache_this(limit=2) def K(self, X, X2=None): #This way is not working, indexes are lost after using k._slice_X #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim if X2 is None: if X_flag: #Calculate covariance function for the latent functions index -= self.output_dim return self._Kuu(X, index) else: raise NotImplementedError else: #This way is not working, indexes are lost after using k._slice_X #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim #Calculate cross-covariance function if not X_flag and X2_flag: index2 -= self.output_dim return self._Kfu(X, index, X2, index2) #Kfu else: index -= self.output_dim return self._Kfu(X2, index2, X, index).T #Kuf #Calculate the covariance function for diag(Kff(X,X)) def Kdiag(self, X): #This way is not working, indexes are lost after using k._slice_X #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) #terms that move along t t = X[:, 0].reshape(X.shape[0], 1) d = np.unique(index) #Output Indexes B = self.B.values[d] C = self.C.values[d] S = self.W.values[d, :] #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B B = B.reshape(B.size, 1) C = C.reshape(C.size, 1) alpha = .5*C C2 = C*C wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #Terms that move along q lq = self.lengthscale.values.reshape(1, self.lengthscale.size) S2 = S*S kdiag = np.empty((t.size, )) indD = np.arange(B.size) #(1) When wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] d = np.asarray(np.where(np.logical_not(wbool))[0]) #Selection of outputs indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(.5*lq) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] w2 = w*w gam = alphad + 1j*w gamc = alphad - 1j*w c1 = .5/(alphad*w2) c2 = .5/(gam*w2) c = c1 - c2 #DxQ terms nu = lq*(gam*.5) K01 = c0*c #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) ec = egamt*c2[ind] - np.exp(gamct)*c1[ind] #NxQ terms t_lq = t1/lq # Upsilon Calculations # Using wofz wnu = wofz(1j*nu) lwnu = np.log(wnu) t2_lq2 = -t_lq*t_lq upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])))) upm[t1[:, 0] == 0, :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upv[t1[:, 0] == 0, :] = 0. #Covariance calculation kdiag[ind3t] = np.sum(np.real(K01[ind]*upm), axis=1) kdiag[ind3t] += np.sum(np.real((c0[ind]*ec)*upv), axis=1) #(2) When w_d is complex if np.any(wbool): t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(lq*.25) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(C2[d] - 4.*B[d]) alphad = alpha[d] gam = alphad - w gamc = alphad + w w2 = -w*w c1 = .5/(alphad*w2) c21 = .5/(gam*w2) c22 = .5/(gamc*w2) c = c1 - c21 c2 = c1 - c22 #DxQ terms K011 = c0*c K012 = c0*c2 nu = lq*(.5*gam) nuc = lq*(.5*gamc) #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) egamct = np.exp(gamct) ec = egamt*c21[ind] - egamct*c1[ind] ec2 = egamct*c22[ind] - egamt*c1[ind] #NxQ terms t_lq = t1/lq #Upsilon Calculations using wofz t2_lq2 = -t_lq*t_lq #Required when using wofz wnu = wofz(1j*nu).real lwnu = np.log(wnu) upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])).real)) upm[t1[:, 0] == 0., :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upv[t1[:, 0] == 0, :] = 0. wnuc = wofz(1j*nuc).real lwnuc = np.log(wnuc) upmc = wnuc[ind] - np.exp(t2_lq2 + gamct + np.log(wofz(1j*(t_lq + nuc[ind])).real)) upmc[t1[:, 0] == 0., :] = 0. nuc2 = nuc*nuc z1 = nuc[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upvc = - np.exp(lwnuc[ind] + gamct) if indv1[0].shape > 0: upvc[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upvc[indv2] += np.exp(nuc2[ind[indv2[0]], indv2[1]] + gamct[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upvc[t1[:, 0] == 0, :] = 0. #Covariance calculation kdiag[ind2t] = np.sum(K011[ind]*upm + K012[ind]*upmc + (c0[ind]*ec)*upv + (c0[ind]*ec2)*upvc, axis=1) return kdiag def update_gradients_full(self, dL_dK, X, X2 = None): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values self.B.gradient = np.zeros(self.B.shape) self.C.gradient = np.zeros(self.C.shape) self.W.gradient = np.zeros(self.W.shape) self.lengthscale.gradient = np.zeros(self.lengthscale.shape) index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim if X2 is None: if X_flag: #Kuu or Kmm index -= self.output_dim tmp = dL_dK*self._gkuu_lq(X, index) for q in np.unique(index): ind = np.where(index == q) self.lengthscale.gradient[q] = tmp[np.ix_(ind[0], ind[0])].sum() else: raise NotImplementedError else: #Kfu or Knm #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim if not X_flag and X2_flag: index2 -= self.output_dim else: dL_dK = dL_dK.T #so we obtaing dL_Kfu indtemp = index - self.output_dim Xtemp = X X = X2 X2 = Xtemp index = index2 index2 = indtemp glq, gSdq, gB, gC = self._gkfu(X, index, X2, index2) tmp = dL_dK*glq for q in np.unique(index2): ind = np.where(index2 == q) self.lengthscale.gradient[q] = tmp[:, ind].sum() tmpB = dL_dK*gB tmpC = dL_dK*gC tmp = dL_dK*gSdq for d in np.unique(index): ind = np.where(index == d) self.B.gradient[d] = tmpB[ind, :].sum() self.C.gradient[d] = tmpC[ind, :].sum() for q in np.unique(index2): ind2 = np.where(index2 == q) self.W.gradient[d, q] = tmp[np.ix_(ind[0], ind2[0])].sum() def update_gradients_diag(self, dL_dKdiag, X): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values self.B.gradient = np.zeros(self.B.shape) self.C.gradient = np.zeros(self.C.shape) self.W.gradient = np.zeros(self.W.shape) self.lengthscale.gradient = np.zeros(self.lengthscale.shape) index = np.int_(X[:, 1]) index = index.reshape(index.size,) glq, gS, gB, gC = self._gkdiag(X, index) tmp = dL_dKdiag.reshape(index.size, 1)*glq self.lengthscale.gradient = tmp.sum(0) #TODO: Avoid the reshape by a priori knowing the shape of dL_dKdiag tmpB = dL_dKdiag*gB.reshape(dL_dKdiag.shape) tmpC = dL_dKdiag*gC.reshape(dL_dKdiag.shape) tmp = dL_dKdiag.reshape(index.size, 1)*gS for d in np.unique(index): ind = np.where(index == d) self.B.gradient[d] = tmpB[ind].sum() self.C.gradient[d] = tmpC[ind].sum() self.W.gradient[d, :] = tmp[ind].sum(0) def gradients_X(self, dL_dK, X, X2=None): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim #If input_dim == 1, use this #gX = np.zeros((X.shape[0], 1)) #Cheat to allow gradient for input_dim==2 gX = np.zeros(X.shape) if X2 is None: #Kuu or Kmm if X_flag: index -= self.output_dim gX[:, 0] = 2.*(dL_dK*self._gkuu_X(X, index)).sum(0) return gX else: raise NotImplementedError else: #Kuf or Kmn #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim if X_flag and not X2_flag: #gradient of Kuf(Z, X) wrt Z index -= self.output_dim gX[:, 0] = (dL_dK*self._gkfu_z(X2, index2, X, index).T).sum(1) return gX else: raise NotImplementedError #---------------------------------------# # Helper functions # #---------------------------------------# #Evaluation of squared exponential for LFM def _Kuu(self, X, index): index = index.reshape(index.size,) t = X[:, 0].reshape(X.shape[0],) lq = self.lengthscale.values.reshape(self.rank,) lq2 = lq*lq #Covariance matrix initialization kuu = np.zeros((t.size, t.size)) #Assign 1. to diagonal terms kuu[np.diag_indices(t.size)] = 1. #Upper triangular indices indtri1, indtri2 = np.triu_indices(t.size, 1) #Block Diagonal indices among Upper Triangular indices ind = np.where(index[indtri1] == index[indtri2]) indr = indtri1[ind] indc = indtri2[ind] r = t[indr] - t[indc] r2 = r*r #Calculation of covariance function kuu[indr, indc] = np.exp(-r2/lq2[index[indr]]) #Completation of lower triangular part kuu[indc, indr] = kuu[indr, indc] return kuu #Evaluation of cross-covariance function def _Kfu(self, X, index, X2, index2): #terms that move along t t = X[:, 0].reshape(X.shape[0], 1) d = np.unique(index) #Output Indexes B = self.B.values[d] C = self.C.values[d] S = self.W.values[d, :] #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B #Output related variables must be column-wise C = C.reshape(C.size, 1) B = B.reshape(B.size, 1) C2 = C*C #Input related variables must be row-wise z = X2[:, 0].reshape(1, X2.shape[0]) lq = self.lengthscale.values.reshape((1, self.rank)) #print np.max(z), np.max(z/lq[0, index2]) alpha = .5*C wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) kfu = np.empty((t.size, z.size)) indD = np.arange(B.size) #(1) when wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] gam = alphad - 1j*w #DxQ terms Slq = (S[d]/w)*(.5*lq) c0 = Slq*np.sqrt(np.pi) nu = gam*(.5*lq) #1xM terms z_lq = z/lq[0, index2] #NxQ terms t_lq = t1/lq #NxM terms zt_lq = z_lq - t_lq[:, index2] # Upsilon Calculations #Using wofz tz = t1-z fullind = np.ix_(ind, index2) zt_lq2 = -zt_lq*zt_lq z_lq2 = -z_lq*z_lq gamt = -gam[ind]*t1 upsi = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])))) z1 = zt_lq + nu[fullind] indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upsi[t1[:, 0] == 0., :] = 0. #Covariance calculation kfu[ind3t] = c0[fullind]*upsi.imag #(2) when wd is complex if np.any(wbool): #Indexes of index and t related to (2) t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(C2[d] - 4.*B[d]) alphad = alpha[d] gam = alphad - w gamc = alphad + w #DxQ terms Slq = S[d]*(lq*.25) c0 = -Slq*(np.sqrt(np.pi)/w) nu = gam*(lq*.5) nuc = gamc*(lq*.5) #1xM terms z_lq = z/lq[0, index2] #NxQ terms t_lq = t1/lq[0, index2] #NxM terms zt_lq = z_lq - t_lq # Upsilon Calculations tz = t1-z z_lq2 = -z_lq*z_lq zt_lq2 = -zt_lq*zt_lq gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 fullind = np.ix_(ind, index2) upsi = np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])).real))\ - np.exp(z_lq2 + gamct + np.log(wofz(1j*(z_lq + nuc[fullind])).real)) z1 = zt_lq + nu[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi[indv1] -= np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] -= np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) z1 = zt_lq + nuc[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nuac2 = nuc[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nuac2 - gamc[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upsi[t1[:, 0] == 0., :] = 0. kfu[ind2t] = c0[np.ix_(ind, index2)]*upsi return kfu #Gradient of Kuu wrt lengthscale def _gkuu_lq(self, X, index): t = X[:, 0].reshape(X.shape[0],) index = index.reshape(X.shape[0],) lq = self.lengthscale.values.reshape(self.rank,) lq2 = lq*lq #Covariance matrix initialization glq = np.zeros((t.size, t.size)) #Upper triangular indices indtri1, indtri2 = np.triu_indices(t.size, 1) #Block Diagonal indices among Upper Triangular indices ind = np.where(index[indtri1] == index[indtri2]) indr = indtri1[ind] indc = indtri2[ind] r = t[indr] - t[indc] r2 = r*r r2_lq2 = r2/lq2[index[indr]] #Calculation of covariance function er2_lq2 = np.exp(-r2_lq2) #Gradient wrt lq c = 2.*r2_lq2/lq[index[indr]] glq[indr, indc] = er2_lq2*c #Complete the lower triangular glq[indc, indr] = glq[indr, indc] return glq #Be careful this derivative should be transpose it def _gkuu_X(self, X, index): #Diagonal terms are always zero t = X[:, 0].reshape(X.shape[0],) index = index.reshape(index.size,) lq = self.lengthscale.values.reshape(self.rank,) lq2 = lq*lq #Covariance matrix initialization gt = np.zeros((t.size, t.size)) #Upper triangular indices indtri1, indtri2 = np.triu_indices(t.size, 1) #Offset of 1 from the diagonal #Block Diagonal indices among Upper Triangular indices ind = np.where(index[indtri1] == index[indtri2]) indr = indtri1[ind] indc = indtri2[ind] r = t[indr] - t[indc] r2 = r*r r2_lq2 = r2/(-lq2[index[indr]]) #Calculation of covariance function er2_lq2 = np.exp(r2_lq2) #Gradient wrt t c = 2.*r/lq2[index[indr]] gt[indr, indc] = er2_lq2*c #Complete the lower triangular gt[indc, indr] = -gt[indr, indc] return gt #Gradients for Diagonal Kff def _gkdiag(self, X, index): index = index.reshape(index.size,) #terms that move along t d = np.unique(index) B = self.B[d].values C = self.C[d].values S = self.W[d, :].values #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B #Output related variables must be column-wise t = X[:, 0].reshape(X.shape[0], 1) B = B.reshape(B.size, 1) C = C.reshape(C.size, 1) alpha = .5*C C2 = C*C S2 = S*S wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #Input related variables must be row-wise lq = self.lengthscale.values.reshape(1, self.rank) lq2 = lq*lq gB = np.empty((t.size,)) gC = np.empty((t.size,)) glq = np.empty((t.size, lq.size)) gS = np.empty((t.size, lq.size)) indD = np.arange(B.size) #(1) When wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (1) t1 = t[ind3t] ind = index[ind3t] #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(.5*lq) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] alpha2 = alphad*alphad w2 = w*w gam = alphad + 1j*w gam2 = gam*gam gamc = alphad - 1j*w c1 = 0.5/alphad c2 = 0.5/gam c = c1 - c2 #DxQ terms c0 = c0/w2 nu = (.5*lq)*gam #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) egamct = np.exp(gamct) ec = egamt*c2[ind] - egamct*c1[ind] #NxQ terms t_lq = t1/lq t2_lq2 = -t_lq*t_lq t_lq2 = t_lq/lq et2_lq2 = np.exp(t2_lq2) etlq2gamt = np.exp(t2_lq2 + gamt) ##Upsilon calculations #Using wofz wnu = wofz(1j*nu) lwnu = np.log(wnu) t2_lq2 = -t_lq*t_lq upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])))) upm[t1[:, 0] == 0, :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upv[t1[:, 0] == 0, :] = 0. #Gradient wrt S Slq = S[d]*lq #For grad wrt S c0_S = Slq*np.sqrt(np.pi)/w2 K01 = c0_S*c gS[ind3t] = np.real(K01[ind]*upm) + np.real((c0_S[ind]*ec)*upv) #For B and C upmd = etlq2gamt - 1. upvd = egamt - et2_lq2 # gradient wrt B dw_dB = 0.5/w dgam_dB = 1j*dw_dB Ba1 = c0*(0.5*dgam_dB/gam2 + (0.5*lq2*gam*dgam_dB - 2.*dw_dB/w)*c) Ba2_1 = c0*(dgam_dB*(0.5/gam2 - 0.25*lq2) + dw_dB/(w*gam)) Ba2_2 = c0*dgam_dB/gam Ba3 = c0*(-0.25*lq2*gam*dgam_dB/alphad + dw_dB/(w*alphad)) Ba4_1 = (S2lq*lq)*dgam_dB/w2 Ba4 = Ba4_1*c gB[ind3t] = np.sum(np.real(Ba1[ind]*upm) - np.real(((Ba2_1[ind] + Ba2_2[ind]*t1)*egamt - Ba3[ind]*egamct)*upv)\ + np.real(Ba4[ind]*upmd) + np.real((Ba4_1[ind]*ec)*upvd), axis=1) # gradient wrt C dw_dC = - alphad*dw_dB dgam_dC = 0.5 + 1j*dw_dC Ca1 = c0*(-0.25/alpha2 + 0.5*dgam_dC/gam2 + (0.5*lq2*gam*dgam_dC - 2.*dw_dC/w)*c) Ca2_1 = c0*(dgam_dC*(0.5/gam2 - 0.25*lq2) + dw_dC/(w*gam)) Ca2_2 = c0*dgam_dC/gam Ca3_1 = c0*(0.25/alpha2 - 0.25*lq2*gam*dgam_dC/alphad + dw_dC/(w*alphad)) Ca3_2 = 0.5*c0/alphad Ca4_1 = (S2lq*lq)*dgam_dC/w2 Ca4 = Ca4_1*c gC[ind3t] = np.sum(np.real(Ca1[ind]*upm) - np.real(((Ca2_1[ind] + Ca2_2[ind]*t1)*egamt - (Ca3_1[ind] + Ca3_2[ind]*t1)*egamct)*upv)\ + np.real(Ca4[ind]*upmd) + np.real((Ca4_1[ind]*ec)*upvd), axis=1) #Gradient wrt lengthscale #DxQ terms la = (1./lq + nu*gam)*c0 la1 = la*c c0l = (S2[d]/w2)*lq la3 = c0l*c gam_2 = .5*gam glq[ind3t] = (la1[ind]*upm).real + ((la[ind]*ec)*upv).real\ + (la3[ind]*(-gam_2[ind] + etlq2gamt*(-t_lq2 + gam_2[ind]))).real\ + ((c0l[ind]*ec)*(-et2_lq2*(t_lq2 + gam_2[ind]) + egamt*gam_2[ind])).real #(2) When w_d is complex if np.any(wbool): t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(.25*lq) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(C2[d]-4.*B[d]) w2 = -w*w alphad = alpha[d] alpha2 = alphad*alphad gam = alphad - w gamc = alphad + w gam2 = gam*gam gamc2 = gamc*gamc c1 = .5/alphad c21 = .5/gam c22 = .5/gamc c = c1 - c21 c2 = c1 - c22 #DxQ terms c0 = c0/w2 nu = .5*lq*gam nuc = .5*lq*gamc #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) egamct = np.exp(gamct) ec = egamt*c21[ind] - egamct*c1[ind] ec2 = egamct*c22[ind] - egamt*c1[ind] #NxQ terms t_lq = t1/lq t2_lq2 = -t_lq*t_lq et2_lq2 = np.exp(t2_lq2) etlq2gamct = np.exp(t2_lq2 + gamct) etlq2gamt = np.exp(t2_lq2 + gamt) #Upsilon Calculations using wofz t2_lq2 = -t_lq*t_lq #Required when using wofz wnu = np.real(wofz(1j*nu)) lwnu = np.log(wnu) upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])).real)) upm[t1[:, 0] == 0., :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.)) - np.exp(t2_lq2[indv2]\ + np.log(wofz(-1j*z1[indv2]).real)) upv[t1[:, 0] == 0, :] = 0. wnuc = wofz(1j*nuc).real upmc = wnuc[ind] - np.exp(t2_lq2 + gamct + np.log(wofz(1j*(t_lq + nuc[ind])).real)) upmc[t1[:, 0] == 0., :] = 0. lwnuc = np.log(wnuc) nuc2 = nuc*nuc z1 = nuc[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upvc = -np.exp(lwnuc[ind] + gamct) if indv1[0].shape > 0: upvc[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upvc[indv2] += np.exp(nuc2[ind[indv2[0]], indv2[1]] + gamct[indv2[0], 0] + np.log(2.)) - np.exp(t2_lq2[indv2]\ + np.log(wofz(-1j*z1[indv2]).real)) upvc[t1[:, 0] == 0, :] = 0. #Gradient wrt S #NxQ terms c0_S = (S[d]/w2)*(lq*(np.sqrt(np.pi)*.5)) K011 = c0_S*c K012 = c0_S*c2 gS[ind2t] = K011[ind]*upm + K012[ind]*upmc + (c0_S[ind]*ec)*upv + (c0_S[ind]*ec2)*upvc #Is required to cache this, C gradient also required them upmd = -1. + etlq2gamt upvd = -et2_lq2 + egamt upmdc = -1. + etlq2gamct upvdc = -et2_lq2 + egamct # Gradient wrt B dgam_dB = 0.5/w dgamc_dB = -dgam_dB Ba1 = c0*(0.5*dgam_dB/gam2 + (0.5*lq2*gam*dgam_dB - 1./w2)*c) Ba3 = c0*(-0.25*lq2*gam*dgam_dB/alphad + 0.5/(w2*alphad)) Ba4_1 = (S2lq*lq)*dgam_dB/w2 Ba4 = Ba4_1*c Ba2_1 = c0*(dgam_dB*(0.5/gam2 - 0.25*lq2) + 0.5/(w2*gam)) Ba2_2 = c0*dgam_dB/gam Ba1c = c0*(0.5*dgamc_dB/gamc2 + (0.5*lq2*gamc*dgamc_dB - 1./w2)*c2) Ba3c = c0*(-0.25*lq2*gamc*dgamc_dB/alphad + 0.5/(w2*alphad)) Ba4_1c = (S2lq*lq)*dgamc_dB/w2 Ba4c = Ba4_1c*c2 Ba2_1c = c0*(dgamc_dB*(0.5/gamc2 - 0.25*lq2) + 0.5/(w2*gamc)) Ba2_2c = c0*dgamc_dB/gamc gB[ind2t] = np.sum(Ba1[ind]*upm - ((Ba2_1[ind] + Ba2_2[ind]*t1)*egamt - Ba3[ind]*egamct)*upv\ + Ba4[ind]*upmd + (Ba4_1[ind]*ec)*upvd\ + Ba1c[ind]*upmc - ((Ba2_1c[ind] + Ba2_2c[ind]*t1)*egamct - Ba3c[ind]*egamt)*upvc\ + Ba4c[ind]*upmdc + (Ba4_1c[ind]*ec2)*upvdc, axis=1) ##Gradient wrt C dw_dC = 0.5*alphad/w dgam_dC = 0.5 - dw_dC dgamc_dC = 0.5 + dw_dC S2lq2 = S2lq*lq Ca1 = c0*(-0.25/alpha2 + 0.5*dgam_dC/gam2 + (0.5*lq2*gam*dgam_dC + alphad/w2)*c) Ca2_1 = c0*(dgam_dC*(0.5/gam2 - 0.25*lq2) - 0.5*alphad/(w2*gam)) Ca2_2 = c0*dgam_dC/gam Ca3_1 = c0*(0.25/alpha2 - 0.25*lq2*gam*dgam_dC/alphad - 0.5/w2) Ca3_2 = 0.5*c0/alphad Ca4_1 = S2lq2*(dgam_dC/w2) Ca4 = Ca4_1*c Ca1c = c0*(-0.25/alpha2 + 0.5*dgamc_dC/gamc2 + (0.5*lq2*gamc*dgamc_dC + alphad/w2)*c2) Ca2_1c = c0*(dgamc_dC*(0.5/gamc2 - 0.25*lq2) - 0.5*alphad/(w2*gamc)) Ca2_2c = c0*dgamc_dC/gamc Ca3_1c = c0*(0.25/alpha2 - 0.25*lq2*gamc*dgamc_dC/alphad - 0.5/w2) Ca3_2c = 0.5*c0/alphad Ca4_1c = S2lq2*(dgamc_dC/w2) Ca4c = Ca4_1c*c2 gC[ind2t] = np.sum(Ca1[ind]*upm - ((Ca2_1[ind] + Ca2_2[ind]*t1)*egamt - (Ca3_1[ind] + Ca3_2[ind]*t1)*egamct)*upv\ + Ca4[ind]*upmd + (Ca4_1[ind]*ec)*upvd\ + Ca1c[ind]*upmc - ((Ca2_1c[ind] + Ca2_2c[ind]*t1)*egamct - (Ca3_1c[ind] + Ca3_2c[ind]*t1)*egamt)*upvc\ + Ca4c[ind]*upmdc + (Ca4_1c[ind]*ec2)*upvdc, axis=1) #Gradient wrt lengthscale #DxQ terms la = (1./lq + nu*gam)*c0 lac = (1./lq + nuc*gamc)*c0 la1 = la*c la1c = lac*c2 t_lq2 = t_lq/lq c0l = (S2[d]/w2)*(.5*lq) la3 = c0l*c la3c = c0l*c2 gam_2 = .5*gam gamc_2 = .5*gamc glq[ind2t] = la1c[ind]*upmc + (lac[ind]*ec2)*upvc\ + la3c[ind]*(-gamc_2[ind] + etlq2gamct*(-t_lq2 + gamc_2[ind]))\ + (c0l[ind]*ec2)*(-et2_lq2*(t_lq2 + gamc_2[ind]) + egamct*gamc_2[ind])\ + la1[ind]*upm + (la[ind]*ec)*upv\ + la3[ind]*(-gam_2[ind] + etlq2gamt*(-t_lq2 + gam_2[ind]))\ + (c0l[ind]*ec)*(-et2_lq2*(t_lq2 + gam_2[ind]) + egamt*gam_2[ind]) return glq, gS, gB, gC def _gkfu(self, X, index, Z, index2): index = index.reshape(index.size,) #TODO: reduce memory usage #terms that move along t d = np.unique(index) B = self.B[d].values C = self.C[d].values S = self.W[d, :].values #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B #t column t = X[:, 0].reshape(X.shape[0], 1) C = C.reshape(C.size, 1) B = B.reshape(B.size, 1) C2 = C*C #z row z = Z[:, 0].reshape(1, Z.shape[0]) index2 = index2.reshape(index2.size,) lq = self.lengthscale.values.reshape((1, self.rank)) lq2 = lq*lq alpha = .5*C wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #kfu = np.empty((t.size, z.size)) glq = np.empty((t.size, z.size)) gSdq = np.empty((t.size, z.size)) gB = np.empty((t.size, z.size)) gC = np.empty((t.size, z.size)) indD = np.arange(B.size) #(1) when wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] gam = alphad - 1j*w gam_2 = .5*gam S_w = S[d]/w S_wpi = S_w*(.5*np.sqrt(np.pi)) #DxQ terms c0 = S_wpi*lq #lq*Sdq*sqrt(pi)/(2w) nu = gam*lq nu2 = 1.+.5*(nu*nu) nu *= .5 #1xM terms z_lq = z/lq[0, index2] z_lq2 = -z_lq*z_lq #NxQ terms t_lq = t1/lq #DxM terms gamt = -gam[ind]*t1 #NxM terms zt_lq = z_lq - t_lq[:, index2] zt_lq2 = -zt_lq*zt_lq ezt_lq2 = -np.exp(zt_lq2) ezgamt = np.exp(z_lq2 + gamt) # Upsilon calculations fullind = np.ix_(ind, index2) upsi = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])))) tz = t1-z z1 = zt_lq + nu[fullind] indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upsi[t1[:, 0] == 0., :] = 0. #Gradient wrt S #DxQ term Sa1 = lq*(.5*np.sqrt(np.pi))/w gSdq[ind3t] = Sa1[np.ix_(ind, index2)]*upsi.imag #Gradient wrt lq la1 = S_wpi*nu2 la2 = S_w*lq uplq = ezt_lq2*(gam_2[ind]) uplq += ezgamt*(-z_lq/lq[0, index2] + gam_2[ind]) glq[ind3t] = (la1[np.ix_(ind, index2)]*upsi).imag glq[ind3t] += la2[np.ix_(ind, index2)]*uplq.imag #Gradient wrt B #Dx1 terms dw_dB = .5/w dgam_dB = -1j*dw_dB #DxQ terms Ba1 = -c0*dw_dB/w #DXQ Ba2 = c0*dgam_dB #DxQ Ba3 = lq2*gam_2 #DxQ Ba4 = (dgam_dB*S_w)*(.5*lq2) #DxQ gB[ind3t] = ((Ba1[np.ix_(ind, index2)] + Ba2[np.ix_(ind, index2)]*(Ba3[np.ix_(ind, index2)] - (t1-z)))*upsi).imag\ + (Ba4[np.ix_(ind, index2)]*(ezt_lq2 + ezgamt)).imag #Gradient wrt C (it uses some calculations performed in B) #Dx1 terms dw_dC = -.5*alphad/w dgam_dC = 0.5 - 1j*dw_dC #DxQ terms Ca1 = -c0*dw_dC/w #DXQ Ca2 = c0*dgam_dC #DxQ Ca4 = (dgam_dC*S_w)*(.5*lq2) #DxQ gC[ind3t] = ((Ca1[np.ix_(ind, index2)] + Ca2[np.ix_(ind, index2)]*(Ba3[np.ix_(ind, index2)] - (t1-z)))*upsi).imag\ + (Ca4[np.ix_(ind, index2)]*(ezt_lq2 + ezgamt)).imag #(2) when wd is complex if np.any(wbool): #Indexes of index and t related to (2) t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(C2[d] - 4.*B[d]) w2 = w*w alphad = alpha[d] gam = alphad - w gamc = alphad + w #DxQ terms S_w= -S[d]/w #minus is given by j*j S_wpi = S_w*(.25*np.sqrt(np.pi)) c0 = S_wpi*lq gam_2 = .5*gam gamc_2 = .5*gamc nu = gam*lq nuc = gamc*lq nu2 = 1.+.5*(nu*nu) nuc2 = 1.+.5*(nuc*nuc) nu *= .5 nuc *= .5 #1xM terms z_lq = z/lq[0, index2] z_lq2 = -z_lq*z_lq #Nx1 gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 #NxQ terms t_lq = t1/lq[0, index2] #NxM terms zt_lq = z_lq - t_lq zt_lq2 = -zt_lq*zt_lq ezt_lq2 = -np.exp(zt_lq2) ezgamt = np.exp(z_lq2 + gamt) ezgamct = np.exp(z_lq2 + gamct) # Upsilon calculations fullind = np.ix_(ind, index2) upsi1 = - np.exp(z_lq2 + gamct + np.log(wofz(1j*(z_lq + nuc[fullind])).real)) tz = t1-z z1 = zt_lq + nuc[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi1[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nuac2 = nuc[ind[indv2[0]], index2[indv2[1]]]**2 upsi1[indv2] += np.exp(nuac2 - gamc[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upsi1[t1[:, 0] == 0., :] = 0. upsi2 = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])).real)) z1 = zt_lq + nu[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi2[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi2[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upsi2[t1[:, 0] == 0., :] = 0. #Gradient wrt lq la1 = S_wpi*nu2 la1c = S_wpi*nuc2 la2 = S_w*(.5*lq) uplq = ezt_lq2*(gamc_2[ind]) + ezgamct*(-z_lq/lq[0, index2] + gamc_2[ind])\ - ezt_lq2*(gam_2[ind]) - ezgamt*(-z_lq/lq[0, index2] + gam_2[ind]) glq[ind2t] = la1c[np.ix_(ind, index2)]*upsi1 - la1[np.ix_(ind, index2)]*upsi2\ + la2[np.ix_(ind, index2)]*uplq #Gradient wrt S Sa1 = (lq*(-.25*np.sqrt(np.pi)))/w gSdq[ind2t] = Sa1[np.ix_(ind, index2)]*(upsi1 - upsi2) #Gradient wrt B #Dx1 terms dgam_dB = .5/w dgamc_dB = -dgam_dB #DxQ terms Ba1 = .5*(c0/w2) Ba2 = c0*dgam_dB Ba3 = lq2*gam_2 Ba4 = (dgam_dB*S_w)*(.25*lq2) Ba2c = c0*dgamc_dB Ba3c = lq2*gamc_2 Ba4c = (dgamc_dB*S_w)*(.25*lq2) gB[ind2t] = (Ba1[np.ix_(ind, index2)] + Ba2c[np.ix_(ind, index2)]*(Ba3c[np.ix_(ind, index2)] - (t1-z)))*upsi1\ + Ba4c[np.ix_(ind, index2)]*(ezt_lq2 + ezgamct)\ - (Ba1[np.ix_(ind, index2)] + Ba2[np.ix_(ind, index2)]*(Ba3[np.ix_(ind, index2)] - (t1-z)))*upsi2\ - Ba4[np.ix_(ind, index2)]*(ezt_lq2 + ezgamt) #Gradient wrt C #Dx1 terms dgam_dC = 0.5 - .5*(alphad/w) dgamc_dC = 0.5 + .5*(alphad/w) #DxQ terms Ca1 = -c0*(.5*alphad/w2) Ca2 = c0*dgam_dC Ca4 = (dgam_dC*S_w)*(.25*lq2) Ca2c = c0*dgamc_dC Ca4c = (dgamc_dC*S_w)*(.25*lq2) gC[ind2t] = (Ca1[np.ix_(ind, index2)] + Ca2c[np.ix_(ind, index2)]*(Ba3c[np.ix_(ind, index2)] - (t1-z)))*upsi1\ + Ca4c[np.ix_(ind, index2)]*(ezt_lq2 + ezgamct)\ - (Ca1[np.ix_(ind, index2)] + Ca2[np.ix_(ind, index2)]*(Ba3[np.ix_(ind, index2)] - (t1-z)))*upsi2\ - Ca4[np.ix_(ind, index2)]*(ezt_lq2 + ezgamt) return glq, gSdq, gB, gC #TODO: reduce memory usage def _gkfu_z(self, X, index, Z, index2): #Kfu(t,z) index = index.reshape(index.size,) #terms that move along t d = np.unique(index) B = self.B[d].values C = self.C[d].values S = self.W[d, :].values #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #t column t = X[:, 0].reshape(X.shape[0], 1) C = C.reshape(C.size, 1) B = B.reshape(B.size, 1) C2 = C*C alpha = .5*C #z row z = Z[:, 0].reshape(1, Z.shape[0]) index2 = index2.reshape(index2.size,) lq = self.lengthscale.values.reshape((1, self.rank)) #kfu = np.empty((t.size, z.size)) gz = np.empty((t.size, z.size)) indD = np.arange(B.size) #(1) when wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] #TODO: Find a better way of doing this #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] gam = alphad - 1j*w S_w = S[d]/w S_wpi =S_w*(.5*np.sqrt(np.pi)) #DxQ terms c0 = S_wpi*lq #lq*Sdq*sqrt(pi)/(2w) nu = (.5*gam)*lq #1xM terms z_lq = z/lq[0, index2] z_lq2 = -z_lq*z_lq #NxQ terms t_lq = t1/lq #DxM terms gamt = -gam[ind]*t1 #NxM terms zt_lq = z_lq - t_lq[:, index2] zt_lq2 = -zt_lq*zt_lq #ezt_lq2 = -np.exp(zt_lq2) ezgamt = np.exp(z_lq2 + gamt) # Upsilon calculations fullind = np.ix_(ind, index2) upsi = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])))) tz = t1-z z1 = zt_lq + nu[fullind] indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upsi[t1[:, 0] == 0., :] = 0. #Gradient wrt z za1 = c0*gam #za2 = S_w gz[ind3t] = (za1[np.ix_(ind, index2)]*upsi).imag + S_w[
np.ix_(ind, index2)
numpy.ix_
import numpy as np from numpy import linalg import time import sys import math import cmath global pi pi = np.pi global sin sin = np.sin global cos cos = np.cos global asin asin = np.arcsin global acos acos = np.arccos global atan2 atan2 = np.arctan2 def asind(x): temp_theta = asin(x.real) return np.multiply(temp_theta,180.0/pi) def acosd(x): temp_theta = acos(x.real) return np.multiply(temp_theta,180.0/pi) def sind(x): tempx = np.multiply(x,pi/180.0) return sin(tempx) def cosd(x): tempx = np.multiply(x,pi/180.0) return cos(tempx) def tand(x): tempx = np.multiply(x,pi/180.0) return tan(tempx) def atan2d(x,y): try: temp_theta = atan2(x.real,y.real) return np.multiply(temp_theta,180.0/pi) except: pdb.set_trace() def blockPrint(): sys.stdout = open(os.devnull, 'w') def enablePrint(): sys.stdout = sys.__stdout__ def wait_till(TIME_STAMP): tDiff = TIME_STAMP-time.time() while(time.time()<TIME_STAMP): wait_time = TIME_STAMP - time.time() #sys.stdout.write("Wait time: %d seconds \r" % (wait_time)) #sys.stdout.flush() return tDiff def read_file(file_name): f = open(file_name, "r") s = f.read() f.close() return s def rotx(x): c = cosd(x) s = sind(x) R = np.matrix([[1,0,0], [0,c,-s], [0, s, c]]) return R def roty(x): c = cosd(x) s = sind(x) R =
np.matrix([[c, 0, s], [0, 1, 0], [-s, 0, c]])
numpy.matrix
''' Created on Dec 15, 2015 @author: <NAME> ''' import unittest import os import numpy as np from scipy.spatial.distance import euclidean from smac.configspace import pcs from smac.optimizer.local_search import LocalSearch from smac.configspace import ConfigurationSpace from ConfigSpace.hyperparameters import CategoricalHyperparameter, \ UniformFloatHyperparameter, UniformIntegerHyperparameter def rosenbrock_4d(cfg): x1 = cfg["x1"] x2 = cfg["x2"] x3 = cfg["x3"] x4 = cfg["x4"] val = (100 * (x2 - x1 ** 2) ** 2 + (x1 - 1) ** 2 + 100 * (x3 - x2 ** 2) ** 2 + (x2 - 1) ** 2 + 100 * (x4 - x3 ** 2) ** 2 + (x3 - 1) ** 2) return(val) class TestLocalSearch(unittest.TestCase): def setUp(self): current_dir = os.path.dirname(__file__) self.test_files_dir = os.path.join(current_dir, '..', 'test_files') seed = np.random.randint(1, 100000) self.cs = ConfigurationSpace(seed=seed) x1 = UniformFloatHyperparameter("x1", -5, 5, default=5) self.cs.add_hyperparameter(x1) x2 = UniformIntegerHyperparameter("x2", -5, 5, default=5) self.cs.add_hyperparameter(x2) x3 = CategoricalHyperparameter( "x3", [5, 2, 0, 1, -1, -2, 4, -3, 3, -5, -4], default=5) self.cs.add_hyperparameter(x3) x4 = UniformIntegerHyperparameter("x4", -5, 5, default=5) self.cs.add_hyperparameter(x4) def test_local_search(self): def acquisition_function(point): opt = np.array([1, 1, 1, 1]) dist = [euclidean(point, opt)] return -np.min(dist) l = LocalSearch(acquisition_function, self.cs, epsilon=1e-10, max_iterations=100000) start_point = self.cs.sample_configuration() acq_val_start_point = acquisition_function(start_point.get_array()) _, acq_val_incumbent = l.maximize(start_point) # Local search needs to find something that is as least as good as the # start point self.assertLessEqual(acq_val_start_point, acq_val_incumbent) def test_local_search_2(self): pcs_file = os.path.join(self.test_files_dir, "test_local_search.pcs") seed =
np.random.randint(1, 100000)
numpy.random.randint
#!/usr/bin/env python3.8 import cv2 import numpy as np import rospy from geometry_msgs.msg import Twist from sensor_msgs.msg import Image, LaserScan from std_msgs.msg import String class ScanTest: def __init__(self): # self.scan = LaserScan() self.sub_scan = rospy.Subscriber("scan", LaserScan, self.scan_callback) self.pub_test = rospy.Publisher("test", String, queue_size=10) # self.vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=1) # self.image_pub = rospy.Publisher("cv_image", Image, queue_size=1) def scan_callback(self, scan: LaserScan): self.scan = scan rospy.loginfo(
np.array(self.scan.ranges)
numpy.array
import numpy as np import matplotlib.pyplot as plt func_axis = np.arange(-100,100) u = np.heaviside(func_axis,1) u_p_4 = np.roll(u,-4) #the end wont be plotted so dont care u_m_5 = np.roll(u,5) #starting function x = func_axis*(u_p_4-u_m_5) x_graph = x[90:111] plot_axis = np.arange(-10,11) plt.figure(1) plt.stem(plot_axis,x_graph,use_line_collection=True) plt.savefig('test.png')#just for reference #1a g1 = np.roll(x_graph,3) plt.figure(2) plt.stem(plot_axis,g1,use_line_collection=True) plt.xlabel("n") plt.ylabel("g1[n]") plt.savefig("hw1_1a.png") #1b g2 = np.zeros(21,dtype=int) for i, point in enumerate(g2): index = i-10 g2[i] = x[(2*index-3)+100] plt.figure(3) plt.stem(plot_axis,g2,use_line_collection=True) plt.xlabel("n") plt.ylabel("g2[n]") plt.savefig("hw1_1b.png") #1c plt.figure(4) g3 = np.flip(x_graph) g3 = np.roll(g3,1) plt.stem(plot_axis,g3,use_line_collection=True) plt.xlabel("n") plt.ylabel("g3[n]") plt.savefig("hw1_1c.png") #1d plt.figure(5) g4 =np.roll(g3,2) plt.stem(plot_axis,g4,use_line_collection=True) plt.xlabel("n") plt.ylabel("g4[n]") plt.savefig("hw1_1d.png") #1e g5 = np.zeros(21, dtype=int) for i, point in enumerate(g5): index = i-10 if (int(index/2) == float(index)/2): g5[i] = x[int(index/2)+100] plt.figure(6) plt.stem(plot_axis,g5,use_line_collection=True) plt.xlabel("n") plt.ylabel("g5[n]") plt.savefig("hw1_1e.png") #1f delta = np.zeros(21, dtype=int) delta[10] =1 g6 = x_graph*delta plt.figure(7) plt.stem(plot_axis,g6,use_line_collection=True) plt.xlabel("n") plt.ylabel("g6[n]") plt.savefig("hw1_1f.png") #---------------------------------------------# #Problem 2A #---------------------------------------------# #generate x x_n =
np.zeros(21)
numpy.zeros
#!/usr/bin/env python """ Tests some aspect of ia_utilities. """ import numpy import tifffile import storm_analysis.sa_library.dao_fit_c as daoFitC import storm_analysis.sa_library.ia_utilities_c as iaUtilsC import storm_analysis.simulator.draw_gaussians_c as dg def imagesCopy(images): images_copy = [] for image in images: images_copy.append(numpy.copy(image)) return images_copy def test_ia_util_1(): """ Test finding peaks in an empty image. """ x_size = 100 y_size = 80 images = [numpy.zeros((x_size,y_size), dtype = numpy.float64)] z_values = [0.1] mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2, threshold = 1, z_values = z_values) [x, y, z] = mxf.findMaxima(images) assert(x.size == 0) def test_ia_util_2(): """ Test finding peaks in an image. """ x_size = 100 y_size = 80 images = [numpy.zeros((x_size,y_size), dtype = numpy.float64)] z_values = [0.1] # Above threshold, unequal height. images[0][10,11] = 1.1 images[0][10,12] = 1.5 # Above threshold, equal height. images[0][15,8] = 1.5 images[0][15,9] = 1.5 # Below threshold. images[0][20,11] = 0.5 mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2, threshold = 1, z_values = z_values) [x, y, z, h] = mxf.findMaxima(images, want_height = True) assert(x.size == 2) for i in range(z.size): assert (abs(z[i] - z_values[0]) < 1.0e-6) assert (abs(h[i] - 1.5) < 1.0e-6) def test_ia_util_3(): """ Test agreement with fitting regarding orientation. """ height = 20.0 sigma = 1.5 x_size = 100 y_size = 120 background = numpy.zeros((x_size, y_size)) + 10.0 image = dg.drawGaussians((x_size, y_size), numpy.array([[20.0, 40.0, height, sigma, sigma]])) image += background # Configure fitter. mfit = daoFitC.MultiFitter2D() mfit.initializeC(image) mfit.newImage(image) mfit.newBackground(background) # Configure finder. z_values = [0.0] mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2 * sigma, threshold = background[0,0] + 0.5*height, z_values = z_values) # Find peaks. [x, y, z] = mxf.findMaxima([image]) sigma = numpy.ones(x.size) * sigma peaks = {"x" : x, "y" : y, "z" : z, "sigma" : sigma} # Pass peaks to fitter. mfit.newPeaks(peaks, "finder") # Check height. h = mfit.getPeakProperty("height") for i in range(h.size): assert (abs(h[i] - height)/height < 0.1) # Check background. bg = mfit.getPeakProperty("background") for i in range(bg.size): assert (abs(bg[i] - 10.0) < 1.0e-6) mfit.cleanup(verbose = False) def test_ia_util_4(): """ Multiple z planes test. """ x_size = 100 y_size = 80 images = [numpy.zeros((x_size,y_size), dtype = numpy.float64), numpy.zeros((x_size,y_size), dtype = numpy.float64), numpy.zeros((x_size,y_size), dtype = numpy.float64)] z_values = [1.0,2.0,3.0] images[0][20,10] = 1.3 images[1][20,10] = 1.2 images[2][20,10] = 1.5 # Default z range (the entire stack). mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2, threshold = 1, z_values = z_values) [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert(x.size == 1) assert(abs(z[0] - z_values[2]) < 1.0e-6) # z range is limited to adjacent slices. # mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2, threshold = 1, z_range = 1, z_values = z_values) [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert(x.size == 2) assert(abs(z[0] - z_values[0]) < 1.0e-6) assert(abs(z[1] - z_values[2]) < 1.0e-6) # z range is limited to current slice. # mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2, threshold = 1, z_range = 0, z_values = z_values) [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert(x.size == 3) for i in range(z.size): assert(abs(z[i] - z_values[i]) < 1.0e-6) def test_ia_util_5(): """ Test that limits on the number of peak duplicates are working. """ x_size = 100 y_size = 80 images = [numpy.zeros((x_size,y_size), dtype = numpy.float64)] z_values = [0.1] # Single peak. images[0][10,21] = 1.1 images[0][10,20] = 1.2 mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2, threshold = 1, z_values = z_values) # Find the peak. [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == 1) # This should not find anything, since the peak was # already found above. [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == 0) # Reset and now we should find it again. mxf.resetTaken() [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == 1) def test_ia_util_6(): """ Test radius. """ x_size = 100 y_size = 80 images = [numpy.zeros((x_size,y_size), dtype = numpy.float64)] z_values = [0.1] images[0][10,23] = 1.2 images[0][10,22] = 1.1 images[0][10,21] = 1.1 images[0][10,20] = 1.2 # Should only find 1 peak. mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 3, threshold = 1, z_values = z_values) [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == 1) # Should find two peaks. mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2, threshold = 1, z_values = z_values) [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == 2) def test_ia_util_7(): """ Test margin. """ x_size = 100 y_size = 80 images = [numpy.zeros((x_size,y_size), dtype = numpy.float64)] z_values = [0.1] images[0][10,5] = 1.2 images[0][10,6] = 1.1 images[0][10,7] = 1.1 images[0][20,10] = 1.1 images[0][20,11] = 1.2 # Should only find 1 peak. mxf = iaUtilsC.MaximaFinder(margin = 6, radius = 3, threshold = 1, z_values = z_values) [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == 1) # Should find two peaks. mxf = iaUtilsC.MaximaFinder(margin = 4, radius = 3, threshold = 1, z_values = z_values) [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == 2) def test_ia_util_8(): """ Test allowing multiple duplicates. """ x_size = 100 y_size = 80 images = [numpy.zeros((x_size,y_size), dtype = numpy.float64)] z_values = [0.1] # Single peak. images[0][10,21] = 1.1 images[0][10,20] = 1.2 mxf = iaUtilsC.MaximaFinder(margin = 1, n_duplicates = 2, radius = 2, threshold = 1, z_values = z_values) # Find the peak. np = [1, 1, 0] for elt in np: [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == elt) # Reset. mxf.resetTaken() # Test again. np = [1, 1, 0] for elt in np: [x, y, z] = mxf.findMaxima(imagesCopy(images)) assert (x.size == elt) def test_ia_util_9(): """ Test runningIfHasNeighbors() function. """ # Test 4 of 5 with new neighbors, one in error state. c_x = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0]) c_y = numpy.array([1.0, 1.0, 1.0, 1.0, 1.0]) n_x = numpy.array([1.1, 2.1, 3.1, 4.1]) n_y = numpy.array([1.1, 1.1, 1.1, 1.1]) status = numpy.array([0, 1, 2, 1, 1], dtype = numpy.int32) new_status = iaUtilsC.runningIfHasNeighbors(status, c_x, c_y, n_x, n_y, 0.5) correct = [0, 0, 2, 0, 1] for i in range(new_status.size): assert(new_status[i] == correct[i]) # Test 2 of 5 with new neighbors, one in error state. n_x = numpy.array([1.9, 2.1]) n_y = numpy.array([1.1, 1.1]) status = numpy.array([0, 1, 2, 1, 1], dtype = numpy.int32) new_status = iaUtilsC.runningIfHasNeighbors(status, c_x, c_y, n_x, n_y, 0.5) correct = [0, 0, 2, 1, 1] for i in range(new_status.size): assert(new_status[i] == correct[i]) # Test 1 of 2 with new neighbors, but both with radius of each other. c_x = numpy.array([2.0, 3.0]) c_y = numpy.array([2.0, 2.0]) n_x = numpy.array([1.0]) n_y = numpy.array([2.0]) status = numpy.array([1, 1], dtype = numpy.int32) new_status = iaUtilsC.runningIfHasNeighbors(status, c_x, c_y, n_x, n_y, 1.5) correct = [0, 1] for i in range(new_status.size): assert(new_status[i] == correct[i]) def test_ia_util_10(): """ Test markDimmerPeaks() function. """ n_peaks = 25 x = numpy.random.uniform(size = n_peaks) y = numpy.random.uniform(size = n_peaks) h = numpy.random.uniform(size = n_peaks) + 1.0 status = numpy.ones(n_peaks, dtype = numpy.int32)*iaUtilsC.CONVERGED # Make first peak the tallest. h[0] = 4.0 # Move last peak outside of the removal radius. x[-1] = 4.0 # Move second to last peak away from everything. x[-2] = 40.0 assert (iaUtilsC.markDimmerPeaks(x, y, h, status, 2.0, 5.0) == (n_peaks - 3)) for i in range(1,n_peaks-2): assert(status[i] == iaUtilsC.ERROR) assert(status[0] == iaUtilsC.RUNNING) assert(status[-1] == iaUtilsC.RUNNING) assert(status[-2] == iaUtilsC.CONVERGED) def test_ia_util_11(): """ Test finding peaks in an image. """ x_size = 100 y_size = 80 images = [numpy.zeros((x_size,y_size), dtype = numpy.float64)] z_values = [0.1] # A row of peaks greater than radius with decreasing heights, there # should still only be a single maxima. images[0][10,11] = 1.6 images[0][10,12] = 1.5 images[0][10,13] = 1.4 images[0][10,14] = 1.3 images[0][10,15] = 1.2 images[0][10,16] = 1.1 mxf = iaUtilsC.MaximaFinder(margin = 1, radius = 2, threshold = 1, z_values = z_values) [x, y, z] = mxf.findMaxima(images) assert(x.size == 1) assert(abs(x[0] - 11.0) < 1.0e-6) assert(abs(y[0] - 10.0) < 1.0e-6) def test_ia_util_12(): """ Test removeNeighbors(). """ x = numpy.array([1.0, 2.0, 4.0]) y = numpy.ones(x.size) [px, py] = iaUtilsC.removeNeighbors(x, y, 0.5) assert(px.size == 3) assert(py.size == 3) [px, py] = iaUtilsC.removeNeighbors(x, y, 1.5) assert(px.size == 1) assert(py.size == 1) def test_ia_util_13(): """ Test marking peak status (and neighbors status) based on significance. """ px = numpy.array([30.0,35.0,40.0]) py = numpy.array([30.0,30.0,30.0]) sig = numpy.array([1.0,2.0,3.0]) # This should not update anything. status = numpy.ones(3, dtype = numpy.int32)*iaUtilsC.CONVERGED n_marked = iaUtilsC.markLowSignificancePeaks(px, py, sig, status, 0.0, 7.0) assert(n_marked == 0) for i in range(3): assert(status[i] == iaUtilsC.CONVERGED) # This should only mark the first peak for removal. status = numpy.ones(3, dtype = numpy.int32)*iaUtilsC.CONVERGED n_marked = iaUtilsC.markLowSignificancePeaks(px, py, sig, status, sig[0] + 0.1, 3.0) assert(n_marked == 1) assert(status[0] == iaUtilsC.ERROR) assert(status[1] == iaUtilsC.CONVERGED) assert(status[2] == iaUtilsC.CONVERGED) # This should the first peak for removal and the second as RUNNING. status = numpy.ones(3, dtype = numpy.int32)*iaUtilsC.CONVERGED n_marked = iaUtilsC.markLowSignificancePeaks(px, py, sig, status, sig[0] + 0.1, 7.0) assert(n_marked == 1) assert(status[0] == iaUtilsC.ERROR) assert(status[1] == iaUtilsC.RUNNING) assert(status[2] == iaUtilsC.CONVERGED) # This should the first peak for removal and both others as RUNNING. status = numpy.ones(3, dtype = numpy.int32)*iaUtilsC.CONVERGED n_marked = iaUtilsC.markLowSignificancePeaks(px, py, sig, status, sig[0] + 0.1, 11.0) assert(n_marked == 1) assert(status[0] == iaUtilsC.ERROR) assert(status[1] == iaUtilsC.RUNNING) assert(status[2] == iaUtilsC.RUNNING) # This should the first peak & second for removal and the last as RUNNING. status = numpy.ones(3, dtype = numpy.int32)*iaUtilsC.CONVERGED n_marked = iaUtilsC.markLowSignificancePeaks(px, py, sig, status, sig[1] + 0.1, 7.0) assert(n_marked == 2) assert(status[0] == iaUtilsC.ERROR) assert(status[1] == iaUtilsC.ERROR) assert(status[2] == iaUtilsC.RUNNING) def test_ia_util_14(): """ Some tests of our KDTree. """ x1 = numpy.array([1.0, 2.0, 3.0]) y1 = numpy.array([1.0, 1.0, 1.0]) kd = iaUtilsC.KDTree(x = x1, y = y1) x2 = numpy.array([1.1, 4.0]) y2 =
numpy.array([1.0, 1.0])
numpy.array
from collections import OrderedDict import numpy as np from skimage import measure # TODO: Refactoring def eval_synthetic(it, gen, data, tag='', batch_size = 128, sampler=None): metrics = OrderedDict() if sampler is not None: z = sampler(batch_size * 8) # TODO: Originally 1024 samples = gen(z) # Feed z else: samples = gen(batch_size * 8) # Generate n images TODO: Originally 1024 # Simple metric for MoG (VEEGAN, https://arxiv.org/abs/1705.07761) if 'get_hq_ratio' in dir(data) and 'get_n_modes' in dir(data): metrics['hq_ratio'] = data.get_hq_ratio(samples) * 100.0 metrics['modes_ratio'] = data.get_n_modes(samples) / float(data.n_modes) * 100.0 print( "{}({}) ".format(tag, it), ', '.join(['{}={:.2f}'.format(k, v) for k, v in metrics.iteritems()])) return metrics # TODO: Refactoring # Simple & naive evaluation function def eval_images_naive(it, gen, data, tag='', sampler=None): metrics = OrderedDict() if sampler is not None: z = sampler(128) samples = gen(z) # Feed z else: samples = gen(128) # Generate n images true_samples = data.validation.images true_labels = data.validation.labels if 'labels' in dir(data.validation) else None # Compute dist. dist_func = lambda a, b: np.linalg.norm((a - b).reshape((-1)), ord=2) # Distance: (generated samples) x (true samples) dist = np.array([[dist_func(x, x_true) for x_true in true_samples] for x in samples]) best_matching_i_true = np.argmin(dist, axis=1) metrics['n_modes'] = len(np.unique(best_matching_i_true)) metrics['ave_dist'] = np.average(np.min(dist, axis=1)) # Check the labels (if exist) if true_labels is not None: label_cnts = np.sum(true_labels[best_matching_i_true], axis=0) metrics['n_labels'] = np.sum(label_cnts > 0) # Compute SSIM among top-k candidates (XXX: No supporting evidence for this approx.) k = 10 top_k_matching_samples = np.argpartition(dist, k, axis=1)[:, :k] # Please refer to https://en.wikipedia.org/wiki/Structural_similarity # compare_ssim assumes (W, H, C) ordering sim_func = lambda a, b: measure.compare_ssim(a, b, multichannel=True, data_range=2.0) # Similarity: (generated samples) x (top-k candidates) sim = [[sim_func(samples[i], true_samples[i_true]) for i_true in i_topk] \ for i, i_topk in enumerate(top_k_matching_samples)] sim = np.array(sim) metrics['ave_sim'] = np.average(
np.max(sim, axis=1)
numpy.max
#!/usr/bin/python3 # -*- coding=utf-8 -*- import numpy as np from scipy.special import expit from common.yolo_postprocess_np import yolo_handle_predictions, yolo_correct_boxes, yolo_adjust_boxes def yolo5_decode_single_head(prediction, anchors, num_classes, input_dims, scale_x_y): '''Decode final layer features to bounding box parameters.''' batch_size = np.shape(prediction)[0] num_anchors = len(anchors) grid_size = np.shape(prediction)[1:3] #check if stride on height & width are same assert input_dims[0]//grid_size[0] == input_dims[1]//grid_size[1], 'model stride mismatch.' stride = input_dims[0] // grid_size[0] prediction = np.reshape(prediction, (batch_size, grid_size[0] * grid_size[1] * num_anchors, num_classes + 5)) ################################ # generate x_y_offset grid map grid_y = np.arange(grid_size[0]) grid_x = np.arange(grid_size[1]) x_offset, y_offset = np.meshgrid(grid_x, grid_y) x_offset = np.reshape(x_offset, (-1, 1)) y_offset = np.reshape(y_offset, (-1, 1)) x_y_offset = np.concatenate((x_offset, y_offset), axis=1) x_y_offset = np.tile(x_y_offset, (1, num_anchors)) x_y_offset = np.reshape(x_y_offset, (-1, 2)) x_y_offset = np.expand_dims(x_y_offset, 0) ################################ # Log space transform of the height and width anchors = np.tile(anchors, (grid_size[0] * grid_size[1], 1)) anchors = np.expand_dims(anchors, 0) assert scale_x_y, 'YOLOv5 decode should have scale_x_y.' # YOLOv5 box decode # # Now all the prediction part (x,y,w,h,obj,cls) use # sigmoid(expit) for decode, so we do it together # # Reference: # https://github.com/ultralytics/yolov5/blob/master/models/yolo.py#L56 # https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-object-detection-on-ms-coco-dataset-39dfa22fa982 prediction = expit(prediction) box_xy_tmp = prediction[..., :2] * scale_x_y - (scale_x_y - 1) / 2 box_xy = (box_xy_tmp + x_y_offset) / np.array(grid_size)[::-1] box_wh = ((prediction[..., 2:4]*2)**2 * anchors) / np.array(input_dims)[::-1] # Sigmoid objectness scores objectness = prediction[..., 4] # p_o (objectness score) objectness = np.expand_dims(objectness, -1) # To make the same number of values for axis 0 and 1 # Sigmoid class scores class_scores = prediction[..., 5:] return
np.concatenate([box_xy, box_wh, objectness, class_scores], axis=2)
numpy.concatenate
from unittest import TestCase import numpy as np from kmeans import iou, avg_iou, kmeans class TestBasic(TestCase): def test_iou_100(self): self.assertEqual(iou([200, 200], np.array([[200, 200]])), 1.) def test_iou_50(self): self.assertEqual(iou([200, 200], np.array([[100, 200]])), .5) self.assertEqual(iou([200, 200], np.array([[200, 100]])), .5) def test_iou_75(self): self.assertEqual(iou([200, 200], np.array([[150, 200]])), .75) self.assertEqual(iou([200, 200], np.array([[200, 150]])), .75) def test_iou_20(self): self.assertEqual(iou([183, 73], np.array([[73, 36.6]])), .2) self.assertEqual(iou([183, 73],
np.array([[36.6, 73]])
numpy.array
import numpy as np from load_screens import load_screens from scipy.special import stdtr # Load batch-corrected screens screens = load_screens() # Remove cell lines with any missing genes # (not required for DepMap 18Q3, but is for more recent releases) # You can use other strategies to remove NaNs instead, like imputing, # removing genes with any missing cell lines screens.dropna(axis=1, inplace=True) # Warp screen data and intercept based on covariance of screens cholsigmainv = np.linalg.cholesky(np.linalg.inv(
np.cov(screens.T)
numpy.cov
# -*- coding:utf-8 -*- # !/usr/bin/python3.6 import numpy as np import operator import file2Matrix as f2m import KNN def classifyPerson(): #输出结果 resultList = {'C': '讨厌', 'B': '有些喜欢', 'A': '非常喜欢'} #三维特征用户输入 precentTats = float(input("玩视频游戏所耗时间百分比:")) ffMiles = float(input("每年获得的飞行常客里程数:")) iceCream = float(input("每周消费的冰激淋公升数:")) #打开并处理数据 datingDataMat, datingLabels = f2m.file2Matrix("testSet.txt") #训练集归一化 normDataSet, ranges, minVals = f2m.autoNorm(datingDataMat) #生成NumPy数组,测试集 inArr =
np.array([ffMiles, precentTats, iceCream])
numpy.array
from typing import Text import matplotlib.pyplot as plt import numpy as np import random import TuneUp_functions as maths import csv import pygame import time as t from time import sleep import pygame.freetype pygame.freetype.init() #thrust curves courtesy of https://www.thrustcurve.org/ e12_thrust = [ [0.052, 5.045], [0.096, 9.910], [0.196, 24.144], [0.251, 31.351], [0.287, 32.973], [0.300, 29.910], [0.344, 17.117], [0.370, 14.414], [0.400, 12.973], [0.500, 11.712], [0.600, 11.171], [0.700, 10.631], [0.800, 10.09], [0.900, 9.73], [1.000, 9.55], [1.101, 9.91], [1.200, 9.55], [1.300, 9.73], [1.400, 9.73], [1.500, 9.73], [1.600, 9.73], [1.700, 9.55], [1.800, 9.73], [1.900, 9.73], [2.000, 9.55], [2.100, 9.55], [2.200, 9.73], [2.300, 9.19], [2.375, 9.37], [2.400, 5.95], [2.440, 0.0] ] f15_thrust = [ [0.063, 2.127], [0.118, 4.407], [0.158, 8.359], [0.228, 13.68], [0.340, 20.82], [0.386, 26.75], [0.425, 25.38], [0.481, 22.19], [0.583, 17.93], [0.883, 16.11], [1.191, 14.59], [1.364, 15.35], [1.569, 15.65], [1.727, 14.74], [2.00, 14.28], [2.39, 13.68], [2.68, 13.08], [2.96, 13.07], [3.25, 13.05], [3.35, 13.0], [3.39, 7.30], [3.40, 0.00] ] e6_thrust = [ [0.056, 18.59], [0.112, 20.12], [0.168, 17.575], [0.307, 14.38], [0.531, 10.45], [0.894, 7.696], [1.146, 6.244], [1.691, 5.808], [2.836, 5.663], [3.898, 5.517], [4.275, 5.227], [4.415, 4.937], [5.058, 5.082], [5.519, 5.227], [5.603, 6.679], [5.729, 3.921], [5.882, 2.323], [5.966, 1.016], [6.06, 0] ] f10_thrust = [ [0.015, 28.22], [0.077, 26.082], [0.201, 24.934], [0.31 ,22.806], [0.464, 20.183], [0.573, 17.886], [0.789, 16.075], [1.068, 13.946], [1.393, 12.63], [1.718, 11.155], [2.166, 9.844], [2.677, 9.515], [3.311, 9.187], [3.683, 8.859], [3.791, 9.679], [4.101, 9.679], [4.658, 9.515], [5.168, 9.023], [5.725, 9.023], [6.112, 8.531], [6.329, 8.859], [6.499, 7.546], [6.685, 5.742], [6.778, 4.921], [6.917, 2.625], [7.025, 1.312], [7.13, 0] ] g12_RCT_thrust = [ [0.03, 18.549], [0.117, 19.96], [0.239, 20.64], [0.362, 20.111], [0.519, 18.982], [0.694, 17.138], [0.886, 15.02], [1.131, 13.186], [1.375, 11.915], [1.689, 11.069], [2.021, 10.363], [2.422, 10.232], [3.172, 9.677], [4.114, 9.267], [5.039, 8.857], [6.137, 8.733], [7.132, 8.607], [7.795, 8.335], [7.952, 8.196], [8.074, 8.055], [8.179, 6.924], [8.319, 4.661], [8.476, 1.973], [8.55, 0] ] g12st_thrust = [ [0.042, 33.827], [0.104, 30.173], [0.23, 28.009], [0.543, 22.326], [0.836, 16.102], [1.024, 12.448], [1.379, 10.96], [2.006, 10.148], [4.054, 9.742], [6.269, 10.148], [6.415, 10.148], [6.582, 10.148], [11.973, 9.742], [12.475, 9.742], [12.663, 9.607], [12.83, 9.066], [12.913, 7.713], [12.934, 5.412], [13.018, 2.03], [13.06, 0.0] ] g11_thrust = [ [0.084, 30.444], [0.105, 28.414], [0.209, 27.738], [0.419, 24.085], [0.753, 18.402], [0.9, 14.748], [1.046, 11.907], [1.444, 10.013], [2.051, 9.742], [3.034, 9.201], [4.018, 9.471], [5.483, 9.201], [5.713, 8.93], [9.375, 9.742], [9.501, 8.93], [11.049, 9.742], [12.263, 9.336], [13.288, 8.66], [13.456, 7.307], [13.602, 4.6], [13.77, 1.624], [13.937, 0.0] ] g8st_thrust = [ [0.038, 5.121], [0.039, 8.069], [0.188, 9.828], [0.414, 10.397], [0.715, 10.19], [1.354, 9.517], [2.069, 9.155], [3.424, 8.793], [4.552, 8.431], [6.057, 8.276], [6.81, 8.069], [7.713, 8.121], [9.03, 8.017], [9.97, 7.966], [10.76, 7.914], [14.222, 7.397], [14.335, 7.19], [15.764, 7.138], [16.404, 6.983], [16.554, 7.5], [16.63 ,6.724], [16.818, 5.69], [16.968, 3.414], [17.119, 1.655], [17.269, 0.0] ] h13st_thrust = [ [0.005, 0.107], [0.024, 2.636], [0.035, 18.978], [0.081, 32.724], [0.147, 36.421], [0.379, 44.529], [0.452, 23.851], [0.566, 18.890], [0.818, 16.728], [1.286, 15.676], [2.114, 14.753], [3.230, 14.032], [4.382, 13.926], [5.786, 13.469], [7.082, 13.119], [8.666, 12.916], [10.286, 12.820], [12.086, 12.612], [13.598, 12.333], [14.750, 11.908], [15.230, 11.078], [15.302, 6.048], [15.432, 0] ] #------------------------------------------------------------------------------------------------------------------ #time settings timeStep = 300 #HZ csv_log_frequency = 50 #HZ # quick note about simTime - the simulation will automatically stop once your rocket touches the ground after liftoff, # so I would reccomend setting it so something high if youre using an engine file instead of constant thrust simTime = 60 #Seconds PIDLoopTime = 50 #HZ #------------------------------------------------------------------------------------------------------------------ #PID gains initializers, tweak these and see how your rocket performs! usePID = True P_gain = 1.8 I_gain = 0.2 D_gain = 0.3 #a cap on the integral to prevent windup I_max = 3 use_proportional_on_measurement = False #position control PID gains position_control = False P_gain_pos = 3 I_gain_pos = 3 D_gain_pos = 5 I_max_pos = 15 use_proportional_on_measurement_pos = True #if you dont want to use PID, you can use full state feedback instead #to use FSF, you need to do 2 things: #acheive full activation of your frontal lobe #and set usePID to false fsf_gains = np.matrix([20,0.1,1,0.5]) #ori, ori rate, pos, pos rate fsf_setpoint = np.array([0,1,0,0.2]) #------------------------------------------------------------------------------------------------------------------ #simulation settings constant_thrust = 12 #Newtons setPoint = 0 # degrees setPoint_position = 0 # meters ori_start = 0 #degrees rotational_vel_start = 0 #degrees per second use_thrust_curve = True thrust_curve = e12_thrust windForceMultiplier = 5 log_sim_to_CSV = True read_flight_path_file = False maxRotationalVel = 100 playback_speed = 1 # 1 = real time position_lateral_start = 0 #------------------------------------------------------------------------------------------------------------------ #physical characteristics of your rocket massMomentOfInertia = 0.0404203354 # kg * m^2 leverArm = 0.44 # meters rocketMass = 0.614 # kg Cp_moment_arm = 0.45 # meters from center of mass actuator_angle = 0 maxActuatorDeflection = 30 # degrees maxActuatorSpeed = 50 # degrees per second linkageRatio = 3 # ratio between servo position and actuator position actuatorNoise = 1 #multiplier for actuator noise sensor_noise = 0.5 # multiplier for sensor noise sensor_bias = 0.2 # bias in one direction accumulative_noise = True # if true then sensor_noise will be an accumulative error instead of slight randomization #-- dont edit after this point! -- #- but if you dare to dig deeper - #- you will find the glorious - #- simulation code! - #-- you have been warned -- class PID: def __init__(self, kP, kI, kD, setpoint, iMax, usePONM): #assigning gains to user inputs self.kP = kP self.kI = kI self.kD = kD #the value that the PID controller wants the input to become self.setPoint = setpoint # you might not see this in your run-of-the-mill PID library, this is just a limit on how bit the integral can get self.iMax = iMax #you are even less likely to see this in your run-of-the-mill PID library #this is basically a different implementation of the proportional gain, where instead of looking at the error #the proportional part of the controller looks at the change between the initial sensed value and the current sensed value self.usePONM = usePONM if usePONM == True: self.proportional = 0 #this variable stores the most recent process variable, so that when update is called the PID controller can #know not only the current error, but also the speed at which it is approaching or departing from the setpoint! #this helps with reducing overshoot by feeding it into the derivitive value, which basically functions as a break on a car self.lastProcess = 0 #this is the integral, which helps combat steady state error. Eg. your rocket is stable, and has canceled all rotation on #it's body, but its 10 degrees off target! the integral is crucial here as it increases over time with the error self.integral = 0 self.error = 0 def setSetpoint(self, setpoint): self.setPoint = setpoint def zeroIntegral(self): self.integral = 0 def compute(self, process, dt): change = process - self.lastProcess self.lastProcess = process self.error = self.setPoint - process if self.usePONM == True: #whats happening here is the proportional changing with the process variable self.proportional -= change * self.kP else: proportional = self.error * self.kP #checking that the integral will not exceed the maximum value allowed by the user if abs(self.integral + self.error * self.kI * dt) < self.iMax: self.integral += self.error * self.kI * dt derivitive = change * self.kD / dt if self.usePONM == True: return self.proportional + self.integral - derivitive else: return proportional + self.integral - derivitive class full_state_feedback: #gains fsf_gains = np.matrix([0,0,0,0]) #setpoints (ori, rotational speed, position, velocity) fsf_setpoint = np.array([0,0,0,0]) lastOri = 0 lastPos = 0 I = 0 output = 0 def __init__(self, _gains, _setpoint): self.fsf_gains = _gains self.fsf_setpoint = _setpoint def compute(self, position, orientation, dt): x = np.matrix([[ori - self.fsf_setpoint[0]], [((ori - self.lastOri) * dt) - self.fsf_setpoint[1]], [position - self.fsf_setpoint[2]], [((position - self.lastPos) * dt) - self.fsf_setpoint[3]]]) out = -self.fsf_gains * x self.output = np.sum(out) self.I += self.output * 0.01 self.lastOri = ori self.lastPos = position self.output += self.I global RAD_TO_DEG global DEG_TO_RAD #conversions from degrees (more human readable) to radians (for the maths) DEG_TO_RAD = np.pi / 180 RAD_TO_DEG = 180 / np.pi last_actuator_angle = 0 velocity_lateral = 0 velocity_vertical = 0 position_lateral = position_lateral_start position_vertical = 0 rotationalVel = 0 sensorError = 0 lastPIDCalc = 0 PIDCalcDelay = 1 / PIDLoopTime lastCSVLog = 0 CSVLogDelay = 1 / csv_log_frequency ori = ori_start * DEG_TO_RAD sensed_ori = ori flightPlan = [] time = 0 Dt = 1 / timeStep counter = 0 timeSteps = simTime * timeStep def parse_flightPath(): with open('flightPath.csv', newline='\n') as pathFile: reader = csv.reader(pathFile, delimiter=',', quotechar='"') for row in reader: flightPlan.append([float(row[0]), float(row[1])]) global l_setpoint l_setpoint = [0,0] oriList = [] def interpolate_flightpath(): global l_setpoint for instruction in flightPlan: if instruction[0] > 0: timeDiff = instruction[0] - l_setpoint[0] setPointDiff = instruction[1] - l_setpoint[1] stepsNeeded = timeDiff * timeStep adder = setPointDiff / stepsNeeded i = 0 ori_change = l_setpoint[1] while i < stepsNeeded: i += 1 ori_change += adder oriList.append(float(ori_change)) l_setpoint = instruction i = 0 finalOriSetpoint = oriList[-1] if len(oriList) / timeStep < timeSteps: while i <= timeSteps + 1 - len(oriList): oriList.append(float(finalOriSetpoint)) if read_flight_path_file == True: parse_flightPath() interpolate_flightpath() #control system object initializers pid_ori = PID(P_gain, I_gain, D_gain, setPoint, I_max, use_proportional_on_measurement) pid_pos = PID(P_gain_pos, I_gain_pos, D_gain_pos, setPoint_position, I_max_pos, use_proportional_on_measurement_pos) fsf_controller = full_state_feedback(fsf_gains, fsf_setpoint) ascent = False apogee = False thrustList = [] global lPoint lPoint = [0, 0] #making a better thrust curve by averaging the thrust curve data def interpolateThrust(): global lPoint for point in thrust_curve: if point[0] > 0: thrustDiff = point[1] - lPoint[1] timeDiff = point[0] - lPoint[0] stepsNeeded = timeDiff * timeStep adder = thrustDiff / stepsNeeded i = 0 thrustToAdd = lPoint[1] while i < stepsNeeded: i += 1 thrustToAdd += adder thrustList.append(thrustToAdd) lPoint = point interpolateThrust() i = 0 if len(thrustList) / timeStep < timeSteps: while i <= timeSteps + 1 - len(thrustList): thrustList.append(0) #making a list for the wind forces i = 0 windForce = [] constWind = random.randint(-100, 100) / 50 * windForceMultiplier while i <= timeSteps + 1: i += 1 windForce.append(np.sin((i / timeStep / 2) * windForceMultiplier) + constWind) area = 0.00456 def getDrag(vel): return 0.65 * area * 1.225 * np.power(vel, 2) #initializing csv f = open("data_out.csv", "w") f.write("time,ori,sensed_ori,actuator_angle,velocity_lateral,velocity_vertical,position_lateral,position_vertical,windForce,thrust,setpoint\n") f.close() #colors for pygame white = (255, 255, 255) yellow = (255, 255, 102) black = (0, 0, 0) red = (255, 0, 0) green = (0, 255, 0) blue = (50, 153, 213) dis_width = 1280 dis_height = 720 dis = pygame.display.set_mode((dis_width, dis_height)) #custom rectangle object for making a rotatable rectangle class rectangle(): def __init__(self, center_x, center_y, width, height): self.cx = center_x self.cy = center_y self.width = width self.height = height self.half_width = width / 2 self.half_height = height / 2 self.hypotenuse = np.sqrt((self.half_height * self.half_height) + (self.half_width * self.half_width)) self.standard_angle =
np.arcsin(self.half_width / self.hypotenuse)
numpy.arcsin
#!/usr/bin/env python # MIT License # # Copyright (c) 2019 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # This file is a part of the CIRN Interaction Language. from __future__ import print_function, division import logging from os import path import math import numpy as np from .reservation_reader import ReservationReader from .observer_reader import ObserverReader from .spectrum_grid import SpectrumGrid from .usage_reader import UsageReader from .geodata_reader import GeodataReader class SpecEval(object): """ Creates statistics on spectrum usage. """ def __init__(self): self.log = logging.getLogger('spec_eval') # for the observer data self.observer_dir = None self.observer_config = None self.observer_grid = None self.observer_threshold = None # for the CIL reports self.gateway_pcap = None self.gateway_stats = None self.measured_voxels = [] self.forecast_voxels = [] # for the spec-val tool self.gdf_file_name = None self.gdf_file_report = None self.gdf_file_shapes = None # bounds of the spectrum region self.time_start = None self.time_stop = None self.time_bins = None self.freq_start = None self.freq_stop = None self.freq_bins = None # numpy matrixes with duty cycles for each bin self.observer_duty = None # from observer passband data self.observer_quantized = None # from observer passband data, quantized to be true or false self.measured_duty = None # from CIL past measurements self.measured_quantized = None # from CIL past measurements, quantized to be true or false self.forecast_duty = None # from CIL future forecasts self.gdf_file_duty = None # from the spec-val tool self.forecast_quantized = None # from CIL future forecasts, quantized to be true or false # numpy matrices with quantized errors for each bin self.measured_v_observer = None self.forecast_v_observer = None def read_observer_data(self, observer_dir): self.log.info('Reading observer data from %s', path.basename(observer_dir)) reader = ObserverReader(observer_dir) reader.read_state_change() reader.read_configs() reader.read_pass_band_rf() self.observer_dir = observer_dir self.observer_config = reader.config self.observer_grid = reader.grid def read_usage_data(self, gateway_pcap, gateway_srn=None, incumbent_srn=None): self.log.info('Reading usage data from %s', path.basename(gateway_pcap)) reader = UsageReader(gateway_pcap, gateway_srn, incumbent_srn) reader.read_messages() self.gateway_pcap = gateway_pcap self.gateway_stats = reader.stats self.measured_voxels = reader.measured_past_voxels self.forecast_voxels = reader.forecast_future_voxels def read_gdf_data(self, gdf_file_name, rf_start_time): self.log.info('Reading geodata frames from %s', gdf_file_name) reader = GeodataReader(gdf_file_name, rf_start_time) self.gdf_file_name = gdf_file_name self.gdf_file_report = { 'filename': reader.stats['filename'], 'bbox': reader.stats['bbox'], 'geometry_types': reader.stats['geometry_types'], } self.gdf_file_shapes = reader.select_shapes() def set_bounds(self, time_start, time_stop, time_bins, time_step, freq_start, freq_stop, freq_bins, freq_step): # use the bounds from the observer if not specified time_start = time_start or self.observer_grid.time_start time_stop = time_stop or self.observer_grid.time_stop freq_start = freq_start or self.observer_grid.freq_start freq_stop = freq_stop or self.observer_grid.freq_stop # make sure that we have proper ranges time_start = min(max(time_start, self.observer_grid.time_start), self.observer_grid.time_stop) time_stop = min(max(time_stop, self.observer_grid.time_start), self.observer_grid.time_stop) freq_start = min(max(freq_start, self.observer_grid.freq_start), self.observer_grid.freq_stop) freq_stop = min(max(freq_stop, self.observer_grid.freq_start), self.observer_grid.freq_stop) # override bins if step is specified if time_step and (time_stop - time_start) > time_step > 0: time_stop = time_start + \ math.floor((time_stop - time_start) / time_step) * time_step time_bins = int(round((time_stop - time_start) / time_step)) if freq_step and (freq_stop - freq_start) > freq_step > 0: freq_stop = freq_start + \ math.floor((freq_stop - freq_start) / freq_step) * freq_step freq_bins = int(round((freq_stop - freq_start) / freq_step)) # save everything self.time_start = time_start self.time_stop = time_stop self.time_bins = time_bins self.freq_start = freq_start self.freq_stop = freq_stop self.freq_bins = freq_bins self.log.info('Selected times: start %s stop %s', time_start, time_stop) self.log.info('Selected bins: time %s freq %s', time_bins, freq_bins) def calculate_observer_duty_cylces(self, threshold): self.log.info('Calculating observer duty cycles') grid = self.observer_grid.threshold(threshold) grid = grid.resample( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins) self.observer_threshold = threshold self.observer_duty = grid.data self.observer_quantized = self.observer_grid.resample( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins, take_max=True ).data self.observer_quantized[self.observer_quantized >= threshold] = 1 self.observer_quantized[self.observer_quantized < 1] = 0 def calculate_spectrum_usage_duty_cycles(self): self.log.info('Calculating measured spectrum duty cycles') grid = SpectrumGrid( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins) for voxel in self.measured_voxels: grid.add_voxel(voxel) self.measured_duty = grid.data self.measured_quantized = grid.data self.measured_quantized[self.measured_quantized>0] = 1 self.log.info('Calculating forecast spectrum duty cycles') grid = SpectrumGrid( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins) for voxel in self.forecast_voxels: grid.add_voxel(voxel) self.forecast_duty = grid.data self.forecast_quantized = grid.data ; self.forecast_quantized[self.forecast_quantized>0] = 1 def calculate_gdf_file_duty_cycles(self): self.log.info('Calculating geodata spectrum duty cycles') grid = SpectrumGrid( self.time_start, self.time_stop, self.time_bins, self.freq_start, self.freq_stop, self.freq_bins) for shape in self.gdf_file_shapes: grid.add_shape(shape) self.gdf_file_duty = grid.data def get_diff_stat(self, diff): return { 'above': float(np.average(np.maximum(diff, 0))), 'below': float(np.average(np.maximum(-diff, 0))), 'total': float(np.average(np.abs(diff))) } def get_diff_quant_stat(self, a, b): above = a-b ; below = -above ; total = np.abs(a-b) ; above[above<0] = 0 ; below[below<0] = 0 ; return { 'above': float(np.sum(above)/np.sum(b)), 'below': float(np.sum(below)/np.sum(b)), 'total': float(np.sum(total)/
np.sum(b)
numpy.sum
from __future__ import print_function, division import os import sys import pytest import warnings import numpy from galpy.util import galpyWarning from test_actionAngle import reset_warning_registry _TRAVIS= bool(os.getenv('TRAVIS')) PY2= sys.version < '3' # Print all galpyWarnings always for tests of warnings warnings.simplefilter("always",galpyWarning) #Basic sanity checking: circular orbit should have constant R, zero vR, vT=vc def test_actionAngleTorus_basic(): from galpy.actionAngle import actionAngleTorus from galpy.potential import MWPotential, rl, vcirc, \ FlattenedPowerPotential, PlummerPotential tol= -4. jr= 10.**-10. jz= 10.**-10. aAT= actionAngleTorus(pot=MWPotential) # at R=1, Lz=1 jphi= 1. angler= numpy.linspace(0.,2.*numpy.pi,101) anglephi= numpy.linspace(0.,2.*numpy.pi,101)+1. anglez= numpy.linspace(0.,2.*numpy.pi,101)+2. RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(MWPotential,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(MWPotential,rl(MWPotential,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' # at Lz=1.5, using Plummer tol= -3.25 pp= PlummerPotential(normalize=1.) aAT= actionAngleTorus(pot=pp) jphi= 1.5 RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(pp,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(pp,rl(pp,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' # at Lz=0.5, using FlattenedPowerPotential tol= -4. fp= FlattenedPowerPotential(normalize=1.) aAT= actionAngleTorus(pot=fp) jphi= 0.5 RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(fp,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(fp,rl(fp,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' return None #Basic sanity checking: close-to-circular orbit should have freq. = epicycle freq. def test_actionAngleTorus_basic_freqs(): from galpy.actionAngle import actionAngleTorus from galpy.potential import epifreq, omegac, verticalfreq, rl, \ JaffePotential, PowerSphericalPotential, HernquistPotential tol= -3. jr= 10.**-6. jz= 10.**-6. jp= JaffePotential(normalize=1.) aAT= actionAngleTorus(pot=jp) # at Lz=1 jphi= 1. om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(jp,rl(jp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(jp,rl(jp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(jp,rl(jp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' # at Lz=1.5, w/ different potential pp= PowerSphericalPotential(normalize=1.) aAT= actionAngleTorus(pot=pp) jphi= 1.5 om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(pp,rl(pp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(pp,rl(pp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(pp,rl(pp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' # at Lz=0.5, w/ different potential tol= -2.5 # appears more difficult hp= HernquistPotential(normalize=1.) aAT= actionAngleTorus(pot=hp) jphi= 0.5 om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(hp,rl(hp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(hp,rl(hp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(hp,rl(hp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' return None #Test that orbit from actionAngleTorus is the same as an integrated orbit def test_actionAngleTorus_orbit(): from galpy.actionAngle import actionAngleTorus from galpy.potential import MWPotential2014 from galpy.orbit import Orbit # Set up instance aAT= actionAngleTorus(pot=MWPotential2014,tol=10.**-5.) jr,jphi,jz= 0.05,1.1,0.025 # First calculate frequencies and the initial RvR RvRom= aAT.xvFreqs(jr,jphi,jz, numpy.array([0.]), numpy.array([1.]), numpy.array([2.])) om= RvRom[1:] # Angles along an orbit ts= numpy.linspace(0.,100.,1001) angler= ts*om[0] anglephi= 1.+ts*om[1] anglez= 2.+ts*om[2] # Calculate the orbit using actionAngleTorus RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate the orbit using orbit integration orb= Orbit([RvRom[0][0,0],RvRom[0][0,1],RvRom[0][0,2], RvRom[0][0,3],RvRom[0][0,4],RvRom[0][0,5]]) orb.integrate(ts,MWPotential2014) # Compare tol= -3. assert numpy.all(numpy.fabs(orb.R(ts)-RvR[0]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in R' assert numpy.all(numpy.fabs(orb.vR(ts)-RvR[1]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vR' assert numpy.all(numpy.fabs(orb.vT(ts)-RvR[2]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vT' assert numpy.all(numpy.fabs(orb.z(ts)-RvR[3]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in z' assert numpy.all(numpy.fabs(orb.vz(ts)-RvR[4]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vz' assert numpy.all(numpy.fabs((orb.phi(ts)-RvR[5]+numpy.pi) % (2.*numpy.pi) -numpy.pi) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in phi' return None # Test that actionAngleTorus w/ interp pot gives same freqs as regular pot # Doesn't work well: TM aborts because our interpolated forces aren't # consistent enough with the potential for TM's taste, but we test that it at # at least works somewhat def test_actionAngleTorus_interppot_freqs(): from galpy.actionAngle import actionAngleTorus from galpy.potential import LogarithmicHaloPotential, interpRZPotential lp= LogarithmicHaloPotential(normalize=1.) ip= interpRZPotential(RZPot=lp, interpPot=True, interpDens=True,interpRforce=True,interpzforce=True, enable_c=True) aAT= actionAngleTorus(pot=lp) aATi= actionAngleTorus(pot=ip) jr,jphi,jz= 0.05,1.1,0.02 om= aAT.Freqs(jr,jphi,jz) omi= aATi.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-omi[0])/om[0]) < 0.2, 'Radial frequency computed using the torus machine does not agree between potential and interpolated potential' assert numpy.fabs((om[1]-omi[1])/om[1]) < 0.2, 'Azimuthal frequency computed using the torus machine does not agree between potential and interpolated potential' assert numpy.fabs((om[2]-omi[2])/om[2]) < 0.8, 'Vertical frequency computed using the torus machine does not agree between potential and interpolated potential' return None #Test the actionAngleTorus against an isochrone potential: actions def test_actionAngleTorus_Isochrone_actions(): from galpy.potential import IsochronePotential from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochrone ip= IsochronePotential(normalize=1.,b=1.2) aAI= actionAngleIsochrone(ip=ip) tol= -6. aAT= actionAngleTorus(pot=ip,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.]) anglephi= numpy.array([numpy.pi]) anglez= numpy.array([numpy.pi/2.]) # Calculate position from aAT RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate actions from aAI ji= aAI(*RvR) djr= numpy.fabs((ji[0]-jr)/jr) dlz= numpy.fabs((ji[1]-jphi)/jphi) djz= numpy.fabs((ji[2]-jz)/jz) assert djr < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (djr*100.) assert dlz < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (dlz*100.) assert djz < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (djz*100.) return None #Test the actionAngleTorus against an isochrone potential: frequencies and angles def test_actionAngleTorus_Isochrone_freqsAngles(): from galpy.potential import IsochronePotential from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochrone ip= IsochronePotential(normalize=1.,b=1.2) aAI= actionAngleIsochrone(ip=ip) tol= -6. aAT= actionAngleTorus(pot=ip,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.1])+numpy.linspace(0.,numpy.pi,101) angler= angler % (2.*numpy.pi) anglephi= numpy.array([numpy.pi])+numpy.linspace(0.,numpy.pi,101) anglephi= anglephi % (2.*numpy.pi) anglez= numpy.array([numpy.pi/2.])+numpy.linspace(0.,numpy.pi,101) anglez= anglez % (2.*numpy.pi) # Calculate position from aAT RvRom= aAT.xvFreqs(jr,jphi,jz,angler,anglephi,anglez) # Calculate actions, frequencies, and angles from aAI ws= aAI.actionsFreqsAngles(*RvRom[0].T) dOr= numpy.fabs((ws[3]-RvRom[1])) dOp= numpy.fabs((ws[4]-RvRom[2])) dOz= numpy.fabs((ws[5]-RvRom[3])) dar= numpy.fabs((ws[6]-angler)) dap= numpy.fabs((ws[7]-anglephi)) daz= numpy.fabs((ws[8]-anglez)) dar[dar > numpy.pi]-= 2.*numpy.pi dar[dar < -numpy.pi]+= 2.*numpy.pi dap[dap > numpy.pi]-= 2.*numpy.pi dap[dap < -numpy.pi]+= 2.*numpy.pi daz[daz > numpy.pi]-= 2.*numpy.pi daz[daz < -numpy.pi]+= 2.*numpy.pi assert numpy.all(dOr < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Or at %f%%' % (numpy.nanmax(dOr)*100.) assert numpy.all(dOp < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Ophi at %f%%' % (numpy.nanmax(dOp)*100.) assert numpy.all(dOz < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Oz at %f%%' % (numpy.nanmax(dOz)*100.) assert numpy.all(dar < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for ar at %f' % (numpy.nanmax(dar)) assert numpy.all(dap < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for aphi at %f' % (numpy.nanmax(dap)) assert numpy.all(daz < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for az at %f' % (numpy.nanmax(daz)) return None #Test the actionAngleTorus against a Staeckel potential: actions def test_actionAngleTorus_Staeckel_actions(): from galpy.potential import KuzminKutuzovStaeckelPotential from galpy.actionAngle import actionAngleTorus, \ actionAngleStaeckel delta= 1.2 kp= KuzminKutuzovStaeckelPotential(normalize=1.,Delta=delta) aAS= actionAngleStaeckel(pot=kp,delta=delta,c=True) tol= -3. aAT= actionAngleTorus(pot=kp,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.]) anglephi= numpy.array([numpy.pi]) anglez= numpy.array([numpy.pi/2.]) # Calculate position from aAT RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate actions from aAI ji= aAS(*RvR) djr= numpy.fabs((ji[0]-jr)/jr) dlz= numpy.fabs((ji[1]-jphi)/jphi) djz= numpy.fabs((ji[2]-jz)/jz) assert djr < 10.**tol, 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Jr at %f%%' % (djr*100.) assert dlz < 10.**tol, 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Jr at %f%%' % (dlz*100.) assert djz < 10.**tol, 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Jr at %f%%' % (djz*100.) return None #Test the actionAngleTorus against an isochrone potential: frequencies and angles def test_actionAngleTorus_Staeckel_freqsAngles(): from galpy.potential import KuzminKutuzovStaeckelPotential from galpy.actionAngle import actionAngleTorus, \ actionAngleStaeckel delta= 1.2 kp= KuzminKutuzovStaeckelPotential(normalize=1.,Delta=delta) aAS= actionAngleStaeckel(pot=kp,delta=delta,c=True) tol= -3. aAT= actionAngleTorus(pot=kp,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.1])+numpy.linspace(0.,numpy.pi,101) angler= angler % (2.*numpy.pi) anglephi= numpy.array([numpy.pi])+numpy.linspace(0.,numpy.pi,101) anglephi= anglephi % (2.*numpy.pi) anglez= numpy.array([numpy.pi/2.])+numpy.linspace(0.,numpy.pi,101) anglez= anglez % (2.*numpy.pi) # Calculate position from aAT RvRom= aAT.xvFreqs(jr,jphi,jz,angler,anglephi,anglez) # Calculate actions, frequencies, and angles from aAI ws= aAS.actionsFreqsAngles(*RvRom[0].T) dOr= numpy.fabs((ws[3]-RvRom[1])) dOp= numpy.fabs((ws[4]-RvRom[2])) dOz= numpy.fabs((ws[5]-RvRom[3])) dar= numpy.fabs((ws[6]-angler)) dap= numpy.fabs((ws[7]-anglephi)) daz= numpy.fabs((ws[8]-anglez)) dar[dar > numpy.pi]-= 2.*numpy.pi dar[dar < -numpy.pi]+= 2.*numpy.pi dap[dap > numpy.pi]-= 2.*numpy.pi dap[dap < -numpy.pi]+= 2.*numpy.pi daz[daz > numpy.pi]-= 2.*numpy.pi daz[daz < -numpy.pi]+= 2.*numpy.pi assert numpy.all(dOr < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Or at %f%%' % (numpy.nanmax(dOr)*100.) assert numpy.all(dOp < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Ophi at %f%%' % (numpy.nanmax(dOp)*100.) assert numpy.all(dOz < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Oz at %f%%' % (numpy.nanmax(dOz)*100.) assert numpy.all(dar < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for ar at %f' % (numpy.nanmax(dar)) assert numpy.all(dap < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for aphi at %f' % (numpy.nanmax(dap)) assert numpy.all(daz < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for az at %f' % (numpy.nanmax(daz)) return None #Test the actionAngleTorus against a general potential w/ actionAngleIsochroneApprox: actions def test_actionAngleTorus_isochroneApprox_actions(): from galpy.potential import MWPotential2014 from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochroneApprox aAIA= actionAngleIsochroneApprox(pot=MWPotential2014,b=0.8) tol= -2.5 aAT= actionAngleTorus(pot=MWPotential2014,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.]) anglephi= numpy.array([numpy.pi]) anglez= numpy.array([numpy.pi/2.]) # Calculate position from aAT RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate actions from aAIA ji= aAIA(*RvR) djr= numpy.fabs((ji[0]-jr)/jr) dlz= numpy.fabs((ji[1]-jphi)/jphi) djz= numpy.fabs((ji[2]-jz)/jz) assert djr < 10.**tol, 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for Jr at %f%%' % (djr*100.) assert dlz < 10.**tol, 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for Jr at %f%%' % (dlz*100.) assert djz < 10.**tol, 'actionAngleTorus and actionAngleMWPotential2014 applied to MWPotential2014 potential disagree for Jr at %f%%' % (djz*100.) return None #Test the actionAngleTorus against a general potential w/ actionAngleIsochrone: frequencies and angles def test_actionAngleTorus_isochroneApprox_freqsAngles(): from galpy.potential import MWPotential2014 from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochroneApprox aAIA= actionAngleIsochroneApprox(pot=MWPotential2014,b=0.8) tol= -3.5 aAT= actionAngleTorus(pot=MWPotential2014,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.1])+numpy.linspace(0.,numpy.pi,21) angler= angler % (2.*numpy.pi) anglephi= numpy.array([numpy.pi])+numpy.linspace(0.,numpy.pi,21) anglephi= anglephi % (2.*numpy.pi) anglez= numpy.array([numpy.pi/2.])+numpy.linspace(0.,numpy.pi,21) anglez= anglez % (2.*numpy.pi) # Calculate position from aAT RvRom= aAT.xvFreqs(jr,jphi,jz,angler,anglephi,anglez) # Calculate actions, frequencies, and angles from aAI ws= aAIA.actionsFreqsAngles(*RvRom[0].T) dOr= numpy.fabs((ws[3]-RvRom[1])) dOp= numpy.fabs((ws[4]-RvRom[2])) dOz= numpy.fabs((ws[5]-RvRom[3])) dar= numpy.fabs((ws[6]-angler)) dap= numpy.fabs((ws[7]-anglephi)) daz= numpy.fabs((ws[8]-anglez)) dar[dar > numpy.pi]-= 2.*numpy.pi dar[dar < -numpy.pi]+= 2.*numpy.pi dap[dap > numpy.pi]-= 2.*numpy.pi dap[dap < -numpy.pi]+= 2.*numpy.pi daz[daz > numpy.pi]-= 2.*numpy.pi daz[daz < -numpy.pi]+= 2.*numpy.pi assert numpy.all(dOr < 10.**tol), 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for Or at %f%%' % (numpy.nanmax(dOr)*100.) assert numpy.all(dOp < 10.**tol), 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for Ophi at %f%%' % (numpy.nanmax(dOp)*100.) assert numpy.all(dOz < 10.**tol), 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for Oz at %f%%' % (numpy.nanmax(dOz)*100.) assert numpy.all(dar < 10.**tol), 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for ar at %f' % (numpy.nanmax(dar)) assert numpy.all(dap < 10.**tol), 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for aphi at %f' % (numpy.nanmax(dap)) assert numpy.all(daz < 10.**tol), 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for az at %f' % (numpy.nanmax(daz)) return None # Test that the frequencies returned by hessianFreqs are the same as those returned by Freqs def test_actionAngleTorus_hessian_freqs(): from galpy.potential import MWPotential2014 from galpy.actionAngle import actionAngleTorus aAT= actionAngleTorus(pot=MWPotential2014) jr,jphi,jz= 0.075,1.1,0.05 fO= aAT.Freqs(jr,jphi,jz)[:3] hO= aAT.hessianFreqs(jr,jphi,jz)[1:4] assert numpy.all(numpy.fabs(numpy.array(fO)-
numpy.array(hO)
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num =
N.array([0,1,0])
numpy.array
import json import multiprocessing import warnings from pathlib import PurePosixPath, Path from typing import Optional, List, Tuple, Dict, Union import numpy as np import pandas as pd from joblib._multiprocessing_helpers import mp from rdkit import Chem from rdkit.Chem import AllChem, Mol, MACCSkeys from sklearn.feature_extraction import DictVectorizer from sklearn.metrics import roc_auc_score from tqdm import tqdm from datasets.utils import process_map def _init_molecule(molecule: Union[str, Mol, bytes]) -> Mol: if isinstance(molecule, bytes): mol = Mol(molecule) elif isinstance(molecule, Mol): mol = molecule else: mol = Chem.MolFromSmiles(molecule) return mol class ECFC_featurizer(): """based on the implemenation provided by <NAME>""" def __init__(self, radius=6, min_fragm_occur=50, useChirality=True, useFeatures=False): self.v = DictVectorizer(sparse=True, dtype=np.uint16) self.min_fragm_occur = min_fragm_occur self.idx_col = None self.radius = radius self.useChirality = useChirality self.useFeatures = useFeatures def compute_fp_list(self, smiles_list): fp_list = [] for smiles in smiles_list: try: if isinstance(smiles, list): smiles = smiles[0] mol = Chem.MolFromSmiles(smiles) # TODO small hack only applicable here!!! fp_list.append(AllChem.GetMorganFingerprint(mol, self.radius, useChirality=self.useChirality, useFeatures=self.useFeatures).GetNonzeroElements()) # returns a dict except: fp_list.append({}) return fp_list def fit(self, x_train): fp_list = self.compute_fp_list(x_train) Xraw = self.v.fit_transform(fp_list) idx_col = np.array((Xraw > 0).sum(axis=0) >= self.min_fragm_occur).flatten() self.idx_col = idx_col return Xraw[:, self.idx_col].toarray() def transform(self, x_test): fp_list = self.compute_fp_list(x_test) X_raw = self.v.transform(fp_list) return X_raw[:, self.idx_col].toarray() class ECFPFeaturizer(): def __init__(self, radius: int = 2, fold: Optional[int] = None, use_chirality: bool = True, use_features: bool = True, return_count: bool = True, map_dict: Optional[dict] = None, n_jobs: int = multiprocessing.cpu_count(), mp_context: str = "spawn", chunksize: int = None, ): self.radius = radius self.fold = fold self.use_chirality = use_chirality self.use_features = use_features self.map_dict = map_dict self.return_count = return_count self.n_jobs = n_jobs self.mp_context = mp_context self.chunksize = chunksize @property def n_features(self) -> int: if self.fold is None: return len(self.map_dict) if self.map_dict else -1 else: return self.fold def _ecfp(self, smile: str) -> Union[Tuple[Dict, Dict, Mol], Tuple[None, None, None]]: mol = Chem.MolFromSmiles(smile) if mol is None: warnings.warn(f"could not parse smile: {smile}") return None, None, None else: bit_info = {} fingerprint = AllChem.GetMorganFingerprint(mol, radius=self.radius, useChirality=self.use_chirality, useFeatures=self.use_features, bitInfo=bit_info).GetNonzeroElements() return fingerprint, bit_info, mol def ecfp(self, smiles: List[str]) -> Tuple[List[dict], List[dict], List[Mol]]: if self.n_jobs > 1: fingerprints, bit_infos, mols = zip( *process_map( self._ecfp, smiles, chunksize=(len(smiles) // self.n_jobs) + 1 if self.chunksize is None else self.chunksize, # chunksize=1, max_workers=self.n_jobs, desc="_ecfp", mp_context=mp.get_context(self.mp_context) ) ) else: fingerprints, bit_infos, mols = zip(*list(map(self._ecfp, tqdm(smiles, total=len(smiles), desc="_ecfp")))) return fingerprints, bit_infos, mols def _fit(self, fingerprints: List[dict]): if self.map_dict is None: features = sorted(list(set.union(*[set(s.keys()) for s in fingerprints]))) if self.fold is None: self.map_dict = dict(zip(features, range(len(features)))) else: self.map_dict = {f: f % self.fold for f in features} def fit_transform(self, smiles: List[str]) -> np.ndarray: fingerprints, *_ = self.ecfp(smiles) self._fit(fingerprints) desc_mat = np.zeros((len(fingerprints), self.n_features), dtype=np.uint8) for i, fp in enumerate(fingerprints): for f, cnt in fp.items(): if f in self.map_dict: desc_mat[i, self.map_dict[f]] = cnt else: warnings.warn(f"feature {f} not in map") return desc_mat def __call__(self, smiles: List[str]) -> np.ndarray: features = self.fit_transform(smiles) return features if self.return_count else np.where(features > 0, 1, 0).astype(features.dtype) def _atomic_mapping(self, molecule: Union[str, Mol, bytes], num_atoms: Optional[int] = None, bit_info: Optional[dict] = None ) -> List[List[Tuple[int, int]]]: """ gets the individual atomic mapping for one molecule - mapping indicates the feature idx + factor which contributes """ mol = _init_molecule(molecule) num_atoms = mol.GetNumAtoms() if not num_atoms else num_atoms if bit_info is None: bit_info = {} AllChem.GetMorganFingerprint(mol, radius=self.radius, useChirality=self.use_chirality, useFeatures=self.use_features, bitInfo=bit_info) atomic_mapping = [[] for _ in range(num_atoms)] for feature, value in bit_info.items(): # feature mapping to account for e.g. folding feature_idx = self.map_dict[feature] for center_atom, radius in value: mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 if radius > 0: env_mol = Chem.FindAtomEnvironmentOfRadiusN(mol, radius, center_atom) atom_map = {} Chem.PathToSubmol(mol, env_mol, atomMap=atom_map) for atom_k in atom_map.keys(): mapping_submol[atom_k].append(feature_idx) count_atoms += 1 else: mapping_submol[center_atom].append(feature_idx) count_atoms = 1 for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) return atomic_mapping def _atomic_attribution(self, mol: Mol, feature_attribution: np.ndarray, num_atoms: Optional[int] = None, bit_info: Optional[dict] = None) -> np.ndarray: """ gets the individual atomic contribution for one molecule based on the feature attribution based and adapted from the implementation provided by <NAME> """ num_atoms = mol.GetNumAtoms() if not num_atoms else num_atoms if bit_info is None: bit_info = {} AllChem.GetMorganFingerprint(mol, radius=self.radius, useChirality=self.use_chirality, useFeatures=self.use_features, bitInfo=bit_info) atomic_attribution = np.zeros(num_atoms) for f, value in bit_info.items(): # feature mapping to account for e.g. folding f = self.map_dict[f] attribution_value = feature_attribution[f] for center_atom, radius in value: attribution_submol = np.zeros(num_atoms) count_atoms = 0 if radius > 0: env_mol = Chem.FindAtomEnvironmentOfRadiusN(mol, radius, center_atom) atom_map = {} Chem.PathToSubmol(mol, env_mol, atomMap=atom_map) for atom_k in atom_map.keys(): attribution_submol[atom_k] += attribution_value count_atoms += 1 else: attribution_submol[center_atom] += attribution_value count_atoms = 1 attribution_submol /= count_atoms atomic_attribution += attribution_submol return atomic_attribution def atomic_attributions(self, smiles: List[str], feature_attributions: np.ndarray) -> List[np.ndarray]: assert len(smiles) == len( feature_attributions), f"provided number of smiles {len(smiles)} does not match number of features {len(feature_attributions)}" fingerprints, bit_infos, mols = self.ecfp(smiles) if self.map_dict is None: self._fit(fingerprints) atomic_attributions = [] for i, (smile, fingerprint, bit_info, mol) in tqdm(enumerate(zip(smiles, fingerprints, bit_infos, mols)), total=len(smiles), desc="_ecfp_atomic_attributions"): if mol is None: raise ValueError(f"could not process smile/molecule {i}: {smile}") atomic_attribution = self._atomic_attribution(mol, feature_attributions[i], bit_info=bit_info) atomic_attributions.append(atomic_attribution) return atomic_attributions def atomic_mappings(self, smiles: List[str]) -> List[List[List[Tuple[int, int]]]]: fingerprints, bit_infos, mols = self.ecfp(smiles) if self.map_dict is None: self._fit(fingerprints) atomic_mappings = [] for i, (smile, fingerprint, bit_info, mol) in tqdm(enumerate(zip(smiles, fingerprints, bit_infos, mols)), total=len(smiles), desc="_ecfp_atomic_mappings"): if mol is None: raise ValueError(f"could not process smile/molecule {i}: {smile}") atomic_mapping = self._atomic_mapping(mol, bit_info=bit_info) atomic_mappings.append(atomic_mapping) return atomic_mappings def _smarts_substr() -> Dict[int, Mol]: with open(Path(PurePosixPath(__file__)).parent / "resources/maccs_smarts_substr.json") as file: data = json.load(file) return {int(k): Chem.MolFromSmarts(smile) for k, smile in data.items()} class MACCSFeaturizer(): SMARTS_ATOMIC_NUMBER = { 2: [104], # atomic num >103 Not complete, RDKit only accepts up to #104 3: [32, 33, 34, 50, 51, 52, 82, 83, 84], # Group IVa,Va,VIa Rows 4-6 4: [89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], # actinide 5: [21, 22, 39, 40, 72], # Group IIIB,IVB 6: [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71], # Lanthanide 7: [23, 24, 25, 41, 42, 43, 73, 74, 75], # Group VB,VIB,VIIB 9: [26, 27, 28, 44, 45, 46, 76, 77, 78], # Group VIII 10: [4, 12, 20, 38, 56, 88], # Group II 12: [29, 30, 47, 48, 79, 80], # Group IB,IIB 18: [5, 13, 31, 49, 81], # Group III 27: [53], # I 29: [15], # P 35: [3, 11, 19, 37, 55, 87], # Group I 42: [9], # Fluor 46: [35], # Br 88: [16], # S 103: [17], # Cl 134: [9, 17, 35, 53] # Halogen: F,Cl,Br,I } SMARTS_SUBSTR = _smarts_substr() def __init__(self, n_jobs: int = multiprocessing.cpu_count(), mp_context: str = "spawn", chunksize: int = None, ): super(MACCSFeaturizer).__init__() self.n_jobs = n_jobs self.mp_context = mp_context self.chunksize = chunksize @property def n_features(self) -> int: return 167 def _macc(self, molecule: Union[str, Mol, bytes]) -> np.ndarray: mol = _init_molecule(molecule) _maccs = MACCSkeys.GenMACCSKeys(mol) return np.array(_maccs) def _maccs(self, smiles: List[str]) -> Tuple[np.ndarray, List[Mol]]: maccs, mols = [], [] for i, smile in enumerate(tqdm(smiles, desc="_mol_maccs")): mol = Chem.MolFromSmiles(smile) mols.append(mol) if mol is None: warnings.warn(f"could not parse smile {i}: {smile}") _mols = [m.ToBinary() for m in mols if m] if self.n_jobs > 1: maccs = process_map(self._macc, _mols, chunksize=(len(smiles) // self.n_jobs) + 1 if self.chunksize is None else self.chunksize, # chunksize=1, max_workers=self.n_jobs, desc="_maccs", mp_context=mp.get_context(self.mp_context)) else: maccs = list(map(self._macc, _mols)) return np.stack(maccs), mols def __call__(self, smiles: List[str]) -> np.ndarray: return self._maccs(smiles)[0] def _atomic_mapping(self, molecule: Union[str, Mol, bytes], num_atoms: Optional[int] = None) -> List[List[Tuple[int, int]]]: mol = _init_molecule(molecule) num_atoms = mol.GetNumAtoms() if not num_atoms else num_atoms idx_maccs = list(MACCSFeaturizer.SMARTS_SUBSTR.keys()) idx_maccs_atomnumbs = list(MACCSFeaturizer.SMARTS_ATOMIC_NUMBER.keys()) atomic_attribution = np.zeros(num_atoms) atomic_mapping = [[] for _ in range(num_atoms)] for maccs_idx in idx_maccs: # Substructure features pattern = MACCSFeaturizer.SMARTS_SUBSTR[maccs_idx] feature_idx = maccs_idx substructures = mol.GetSubstructMatches(pattern) mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: mapping_submol[atom_idx].append(feature_idx) count_atoms += 1 count_atoms = 1 if count_atoms == 0 else count_atoms for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) # Count features # MACCS feature: 130 atomic_mapping = MACCSFeaturizer.maccs_count_features_mapping(maccs_idx, substructures, num_atoms, atomic_mapping, feature_idx1=124, feature_idx2=130) # MACCS feature: 127 atomic_mapping = MACCSFeaturizer.maccs_count_features_mapping(maccs_idx, substructures, num_atoms, atomic_mapping, feature_idx1=143, feature_idx2=127) # MACCS feature: 138: atomic_mapping = MACCSFeaturizer.maccs_count_features_mapping(maccs_idx, substructures, num_atoms, atomic_mapping, feature_idx1=153, feature_idx2=138) # MACCS features: 140, 146, 159 ## 159 if maccs_idx == 164 and len(substructures) > 1: mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: mapping_submol[atom_idx].append(159) count_atoms += 1 count_atoms = 1 if count_atoms == 0 else count_atoms for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) ## 146 if len(substructures) > 2: mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: mapping_submol[atom_idx].append(146) count_atoms += 1 count_atoms = 1 if count_atoms == 0 else count_atoms for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) ## 140 if len(substructures) > 3: mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: mapping_submol[atom_idx].append(140) count_atoms += 1 count_atoms = 1 if count_atoms == 0 else count_atoms for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) # MACCS feature 142 atomic_mapping = MACCSFeaturizer.maccs_count_features_mapping(maccs_idx, substructures, num_atoms, atomic_mapping, feature_idx1=161, feature_idx2=142) # MACCS feature 145 atomic_mapping = MACCSFeaturizer.maccs_count_features_mapping(maccs_idx, substructures, num_atoms, atomic_mapping, feature_idx1=163, feature_idx2=145) # MACCS feature 149 atomic_mapping = MACCSFeaturizer.maccs_count_features_mapping(maccs_idx, substructures, num_atoms, atomic_mapping, feature_idx1=160, feature_idx2=149) # Atomic number features for idx_maccs_atomnumb in idx_maccs_atomnumbs: maccs_feature = MACCSFeaturizer.SMARTS_ATOMIC_NUMBER[idx_maccs_atomnumb] feature_idx = idx_maccs_atomnumb mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): if atom_idx in maccs_feature: mapping_submol[atom_idx].append(feature_idx) count_atoms += 1 count_atoms = 1 if count_atoms == 0 else count_atoms for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) # MACCS 125: Aromatic rings atomic_mapping = MACCSFeaturizer.maccs_125_aromaticrings_mapping(mol, num_atoms, atomic_mapping) # MACCS 166: Fragments atomic_mapping = MACCSFeaturizer.maccs_166_fragments_mapping(mol, num_atoms, atomic_mapping) return atomic_mapping def _atomic_attribution(self, molecule: Union[str, Mol, bytes], feature_attribution: np.ndarray, num_atoms: Optional[int] = None) -> np.ndarray: """adapted/based on the implementation by <NAME>""" mol = _init_molecule(molecule) num_atoms = mol.GetNumAtoms() if not num_atoms else num_atoms idx_maccs = list(MACCSFeaturizer.SMARTS_SUBSTR.keys()) idx_maccs_atomnumbs = list(MACCSFeaturizer.SMARTS_ATOMIC_NUMBER.keys()) atomic_attribution = np.zeros(num_atoms) for maccs_idx in idx_maccs: # Substructure features pattern = MACCSFeaturizer.SMARTS_SUBSTR[maccs_idx] attribution_value = feature_attribution[maccs_idx] substructures = mol.GetSubstructMatches(pattern) attribution_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: attribution_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: attribution_submol = attribution_submol / count_atoms atomic_attribution += attribution_submol # Count features # MACCS feature: 130 atomic_attribution = MACCSFeaturizer.maccs_count_features(maccs_idx, substructures, feature_attribution, num_atoms, atomic_attribution, feature_idx1=124, feature_idx2=130) # MACCS feature: 127 atomic_attribution = MACCSFeaturizer.maccs_count_features(maccs_idx, substructures, feature_attribution, num_atoms, atomic_attribution, feature_idx1=143, feature_idx2=127) # MACCS feature: 138: atomic_attribution = MACCSFeaturizer.maccs_count_features(maccs_idx, substructures, feature_attribution, num_atoms, atomic_attribution, feature_idx1=153, feature_idx2=138) # MACCS features: 140, 146, 159 ## 159 if maccs_idx == 164 and len(substructures) > 1: attribution_value = feature_attribution[159] attribution_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: attribution_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: attribution_submol = attribution_submol / count_atoms atomic_attribution += attribution_submol ## 146 if len(substructures) > 2: attribution_value = feature_attribution[146] attribution_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: attribution_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: attribution_submol = attribution_submol / count_atoms atomic_attribution += attribution_submol ## 140 if len(substructures) > 3: attribution_value = feature_attribution[140] attribution_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: attribution_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: attribution_submol = attribution_submol / count_atoms atomic_attribution += attribution_submol # MACCS feature 142 atomic_attribution = MACCSFeaturizer.maccs_count_features(maccs_idx, substructures, feature_attribution, num_atoms, atomic_attribution, feature_idx1=161, feature_idx2=142) # MACCS feature 145 atomic_attribution = MACCSFeaturizer.maccs_count_features(maccs_idx, substructures, feature_attribution, num_atoms, atomic_attribution, feature_idx1=163, feature_idx2=145) # MACCS feature 149 atomic_attribution = MACCSFeaturizer.maccs_count_features(maccs_idx, substructures, feature_attribution, num_atoms, atomic_attribution, feature_idx1=160, feature_idx2=149) # Atomic number features for idx_maccs_atomnumb in idx_maccs_atomnumbs: maccs_feature = MACCSFeaturizer.SMARTS_ATOMIC_NUMBER[idx_maccs_atomnumb] attribution_value = feature_attribution[idx_maccs_atomnumb] attribution_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): if atom_idx in maccs_feature: attribution_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: attribution_submol = attribution_submol / count_atoms atomic_attribution += attribution_submol # MACCS 125: Aromatic rings atomic_attribution = MACCSFeaturizer.maccs_125_aromaticrings(mol, feature_attribution, num_atoms, atomic_attribution) # MACCS 166: Fragments atomic_attribution = MACCSFeaturizer.maccs_166_fragments(mol, feature_attribution, num_atoms, atomic_attribution) return atomic_attribution def atomic_mappings(self, smiles: List[str]) -> List[List[List[Tuple[int, int]]]]: _, mols = self._maccs(smiles) _mols = [m.ToBinary() for m in mols if m] if self.n_jobs > 1: atomic_mappings = process_map(self._atomic_mapping, _mols, chunksize=(len(smiles) // self.n_jobs) + 1 if self.chunksize is None else self.chunksize, # chunksize=1, max_workers=self.n_jobs, desc="_maccs_atomic_mappings", mp_context=mp.get_context(self.mp_context)) else: atomic_mappings = list( map(self._atomic_mapping, tqdm(_mols, total=len(smiles), desc="_maccs_atomic_mappings"))) return atomic_mappings def atomic_attributions(self, smiles: List[str], feature_attributions: np.ndarray) -> List[np.ndarray]: assert len(smiles) == len( feature_attributions), f"provided number of smiles {len(smiles)} does not match number of features {len(feature_attributions)}" _, mols = self._maccs(smiles) _mols = [m.ToBinary() for m in mols if m] if self.n_jobs > 1: atomic_attributions = process_map(self._atomic_attribution, _mols, feature_attributions, chunksize=(len(smiles) // self.n_jobs) + 1 if self.chunksize is None else self.chunksize, # chunksize=1, max_workers=self.n_jobs, desc="_maccs_atomic_attributions", mp_context=mp.get_context(self.mp_context)) else: atomic_attributions = list( map(self._atomic_attribution, tqdm(_mols, total=len(smiles), desc="_maccs_atomic_attributions"), feature_attributions)) return atomic_attributions @staticmethod def maccs_count_features_mapping(maccs_idx: int, substructures, num_atoms: int, atomic_mapping: List[List[Tuple[int, int]]], feature_idx1: int, feature_idx2: int ) -> List[List[Tuple[int, int]]]: if maccs_idx == feature_idx1 and len(substructures) > 1: mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: mapping_submol[atom_idx].append(feature_idx2) count_atoms += 1 count_atoms = 1 if count_atoms == 0 else count_atoms for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) return atomic_mapping @staticmethod def maccs_count_features(maccs_idx: int, substructures, feature_attribution: np.ndarray, num_atoms: int, atomic_attribution: np.ndarray, feature_idx1: int, feature_idx2: int) -> np.ndarray: """based on the implementation by <NAME>""" if maccs_idx == feature_idx1 and len(substructures) > 1: attribution_value = feature_attribution[feature_idx2] weights_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructures: if atom_idx in structure: weights_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: weights_submol = weights_submol / count_atoms atomic_attribution += weights_submol return atomic_attribution @staticmethod def isRingAromatic(mol: Mol, ringbond: Tuple[int, ...]) -> bool: """based on the implementation by <NAME>""" for id in ringbond: if not mol.GetBondWithIdx(id).GetIsAromatic(): return False return True @staticmethod def maccs_125_aromaticrings_mapping(mol: Mol, num_atoms: int, atomic_mapping: List[List[Tuple[int, int]]]): substructure = list() ri = mol.GetRingInfo() ringcount = ri.NumRings() rings = ri.AtomRings() ringbonds = ri.BondRings() if ringcount > 1: for ring_idx in range(ringcount): ring = rings[ring_idx] ringbond = ringbonds[ring_idx] is_aromatic = MACCSFeaturizer.isRingAromatic(mol, ringbond) if is_aromatic == True: substructure.append(ring) mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructure: if atom_idx in structure: mapping_submol[atom_idx].append(125) count_atoms += 1 count_atoms = 1 if count_atoms == 0 else count_atoms for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) return atomic_mapping @staticmethod def maccs_125_aromaticrings(mol: Mol, feature_attribution: np.ndarray, num_atoms: int, atomic_attribution: np.ndarray) -> np.ndarray: """based on the implementation by <NAME>""" attribution_value = feature_attribution[125] substructure = list() ri = mol.GetRingInfo() ringcount = ri.NumRings() rings = ri.AtomRings() ringbonds = ri.BondRings() if ringcount > 1: for ring_idx in range(ringcount): ring = rings[ring_idx] ringbond = ringbonds[ring_idx] is_aromatic = MACCSFeaturizer.isRingAromatic(mol, ringbond) if is_aromatic == True: substructure.append(ring) weights_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): for structure in substructure: if atom_idx in structure: weights_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: weights_submol = weights_submol / count_atoms atomic_attribution += weights_submol return atomic_attribution @staticmethod def maccs_166_fragments_mapping(mol: Mol, num_atoms: int, atomic_mapping: List[List[Tuple[int, int]]]) -> List[ List[Tuple[int, int]]]: frags = Chem.GetMolFrags(mol) if len(frags) > 1: mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): for structure in frags: if atom_idx in structure: mapping_submol[atom_idx].append(166) count_atoms += 1 count_atoms = 1 if count_atoms == 0 else count_atoms for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) return atomic_mapping @staticmethod def maccs_166_fragments(mol: Mol, feature_attribution: np.ndarray, num_atoms: int, atomic_attribution: np.ndarray) -> np.ndarray: """based on the implementation by <NAME>""" attribution_value = feature_attribution[166] frags = Chem.GetMolFrags(mol) if len(frags) > 1: weights_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): for structure in frags: if atom_idx in structure: weights_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: weights_submol = weights_submol / count_atoms atomic_attribution += weights_submol return atomic_attribution def _all_patterns(): """based/adapted on the implementation by <NAME>""" with open(Path(PurePosixPath(__file__)).parent / "resources/tox_smarts.json") as file: smarts_list = [s[1] for s in json.load(file)] # Code does not work for this case assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0 # Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first # and then use them for all molecules. This gives a huge speedup over existing code. # a list of patterns, whether to negate the match result and how to join them to obtain one boolean value all_patterns = [] for smarts in smarts_list: patterns = [] # list of smarts-patterns # value for each of the patterns above. Negates the values of the above later. negations = [] if " AND " in smarts: smarts = smarts.split(" AND ") merge_any = False # If an " AND " is found all "subsmarts" have to match else: # If there is an " OR " present it"s enough is any of the "subsmarts" match. # This also accumulates smarts where neither " OR " nor " AND " occur smarts = smarts.split(" OR ") merge_any = True # for all subsmarts check if they are preceded by "NOT " for s in smarts: neg = s.startswith("NOT ") if neg: s = s[4:] patterns.append(Chem.MolFromSmarts(s)) negations.append(neg) all_patterns.append((patterns, negations, merge_any)) return all_patterns class ToxFeaturizer(): ALL_PATTERNS = _all_patterns() def __init__(self, n_jobs: int = multiprocessing.cpu_count(), mp_context: str = "spawn", chunksize: int = None, ): super(ToxFeaturizer, self).__init__() self.n_jobs = n_jobs self.mp_context = mp_context self.chunksize = chunksize @property def n_features(self) -> int: return 826 def _tox(self, molecule: Union[str, Mol, bytes]) -> np.ndarray: """ based/adapted on the implementation by <NAME> Matches the tox patterns against a molecule. Returns a boolean array """ mol = _init_molecule(molecule) mol_features = [] for patts, negations, merge_any in ToxFeaturizer.ALL_PATTERNS: matches = [mol.HasSubstructMatch(p) for p in patts] matches = [m != n for m, n in zip(matches, negations)] if merge_any: pres = any(matches) else: pres = all(matches) mol_features.append(pres) return np.array(mol_features) def _toxs(self, smiles: List[str]) -> Tuple[np.ndarray, List[Mol]]: toxs, mols = [], [] for i, smile in enumerate(tqdm(smiles, desc="_mols_toxs")): mol = Chem.MolFromSmiles(smile) mols.append(mol) if mol is None: warnings.warn(f"could not parse smile {i}: {smile}") _mols = [m.ToBinary() for m in mols if m] if self.n_jobs > 1: toxs = process_map(self._tox, _mols, chunksize=(len(smiles) // self.n_jobs) + 1 if self.chunksize is None else self.chunksize, # chunksize=1, max_workers=self.n_jobs, desc="_toxs", mp_context=mp.get_context(self.mp_context)) else: toxs = list(map(self._tox, _mols)) return np.stack([t for t in toxs if not None]), mols def __call__(self, smiles: List[str]) -> np.ndarray: """returns a binary numpy array""" return self._toxs(smiles)[0] def _atomic_mapping(self, molecule: Union[str, Mol, bytes], num_atoms: Optional[int] = None, ) -> List[List[Tuple[int, int]]]: """ gets the individual atomic mapping for one molecule - mapping indicates the feature idx + factor which contributes """ mol = _init_molecule(molecule) num_atoms = mol.GetNumAtoms() if not num_atoms else num_atoms atomic_mapping = [[] for _ in range(num_atoms)] for feature_idx, (patts, negations, merge_any) in enumerate(ToxFeaturizer.ALL_PATTERNS): mapping_submol = [[] for _ in range(num_atoms)] count_atoms = 0 for atom_idx in range(num_atoms): for i in range(len(negations)): neg = negations[i] pattern = patts[i] substructures = mol.GetSubstructMatches(pattern) for structure in substructures: atom_in_sub = list() if str(neg) == "False": if atom_idx in structure: atom_in_sub.append("y") elif str(neg) == "True": if atom_idx not in structure: atom_in_sub.append("y") if "y" in str(atom_in_sub): mapping_submol[atom_idx].append(feature_idx) count_atoms += 1 if count_atoms != 0: for i in range(num_atoms): if len(mapping_submol[i]) > 0: for _feature_idx in mapping_submol[i]: atomic_mapping[i].append((_feature_idx, count_atoms)) return atomic_mapping def _atomic_attribution(self, molecule: Union[str, Mol, bytes], feature_attribution: np.ndarray, num_atoms: Optional[int] = None) -> np.ndarray: """adapted/based on the implementation by <NAME>""" mol = _init_molecule(molecule) num_atoms = mol.GetNumAtoms() if not num_atoms else num_atoms atomic_attribution = np.zeros(num_atoms) tox_idx = 0 for patts, negations, merge_any in ToxFeaturizer.ALL_PATTERNS: attribution_value = feature_attribution[tox_idx] attribution_submol = np.zeros(num_atoms) count_atoms = 0 for atom_idx in range(num_atoms): for i in range(len(negations)): neg = negations[i] pattern = patts[i] substructures = mol.GetSubstructMatches(pattern) for structure in substructures: atom_in_sub = list() if str(neg) == "False": if atom_idx in structure: atom_in_sub.append("y") elif str(neg) == "True": if atom_idx not in structure: atom_in_sub.append("y") if "y" in str(atom_in_sub): attribution_submol[atom_idx] += attribution_value count_atoms += 1 if count_atoms != 0: attribution_submol = attribution_submol / count_atoms atomic_attribution += attribution_submol tox_idx += 1 return atomic_attribution def atomic_attributions(self, smiles: List[str], feature_attributions: np.ndarray) -> List[np.ndarray]: assert len(smiles) == len( feature_attributions), f"provided number of smiles {len(smiles)} does not match number of features {len(feature_attributions)}" _, mols = self._toxs(smiles) _mols = [m.ToBinary() for m in mols if m] if self.n_jobs > 1: atomic_attributions = process_map(self._atomic_attribution, _mols, feature_attributions, chunksize=(len(smiles) // self.n_jobs) + 1 if self.chunksize is None else self.chunksize, # chunksize=1, max_workers=self.n_jobs, desc="_tox_atomic_attributions", mp_context=mp.get_context(self.mp_context)) else: atomic_attributions = list( map(self._atomic_attribution, tqdm(_mols, total=len(smiles), desc="_tox_atomic_attributions"), feature_attributions)) return atomic_attributions def atomic_mappings(self, smiles: List[str]) -> List[List[List[Tuple[int, int]]]]: _, mols = self._toxs(smiles) _mols = [m.ToBinary() for m in mols if m] if self.n_jobs > 1: atomic_mappings = process_map(self._atomic_mapping, _mols, chunksize=(len(smiles) // self.n_jobs) + 1 if self.chunksize is None else self.chunksize, # chunksize=1, max_workers=self.n_jobs, desc="_tox_atomic_mappings", mp_context=mp.get_context(self.mp_context)) else: atomic_mappings = list( map(self._atomic_mapping, tqdm(_mols, total=len(smiles), desc="_tox_atomic_mappings"))) return atomic_mappings def _atomic_attribution_from_mapping(atomic_mapping: List[List[Tuple[int, int]]], feature_attribution: np.ndarray) -> np.ndarray: """calculate atomic attribution for single molecule based on provided mapping and features attributions""" num_atoms = len(atomic_mapping) atomic_attribution = np.zeros(num_atoms) for atom_idx, atom_map in enumerate(atomic_mapping): for feature_idx, count_atoms in atom_map: atomic_attribution[atom_idx] += feature_attribution[feature_idx] * 1 / count_atoms return atomic_attribution def atomic_attributions_from_mappings(atomic_mappings: List[List[List[Tuple[int, int]]]], feature_attributions: np.ndarray, n_jobs: int = multiprocessing.cpu_count(), mp_context: str = "fork", chunksize: int = None) -> List[np.ndarray]: """calculate atomic attributions for multiple molecules based on provided mappings and features attributions""" if n_jobs > 1: atomic_attributions = process_map(_atomic_attribution_from_mapping, atomic_mappings, feature_attributions, chunksize=(len(atomic_mappings) // n_jobs) + 1 if chunksize is None else chunksize, max_workers=n_jobs, desc="_attributions_from_atomic_mappings", mp_context=mp.get_context(mp_context)) else: atomic_attributions = list( map(_atomic_attribution_from_mapping, tqdm(atomic_mappings, total=len(atomic_mappings), desc="_attributions_from_atomic_mappings"), feature_attributions)) return atomic_attributions def calculate_ranking_scores(smiles: List[str], references: Union[List[str], List[Tuple[str, int]]], atomic_attributions: List[np.ndarray], labels: Optional[np.ndarray] = None, preds: Optional[np.ndarray] = None, ) -> Tuple[Dict, List[Dict], pd.DataFrame]: """ Function calculates the score to rank atoms of reference smiles/atomic substructures according to the provided atomic attribution/weights Args: smiles (): List of smile strings references (): List of tuples of provided reference smiles and if they are supposed to be active or not Scores are calculated per reference smile atomic_attributions (): List of atomic attributions/weights labels (): Optional provide binary true labels preds (): Optional provide binary predictions Returns: Tuple containing - Dictionary of mean calculated scores for all provided reference smiles - List of dictionaries per reference score with mean scores per reference smile - Dataframe containing table with full details per smile and per reference smile with all matches, scores, etc. """ assert len(smiles) == len( atomic_attributions), f"length of provided smiles {len(smiles)} must match length of provided attributions {len(atomic_attributions)}" if labels is not None: assert labels.ndim == 1, f"nr of dimensions of provided labels must be 1 but is {labels.ndim}" assert len(labels) == len(smiles), f"nr of labels {len(labels)} must match number of smiles {len(smiles)}" if preds is not None: assert preds.ndim == 1, f"nr of dimensions of provided predictions must be 1 but is {preds.ndim}" assert len(preds) == len(smiles), f"nr of predictions {len(preds)} must match number of smiles {len(smiles)}" df = pd.DataFrame() df["smile"] = smiles if labels is not None: df["label"] = labels if preds is not None: df["pred"] = preds # TODO rewrite loops for performance + add multiprocessing reference_results = [] for reference in tqdm(references): if isinstance(reference, tuple): reference_smile, reference_active = reference reference_active = "active" if reference_active == 1 else "inactive" else: reference_smile = reference reference_active = None reference_mol = Chem.MolFromSmiles(reference_smile) atom_matches, reference_attributions = [], [] scores = [] for i, smile in enumerate(smiles): mol = Chem.MolFromSmiles(smile) num_atoms = mol.GetNumAtoms() match = mol.GetSubstructMatch(reference_mol) if match: reference_atoms = [1 if i in match else 0 for i in range(num_atoms)] if not np.isnan(atomic_attributions[i]).any(): # failsafe check # score to rank atoms according to reference atom using the corresponding attributions score = roc_auc_score(reference_atoms, atomic_attributions[i]) scores.append(score) else: warnings.warn(f"encountered nan atomic attribution for smile {smile}") scores.append(float("nan")) atom_matches.append(str(reference_atoms)) else: scores.append(float("nan")) atom_matches.append("n/a") reference_attributions.append(str(atomic_attributions[i])) scores = np.array(scores) matches = np.array([0 if m == "n/a" else 1 for m in atom_matches]) reference_result = { "avg_score":
np.nanmean(scores)
numpy.nanmean
# -*- coding: utf8 -*- import numpy as np from tensorflow.examples.tutorials.mnist import input_data import csv from sklearn.preprocessing import normalize def load_data(path,shuffle=False): mnist = input_data.read_data_sets(path, one_hot=True) trainX = mnist.train.images # ndarray trainY = mnist.train.labels trainY = trainY.astype('float32') valX = mnist.validation.images valY = mnist.validation.labels valY = valY.astype('float32') testX = mnist.test.images testY = mnist.test.labels testY = testY.astype('float32') if shuffle: r = np.random.permutation(len(trainY)) trainX = trainX[r,:] trainY = trainY[r,:] r = np.random.permutation(len(valY)) valX = valX[r,:] valY = valY[r,:] r = np.random.permutation(len(testY)) testX = testX[r,:] testY = testY[r,:] return trainX, trainY, valX, valY, testX, testY def load_data_batch(path,start=0,batch_size=None,shuffle=False): if batch_size == None: X = np.load("./" + path).astype(np.float32)[:, :, :, None] else: X = np.load("./" + path).astype(np.float32)[start:start+batch_size, :] X = X/255 if len(X.shape)>2: X = np.reshape(X,[X.shape[0],X.shape[1]*X.shape[2]]) if shuffle: r = np.random.permutation(X.shape[0]) X = X[r,:] trainX = X return trainX def load_data_zi(path,shuffle=False,val_ratio=0.8): X = np.load("./" + path + "/jg.npy").astype(np.float32)[:, :, :, None] # 2994*80*80,没有归一化 # X = np.load("./"+path+"/simsun80.npy").astype(np.float32)[:,:,:,None] # 2994*80*80,没有归一化 X = X/255 X = np.reshape(X,[X.shape[0],X.shape[1]*X.shape[2]]) trainX = X[:np.round(val_ratio*X.shape[0])] valX = X[np.round(val_ratio * X.shape[0]):] return trainX, valX def load_goods_data(train_ratio = 0.9, shuffle=True, use_cat = True): X=np.loadtxt(open("./data/goods_vectors_new.csv","rb"),delimiter=",",skiprows=0) if use_cat: X = X[:,3:] # 前3列是id,后15列是one-hot的分类信息 else: Y = X[:, -15:] X = X[:, 3:-15] nan_loc = np.argwhere(np.isnan(X)) if len(nan_loc)>0: X = np.delete(X,nan_loc[0],axis=0) X = normalize(X,axis=1) if shuffle: idx = np.random.permutation(X.shape[0]) X = X[idx,:] Y = Y[idx,:] else : idx = range(len(X)) trainX = X[:np.round(train_ratio * X.shape[0])] trainidx = idx[:np.round(train_ratio * X.shape[0])] trainY = Y[:
np.round(train_ratio * X.shape[0])
numpy.round
import numpy as np import numpy.linalg as npl import numpy.random as npr import scipy.linalg as spl import scipy.optimize as spo import scipy.sparse as sps from time import time from geom import Geom from bc import BC from darcy import DarcyExp from dasa import DASAExpLM from se_kernel import SEKernel def compute_Lreg(geom): Nc = geom.cells.num Nfint = np.sum(geom.faces.is_interior) neighbors = geom.faces.neighbors[:,geom.faces.is_interior] rows = np.concatenate((np.arange(Nfint), np.arange(Nfint))) cols =
np.concatenate((neighbors[0], neighbors[1]))
numpy.concatenate
import h5py import numpy as np class FileProvider: """Helper class to read hdf5 files.""" def __init__(self, file_path:str, modality:str, seq_length:int = None): """ Initialize class object. Args: file_path (str): Path to `hdf5` file to read. modality (str): Modality to read data. seq_length (int): Number of consecutive frames to provide. """ self.modality = modality self.file_path = file_path self.num_calls = 0 self.num_samples = self._get_num_samples() self.num_seqs = self._get_num_sequences() self.seq_length = self.num_seqs if seq_length == None else seq_length self.total_num_calls = np.ceil(self.num_seqs / self.seq_length).astype(int) def _get_num_samples(self, key:str = 'num_samples'): """ Returns the number of samples in the file. Stored in file as attribute with name `num_samples`. """ with h5py.File(self.file_path, 'r') as dataset: num_samples = dataset.attrs[key] print(num_samples) return num_samples def h5py_dataset_iterator(self, g, prefix=''): for key in g.keys(): item = g[key] path = '{}/{}'.format(prefix, key) if isinstance(item, h5py.Dataset): # test for dataset yield (path, item) elif isinstance(item, h5py.Group): # test for group (go down) yield from h5py_dataset_iterator(item, path) def _get_num_sequences(self, key:str = 'seq_num'): """ Returns the number of sequences in the file. Stored in file as attribute with name `seq_num`. """ with h5py.File(self.file_path, 'r') as dataset: num_samples = dataset.attrs[key] print(num_samples) with h5py.File(self.file_path, 'r') as f: for (path, dset) in self.h5py_dataset_iterator(f): print(path, dset) return num_samples def _get_label_names(self, key:str = 'label_names'): """ Returns the names of the labels. Stored in file as attribute with name `label_names`. """ with h5py.File(self.file_path, 'r') as dataset: label_names = dataset.attrs[key] return label_names def reset(self): """ Reset the parameter needed to re-read the data. Performed Uusually after each epoch. """ self.num_calls = 0 def total_calls_reached(self): """ Checks whether all data were read.""" return self.total_num_calls == self.num_calls def __get_data(self, dataset:h5py.File, start:int, end:int): """ Reads and returns the requested data. Args: dataset (h5py.File): File to get data from. start (int): Start frame of sequence. end (int): End frame of sequence. """ if isinstance(self.modality, list): return [np.array(dataset[x][start:end]) for x in self.modality] else: return
np.array(dataset[self.modality][start:end])
numpy.array
''' episodestats.py implements statistic that are used in producing employment statistics for the lifecycle model ''' import h5py import numpy as np import numpy_financial as npf import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from scipy.stats import norm #import locale from tabulate import tabulate import pandas as pd import scipy.optimize from tqdm import tqdm_notebook as tqdm from . empstats import Empstats from scipy.stats import gaussian_kde #locale.setlocale(locale.LC_ALL, 'fi_FI') def modify_offsettext(ax,text): ''' For y axis ''' x_pos = 0.0 y_pos = 1.0 horizontalalignment='left' verticalalignment='bottom' offset = ax.yaxis.get_offset_text() #value=offset.get_text() # value=float(value) # if value>=1e12: # text='biljoonaa' # elif value>1e9: # text=str(value/1e9)+' miljardia' # elif value==1e9: # text=' miljardia' # elif value>1e6: # text=str(value/1e6)+' miljoonaa' # elif value==1e6: # text='miljoonaa' # elif value>1e3: # text=str(value/1e3)+' tuhatta' # elif value==1e3: # text='tuhatta' offset.set_visible(False) ax.text(x_pos, y_pos, text, transform=ax.transAxes, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment) class Labels(): def get_labels(self,language='English'): labels={} if language=='English': labels['osuus tilassa x']='Proportion in state {} [%]' labels['age']='Age [y]' labels['ratio']='Proportion [%]' labels['unemp duration']='Length of unemployment [y]' labels['scaled freq']='Scaled frequency' labels['probability']='probability' labels['telp']='Employee pension premium' labels['sairausvakuutus']='Health insurance' labels['työttömyysvakuutusmaksu']='Unemployment insurance' labels['puolison verot']='Partners taxes' labels['taxes']='Taxes' labels['asumistuki']='Housing benefit' labels['toimeentulotuki']='Supplementary benefit' labels['tyottomyysturva']='Unemployment benefit' labels['paivahoito']='Daycare' labels['elake']='Pension' labels['tyollisyysaste']='Employment rate' labels['tyottomien osuus']='Proportion of unemployed' labels['havainto']='Observation' labels['tyottomyysaste']='Unemployment rate [%]' labels['tyottomien osuus']='Proportion of unemployed [%]' labels['tyollisyysaste %']='Employment rate [%]' labels['ero osuuksissa']='Difference in proportions [%]' labels['osuus']='proportion' labels['havainto, naiset']='data, women' labels['havainto, miehet']='data, men' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='Life cycle model' else: labels['osuus tilassa x']='Osuus tilassa {} [%]' labels['age']='Ikä [v]' labels['ratio']='Osuus tilassa [%]' labels['unemp duration']='työttömyysjakson pituus [v]' labels['scaled freq']='skaalattu taajuus' labels['probability']='todennäköisyys' labels['telp']='TEL-P' labels['sairausvakuutus']='Sairausvakuutus' labels['työttömyysvakuutusmaksu']='Työttömyysvakuutusmaksu' labels['puolison verot']='puolison verot' labels['taxes']='Verot' labels['asumistuki']='Asumistuki' labels['toimeentulotuki']='Toimeentulotuki' labels['tyottomyysturva']='Työttömyysturva' labels['paivahoito']='Päivähoito' labels['elake']='Eläke' labels['tyollisyysaste']='työllisyysaste' labels['tyottomien osuus']='työttömien osuus' labels['havainto']='havainto' labels['tyottomyysaste']='Työttömyysaste [%]' labels['tyottomien osuus']='Työttömien osuus väestöstö [%]' labels['tyollisyysaste %']='Työllisyysaste [%]' labels['ero osuuksissa']='Ero osuuksissa [%]' labels['osuus']='Osuus' labels['havainto, naiset']='havainto, naiset' labels['havainto, miehet']='havainto, miehet' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='elinkaarimalli' return labels class EpisodeStats(): def __init__(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year=2018,version=3,params=None,gamma=0.92,lang='English'): self.version=version self.gamma=gamma self.params=params self.lab=Labels() self.reset(timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,params=params,lang=lang) print('version',version) def reset(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,version=None,params=None,lang=None,dynprog=False): self.min_age=min_age self.max_age=max_age self.min_retirementage=min_retirementage self.minimal=minimal if params is not None: self.params=params if lang is None: self.language='English' else: self.language=lang if version is not None: self.version=version self.setup_labels() self.n_employment=n_emps self.n_time=n_time self.timestep=timestep # 0.25 = 3kk askel self.inv_timestep=int(np.round(1/self.timestep)) # pitää olla kokonaisluku self.n_pop=n_pop self.year=year self.env=env self.reaalinen_palkkojenkasvu=0.016 self.palkkakerroin=(0.8*1+0.2*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.elakeindeksi=(0.2*1+0.8*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.dynprog=dynprog if self.minimal: self.version=0 if self.version in set([0,101]): self.n_groups=1 else: self.n_groups=6 self.empstats=Empstats(year=self.year,max_age=self.max_age,n_groups=self.n_groups,timestep=self.timestep,n_time=self.n_time, min_age=self.min_age) self.init_variables() def init_variables(self): n_emps=self.n_employment self.empstate=np.zeros((self.n_time,n_emps)) self.gempstate=np.zeros((self.n_time,n_emps,self.n_groups)) self.deceiced=np.zeros((self.n_time,1)) self.alive=np.zeros((self.n_time,1)) self.galive=np.zeros((self.n_time,self.n_groups)) self.rewstate=np.zeros((self.n_time,n_emps)) self.poprewstate=np.zeros((self.n_time,self.n_pop)) self.salaries_emp=np.zeros((self.n_time,n_emps)) #self.salaries=np.zeros((self.n_time,self.n_pop)) self.actions=np.zeros((self.n_time,self.n_pop)) self.popempstate=np.zeros((self.n_time,self.n_pop)) self.popunemprightleft=np.zeros((self.n_time,self.n_pop)) self.popunemprightused=np.zeros((self.n_time,self.n_pop)) self.tyoll_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.unemp_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.siirtyneet=np.zeros((self.n_time,n_emps)) self.siirtyneet_det=np.zeros((self.n_time,n_emps,n_emps)) self.pysyneet=np.zeros((self.n_time,n_emps)) self.aveV=np.zeros((self.n_time,self.n_pop)) self.time_in_state=np.zeros((self.n_time,n_emps)) self.stat_tyoura=np.zeros((self.n_time,n_emps)) self.stat_toe=np.zeros((self.n_time,n_emps)) self.stat_pension=np.zeros((self.n_time,n_emps)) self.stat_paidpension=np.zeros((self.n_time,n_emps)) self.out_of_work=np.zeros((self.n_time,n_emps)) self.stat_unemp_len=np.zeros((self.n_time,self.n_pop)) self.stat_wage_reduction=np.zeros((self.n_time,n_emps)) self.stat_wage_reduction_g=np.zeros((self.n_time,n_emps,self.n_groups)) self.infostats_group=np.zeros((self.n_pop,1)) self.infostats_taxes=np.zeros((self.n_time,1)) self.infostats_wagetaxes=np.zeros((self.n_time,1)) self.infostats_taxes_distrib=np.zeros((self.n_time,n_emps)) self.infostats_etuustulo=np.zeros((self.n_time,1)) self.infostats_etuustulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_perustulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo_eielakkeella=np.zeros((self.n_time,1)) self.infostats_palkkatulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_palkkatulo_eielakkeella_group=np.zeros((self.n_time,1)) self.infostats_ansiopvraha=np.zeros((self.n_time,1)) self.infostats_ansiopvraha_group=np.zeros((self.n_time,self.n_groups)) self.infostats_asumistuki=np.zeros((self.n_time,1)) self.infostats_asumistuki_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero=np.zeros((self.n_time,1)) self.infostats_valtionvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_kunnallisvero=np.zeros((self.n_time,1)) self.infostats_kunnallisvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_kunnallisvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_ptel=np.zeros((self.n_time,1)) self.infostats_tyotvakmaksu=np.zeros((self.n_time,1)) self.infostats_tyoelake=np.zeros((self.n_time,1)) self.infostats_kokoelake=np.zeros((self.n_time,1)) self.infostats_opintotuki=np.zeros((self.n_time,1)) self.infostats_isyyspaivaraha=np.zeros((self.n_time,1)) self.infostats_aitiyspaivaraha=np.zeros((self.n_time,1)) self.infostats_kotihoidontuki=np.zeros((self.n_time,1)) self.infostats_sairauspaivaraha=np.zeros((self.n_time,1)) self.infostats_toimeentulotuki=np.zeros((self.n_time,1)) self.infostats_tulot_netto=np.zeros((self.n_time,1)) self.infostats_pinkslip=np.zeros((self.n_time,n_emps)) self.infostats_pop_pinkslip=np.zeros((self.n_time,self.n_pop)) self.infostats_chilren18_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren7_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren18=np.zeros((self.n_time,1)) self.infostats_chilren7=np.zeros((self.n_time,1)) self.infostats_tyelpremium=np.zeros((self.n_time,self.n_pop)) self.infostats_paid_tyel_pension=np.zeros((self.n_time,self.n_pop)) self.infostats_sairausvakuutus=np.zeros((self.n_time)) self.infostats_pvhoitomaksu=np.zeros((self.n_time,self.n_pop)) self.infostats_ylevero=np.zeros((self.n_time,1)) self.infostats_ylevero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_irr=np.zeros((self.n_pop,1)) self.infostats_npv0=np.zeros((self.n_pop,1)) self.infostats_mother_in_workforce=np.zeros((self.n_time,1)) self.infostats_children_under3=np.zeros((self.n_time,self.n_pop)) self.infostats_children_under7=np.zeros((self.n_time,self.n_pop)) self.infostats_unempwagebasis=np.zeros((self.n_time,self.n_pop)) self.infostats_unempwagebasis_acc=np.zeros((self.n_time,self.n_pop)) self.infostats_toe=np.zeros((self.n_time,self.n_pop)) self.infostats_ove=np.zeros((self.n_time,n_emps)) self.infostats_kassanjasen=np.zeros((self.n_time)) self.infostats_poptulot_netto=np.zeros((self.n_time,self.n_pop)) self.infostats_pop_wage=np.zeros((self.n_time,self.n_pop)) self.infostats_pop_pension=np.zeros((self.n_time,self.n_pop)) self.infostats_equivalent_income=np.zeros(self.n_time) self.infostats_alv=np.zeros(self.n_time) self.infostats_puoliso=np.zeros(self.n_time) self.pop_predrew=np.zeros((self.n_time,self.n_pop)) if self.version==101: self.infostats_savings=np.zeros((self.n_time,self.n_pop)) self.sav_actions=np.zeros((self.n_time,self.n_pop)) def add(self,n,act,r,state,newstate,q=None,debug=False,plot=False,aveV=None,pred_r=None): if self.version==0: emp,_,_,a,_,_=self.env.state_decode(state) # current employment state newemp,newpen,newsal,a2,tis,next_wage=self.env.state_decode(newstate) g=0 bu=0 ove=0 jasen=0 puoliso=0 elif self.version==1: # v1 emp,_,_,_,a,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,ura,oof,bu,wr,p=self.env.state_decode(newstate) ove=0 jasen=0 puoliso=0 elif self.version==2: # v2 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,ura,bu,wr,upr,uw,uwr,pr,c3,c7,c18,unemp_left,aa,toe58=self.env.state_decode(newstate) ove=0 jasen=0 puoliso=0 elif self.version==3: # v3 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,toek,ura,bu,wr,upr,uw,uwr,pr,c3,c7,c18,unemp_left,aa,toe58,ove,jasen=self.env.state_decode(newstate) puoliso=0 elif self.version==4: # v3 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,toek,ura,bu,wr,upr,uw,uwr,pr,\ c3,c7,c18,unemp_left,aa,toe58,ove,jasen,puoliso,puoliso_tyossa,puoliso_palkka=self.env.state_decode(newstate) elif self.version==101: emp,_,_,a,_,_,_=self.env.state_decode(state) # current employment state newemp,newpen,newsal,a2,tis,next_wage,savings=self.env.state_decode(newstate) g=0 bu=0 ove=0 jasen=0 t=int(np.round((a2-self.min_age)*self.inv_timestep))#-1 if a2>a and newemp>=0: # new state is not reset (age2>age) if a2>self.min_retirementage and newemp==3 and self.version in set([1,2,3,4]): newemp=2 if self.version in set([1,2,3,4]): self.empstate[t,newemp]+=1 self.alive[t]+=1 self.rewstate[t,newemp]+=r self.poprewstate[t,n]=r self.actions[t,n]=act self.popempstate[t,n]=newemp #self.salaries[t,n]=newsal self.salaries_emp[t,newemp]+=newsal self.time_in_state[t,newemp]+=tis if tis<=0.25 and newemp==5: self.infostats_mother_in_workforce[t]+=1 self.infostats_pinkslip[t,newemp]+=pink self.infostats_pop_pinkslip[t,n]=pink self.gempstate[t,newemp,g]+=1 self.stat_wage_reduction[t,newemp]+=wr self.stat_wage_reduction_g[t,newemp,g]+=wr self.galive[t,g]+=1 self.stat_tyoura[t,newemp]+=ura self.stat_toe[t,newemp]+=toe self.stat_pension[t,newemp]+=newpen self.stat_paidpension[t,newemp]+=paidpens self.stat_unemp_len[t,n]=tis self.popunemprightleft[t,n]=-self.env.unempright_left(newemp,tis,bu,a2,ura) self.popunemprightused[t,n]=bu self.infostats_group[n]=int(g) self.infostats_unempwagebasis[t,n]=uw self.infostats_unempwagebasis_acc[t,n]=uwr self.infostats_toe[t,n]=toe self.infostats_ove[t,newemp]+=ove self.infostats_kassanjasen[t]+=jasen self.infostats_pop_wage[t,n]=newsal self.infostats_pop_pension[t,n]=newpen self.infostats_puoliso[t]+=puoliso if q is not None: #print(newsal,q['palkkatulot']) self.infostats_taxes[t]+=q['verot']*self.timestep*12 self.infostats_wagetaxes[t]+=q['verot_ilman_etuuksia']*self.timestep*12 self.infostats_taxes_distrib[t,newemp]+=q['verot']*self.timestep*12 self.infostats_etuustulo[t]+=q['etuustulo_brutto']*self.timestep*12 self.infostats_etuustulo_group[t,g]+=q['etuustulo_brutto']*self.timestep*12 self.infostats_perustulo[t]+=q['perustulo']*self.timestep*12 self.infostats_palkkatulo[t]+=q['palkkatulot']*self.timestep*12 self.infostats_palkkatulo_eielakkeella[t]+=q['palkkatulot_eielakkeella']*self.timestep*12 self.infostats_ansiopvraha[t]+=q['ansiopvraha']*self.timestep*12 self.infostats_asumistuki[t]+=q['asumistuki']*self.timestep*12 self.infostats_valtionvero[t]+=q['valtionvero']*self.timestep*12 self.infostats_valtionvero_distrib[t,newemp]+=q['valtionvero']*self.timestep*12 self.infostats_kunnallisvero[t]+=q['kunnallisvero']*self.timestep*12 self.infostats_kunnallisvero_distrib[t,newemp]+=q['kunnallisvero']*self.timestep*12 self.infostats_ptel[t]+=q['ptel']*self.timestep*12 self.infostats_tyotvakmaksu[t]+=q['tyotvakmaksu']*self.timestep*12 self.infostats_tyoelake[t]+=q['elake_maksussa']*self.timestep*12 self.infostats_kokoelake[t]+=q['kokoelake']*self.timestep*12 self.infostats_opintotuki[t]+=q['opintotuki']*self.timestep*12 self.infostats_isyyspaivaraha[t]+=q['isyyspaivaraha']*self.timestep*12 self.infostats_aitiyspaivaraha[t]+=q['aitiyspaivaraha']*self.timestep*12 self.infostats_kotihoidontuki[t]+=q['kotihoidontuki']*self.timestep*12 self.infostats_sairauspaivaraha[t]+=q['sairauspaivaraha']*self.timestep*12 self.infostats_toimeentulotuki[t]+=q['toimtuki']*self.timestep*12 self.infostats_tulot_netto[t]+=q['kateen']*self.timestep*12 self.infostats_tyelpremium[t,n]=q['tyel_kokomaksu']*self.timestep*12 self.infostats_paid_tyel_pension[t,n]=q['puhdas_tyoelake']*self.timestep*12 self.infostats_sairausvakuutus[t]+=q['sairausvakuutus']*self.timestep*12 self.infostats_pvhoitomaksu[t,n]=q['pvhoito']*self.timestep*12 self.infostats_ylevero[t]+=q['ylevero']*self.timestep*12 self.infostats_ylevero_distrib[t,newemp]=q['ylevero']*self.timestep*12 self.infostats_poptulot_netto[t,n]=q['kateen']*self.timestep*12 self.infostats_children_under3[t,n]=c3 self.infostats_children_under7[t,n]=c7 self.infostats_npv0[n]=q['multiplier'] self.infostats_equivalent_income[t]+=q['eq'] if 'alv' in q: self.infostats_alv[t]+=q['alv'] #self.infostats_kassanjasen[t]+=1 elif self.version in set([0,101]): self.empstate[t,newemp]+=1 self.alive[t]+=1 self.rewstate[t,newemp]+=r self.infostats_tulot_netto[t]+=q['netto'] # already at annual level self.infostats_poptulot_netto[t,n]=q['netto'] self.poprewstate[t,n]=r self.popempstate[t,n]=newemp #self.salaries[t,n]=newsal self.salaries_emp[t,newemp]+=newsal self.time_in_state[t,newemp]+=tis self.infostats_equivalent_income[t]+=q['eq'] self.infostats_pop_wage[t,n]=newsal self.infostats_pop_pension[t,n]=newpen if self.dynprog and pred_r is not None: self.pop_predrew[t,n]=pred_r if self.version==101: self.infostats_savings[t,n]=savings self.actions[t,n]=act[0] self.sav_actions[t,n]=act[1] else: self.actions[t,n]=act # if self.version in set([1,2,3]): # self.gempstate[t,newemp,g]+=1 # self.stat_wage_reduction[t,newemp]+=wr # self.galive[t,g]+=1 # self.stat_tyoura[t,newemp]+=ura # self.stat_toe[t,newemp]+=toe # self.stat_pension[t,newemp]+=newpen # self.stat_paidpension[t,newemp]+=paidpens # self.stat_unemp_len[t,n]=tis # self.popunemprightleft[t,n]=0 # self.popunemprightused[t,n]=0 if aveV is not None: self.aveV[t,n]=aveV if not emp==newemp: self.siirtyneet[t,emp]+=1 self.siirtyneet_det[t,emp,newemp]+=1 else: self.pysyneet[t,emp]+=1 elif newemp<0: self.deceiced[t]+=1 def scale_error(self,x,target=None,averaged=False): return (target-self.comp_scaled_consumption(x,averaged=averaged)) def comp_employed_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=np.squeeze(self.gempstate[:,:,g]) else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyoll_osuus=(emp[:,1]+emp[:,3])/nn htv_osuus=(emp[:,1]+0.5*emp[:,3])/nn tyoll_osuus=np.reshape(tyoll_osuus,(tyoll_osuus.shape[0],1)) htv_osuus=np.reshape(htv_osuus,(htv_osuus.shape[0],1)) else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyoll_osuus=(emp[:,1]+emp[:,8]+emp[:,9]+emp[:,10]) htv_osuus=(emp[:,1]+0.5*emp[:,8]+emp[:,9]+0.5*emp[:,10]) tyoll_osuus=np.reshape(tyoll_osuus,(tyoll_osuus.shape[0],1)) htv_osuus=np.reshape(htv_osuus,(htv_osuus.shape[0],1)) return tyoll_osuus,htv_osuus def comp_employed_aggregate(self,emp=None,start=20,end=63.5,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyoll_osuus=(emp[:,1]+emp[:,3])/nn htv_osuus=(emp[:,1]+0.5*emp[:,3])/nn else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyoll_osuus=(emp[:,1]+emp[:,8]+emp[:,9]+emp[:,10])/nn htv_osuus=(emp[:,1]+0.5*emp[:,8]+emp[:,9]+0.5*emp[:,10])/nn htv_osuus=self.comp_state_stats(htv_osuus,start=start,end=end,ratio=True) tyoll_osuus=self.comp_state_stats(tyoll_osuus,start=start,end=end,ratio=True) return tyoll_osuus,htv_osuus def comp_group_ps(self): return self.comp_palkkasumma(grouped=True) def comp_palkkasumma(self,start=19,end=68,grouped=False,scale_time=True): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 if grouped: scalex=demog2/self.n_pop*self.timestep ps=np.zeros((self.n_time,6)) ps_norw=np.zeros((self.n_time,6)) a_ps=np.zeros(6) a_ps_norw=np.zeros(6) for k in range(self.n_pop): g=int(self.infostats_group[k,0]) for t in range(min_cage,max_cage): e=int(self.popempstate[t,k]) if e in set([1,10]): ps[t,g]+=self.infostats_pop_wage[t,k] ps_norw[t,g]+=self.infostats_pop_wage[t,k] elif e in set([8,9]): ps[t,g]+=self.infostats_pop_wage[t,k]*self.timestep for g in range(6): a_ps[g]=np.sum(scalex[min_cage:max_cage]*ps[min_cage:max_cage,g]) a_ps_norw[g]=np.sum(scalex[min_cage:max_cage]*ps_norw[min_cage:max_cage,g]) else: scalex=demog2/self.n_pop*self.timestep ps=np.zeros((self.n_time,1)) ps_norw=np.zeros((self.n_time,1)) for k in range(self.n_pop): for t in range(min_cage,max_cage): e=int(self.popempstate[t,k]) if e in set([1,10]): ps[t,0]+=self.infostats_pop_wage[t,k] ps_norw[t,0]+=self.infostats_pop_wage[t,k] elif e in set([8,9]): ps[t,0]+=self.infostats_pop_wage[t,k] a_ps=np.sum(scalex[min_cage:max_cage]*ps[min_cage:max_cage]) a_ps_norw=np.sum(scalex[min_cage:max_cage]*ps_norw[min_cage:max_cage]) return a_ps,a_ps_norw def comp_stats_agegroup(self,border=[19,35,50]): n_groups=len(border) low=border.copy() high=border.copy() high[0:n_groups-1]=border[1:n_groups] high[-1]=65 employed=np.zeros(n_groups) unemployed=np.zeros(n_groups) ahtv=np.zeros(n_groups) parttimeratio=np.zeros(n_groups) unempratio=np.zeros(n_groups) empratio=np.zeros(n_groups) i_ps=np.zeros(n_groups) i_ps_norw=np.zeros(n_groups) for n in range(n_groups): l=low[n] h=high[n] htv,tyollvaikutus,tyollaste,tyotosuus,tyottomat,osatyollaste=\ self.comp_tyollisyys_stats(self.empstate,scale_time=True,start=l,end=h,agegroups=True) ps,ps_norw=self.comp_palkkasumma(start=l,end=h) print(f'l {l} h {h}\nhtv {htv}\ntyollaste {tyollaste}\ntyotosuus {tyotosuus}\ntyottomat {tyottomat}\nosatyollaste {osatyollaste}\nps {ps}') employed[n]=tyollvaikutus ahtv[n]=htv unemployed[n]=tyottomat unempratio[n]=tyotosuus empratio[n]=tyollaste parttimeratio[n]=osatyollaste i_ps[n]=ps i_ps_norw[n]=ps_norw return employed,ahtv,unemployed,parttimeratio,i_ps,i_ps_norw,unempratio,empratio def comp_unemployed_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyot_osuus=emp[:,0]/nn tyot_osuus=np.reshape(tyot_osuus,(tyot_osuus.shape[0],1)) else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyot_osuus=(emp[:,0]+emp[:,4]+emp[:,13])[:,None] #tyot_osuus=np.reshape(tyot_osuus,(tyot_osuus.shape[0],1)) return tyot_osuus def comp_unemployed_aggregate(self,emp=None,start=20,end=63.5,scale_time=True,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyot_osuus=emp[:,0]/nn else: tyot_osuus=(emp[:,0]+emp[:,4]+emp[:,13])/nn #print(f'tyot_osuus {tyot_osuus}') unemp=self.comp_state_stats(tyot_osuus,start=start,end=end,ratio=True) return unemp def comp_parttime_aggregate(self,emp=None,start=20,end=63.5,scale_time=True,grouped=False,g=0): ''' Lukumäärätiedot (EI HTV!) ''' if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if not self.minimal: tyossa=(emp[:,1]+emp[:,10]+emp[:,8]+emp[:,9])/nn osatyossa=(emp[:,10]+emp[:,8])/nn else: tyossa=emp[:,1]/nn osatyossa=0*tyossa osatyo_osuus=osatyossa/tyossa osatyo_osuus=self.comp_state_stats(osatyo_osuus,start=start,end=end,ratio=True) kokotyo_osuus=1-osatyo_osuus return kokotyo_osuus,osatyo_osuus def comp_parttime_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: kokotyo_osuus=(emp[:,1])/nn osatyo_osuus=(emp[:,3])/nn else: if grouped: for g in range(6): kokotyo_osuus=(emp[:,1,g]+emp[:,9,g])/nn osatyo_osuus=(emp[:,8,g]+emp[:,10,g])/nn else: kokotyo_osuus=(emp[:,1]+emp[:,9])/nn osatyo_osuus=(emp[:,8]+emp[:,10])/nn osatyo_osuus=np.reshape(osatyo_osuus,(osatyo_osuus.shape[0],1)) kokotyo_osuus=np.reshape(kokotyo_osuus,(osatyo_osuus.shape[0],1)) return kokotyo_osuus,osatyo_osuus def comp_employed_ratio(self,emp): tyoll_osuus,htv_osuus=self.comp_employed_ratio_by_age(emp) tyot_osuus=self.comp_unemployed_ratio_by_age(emp) kokotyo_osuus,osatyo_osuus=self.comp_parttime_ratio_by_age(emp) return tyoll_osuus,htv_osuus,tyot_osuus,kokotyo_osuus,osatyo_osuus def comp_unemployed_detailed(self,emp): if self.minimal: ansiosid_osuus=emp[:,0]/np.sum(emp,1) tm_osuus=ansiosid_osuus*0 else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk ansiosid_osuus=(emp[:,0]+emp[:,4])/np.sum(emp,1) tm_osuus=(emp[:,13])/np.sum(emp,1) return ansiosid_osuus,tm_osuus def comp_tyollisyys_stats(self,emp,scale_time=True,start=19,end=68,full=False,tyot_stats=False,agg=False,shapes=False,only_groups=False,g=0,agegroups=False): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 scalex=demog2[min_cage:max_cage]/self.n_pop*scale if only_groups: tyollosuus,htvosuus,tyot_osuus,kokotyo_osuus,osatyo_osuus=self.comp_employed_ratio(emp) else: tyollosuus,htvosuus,tyot_osuus,kokotyo_osuus,osatyo_osuus=self.comp_employed_ratio(emp) htv=np.sum(scalex*htvosuus[min_cage:max_cage]) tyollvaikutus=np.sum(scalex*tyollosuus[min_cage:max_cage]) tyottomat=np.sum(scalex*tyot_osuus[min_cage:max_cage]) osatyollvaikutus=np.sum(scalex*osatyo_osuus[min_cage:max_cage]) kokotyollvaikutus=np.sum(scalex*kokotyo_osuus[min_cage:max_cage]) haj=np.mean(np.std(tyollosuus[min_cage:max_cage])) tyollaste=tyollvaikutus/(np.sum(scalex)*self.n_pop) osatyollaste=osatyollvaikutus/(kokotyollvaikutus+osatyollvaikutus) kokotyollaste=kokotyollvaikutus/(kokotyollvaikutus+osatyollvaikutus) if tyot_stats: if agg: #d2=np.squeeze(demog2) tyolliset_osuus=np.squeeze(tyollosuus) tyottomat_osuus=np.squeeze(tyot_osuus) return tyolliset_ika,tyottomat_ika,htv_ika,tyolliset_osuus,tyottomat_osuus else: d2=np.squeeze(demog2) tyolliset_ika=np.squeeze(scale*d2*np.squeeze(htvosuus)) tyottomat_ika=np.squeeze(scale*d2*np.squeeze(tyot_osuus)) htv_ika=np.squeeze(scale*d2*np.squeeze(htvosuus)) tyolliset_osuus=np.squeeze(tyollosuus) tyottomat_osuus=np.squeeze(tyot_osuus) return tyolliset_ika,tyottomat_ika,htv_ika,tyolliset_osuus,tyottomat_osuus elif full: return htv,tyollvaikutus,haj,tyollaste,tyollosuus,osatyollvaikutus,kokotyollvaikutus,osatyollaste,kokotyollaste elif agegroups: tyot_osuus=self.comp_unemployed_aggregate(start=start,end=end) return htv,tyollvaikutus,tyollaste,tyot_osuus,tyottomat,osatyollaste else: return htv,tyollvaikutus,haj,tyollaste,tyollosuus def comp_employment_stats(self,scale_time=True,returns=False): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(self.min_age) max_cage=self.map_age(self.max_age)+1 scalex=np.squeeze(demog2/self.n_pop*self.timestep) d=np.squeeze(demog2[min_cage:max_cage]) self.ratiostates=self.empstate/self.alive self.demogstates=(self.empstate.T*scalex).T if self.minimal>0: self.stats_employed=self.demogstates[:,0]+self.demogstates[:,3] self.stats_parttime=self.demogstates[:,3] self.stats_unemployed=self.demogstates[:,0] self.stats_all=np.sum(self.demogstates,1) else: self.stats_employed=self.demogstates[:,0]+self.demogstates[:,10]+self.demogstates[:,8]+self.demogstates[:,9] self.stats_parttime=self.demogstates[:,10]+self.demogstates[:,8] self.stats_unemployed=self.demogstates[:,0]+self.demogstates[:,4]+self.demogstates[:,13] self.stats_all=np.sum(self.demogstates,1) if returns: return self.stats_employed,self.stats_parttime,self.stats_unemployed # def test_emp(self): # g_emp=0 # g_htv=0 # g_10=0 # g_1=0 # g_8=0 # g_9=0 # g_x=0 # scalex=1 # # demog2=self.empstats.get_demog() # scalex=np.squeeze(demog2/self.n_pop*self.timestep) # # # for g in range(6): # q=self.comp_participants(grouped=True,g=g) # #g_1+=np.sum(self.gempstate[:,1,g]) # #g_10+=np.sum(self.gempstate[:,10,g]) # #g_8+=np.sum(self.gempstate[:,8,g]) # #g_9+=np.sum(self.gempstate[:,9,g]) # g_emp+=q['palkansaajia'] # g_htv+=q['htv'] # g_x+=np.sum((self.gempstate[:,1,g]+self.gempstate[:,10,g])*scalex) # # q=self.comp_participants() # s_1=np.sum(self.empstate[:,1]) # s_10=np.sum(self.empstate[:,10]) # s_8=np.sum(self.empstate[:,8]) # s_9=np.sum(self.empstate[:,9]) # s_x=np.sum((self.empstate[:,1]+self.empstate[:,10])*scalex) # emp=q['palkansaajia'] # htv=q['htv'] # # print(f'htv {htv} vs g_htv {g_htv}') # print(f'emp {emp} vs g_emp {g_emp}') # print(f's_x {s_x} vs g_x {g_x}') # #print(f's_1 {s_1} vs g_1 {g_1}') # #print(f's_10 {s_10} vs g_10 {g_10}') # #print(f's_8 {s_8} vs g_8 {g_8}') # #print(f's_9 {s_9} vs g_9 {g_9}') def comp_participants(self,scale=True,include_retwork=True,grouped=False,g=0): ''' <NAME> lkm scalex olettaa, että naisia & miehiä yhtä paljon. Tämän voisi tarkentaa. ''' demog2=self.empstats.get_demog() scalex=np.squeeze(demog2/self.n_pop*self.timestep) #print('version',self.version) q={} if self.version in set([1,2,3,4]): if grouped: #print('group=',g) emp=np.squeeze(self.gempstate[:,:,g]) q['yhteensä']=np.sum(np.sum(emp,axis=1)*scalex) if include_retwork: q['palkansaajia']=np.sum((emp[:,1]+emp[:,10]+emp[:,8]+emp[:,9])*scalex) q['htv']=np.sum((emp[:,1]+0.5*emp[:,10]+0.5*emp[:,8]+emp[:,9])*scalex) else: q['palkansaajia']=np.sum((emp[:,1]+emp[:,10])*scalex) q['htv']=np.sum((emp[:,1]+0.5*emp[:,10])*scalex) q['ansiosidonnaisella']=np.sum((emp[:,0]+emp[:,4])*scalex) q['tmtuella']=np.sum(emp[:,13]*scalex) q['isyysvapaalla']=np.sum(emp[:,6]*scalex) q['kotihoidontuella']=np.sum(emp[:,7]*scalex) q['vanhempainvapaalla']=np.sum(emp[:,5]*scalex) else: q['yhteensä']=np.sum(np.sum(self.empstate[:,:],axis=1)*scalex) if include_retwork: q['palkansaajia']=np.sum((self.empstate[:,1]+self.empstate[:,10]+self.empstate[:,8]+self.empstate[:,9])*scalex) q['htv']=np.sum((self.empstate[:,1]+0.5*self.empstate[:,10]+0.5*self.empstate[:,8]+self.empstate[:,9])*scalex) else: q['palkansaajia']=np.sum((self.empstate[:,1]+self.empstate[:,10])*scalex) q['htv']=np.sum((self.empstate[:,1]+0.5*self.empstate[:,10])*scalex) q['ansiosidonnaisella']=np.sum((self.empstate[:,0]+self.empstate[:,4])*scalex) q['tmtuella']=np.sum(self.empstate[:,13]*scalex) q['isyysvapaalla']=np.sum(self.empstate[:,6]*scalex) q['kotihoidontuella']=np.sum(self.empstate[:,7]*scalex) q['vanhempainvapaalla']=np.sum(self.empstate[:,5]*scalex) else: q['yhteensä']=np.sum(np.sum(self.empstate[:,:],1)*scalex) q['palkansaajia']=np.sum((self.empstate[:,1])*scalex) q['htv']=np.sum((self.empstate[:,1])*scalex) q['ansiosidonnaisella']=np.sum((self.empstate[:,0])*scalex) q['tmtuella']=np.sum(self.empstate[:,1]*0) q['isyysvapaalla']=np.sum(self.empstate[:,1]*0) q['kotihoidontuella']=np.sum(self.empstate[:,1]*0) q['vanhempainvapaalla']=np.sum(self.empstate[:,1]*0) return q def comp_employment_groupstats(self,scale_time=True,g=0,include_retwork=True,grouped=True): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 #min_cage=self.map_age(self.min_age) #max_cage=self.map_age(self.max_age)+1 scalex=np.squeeze(demog2/self.n_pop*scale) #d=np.squeeze(demog2[min_cage:max_cage]) if grouped: ratiostates=np.squeeze(self.gempstate[:,:,g])/self.alive demogstates=np.squeeze(self.gempstate[:,:,g]) else: ratiostates=self.empstate[:,:]/self.alive demogstates=self.empstate[:,:] if self.version in set([1,2,3,4]): if include_retwork: stats_employed=np.sum((demogstates[:,1]+demogstates[:,9])*scalex) stats_parttime=np.sum((demogstates[:,10]+demogstates[:,8])*scalex) else: stats_employed=np.sum((demogstates[:,1])*scalex) stats_parttime=np.sum((demogstates[:,10])*scalex) stats_unemployed=np.sum((demogstates[:,0]+demogstates[:,4]+demogstates[:,13])*scalex) else: stats_employed=np.sum((demogstates[:,0]+demogstates[:,3])*scalex) stats_parttime=np.sum((demogstates[:,3])*scalex) stats_unemployed=np.sum((demogstates[:,0])*scalex) #stats_all=np.sum(demogstates,1) return stats_employed,stats_parttime,stats_unemployed def comp_state_stats(self,state,scale_time=True,start=20,end=63.5,ratio=False): demog2=np.squeeze(self.empstats.get_demog()) #if scale_time: # scale=self.timestep #else: # scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 #vaikutus=np.round(scale*np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage]))/np.sum(demog2[min_cage:max_cage]) vaikutus=np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage])/np.sum(demog2[min_cage:max_cage]) x=np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage]) y=np.sum(demog2[min_cage:max_cage]) #print(f'vaikutus {vaikutus} x {x} y {y}\n s {state[min_cage:max_cage]} mean {np.mean(state[min_cage:max_cage])}\n d {demog2[min_cage:max_cage]}') return vaikutus def get_vanhempainvapaat(self): ''' Laskee vanhempainvapaalla olevien määrän outsider-mallia (Excel) varten, tila 6 ''' alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) ulkopuolella_m=np.sum(self.gempstate[:,7,0:3],axis=1)[:,None]/alive alive[:,0]=np.sum(self.galive[:,3:6],1) nn=np.sum(self.gempstate[:,5,3:6]+self.gempstate[:,7,3:6],axis=1)[:,None]-self.infostats_mother_in_workforce ulkopuolella_n=nn/alive return ulkopuolella_m[::4],ulkopuolella_n[::4] def get_vanhempainvapaat_md(self): ''' Laskee vanhempainvapaalla olevien määrän outsider-mallia (Excel) varten, tila 7 ''' alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) ulkopuolella_m=np.sum(self.gempstate[:,6,0:3],axis=1)[:,None]/alive alive[:,0]=np.sum(self.galive[:,3:6],1) nn=self.infostats_mother_in_workforce ulkopuolella_n=nn/alive return ulkopuolella_m[::4],ulkopuolella_n[::4] def comp_L2error(self): tyollisyysaste_m,osatyoaste_m,tyottomyysaste_m,ka_tyottomyysaste=self.comp_gempratios(gender='men',unempratio=False) tyollisyysaste_w,osatyoaste_w,tyottomyysaste_w,ka_tyottomyysaste=self.comp_gempratios(gender='women',unempratio=False) emp_statsratio_m=self.empstats.emp_stats(g=1)[:-1]*100 emp_statsratio_w=self.empstats.emp_stats(g=2)[:-1]*100 unemp_statsratio_m=self.empstats.unemp_stats(g=1)[:-1]*100 unemp_statsratio_w=self.empstats.unemp_stats(g=2)[:-1]*100 w1=1.0 w2=3.0 L2= w1*np.sum(np.abs(emp_statsratio_m-tyollisyysaste_m[:-1])**2)+\ w1*np.sum(np.abs(emp_statsratio_w-tyollisyysaste_w[:-1])**2)+\ w2*np.sum(np.abs(unemp_statsratio_m-tyottomyysaste_m[:-1])**2)+\ w2*np.sum(np.abs(unemp_statsratio_w-tyottomyysaste_w[:-1])**2) L2=L2/self.n_pop #print(L1,emp_statsratio_m,tyollisyysaste_m,tyollisyysaste_w,unemp_statsratio_m,tyottomyysaste_m,tyottomyysaste_w) print('L2 error {}'.format(L2)) return L2 def comp_budgetL2error(self,ref_muut,scale=1): q=self.comp_budget() muut=q['muut tulot'] L2=-((ref_muut-muut)/scale)**2 print(f'L2 error {L2} (muut {muut} muut_ref {ref_muut})') return L2 def optimize_scale(self,target,averaged=scale_error): opt=scipy.optimize.least_squares(self.scale_error,0.20,bounds=(-1,1),kwargs={'target':target,'averaged':averaged}) #print(opt) return opt['x'] def optimize_logutil(self,target,source): ''' analytical compensated consumption does not implement final reward, hence duration 110 y ''' n_time=110 gy=np.empty(n_time) g=1 gx=np.empty(n_time) for t in range(0,n_time): gx[t]=g g*=self.gamma for t in range(1,n_time): gy[t]=np.sum(gx[0:t]) gf=np.mean(gy[1:])/10 lx=(target-source) opt=np.exp(lx/gf)-1.0 print(opt) def min_max(self): min_wage=np.min(self.infostats_pop_wage) max_wage=np.max(self.infostats_pop_wage) max_pension=np.max(self.infostats_pop_pension) min_pension=np.min(self.infostats_pop_pension) print(f'min wage {min_wage} max wage {max_wage}') print(f'min pension {min_pension} max pension {max_pension}') def setup_labels(self): self.labels=self.lab.get_labels(self.language) def map_age(self,age,start_zero=False): if start_zero: return int((age)*self.inv_timestep) else: return int((age-self.min_age)*self.inv_timestep) def map_t_to_age(self,t): return self.min_age+t/self.inv_timestep def episodestats_exit(self): plt.close(self.episode_fig) def comp_gini(self): ''' <NAME>-kerroin populaatiolle ''' income=np.sort(self.infostats_tulot_netto,axis=None) n=len(income) L=np.arange(n,0,-1) A=np.sum(L*income)/np.sum(income) G=(n+1-2*A)/2 return G def comp_annual_irr(self,npv,premium,pension,empstate,doprint=False): k=0 max_npv=int(np.ceil(npv)) cashflow=-premium+pension x=np.zeros(cashflow.shape[0]+max_npv) eind=np.zeros(max_npv+1) el=1 for k in range(max_npv+1): eind[k]=el el=el*self.elakeindeksi x[:cashflow.shape[0]]=cashflow if npv>0: x[cashflow.shape[0]-1:]=cashflow[-2]*eind[:max_npv+1] y=np.zeros(int(np.ceil(x.shape[0]/4))) for k in range(y.shape[0]): y[k]=np.sum(x[4*k:4*k+4]) irri=npf.irr(y)*100 #if np.isnan(irri): # if np.sum(pension)<0.1 and np.sum(empstate[0:self.map_age(63)]==15)>0: # vain maksuja, joista ei saa tuottoja, joten tappio 100% # irri=-100 if irri<0.01 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) if irri>100 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) if np.isnan(irri) and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,np.sum(pension),empstate)) #print('---------\nirri {}\nnpv {}\n\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,np.sum(pension),np.sum(empstate==15))) if irri<-50 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) return irri def comp_irr(self): ''' Laskee sisäisen tuottoasteen (IRR) Indeksointi puuttuu npv:n osalta Tuloksiin lisättävä inflaatio+palkkojen reaalikasvu = palkkojen nimellinen kasvu ''' for k in range(self.n_pop): self.infostats_irr[k]=self.reaalinen_palkkojenkasvu*100+self.comp_annual_irr(self.infostats_npv0[k,0],self.infostats_tyelpremium[:,k],self.infostats_paid_tyel_pension[:,k],self.popempstate[:,k]) def comp_aggirr(self): ''' Laskee aggregoidun sisäisen tuottoasteen (IRR) Indeksointi puuttuu npv:n osalta Tuloksiin lisättävä inflaatio+palkkojen reaalikasvu = palkkojen nimellinen kasvu ''' maxnpv=np.max(self.infostats_npv0) agg_premium=np.sum(self.infostats_tyelpremium,axis=1) agg_pensions=np.sum(self.infostats_paid_tyel_pension,axis=1) agg_irr=self.reaalinen_palkkojenkasvu*100+self.comp_annual_irr(maxnpv,agg_premium,agg_pensions,self.popempstate[:,0]) x=np.zeros(self.infostats_paid_tyel_pension.shape[0]+int(np.ceil(maxnpv))) max_npv=int(max(np.ceil(self.infostats_npv0[:,0]))) eind=np.zeros(max_npv) el=1 for k in range(max_npv): eind[k]=el el=el*self.elakeindeksi cfn=self.infostats_tyelpremium.shape[0] for k in range(self.n_pop): if np.sum(self.popempstate[0:self.map_age(63),k]==15)<1: # ilman kuolleita n=int(np.ceil(self.infostats_npv0[k,0])) cashflow=-self.infostats_tyelpremium[:,k]+self.infostats_paid_tyel_pension[:,k] # indeksointi puuttuu x[:cfn]+=cashflow if n>0: x[cfn-1:cfn+n-1]+=cashflow[-2]*eind[:n] # ei indeksoida, pitäisi huomioida takuueläkekin y=np.zeros(int(np.ceil(x.shape[0]/4))) for k in range(y.shape[0]): y[k]=np.sum(x[4*k:4*k+101]) irri=npf.irr(y)*100 print('aggregate irr {}'.format(agg_irr)) def comp_unemp_durations(self,popempstate=None,popunemprightused=None,putki=True,\ tmtuki=False,laaja=False,outsider=False,ansiosid=True,tyott=False,kaikki=False,\ return_q=True,max_age=100): ''' Poikkileikkaushetken työttömyyskestot ''' unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] unempset=set(unempset) if popempstate is None: popempstate=self.popempstate if popunemprightused is None: popunemprightused=self.popunemprightused keskikesto=np.zeros((5,5)) # 20-29, 30-39, 40-49, 50-59, 60-69, vastaa TYJin tilastoa n=np.zeros(5) for k in range(self.n_pop): for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k] in unempset: if age<29: l=0 elif age<39: l=1 elif age<49: l=2 elif age<59: l=3 else: l=4 n[l]+=1 if self.popunemprightused[t,k]<=0.51: keskikesto[l,0]+=1 elif self.popunemprightused[t,k]<=1.01: keskikesto[l,1]+=1 elif self.popunemprightused[t,k]<=1.51: keskikesto[l,2]+=1 elif self.popunemprightused[t,k]<=2.01: keskikesto[l,3]+=1 else: keskikesto[l,4]+=1 for k in range(5): keskikesto[k,:] /= n[k] if return_q: return self.empdur_to_dict(keskikesto) else: return keskikesto def empdur_to_dict(self,empdur): q={} q['20-29']=empdur[0,:] q['30-39']=empdur[1,:] q['40-49']=empdur[2,:] q['50-59']=empdur[3,:] q['60-65']=empdur[4,:] return q def comp_unemp_durations_v2(self,popempstate=None,putki=True,tmtuki=False,laaja=False,\ outsider=False,ansiosid=True,tyott=False,kaikki=False,\ return_q=True,max_age=100): ''' Poikkileikkaushetken työttömyyskestot Tässä lasketaan tulos tiladatasta, jolloin kyse on viimeisimmän jakson kestosta ''' unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] unempset=set(unempset) if popempstate is None: popempstate=self.popempstate keskikesto=np.zeros((5,5)) # 20-29, 30-39, 40-49, 50-59, 60-69, vastaa TYJin tilastoa n=np.zeros(5) for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] not in unempset: prev_state=popempstate[t,k] duration=(t-prev_trans)*self.timestep prev_trans=t if age<29: l=0 elif age<39: l=1 elif age<49: l=2 elif age<59: l=3 else: l=4 n[l]+=1 if duration<=0.51: keskikesto[l,0]+=1 elif duration<=1.01: keskikesto[l,1]+=1 elif duration<=1.51: keskikesto[l,2]+=1 elif duration<=2.01: keskikesto[l,3]+=1 else: keskikesto[l,4]+=1 elif prev_state not in unempset and popempstate[t,k] in unempset: prev_trans=t prev_state=popempstate[t,k] else: # some other state prev_state=popempstate[t,k] prev_trans=t for k in range(5): keskikesto[k,:] /= n[k] if return_q: return self.empdur_to_dict(keskikesto) else: return keskikesto def comp_virrat(self,popempstate=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,kaikki=False,max_age=100): tyoll_virta=np.zeros((self.n_time,1)) tyot_virta=np.zeros((self.n_time,1)) unempset=[] empset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] empset=set([1,10]) unempset=set(unempset) if popempstate is None: popempstate=self.popempstate for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] in empset: tyoll_virta[t]+=1 prev_state=popempstate[t,k] elif prev_state in empset and popempstate[t,k] in unempset: tyot_virta[t]+=1 prev_state=popempstate[t,k] else: # some other state prev_state=popempstate[t,k] return tyoll_virta,tyot_virta def comp_tyollistymisdistribs(self,popempstate=None,popunemprightleft=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,max_age=100): tyoll_distrib=[] tyoll_distrib_bu=[] unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] empset=set([1,10]) unempset=set(unempset) if popempstate is None or popunemprightleft is None: popempstate=self.popempstate popunemprightleft=self.popunemprightleft for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] in empset: tyoll_distrib.append((t-prev_trans)*self.timestep) tyoll_distrib_bu.append(popunemprightleft[t,k]) prev_state=popempstate[t,k] prev_trans=t else: # some other state prev_state=popempstate[t,k] prev_trans=t return tyoll_distrib,tyoll_distrib_bu def comp_empdistribs(self,popempstate=None,popunemprightleft=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,max_age=100): unemp_distrib=[] unemp_distrib_bu=[] emp_distrib=[] unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if popempstate is None or popunemprightleft is None: popempstate=self.popempstate popunemprightleft=self.popunemprightleft empset=set([1,10]) unempset=set(unempset) for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if self.popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] not in unempset: unemp_distrib.append((t-prev_trans)*self.timestep) unemp_distrib_bu.append(popunemprightleft[t,k]) prev_state=popempstate[t,k] prev_trans=t elif prev_state in empset and popempstate[t,k] not in unempset: emp_distrib.append((t-prev_trans)*self.timestep) prev_state=popempstate[t,k] prev_trans=t else: # some other state prev_state=popempstate[t,k] prev_trans=t return unemp_distrib,emp_distrib,unemp_distrib_bu def empdist_stat(self): ratio=np.array([1,0.287024901703801,0.115508955875928,0.0681083442551332,0.0339886413280909,0.0339886413280909,0.0114460463084316,0.0114460463084316,0.0114460463084316,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206]) return ratio def comp_gempratios(self,unempratio=True,gender='men'): if gender=='men': # men gempstate=np.sum(self.gempstate[:,:,0:3],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) mother_in_workforce=0 else: # women gempstate=np.sum(self.gempstate[:,:,3:6],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) mother_in_workforce=self.infostats_mother_in_workforce tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(gempstate,alive,unempratio=unempratio,mother_in_workforce=mother_in_workforce) return tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste def comp_empratios(self,emp,alive,unempratio=True,mother_in_workforce=0): employed=emp[:,1] retired=emp[:,2] unemployed=emp[:,0] if self.version in set([1,2,3,4]): disabled=emp[:,3] piped=emp[:,4] mother=emp[:,5] dad=emp[:,6] kotihoidontuki=emp[:,7] vetyo=emp[:,9] veosatyo=emp[:,8] osatyo=emp[:,10] outsider=emp[:,11] student=emp[:,12] tyomarkkinatuki=emp[:,13] tyollisyysaste=100*(employed+osatyo+veosatyo+vetyo+dad+mother_in_workforce)/alive[:,0] osatyoaste=100*(osatyo+veosatyo)/(employed+osatyo+veosatyo+vetyo) if unempratio: tyottomyysaste=100*(unemployed+piped+tyomarkkinatuki)/(tyomarkkinatuki+unemployed+employed+piped+osatyo+veosatyo+vetyo) ka_tyottomyysaste=100*np.sum(unemployed+tyomarkkinatuki+piped)/np.sum(tyomarkkinatuki+unemployed+employed+piped+osatyo+veosatyo+vetyo) else: tyottomyysaste=100*(unemployed+piped+tyomarkkinatuki)/alive[:,0] ka_tyottomyysaste=100*np.sum(unemployed+tyomarkkinatuki+piped)/np.sum(alive[:,0]) elif self.version in set([0,101]): if False: osatyo=emp[:,3] else: osatyo=0 tyollisyysaste=100*(employed+osatyo)/alive[:,0] #osatyoaste=np.zeros(employed.shape) osatyoaste=100*(osatyo)/(employed+osatyo) if unempratio: tyottomyysaste=100*(unemployed)/(unemployed+employed+osatyo) ka_tyottomyysaste=100*np.sum(unemployed)/np.sum(unemployed+employed+osatyo) else: tyottomyysaste=100*(unemployed)/alive[:,0] ka_tyottomyysaste=100*np.sum(unemployed)/np.sum(alive[:,0]) return tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste def plot_ratiostats(self,t): ''' Tee kuvia tuloksista ''' x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.set_xlabel('palkat') ax.set_ylabel('freq') ax.hist(self.infostats_pop_wage[t,:]) plt.show() fig,ax=plt.subplots() ax.set_xlabel('aika') ax.set_ylabel('palkat') meansal=np.mean(self.infostats_pop_wage,axis=1) stdsal=np.std(self.infostats_pop_wage,axis=1) ax.plot(x,meansal) ax.plot(x,meansal+stdsal) ax.plot(x,meansal-stdsal) plt.show() def plot_empdistribs(self,emp_distrib): fig,ax=plt.subplots() ax.set_xlabel('työsuhteen pituus [v]') ax.set_ylabel('freq') ax.set_yscale('log') max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled,x2=np.histogram(emp_distrib,x) scaled=scaled/np.sum(emp_distrib) #ax.hist(emp_distrib) ax.bar(x2[1:-1],scaled[1:],align='center') plt.show() def plot_compare_empdistribs(self,emp_distrib,emp_distrib2,label2='vaihtoehto',label1=''): fig,ax=plt.subplots() ax.set_xlabel('työsuhteen pituus [v]') ax.set_ylabel(self.labels['probability']) ax.set_yscale('log') max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled,x2=np.histogram(emp_distrib,x) scaled=scaled/np.sum(emp_distrib) x=np.linspace(0,max_time,nn_time) scaled3,x3=np.histogram(emp_distrib2,x) scaled3=scaled3/np.sum(emp_distrib2) ax.plot(x3[:-1],scaled3,label=label1) ax.plot(x2[:-1],scaled,label=label2) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() def plot_vlines_unemp(self,point=0): axvcolor='gray' lstyle='--' plt.axvline(x=300/(12*21.5),ls=lstyle,color=axvcolor) plt.text(310/(12*21.5),point,'300',rotation=90) plt.axvline(x=400/(12*21.5),ls=lstyle,color=axvcolor) plt.text(410/(12*21.5),point,'400',rotation=90) plt.axvline(x=500/(12*21.5),ls=lstyle,color=axvcolor) plt.text(510/(12*21.5),point,'500',rotation=90) def plot_tyolldistribs(self,emp_distrib,tyoll_distrib,tyollistyneet=True,max=10,figname=None): max_time=55 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled0,x0=np.histogram(emp_distrib,x) if not tyollistyneet: scaled=scaled0 x2=x0 else: scaled,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien kumulatiivinen summa scaled=scaled/jaljella fig,ax=plt.subplots() ax.set_xlabel('työttömyysjakson pituus [v]') if tyollistyneet: ax.set_ylabel('työllistyneiden osuus') point=0.5 else: ax.set_ylabel('pois siirtyneiden osuus') point=0.9 self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:]) #ax.bar(x2[1:-1],scaled[1:],align='center',width=self.timestep) plt.xlim(0,max) if figname is not None: plt.savefig(figname+'tyollistyneetdistrib.eps', format='eps') plt.show() def plot_tyolldistribs_both(self,emp_distrib,tyoll_distrib,max=10,figname=None): max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled0,x0=np.histogram(emp_distrib,x) scaled=scaled0 scaled_tyoll,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa scaled=scaled/jaljella jaljella_tyoll=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa scaled_tyoll=scaled_tyoll/jaljella_tyoll fig,ax=plt.subplots() ax.set_xlabel('työttömyysjakson pituus [v]') point=0.6 self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:],label='pois siirtyneiden osuus') ax.plot(x2[1:-1],scaled_tyoll[1:],label='työllistyneiden osuus') #ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.legend() ax.set_ylabel('pois siirtyneiden osuus') plt.xlim(0,max) plt.ylim(0,0.8) if figname is not None: plt.savefig(figname+'tyolldistribs.eps', format='eps') plt.show() def plot_tyolldistribs_both_bu(self,emp_distrib,tyoll_distrib,max=2): max_time=4 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(-max_time,0,nn_time) scaled0,x0=np.histogram(emp_distrib,x) scaled=scaled0 scaled_tyoll,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa #jaljella=np.cumsum(scaled0) scaled=scaled/jaljella jaljella_tyoll=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa #jaljella_tyoll=np.cumsum(scaled0) scaled_tyoll=scaled_tyoll/jaljella_tyoll fig,ax=plt.subplots() ax.set_xlabel('aika ennen ansiopäivärahaoikeuden loppua [v]') point=0.6 #self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:],label='pois siirtyneiden osuus') ax.plot(x2[1:-1],scaled_tyoll[1:],label='työllistyneiden osuus') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_ylabel('pois siirtyneiden osuus') plt.xlim(-max,0) #plt.ylim(0,0.8) plt.show() def plot_compare_tyolldistribs(self,emp_distrib1,tyoll_distrib1,emp_distrib2, tyoll_distrib2,tyollistyneet=True,max=4,label1='perus',label2='vaihtoehto', figname=None): max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) # data1 scaled01,x0=np.histogram(emp_distrib1,x) if not tyollistyneet: scaled1=scaled01 x1=x0 else: scaled1,x1=np.histogram(tyoll_distrib1,x) jaljella1=np.cumsum(scaled01[::-1])[::-1] # jäljellä olevien summa scaled1=scaled1/jaljella1 # data2 scaled02,x0=np.histogram(emp_distrib2,x) if not tyollistyneet: scaled2=scaled02 x2=x0 else: scaled2,x2=np.histogram(tyoll_distrib2,x) jaljella2=np.cumsum(scaled02[::-1])[::-1] # jäljellä olevien summa scaled2=scaled2/jaljella2 fig,ax=plt.subplots() ax.set_xlabel('työttömyysjakson pituus [v]') if tyollistyneet: ax.set_ylabel('työllistyneiden osuus') else: ax.set_ylabel('pois siirtyneiden osuus') self.plot_vlines_unemp() ax.plot(x2[1:-1],scaled2[1:],label=label2) ax.plot(x1[1:-1],scaled1[1:],label=label1) #ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.legend() plt.xlim(0,max) if figname is not None: plt.savefig(figname+'comp_tyollistyneetdistrib.eps', format='eps') plt.show() def plot_unempdistribs(self,unemp_distrib,max=4,figname=None,miny=None,maxy=None): #fig,ax=plt.subplots() max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled,x2=np.histogram(unemp_distrib,x) scaled=scaled/np.sum(unemp_distrib) fig,ax=plt.subplots() self.plot_vlines_unemp(0.6) ax.set_xlabel(self.labels['unemp duration']) ax.set_ylabel(self.labels['probability']) ax.plot(x[:-1],scaled) ax.set_yscale('log') plt.xlim(0,max) if miny is not None: plt.ylim(miny,maxy) if figname is not None: plt.savefig(figname+'unempdistribs.eps', format='eps') plt.show() def plot_saldist(self,t=0,sum=False,all=False,n=10,bins=30): if all: fig,ax=plt.subplots() for t in range(1,self.n_time-1,5): scaled,x=np.histogram(self.infostats_pop_wage[t,:],bins=bins) x2=0.5*(x[1:]+x[0:-1]) ax.plot(x2,scaled,label=t) plt.legend() plt.show() else: if sum: scaled,x=np.histogram(np.sum(self.infostats_pop_wage,axis=0),bins=bins) x2=0.5*(x[1:]+x[0:-1]) plt.plot(x2,scaled) else: fig,ax=plt.subplots() for t1 in range(t,t+n,1): scaled,x=np.histogram(self.infostats_pop_wage[t1,:],bins=bins) x2=0.5*(x[1:]+x[0:-1]) ax.plot(x2,scaled,label=t1) plt.legend() plt.show() def test_salaries(self): n=self.n_pop palkat_ika_miehet=12.5*np.array([2339.01,2489.09,2571.40,2632.58,2718.03,2774.21,2884.89,2987.55,3072.40,3198.48,3283.81,3336.51,3437.30,3483.45,3576.67,3623.00,3731.27,3809.58,3853.66,3995.90,4006.16,4028.60,4104.72,4181.51,4134.13,4157.54,4217.15,4165.21,4141.23,4172.14,4121.26,4127.43,4134.00,4093.10,4065.53,4063.17,4085.31,4071.25,4026.50,4031.17,4047.32,4026.96,4028.39,4163.14,4266.42,4488.40,4201.40,4252.15,4443.96,3316.92,3536.03,3536.03]) palkat_ika_naiset=12.5*np.array([2223.96,2257.10,2284.57,2365.57,2443.64,2548.35,2648.06,2712.89,2768.83,2831.99,2896.76,2946.37,2963.84,2993.79,3040.83,3090.43,3142.91,3159.91,3226.95,3272.29,3270.97,3297.32,3333.42,3362.99,3381.84,3342.78,3345.25,3360.21,3324.67,3322.28,3326.72,3326.06,3314.82,3303.73,3302.65,3246.03,3244.65,3248.04,3223.94,3211.96,3167.00,3156.29,3175.23,3228.67,3388.39,3457.17,3400.23,3293.52,2967.68,2702.05,2528.84,2528.84]) g_r=[0.77,1.0,1.23] data_range=np.arange(20,72) sal20=np.zeros((n,1)) sal25=np.zeros((n,1)) sal30=np.zeros((n,1)) sal40=np.zeros((n,1)) sal50=np.zeros((n,1)) sal60=np.zeros((n,1)) sal=np.zeros((n,72)) p=np.arange(700,17500,100)*12.5 palkka20=np.array([10.3,5.6,4.5,14.2,7.1,9.1,22.8,22.1,68.9,160.3,421.6,445.9,501.5,592.2,564.5,531.9,534.4,431.2,373.8,320.3,214.3,151.4,82.3,138.0,55.6,61.5,45.2,19.4,32.9,13.1,9.6,7.4,12.3,12.5,11.5,5.3,2.4,1.6,1.2,1.2,14.1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) palkka25=np.array([12.4,11.3,30.2,4.3,28.5,20.3,22.5,23.7,83.3,193.0,407.9,535.0,926.5,1177.1,1540.9,1526.4,1670.2,1898.3,1538.8,1431.5,1267.9,1194.8,1096.3,872.6,701.3,619.0,557.2,465.8,284.3,291.4,197.1,194.4,145.0,116.7,88.7,114.0,56.9,57.3,55.0,25.2,24.4,20.1,25.2,37.3,41.4,22.6,14.1,9.4,6.3,7.5,8.1,9.0,4.0,3.4,5.4,4.1,5.2,1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) palkka30=np.array([1.0,2.0,3.0,8.5,12.1,22.9,15.8,21.8,52.3,98.2,295.3,392.8,646.7,951.4,1240.5,1364.5,1486.1,1965.2,1908.9,1729.5,1584.8,1460.6,1391.6,1551.9,1287.6,1379.0,1205.6,1003.6,1051.6,769.9,680.5,601.2,552.0,548.3,404.5,371.0,332.7,250.0,278.2,202.2,204.4,149.8,176.7,149.0,119.6,76.8,71.4,56.3,75.9,76.8,58.2,50.2,46.8,48.9,30.1,32.2,28.8,31.1,45.5,41.2,36.5,18.1,11.6,8.5,10.2,4.3,13.5,12.3,4.9,13.9,5.4,5.9,7.4,14.1,9.6,8.4,11.5,0.0,3.3,9.0,5.2,5.0,3.1,7.4,2.0,4.0,4.1,14.0,2.0,3.0,1.0,0.0,6.2,2.0,1.2,2.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) palkka50=np.array([2.0,3.1,2.4,3.9,1.0,1.0,11.4,30.1,29.3,34.3,231.9,341.9,514.4,724.0,1076.8,1345.2,1703.0,1545.8,1704.0,1856.1,1805.4,1608.1,1450.0,1391.4,1338.5,1173.2,1186.3,1024.8,1105.6,963.0,953.0,893.7,899.8,879.5,857.0,681.5,650.5,579.2,676.8,498.0,477.5,444.3,409.1,429.0,340.5,297.2,243.1,322.5,297.5,254.1,213.1,249.3,212.1,212.8,164.4,149.3,158.6,157.4,154.1,112.7,93.4,108.4,87.3,86.7,82.0,115.9,66.9,84.2,61.4,43.7,58.1,40.9,73.9,50.0,51.6,25.7,43.2,48.2,43.0,32.6,21.6,22.4,36.3,28.3,19.4,21.1,21.9,21.5,19.2,15.8,22.6,9.3,14.0,22.4,14.0,13.0,11.9,18.7,7.3,21.6,9.5,11.2,12.0,18.2,12.9,2.2,10.7,6.1,11.7,7.6,1.0,4.7,8.5,6.4,3.3,4.6,1.2,3.7,5.8,1.0,1.0,1.0,1.0,3.2,1.2,3.1,2.2,2.3,2.1,1.1,2.0,2.1,2.2,4.6,2.2,1.0,1.0,1.0,0.0,3.0,1.2,0.0,8.2,3.0,1.0,1.0,2.1,1.2,3.2,1.0,5.2,1.1,5.2,1.0,1.2,2.3,1.0,3.1,1.0,1.0,1.1,1.6,1.1,1.1,1.0,1.0,1.0,1.0]) m20=0 m25=0 m30=0 m40=0 m50=0 m60=0 salx=np.zeros((self.n_time+2,1)) saln=np.zeros((self.n_time+2,1)) salx_m=np.zeros((self.n_time+2,1)) saln_m=np.zeros((self.n_time+2,1)) salx_f=np.zeros((self.n_time+2,1)) saln_f=np.zeros((self.n_time+2,1)) for k in range(self.n_pop): for t in range(self.n_time-2): if self.popempstate[t,k] in set([1,10,8,9]): salx[t]=salx[t]+self.infostats_pop_wage[t,k] saln[t]=saln[t]+1 if self.infostats_group[k]>2: salx_f[t]=salx_f[t]+self.infostats_pop_wage[t,k] saln_f[t]=saln_f[t]+1 else: salx_m[t]=salx_m[t]+self.infostats_pop_wage[t,k] saln_m[t]=saln_m[t]+1 if self.popempstate[self.map_age(20),k] in set([1,10]): sal20[m20]=self.infostats_pop_wage[self.map_age(20),k] m20=m20+1 if self.popempstate[self.map_age(25),k] in set([1,10]): sal25[m25]=self.infostats_pop_wage[self.map_age(25),k] m25=m25+1 if self.popempstate[self.map_age(30),k] in set([1,10]): sal30[m30]=self.infostats_pop_wage[self.map_age(30),k] m30=m30+1 if self.popempstate[self.map_age(40),k] in set([1,10]): sal40[m40]=self.infostats_pop_wage[self.map_age(40),k] m40=m40+1 if self.popempstate[self.map_age(50),k] in set([1,10]): sal50[m50]=self.infostats_pop_wage[self.map_age(50),k] m50=m50+1 if self.popempstate[self.map_age(60),k] in set([1,10]): sal60[m60]=self.infostats_pop_wage[self.map_age(60),k] m60=m60+1 salx=salx/np.maximum(1,saln) salx_f=salx_f/np.maximum(1,saln_f) salx_m=salx_m/np.maximum(1,saln_m) #print(sal25,self.infostats_pop_wage) def kuva(sal,ika,m,p,palkka): plt.hist(sal[:m],bins=50,density=True) ave=np.mean(sal[:m])/12 palave=np.sum(palkka*p)/12/np.sum(palkka) plt.title('{}: ave {} vs {}'.format(ika,ave,palave)) plt.plot(p,palkka/sum(palkka)/2000) plt.show() def kuva2(sal,ika,m): plt.hist(sal[:m],bins=50,density=True) ave=np.mean(sal[:m])/12 plt.title('{}: ave {}'.format(ika,ave)) plt.show() kuva(sal20,20,m20,p,palkka20) kuva(sal25,25,m25,p,palkka25) kuva(sal30,30,m30,p,palkka30) kuva2(sal40,40,m40) kuva(sal50,50,m50,p,palkka50) kuva2(sal60,60,m60) data_range=np.arange(21,72) plt.plot(data_range,np.mean(self.infostats_pop_wage[::4],axis=1),label='malli kaikki') plt.plot(data_range,salx[::4],label='malli töissä') data_range=np.arange(20,72) plt.plot(data_range,0.5*palkat_ika_miehet+0.5*palkat_ika_naiset,label='data') plt.legend() plt.show() data_range=np.arange(21,72) plt.plot(data_range,salx_m[::4],label='malli töissä miehet') plt.plot(data_range,salx_f[::4],label='malli töissä naiset') data_range=np.arange(20,72) plt.plot(data_range,palkat_ika_miehet,label='data miehet') plt.plot(data_range,palkat_ika_naiset,label='data naiset') plt.legend() plt.show() def plot_rewdist(self,t=0,sum=False,all=False): if all: fig,ax=plt.subplots() for t in range(1,self.n_time-1,5): scaled,x=np.histogram(self.poprewstate[t,:]) x2=0.5*(x[1:]+x[0:-1]) ax.plot(x2,scaled,label=t) plt.legend() plt.show() else: if sum: scaled,x=np.histogram(np.sum(self.poprewstate,axis=0)) x2=0.5*(x[1:]+x[0:-1]) plt.plot(x2,scaled) else: fig,ax=plt.subplots() for t in range(t,t+10,1): scaled,x=np.histogram(self.poprewstate[t,:]) x2=0.5*(x[1:]+x[0:-1]) ax.plot(x2,scaled,label=t) plt.legend() plt.show() def plot_unempdistribs_bu(self,unemp_distrib,max=2): #fig,ax=plt.subplots() max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(-max_time,0,nn_time) scaled,x2=np.histogram(unemp_distrib,x) scaled=scaled/np.abs(np.sum(unemp_distrib)) fig,ax=plt.subplots() #self.plot_vlines_unemp(0.6) ax.set_xlabel(self.labels['unemp duration']) ax.set_ylabel(self.labels['probability']) #x3=np.flip(x[:-1]) #ax.plot(x3,scaled) ax.plot(x[:-1],scaled) #ax.set_yscale('log') plt.xlim(-max,0) plt.show() def plot_compare_unempdistribs(self,unemp_distrib1,unemp_distrib2,max=4, label2='none',label1='none',logy=True,diff=False,figname=None): #fig,ax=plt.subplots() max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(self.timestep,max_time,nn_time) scaled1,x1=np.histogram(unemp_distrib1,x) print('{} keskikesto {} v {} keskikesto {} v'.format(label1,np.mean(unemp_distrib1),label2,np.mean(unemp_distrib2))) print('Skaalaamaton {} lkm {} v {} lkm {} v'.format(label1,len(unemp_distrib1),label2,len(unemp_distrib2))) print('Skaalaamaton {} työtpäiviä yht {} v {} työtpäiviä yht {} v'.format(label1,np.sum(unemp_distrib1),label2,np.sum(unemp_distrib2))) #scaled=scaled/np.sum(unemp_distrib) scaled1=scaled1/np.sum(scaled1) scaled2,x1=np.histogram(unemp_distrib2,x) scaled2=scaled2/np.sum(scaled2) fig,ax=plt.subplots() if not diff: self.plot_vlines_unemp(0.5) ax.set_xlabel(self.labels['unemp duration']) ax.set_ylabel(self.labels['osuus']) if diff: ax.plot(x[:-1],scaled1-scaled2,label=label1+'-'+label2) else: ax.plot(x[:-1],scaled2,label=label2) ax.plot(x[:-1],scaled1,label=label1) if logy and not diff: ax.set_yscale('log') if not diff: plt.ylim(1e-4,1.0) #ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.legend() plt.xlim(0,max) if figname is not None: plt.savefig(figname+'comp_unempdistrib.eps', format='eps') plt.show() def plot_compare_virrat(self,virta1,virta2,min_time=25,max_time=65,label1='perus',label2='vaihtoehto',virta_label='työllisyys',ymin=None,ymax=None): x=np.linspace(self.min_age,self.max_age,self.n_time) demog2=self.empstats.get_demog() scaled1=virta1*demog2/self.n_pop #/self.alive scaled2=virta2*demog2/self.n_pop #/self.alive fig,ax=plt.subplots() plt.xlim(min_time,max_time) ax.set_xlabel(self.labels['age']) ax.set_ylabel(virta_label+'virta') ax.plot(x,scaled1,label=label1) ax.plot(x,scaled2,label=label2) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) if ymin is not None and ymax is not None: plt.ylim(ymin,ymax) plt.show() def plot_outsider(self,printtaa=True): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,100*(self.empstate[:,11]+self.empstate[:,5]+self.empstate[:,7])/self.alive[:,0],label='työvoiman ulkopuolella, ei opiskelija, sis. vanh.vapaat') emp_statsratio=100*self.empstats.outsider_stats() ax.plot(x,emp_statsratio,label='havainto') ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend() plt.show() x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,100*np.sum(self.gempstate[:,11,3:5]+self.gempstate[:,5,3:5]+self.gempstate[:,7,3:5],1,keepdims=True)/np.sum(self.galive[:,3:5],1,keepdims=True),label='työvoiman ulkopuolella, naiset') ax.plot(x,100*np.sum(self.gempstate[:,11,0:2]+self.gempstate[:,5,0:2]+self.gempstate[:,7,0:2],1,keepdims=True)/np.sum(self.galive[:,3:5],1,keepdims=True),label='työvoiman ulkopuolella, miehet') emp_statsratio=100*self.empstats.outsider_stats(g=1) ax.plot(x,emp_statsratio,label=self.labels['havainto, naiset']) emp_statsratio=100*self.empstats.outsider_stats(g=2) ax.plot(x,emp_statsratio,label=self.labels['havainto, miehet']) ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend() plt.show() if printtaa: #print('yht',100*(self.empstate[:,11]+self.empstate[:,5]+self.empstate[:,6]+self.empstate[:,7])/self.alive[:,0]) nn=np.sum(self.galive[:,3:5],1,keepdims=True) n=np.sum(100*(self.gempstate[:,5,3:5]+self.gempstate[:,6,3:5]+self.gempstate[:,7,3:5]),1,keepdims=True)/nn mn=np.sum(self.galive[:,0:2],1,keepdims=True) m=np.sum(100*(self.gempstate[:,5,0:2]+self.gempstate[:,6,0:2]+self.gempstate[:,7,0:2]),1,keepdims=True)/mn #print('naiset vv',n[1::4,0]) #print('miehet vv',m[1::4,0]) def plot_pinkslip(self): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,100*self.infostats_pinkslip[:,0]/self.empstate[:,0],label='ansiosidonnaisella') ax.plot(x,100*self.infostats_pinkslip[:,4]/self.empstate[:,4],label='putkessa') ax.plot(x,100*self.infostats_pinkslip[:,13]/self.empstate[:,13],label='työmarkkinatuella') ax.set_xlabel(self.labels['age']) ax.set_ylabel('Irtisanottujen osuus tilassa [%]') ax.legend() plt.show() def plot_student(self): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x+self.timestep,100*self.empstate[:,12]/self.alive[:,0],label='opiskelija tai armeijassa') emp_statsratio=100*self.empstats.student_stats() ax.plot(x,emp_statsratio,label='havainto') ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend() plt.show() def plot_kassanjasen(self): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x+self.timestep,100*self.infostats_kassanjasen[:]/self.alive[:,0],label='työttömyyskassan jäsenien osuus kaikista') ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend() plt.show() mini=np.nanmin(100*self.infostats_kassanjasen[:]/self.alive[:,0]) maxi=np.nanmax(100*self.infostats_kassanjasen[:]/self.alive[:,0]) print('Kassanjäseniä min {} % max {} %'.format(mini,maxi)) def plot_group_student(self): fig,ax=plt.subplots() for gender in range(2): if gender==0: leg='Opiskelijat+Armeija Miehet' opiskelijat=np.sum(self.gempstate[:,12,0:3],axis=1) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) else: leg='Opiskelijat+Armeija Naiset' opiskelijat=np.sum(self.gempstate[:,12,3:6],axis=1) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) opiskelijat=np.reshape(opiskelijat,(self.galive.shape[0],1)) osuus=100*opiskelijat/alive x=np.linspace(self.min_age,self.max_age,self.n_time) ax.plot(x,osuus,label=leg) emp_statsratio=100*self.empstats.student_stats(g=1) ax.plot(x,emp_statsratio,label=self.labels['havainto, naiset']) emp_statsratio=100*self.empstats.student_stats(g=2) ax.plot(x,emp_statsratio,label=self.labels['havainto, miehet']) ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() def plot_group_disab(self): fig,ax=plt.subplots() for gender in range(2): if gender==0: leg='TK Miehet' opiskelijat=np.sum(self.gempstate[:,3,0:3],axis=1) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) else: leg='TK Naiset' opiskelijat=np.sum(self.gempstate[:,3,3:6],axis=1) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) opiskelijat=np.reshape(opiskelijat,(self.galive.shape[0],1)) osuus=100*opiskelijat/alive x=np.linspace(self.min_age,self.max_age,self.n_time) ax.plot(x,osuus,label=leg) emp_statsratio=100*self.empstats.disab_stat(g=1) ax.plot(x,emp_statsratio,label=self.labels['havainto, naiset']) emp_statsratio=100*self.empstats.disab_stat(g=2) ax.plot(x,emp_statsratio,label=self.labels['havainto, miehet']) ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() def plot_taxes(self,figname=None): valtionvero_ratio=100*self.infostats_valtionvero_distrib/np.reshape(np.sum(self.infostats_valtionvero_distrib,1),(-1,1)) kunnallisvero_ratio=100*self.infostats_kunnallisvero_distrib/np.reshape(np.sum(self.infostats_kunnallisvero_distrib,1),(-1,1)) vero_ratio=100*(self.infostats_kunnallisvero_distrib+self.infostats_valtionvero_distrib)/(np.reshape(np.sum(self.infostats_valtionvero_distrib,1),(-1,1))+np.reshape(np.sum(self.infostats_kunnallisvero_distrib,1),(-1,1))) if figname is not None: self.plot_states(vero_ratio,ylabel='Valtioneronmaksajien osuus tilassa [%]',stack=True,figname=figname+'_stack') else: self.plot_states(vero_ratio,ylabel='Valtioneronmaksajien osuus tilassa [%]',stack=True) if figname is not None: self.plot_states(valtionvero_ratio,ylabel='Veronmaksajien osuus tilassa [%]',stack=True,figname=figname+'_stack') else: self.plot_states(valtionvero_ratio,ylabel='Veronmaksajien osuus tilassa [%]',stack=True) if figname is not None: self.plot_states(kunnallisvero_ratio,ylabel='Kunnallisveron maksajien osuus tilassa [%]',stack=True,figname=figname+'_stack') else: self.plot_states(kunnallisvero_ratio,ylabel='Kunnallisveron maksajien osuus tilassa [%]',stack=True) valtionvero_osuus,kunnallisvero_osuus,vero_osuus=self.comp_taxratios() print('Valtionveron maksajien osuus\n{}'.format(self.v2_groupstates(valtionvero_osuus))) print('Kunnallisveron maksajien osuus\n{}'.format(self.v2_groupstates(kunnallisvero_osuus))) print('Veronmaksajien osuus\n{}'.format(self.v2_groupstates(vero_osuus))) def group_taxes(self,ratios): if len(ratios.shape)>1: vv_osuus=np.zeros((ratios.shape[0],5)) vv_osuus[:,0]=ratios[:,0]+ratios[:,4]+ratios[:,5]+ratios[:,6]+\ ratios[:,7]+ratios[:,8]+ratios[:,9]+ratios[:,11]+\ ratios[:,12]+ratios[:,13] vv_osuus[:,1]=ratios[:,1]+ratios[:,10] vv_osuus[:,2]=ratios[:,2]+ratios[:,3]+ratios[:,8]+ratios[:,9] vv_osuus[:,3]=ratios[:,1]+ratios[:,10]+ratios[:,8]+ratios[:,9] else: vv_osuus=np.zeros((4)) vv_osuus[0]=ratios[0]+ratios[4]+ratios[5]+ratios[6]+\ ratios[7]+ratios[8]+ratios[9]+ratios[11]+\ ratios[12]+ratios[13] vv_osuus[1]=ratios[1]+ratios[10] vv_osuus[2]=ratios[2]+ratios[3]+ratios[8]+ratios[9] vv_osuus[3]=ratios[1]+ratios[10]+ratios[8]+ratios[9] return vv_osuus def comp_taxratios(self,grouped=False): valtionvero_osuus=100*np.sum(self.infostats_valtionvero_distrib,0)/np.sum(self.infostats_valtionvero_distrib) kunnallisvero_osuus=100*np.sum(self.infostats_kunnallisvero_distrib,0)/np.sum(self.infostats_kunnallisvero_distrib) vero_osuus=100*(np.sum(self.infostats_kunnallisvero_distrib,0)+np.sum(self.infostats_valtionvero_distrib,0))/(np.sum(self.infostats_kunnallisvero_distrib)+np.sum(self.infostats_valtionvero_distrib)) if grouped: vv_osuus=self.group_taxes(valtionvero_osuus) kv_osuus=self.group_taxes(kunnallisvero_osuus) v_osuus=self.group_taxes(vero_osuus) else: vv_osuus=valtionvero_osuus kv_osuus=kunnallisvero_osuus v_osuus=vero_osuus return vv_osuus,kv_osuus,v_osuus def comp_verokiila(self,include_retwork=True,debug=False): ''' Computes the tax effect as in Lundberg 2017 However, this applies the formulas for averages ''' if debug: print('comp_verokiila') demog2=self.empstats.get_demog() scalex=demog2/self.n_pop valtionvero_osuus=np.sum(self.infostats_valtionvero_distrib*scalex,0) kunnallisvero_osuus=np.sum(self.infostats_kunnallisvero_distrib*scalex,0) taxes_distrib=np.sum(self.infostats_taxes_distrib*scalex,0) taxes=self.group_taxes(taxes_distrib) q=self.comp_budget() q2=self.comp_participants(scale=True,include_retwork=include_retwork) #htv=q2['palkansaajia'] #muut_tulot=q['muut tulot'] # kulutuksen verotus tC=0.24*max(0,q['tyotulosumma']-taxes[3]) # (työssäolevien verot + ta-maksut + kulutusvero)/(työtulosumma + ta-maksut) kiila=(taxes[3]+q['ta_maksut']+tC)/(q['tyotulosumma']+q['ta_maksut']) qq={} qq['tI']=taxes[3]/q['tyotulosumma'] qq['tC']=tC/q['tyotulosumma'] qq['tP']=q['ta_maksut']/q['tyotulosumma'] if debug: print('qq',qq,'kiila',kiila) return kiila,qq def comp_verokiila_kaikki_ansiot(self): demog2=self.empstats.get_demog() scalex=demog2/self.n_pop valtionvero_osuus=np.sum(self.infostats_valtionvero_distrib*scalex,0) kunnallisvero_osuus=np.sum(self.infostats_kunnallisvero_distrib*scalex,0) taxes_distrib=np.sum(self.infostats_taxes_distrib*scalex,0) taxes=self.group_taxes(taxes_distrib) q=self.comp_budget() q2=self.comp_participants(scale=True) htv=q2['palkansaajia'] muut_tulot=q['muut tulot'] # kulutuksen verotus tC=0.2*max(0,q['tyotulosumma']-taxes[3]) # (työssäolevien verot + ta-maksut + kulutusvero)/(työtulosumma + ta-maksut) kiila=(taxes[0]+q['ta_maksut']+tC)/(q['tyotulosumma']+q['verotettava etuusmeno']+q['ta_maksut']) qq={} qq['tI']=taxes[0]/q['tyotulosumma'] qq['tC']=tC/q['tyotulosumma'] qq['tP']=q['ta_maksut']/q['tyotulosumma'] #print(qq) return kiila,qq def v2_states(self,x): return 'Ansiosidonnaisella {:.2f}\nKokoaikatyössä {:.2f}\nVanhuuseläkeläiset {:.2f}\nTyökyvyttömyyseläkeläiset {:.2f}\n'.format(x[0],x[1],x[2],x[3])+\ 'Putkessa {:.2f}\nÄitiysvapaalla {:.2f}\nIsyysvapaalla {:.2f}\nKotihoidontuella {:.2f}\n'.format(x[4],x[5],x[6],x[7])+\ 'VE+OA {:.2f}\nVE+kokoaika {:.2f}\nOsa-aikatyö {:.2f}\nTyövoiman ulkopuolella {:.2f}\n'.format(x[8],x[9],x[10],x[11])+\ 'Opiskelija/Armeija {:.2f}\nTM-tuki {:.2f}\n'.format(x[12],x[13]) def v2_groupstates(self,xx): x=self.group_taxes(xx) return 'Etuudella olevat {:.2f}\nTyössä {:.2f}\nEläkkeellä {:.2f}\n'.format(x[0],x[1],x[2]) def plot_emp(self,figname=None): tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(self.empstate,self.alive,unempratio=False) age_label=self.labels['age'] ratio_label=self.labels['osuus'] x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,tyollisyysaste,label=self.labels['malli']) #ax.plot(x,tyottomyysaste,label=self.labels['tyottomien osuus']) emp_statsratio=100*self.empstats.emp_stats() ax.plot(x,emp_statsratio,ls='--',label=self.labels['havainto']) ax.set_xlabel(age_label) ax.set_ylabel(self.labels['tyollisyysaste %']) ax.legend() if figname is not None: plt.savefig(figname+'tyollisyysaste.eps', format='eps') plt.show() #if self.version in set([1,2,3]): fig,ax=plt.subplots() ax.stackplot(x,osatyoaste,100-osatyoaste, labels=('osatyössä','kokoaikaisessa työssä')) #, colors=pal) pal=sns.color_palette("hls", self.n_employment) # hls, husl, cubehelix ax.legend() plt.show() empstate_ratio=100*self.empstate/self.alive if figname is not None: self.plot_states(empstate_ratio,ylabel=ratio_label,stack=True,figname=figname+'_stack') else: self.plot_states(empstate_ratio,ylabel=ratio_label,stack=True) if self.version in set([1,2,3,4]): self.plot_states(empstate_ratio,ylabel=ratio_label,ylimit=20,stack=False) self.plot_states(empstate_ratio,ylabel=ratio_label,parent=True,stack=False) self.plot_parents_in_work() self.plot_states(empstate_ratio,ylabel=ratio_label,unemp=True,stack=False) if figname is not None: self.plot_states(empstate_ratio,ylabel=ratio_label,start_from=60,stack=True,figname=figname+'_stack60') else: self.plot_states(empstate_ratio,ylabel=ratio_label,start_from=60,stack=True) def plot_savings(self): savings_0=np.zeros(self.n_time) savings_1=np.zeros(self.n_time) savings_2=np.zeros(self.n_time) act_savings_0=np.zeros(self.n_time) act_savings_1=np.zeros(self.n_time) act_savings_2=np.zeros(self.n_time) for t in range(self.n_time): state_0=np.argwhere(self.popempstate[t,:]==0) savings_0[t]=np.mean(self.infostats_savings[t,state_0[:]]) act_savings_0[t]=np.mean(self.sav_actions[t,state_0[:]]) state_1=np.argwhere(self.popempstate[t,:]==1) savings_1[t]=np.mean(self.infostats_savings[t,state_1[:]]) act_savings_1[t]=np.mean(self.sav_actions[t,state_1[:]]) state_2=np.argwhere(self.popempstate[t,:]==2) savings_2[t]=np.mean(self.infostats_savings[t,state_2[:]]) act_savings_2[t]=np.mean(self.sav_actions[t,state_2[:]]) fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) savings=np.mean(self.infostats_savings,axis=1) ax.plot(x,savings,label='savings all') ax.legend() plt.title('Savings all') plt.show() fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) savings=np.mean(self.infostats_savings,axis=1) ax.plot(x,savings_0,label='unemp') ax.plot(x,savings_1,label='emp') ax.plot(x,savings_2,label='retired') plt.title('Savings by emp state') ax.legend() plt.show() fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) savings=np.mean(self.sav_actions-20,axis=1) ax.plot(x[1:],savings[1:],label='savings action') ax.legend() plt.title('Saving action') plt.show() fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) savings=np.mean(self.infostats_savings,axis=1) ax.plot(x[1:],act_savings_0[1:]-20,label='unemp') ax.plot(x[1:],act_savings_1[1:]-20,label='emp') ax.plot(x[1:],act_savings_2[1:]-20,label='retired') plt.title('Saving action by emp state') ax.legend() plt.show() def plot_emp_by_gender(self,figname=None): x=np.linspace(self.min_age,self.max_age,self.n_time) for gender in range(2): if gender<1: empstate_ratio=100*np.sum(self.gempstate[:,:,0:3],axis=2)/(np.sum(self.galive[:,0:3],axis=1)[:,None]) genderlabel='miehet' else: empstate_ratio=100*np.sum(self.gempstate[:,:,3:6],axis=2)/(np.sum(self.galive[:,3:6],axis=1)[:,None]) genderlabel='naiset' if figname is not None: self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),stack=True,figname=figname+'_stack') else: self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),stack=True) if self.version in set([1,2,3,4]): self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),ylimit=20,stack=False) self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),parent=True,stack=False) self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),unemp=True,stack=False) if figname is not None: self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),start_from=60,stack=True,figname=figname+'_stack60') else: self.plot_states(empstate_ratio,ylabel=self.labels['osuus tilassa x'].format(genderlabel),start_from=60,stack=True) def plot_parents_in_work(self): empstate_ratio=100*self.empstate/self.alive ml=100*self.infostats_mother_in_workforce/self.alive x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.plot(x,ml,label='äitiysvapaa') ax.plot(x,empstate_ratio[:,6],label='isyysvapaa') ax.legend() plt.show() def plot_spouse(self,figname=None): x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.set_xlabel(self.labels['age']) spouseratio=self.infostats_puoliso/self.alive[:,0] ax.set_ylabel('spouses') ax.plot(x,spouseratio) if figname is not None: plt.savefig(figname+'spouses.eps', format='eps') plt.show() def plot_unemp(self,unempratio=True,figname=None,grayscale=False): ''' Plottaa työttömyysaste (unempratio=True) tai työttömien osuus väestöstö (False) ''' x=np.linspace(self.min_age,self.max_age,self.n_time) if unempratio: tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(self.empstate,self.alive,unempratio=True) unempratio_stat=100*self.empstats.unempratio_stats() if self.language=='Finnish': labeli='keskimääräinen työttömyysaste '+str(ka_tyottomyysaste) ylabeli=self.labels['tyottomyysaste'] labeli2='työttömyysaste' else: labeli='average unemployment rate '+str(ka_tyottomyysaste) ylabeli=self.labels['tyottomyysaste'] labeli2='Unemployment rate' else: tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(self.empstate,self.alive,unempratio=False) unempratio_stat=100*self.empstats.unemp_stats() if self.language=='Finnish': labeli='keskimääräinen työttömien osuus väestöstö '+str(ka_tyottomyysaste) ylabeli='Työttömien osuus väestöstö [%]' labeli2='työttömien osuus väestöstö' else: labeli='proportion of unemployed'+str(ka_tyottomyysaste) ylabeli='Proportion of unemployed [%]' labeli2='proportion of unemployed' fig,ax=plt.subplots() ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabeli) ax.plot(x,tyottomyysaste,label=self.labels['malli']) ax.plot(x,unempratio_stat,ls='--',label=self.labels['havainto']) ax.legend() if figname is not None: plt.savefig(figname+'tyottomyysaste.eps', format='eps') plt.show() fig,ax=plt.subplots() ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabeli) ax.plot(x,unempratio_stat,label=self.labels['havainto']) ax.legend() if grayscale: pal=sns.light_palette("black", 8, reverse=True) else: pal=sns.color_palette("hls", self.n_employment) # hls, husl, cubehelix ax.stackplot(x,tyottomyysaste,colors=pal) #,label=self.labels['malli']) #ax.plot(x,tyottomyysaste) plt.show() fig,ax=plt.subplots() for gender in range(2): if gender==0: leg='Miehet' gempstate=np.sum(self.gempstate[:,:,0:3],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) color='darkgray' else: gempstate=np.sum(self.gempstate[:,:,3:6],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) leg='Naiset' color='black' tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(gempstate,alive,unempratio=unempratio) ax.plot(x,tyottomyysaste,color=color,label='{} {}'.format(labeli2,leg)) if grayscale: lstyle='--' else: lstyle='--' if self.version in set([1,2,3,4]): if unempratio: ax.plot(x,100*self.empstats.unempratio_stats(g=1),ls=lstyle,label=self.labels['havainto, naiset']) ax.plot(x,100*self.empstats.unempratio_stats(g=2),ls=lstyle,label=self.labels['havainto, miehet']) labeli='keskimääräinen työttömyysaste '+str(ka_tyottomyysaste) ylabeli=self.labels['tyottomyysaste'] else: ax.plot(x,100*self.empstats.unemp_stats(g=1),ls=lstyle,label=self.labels['havainto, naiset']) ax.plot(x,100*self.empstats.unemp_stats(g=2),ls=lstyle,label=self.labels['havainto, miehet']) labeli='keskimääräinen työttömien osuus väestöstö '+str(ka_tyottomyysaste) ylabeli=self.labels['tyottomien osuus'] ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabeli) if False: ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: ax.legend() if figname is not None: plt.savefig(figname+'tyottomyysaste_spk.eps', format='eps') plt.show() def plot_parttime_ratio(self,grayscale=True,figname=None): ''' Plottaa osatyötä tekevien osuus väestöstö ''' x=np.linspace(self.min_age,self.max_age,self.n_time) labeli2='Osatyötä tekevien osuus' fig,ax=plt.subplots() for gender in range(2): if gender==0: leg='Miehet' g='men' pstyle='-' else: g='women' leg='Naiset' pstyle='' tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_gempratios(gender=g,unempratio=False) ax.plot(x,osatyoaste,'{}'.format(pstyle),label='{} {}'.format(labeli2,leg)) o_x=np.array([20,30,40,50,60,70]) f_osatyo=np.array([55,21,16,12,18,71]) m_osatyo=np.array([32,8,5,4,9,65]) if grayscale: ax.plot(o_x,f_osatyo,ls='--',label=self.labels['havainto, naiset']) ax.plot(o_x,m_osatyo,ls='--',label=self.labels['havainto, miehet']) else: ax.plot(o_x,f_osatyo,label=self.labels['havainto, naiset']) ax.plot(o_x,m_osatyo,label=self.labels['havainto, miehet']) labeli='osatyöaste '#+str(ka_tyottomyysaste) ylabeli='Osatyön osuus työnteosta [%]' ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabeli) if False: ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: ax.legend() if figname is not None: plt.savefig(figname+'osatyoaste_spk.eps', format='eps') plt.show() def plot_unemp_shares(self): empstate_ratio=100*self.empstate/self.alive self.plot_states(empstate_ratio,ylabel='Osuus tilassa [%]',onlyunemp=True,stack=True) def plot_group_emp(self,grayscale=False,figname=None): fig,ax=plt.subplots() if grayscale: lstyle='--' else: lstyle='--' for gender in range(2): if gender==0: leg='Miehet' gempstate=np.sum(self.gempstate[:,:,0:3],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) color='darkgray' else: gempstate=np.sum(self.gempstate[:,:,3:6],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) leg='Naiset' color='black' tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(gempstate,alive) x=np.linspace(self.min_age,self.max_age,self.n_time) ax.plot(x,tyollisyysaste,color=color,label='työllisyysaste {}'.format(leg)) #ax.plot(x,tyottomyysaste,label='työttömyys {}'.format(leg)) emp_statsratio=100*self.empstats.emp_stats(g=2) ax.plot(x,emp_statsratio,ls=lstyle,color='darkgray',label=self.labels['havainto, miehet']) emp_statsratio=100*self.empstats.emp_stats(g=1) ax.plot(x,emp_statsratio,ls=lstyle,color='black',label=self.labels['havainto, naiset']) ax.set_xlabel(self.labels['age']) ax.set_ylabel(self.labels['ratio']) if False: ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: ax.legend() if figname is not None: plt.savefig(figname+'tyollisyysaste_spk.eps', format='eps') plt.show() def plot_pensions(self): if self.version in set([1,2,3,4]): self.plot_ratiostates(self.stat_pension,ylabel='Tuleva eläke [e/v]',stack=False) def plot_career(self): if self.version in set([1,2,3,4]): self.plot_ratiostates(self.stat_tyoura,ylabel='Työuran pituus [v]',stack=False) def plot_ratiostates(self,statistic,ylabel='',ylimit=None, show_legend=True, parent=False,\ unemp=False,start_from=None,stack=False,no_ve=False,figname=None,emp=False,oa_unemp=False): self.plot_states(statistic/self.empstate,ylabel=ylabel,ylimit=ylimit,no_ve=no_ve,\ show_legend=show_legend,parent=parent,unemp=unemp,start_from=start_from,\ stack=stack,figname=figname,emp=emp,oa_unemp=oa_unemp) def count_putki(self,emps=None): if emps is None: piped=np.reshape(self.empstate[:,4],(self.empstate[:,4].shape[0],1)) demog2=self.empstats.get_demog() putkessa=self.timestep*np.nansum(piped[1:]/self.alive[1:]*demog2[1:]) return putkessa else: piped=np.reshape(emps[:,4],(emps[:,4].shape[0],1)) demog2=self.empstats.get_demog() alive=np.sum(emps,axis=1,keepdims=True) putkessa=self.timestep*np.nansum(piped[1:]/alive[1:]*demog2[1:]) return putkessa def plot_states(self,statistic,ylabel='',ylimit=None,show_legend=True,parent=False,unemp=False,no_ve=False, start_from=None,stack=True,figname=None,yminlim=None,ymaxlim=None, onlyunemp=False,reverse=False,grayscale=False,emp=False,oa_unemp=False): if start_from is None: x=np.linspace(self.min_age,self.max_age,self.n_time) else: x_n = self.max_age-60+1 x_t = int(np.round((x_n-1)*self.inv_timestep))+2 x=np.linspace(start_from,self.max_age,x_t) #x=np.linspace(start_from,self.max_age,self.n_time) statistic=statistic[self.map_age(start_from):] ura_emp=statistic[:,1] ura_ret=statistic[:,2] ura_unemp=statistic[:,0] if self.version in set([1,2,3,4]): ura_disab=statistic[:,3] ura_pipe=statistic[:,4] ura_mother=statistic[:,5] ura_dad=statistic[:,6] ura_kht=statistic[:,7] ura_vetyo=statistic[:,9] ura_veosatyo=statistic[:,8] ura_osatyo=statistic[:,10] ura_outsider=statistic[:,11] ura_student=statistic[:,12] ura_tyomarkkinatuki=statistic[:,13] ura_army=statistic[:,14] else: ura_osatyo=0 #statistic[:,3] if no_ve: ura_ret[-2:-1]=None fig,ax=plt.subplots() if stack: if grayscale: pal=sns.light_palette("black", 8, reverse=True) else: pal=sns.color_palette("hls", self.n_employment) # hls, husl, cubehelix reverse=True if parent: if self.version in set([1,2,3,4]): ax.stackplot(x,ura_mother,ura_dad,ura_kht, labels=('äitiysvapaa','isyysvapaa','khtuki'), colors=pal) elif unemp: if self.version in set([1,2,3,4]): ax.stackplot(x,ura_unemp,ura_pipe,ura_student,ura_outsider,ura_tyomarkkinatuki, labels=('tyött','putki','opiskelija','ulkona','tm-tuki'), colors=pal) else: ax.stackplot(x,ura_unemp,labels=('tyött'), colors=pal) elif onlyunemp: if self.version in set([1,2,3,4]): #urasum=np.nansum(statistic[:,[0,4,11,13]],axis=1)/100 urasum=np.nansum(statistic[:,[0,4,13]],axis=1)/100 osuus=(1.0-np.array([0.84,0.68,0.62,0.58,0.57,0.55,0.53,0.50,0.29]))*100 xx=np.array([22.5,27.5,32.5,37.5,42.5,47.5,52.5,57.5,62.5]) #ax.stackplot(x,ura_unemp/urasum,ura_pipe/urasum,ura_outsider/urasum,ura_tyomarkkinatuki/urasum, # labels=('ansiosidonnainen','lisäpäivät','työvoiman ulkopuolella','tm-tuki'), colors=pal) ax.stackplot(x,ura_unemp/urasum,ura_pipe/urasum,ura_tyomarkkinatuki/urasum, labels=('ansiosidonnainen','lisäpäivät','tm-tuki'), colors=pal) ax.plot(xx,osuus,color='k') else: ax.stackplot(x,ura_unemp,labels=('tyött'), colors=pal) else: if self.version in set([1,2,3,4]): #ax.stackplot(x,ura_emp,ura_osatyo,ura_vetyo,ura_veosatyo,ura_unemp,ura_tyomarkkinatuki,ura_pipe,ura_disab,ura_mother,ura_dad,ura_kht,ura_ret,ura_student,ura_outsider,ura_army, # labels=('työssä','osatyö','ve+työ','ve+osatyö','työtön','tm-tuki','työttömyysputki','tk-eläke','äitiysvapaa','isyysvapaa','kh-tuki','vanhuuseläke','opiskelija','työvoiman ulkop.','armeijassa'), # colors=pal) ax.stackplot(x,ura_emp,ura_osatyo,ura_vetyo,ura_veosatyo,ura_unemp,ura_tyomarkkinatuki,ura_pipe,ura_ret,ura_disab,ura_mother,ura_dad,ura_kht,ura_student,ura_outsider,ura_army, labels=('työssä','osatyö','ve+työ','ve+osatyö','työtön','tm-tuki','työttömyysputki','vanhuuseläke','tk-eläke','äitiysvapaa','isyysvapaa','kh-tuki','opiskelija','työvoiman ulkop.','armeijassa'), colors=pal) else: #ax.stackplot(x,ura_emp,ura_osatyo,ura_unemp,ura_ret, # labels=('työssä','osa-aikatyö','työtön','vanhuuseläke'), colors=pal) ax.stackplot(x,ura_emp,ura_unemp,ura_ret, labels=('työssä','työtön','vanhuuseläke'), colors=pal) if start_from is None: ax.set_xlim(self.min_age,self.max_age) else: ax.set_xlim(60,self.max_age) if ymaxlim is None: ax.set_ylim(0, 100) else: ax.set_ylim(yminlim,ymaxlim) else: if parent: if self.version in set([1,2,3,4]): ax.plot(x,ura_mother,label='äitiysvapaa') ax.plot(x,ura_dad,label='isyysvapaa') ax.plot(x,ura_kht,label='khtuki') elif unemp: ax.plot(x,ura_unemp,label='tyött') if self.version in set([1,2,3,4]): ax.plot(x,ura_tyomarkkinatuki,label='tm-tuki') ax.plot(x,ura_student,label='student') ax.plot(x,ura_outsider,label='outsider') ax.plot(x,ura_pipe,label='putki') elif oa_unemp: ax.plot(x,ura_unemp,label='tyött') if self.version in set([1,2,3,4]): ax.plot(x,ura_tyomarkkinatuki,label='tm-tuki') ax.plot(x,ura_student,label='student') ax.plot(x,ura_outsider,label='outsider') ax.plot(x,ura_pipe,label='putki') ax.plot(x,ura_osatyo,label='osa-aika') elif emp: ax.plot(x,ura_emp,label='työssä') #if self.version in set([1,2,3,4]): ax.plot(x,ura_osatyo,label='osatyö') else: ax.plot(x,ura_unemp,label='tyött') ax.plot(x,ura_ret,label='eläke') ax.plot(x,ura_emp,label='työ') if self.version in set([1,2,3,4]): ax.plot(x,ura_osatyo,label='osatyö') ax.plot(x,ura_disab,label='tk') ax.plot(x,ura_pipe,label='putki') ax.plot(x,ura_tyomarkkinatuki,label='tm-tuki') ax.plot(x,ura_mother,label='äitiysvapaa') ax.plot(x,ura_dad,label='isyysvapaa') ax.plot(x,ura_kht,label='khtuki') ax.plot(x,ura_vetyo,label='ve+työ') ax.plot(x,ura_veosatyo,label='ve+osatyö') ax.plot(x,ura_student,label='student') ax.plot(x,ura_outsider,label='outsider') ax.plot(x,ura_army,label='armeijassa') ax.set_xlabel(self.labels['age']) ax.set_ylabel(ylabel) if show_legend: if not reverse: lgd=ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: handles, labels = ax.get_legend_handles_labels() lgd=ax.legend(handles[::-1], labels[::-1], bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) if ylimit is not None: ax.set_ylim([0,ylimit]) #fig.tight_layout() if figname is not None: if show_legend: plt.savefig(figname,bbox_inches='tight',bbox_extra_artists=(lgd,), format='eps') else: plt.savefig(figname,bbox_inches='tight', format='eps') plt.show() def plot_toe(self): if self.version in set([1,2,3,4]): self.plot_ratiostates(self.stat_toe,'työssäolo-ehdon pituus 28 kk aikana [v]',stack=False) def plot_sal(self): self.plot_ratiostates(self.salaries_emp,'Keskipalkka [e/v]',stack=False) def plot_moved(self): siirtyneet_ratio=self.siirtyneet/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) pysyneet_ratio=self.pysyneet/self.alive*100 self.plot_states(pysyneet_ratio,ylabel='Pysyneet tilassa',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(pysyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,1]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet työhön tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,4]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet putkeen tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,0]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet työttömäksi tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,13]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet tm-tuelle tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) siirtyneet_ratio=self.siirtyneet_det[:,:,10]/self.alive*100 self.plot_states(siirtyneet_ratio,ylabel='Siirtyneet osa-aikatyöhön tilasta',stack=True, yminlim=0,ymaxlim=min(100,1.1*np.nanmax(np.cumsum(siirtyneet_ratio,1)))) # def plot_army(self): # x=np.linspace(self.min_age,self.max_age,self.n_time) # fig,ax=plt.subplots() # ax.plot(x,100*self.empstate[:,14]/self.alive[:,0],label='armeijassa ja siviilipalveluksessa olevat') # emp_statsratio=100*self.army_stats() # ax.plot(x,emp_statsratio,label='havainto') # ax.set_xlabel(self.labels['age']) # ax.set_ylabel(self.labels['ratio']) # ax.legend() # plt.show() # # def plot_group_army(self): # fig,ax=plt.subplots() # for gender in range(2): # if gender==0: # leg='Armeija Miehet' # opiskelijat=np.sum(self.gempstate[:,14,0:3],axis=1) # alive=np.zeros((self.galive.shape[0],1)) # alive[:,0]=np.sum(self.galive[:,0:3],1) # else: # leg='Armeija Naiset' # opiskelijat=np.sum(self.gempstate[:,14,3:6],axis=1) # alive=np.zeros((self.galive.shape[0],1)) # alive[:,0]=np.sum(self.galive[:,3:6],1) # # opiskelijat=np.reshape(opiskelijat,(self.galive.shape[0],1)) # osuus=100*opiskelijat/alive # x=np.linspace(self.min_age,self.max_age,self.n_time) # ax.plot(x,osuus,label=leg) # # emp_statsratio=100*self.army_stats(g=1) # ax.plot(x,emp_statsratio,label=self.labels['havainto, naiset']) # emp_statsratio=100*self.army_stats(g=2) # ax.plot(x,emp_statsratio,label=self.labels['havainto, miehet']) # ax.set_xlabel(self.labels['age']) # ax.set_ylabel(self.labels['ratio']) # ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) # plt.show() # def plot_ave_stay(self): self.plot_ratiostates(self.time_in_state,ylabel='Ka kesto tilassa',stack=False) fig,ax=plt.subplots() x=np.linspace(self.min_age,self.max_age,self.n_time) plt.plot(x,self.time_in_state[:,1]/self.empstate[:,1]) ax.set_xlabel('Aika') ax.set_ylabel('Ka kesto työssä') plt.show() fig,ax=plt.subplots() ax.set_xlabel('Aika') ax.set_ylabel('ka kesto työttömänä') plt.plot(x,self.time_in_state[:,0]/self.empstate[:,0]) plt.show() def plot_ove(self): self.plot_ratiostates(self.infostats_ove,ylabel='Ove',stack=False) def plot_reward(self): self.plot_ratiostates(self.rewstate,ylabel='Keskireward tilassa',stack=False) self.plot_ratiostates(self.rewstate,ylabel='Keskireward tilassa',stack=False,no_ve=True) self.plot_ratiostates(self.rewstate,ylabel='Keskireward tilassa',stack=False,oa_unemp=True) x=np.linspace(self.min_age,self.max_age,self.n_time) total_reward=np.sum(self.rewstate,axis=1) fig,ax=plt.subplots() ax.plot(x,total_reward) ax.set_xlabel('Aika') ax.set_ylabel('Koko reward tilassa') ax.legend() plt.show() def vector_to_array(self,x): return x[:,None] def comp_scaled_consumption(self,x0,averaged=False,t0=1): ''' Computes discounted actual reward at each time point with a given scaling x averaged determines whether the value is averaged over time or not ''' x=x0[0] u=np.zeros(self.n_time) for k in range(self.n_pop): #g=self.infostats_group[k] for t in range(1,self.n_time-1): age=t+self.min_age income=self.infostats_poptulot_netto[t,k] employment_state=self.popempstate[t,k] v,_=self.env.log_utility((1+x)*income,employment_state,age) if np.isnan(v): print('NaN',v,income,employment_state,age) v=0 u[t]+=v #print(age,v) t=self.n_time-1 age=t+self.min_age income=self.infostats_poptulot_netto[t,k] employment_state=self.popempstate[t,k] v0,_=self.env.log_utility(income,employment_state,age) factor=self.poprewstate[t,k]/v0 # life expectancy v,_=self.env.log_utility((1+x)*income,employment_state,age) if np.isnan(v): print('NaN',v,income,employment_state,age) if np.isnan(factor): print('NaN',factor,v0) #print(age,v*factor,factor) u[t]+=v*factor if np.isnan(u[t]): print('NaN',age,v,v*factor,factor,u[t],income,employment_state) u=u/self.n_pop w=np.zeros(self.n_time) w[-1]=u[-1] for t in range(self.n_time-2,0,-1): w[t]=u[t]+self.gamma*w[t+1] if averaged: ret=np.mean(w[t0:]) else: ret=w[t0] if np.isnan(ret): print(u,w) u=np.zeros(self.n_time) for k in range(self.n_pop): #g=self.infostats_group[k] for t in range(1,self.n_time-1): age=t+self.min_age income=self.infostats_poptulot_netto[t,k] employment_state=self.popempstate[t,k] v,_=self.env.log_utility((1+x)*income,employment_state,age) #,g=g,pinkslip=pinkslip) #print(t,k,v,income) u[t]+=v t=self.n_time-1 age=t-1+self.min_age income=self.infostats_poptulot_netto[t,k] employment_state=self.popempstate[t,k] v0,_=self.env.log_utility(income,employment_state,age) #,g=g,pinkslip=pinkslip) factor=self.poprewstate[t,k]/v0 # life expectancy v,_=self.env.log_utility((1+x)*income,employment_state,age) #,g=g,pinkslip=pinkslip) #print(t,k,v,income) u[t]+=v*factor #print(x,ret) return ret def comp_presentvalue(self): ''' Computes discounted actual reward at each time point with a given scaling x averaged determines whether the value is averaged over time or not ''' u=np.zeros((self.n_time,self.n_pop)) u[self.n_time-1,:]=self.poprewstate[self.n_time-1,:] for t in range(self.n_time-2,-1,-1): u[t,:]=self.poprewstate[t,:]+self.gamma*u[t+1,:] return u def comp_realoptimrew(self,discountfactor=None): ''' Computes discounted actual reward at each time point ''' if discountfactor is None: discountfactor=self.gamma realrew=np.zeros(self.n_time) for k in range(self.n_pop): prew=np.zeros(self.n_time) prew[-1]=self.poprewstate[-1,k] for t in range(self.n_time-2,0,-1): prew[t]=discountfactor*prew[t+1]+self.poprewstate[t,k] realrew+=prew realrew/=self.n_pop realrew=np.mean(realrew[1:]) return realrew def get_reward(self,discounted=False): return self.comp_total_reward(output=False,discounted=discounted) #np.sum(self.rewstate)/self.n_pop def comp_total_reward(self,output=False,discounted=False,discountfactor=None): if not discounted: total_reward=np.sum(self.rewstate) rr=total_reward/self.n_pop disco='undiscounted' else: #discount=discountfactor**np.arange(0,self.n_time*self.timestep,self.timestep)[:,None] #total_reward=np.sum(self.poprewstate*discount) rr=self.comp_realoptimrew(discountfactor) #total_reward/self.n_pop disco='discounted' #print('total rew1 {} rew2 {}'.format(total_reward,np.sum(self.poprewstate))) #print('ave rew1 {} rew2 {}'.format(rr,np.mean(np.sum(self.poprewstate,axis=0)))) #print('shape rew2 {} pop {} alive {}'.format(self.poprewstate.shape,self.n_pop,self.alive[0])) if output: print(f'Ave {disco} reward {rr}') return rr def comp_total_netincome(self,output=True): rr=np.sum(self.infostats_tulot_netto)/self.n_pop/(self.n_time+21.0) # 21 approximates the time in pension eq=np.sum(self.infostats_equivalent_income)/self.n_pop/(self.n_time+21.0) # 21 approximates the time in pension if output: print('Ave net income {} Ave equivalent net income {}'.format(rr,eq)) return rr,eq def plot_wage_reduction(self): self.plot_ratiostates(self.stat_wage_reduction,ylabel='wage-reduction tilassa',stack=False) self.plot_ratiostates(self.stat_wage_reduction,ylabel='wage-reduction tilassa',stack=False,unemp=True) self.plot_ratiostates(self.stat_wage_reduction,ylabel='wage-reduction tilassa',stack=False,emp=True) #self.plot_ratiostates(np.log(1.0+self.stat_wage_reduction),ylabel='log 5wage-reduction tilassa',stack=False) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,0:3],axis=2),ylabel='wage-reduction tilassa naiset',stack=False) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,3:6],axis=2),ylabel='wage-reduction tilassa miehet',stack=False) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,0:3],axis=2),ylabel='wage-reduction tilassa, naiset',stack=False,unemp=True) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,3:6],axis=2),ylabel='wage-reduction tilassa, miehet',stack=False,unemp=True) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,0:3],axis=2),ylabel='wage-reduction tilassa, naiset',stack=False,emp=True) self.plot_ratiostates(np.sum(self.stat_wage_reduction_g[:,:,3:6],axis=2),ylabel='wage-reduction tilassa, miehet',stack=False,emp=True) def plot_distrib(self,label='',plot_emp=False,plot_bu=False,ansiosid=False,tmtuki=False,putki=False,outsider=False,max_age=500,laaja=False,max=4,figname=None): unemp_distrib,emp_distrib,unemp_distrib_bu=self.comp_empdistribs(ansiosid=ansiosid,tmtuki=tmtuki,putki=putki,outsider=outsider,max_age=max_age,laaja=laaja) tyoll_distrib,tyoll_distrib_bu=self.comp_tyollistymisdistribs(ansiosid=ansiosid,tmtuki=tmtuki,putki=putki,outsider=outsider,max_age=max_age,laaja=laaja) if plot_emp: self.plot_empdistribs(emp_distrib) if plot_bu: self.plot_unempdistribs_bu(unemp_distrib_bu) else: self.plot_unempdistribs(unemp_distrib,figname=figname) #self.plot_tyolldistribs(unemp_distrib,tyoll_distrib,tyollistyneet=False) if plot_bu: self.plot_tyolldistribs_both_bu(unemp_distrib_bu,tyoll_distrib_bu,max=max) else: self.plot_tyolldistribs_both(unemp_distrib,tyoll_distrib,max=max,figname=figname) def plot_irr(self,figname=''): self.comp_aggirr() self.comp_irr() self.plot_irrdistrib(self.infostats_irr,figname=figname) def plot_irrdistrib(self,irr_distrib,grayscale=True,figname=''): if grayscale: plt.style.use('grayscale') plt.rcParams['figure.facecolor'] = 'white' # Or any suitable colour... print('Nans {} out of {}'.format(np.sum(np.isnan(irr_distrib)),irr_distrib.shape[0])) fig,ax=plt.subplots() ax.set_xlabel('Sisäinen tuottoaste [%]') lbl=ax.set_ylabel('Taajuus') #ax.set_yscale('log') #max_time=50 #nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(-5,5,100) scaled,x2=np.histogram(irr_distrib,x) #scaled=scaled/np.nansum(np.abs(irr_distrib)) ax.bar(x2[1:-1],scaled[1:],align='center') if figname is not None: plt.savefig(figname+'irrdistrib.eps', bbox_inches='tight', format='eps') plt.show() fig,ax=plt.subplots() ax.hist(irr_distrib,bins=40) plt.show() print('Keskimääräinen irr {:.3f} %'.format(np.nanmean(irr_distrib))) print('Mediaani irr {:.3f} %'.format(np.nanmedian(irr_distrib))) count = (irr_distrib < 0).sum(axis=0) percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus irr<0 {} %:lla'.format(100*percent)) count = (irr_distrib <=-50).sum(axis=0) percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus irr<-50 {} %:lla'.format(100*percent)) count = (np.sum(self.infostats_paid_tyel_pension,axis=0)<0.1).sum() percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus eläke ei maksussa {} %:lla'.format(100*percent)) count1 = np.sum(self.popempstate[0:self.map_age(63),:]==15) count = (np.sum(self.infostats_paid_tyel_pension,axis=0)<0.1).sum()-count1 percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus eläke ei maksussa, ei kuollut {} %:lla'.format(100*percent)) count = np.sum(self.popempstate==15) percent = np.true_divide(count,irr_distrib.shape[0]) print('Osuus kuolleet {} %:lla'.format(100*percent)) def get_initial_reward(self,startage=None): real=self.comp_presentvalue() if startage is None: startage=self.min_age age=max(1,startage-self.min_age) realage=max(self.min_age+1,startage) print('Initial discounted reward at age {}: {}'.format(realage,np.mean(real[age,:]))) return np.mean(real[age,:]) def plot_stats(self,grayscale=False,figname=None): if grayscale: plt.style.use('grayscale') plt.rcParams['figure.facecolor'] = 'white' # Or any suitable colour... self.comp_total_reward() self.comp_total_reward(discounted=True) self.comp_total_netincome() #self.plot_rewdist() #self.plot_emp(figname=figname) if self.version in set([1,2,3,4]): q=self.comp_budget(scale=True) q_stat=self.stat_budget() df1 = pd.DataFrame.from_dict(q,orient='index',columns=['e/v']) df2 = pd.DataFrame.from_dict(q_stat,orient='index',columns=['toteuma']) df=df1.copy() df['toteuma']=df2['toteuma'] df['ero']=df1['e/v']-df2['toteuma'] print('Rahavirrat skaalattuna väestötasolle') print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.2f")) q=self.comp_participants(scale=True) q_stat=self.stat_participants_2018() q_days=self.stat_days_2018() df1 = pd.DataFrame.from_dict(q,orient='index',columns=['arvio (htv)']) df2 = pd.DataFrame.from_dict(q_stat,orient='index',columns=['toteuma']) df3 = pd.DataFrame.from_dict(q_days,orient='index',columns=['htv_tot']) df=df1.copy() df['toteuma (kpl)']=df2['toteuma'] df['toteuma (htv)']=df3['htv_tot'] df['ero (htv)']=df['arvio (htv)']-df['toteuma (htv)'] print('Henkilöitä tiloissa skaalattuna väestötasolle') print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.0f")) else: q=self.comp_participants(scale=True) q_stat=self.stat_participants_2018() q_days=self.stat_days_2018() df1 = pd.DataFrame.from_dict(q,orient='index',columns=['arvio (htv)']) df2 = pd.DataFrame.from_dict(q_stat,orient='index',columns=['toteuma']) df3 = pd.DataFrame.from_dict(q_days,orient='index',columns=['htv_tot']) df=df1.copy() df['toteuma (kpl)']=df2['toteuma'] df['toteuma (htv)']=df3['htv_tot'] df['ero (htv)']=df['arvio (htv)']-df['toteuma (htv)'] print('Henkilöitä tiloissa skaalattuna väestötasolle') print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.0f")) G=self.comp_gini() print('Gini coefficient is {}'.format(G)) print('Real discounted reward {}'.format(self.comp_realoptimrew())) print('vrt reward {}'.format(self.comp_scaled_consumption(np.array([0])))) real=self.comp_presentvalue() print('Initial discounted reward {}'.format(np.mean(real[1,:]))) self.plot_emp(figname=figname) if self.version in set([1,2,3,4]): self.plot_outsider() print('Keskikestot käytettyjen ansiosidonnaisten päivärahojen mukaan') keskikesto=self.comp_unemp_durations() df = pd.DataFrame.from_dict(keskikesto,orient='index',columns=['0-6 kk','6-12 kk','12-18 kk','18-24kk','yli 24 kk']) print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.2f")) print('Keskikestot viimeisimmän työttömyysjakson mukaan') keskikesto=self.comp_unemp_durations_v2() df = pd.DataFrame.from_dict(keskikesto,orient='index',columns=['0-6 kk','6-12 kk','12-18 kk','18-24kk','yli 24 kk']) print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.2f")) if self.version in set([1,2,3,4]): print('Lisäpäivillä on {:.0f} henkilöä'.format(self.count_putki())) if self.version in set([4]): self.plot_spouse() if self.version==101: self.plot_savings() if self.version in set([3]): self.plot_ove() self.plot_unemp(unempratio=True,figname=figname) self.plot_unemp(unempratio=False) self.plot_unemp_shares() if self.version in set([1,2,3,4]): self.plot_group_emp(figname=figname) self.plot_parttime_ratio(figname=figname) self.plot_sal() if self.version in set([1,2,3,4]): self.plot_taxes() self.plot_pinkslip() self.plot_outsider() self.plot_student() self.plot_kassanjasen() #self.plot_army() self.plot_group_student() #self.plot_group_army() self.plot_group_disab() self.plot_moved() self.plot_ave_stay() self.plot_reward() self.plot_pensions() self.plot_career() self.plot_toe() self.plot_wage_reduction() #self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki+putki, no max age',ansiosid=True,tmtuki=True,putki=True,outsider=False) self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki+putki, jakso päättynyt ennen 50v ikää',ansiosid=True,tmtuki=True,putki=True,outsider=False,max_age=50,figname=figname) if self.version in set([1,2,3,4]): #self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki+putki, jakso päättynyt ennen 50v ikää, jäljellä oleva aika',plot_bu=True,ansiosid=True,tmtuki=True,putki=True,outsider=False,max_age=50) self.plot_distrib(label='Jakauma ansiosidonnainen+putki, jakso päättynyt ennen 50v ikää, jäljellä oleva aika',plot_bu=False,ansiosid=True,tmtuki=False,putki=True,outsider=False,max_age=50) #self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki ilman putkea',ansiosid=True,tmtuki=True,putki=False,outsider=False) #self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki ilman putkea, max Ikä 50v',ansiosid=True,tmtuki=True,putki=False,outsider=False,max_age=50) self.plot_distrib(label='Jakauma tmtuki',ansiosid=False,tmtuki=True,putki=False,outsider=False) #self.plot_distrib(label='Jakauma työvoiman ulkopuoliset',ansiosid=False,tmtuki=False,putki=False,outsider=True) #self.plot_distrib(label='Jakauma laaja (ansiosidonnainen+tmtuki+putki+ulkopuoliset)',laaja=True) def plot_final(self): print('Keskikestot käytettyjen ansiosidonnaisten päivärahojen mukaan') keskikesto=self.comp_unemp_durations() df = pd.DataFrame.from_dict(keskikesto,orient='index',columns=['0-6 kk','6-12 kk','12-18 kk','18-24kk','yli 24 kk']) print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.2f")) print('Keskikestot viimeisimmän työttömyysjakson mukaan') keskikesto=self.comp_unemp_durations_v2() df = pd.DataFrame.from_dict(keskikesto,orient='index',columns=['0-6 kk','6-12 kk','12-18 kk','18-24kk','yli 24 kk']) print(tabulate(df, headers='keys', tablefmt='psql', floatfmt=",.2f")) self.plot_emp() if self.version in set([1,2,3,4]): print('Lisäpäivillä on {:.0f} henkilöä'.format(self.count_putki())) self.plot_unemp(unempratio=True) self.plot_unemp(unempratio=False) self.plot_unemp_shares() if self.version in set([1,2,3,4]): self.plot_group_emp() self.plot_parttime_ratio() self.plot_sal() self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki+putki, no max age',ansiosid=True,tmtuki=True,putki=True,outsider=False) self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki+putki, jakso päättynyt ennen 50v ikää',ansiosid=True,tmtuki=True,putki=True,outsider=False,max_age=50) #self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki+putki, jakso päättynyt ennen 50v ikää, jäljellä oleva aika',plot_bu=True,ansiosid=True,tmtuki=True,putki=True,outsider=False,max_age=50) self.plot_distrib(label='Jakauma ansiosidonnainen+putki, jakso päättynyt ennen 50v ikää, jäljellä oleva aika',plot_bu=False,ansiosid=True,tmtuki=False,putki=True,outsider=False,max_age=50) #self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki ilman putkea',ansiosid=True,tmtuki=True,putki=False,outsider=False) #self.plot_distrib(label='Jakauma ansiosidonnainen+tmtuki ilman putkea, max Ikä 50v',ansiosid=True,tmtuki=True,putki=False,outsider=False,max_age=50) self.plot_distrib(label='Jakauma tmtuki',ansiosid=False,tmtuki=True,putki=False,outsider=False) #self.plot_distrib(label='Jakauma työvoiman ulkopuoliset',ansiosid=False,tmtuki=False,putki=False,outsider=True) #self.plot_distrib(label='Jakauma laaja (ansiosidonnainen+tmtuki+putki+ulkopuoliset)',laaja=True) if self.version in set([1,2,3,4]): self.plot_outsider() self.plot_student() #self.plot_army() self.plot_group_student() #self.plot_group_army() self.plot_group_disab() self.plot_moved() self.plot_ave_stay() self.plot_reward() self.plot_pensions() self.plot_career() self.plot_toe() self.plot_wage_reduction() def plot_img(self,img,xlabel="eläke",ylabel="Palkka",title="Employed"): fig, ax = plt.subplots() im = ax.imshow(img) heatmap = plt.pcolor(img) plt.colorbar(heatmap) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) plt.title(title) plt.show() def save_sim(self,filename): f = h5py.File(filename, 'w') ftype='float64' _ = f.create_dataset('version', data=self.version, dtype=ftype) _ = f.create_dataset('n_pop', data=self.n_pop, dtype=int) _ = f.create_dataset('empstate', data=self.empstate, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('gempstate', data=self.gempstate, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('deceiced', data=self.deceiced, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('rewstate', data=self.rewstate, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('salaries_emp', data=self.salaries_emp, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('actions', data=self.actions, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('alive', data=self.alive, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('galive', data=self.galive, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('siirtyneet', data=self.siirtyneet, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('siirtyneet_det', data=self.siirtyneet_det, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('pysyneet', data=self.pysyneet, dtype=int,compression="gzip", compression_opts=9) if self.dynprog: _ = f.create_dataset('aveV', data=self.aveV, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('pop_predrew', data=self.pop_predrew, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('time_in_state', data=self.time_in_state, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('stat_tyoura', data=self.stat_tyoura, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('stat_toe', data=self.stat_toe, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('stat_pension', data=self.stat_pension, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('stat_paidpension', data=self.stat_paidpension, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('stat_unemp_len', data=self.stat_unemp_len, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('popempstate', data=self.popempstate, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('stat_wage_reduction', data=self.stat_wage_reduction, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('stat_wage_reduction_g', data=self.stat_wage_reduction_g, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('popunemprightleft', data=self.popunemprightleft, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('popunemprightused', data=self.popunemprightused, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_taxes', data=self.infostats_taxes, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_wagetaxes', data=self.infostats_wagetaxes, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_taxes_distrib', data=self.infostats_taxes_distrib, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_etuustulo', data=self.infostats_etuustulo, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_etuustulo_group', data=self.infostats_etuustulo_group, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_perustulo', data=self.infostats_perustulo, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_palkkatulo', data=self.infostats_palkkatulo, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_palkkatulo_eielakkeella', data=self.infostats_palkkatulo_eielakkeella, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_ansiopvraha', data=self.infostats_ansiopvraha, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_asumistuki', data=self.infostats_asumistuki, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_valtionvero', data=self.infostats_valtionvero, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_kunnallisvero', data=self.infostats_kunnallisvero, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_valtionvero_distrib', data=self.infostats_valtionvero_distrib, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_kunnallisvero_distrib', data=self.infostats_kunnallisvero_distrib, dtype=ftype) _ = f.create_dataset('infostats_ptel', data=self.infostats_ptel, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_tyotvakmaksu', data=self.infostats_tyotvakmaksu, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_tyoelake', data=self.infostats_tyoelake, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_kokoelake', data=self.infostats_kokoelake, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_opintotuki', data=self.infostats_opintotuki, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_isyyspaivaraha', data=self.infostats_isyyspaivaraha, dtype=ftype) _ = f.create_dataset('infostats_aitiyspaivaraha', data=self.infostats_aitiyspaivaraha, dtype=ftype) _ = f.create_dataset('infostats_kotihoidontuki', data=self.infostats_kotihoidontuki, dtype=ftype) _ = f.create_dataset('infostats_sairauspaivaraha', data=self.infostats_sairauspaivaraha, dtype=ftype) _ = f.create_dataset('infostats_toimeentulotuki', data=self.infostats_toimeentulotuki, dtype=ftype) _ = f.create_dataset('infostats_tulot_netto', data=self.infostats_tulot_netto, dtype=ftype) _ = f.create_dataset('poprewstate', data=self.poprewstate, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_pinkslip', data=self.infostats_pinkslip, dtype=int) if self.version<2: _ = f.create_dataset('infostats_pop_pinkslip', data=self.infostats_pop_pinkslip, dtype=int) _ = f.create_dataset('infostats_paid_tyel_pension', data=self.infostats_paid_tyel_pension, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_tyelpremium', data=self.infostats_tyelpremium, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_npv0', data=self.infostats_npv0, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_irr', data=self.infostats_irr, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_group', data=self.infostats_group, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_sairausvakuutus', data=self.infostats_sairausvakuutus, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_pvhoitomaksu', data=self.infostats_pvhoitomaksu, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_ylevero', data=self.infostats_ylevero, dtype=ftype) _ = f.create_dataset('infostats_ylevero_distrib', data=self.infostats_ylevero_distrib, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_mother_in_workforce', data=self.infostats_mother_in_workforce, dtype=ftype) _ = f.create_dataset('infostats_children_under3', data=self.infostats_children_under3, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_children_under7', data=self.infostats_children_under7, dtype=int,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_unempwagebasis', data=self.infostats_unempwagebasis, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_unempwagebasis_acc', data=self.infostats_unempwagebasis_acc, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_toe', data=self.infostats_toe, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_ove', data=self.infostats_ove, dtype=int) _ = f.create_dataset('infostats_kassanjasen', data=self.infostats_kassanjasen, dtype=int) _ = f.create_dataset('infostats_poptulot_netto', data=self.infostats_poptulot_netto, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_equivalent_income', data=self.infostats_equivalent_income, dtype=ftype) _ = f.create_dataset('infostats_pop_wage', data=self.infostats_pop_wage, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_pop_pension', data=self.infostats_pop_pension, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('infostats_puoliso', data=self.infostats_puoliso, dtype=ftype) _ = f.create_dataset('infostats_alv', data=self.infostats_alv) _ = f.create_dataset('params', data=str(self.params)) if self.version==101: _ = f.create_dataset('infostats_savings', data=self.infostats_savings, dtype=ftype,compression="gzip", compression_opts=9) _ = f.create_dataset('sav_actions', data=self.sav_actions, dtype=ftype,compression="gzip", compression_opts=9) f.close() def save_to_hdf(self,filename,nimi,arr,dtype): f = h5py.File(filename, 'w') dset = f.create_dataset(nimi, data=arr, dtype=dtype) f.close() def load_hdf(self,filename,nimi): f = h5py.File(filename, 'r') val=f.get(nimi).value f.close() return val def load_sim(self,filename,n_pop=None,print_pop=False): f = h5py.File(filename, 'r') if 'version' in f.keys(): version=int(f['version'][()]) else: version=1 self.empstate=f['empstate'][()] self.gempstate=f['gempstate'][()] self.deceiced=f['deceiced'][()] self.rewstate=f['rewstate'][()] if 'poprewstate' in f.keys(): self.poprewstate=f['poprewstate'][()] if 'pop_predrew' in f.keys(): self.pop_predrew=f['pop_predrew'][()] self.salaries_emp=f['salaries_emp'][()] self.actions=f['actions'][()] self.alive=f['alive'][()] self.galive=f['galive'][()] self.siirtyneet=f['siirtyneet'][()] self.pysyneet=f['pysyneet'][()] if 'aveV' in f.keys(): self.aveV=f['aveV'][()] self.time_in_state=f['time_in_state'][()] self.stat_tyoura=f['stat_tyoura'][()] self.stat_toe=f['stat_toe'][()] self.stat_pension=f['stat_pension'][()] self.stat_paidpension=f['stat_paidpension'][()] self.stat_unemp_len=f['stat_unemp_len'][()] self.popempstate=f['popempstate'][()] self.stat_wage_reduction=f['stat_wage_reduction'][()] self.popunemprightleft=f['popunemprightleft'][()] self.popunemprightused=f['popunemprightused'][()] if 'infostats_wagetaxes' in f.keys(): # older runs do not have these self.infostats_wagetaxes=f['infostats_wagetaxes'][()] if 'infostats_taxes' in f.keys(): # older runs do not have these self.infostats_taxes=f['infostats_taxes'][()] self.infostats_etuustulo=f['infostats_etuustulo'][()] self.infostats_perustulo=f['infostats_perustulo'][()] self.infostats_palkkatulo=f['infostats_palkkatulo'][()] self.infostats_ansiopvraha=f['infostats_ansiopvraha'][()] self.infostats_asumistuki=f['infostats_asumistuki'][()] self.infostats_valtionvero=f['infostats_valtionvero'][()] self.infostats_kunnallisvero=f['infostats_kunnallisvero'][()] self.infostats_ptel=f['infostats_ptel'][()] self.infostats_tyotvakmaksu=f['infostats_tyotvakmaksu'][()] self.infostats_tyoelake=f['infostats_tyoelake'][()] self.infostats_kokoelake=f['infostats_kokoelake'][()] self.infostats_opintotuki=f['infostats_opintotuki'][()] self.infostats_isyyspaivaraha=f['infostats_isyyspaivaraha'][()] self.infostats_aitiyspaivaraha=f['infostats_aitiyspaivaraha'][()] self.infostats_kotihoidontuki=f['infostats_kotihoidontuki'][()] self.infostats_sairauspaivaraha=f['infostats_sairauspaivaraha'][()] self.infostats_toimeentulotuki=f['infostats_toimeentulotuki'][()] self.infostats_tulot_netto=f['infostats_tulot_netto'][()] if 'infostats_etuustulo_group' in f.keys(): # older runs do not have these self.infostats_etuustulo_group=f['infostats_etuustulo_group'][()] if 'infostats_valtionvero_distrib' in f.keys(): # older runs do not have these self.infostats_valtionvero_distrib=f['infostats_valtionvero_distrib'][()] self.infostats_kunnallisvero_distrib=f['infostats_kunnallisvero_distrib'][()] if 'infostats_taxes_distrib' in f.keys(): # older runs do not have these self.infostats_taxes_distrib=f['infostats_taxes_distrib'][()] self.infostats_ylevero_distrib=f['infostats_ylevero_distrib'][()] if 'infostats_pinkslip' in f.keys(): # older runs do not have these self.infostats_pinkslip=f['infostats_pinkslip'][()] if 'infostats_pop_pinkslip' in f.keys(): self.infostats_pop_pinkslip=f['infostats_pop_pinkslip'][()] if 'infostats_paid_tyel_pension' in f.keys(): # older runs do not have these self.infostats_paid_tyel_pension=f['infostats_paid_tyel_pension'][()] self.infostats_tyelpremium=f['infostats_tyelpremium'][()] if 'infostats_npv0' in f.keys(): # older runs do not have these self.infostats_npv0=f['infostats_npv0'][()] self.infostats_irr=f['infostats_irr'][()] if 'infostats_chilren7' in f.keys(): # older runs do not have these self.infostats_chilren7=f['infostats_chilren7'][()] if 'infostats_chilren18' in f.keys(): # older runs do not have these self.infostats_chilren18=f['infostats_chilren18'][()] if 'infostats_group' in f.keys(): # older runs do not have these self.infostats_group=f['infostats_group'][()] if 'infostats_sairausvakuutus' in f.keys(): self.infostats_sairausvakuutus=f['infostats_sairausvakuutus'][()] self.infostats_pvhoitomaksu=f['infostats_pvhoitomaksu'][()] self.infostats_ylevero=f['infostats_ylevero'][()] if 'infostats_mother_in_workforce' in f.keys(): self.infostats_mother_in_workforce=f['infostats_mother_in_workforce'][()] if 'stat_wage_reduction_g' in f.keys(): self.stat_wage_reduction_g=f['stat_wage_reduction_g'][()] if 'siirtyneet_det' in f.keys(): self.siirtyneet_det=f['siirtyneet_det'][()] if 'infostats_kassanjasen' in f.keys(): self.infostats_kassanjasen=f['infostats_kassanjasen'][()] if 'n_pop' in f.keys(): self.n_pop=int(f['n_pop'][()]) else: self.n_pop=np.sum(self.empstate[0,:]) if 'infostats_puoliso' in f.keys(): self.infostats_puoliso=f['infostats_puoliso'][()] if 'infostats_ove' in f.keys(): self.infostats_ove=f['infostats_ove'][()] if 'infostats_children_under3' in f.keys(): self.infostats_children_under3=f['infostats_children_under3'][()] self.infostats_children_under7=f['infostats_children_under7'][()] self.infostats_unempwagebasis=f['infostats_unempwagebasis'][()] self.infostats_unempwagebasis_acc=f['infostats_unempwagebasis_acc'][()] self.infostats_toe=f['infostats_toe'][()] if 'infostats_palkkatulo_eielakkeella' in f.keys(): self.infostats_palkkatulo_eielakkeella=f['infostats_palkkatulo_eielakkeella'][()] if 'infostats_tulot_netto' in f.keys(): self.infostats_tulot_netto=f['infostats_tulot_netto'][()] if 'infostats_poptulot_netto' in f.keys(): self.infostats_poptulot_netto=f['infostats_poptulot_netto'][()] if 'infostats_equivalent_income' in f.keys(): self.infostats_equivalent_income=f['infostats_equivalent_income'][()] if 'infostats_pop_wage' in f.keys(): self.infostats_pop_wage=f['infostats_pop_wage'][()] self.infostats_pop_pension=f['infostats_pop_pension'][()] if 'infostats_savings' in f.keys(): self.infostats_savings=f['infostats_savings'][()] self.sav_actions=f['sav_actions'][()] if 'infostats_alv' in f.keys(): self.infostats_alv=f['infostats_alv'][()] if n_pop is not None: self.n_pop=n_pop if 'params' in f.keys(): self.params=f['params'][()] else: self.params=None if print_pop: print('n_pop {}'.format(self.n_pop)) f.close() def scatter_density(self,x,y,label1='',label2=''): # Calculate the point density xy = np.vstack([x,y]) z = gaussian_kde(xy)(xy) # Sort the points by density, so that the densest points are plotted last #idx = z.argsort() #x, y, z = x[idx], y[idx], z[idx] fig,ax=plt.subplots() ax.scatter(x,y,c=z) ax.set_xlabel(label1) ax.set_ylabel(label2) #plt.legend() # plt.title('number of agents by pension level') plt.show() def plot_Vk(self,k,getV=None): obsV=np.zeros((self.n_time)) #obsV[-1]=self.poprewstate[-1,k] for t in range(self.n_time-2,-1,-1): obsV[t]=self.poprewstate[t+1,k]+self.gamma*obsV[t+1] rewerr=self.poprewstate[t+1,k]-self.pop_predrew[t+1,k] delta=obsV[t]-self.aveV[t+1,k] wage=self.infostats_pop_wage[t,k] old_wage=self.infostats_pop_wage[max(0,t-1),k] age=self.map_t_to_age(t) old_age=int(self.map_t_to_age(max(0,t-1))) emp=self.popempstate[t,k] predemp=self.popempstate[max(0,t-1),k] pen=self.infostats_pop_pension[t,k] predwage=self.env.wage_process_mean(old_wage,old_age,state=predemp) print(f'{age}: {obsV[t]:.4f} vs {self.aveV[t+1,k]:.4f} d {delta:.4f} re {rewerr:.6f} in state {emp} ({k},{wage:.2f},{pen:.2f}) ({predwage:.2f}) ({self.poprewstate[t+1,k]:.5f},{self.pop_predrew[t+1,k]:.5f})') err=obsV-self.aveV[t,k] obsV_error=
np.abs(obsV-self.aveV[t,k])
numpy.abs
import os import sys import random import math import re import time import numpy as np import cv2 import matplotlib import matplotlib.pyplot as plt from tqdm import tqdm from skimage import io import json from models.mask_rcnn.cell_dataset import CellsDataset from models.mask_rcnn.config import CellConfig from models.mask_rcnn import utils from models.mask_rcnn import model as modellib from models.mask_rcnn.model import log # TODO: Remove this and make a nicer file structure from models.unet.common import create_predicted_folders # Root directory of the project ROOT_DIR = os.getcwd() # Directory to load checkpoints from CHECKPOINT_DIR = os.path.join(ROOT_DIR, "checkpoints", "mask_rcnn") TENSORBOARD_DIR = os.path.join(ROOT_DIR, ".tensorboard", "mask_rcnn") class InferenceConfig(CellConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 def ensemble_mask_rcnn(test_ids, test_path, checkpoint_dir, augments): inference_config = InferenceConfig() # Create the model in inference mode model = modellib.MaskRCNN(mode="inference", config=inference_config, checkpoint_dir=checkpoint_dir, tensorboard_dir=TENSORBOARD_DIR) # Get path to saved weights # Either set a specific path or find last trained weights # model_path = os.path.join(ROOT_DIR, ".h5 file name here") model_path = model.find_last() # Load trained weights (fill in path to trained weights here) assert model_path != "", "Provide path to trained weights" print("Loading weights from ", model_path) model.load_weights(model_path, by_name=True) roi_class = [] create_predicted_folders(test_ids) dataset_test = CellsDataset() dataset_test.load_cells(test_ids) dataset_test.prepare() # Process all images for id in dataset_test.image_ids: img = dataset_test.load_image(id) # baseline detection detection = model.detect([img], verbose=1) baseline_masks = detection[0]["masks"] baseline_scores = detection[0]["scores"] # augments detection augment_masks = [] augment_scores = [] for augment in augments: if augment["name"] == "angle": width = img.shape[1] height = img.shape[0] width_big = width * 2 height_big = height * 2 img_big = cv2.resize(img, (width_big, height_big)) center=tuple(np.array(img_big.shape[1::-1])//2) rot_mat = cv2.getRotationMatrix2D(center, augment["angle"], 0.5) inv_rot_mat = cv2.invertAffineTransform(rot_mat) img_rot = cv2.warpAffine(img_big, rot_mat, img_big.shape[1::-1], flags=cv2.INTER_LINEAR) detection = model.detect([img_rot], verbose=1) masks = detection[0]["masks"] masks_small = [] for i in range(masks.shape[2]): masks[:,:,i] = cv2.warpAffine(masks[:,:,i], inv_rot_mat, masks.shape[1::-1], flags=cv2.INTER_NEAREST) masks_small.append(cv2.resize(masks[:,:,i], (width, height))) detection[0]["masks"] = np.stack(masks_small, axis=2) elif augment["name"] == "fliplr": img_flipped = np.fliplr(img) detection = model.detect([img_flipped], verbose=1) masks = detection[0]["masks"] for i in range(masks.shape[2]): masks[:,:,i] = np.fliplr(masks[:,:,i]) augment_masks.append(detection[0]["masks"]) augment_scores.append(detection[0]["scores"]) if len(augment_masks) > 0: augment_masks = np.concatenate(augment_masks, axis=2) augment_scores =
np.concatenate(augment_scores)
numpy.concatenate
''' Author: <NAME> Main_utils script to run training and evaluation of a residual network model on chest x-ray images ''' import os from tqdm import tqdm, trange import logging from scipy.stats import logistic import numpy as np import sklearn from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error as mse import csv from scipy.special import softmax from scipy.special import expit import time import cv2 import torch import torchvision import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader from .model import build_resnet256_6_2_1, build_resnet512_6_2_1 from .model import build_resnet1024_7_2_1, build_resnet2048_7_2_1 from .model_utils import CXRImageDataset, convert_to_onehot import eval_metrics def build_training_dataset(data_dir, img_size: int, dataset_metadata='../data/training.csv', random_degrees=[-20,20], random_translate=[0.1,0.1], label_key='edema_severity'): transform=torchvision.transforms.Compose([ torchvision.transforms.Lambda(lambda img: img.astype(np.int16)), torchvision.transforms.ToPILImage(), torchvision.transforms.RandomAffine(degrees=random_degrees, translate=random_translate), torchvision.transforms.CenterCrop(img_size), torchvision.transforms.Lambda( lambda img: np.array(img).astype(np.float32)), torchvision.transforms.Lambda( lambda img: img / img.max()) ]) training_dataset = CXRImageDataset(data_dir=data_dir, dataset_metadata=dataset_metadata, transform=transform, label_key=label_key) return training_dataset def build_evaluation_dataset(data_dir, img_size: int, dataset_metadata='../data/test.csv', label_key='edema_severity'): transform=torchvision.transforms.Compose([ torchvision.transforms.Lambda(lambda img: img.astype(np.int16)), torchvision.transforms.ToPILImage(), torchvision.transforms.CenterCrop(img_size), torchvision.transforms.Lambda( lambda img: np.array(img).astype(np.float32)), torchvision.transforms.Lambda( lambda img: img / img.max()) ]) evaluation_dataset = CXRImageDataset(data_dir=data_dir, dataset_metadata=dataset_metadata, transform=transform, label_key=label_key) return evaluation_dataset def build_model(model_name, checkpoint_path=None, output_channels=4): if checkpoint_path == None: if model_name == 'resnet256_6_2_1': model = build_resnet256_6_2_1(output_channels=output_channels) if model_name == 'resnet512_6_2_1': model = build_resnet512_6_2_1(output_channels=output_channels) if model_name == 'resnet1024_7_2_1': model = build_resnet1024_7_2_1(output_channels=output_channels) if model_name == 'resnet2048_7_2_1': model = build_resnet2048_7_2_1(output_channels=output_channels) else: if model_name == 'resnet256_6_2_1': model = build_resnet256_6_2_1(pretrained=True, pretrained_model_path=checkpoint_path, output_channels=output_channels) if model_name == 'resnet512_6_2_1': model = build_resnet512_6_2_1(pretrained=True, pretrained_model_path=checkpoint_path, output_channels=output_channels) if model_name == 'resnet1024_7_2_1': model = build_resnet1024_7_2_1(pretrained=True, pretrained_model_path=checkpoint_path, output_channels=output_channels) if model_name == 'resnet2048_7_2_1': model = build_resnet2048_7_2_1(pretrained=True, pretrained_model_path=checkpoint_path, output_channels=output_channels) return model class ModelManager: def __init__(self, model_name, img_size, output_channels=4): self.model_name = model_name self.output_channels = output_channels self.model = build_model(self.model_name, output_channels=self.output_channels) self.img_size = img_size self.logger = logging.getLogger(__name__) def train(self, device, args): # data_dir, dataset_metadata, save_dir, # batch_size=64, num_train_epochs=300, # device='cuda', init_lr=5e-4, logging_steps=50, # label_key='edema_severity', loss_method='CrossEntropyLoss'): ''' Create a logger for logging model training ''' logger = logging.getLogger(__name__) ''' Create an instance of traning data loader ''' print('***** Instantiate a data loader *****') dataset = build_training_dataset(data_dir=args.data_dir, img_size=self.img_size, dataset_metadata=args.dataset_metadata, label_key=args.label_key) data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=8, pin_memory=True) print(f'Total number of training images: {len(dataset)}') ''' Create an instance of loss ''' print('***** Instantiate the training loss *****') if args.loss_method == 'CrossEntropyLoss': loss_criterion = CrossEntropyLoss().to(device) elif args.loss_method == 'BCEWithLogitsLoss': loss_criterion = BCEWithLogitsLoss().to(device) ''' Create an instance of optimizer and learning rate scheduler ''' print('***** Instantiate an optimizer *****') optimizer = optim.Adam(self.model.parameters(), lr=args.init_lr) ''' Train the model ''' print('***** Train the model *****') self.model = self.model.to(device) self.model.train() train_iterator = trange(int(args.num_train_epochs), desc="Epoch") for epoch in train_iterator: start_time = time.time() epoch_loss = 0 epoch_iterator = tqdm(data_loader, desc="Iteration") for i, batch in enumerate(epoch_iterator, 0): # Parse the batch images, labels, image_ids = batch images = images.to(device, non_blocking=True) labels = labels.to(device, non_blocking=True) # Zero out the parameter gradients optimizer.zero_grad() # Forward + backward + optimize outputs = self.model(images) pred_logits = outputs[-1] # Note that the logits are used here if args.loss_method == 'BCEWithLogitsLoss': labels = torch.reshape(labels, pred_logits.size()) # pred_logits[labels<0] = 0 # labels[labels<0] = 0.5 loss = loss_criterion(pred_logits, labels) loss.backward() optimizer.step() # Record training statistics epoch_loss += loss.item() if not loss.item()>0: logger.info(f"loss: {loss.item()}") logger.info(f"pred_logits: {pred_logits}") logger.info(f"labels: {labels}") self.model.save_pretrained(args.save_dir, epoch=epoch + 1) interval = time.time() - start_time print(f'Epoch {epoch+1} finished! Epoch loss: {epoch_loss:.5f}') logger.info(f" Epoch {epoch+1} loss = {epoch_loss:.5f}") logger.info(f" Epoch {epoch+1} took {interval:.3f} s") return def eval(self, device, args, checkpoint_path): ''' Load the checkpoint (essentially create a "different" model) ''' self.model = build_model(model_name=self.model_name, output_channels=self.output_channels, checkpoint_path=checkpoint_path) ''' Create an instance of evaluation data loader ''' print('***** Instantiate a data loader *****') dataset = build_evaluation_dataset(data_dir=args.data_dir, img_size=self.img_size, dataset_metadata=args.dataset_metadata, label_key=args.label_key) data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=8, pin_memory=True) print(f'Total number of evaluation images: {len(dataset)}') ''' Evaluate the model ''' print('***** Evaluate the model *****') self.model = self.model.to(device) self.model.eval() # For storing labels and model predictions all_preds_prob = [] all_preds_logit = [] all_labels = [] epoch_iterator = tqdm(data_loader, desc="Iteration") for i, batch in enumerate(epoch_iterator, 0): # Parse the batch images, labels, image_ids = batch images = images.to(device, non_blocking=True) labels = labels.to(device, non_blocking=True) with torch.no_grad(): outputs = self.model(images) preds_prob = outputs[0] preds_logit = outputs[-1] if not args.label_key == 'edema_severity': labels = torch.reshape(labels, preds_logit.size()) preds_prob = preds_prob.detach().cpu().numpy() preds_logit = preds_logit.detach().cpu().numpy() labels = labels.detach().cpu().numpy() all_preds_prob += \ [preds_prob[j] for j in range(len(labels))] all_preds_logit += \ [preds_logit[j] for j in range(len(labels))] all_labels += \ [labels[j] for j in range(len(labels))] all_preds_class = np.argmax(all_preds_prob, axis=1) inference_results = {'all_preds_prob': all_preds_prob, 'all_preds_class': all_preds_class, 'all_preds_logit': all_preds_logit, 'all_labels': all_labels} eval_results = {} if args.label_key == 'edema_severity': all_onehot_labels = [convert_to_onehot(label) for label in all_labels] ordinal_aucs = eval_metrics.compute_ordinal_auc(all_onehot_labels, all_preds_prob) eval_results['ordinal_aucs'] = ordinal_aucs ordinal_acc_f1 = eval_metrics.compute_ordinal_acc_f1_metrics(all_onehot_labels, all_preds_prob) eval_results.update(ordinal_acc_f1) eval_results['mse'] = eval_metrics.compute_mse(all_labels, all_preds_prob) results_acc_f1, _, _ = eval_metrics.compute_acc_f1_metrics(all_labels, all_preds_prob) eval_results.update(results_acc_f1) else: all_preds_prob = [1 / (1 +
np.exp(-logit)
numpy.exp
# =========================================================================== # This module is created based on the code from 2 libraries: Lasagne and keras # Original work Copyright (c) 2014-2015 keras contributors # Original work Copyright (c) 2014-2015 Lasagne contributors # Modified work Copyright 2016-2017 TrungNT # =========================================================================== from __future__ import division, absolute_import, print_function import numpy as np import scipy as sp from ..config import floatX # =========================================================================== # RandomStates # =========================================================================== _MAGIC_SEED = 12082518 _SEED_GENERATOR = np.random.RandomState(_MAGIC_SEED) def set_magic_seed(seed): global _MAGIC_SEED, _SEED_GENERATOR _MAGIC_SEED = seed _SEED_GENERATOR = np.random.RandomState(_MAGIC_SEED) def get_magic_seed(): return _MAGIC_SEED def get_random_magic_seed(): return _SEED_GENERATOR.randint(10e6) def get_random_generator(): return _SEED_GENERATOR # =========================================================================== # Main # =========================================================================== def is_ndarray(x): return isinstance(x, np.ndarray) def np_masked_output(X, X_mask): ''' Example ------- X: [[1,2,3,0,0], [4,5,0,0,0]] X_mask: [[1,2,3,0,0], [4,5,0,0,0]] return: [[1,2,3],[4,5]] ''' res = [] for x, mask in zip(X, X_mask): x = x[np.nonzero(mask)] res.append(x.tolist()) return res def np_one_hot(y, n_classes=None): '''Convert class vector (integers from 0 to nb_classes) to binary class matrix, for use with categorical_crossentropy ''' y = np.asarray(y, dtype='int32') if not n_classes: n_classes = np.max(y) + 1 Y = np.zeros((len(y), n_classes)) for i in range(len(y)): Y[i, y[i]] = 1. return Y def np_split_chunks(a, maxlen, overlap): ''' Example ------- >>> print(split_chunks(np.array([1, 2, 3, 4, 5, 6, 7, 8]), 5, 1)) >>> [[1, 2, 3, 4, 5], [4, 5, 6, 7, 8]] ''' chunks = [] nchunks = int((max(a.shape) - maxlen) / (maxlen - overlap)) + 1 for i in xrange(nchunks): start = i * (maxlen - overlap) chunks.append(a[start: start + maxlen]) # ====== Some spare frames at the end ====== # wasted = max(a.shape) - start - maxlen if wasted >= (maxlen - overlap) / 2: chunks.append(a[-maxlen:]) return chunks def np_ordered_set(seq): seen = {} result = [] for marker in seq: if marker in seen: continue seen[marker] = 1 result.append(marker) return np.asarray(result) def np_shrink_labels(labels, maxdist=1): ''' Example ------- >>> print(shrink_labels(np.array([0, 0, 1, 0, 1, 1, 0, 0, 4, 5, 4, 6, 6, 0, 0]), 1)) >>> [0, 1, 0, 1, 0, 4, 5, 4, 6, 0] >>> print(shrink_labels(np.array([0, 0, 1, 0, 1, 1, 0, 0, 4, 5, 4, 6, 6, 0, 0]), 2)) >>> [0, 1, 0, 4, 6, 0] Notes ----- Different from ordered_set, the resulted array still contain duplicate if they a far away each other. ''' maxdist = max(1, maxdist) out = [] l = len(labels) i = 0 while i < l: out.append(labels[i]) last_val = labels[i] dist = min(maxdist, l - i - 1) j = 1 while (i + j < l and labels[i + j] == last_val) or (j < dist): j += 1 i += j return out # =========================================================================== # Special random algorithm for weights initialization # =========================================================================== def np_normal(shape, mean=0., std=1.): return np.cast[floatX()]( get_random_generator().normal(mean, std, size=shape)) def np_uniform(shape, range=0.05): if isinstance(range, (int, float, long)): range = (-abs(range), abs(range)) return np.cast[floatX()]( get_random_generator().uniform(low=range[0], high=range[1], size=shape)) def np_constant(shape, val=0.): return np.cast[floatX()](np.zeros(shape) + val) def np_symmetric_uniform(shape, range=0.01, std=None, mean=0.0): if std is not None: a = mean - np.sqrt(3) * std b = mean + np.sqrt(3) * std else: try: a, b = range # range is a tuple except TypeError: a, b = -range, range # range is a number return np.cast[floatX()]( get_random_generator().uniform(low=a, high=b, size=shape)) def np_glorot_uniform(shape, gain=1.0, c01b=False): orig_shape = shape if c01b: if len(shape) != 4: raise RuntimeError( "If c01b is True, only shapes of length 4 are accepted") n1, n2 = shape[0], shape[3] receptive_field_size = shape[1] * shape[2] else: if len(shape) < 2: shape = (1,) + tuple(shape) n1, n2 = shape[:2] receptive_field_size = np.prod(shape[2:]) std = gain * np.sqrt(2.0 / ((n1 + n2) * receptive_field_size)) a = 0.0 - np.sqrt(3) * std b = 0.0 + np.sqrt(3) * std return np.cast[floatX()]( get_random_generator().uniform(low=a, high=b, size=orig_shape)) def np_glorot_normal(shape, gain=1.0, c01b=False): orig_shape = shape if c01b: if len(shape) != 4: raise RuntimeError( "If c01b is True, only shapes of length 4 are accepted") n1, n2 = shape[0], shape[3] receptive_field_size = shape[1] * shape[2] else: if len(shape) < 2: shape = (1,) + tuple(shape) n1, n2 = shape[:2] receptive_field_size = np.prod(shape[2:]) std = gain * np.sqrt(2.0 / ((n1 + n2) * receptive_field_size)) return np.cast[floatX()]( get_random_generator().normal(0.0, std, size=orig_shape)) def np_he_normal(shape, gain=1.0, c01b=False): if gain == 'relu': gain = np.sqrt(2) if c01b: if len(shape) != 4: raise RuntimeError( "If c01b is True, only shapes of length 4 are accepted") fan_in = np.prod(shape[:3]) else: if len(shape) <= 2: fan_in = shape[0] elif len(shape) > 2: fan_in = np.prod(shape[1:]) std = gain * np.sqrt(1.0 / fan_in) return np.cast[floatX()]( get_random_generator().normal(0.0, std, size=shape)) def np_he_uniform(shape, gain=1.0, c01b=False): if gain == 'relu': gain = np.sqrt(2) if c01b: if len(shape) != 4: raise RuntimeError( "If c01b is True, only shapes of length 4 are accepted") fan_in = np.prod(shape[:3]) else: if len(shape) <= 2: fan_in = shape[0] elif len(shape) > 2: fan_in = np.prod(shape[1:]) std = gain * np.sqrt(1.0 / fan_in) a = 0.0 - np.sqrt(3) * std b = 0.0 + np.sqrt(3) * std return np.cast[floatX()]( get_random_generator().uniform(low=a, high=b, size=shape)) def np_orthogonal(shape, gain=1.0): if gain == 'relu': gain =
np.sqrt(2)
numpy.sqrt
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import pickle import random import logging import argparse import multiprocessing import numpy as np import poptorch import popdist import popdist.poptorch import torch import torch.nn as nn import horovod.torch as hvd import torch.nn.utils.rnn as rnn_utils from torch import float16, float32 from torch.utils.data import Dataset, IterableDataset from poptorch.optim import LAMB, AdamW, Adam from tfrecord.reader import tfrecord_loader from transformers import (get_constant_schedule, get_cosine_schedule_with_warmup, get_linear_schedule_with_warmup) TFRECORD_KEYS = ['input_ids'] # Torch Model Keys def str_to_bool(value): if isinstance(value, bool) or value is None: return value if value.lower() in {'false', 'f', '0', 'no', 'n'}: return False elif value.lower() in {'true', 't', '1', 'yes', 'y'}: return True raise argparse.ArgumentTypeError(f'{value} is not a valid boolean value') def expand_glob_files(files): result = [] for filepath in files: expanded = glob.glob(filepath) if len(expanded) < 1: raise FileNotFoundError(f"Could not find file: {filepath}") result += expanded return result class TFRecordPretrainingDataset(IterableDataset): """ Preprocessed GPT2 pretraining dataset read from TFRecord files. This Dataset is compatible with multiprocessing. Each Dataloader worker will only read a shard of each TFRecord file, which will speed up the Dataloader and ensure no worker loads the same data as another worker. You are strongly advised to use a large number (e.g. 64) of dataloader workers because firstly, more workers could support high throughput, and secondly, more workers could give us more stochasticity and thus better convergence. Parameters ---------- files: List of TFRecord files containing the preprocessed pretraining data shuffle: Shuffle the data? """ def __init__(self, input_files, shuffle=True): self.files = expand_glob_files(input_files) self.shuffle = shuffle self.reset() def reset(self): self.file_index = 0 self.reader = iter([]) def samples_per_file(self, filename): index_filename = filename.replace(".tfrecord", ".index") count = sum(1 for _ in open(index_filename)) return count def __len__(self): if getattr(self, "_len", None) is None: pool = multiprocessing.Pool( min(multiprocessing.cpu_count(), len(self.files))) num_samples = pool.map(self.samples_per_file, self.files) pool.close() pool.join() self._len = sum(num_samples) return self._len def __iter__(self): worker_info = torch.utils.data.get_worker_info() if worker_info is not None: if popdist.isPopdistEnvSet(): self.worker_id = worker_info.id + worker_info.num_workers * popdist.getInstanceIndex() self.shard = worker_info.id + worker_info.num_workers * popdist.getInstanceIndex(), worker_info.num_workers * popdist.getNumInstances() else: self.worker_id = worker_info.id self.shard = worker_info.id, worker_info.num_workers else: self.shard = None self.reset() if self.shuffle: np.random.shuffle(self.files) return self def __next__(self): try: datum = next(self.reader) except StopIteration: if self.file_index >= len(self.files): raise StopIteration self.reader = tfrecord_loader(self.files[self.file_index], self.files[self.file_index].replace(".tfrecord", ".index"), list(TFRECORD_KEYS), self.shard) self.file_index += 1 datum = next(self.reader) input_ids = torch.tensor(datum[TFRECORD_KEYS[0]], dtype=torch.long) return input_ids class MyDataset(Dataset): def __init__(self, input_list, max_len): self.input_list = input_list self.max_len = max_len def __getitem__(self, index): input_ids = self.input_list[index] if len(input_ids) > self.max_len: input_ids = input_ids[:self.max_len] input_ids = torch.tensor(input_ids, dtype=torch.long) return input_ids def __len__(self): return len(self.input_list) def load_dataset(logger, args, vocab_size): """ load train and valid dataset """ logger("loading training dataset and validating dataset") train_path = args.train_path if train_path == 'generated': num_instances = args.popdist_size if args.use_popdist else 1 generated = np.random.randint(low=1, high=vocab_size, size=(4 * num_instances * args.replication_factor * args.batches_per_step * args.batch_size * args.gradient_accumulation, args.max_len + 1)) train_dataset = MyDataset(generated, args.max_len + 1) val_dataset = MyDataset(generated, args.max_len + 1) elif 'tfrecord' in args.train_path: train_dataset = TFRecordPretrainingDataset(args.tfrecord_path[:]) val_dataset = TFRecordPretrainingDataset(args.tfrecord_path[-1:]) elif 'dynamic' in args.train_path: from data.indexed_dataset import make_indexed_dataset, GPTDataset data_prefix = args.data_prefix indexed_dataset = make_indexed_dataset(data_prefix) total_num_of_documents = indexed_dataset.sizes.shape[0] documents = np.arange(start=0, stop=total_num_of_documents, step=1, dtype=np.int32) train_dataset = GPTDataset(args, data_prefix, documents[:int(total_num_of_documents*0.997)], indexed_dataset) val_dataset = GPTDataset(args, data_prefix, documents[int(total_num_of_documents*0.997):], indexed_dataset, num_epochs=1) else: try: with open(train_path, "rb") as f: input_list = pickle.load(f) samples = [] for article in input_list: start_point = 0 while start_point < len(article) - args.max_len: samples.append(article[start_point: start_point + args.max_len]) start_point += args.stride if start_point < len(article) and len(article) >= (args.max_len // 2): samples.append(article[len(article) - args.max_len:]) random.shuffle(samples) # split train and valid dataset val_num = args.val_num input_list_train = samples[val_num:] input_list_val = samples[:val_num] train_dataset = MyDataset(input_list_train, args.max_len) val_dataset = MyDataset(input_list_val, args.max_len) except: raise RuntimeError(f"Unknown dataset '{train_path}', you can try \'generated\'.") return train_dataset, val_dataset class GeneratedPretrainingDataset(Dataset): def __init__(self, vocab_size, sequence_length, seed=42): self.vocab_size = vocab_size self.sequence_length = sequence_length self.seed = seed self.data = self.generate_data() def generate_data(self): with torch.random.fork_rng(): torch.manual_seed(self.seed) input_ids = torch.randint(0, self.vocab_size, [self.sequence_length],dtype=torch.long) label = input_ids return input_ids, label def __len__(self): return self.length def __getitem__(self, __): return self.data def get_generated_datum(config, vocab_size): samples_per_step = config.replication_factor * config.gradient_accumulation * config.batch_size * config.batches_per_step result = [] dataset = GeneratedPretrainingDataset(vocab_size, config.max_len) data = (dataset[i] for i in range(samples_per_step)) for batches in zip(*data): result.append(torch.stack(batches)) return result def calculate_acc(logit, labels, ignore_index=-100, reduction='mean'): mask = (labels != ignore_index).float() non_pad_mask = mask.sum(-1).unsqueeze(-1) if reduction == 'sum': return (logit.argmax(dim=-1) == labels).float().mul(mask).sum(-1) return (logit.argmax(dim=-1) == labels).float().mul(mask).div(non_pad_mask).sum(-1).mean() def collate_fn(batch): input_ids = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=0) labels = rnn_utils.pad_sequence(batch, batch_first=True, padding_value=-100) return input_ids, labels class _WorkerInit: def __init__(self, seed): self.seed = seed def __call__(self, worker_id): np.random.seed((self.seed + worker_id) %
np.iinfo(np.uint32)
numpy.iinfo
import pandas as pd import numpy as np import sqlite3 def create_df(): in1 = np.linspace(19.27, 19.35, 60) in2 = np.linspace(19.35, 19.51, 240) in3 = np.linspace(19.51, 19.98, 600) in4 =
np.linspace(19.98, 21.24, 1200)
numpy.linspace
# [setup] import math import os import cv2 import magnum as mn import numpy as np import habitat_sim import habitat_sim.utils.common as ut dir_path = os.path.dirname(os.path.realpath(__file__)) data_path = os.path.join(dir_path, "../../data") output_path = os.path.join(dir_path, "rigid_object_tutorial_output/") def make_video_cv2(observations, prefix="", open_vid=True, multi_obs=False): videodims = (720, 540) fourcc = cv2.VideoWriter_fourcc("m", "p", "4", "v") video = cv2.VideoWriter(output_path + prefix + ".mp4", fourcc, 60, videodims) thumb_size = (int(videodims[0] / 5), int(videodims[1] / 5)) outline_frame = np.ones((thumb_size[1] + 2, thumb_size[0] + 2, 3), np.uint8) * 150 for ob in observations: # If in RGB/RGBA format, change first to RGB and change to BGR bgr_im_1st_person = ob["rgba_camera_1stperson"][..., 0:3][..., ::-1] if multi_obs: # embed the 1st person RBG frame into the 3rd person frame bgr_im_3rd_person = ob["rgba_camera_3rdperson"][..., 0:3][..., ::-1] resized_1st_person_rgb = cv2.resize( bgr_im_1st_person, thumb_size, interpolation=cv2.INTER_AREA ) x_offset = 50 y_offset_rgb = 50 bgr_im_3rd_person[ y_offset_rgb - 1 : y_offset_rgb + outline_frame.shape[0] - 1, x_offset - 1 : x_offset + outline_frame.shape[1] - 1, ] = outline_frame bgr_im_3rd_person[ y_offset_rgb : y_offset_rgb + resized_1st_person_rgb.shape[0], x_offset : x_offset + resized_1st_person_rgb.shape[1], ] = resized_1st_person_rgb # embed the 1st person DEPTH frame into the 3rd person frame # manually normalize depth into [0, 1] so that images are always consistent d_im = np.clip(ob["depth_camera_1stperson"], 0, 10) d_im /= 10.0 bgr_d_im = cv2.cvtColor((d_im * 255).astype(np.uint8), cv2.COLOR_GRAY2BGR) resized_1st_person_depth = cv2.resize( bgr_d_im, thumb_size, interpolation=cv2.INTER_AREA ) y_offset_d = y_offset_rgb + 10 + thumb_size[1] bgr_im_3rd_person[ y_offset_d - 1 : y_offset_d + outline_frame.shape[0] - 1, x_offset - 1 : x_offset + outline_frame.shape[1] - 1, ] = outline_frame bgr_im_3rd_person[ y_offset_d : y_offset_d + resized_1st_person_depth.shape[0], x_offset : x_offset + resized_1st_person_depth.shape[1], ] = resized_1st_person_depth # write the video frame video.write(bgr_im_3rd_person) else: # write the 1st person observation to video video.write(bgr_im_1st_person) video.release() if open_vid: os.system("open " + output_path + prefix + ".mp4") def remove_all_objects(sim): for id in sim.get_existing_object_ids(): sim.remove_object(id) def place_agent(sim): # place our agent in the scene agent_state = habitat_sim.AgentState() agent_state.position = [-0.15, -0.7, 1.0] # agent_state.position = [-0.15, -1.6, 1.0] agent_state.rotation = np.quaternion(-0.83147, 0, 0.55557, 0) agent = sim.initialize_agent(0, agent_state) return agent.scene_node.transformation_matrix() def make_configuration(): # simulator configuration backend_cfg = habitat_sim.SimulatorConfiguration() backend_cfg.scene.id = "data/scene_datasets/habitat-test-scenes/apartment_1.glb" backend_cfg.enable_physics = True # sensor configurations # Note: all sensors must have the same resolution # setup 2 rgb sensors for 1st and 3rd person views camera_resolution = [540, 720] sensors = { "rgba_camera_1stperson": { "sensor_type": habitat_sim.SensorType.COLOR, "resolution": camera_resolution, "position": [0.0, 0.6, 0.0], "orientation": [0.0, 0.0, 0.0], }, "depth_camera_1stperson": { "sensor_type": habitat_sim.SensorType.DEPTH, "resolution": camera_resolution, "position": [0.0, 0.6, 0.0], "orientation": [0.0, 0.0, 0.0], }, "rgba_camera_3rdperson": { "sensor_type": habitat_sim.SensorType.COLOR, "resolution": camera_resolution, "position": [0.0, 1.0, 0.3], "orientation": [-45, 0.0, 0.0], }, } sensor_specs = [] for sensor_uuid, sensor_params in sensors.items(): sensor_spec = habitat_sim.SensorSpec() sensor_spec.uuid = sensor_uuid sensor_spec.sensor_type = sensor_params["sensor_type"] sensor_spec.resolution = sensor_params["resolution"] sensor_spec.position = sensor_params["position"] sensor_spec.orientation = sensor_params["orientation"] sensor_specs.append(sensor_spec) # agent configuration agent_cfg = habitat_sim.agent.AgentConfiguration() agent_cfg.sensor_specifications = sensor_specs return habitat_sim.Configuration(backend_cfg, [agent_cfg]) def simulate(sim, dt=1.0, get_frames=True): # simulate dt seconds at 60Hz to the nearest fixed timestep print("Simulating " + str(dt) + " world seconds.") observations = [] start_time = sim.get_world_time() while sim.get_world_time() < start_time + dt: sim.step_physics(1.0 / 60.0) if get_frames: observations.append(sim.get_sensor_observations()) return observations # [/setup] # This is wrapped such that it can be added to a unit test def main(make_video=True, show_video=True): if make_video: if not os.path.exists(output_path): os.mkdir(output_path) # [initialize] # create the simulator cfg = make_configuration() sim = habitat_sim.Simulator(cfg) agent_transform = place_agent(sim) # [/initialize] # [basics] # load some object templates from configuration files sphere_template_id = sim.load_object_configs( str(os.path.join(data_path, "test_assets/objects/sphere")) )[0] # add an object to the scene id_1 = sim.add_object(sphere_template_id) sim.set_translation(np.array([2.50, 0, 0.2]), id_1) # simulate observations = simulate(sim, dt=1.5, get_frames=make_video) if make_video: make_video_cv2(observations, prefix="sim_basics", open_vid=show_video) # [/basics] remove_all_objects(sim) # [dynamic_control] observations = [] # search for an object template by key sub-string cheezit_template_handle = sim.get_template_handles("data/objects/cheezit")[0] box_positions = [ np.array([2.39, -0.37, 0]), np.array([2.39, -0.64, 0]), np.array([2.39, -0.91, 0]), np.array([2.39, -0.64, -0.22]), np.array([2.39, -0.64, 0.22]), ] box_orientation = mn.Quaternion.rotation( mn.Rad(math.pi / 2.0), np.array([-1.0, 0, 0]) ) # instance and place the boxes box_ids = [] for b in range(5): box_ids.append(sim.add_object_by_handle(cheezit_template_handle)) sim.set_translation(box_positions[b], box_ids[b]) sim.set_rotation(box_orientation, box_ids[b]) # get the object's initialization attributes (all boxes initialized with same mass) object_init_template = sim.get_object_initialization_template(box_ids[0]) # anti-gravity force f=m(-g) anti_grav_force = -1.0 * sim.get_gravity() * object_init_template.get_mass() # throw a sphere at the boxes from the agent position sphere_template = sim.get_object_template(sphere_template_id) sphere_template.set_scale(np.array([0.5, 0.5, 0.5])) sphere_id = sim.add_object(sphere_template_id) sim.set_translation( sim.agents[0].get_state().position + np.array([0, 1.0, 0]), sphere_id ) # get the vector from the sphere to a box target_direction = sim.get_translation(box_ids[0]) - sim.get_translation(sphere_id) # apply an initial velocity for one step sim.set_linear_velocity(target_direction * 5, sphere_id) sim.set_angular_velocity(np.array([0, -1.0, 0]), sphere_id) start_time = sim.get_world_time() dt = 3.0 while sim.get_world_time() < start_time + dt: # set forces/torques before stepping the world for box_id in box_ids: sim.apply_force(anti_grav_force, np.array([0, 0.0, 0]), box_id) sim.apply_torque(np.array([0, 0.01, 0]), box_id) sim.step_physics(1.0 / 60.0) observations.append(sim.get_sensor_observations()) if make_video: make_video_cv2(observations, prefix="dynamic_control", open_vid=show_video) # [/dynamic_control] remove_all_objects(sim) # [kinematic_interactions] chefcan_template_handle = sim.get_template_handles("data/objects/chefcan")[0] id_1 = sim.add_object_by_handle(chefcan_template_handle) sim.set_translation(np.array([2.4, -0.64, 0]), id_1) # set one object to kinematic sim.set_object_motion_type(habitat_sim.physics.MotionType.KINEMATIC, id_1) # drop some dynamic objects id_2 = sim.add_object_by_handle(chefcan_template_handle) sim.set_translation(np.array([2.4, -0.64, 0.28]), id_2) id_3 = sim.add_object_by_handle(chefcan_template_handle) sim.set_translation(np.array([2.4, -0.64, -0.28]), id_3) id_4 = sim.add_object_by_handle(chefcan_template_handle) sim.set_translation(np.array([2.4, -0.3, 0]), id_4) # simulate observations = simulate(sim, dt=1.5, get_frames=True) if make_video: make_video_cv2( observations, prefix="kinematic_interactions", open_vid=show_video ) # [/kinematic_interactions] remove_all_objects(sim) # [kinematic_update] observations = [] clamp_template_handle = sim.get_template_handles("data/objects/largeclamp")[0] id_1 = sim.add_object_by_handle(clamp_template_handle) sim.set_object_motion_type(habitat_sim.physics.MotionType.KINEMATIC, id_1) sim.set_translation(np.array([0.8, 0, 0.5]), id_1) start_time = sim.get_world_time() dt = 1.0 while sim.get_world_time() < start_time + dt: # manually control the object's kinematic state sim.set_translation(sim.get_translation(id_1) + np.array([0, 0, 0.01]), id_1) sim.set_rotation( mn.Quaternion.rotation(mn.Rad(0.05), np.array([-1.0, 0, 0])) * sim.get_rotation(id_1), id_1, ) sim.step_physics(1.0 / 60.0) observations.append(sim.get_sensor_observations()) if make_video: make_video_cv2(observations, prefix="kinematic_update", open_vid=show_video) # [/kinematic_update] # [velocity_control] # get object VelocityControl structure and setup control vel_control = sim.get_object_velocity_control(id_1) vel_control.linear_velocity = np.array([0, 0, -1.0]) vel_control.angular_velocity = np.array([4.0, 0, 0]) vel_control.controlling_lin_vel = True vel_control.controlling_ang_vel = True observations = simulate(sim, dt=1.0, get_frames=True) # reverse linear direction vel_control.linear_velocity = np.array([0, 0, 1.0]) observations += simulate(sim, dt=1.0, get_frames=True) make_video_cv2(observations, prefix="velocity_control", open_vid=True) # [/velocity_control] # [local_velocity_control] vel_control.linear_velocity =
np.array([0, 0, 2.3])
numpy.array
import scipy.io as sio import os import numpy as np import pickle def readMat(filename, folder, mode): filename = os.path.join(os.getcwd(), os.path.join(folder, filename)) print(filename) f = sio.loadmat(filename) # import h5py # with h5py.File(filename, 'r') as f: # # items = f['data'] # print(list(items.keys())) # f = f[mode[:2]][0] f = f['data'][0] R = [] t = [] x1_list = [] x2_list = [] flag = [] idx1 = [] idx2 = [] for item in f: R.append(item['T'][0:3,0:3]) t.append(item['T'][0:3,3]) # x1 = item['x1'] # x1 = x1/10 x1_list.append(item['x1']) x2_list.append(item['x2']) fl = np.array(item['flag']) flag.append(fl.reshape(fl.shape[0])) idx1.append(item['idx1']) idx2.append(item['idx2']) data = {} data['R'] = R data['t'] = t data['x1'] = x1_list data['x2'] = x2_list data['flag'] = flag data['idx1'] = idx1 data['idx2'] = idx2 return data def createFlags(x1, x2, T): ones = np.ones((x1.shape[0], 1)) flag = ones.reshape(x1.shape[0]) error = 0.1 x1_h = np.concatenate([x1, ones], axis=1) err = np.matmul(T, np.transpose(x1_h)) err = x2 - np.transpose(err[:3]) err = np.linalg.norm(err, axis=1) flag[err > error] = 0 print('Number of Inliers = {}\tPercentage = {}'.format(np.sum(flag),
np.sum(flag)
numpy.sum
#!/usr/bin/env python u""" read_cryosat_L2.py Written by <NAME> (05/2021) Reads CryoSat Level-2 data products from baselines A, B and C Reads CryoSat Level-2 netCDF4 data products from baseline D Supported CryoSat Modes: LRM, SAR, SARin, FDM, SID, GDR INPUTS: full_filename: full path of CryoSat .DBL or .nc file OUTPUTS: Data_1Hz: Time and Orbit Parameters Corrections: Elevation Corrections and Flags Data_20Hz: Geolocation and Elevation Measurements with Quality Parameters METADATA: MPH, SPH and DSD Header data PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html UPDATE HISTORY: Updated 05/2021: use raw binary string prefixes (rb) for regular expressions Updated 02/2021: replaced numpy bool to prevent deprecation warning Updated 06/2020: patch error in CryoSat-2 GDR pointer variables using the 1Hz mapping variable ind_meas_1hz_20_ku to remap the index Updated 02/2020: tilde-expansion of cryosat-2 files before opening add scale factors function for converting packed units in binary files convert from hard to soft tabulation Updated 11/2019: empty placeholder dictionary for baseline D DSD headers Updated 09/2019: added netCDF4 read function for baseline D will output with same variable names as the binary read functions output 20Hz data as masked arrays for all baselines Updated 08/2019: generalize regular expression patterns in read_DSD function Updated 10/2018: updated header read functions for python3 Updated 11/2016: added Abs_Orbit and Ascending_flag to Data_1Hz outputs Abs_Orbit should be same as in read_cryosat_ground_tracks.py Ascending_flag can use in surface regression fits (McMillan, 2014) Updated 05/2016: using __future__ print and division functions Written 03/2016 """ from __future__ import print_function from __future__ import division import os import re import netCDF4 import numpy as np #-- PURPOSE: Initiate L2 MDS variables for CryoSat Baselines A and B def cryosat_baseline_AB(fid,record_size,n_records): #-- CryoSat-2 1 Hz data fields (Location Group) #-- Time and Orbit Parameters plus Measurement Mode Data_1Hz = {} #-- Time: day part Data_1Hz['Day'] = np.zeros((n_records),dtype=np.int32) #-- Time: second part Data_1Hz['Second'] = np.zeros((n_records),dtype=np.int32) #-- Time: microsecond part Data_1Hz['Micsec'] = np.zeros((n_records),dtype=np.int32) #-- SIRAL mode Data_1Hz['Siral_mode'] = np.zeros((n_records),dtype=np.uint64) #-- Lat_1Hz: packed units (0.1 micro-degree, 1e-7 degrees) Data_1Hz['Lat_1Hz'] = np.zeros((n_records),dtype=np.int32) #-- Lon_1Hz: packed units (0.1 micro-degree, 1e-7 degrees) Data_1Hz['Lon_1Hz'] = np.zeros((n_records),dtype=np.int32) #-- Alt_1Hz: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Data_1Hz['Alt_1Hz'] = np.zeros((n_records),dtype=np.int32) #-- Mispointing: packed units (millidegrees, 1e-3 degrees) Data_1Hz['Mispointing'] = np.zeros((n_records),dtype=np.int16) #-- Number of valid records in the block of twenty that contain data #-- Last few records of the last block of a dataset may be blank blocks #-- inserted to bring the file up to a multiple of twenty. Data_1Hz['N_valid'] = np.zeros((n_records),dtype=np.int16) #-- CryoSat-2 geophysical corrections (External Corrections Group) Corrections = {} #-- Dry Tropospheric Correction packed units (mm, 1e-3 m) Corrections['dryTrop'] = np.zeros((n_records),dtype=np.int16) #-- Wet Tropospheric Correction packed units (mm, 1e-3 m) Corrections['wetTrop'] = np.zeros((n_records),dtype=np.int16) #-- Inverse Barometric Correction packed units (mm, 1e-3 m) Corrections['InvBar'] = np.zeros((n_records),dtype=np.int16) #-- Dynamic Atmosphere Correction packed units (mm, 1e-3 m) Corrections['DAC'] = np.zeros((n_records),dtype=np.int16) #-- Ionospheric Correction packed units (mm, 1e-3 m) Corrections['Iono'] = np.zeros((n_records),dtype=np.int16) #-- Sea State Bias Correction packed units (mm, 1e-3 m) Corrections['SSB'] = np.zeros((n_records),dtype=np.int16) #-- Ocean tide Correction packed units (mm, 1e-3 m) Corrections['ocTideElv'] = np.zeros((n_records),dtype=np.int16) #-- Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) Corrections['lpeTideElv'] = np.zeros((n_records),dtype=np.int16) #-- Ocean loading tide Correction packed units (mm, 1e-3 m) Corrections['olTideElv'] = np.zeros((n_records),dtype=np.int16) #-- Solid Earth tide Correction packed units (mm, 1e-3 m) Corrections['seTideElv'] = np.zeros((n_records),dtype=np.int16) #-- Geocentric Polar tide Correction packed units (mm, 1e-3 m) Corrections['gpTideElv'] = np.zeros((n_records),dtype=np.int16) Corrections['Spare1'] = np.zeros((n_records),dtype=np.int16) #-- Surface Type: Packed in groups of three bits for each of the 20 records Corrections['Surf_type'] = np.zeros((n_records),dtype=np.uint64) #-- Mean Sea Surface or Geoid packed units (mm, 1e-3 m) Corrections['MSS_Geoid'] = np.zeros((n_records),dtype=np.int32) #-- Ocean Depth/Land Elevation Model (ODLE) packed units (mm, 1e-3 m) Corrections['ODLE'] = np.zeros((n_records),dtype=np.int32) #-- Ice Concentration packed units (%/100) Corrections['Ice_conc'] = np.zeros((n_records),dtype=np.int16) #-- Snow Depth packed units (mm, 1e-3 m) Corrections['Snow_depth'] = np.zeros((n_records),dtype=np.int16) #-- Snow Density packed units (kg/m^3) Corrections['Snow_density'] = np.zeros((n_records),dtype=np.int16) Corrections['Spare2'] = np.zeros((n_records),dtype=np.int16) #-- Corrections Status Flag Corrections['C_status'] = np.zeros((n_records),dtype=np.uint32) #-- Significant Wave Height (SWH) packed units (mm, 1e-3) Corrections['SWH'] = np.zeros((n_records),dtype=np.int16) #-- Wind Speed packed units (mm/s, 1e-3 m/s) Corrections['Wind_speed'] = np.zeros((n_records),dtype=np.uint16) Corrections['Spare3'] = np.zeros((n_records),dtype=np.int16) Corrections['Spare4'] = np.zeros((n_records),dtype=np.int16) Corrections['Spare5'] = np.zeros((n_records),dtype=np.int16) Corrections['Spare6'] = np.zeros((n_records),dtype=np.int16) #-- CryoSat-2 20 Hz data fields (Measurement Group) #-- Derived from instrument measurement parameters n_blocks = 20 Data_20Hz = {} #-- Delta between the timestamps for 20Hz record and the 1Hz record #-- D_time_mics packed units (microseconds) Data_20Hz['D_time_mics'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) Data_20Hz['D_time_mics'].mask = np.ones((n_records,n_blocks),dtype=bool) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Data_20Hz['Lat'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) Data_20Hz['Lat'].mask =
np.ones((n_records,n_blocks),dtype=bool)
numpy.ones
# -*- coding: utf-8 -*- from ..data import Data, DataSamples from ..cross import DecisionTree, Crosses #from ..woe import WOE import pandas as pd #import math as m import numpy as np import matplotlib import matplotlib.colors as colors import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import seaborn as sns from sklearn.model_selection import cross_val_score, StratifiedKFold, train_test_split, GridSearchCV, PredefinedSplit from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score, roc_curve, auc, r2_score from scipy.stats import chi2, chisquare, ks_2samp, ttest_ind #import statsmodels.formula.api as sm import warnings from abc import ABCMeta, abstractmethod #from sklearn.feature_selection import GenericUnivariateSelect, f_classif from patsy import dmatrices from statsmodels.stats.outliers_influence import variance_inflation_factor import re import ast import os import xlsxwriter from PIL import Image import datetime from dateutil.relativedelta import * from scipy.optimize import minimize import copy import itertools import calendar warnings.simplefilter('ignore') plt.rc('font', family='Verdana') plt.style.use('seaborn-darkgrid') pd.set_option('display.precision', 3) class ScoringModel(metaclass = ABCMeta): ''' Base class for binary scoring models ''' @abstractmethod def __init__(self, model): self.model = model self.features = [] @abstractmethod def fit(self, data): pass def predict(self, data, woe_transform=None): ''' Predicts probability of target = 1 Parameters ----------- data: Data to use for prediction, Data type woe_transform: a WOE object to perform WoE-transformation before using model Returns ----------- matrix with shape [(sample size) X (number of classes)] ''' if woe_transform is not None: data=woe_transform.transform(data, keep_essential=True, original_values=True, calc_gini=False) if self.features == []: self.features = data.features return self.model.predict_proba(data.dataframe[self.features]) def roc_curve(self, data, woe_transform=None, figsize=(10,7), filename = 'roc_curve', verbose = True): ''' Displays ROC-curve and Gini coefficient for the model Parameters ----------- data: a Data or DataSamples object woe_transform: a WOE object to perform WoE-transformation before using model figsize: a tuple for graph size filename: name of the picture with roc_curve verbose: show/not show roc_curve in output Returns ---------- a list of gini values per input sample ''' if woe_transform is not None: data=woe_transform.transform(data, keep_essential=True, original_values=True, calc_gini=False) tpr={} fpr={} roc_auc={} if type(data)==DataSamples: samples=[data.train, data.validate, data.test] sample_names=['Train', 'Validate', 'Test'] for si in range(len(samples)): if samples[si] is not None: preds = self.predict(samples[si])[:,1] fpr[samples[si].name], tpr[samples[si].name], _ = roc_curve(samples[si].dataframe[samples[si].target], preds) roc_auc[samples[si].name] = auc(fpr[samples[si].name], tpr[samples[si].name]) else: fpr[sample_names[si]]=None tpr[sample_names[si]]=None roc_auc[sample_names[si]]=None else: preds = self.predict(data)[:,1] fpr['Data'], tpr['Data'], _ = roc_curve(data.dataframe[data.target], preds) roc_auc['Data'] = auc(fpr['Data'], tpr['Data']) if verbose or (filename is not None): fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) # Plot tpr vs 1-fpr for sample in roc_auc: if roc_auc[sample] is not None: ax.plot(fpr[sample], tpr[sample], label=sample+' (AUC = %f)' % roc_auc[sample]) ax.plot(tpr[list(tpr)[0]],tpr[list(tpr)[0]]) ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') ax.legend() if filename is not None: plt.savefig(filename + ".png", dpi=100, bbox_inches='tight') if verbose: plt.show() if verbose or (filename is not None): plt.close() ginis=[] for sample in roc_auc: if roc_auc[sample] is not None: gini = round((roc_auc[sample]*2 - 1)*100, 2) ginis.append(gini) if verbose: print ('Gini '+sample, gini) return ginis #--------------------------------------------------------------- class DecisionTreeModel(ScoringModel): ''' Decision tree classifier ''' def __init__(self, **args): self.model = DecisionTreeClassifier(**args) self.features = [] def fit(self, data): if data.weights != None: self.model.fit(data.dataframe[data.features], data.dataframe[data.target], sample_weight =
np.array(data.dataframe[data.weights])
numpy.array
""" An interface to output the data in various format """ import numpy import os import sys from pysph.base.particle_array import ParticleArray from pysph.base.utils import get_particles_info, get_particle_array from pysph import has_h5py output_formats = ('hdf5', 'npz') COMPRESSION_LEVEL = 6 def _to_str(s): if isinstance(s, bytes) and sys.version_info[0] > 2: return s.decode('utf-8') else: return str(s) def gather_array_data(all_array_data, comm): """Given array_data from the current processor and an MPI communicator,return a joined array_data from all processors on rank 0 and the same array_data on the other machines. """ array_names = all_array_data.keys() # gather the data from all processors collected_data = comm.gather(all_array_data, root=0) if comm.Get_rank() == 0: all_array_data = {} size = comm.Get_size() # concatenate the arrays for array_name in array_names: array_data = {} all_array_data[array_name] = array_data _props = collected_data[0][array_name].keys() for prop in _props: data = [collected_data[pid][array_name][prop] for pid in range(size)] prop_arr = numpy.concatenate(data) array_data[prop] = prop_arr return all_array_data class Output(object): """ Class that handles output for simulation """ def __init__(self, detailed_output=False, only_real=True, mpi_comm=None, compress=False): self.compress = compress self.detailed_output = detailed_output self.only_real = only_real self.mpi_comm = mpi_comm def dump(self, fname, particles, solver_data): self.particle_data = dict(get_particles_info(particles)) self.all_array_data = {} for array in particles: self.all_array_data[array.name] = array.get_property_arrays( all=self.detailed_output, only_real=self.only_real ) mpi_comm = self.mpi_comm if mpi_comm is not None: self.all_array_data = gather_array_data( self.all_array_data, mpi_comm ) self.solver_data = solver_data if mpi_comm is None or mpi_comm.Get_rank() == 0: self._dump(fname) def load(self, fname): return self._load(fname) def _dump(self, fname): """ Implement the method for writing the output to a file here """ raise NotImplementedError() def _load(self, fname): """ Implement the method for loading from file here """ raise NotImplementedError() def _dict_bytes_to_str(d): # This craziness is needed as if the npz file is saved in Python2 # then all the strings are bytes and if this is loaded in Python 3, # the keys will be bytes and not strings leading to strange errors. res = {} for key, value in d.items(): if isinstance(value, dict): value = _dict_bytes_to_str(value) if isinstance(value, bytes): value = _to_str(value) if isinstance(value, list): if value and isinstance(value[0], bytes): value = [_to_str(x) for x in value] res[_to_str(key)] = value return res def _get_dict_from_arrays(arrays): arrays.shape = (1,) res = arrays[0] if res and isinstance(list(res.keys())[0], bytes): return _dict_bytes_to_str(res) else: return res class NumpyOutput(Output): def _dump(self, filename): save_method = numpy.savez_compressed if self.compress else numpy.savez output_data = {"particles": self.particle_data, "solver_data": self.solver_data} for name, arrays in self.all_array_data.items(): self.particle_data[name]["arrays"] = arrays save_method(filename, version=2, **output_data) def _load(self, fname): data =
numpy.load(fname, encoding='bytes', allow_pickle=True)
numpy.load